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Abstract

Extremely large mode area fibers that are singie—moded over a broad wavelength
range can be created using holey fiber technology. However, as with any fiber, the
largest mode éx‘eas that are practically feasible are ultimately determined by bending
losses. It is therefore essential to gain an understanding of the factors that influence
bend loss in these fibers in order to form accurate predictions that can facilitate
improx.red bend loss design. Here we present the first detailed study of transition loss
and pure bend loss in a holey ﬁber and consider the impact of the fiber structure.
A theoretical model is derived that retains the full refractive index proﬁle of a
holey fiber. This approach is used to predict the bend loss in large mode area holey
fibers and is validated through comparison with experimental data. For the fibers
under study here, we demoustr.ate that pure bend loss is the dominant component
of macro-bend loss and that the hole configuration within the cladding can strongly

influence this loss.
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-1 . Introduction
1.1 Large mode area holey fibers

Large mode area opfical fibers are reqﬁired in high power applipations,_ includ-
ing laser welding ahd machining énd active devices such as fiber lasers and afn—_
- plifiers. For many of these applications, single-moded operation is also an es-
sential requirement. In conventional solid optical fibers, enlarging the core and
decreasing the numerical aperture (NA) both act to increase the fundamental
mode area. The challenge of accurately controlling low dopant COITICGIﬂ.ZI‘at’iODS. .
places an upper- limit on the smallest NA (and hence the largest mode area)
that can be achieved using conventional techﬁology. Despite this, single-mode
fibers with rﬁode areas as large as 400um? at 1550nm have beén achieved [1] :
Since the NA must also reduce with wavelength in order to maintain singlé—
moded guidance,r these fdbricatior; challenges become more pronounced for

fibers designed for use at short wavelengths.

Holey fiber (HF) technology has emerged as an alternati\}e route towards largé
mode areas [2]..The guidaﬁc'e mechanism in a HF results from the effective in-
dex difference between the solid core and the microstructured Cladciing: which
is defined hy an afray of air holes. Large mode areas can be engineered hy

increasing the hole-to-hole spacing (A), by decreasing the hole diameter (d),
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or both. Increasing A is analogous to enlarging the core size in a conventional
fiber, while decreasing d allows the field to penetrate further into the cladding

and is equivalent to reducing the NA in a conventional fiber.

HF's are typically fabricated from glass tubes that are stacked around a solid
silica rod and are drawn to fiber using a conventional fiber drawing tower [3].
This fabrication process enables the creation of a diverse range of fibers with a
wide range of optical properties, including endlessly single-moded guidance [4]..
This unique optical property means that a single silica fiber can offer broad-
band single-mode operation extending from the ultra-violet to the infra-red.
Given that one fiber can be used for all wavelengths, there are no additional
fabrication difficulties associated with short wavelength operation, which is
an advantage over conventional techniques. In addition, since it is possible to
fabricate HF's with air holes as small as 50nm in diameter, such fibers can

offer extremely low numerical apertures.

Although HF technology may offer advantages over conventional techniques,
the largest mode sizes that can be tolerated in practice are, as in any fiber,
deterniined by the bending losses. Moreover, for practical devices, compact
packaging is desirable. It is therefore essential to gain an underétanding of the
factors that influence bend loss in HFs in order to accurately predict these

losses.

1.2 Bending losses in holey fibers

Bend loss is traditionally separated for convenience into two regimes; macro-

bending and micro-bending losses [5]. Macro-bending losses result from bends



that are signiﬁéantly greater in scale than the fiber core, while micfo—bendiné
losses occur fof small-scale ben&s, along which the mode distorts continuously.
Micro-bends generaHy result from waveguide coéti»ng, cabling, packaging and

installation and can be reducedAthrough' careful processing and handling. In |
this study we concentrate on the macro-bend loss regime. Our aim is to deter-

mine the largest' mode areas that can be tolerated in practical applications.

As light encounters a macro-bend in an optical fiber, the modal‘ field distorts
‘radially outwards in .the direction of the'bend? ihducin‘g coupling from the core
~ mode(s) to radiation modes and also to leaky higher order, cladding and back-
- Wérd propagating modes. In conventional fibers, this lossvis often separated
into two components; tranéz’tz’on loss and pure bend loss [6]. Tranéition loss,
which is also referred to as mode-conversion loss, is a one-off loss that results
from thé modal distortion induéed by the abrupt change in curvature at the
beginning and end of a bend. Pure bend loss is defined as the conti_nual loss
of radiation from the distorted mode that occurs along any curved section of
fiber. Although this distinction between transition and pure bend loss rnay'
éeem sdmewhat artificial at ﬁrsf sight, this approach is frequently, and suc-
cessfully, employed in studies of b‘(b)th‘slab xfaveguides and optical fibers [7-15].
Indeed, by considering different types of bend, we can see that theée‘compo—
nents represent relevant physiczﬂ quantities. For example, bend loss in long
lengths of spooled fiber will be dominated by pure bend loss, while in lenétkls
of fiber with many separate macro-bends, the multiple transition regions can

contribute significantly to the overall bend loss.

The bending losses of HFs differ qualitatively from those of conventional stép
“index fibers. Like conventional fibers, HFs exhihit a bend loss edge at long

wavelengths due to the fact that the mode extends further into the cladding,



resulting in a more weakly guided mode that will suffer a greater perturba-
tion in response to bending. HF's also possess an additional bend loss edge at
short wavelengths as a direct consequence of their novel cladding structure [4].
This can be understood as follows; in a HF the NA decreases towards short
wavelengths due to the fact that the mode is more tfghtly confined to the
core and samples less of the air holes. This property gives rise to broadband
single-moded guidance, mentioned previously, and also leads to weak guidance
and hence less resistance to bending towards shorter wavelengths. This loss
edge can also be characterized by the hole-to-hole spacing, A; if A is large
compared with the wavelength, when the fiber is bent, the guided mode can
escape via the solid silica bridges between neighboring holes. It has been shown
ernpirically'that the optimal bend loss between the two loss edges is approx-
imately given by A/ 2 [16]. This implies that for the large mode fibers in this
study, which have A in the range 7.6 - 11.3 um, standard telecommunications
wavelengths lie on the shbrt wavelength side of the optimal point of A/2. At
first sight; this may seem to suggest that the hend loss for HF's will be worse
than for their conventional counterparts as the bending losses of conventional
fibers do not increase towards short wavelengths. However, we have previously
demonstrated [1} that the losses at 1550nm are comparable. Moreover, whilst
a HF can guide a single mode over a broad wavelength range, the number of
modes guided by a conventional step index fiber increases towards short wave-
lengths. It would therefore be necessary to consider a different conventional
fiber at each wavelength in order to make a meaningful comparison between

the bending losses of the two fiber types.

An important difference between conventional and holey fibers is the complex

nature of the transverse refractive index profile. Unlike conventional fibers,



HF's usually possess a siX fold symmetry, which rﬁay be reflected in the bending
losses. In this paper we preéeﬁt results from a detailed study into the.bend
loss characteristics of HFs. -To,assess the potential benefits offeréd by HFs it
is necessary to fully understand how the structure of the fiber can influence
these losses. We also consider: for the first time the relative Qontributions from

the two components of macro-bend loss; -transition loss and pure bend loss.

