DI

—> bl

Modal ‘power decomposition of beam intensity profiles into

LP modes of multimode optical fibers

Daniel Beom Soo Soh*, Johan Nilsson, Seungin Baek, Christophe Codemard,
Yoonchan Jeong, Valery Philippov
Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK

* Corresponding author, e-mail: dbs(@orc.soton.ac.uk, tel: +44-23_—8059-3143, fax: +44-23-8059-

3142
Abs_tract

We calculate the modal power distribution of a randomly polarized LP mu.ltimode beam
.inside a cylindrical fiber core from knowledge of spatial intensity profiles of a beam
emitted from the fibér. We provide an exact analysis with rigorous proofs that forms the
basis for our calculations. The beam from the fiber end is collimated by a spherical lens
with a specific focal length. The orlgmal LP mode basis is transformed by the spherlcal
lens and forms another orthogonal basis that describes the free space beam. Using this, the
modal power distribution is calculated from the mutual intensity profile. This was acquired
by adopting a well-known mutual intensity profile retrieving technique, based on
measurements of the intensity patterns se\}eral times after two perpendicular cylindrical
lenses with varying separétion. Feasibility of our decomposition algorithm is demonstrated

with simulations.
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1. INTRODUCTION

Modal decomposmon of light beams in multimode optical fibers is a key problem in various

areas such as optical fiber communications and optical fiber lasers. For instance, knowledge of

.the power distribution among modes is necessary inapplications such as higher order mode.
dispersion compensation, mode beating 'devices and . free space opt1ca1 communication
employing fiber lasers and amphﬁers Moreover novel multimode fiber devices such as
cladding-pumped fiber lasers'” require a thorou0h knowledge and analy51s of the modal

behavior of launched beams, for example, in order to optimize the opt1cal pumpmg scheme

Approximaté methods for multimode fibers Wthh assumed that the modal space is contlnuous or -

the modal fields are azimuthally symmetrlc were developed in the 1980°s*® , but to date there has
not been an exact analytical treatment of modal decomposmon of beams in optical fibers based

on 1nten51ty profile measurements.

. Recently, a Hermite-Gaussian modal decomposition was demonstrated by Gori and
Santarsiero, et. al.>'° who successfully decomposed a multimode Hermite-Gaussian beam mto
eigenmodes and determmed the modal power-weights. One advantage of the Hermite-Gaussian
beam is the orthogonality propertles of the Fourier- transformed modal Intensity functionals’.
ThlS makes the method feasible and calculable. Unfortunate]y, the LP mode intensity profiles of

an optical fiber are more d1fﬁcult to treat, because of the complicated'nature of the Bessel



solutions of the Helmholtz equation with a cylindrical boundary. While one can easily extract
modal weights from the complex field profiles, thanks to the orthogonality of the Helmholtz
solutions, this requires knowledge of the phase profile of the beamn as well as the amplitude. In
practice, interferometric measurements have been used to determine the shape of the

-z Alternatively one can use optimizing iterative methods with least square

wavefronts
fitting"?. However, both of these methods have problems. For instance, the temporal coherence

of light sources may be insufficient for interferometric measurements while iterative methods are

often cumbersome.

In this paper, we present a concise method for determining the modal power weights of a
beam in a multimode fiber from intensity measurements. Our method allows the modal power
weighfs to be calculated from these simple intensfty measurements without loss of accuracy. We
first review modal properties and beam propagation in multimode fibers. Then our proposed
decomposition method is described in a mathematically rigorous way. We finally present

realistic simulation results obtained with a numerical implementation of our method.

2. MODAL PROPERTIES REVIEW

For completeness we here briefly review some of the modal properties of optical fibers.

Consider a step index fiber with an assumption of weak guiding. Then, the electrical field of the

beam inside the core can be assumed to be in the form of

E(x,y,z)=&(x,y)exp(ifke), (1



where x, ¥,z denote-the Cartesian coordinates of a point and B is propagation constant in the

direction of the Z-axis. The representation in (1) is an eigenmode of the fiber, while the general

ﬁeld can be expressed as a superposmon of weighted elgenmodes It is noted that the electrical

field dlstrlbutlon € does not change along the Z-axis in (1). ThlS comes from that we consider

only bound beams, which are in a spatjally steady state. Moreover, we assume that the electrical
field is perpendicular to the Z-axis because of the weakly guiding assumption. The electrical

field € is a solution of the paraxial equation
200y - *B(x, ) =0, @)
where V? denotes the transverse Laplacian (=92 /x? +92/ N?), k=2mA, A is the free space
wavelength of the beam, and » (r) is the index profile of the fiber. Assume we have the core
C A : ;
boundary at radius p and normalize the radial variable r as R=r/p. Then,

| n,if0<R<I ‘
n(R = ) 3)

ny,if <R

where-n,, denotes the core refractive index, n, the cladding refractive index and n, >n,. For

simplicity we consider a step-index core.