1.8 The fibers

In this study, four lérge mode holey ﬁbers (HF1-HF4) and one conventional
fiber (C1) were characterized in terms of bend loss. All of the HFs used in
this study were drawn from the same preform énd the smallest ﬁb.er, HF1, is
_showﬁ in Fig. 1. In each é)f these fibers, which are mdde entirely from pure
silica, the core is offset fr>om the center of the fiber by one vperiod.. This offset
was introduced 'because the same cladding configuration was used to make a
cladding pumped HF laser, in which the offset is used to enhance the modal

overlap between the core and cladding modes (17].

Fig. 1. Holey fiber HF1: hole-to-hole spacing (A) = 7.55 um, hole diameter (d) =

1.71 pm. -



For each fiber, the mode field diameter (MFD) was extracted by performing
divergence measurements using a standard scanning knife-edge technique [18].
In this approach, we assume a Gaussian transverse field profile and thus define
the MFD as twice the distance over which the inténsity drops to 1/e? of
its maximum value. Although the modes of the HFs we consider here are
slightly hexagonal in shape, we observe that the transverse field profiles can
be well approximated by a Gaussian function for any given angular orientation..
Using this technique, we thus extract a range of MFD values depending oﬁ
the angular orientation of the fiber. (For any given angular orientation, we
estimate that the error in the MFD measurement resulting from imperfect
cleaves and alignment is approximately 5%.) The effective area is assumed
to be Aeg = (T MFD?)/4, as for a Gaussian.mode profile. By averaging the

measured MFD values over the different orientations, a representative value

for the MFD and hence A, can be found.

As described in Section 2.2, we can predict the modal properties_ of these
fibers using the full refractive index profile. Our theoretical predictions show
that, for the type of fiber considered here, the variation in mode width with
‘angular orientation is approximately 15%. As mentioned above, we extract a,
representative value of Aqg by averaging over MFD measurements for different
angular orientations of the fiber. In this way we measure effective areas that,

agree to within 10% of our predicted values.

The measured effective mode areas, extracted from the divergence measure-
ments, are listed in Table 1 for each fiber included in this study. The effective
mode areas range from 130pm? to 230um? at 1550nm. For comparison, con-
ventional SMF28 telecommunications ﬁb.er has a mode area of approximately

85um?* at 1550nm [19], and the largest mode area (of a single-mode fiber)

;



achievéd with conventional technology is around 400pm? at 1550nm [1]. Al-
though endlessly single-mode HF's have been demoﬁstrated with effective areas
as large aé 630um? at -155.0nrn‘ [1], here we choose to study HFs with more con-
servative mode areas, which possess reasonably low bending losses. However,

in future this work could be extended to larger mode area HF's.
Table 1 ‘

Fundamental mode area (Acg) for holey fibers HF1-4 and the conventional step-
index fiber C1. The HF parameters are extracted from scanning electron microscope

images.

Fiber | NA |a[um]| As[pm? @ 1.55 um

CL | 011 | 40 126
Fiber | Alum] | d/A A g [pm?]
@ 1.55 . @ 633 nm
Hr1 | 76 0.23 130 72
HF2 | 97 | 023 215 100
HF3 | 113 | 0.24 230 | 103
HF4 | 95 | 025 180 | 98

1.4 QOutline

In the following sections we derive theoretical models. to predict the bending
losses in HF's and describe the experimental techniques used to investigate the
factors that influence these losses. These techniques are used here to study

the following aspects of bend loss in HFs; bend loss as a function of radius of



curvature, the components of bend loss and the effect of the fiber geometry

on bend loss.

2 Modeling the bending losses of holey fibers
2.1 Background

Predicting the bending losses of HFs is a challenging problem. Most of the
methods developed for conventional fibers assume a circularly symmetric in-
dex profile and cannot be applied to HE's without first replacing the complex
refractive index profile with that of an equivalent step index (ESI) fiber. This
approach has been used in a few studies on the modal properties of HFs with
mixed results. In Ref. [4], the authors demonstrate that the position of the
short wavelength loss edge for a fiber with A = 2.3um and d = 0.35um can be
qualitatively described by an approximate model of pure bend loss, derived
for step index fibers, if the holey fiber is first approximated by an ESI fiber. In
another study, an ESI-based calculation of pure bend loss yields good agree-
ment with experimental data for a fiber with A = 7.8um and d = 2.4um, but
not for a fiber with A = 10um and d = 5.5um [16,20]. This poor agreement is
due in part to the difficulties in choosing certain ESI parameters, such as core

radius, that are required to assign an appropriate ESI profile [21].

In order to avoid this problem we choose to retain the full transverse refractive
index profile, and hence the exact mode shape in our calculations of hend loss.
As .a. result, we are also able to study the effects of the angular orientation
of the fiber in the bend. We believe this is necessary in order to accurately

understand the bending losses of these fibers. This is supported hy our ex-



. perimental observations of bend loss, in which a dependence on the angular

orientation of the fiber has been observed (see Section 3).

For practical ﬁb'ér de\}ices, we require bends as small as 5-10 centimeters in
radius, which are in the macro-bend regime for the fibers considered here.
‘In studies of macro-bending losses in conventionalr single-mode fibers, pure
bend loss 1s generally assumed to be dominant and transition loss is only
considered to be an important contribution for very short lengths of curved
fiber [9,22]. Indeed, the effect of mode disﬁortion is often ignored completely
in the vmacro—bend regime [23,24]. However, as very little is known about the
reiativg contributions of the‘twé componeﬁts of loss in HF's, we consider both
pure bend loss and transition loss expeﬂmentally and,theoretically. The ap-
- proaches used here to calculate these losses are adapted from techniques that
have been developed for cohventional waveguides and require both the modal

field of the straight fiber and the distorted modal field of the bent fiber.

There are many well documented techniques that can be used to investigate
the modal properties of bent step-index fibers. The vast majority of these
use a conformal transformation to reblace the bent fiber with a straight fiber
that has an equivalent refractive index profile. The conformal transformation
creates an equivalent fiber by superimposing a gradient onto the refractive
index pr(file of the straight ﬁ'ber, as described in Section 2.3. The trans-
formed structure (an example of which is shown in Fig. 4) can then be used
to generate the modal properties of the bent sfep index fiber using a variety
of techniques [5,10,12,13,25-28]. However, HFs possess a complex transverse
structure, and the additional gradient. present in the transformed refractive
index profile precludes the use of many models. Techﬁiques that are capable

of modeling such a complex structure include those based on beam propa-
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gation, plane-wave and localized function methods. Whilst techniques based
on beam propagation methods (BPM) are capable of accurate representations
of the modal properties, they are typically computationally intensive. In the
plane-wave approach the modal fields and the refractive index profile are de-
composed into plane waves [29-31]. This approach is capable of producing an
accurate description of the modal properties if a sufficient number of terms are
used in the expansions, but as such can also be computationally intensive. The
localized function method follows a similar approach but takes advantage of
the fact that the mode(s) of the fiber are localized [32-34]. By using localized
functions in the decomposition of the modal field this method requires fewer
terms to form an accurate description and as a result can be computationally
efficient. Since the modes of the bent fiber are localized for all bend radii of
practical interest, we choose this method to model the modal fields of both

the straight and bent fiber, as described in the following.

2.2 Modeling the modal properties of straight holey fibers

The model developed in Refs [32-34] is adapted here to calculate the modal
properties of straight and bent large mode area HF's. In this model, the trans-
verse refractive index profile and the modal fields are decomposed using or-
thogonal functions. The transverse refractive index profile is described using
a Fourier decomposition with P terms performed over the entire fiber profile.
The modal electric field is described using Hermite Gaussian functions using

the following approach; the modal electric field is written as;

E;(m,y,2) = e (w,y) + ¢ (2,y)% eap(iB; ) (D)
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where (; is the real part of the propaga’tidn constant of the jth mode and
el(z,y) = e, % + e,y and ef are the transverse and longitudinal components
- of the modal electric field, resbectively. The transverse modal electric field is
-then decomposed in terms of localized functions;
F-1 ,
ef(z,y) = 3 (ef¥a(@)ths ()% + hytba(2)te(y)F) (2)
a,b=0
where F' is the number of terms in the expansion and the i, and 1), are
elements of the following orthonorial set of Hermite-Gaussian basis functions

which have a characteristic width (w,,) and are centered on the fiber core:

I A o WV
%/’z(x) - %\/m exTp 2w72n Hi E‘n‘ (3)

Here, H; is the Hermite polynomial of order 3. Uéing these decompositions, the
-vector wave equation can be reduced to an eigenvalue problem. This problem
caﬁ be solved numerically for the real part of the propagation constant(s) (5)
and the coefficients in the field expansion (¢, and £¥,), which are then used
to construct the modal ﬁeld(s) guided by the fiber. Since the basis elements of
each decomposition form a complete set, it is possible, in principal, to describe
any refraétive index proﬁlé and modal field with perfect accuracy. However, for
the model to be computationally efficient, both decompositions must result in
accurate representations of the relevant physical quantities without, requiring
too many terms. By choosing the number of functions uséd in each decom-
position and the charactéristic width (wp,) with care, tl.liS technique can be

optimized in terms of accuracy and efficiency.

In the large mode area fibers considered here, the holes are small relative to

the hole-to-hole spacing (7.5um < A < 12um and 0:23< d/A < 0.25) and
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so a relatively large number of functions are required in the Fourier decom-
position to accurately represent fibers with this large scale difference. In this
study, 200 functions are used in the Fourier decomposition (i.e. P=200). For
the modal fields, we must consider both the number of functions used in the
decomposition (F) and their charact-eristic width, w,,. If a value of w,, is
chosen to suit the particular fiber geometry and operation wavelength, the
number of Hermite-Gaussians required can be minimized. For A ~ 2um at a
wavelength of 1550nm, a characteristic width of 0.5A was found to be opti-
mal [32]. This seems physically reasonable, as the effective mode area should
be approximétely that of the core. For HFs in which A is sub-wavelength,
however, the effective mode area can be considerably larger than the core size
and wy, must be larger than 0.5A. By a similar argument, wy, should ideally
be smaller than 0.5A for HFs with a large A. For the fibers considered here,
we have found w,, = 0.32A to be optimal. For this value of w,,, we find that
12 Hermite-Gaussians are then sufficient to produce a good description of the
mode. However, our method of calculating bend loss (described in Section 2.4)
is extremely sensitive to the exact shape of the mode and so the accuracy of the
modal representation is particularly important. As a result we use 32 Hermite-
Gaussians to describe the modal field in this implementation. As an example,
Fig. 2(a) shows the calculated intensity profile for the fundamental mode of
holey fiber HF1 (A : 7.55 pm and d = 1.71 pm) at 1550nm, which has an
effective area (Aq) of 140 pm? and an effective index (neg) of 1.44233 (Note
that only the central region of the structure used in the calculation is shown).
For all predicted values, the effective area is calculated using the definition in

Ref. [35].
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Fig. 2. Calculated modal intensity. for hoiey fiber HF1 at 1550nm. We have used
200 functions in the Fourie.r decomposition (P) and 32 Hermite-Gaussians (F) with
a characteristic width (m,,) of 0.32. Contours are spaced by 1 dB.

Although the full vectorial Versién is outlined in the above description, we
find that in most cases the scalar approximation can be used due to the fact
that the fibers in this study possess low valueé of NA and are only considered
in the macro-bend regime (as is dernonsfrated in Sections 3.2 and 3.4). This
is advantageous since we use 32 Hermite-Gaussians in the expansion of the
modal field and the numerical simulations are more than aﬁ order of magnitude
faster for the scalar approximation than those for the fully vectorial apprdach.
However, the vector version is obviously neéeSsary when considering the effect

of the polarization of the mode as in Section 3.4.

2.8  Modeling the modal properties of bent holey fibers

To model the modal fields of a bent HF we use the above method together
with a conformal transformation, as mentioned in Section 2.1. The conformal
transformation is performed before the mode calculation and is used to replace

the bent fiber with a straight fiber that has an equivalent refractive index
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profile. The equivalen_t refractive index profile is found by expressing the scalar
wave equation in terms of a local coordinate system that follows the curvature
of the fiber [27]. (The scalar approximation is valid for the fibers considered
here as discussed in Sections 3.2 and 3.4.) A fiber, bent in the y direction for
example, can be represented by a straight fiber with an effective refractive

index distribution of;

ny2(2,y) = n*(z,y)(1 + 2y/R,) | (4)

where R, is the radius of curvature and n(z,y) is the refractive index profile
of the straight fiber. Thus, by applying the transform in Eq. 4 to the refractive
index profile of a straight HF we can define an index profile that mimics the
modal properties of a bent holey fiber. For example, the refractive index profile
of holey fiber HF1, shown in Figs 3(a) and (b), is transformed using Eq. 4 for
a bend radius of 14.5mm, as shown in Fig. 3(c). (Note that only the central

region of the structure is shown).
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Fig. 3. (a) Cross-section through center of holey fiber HF1. (b) Transverse slice in the
y direction through (a), (¢) Transverse slice in the y direction for the refractive index

profile in (a) transformed using Eq. 4 for a bend in the y direction, R,=14.5mm.

These figures show clearly that the transform in Eq. 4 superimposes a gradient

onto the refractive index of the straight fiber in the direction of the bend. One
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can also see, intuitively, that the mode will distort outwards.in the direction
of the bend. Furthermore, since the gradient is proportional to the severity
of the bend, it is obvious that the mode will become incréasingly distorted at

tighter bend radii.

Example modal profiles for bent fibers are shown in Fig: 4 for fiber HF1 (A =
7.55um and d/A = 0.23). Figs 4(5/1) ‘and (b) show the intensity distribution at
1550nm for bends in the x directiorn of radius 25mm and 19mm respectively.
Fig. 4(c) shows slices in the x direction; the solid line corresponds to the
mode of the straight fiber (shown in Fig. 2), the dotted line to the mode in
Fig. 4(a) and the dashed line to the mode in Fig. 4(b). Similarly, Figs 4(c) and
(d) show the intensity distribution at 1550nm for bends in the y direction of
radius 25mm and 19mm respectively. Fig. 4(e) shows slices in the y direction;
as before the solid line corresponds to the rﬁode of the straight fiber (shown in
Fig. 2), the dotted line corresponds to the mode in Fig. 4(c) and the dashed

line corresponds to the mode in Fig. 4(d).