It is well known that the solutions of (2) take the approximated form of linearly-polarized

(LP) modes'*

g% (x, y)= F, (R){51n(1¢+51}(+sin(l¢+§j)9}a o “)



where 7, j=0,1 and X,  denote unit vectors in the direction of X-axis and Y-axis, respectively.

Here, F), is a solution of

d 1d I
——+——+kn? - _B2LF (R)=0. 5
{dRz RdR " TR }”’() ®)

Note that there are two polarization states in each LP mode, namely the x- and y-polarized states.
These two sets of polarizations are mutually perpendicular in space. Hence, we can consider only

one polarization at a time without loss of generality. In other words, we can consider the solution
setas & =¢f't+e”3, and e (x, y)= F,(x,y)sin(lg +im /2). We denote e’ as sine-modes
and ef' as cosine-modes. Each modal solution has sine- and cosine-modes unless /=0. For

/=0, the modal solution does not depend on ¢, thus, it is an even function with respect to ¢ .

Because of this, we still call the modal solutions of /=0 as cosine modes.

The solutions of (5) are given by

/4

7,U,R)I(U,) 0<R <1
(R)= - (6)
K, (W R)/ K, (W,P ), otherwise

A A
where U, =p./k’n’ =By s W,=p\JB: ~k*n . For a given I, I=012,-), theU,’s and

W,’s(p=1,2,3,---)areall the possible solutions satisfying the boundary condition

ol | ™)



It follows that the propagation constants- ,81 are different for different modes. In (7) it is well

known that the number of p0531ble U,’s and W,’s are finite for given finite physical dlmensmns _

of a ﬁber Hence we have maximum numbers of both and p for glven physwal dimension of

the fiber such that 0</</, 1< p<p, (l) ~ the maximum number P, 1s a function of /, which

can be seen from (7). This in turn means that the number of modes for given fiber physical

dimension is finite.

Now, define the mode set Q as the set of €¥ such that each U ,p associated with F

satisfy the boundary condmon (7). Any linear combination of members of Q is also a solution of
(2). Hence, the solution functional space is a span of Q. In fact, it is a subset of the space of

squarely integrable functions in L, . With a properly deﬁned inner product, Q forms the basis of

a Hilbert space. For this, we define an inner product a_s €,e, r f x y)e (x, y)dxdy,

where e, e ; are members of the solution functional space and the star (*) denotes the complex

conjugate. It is also possible to define the induced norm of the functional space by

Jel=/(e"e).

The basis of the solution functional space can be chosen as a set of orthogonal solutions
of Maxwell’s equations. The modes are a good candidate for the maximal orthogonal set, i.e., the
basis for the solution functional space. It is easy to prove that all the modes are orthogonal and

moreover, the set  is the maximal orthogonal set. (Appendix A)



g% =¥ [Je”|}. For

Now, it is possible to construct the orthonormal basis with Q = {'e'"’ ‘

convenience, we reorder the (/, p,i) modes into modes with one index n,(n=123,--N; N is

the number of eigenmodes), which is possible since there is a one-to-one, onto mapping from a

ell

e"=¢e"/

finite /; space to a finite /, space. In other words, Q = {E " } Then, by Hilbert space

theory and by the completeness of the L, space, any solution of the Maxwell equation in 2) can.

be expressed as a linear combination of members in & on a complex scalar field:
N .
e= ZCié "L ®)
i=l

Here, if we consider a partially coherent beam, the ¢,’s are ensemble averaged values of a set of

partially coherent beams, i.e., ¢, =(c,). It is noteworthy that the c;’s are also complex values

because each mode might have different phase. The power is given by P=|e|’/n, where 1

denotes the impedance in the fiber. Then, by orthogonality, it easily follows that
1&, 2

because each eigenmode power is given by ”E ’“2 /n=1/7n. Hence, from (9) we know that the

total power is a linear sum of each modal weight |c,|” divided by the impedance.