These figures show clearly that the mode of the bent fiber is asymmetric in
shape and shifts away from the center of the fiber towards the outside of the
bend. We can also see that the mode extends further into the cladding and
beconﬁes increasingly distorted with decreasing bend raditls. The asymmetry in
the position and shape of the mode means that the odd terms in the Hermite-
Gaussian expansion (odd values of ¢ and b in Eq. 2) become essential in
forming an accurate description. Furthermore, this model is designed to he
efficient for modes that are localized in the center of the fiber. Indeed, the
values stated previously (F=32 and ™My, =0.32) were chosen to represent the

modal field sufficiently accurately for our bend loss calculations.
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Fig. 4. Parts (a), (b) (d), (e), (g) and (h) show calculated‘modal intensities for HF1.
The contours are spaced by 2dB. The dashed line on each mode profile corresponds
to the distance z, in our model of pure bend loss, defined in Section 2.4.3. Figs (c)
and (f ) each show three transverse slices along the x and y direction respectively. The
solid line in each case corresponds to the mode of the straight fiber at 1550nm (shown
in Fig. 2), the dotted line corresponds to the mode in (a) and (d) respectively (R,
= 25fn1n) and the dashed line corresponds to the mode in (b) and (e) respectively
(R, = 19mm). Fig. (i) shows three transverse slices along the x direction where
the solid line corresponds to the mode of the straight fiber at 633nm (not shown),

the dotted line corresponds to the mode in (g) (R, = 80mm) and the dashed line

corresponds to the'mode in (h) (R, = 70mm).
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Using this approach we afe-also able to 'étudy pure bend loss as a function of
wavelength.  As mentioned previously, HFs possess a short wavelength bend
loss edge in addition to a more conventional long \Vaveleng;ch loss edge. The
increase in loss towards short wavelengths results from the fact that the nu-
merical aperture decreases strongly with wavelength, causing the mode to
suffer a greater pertufbation in response to hbending. This is illustrated in the
predicted mode profiles shown in Figs 4(g) and (h), caleulated for ﬁber HF1
at 633nm, bent in the x direction for R,=80mm and Ro=70mm fespeCtively.
Indeed, from the transverse cross-sections shown in Fig. 4(i) for the bends at
633nm, and'in Fig. 4(c) for bends in the same direc’.cion at 1550nm, we can see
thaf the overall degree of mode distortion is similar for the two wavelengths
despite the fact that .the beﬁd radii are significantly larger for the examples

shown at 633nm.

Although the exact refractive index profile of a real HF can be used in this
model to calculate the modal fields, we use an idealized index profile, in which
measurements of /Lambda and d are extracted directly from a scanning elec-
tron microscope image of the real fiber: This is a reasonable assw.lmptioﬁ for
the fibers considered here as the air holes form an almost perfectly regular
triangular lattice. The refractive index of silica is taken to be 1'.4440236 for a

wavelength of 1550nm.
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2.4 Modeling the components of bend loss in holey fibers

2.4.1 Querview

As mentioned briefly in Section 1.2, the mechanisms responsible for bend loss
iﬁvolve bend induced coupling from the core mode(s) to radiation modes and
also to Ieaky' higher order, cladding and backward propagating modes. For
the purposes of this study, we Qonsider only single-moded fibers, ignoring all
coupling effects, and we assume that power is lost as radiaﬁion from the core
mode. In addition, we choose to consider transition loss and pure bend loss

separately, as is described in the following two sections.

2.4.2  Transition loss

Transition losses occur where the curvature of the fiber changes suddenly, such
as at the beginning and end of a macro-bend. As light travels into the curved
fiber, the modal field distorts radially outwards, evolving over some length
scale into the mode of the bent fiber. Power is lost in this transition if the
length scale is too short for an adiabatic change in mode shape to take place.
Here we consider the worst case scenario of an abrupt change of curvature
from R = co to £ = R, and assume that all power is lost instantaneously to
radiation. In this approximation, the transition loss is analogous to a spiice
loss between the mode of the straight fiber and the mode of the bent fiber,

and so the transition loss (in dB) is;

/ |1 E, - B} dzdyf? )
TL = —10log :
L Ologig [ E,- E; dedy [ By - B} dady
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where E, = E,(z,y) is the field distribution of the straight' ﬁbér and By =

Ey(z,y) is the field distribution of the bent fiber [28].

The assumption that all power is lost as fadiation, instantaneously, and the
fact that we have ignored mode coupling, overestimates the losses. In reality,
power is lost through coupling to higher order, cladding, radiation and back-
- ward propagating modes, which is neither an instantaneous or one way process
'as power can be coupled back into the fundamental mode. Despite this, we can
use this method to gauge the order of magnitude of this component of hend
loss and to predict trends relating to the fiber design. Since the transition loss
is calculated directly from the distorted modal ﬁéld of the bent fiber, we can

also study the effect of the angular orientation of the fiber in the bend.

2.4.3 Pure bend loss

Fig. 5. Mode propagating in the z direction around a hend of radius R, in the x

direction.

: w I3 3 ) . . .
Pure bend loss is defined as the continual loss of radiation that occurs along
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any curved section of fiber and is related to the inability of the tails of the mode
to successfully navigate the bend. The method used here to model the pure
bend loss of a holey fiber is based on a method developed for predicting the
pure bend loss of slab wavegﬁides [6]. Fig. 5 depicts a guided mode propagating
in the z direction around a bend in the x plane that has a radius of curvature
R,. For the mode to propagate along a curved trajectory without suffering loss,
the local group velocity along the phase fronts of the mode must decrease
on the inside of the bend and increase on the outside of the bend in order
to maintain a constant angular velocity across the mode. At some distance
towards the outside of the bend (z,), the required group velocity will exceed

the local speed of light. This condition is given by;

z :/@—1\ R, (6)

B

where [, is taken to be the propagatién constant of the mode of the bent fiber
and [, is the propagation constant of the fundamental mode of the cladding
structure. We then assume that the power in the guided mode at = > z, (fo)

is lost as radiation over some length scale (L), with a power decay rate of;

P = P %=

N
=~
~—

where F, is the power in the guided mode before the bend, P is the power in the
guided mode at the end of the the bend, z is the length of the curved section,
and « is the pure bend loss in units of Np/m (1Np = —0.5(n(Pin/ Four)). At
z = L, the remaining power in the modal field is given by P = P, — f,. If we

substitute this into Eq. 7, we see that o = (f,/F,)/(2L), where f,/F, is the
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fraction of modal power lost and is given by;

o I [ Fy B dudy | o
P, [S I By Ef dedy -

for a bend in the x direction, where Ey = Ey(z,y) is the modal field of the
fiber in the bend. The pure bend loss in units of dB/m is then given by:

4.343 f,

PBL = — T P

(9)
In Ref. [6], it was assuméd that the length scale, L, was equal to one Rayleigh
range (L = Zg). However, from detailed calculations we find that this choice
of L produces an unphysical dependency on mode size. For all waveguides,
ahy.inc‘rease in the NA results in a more tightly cohﬁned mode and so lower

‘bend loss. However, the Rayleigh range decreases rapidly with mode size and
so the choice L = Zg results in larger loss for smaller mode areas, which is
‘unphysical. Wé propose an alternative length scale based on a simplified ray
approach. We assume that the fraction of the modal field beyond z > z, is no
longer guided by the fiber and instead travels along the tangent to z.., leaving
the fiber at the boundary of the microstructured cladding. By this argument,
the length scale L is felated to the distance between z, and the intersection

of the tangent to z, and the outermost cladding hole;

L=7-2R,(D —z,) 4 o (10)

where D is the distance from the center of the fiber to the outermost hole and
7 is a constant of proportionality. Using this approximaté ray approach, the
predicted bend loss decreases with decreasing mode size as expected. Note that

the constant of proportionality 7 in effect incorporates a first order correction
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to account for mode coupling, which is otherwise ignored in this simplified

model.

In Eq. 6 we require the propagation constant of the fundamental mode of
the cladding structure (8,), also known as the fundamental space-filling mode
(FSM) [36]. We have found that in order to accurately predict the bending
losses, we require knowledge of this parameter correct to at least 7 significant
figures. (Changes in the 8th significant figure of 8. produces changes in the
4th significant figure of the pure bend loss, while changes in the 7th significant
figure of 4. can lead to changes in the 2nd signiﬁbant figure of the pure bend
loss.) The simplest method of calculating 3, is to find the effective cladding
index of an ESI fiber [4]. Unfortunately this method is only approximate since
there is no unique choice for the core index and the core radius of the ESI
fiber [21]. A more refined analytical method for calculating £, is proposed in
Ref. [37], in which the microstructured cladding is approximated by a unit
cell with circular boundaries and periodic boundary conditions. In this study,
results for a HF with A=2.3um and d/A=0.26 show good agreement with
Ref. [30]. However, via comparison with values calculated using a plane-wave
method [38], we find that this analytical approach returns values of 8, that
are correct only to about 4 significant figures for a range of fiber structures.
While this gives a good approximation for g, the level of accuracy is well

below that which we require in our bend loss calculations.

A better approach is to model the holey fiber cladding directly by considering
a structure in which there is no core. One method that can be used to do this
is the Multipole approach [39] ,V in which the modal fields are calculated ‘using'
decompositions based on cylindrical harmonic functions localized in each of the

cladding holes. This method is capable of producing accurate, complex values
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| of B, for a finite cladding structu.re. However, it is necessary to consider the
entire extent of the fiber in this approach and is, as a result, computationally
intensive. The plane-wave method, as discussed briefly in Section 2.1, is also
capable of producing accurate values of g, [30,36). Whﬁst t;his technique can
be computationally intensive, we need only model a single unit cell in order to
calculate the pfoperties of the FSM for an infinite cladding structure composed
of a perfectly regulér lattice. In this way we can calculate 8, for an infinite
- cladding both efﬁéiently and accurately. Here we choose to use a commercially
available-software paékage called bandSOLVE™  which is based on a plane

wave approach, to calculate g,.
Ezample calculations and other insights

In Fig. 4 example modal profiles for fiber HF1 (A = 7.55um and d/A =0.23)
are shown for various bend radii‘.and directions at 1550nm and 633nm. In this
section we describe the bend loss calculations for some of the cases shown in
Fig. 4 and highlight ‘some of the main trends predicted by our model of pure
bend loss. The criticai point (z,) beyorid which all power is lost as radiation
is defined in Eq. 6 and depends only on the propagation constanf of the mode
of the bent fiber (5,), the propéxgation constant of the FSM of the straight
fiber (3;) and the bend radius (R,). The location of z, is indicated on---each
plot in Fig. 4 by a dashed line. For HF1 at 1550nm, 8, = 5.844182 x 10°. For
a bend of B,=25mm in the ¢ = 0° direction (Fig. 4(a)), 8, = 5.846873 x 108
and so z, = 11.5um, which eqﬁates to 3% of the mode lost as radiation. For
a bend of R,=19mm in the ¢ = 0° direction (Fig. 4(b)), 3, = 5.847015 x 10°

and z, = 9.2um, which equates to 10% of the mode lost as radiation. These
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results demonstrate that the predicted bend loss increases with decreasing
bend radius as expected. In addition, we can show that the bend loss increases
towards short wavelengths in this fiber type. For the larger bend radii of 80mm
and 70mm at 633nm (Figs 4(g) and (h) respectively), the fraction of the mode
lost as radiation is 9% for a bend radius of 80mm and 15% for a bend radius

of 70mm, thus confirming the presence of the short wavelength loss edge.

3 Experimental and comparison with theory
3.1 Qverview

This section presents the results from an experimental study of bend ioss in
HFs. We have investigated bend loss as a function of the radius of curvature,
the relative contributions of transition and pure bend loss, and tile effect of
the the angular orientation of the fiber in the bend. Where applicable we also
present the results from our theoretical predictions. Unless otherwise stated,
all spot values of pure bend loss for HF1 are calculated using the full vector

version of the modal model described in Section 2.2.

In all of the following experiments, care was taken to ensure that any change in
fiber curvature was well defined. Care was also taken to exert minimal tension
on the fiber and to ensure that the fiber lay flat along its entire length. These
precantions ensure that the measured loss can be attributed purely to the
regions of curvature that are deliberately imposed albng the length of fiher
and not from any other minor perturbations in the straight fiber regions,
ensuring a robust and repeat;tble method of measurement. In the following

experiments, light is coupled into the fibers under characterization from a
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single-mode fiber laser with a pair of aspheric lenses. The bend loss is defined _
as the ratio between the power transmitted through the straight fiber and the

bent fiber, ekpressed in dB.

3.2 Bend loss as a function of radius of curvature

" Loss was rﬁeasured at 1550nm as a fuﬁction of the bend radius for fibers HF1-
3. These m.easuremen.ts were taken for one circular loop of fiber, ensuring that
there was a sharb change of (‘:urvature at the beginning and end of the loop,
as mentioned above. These measurements were repeated for several random
angular orientations of the fiber and are shown in Figs 6(a), (b) and (c),
by the open shapes. Superimposed on each graph is a curve fitted to all the
experimental data for each fiber. This enaBles us to average over the different
angular oriéntatioﬁs and thus extract an average value for the critical fadius.
R., defined as the radius at which the loss i;s equal to 3dB for one loop of fiber.
This critical radius is found to be 21mm, 46mm .and 66mm for hbley fibers

HF1, HF2 and HF3 respectively, which increases with mode size as expected.