3. MODAL POWER DISTRIBUTION



If we know the amplitude and phase of the electrical field e, it is straightforward to evaluate the

¢,’s by simple inner product

>sz e(x, y)e" (x, y)ddy. (10)

The electrical field e with knowledge of phase is difficult to determine while the intensity

profile ’e,2 can be easily obtained with a carrier_a. We propose to calculate the modal power

weights ‘c,.] ? from the mutual intensity profile or two-point correlation function defined as'®

a

F(xl’y15x2:y2)=e(xny1)e‘(x2,y2)- : - (11)

The mutual intensity profile can be evaluated from measurements of intensity profiles with a

camera. Assuming then that the mutual intensity profile at some point in the fiber and all the

modes are known, |c,|” are calculated as follows. Note that

_[:J::r(xl’J’1§x2:yz)Ei(xz.’yz)dxzdyz =,e(x,, ). ' (12)

The above equatlon is an integral equatlon and generally not solvable. However if we take the

complex conjugate of (12) and multiply this to (12) and integrate with respect to X, ¥, We get

’cilz'E,J._Ze(x.,J’)e\'(an’)dXdy:_[:J:’J:J._Zr(xlayl;);z,yé)éi(xzzyz)dxzdyz deld)ﬁ . (13)

According to Parseval’s theorem for a Hilbert functional space with orthonormal basis, we have

that




2

[ lele Y dsay =3 (14)

n=l

Cﬂ

Now, summing both left and right hands in (13) with respect to index i , and employing (14)

give

el =A, / /ﬁA , (15)

where

2 .
ﬂﬁr(xisyl;x2>}’2)gl(x2’Yz)dx2dY2 dx,dy, . (16)

A=

Thus, once the mutual intensity profile is known, the modal power weights can be calculated. A
necessary condition is that all the mode profiles must be known. On the other hand, there is no

assumption about the shape of the waveguide or the modes.

The method requires that the mutual intensity proﬁle of the beam is determined. It is

difficult to evaluate the beam properties inside the fiber. Here, we suggest to use an alternative

method to evaluate the Ic,.l ’s, at the exit of the fiber, with the setup shown in Fig. 1. We first
collimate the beam from the fiber end using a spherical lens with appropriate focal length f.
Then, the ,ci[ s can be calculated by considering the orthogonal functionals in the free space, as

follows..



It follows from the weakly guiding approximation that a paraxial treatment can. be
adopted”. Hence, using Fourier voptics and with reference to .Fig. 1, the electrical field
e(xl,yl;zz—f)-at the z=-fplane and the electrical field 'e(xz,yz;zzd) at the z=d(>0)

plane are related to each other by a Fourier transform multiplied by a phase term',

e(xl,yl;z=._f)_ —Jlif x, +3] {b-—JJ:J:: xx ,yl ,z__d)e . rm ') dxl'dyl" a7

where. f is the focal length of the spherical lens, and k=27/1 the free space propagation
constant. It is noted that the inverse ma;pping from e(il, yiz=d ) to e(x,, yiz=~f) depends on
the distance d | because of the phase term in the nght hand side of (17),

- jk(x, +¥ )(1 d/ f )/2f. Physically, it means that the Wavefronts of the free space beam

change according to the distance from the lens. However, With an appropriate focal length the

phase term becomes negligible over a distance range of interest, which is much larger than the

focal length: Choose f such that k(x + y? Xi~d / £)/2f = k(x* + y2 )i /27 <<1. that is

pykd, << f<<d,, (18)

where p is the fiber core radius and it is assumed that the distance of interest is in the range
d, <d<d, . Then, the phase term in (17) can be ignored so that the approximation holds as

follows.

o _ !j.(xxx»"")’l)’l')d 'l , ' 19
e(xl,y,,z —J/le“J:’ X'\ y'hz= ) X ay, . (19)

10




Since the inverse mapping from e(x,, yiz=d) to e(xl, y:z=—f) does not depend on d any

more, it holds that
X .
E(x,y{=e(x,y;z = f))z e(x,y;z= d), Vd, f<d<f*/p’k, (20)

provided the beam propagates in an isotropic medium such as air.

Next step is to consider the orthogonal functional basis set in free space. It is easily
shown that the LP mode fields Fourier transformed as in (19) form also an orthogonal basis for

the free space beam, by using Parseval’s theorem as follows. We define the transformed LP

mode e, as

—i 1 j= ( +yy) , .
eF(x,y)=—.rfe x,yiz==f)e / dx'dy'. 21
— _]M —oa oo
Note that this is the inverse transform of (19). Now the general Parseval’s theorem has that

(@.el) =] [ 2 (xy)el (v, y)dvdy
= ?lf—z J:, J: J: _[; J: _E e (x', y')E 7 (x' Ly '.)ej%(x(x’_x")”(yv-y"))dx' dy'dx" dy" dxdy
12 =] J f; f; <Y (e, y B (xS (-y W e dy eyt (22)
_—J:.E., X"y )dr"dy"
= <E‘,E’>.

Hence, it is shown that the &.’s are also an orthonormal set. Then, Fourier-transforming (8)

gives together with (21) that

11



S(ry)=S e | 03)

with the same expansion coefficients, i.e., modal weight ¢;’s. Since &;’s are also orthonormal,

the derivation from (11) - (16) can be similarly applied giving a series of equations

A

FF(nyl;'xZﬂyz);g(xl’yl)g*(xziyz)ﬁ (24)

J:ZEFF (xl’yl;x27y2 )E;' (x2:J’2 )dxzd)’2 xig(xlﬂyl)3 (25)

and, hence,

AT R ) WA (26)
’ n=1 )

where

K= [

: 2
J::_[:oFF(xl’yl;x2>J’2)E}(xz:yz)dxzd)ﬁ dx,dy, . (27)

Thus, we can calculate the original modal weights 'c"'2 by employing the new orthonormal basis

e_; s in free space. If one can get the €' ’s by solving (2), it is easy to get the e;’s via a Fourier-

transform (21). Now, it still remains to get the mutual intensity profile of the free space beam.

Methods for obtaining the mutual intensity profile of a beam by measuring only the
intensity patterns have been studied recently. For instance, it is possible to retrieve the mutual

intensity profile using the Wigner function combined with the Radon transform'®'%, or using the

12




AF function combined with the Radon transform'®. Here, one can choose either of the methods
and, in our case, the Wigner function method in ref. 17 is adopted for the purpose of numerical
simulations. The Wigner function method is based on using two cylindrical lenses and spatially
resolved intensity measurements, e.g., with a CCD camera. One thing to note with mutual
inténsity retrieval techniques is that it is assumed that the phase front of the beam should be
reasonably flat against the propagation axis'’, which in our case is guaranteed by choosing an
appropriate focal length of the spherical lens as in (18). The task to get the mutual intensity
profile of the paraxial free space beam is well described in ref. 17, which is presented in

Appendix B for readability.

To sum up, the modal decomposition is acquired by, first, getting the mutual intensity

profile of the collimated beam after the spherical lens and, secondly, Fourier transforming each

modal solution &' by (21), and finally, calculating each modal coefficient with (26) and (27).

4. SIMULATIONS AND DISCUSSIONS

To show the feasibility of our proposed algorithm, we present a realistic simulation with realistic
fiber parameters. We considered a step index fiber with core numerical aperture (NA)=0.2, core

radius 4 pm, n,=1.457. We used a wavelength A =977nm. These parameters result in a

normalized frequency V = 5.14, Using the boundary condition in (7), the modal number Lp’s

and the effective refractive index ny, of the each mode with relationship né/"f =pB,A/2r were

calculated. There are five LP modes as listed in Tablé 1. Note that some modes are split into

13



‘cosine- and sine-modes as in (4), depending on the value of i. Figure 2 shows the mode intensity

profile of each pair of mode representations &'(x, y) and e (%), calculated usihg (21).

In order to evaluate our algorithm, we simulated two cases. In one case the exact mutual

. intensity profile at- z= f is known (Simulation A). The other simulation includes retrieval of the
mutual intensity using the method described in Appendix B (Simulation B). We assigned an
IZ

arbitrary set of test modal power weights |c,. as in Table 1 to evaluate the accuracy of our

algorithm. Figure 3 shows the intensity of the test multimode beam of concern. AsSuming that
the collimated free space beam propagates in free space according to the Fresnel integration in
(17) and (B5), we could obtain the calculated CCD images taken at the z= D plane for various

values of 6, ¢, defined in Appendix B. In order to realize the inverse Radon transform, used to

calculate the modal power weights, we used 30 different uniformly distributed angles in the

binterval [-m/2, /2] for each 6, ¢. Assuming the focal length of the cylindrical lenses are
20 cm, varying d, from 0.87m to 1.24m (i=1,2) and D from 1.2 m to 2.0 m gave the full
coverage of the reqﬁired angles 8, ¢ ac;ordiﬁg to (24), which is similar to ref. 17.. Hence, the
distances d, and d,, in (18) Were 0.87 m and 2 m, respéctively, which gave the condition on
the focal length f* of the spherical lens as 1.4 ¢m << f << 87 cm. From this, we chose the focal
length f of the spherical léns as 11 em.