In order to understand the relative contributions that transition loss and pure
bend loss make to the net observed loss, we now compare these results with
our theoretical predictions. For one full loop-of fiber, there are two transition
regions, one at the beginning of the bénd and another at the end of the bend,
which result in two transition losses. Figs 7 (a), (b) and (c¢) show the measured
bend loss for fibers HF1, HF2 and HF3, as in the previous graph; together
with predicted values for the transition loss and pure bend loss. The dotted
lines in Figs 7 (a), (b) and (c) show the predicted transition loss for one full

loop of fiber bent in the ¢ = 0°,45° and 90° directions for HF1, HF2 and HF3
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Fig. 6. Loss for one loop of fiber as a function of bend radius. Open shapes represent
measured bend loss for (a) HF1, (b) HF2 and (c) HF3 for different random angular
orientations of the fiber. The solid line in each graph corresponds to the fitted curve
from which the critical radius is extracted.

respectively. These predicted values clearly show that transition loss is a small
overall contribution to bend loss for these HFs in the macro-bend regime at
1550nm and implies that the majority of loss must be attributed to pure bend

loss.

The predicted pure bend loss is shown for each fiber by the solid lines in
Figs 7(a), (b) and (c) for bends in the ¢ = 0°, 45° and 90° directions. Recall
that in our model of pure bend loss, a constant of proportionality (1) was
introduced in Eq. 10. Since the transition loss is a small contribution to the
overall loss (Fig. 7), this factor can be found hy fitting the predicted curves
to the experimental data. We find that by choosing 7 = 6, we achieve excel-
lent agreement with experimental data for all three fibers, as can be seen in
Figs 7(a), (b) and (c). For example, using our scalar model, the critical bend
radius (R,), is predicted to be 23mm, 44mm and 58mm for holey fibers HF 1,
HE2 and HF3 respectively. This compares well with experimental values of R,
(given above) of 21mm, 46mm and 66mm for holey fibers HF1, HF2 and HF3

respectively. Note that by using the vectorial method to calculate the modal
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fields of HF1 the value of the critical radius changes slightly to R, = 24mm.
These results show that the scalar approximation provides a useful method
for predicting the critical radius and enables us to efficiently gauge the bend

radii over which any given fiber is practical to use.
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Fig. 7. Loss as a function of bend radius. Open shapes represent measured bend loss -
for (a) HF'1, (b) HF?2 and (c) HI'3 for different random angular orientations of the
fiber, while the predicted pure bend loss is shown by solid lines for bends in the ¢
= (0°, 45° and 90° direction. The predicted transition loss is shown by dotted lines

for bends in the ¢ = 0°, 45° and 90° direction.

3.8 Distinguishing transition loss and pure bend loss experimentally

In this section, the relative contributions of transition loss and pure bhend
loss are separated experimentally to explicitly test our theoretical predictions
that transi.tion loss is dominated by pure bend loss. The experiment shown
in Fig. 8(a) was designed in Ref. [9] to distinguish transition and pure bend
loss in conventional s’cép index fibers. In this éxperiment, a length of fiber
is progressively wrapped around a drum of radius R, by rotating the stage
car;‘ying the detector. The fiber is carefully supported at points A and B with

straight guides to produce a sharp change in curvature without inducing any

unwanted stresses on the fiber. The guide at point A remains fixed and it is
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extremely important for the guide at B to reproduce the same sharp change
in curvature as the fiber is wrapped around the drum. The fiber chuck and
fiber chuck rotator, which enabled the angular orientation of the fiber to be

controlled with an accuracy of half a degree, are also shown in Fig. 8(a).

Fiber chuck -,

N\ Fiber
O oA
S
Fiber chuck @
B rotator S
2TLI g Py

>

Detector Transition region | Pure region

(a) (b)

Fig. 8. (a) Experimental set-up to observe transition loss and pure bend loss in a
bent optical fiber. Loss is measured as the fiber is progressively wrapped around a
drum of radius R, (The wrap-around angle = 8). The fiber chuck and rotator are
used to control the angular orientation (4) of the fiber in the bend. (b) Schematic

of results.

Fig. 8(b) shows a sketch of typical results. Transition losses occur at the points
A and B where there is a sharp change in curvature from R = 0o to R = R,
and back again. These transition losses (TL) take place over a finite length of
fiber; as shown by the curved section in graph Fig. 8(b). The length of fiber
between points A and B is of constant curvature and suffers a continuous pure
bend loss along its entire length. As the wrap-around angle (A) is increased,
the length of the curved section of fiber (and the pure bend loss) increases
linearly. The bure bend loss can be extracted from the gradient of the straight

line section of the graph in Fig. 8(b), which is offset by the two transition
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losses at the beginning and end of the bend. The transition loss can then be |

extrapolated from the graph as sketched in Fig. 8(b).

This experiment was ;-)er_formeci’for thé}conventional fiber C1 (Aeg = 126 pm?® |
at 1.550nm) and the similarly sized holey fiber HF1 (Aeg = 130 pum? at 1550nm)
to enable comparisons_-to be drawn Between the two fiber types. For each fiber,
the loss was measured as a function of 8 for a fixed radius of curvature. A radius
of 14.5mm was chosen to ensure that the loss due to mode deformation was

sufficiently large enough for the transition region to be clearly visible.
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R=14.5mm d R 14.5mm R=19mm
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Fig. 9. Results from experiment shown in Fig. 8 for A = 1550nm (a) conven-
tional fiber C1, R,=14.5mm, (b) holey fiber HF1, R,=14.5mm, (¢) holey fiber HF1,

- R,=19mm.

Figs 9(a) and (b) show the measured loss at 1550nm for R,=14.5mm as a
function of angle for the conventional fiber C1 and holey ‘ﬁber HF1 respectively,
together with fitted curves drawn to guide the eye. Unsurprisingly, we find
that the overall loss values for HF1 are similar in magnitude to those of the
similarly sized conventional fiber C1. In addition, we find that, for both fiher
types, two regions of loss can be distinguishéd: the curved section at small
values of # is the transition region, while pure bend loss dominates as the
length of the bent fiber is increased. As expected, we find that a linear fit can

be used to describe the pure bend loss region. For the case of holey fiber HF1,
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data sets are shown that correspond to two different angular orientations of
the fiber relative to the bend (see Fig. 9(b)). These two data sets demonstrate
that both the transition loss and the pure bend loss depend strongly on the
orientation of the HF relative to the bend. Notice also that the shape of the
curve in the transition region for holey fiber HF1 is more complex than that
of the conventional fiber, which may reflect the more complex spatial modal

field distribution of a bent HF.

'The pure bend loss for one loop of fiber, extracted from the slope of the linear
fit to the pure bend loss regions in Figs 9(a) and (b), is found to be 19.4dB for
the conventional fiber C1 and 14.0dB and 16.6dB for the different orientations
of holey fiber HF'1 for R0=14.5mm. The range of values measured here for HF1
compare well with predicted values of pure bend loss, which range between
13.9dB and 16.8dB depending on the angular orientation of the fiber and the
polarization of the mode. (The variation in bend loss as a function of angular

orientation and polarization is discussed in more detail in Section 3.4.)

The transition loss for R,=14.5mm, extracted from the y intercept of the
straight line fit, is found to be approximately 0.06 dB for the conventional
fiber C1 and 4.5dB and -2.2dB for the different orientations of the holey fiber
HF1. This latter, apparently unphysical, result may arise from the assumption
that the pure bend loss is constant within the transition regions at the begin-
ning and end of the bend. This is true only if the mode of the straight fiber
transforms into the mode of the bent fiber instantaneously. From the width
of the transition region in Figs 9(a) and (h) we can see that this is not the
case. As mentioned previously, on entering the hend, the modal field evolves,
over some length scale, into the mode of the hent fiber, which extends further

into the cladding in the direction of the bend. In the initial stages of distor-
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tion, the pure bend loss will thus be less than for the fully distorted mode.
By“‘assuming a constant value of pure bend loss within the transition region,
we underestimate the transition loss from the intercept of the straight line
fit to the pure bend losé region. From this argument, we can see that th_e yv
intercept of the straight line fit to the pure bend loss région may be negative,
if the modevd'istortion is signiﬁcant._For fiber HF1 at 1550nm, with a bend
radius of 14.5mm, the overail predicted transition loss is equal to 2dB, which
is approximately consistent with the experimentally derived values. Although
this value is still small when compared to the pure bend loss, it is significantly
- higher than the measured transition loss for the similarly sized conventional

fiber C1 for R,=14.5mm.

Results for R, = 19mm for fiber HF1 at 1550nm are shown in Fig. 9(c) and
demonstrate that for this larger bend radii and lower overall loss, the transition
. region is relatively less ﬁronoﬁnéed‘ The two data sets shown here were chosen
to corresbond with the maximum and minimum observed loss orientations.
The pure bend loss for one loop of fiber, extracted from the slope of the linear
it to the pure bend loss regions in Fig. 9(c) are 4.0dB and 12.6dB for the
different orientations of holey fiber HF1. Again, this shows good agreement
with our pfedicted values for pure bend loss, which are found to be between
6.6dB and 7.7dB for one loop of fiber, depending on the angular orientation

of the fiber and the polarization of the mode.

We also briefly investigated the effect of the short Wavelength loss edgei. Since
the midpoint between the long and short wavelength loss edges has empirically
been shown to be A/2 [16], we expect that the bend loss for all wavelengths
below 1550nm should increase, despite the fact that the mode size decreases

(Aeg = 130 um? at 1550nm and A = 70 ym? at 633nm). This was confirmed
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experimentally by measuring the bend loss of fiber HF1 at 633nm, using the
set-up shown in Fig. 8 for the two angular orientations shown in Fig. 9(b)
(Ro=14.5mm, data not shown here for reasons of brevity). As expected, we
find that the losses at 633nm are considerably higher than for this same bend
radius at 1550nm, shown in Fig. 9(b). The components of loss, extracted from
a straight line fit to the pure bend loss region, yield values of 9dB for two
transition losses and 50dB for one full loop of fiber. Although the transition
loss is still a small overall contribution to the overall loss, it is relatively higher
than for the same fiber and bend radius at 1550nm. In addition, we also find
that there ié no significant difference in the bending losses for the two angular
orientations of fiber, which correspond to the maximum and minimum loss
orientations found at 1550nm. Recall that our predictions show that for a
given bend radii, the modal field suffers a greater distortion at 633nm relative
to 1550nm, increasing the modal field intensity close to the boundary of the
microstructured cladding. As a result, we may expect the variation in loss as
a function of angular orientation to increase at 633nm relative to 1550nm.
This is something that obviously warrants further investigafion, but is not

considered in any more detail here.

In the next section, we investigate the effect of the geometry of the cladding

structure on the bend loss characteristics at 1550nm in more detail.

3.4 Bending losses in holey fibers as a function of angular orientation

For the HF's considered here, we have shown that the measured bend loss
varies as a function of the angular orientation of the fiber in the hend (see

for example Fig. 9). In this section we look at this in more detail using both
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experimental and theoretical techniques.

In Fig. 10 the predicted pure bend loss is shown for holey ﬁber HF1 as a
function of bend radius. For each bend radius, the loss is shown for bend
directions of ¢ = 0°, 45° and 90°, calculated using both the scalar and vector
version of the modal model described in Section 2.2. The relationship between
the bend loss, the bend direction and the polarization of the mode is complex,
and for simplicity we highlight the main trends shown in Fig. 10. We can clearly
see that thé variation in bend loss for any given bend radii increases as the
bend becomes tighter. In addition, we find that for those bends that are tighter
than the critical radiusb, the variation in loss can be mainly attributed to the
" different polarizations of the mode. Conversely, for those bends that are larger
than the critical radius, the loss variation is greatest for the different bend
directions, and inﬂuencé of the mode polarization is small. Note also that while
the resuits calculated using the scalar version of the modal modal in Section 2.2
predict a smaller variation in loss with respect to the angular orientation of
the fiber in the bend, the average loss values ;igree well, demonstrating that

the scalar version is perfectly adequate for a practical estimation of R,.

From previous experiments we have seen that the observed variatioh in loss
agrees well with predicted values for pure bend loss. However, in the results
presented in Section 3.3 only a few angular orientations of the fiber vverei
considered. To evaluate the relationship between bend loss and the angular
orientation of the fiber in a more systefnatic manner, we used the experimental
set-up shown in F ig..A 8. The‘wrap—around angle f was fixed at 130° and the
loss was measured as a function of angular orientation (¢) for holey fiber HF1
for a fixed bend radius of 14.5min and 19mm at 1550nm. A wrap-around angle

of 130° was chosen so that the majority of loss could be ;_Lttr'ibuted to pure
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Fig. 10. Predicted pure bend loss as a function of bend radius for HF1 at 1550nm

for different bend directions (¢) and polarization states as indicated on the figure.

bend loss without the overall loss value being too severe. The resulting loss
curve for B, = 14.5mm (not shown here for brevity) shows a variation in loss
with angular orientation that is equivalent to a loss of 41.5dB in one full loop
of fiber, with a minimum loss of 5.5dB and an average loss approximately
equal to 19dB for one loop. This value, avéraged over 160 equally spaced
angular orientations, agrees well with our predicted values of pure bend loss,
which range between 13.9dB and 16.8dB depending on the angular orientation
of the fiber and the polarization of the mode (from Fig. 10). However, the
observed variation in loss per loop is far greater than predicted by theory;

41.5dB compared to the predicted value of 2.9dB.
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Similarly, we find that for a bend radius of 19mm, the average observed loss
values agree well with predictions, but the.degree of variation does not. Mea-
sured values of bend loss vary between 4.0dB and 12.6dB, with an average
value (averaged for 11 equally spaced values of ¢) of 8.7dB for one loop of

fiber, while predicted values vary from 6.6dB to 7.7dB for one loop of fiber.

In order to understand this apparent discrepancy between the observed vari-
ation in loss and our theoretically derived values, we investigated how the
cladding structure of the fibers used here differs from the idealized fiber pro-
file used in our theoretical calculations. One“obvioﬁs difference is the slightly
irregular nature bf the outer boundary of the microstructured cladding, which
results from the fact that the positions of the air holes deviate from the perfect
lattice in the 3 outermost rings of holes. Furthermore, in all of the fibers used
here, the core is offset from a central position by one lattice point and results
in the fact that the extent of the cladding (D) varies from seven to eight rings
of holes around the core. Unfortunately, the loss curves for HF1 as a function
of angular orientation at 14.5mm and 19mm (both not shown here) have a
complex shape, and it is difficult to correlate the measured loss values with
any of the features discussed above. However,: we find that by increasing the
bend radius and thus decreasing the overall loss values, it becomes easier to

distinguish the effects of some of the cladding features.

The bend loss was measured as a function of the angular orientation of tllle
fiber for holey fiber HF4, which is larger in scale than HF1 (parameters shown
in Table 1), but has an almost identical cladding éonﬁguration. A bend radius
of 30.5mm was chosen for this fiber to achieve low overall bending losses so
that the effects of the cladding might be more clearly distinguished. Fig. 11(a)

shows loss as a function of angular orientation for HF4 for a wrap-around angle
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of 130° and a bend radius of 30.5mm at 1550nm. Fig. 11(b) shows 1/D as a
function of angular orientation, where D is defined as thé distance from the
center of the core to the center of the outermost hole in the cladding. We can
see that these two graphs strongly correlate, with the region of minimum loss
coinciding with the direction in which the extent of the cladding is greatest and
the maximum region of loss coinciding with direction in which the outermost
hole is closest to the core. Indeed, these results show that for this radius, one
additional ring of holes in the cladding can reduce the loss by approximately
1.5dB for a wrap-around angle of 130°, which is equivalent to a reduction of
20dB/m. In addition to the overall shape of the two curves, we can also see
that some of the sharp features in the shape of the cladding boundary are
reflected in the loss curve. For example, around 140° and between 200° and
230° sharp increases in loss can be seen to correspond to holes in the outermost
cladding that are closer to the core than their neighbors. This demonstrates
that both the overall extent of the cladding and the shape of the boundary
are important factors in determining the bend loss and must be considered in

the design of future HFs.

4 Discussion and conclusion

In high power fiber applications, large mode areas are required in order to
avoid damage to the fiber and to minimize non-linear effects that would oth-
erwise distort the signal. Holey fiber technology is an attractive alternative
to conventional technology, since it is possible to create extremely large mode
drea fibers that are single-moded over a broad wavelength range. Indeed, HFs

with effective areas as large as 680um? at 1550nm have been demonstrated
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Fig. 11. (a) Loss as a function of angular orientation for holey fiber HF'4 R,=30.5mm
(b) 1/D as a function of angular orientation for holey fiber HF4 where D = distance

from the center of the core to the outermost hole in the cladding.

that are effectively endiessly single-mode [1]. However, as with any fiber, the
macro-bending losses place a fundamental upber limit on the mode sizes that
~are practical to use and are therefore an important consideration in the deéign
of large mode area fibers. Currently, knowledge of the factors that influence
bend loss in HF's is limited and there has been little development towards the-
oretical techniques that could be used to design HF structures with greater
resistance to bending. In this study we have investigated bend loss in HFs,
and have increased our understanding of the factors that influence these losses.

Most importantly, we have developed a method that can be used to predict
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the critical bend radius of large mode HF's both accurately and efficiently.

The theoretical approaches to bend loss presented here are adapted from meth-
ods previously developed for conventional waveguides and, importantly, do not
assume a circularly symmetric refractive index profile. These methods do, how-
evef, require that both the modes of the straight and bent fiber be known.
Here we choose to calculate the modes of the straight and bent fiber using a
médel adapted from Ref. [33]. In the case of the bent fiber, we first apply a well
known transform to the refractive index profile of the bent fiber, which then
allows the mode of the bent fiber to be calculated in the same way. Once the
modal fields of the fiber are known, we calculate the transition loss as a splice
loss between the mode of the straight fiber and the distorted mode of the bent
fiber. The pure bend loss is calculated by evaluating the fraétion of the modal
field in the bent fiber that has to travel faster than the local speed of light to
negotiate the bend. These techniques enable us to predict the transition losses
and the pure bend losses for any HF, using the full refractive index profile, and
for any given angular orientation of bend. Using these theoretical methods we

have demonstrated excellent agreement with experimentally derived values.

Results from an experiment designed to separate the components of bend
loss, performed for different bend radii and for different wavelengths, show,
unsurprisingly, that both components of bend loss increase as the bend radius
is reduced. In addition, by comparing results for different wavelengths we see
that both the transition loss and the pure bend loss increase towards short
wavelengths, despite the fact that the mode area decreases, demonstrating
the presence of the short wavelength bend loss edge. These relationships are
correctly predicted by our models for transition loss and pure bend loss as

the mode of the bent fiber becomes increasingly distorted with decreasing
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bendAradii and wavelength. Iﬁ_ addition, both our experimental observations |
and our theoretical predictions show that the transition loss is a small overall
contribution to macro-bend loss in the HFs.considered here and that the bend
loss for one full loop of fiber can be well approximated by pure bending losses
only, as i.n conventional fibers. Indeed, our model of -pure bend loss predicts
the critical radius to within 4-12% of the observed value for the three fibers

_ considered in here.

An important difference between conventional and hdley fibers is the complex
nature of the transverse refractive index profile. Previous work on bending
losses in HF's h#s ignored the effect of the complex fiber structure for simplicity.
While our theoretical resu}ts predict that any variation in loss as a functidn
of angular brie_ntation of the fiber in the bend is small, in'practice, we observe
that the Bend loss can vary strongly as a function of angular orientation for
the fibers considered here. We have shown that this variation in loss is directly
related to the extent of fhe cladding and, more specifically, to the distance from
the center of the core to the outermost hole (for the fibers cénsidered here, the
core is éﬁ"set by one lattice point). The fact that this relatively subtle deviation
from a perfect structure ié so strongly reflected in the bend loss indicates that
the structure of the outer cladding ié an important consideration in large
mode area HF design. This variation in bend loss results from the fact that
the confinement of the bent mode is strongly dependent on the extent of the
cladding. Due to the fact that the model used: here to calc-ulate; the modal
fields of the bent fiber uses periodic boundary conditions, we are nét able to
model the confinement losses of the distorted mode that are associated with a
finite holey cladding.. Two obvious methods that could be used to study these

effects in HFs include the Multipole approa,ch and various BPM techniques.
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However, BPM techniques are typically computationally intensive and the
Multipole approach is not capable of modeling the mode of a bent HF using
the transformation in Eq.4, since it assumes a constant background refractive

index [39].

In conclusion, we have developed experimental techniques that have enabled
us to characterize the basic components of bend loss in large mode area holey
fibers. We have developed and experimentally validated theoretical approaches
that retain the full refractive index profile and include the effect of the angular
orienﬁation of the cladding. Together, these techniques present us with power-
ful tools that can be used to study the bending losses of any large mode area
HF, which is essential in the task of developing HF structures with greater
resistance to bending. It should also be noted that the theoretical techniques
outlined here are also applicable to higher order modes. Since the bending
losses of higher order modes are significantly greater than the fundamental
mode, it may be possible to design HF structures that are effectively single-
moded for certain bend radii. In addition, since there are few restrictions
regarding the refractive index profile that can be modeled, these methods are
also applicable to conventional fibers and to HF profiles that include doped

regions or more complex hole arrangements.
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