Iz

Simulation A calculated the modal power weights ]c,. using (24) - (27) assuming the

exact mutual intensity profile at z= f is known while Simulation B calculated the ’cilz ’s using a

14




mutual intensity profile I'. that was retrieyed from the intensity pattern after two cylindrical
lenses. In simulation B, using these intensity profiles, which are selectively shown in Fig. 4 for
some values of 8, ¢ , we could calculate the Wigner function at the z.= 0 plane using the inverse
Radon transformation. From this Wigner function, fhe mutual intensity profile ', was obtained
through 2-dimensional inverse Fourier transform. Now, by applying (24)-(27), the modal power
weights are calculated as shown in Table 1. Figure 6 shows the modal power distribution in

percent of the total power of the multimode beam. The test modal power distribution and the

calculated results from simulation A, B are shown.

We also show the comparison between the intensity profiles of the test multimode beam

inside the fiber and the calculated reconstructed beam in Fig. 5. One should note that it is

impossible to reconstruct the multimode image by using calculated [c,. ’s. For a full

reconstruction, the phases must also be known. However, purely for demonstration purpose, we
assumed that we know all the test modal weights are positive numbers with zero phase. The
reconstruction through simulation A is almost exact while simulation B results in some
discrepancy. In thelsimulations, we used 50 grid points along each of the X- and Y-axis, i.e.,
2500 points for one image. The enérs between the initially assigned modal weig}its and the
calculated ones aré within 0.5 % for Simulation A while that of Simulation B were within 10 %.
This implies that our proposed method of calculating modal distribution is qL;ite accurate

provided the mutual intensity profile is known sufficiently well.

The main cause of the simulation errors in Simulation B was the limited position/angle

grid resolution. Obviously, the finer grids with more grid points were used, the more accurate

15



results we could get. For instance, the retrieval of the Wigner function from the CCD camera
through the Radon transform depended on the number of angles while the retrieval of mutual
intehsity profile frorﬁ the Wigner function with .Fourier transform depended on the number 6f
grid points. Considering that CCD images normally provide more than 256x256 data points, the
- accuracy.n’light be quite satisfactory provided that limitations such as a nonlinear response are

controlled. In addition, a larger number of angles can be used for more accurate results.

5. CONCLUSIONS

We proposed a method for power decompbsition into LP-modes of an optical fiber based on
free-space intensity measurements. We presented a rigorous analysis of the proposed algorithm,
demonstrating orthogonality of functionals and invariance of orthogonal functionals through

Fourier transform.

Results of two simulations are shown, one assuming the mutual intensity profile of the
~ free space beam is exactly known and the other also covering the full process of retrieving the

mutual intensity profile. Our simulation errors were less than 0.5% for the exactly known mutual

intensity profile and less than 10% if the inexact mutual intensity profile retrieval process was

included in the simulation. Hence, if a better retrieval method is adopted in terms of speed and

exactness, better accuracy with less effort might be obtained.

The method demands only that the guided beam inside a waveguide must be linearly
polarized, and can be readily applied to other waveguides structures provided all the modes are

known and linearly polarized.
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APPENDICES

A. Orthogonality of the solution functionals

Let us consider the inner product of two arbitrary modes,

ebi em r—” r F,,( 51n(1¢+-2—1)51n(m¢+ ; j}Rde(p: (AD)

where we changed the integral coordinate from Cartesian to polar. It is easy to see that only if
[ =m and i =, the inner product in (A1) can have nonzero value because of the sinusoidal term

in the integrand.

Now, consider

(e, e = jo [, (R)F, (R)sin (lqb-}-—z)Rde(p x| F,(R)F, (R)RAR. (A2)

Note that there is no sine mode for /=0, i.e. i=1 when /=0. Hence, (A2) is valid for any /.

The orthogonality of the f,’s is proved by classical way by considering the differential equation

in (5). Consider

I
o

(A3)

d> 1d I
dR* R dR R?

A LU LR R
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d* 1d P 2 2 :
R w U LR E )=, L@

0,if0SR<1 = I . IR
where f"(R)={ ' , V=JU +W. =pkynl —n} . Now, by multiplying (A3)

1,otherwise

with 7, (R) and (A4) with- F, (R)-and sﬁbtracting one from the other, we get

{F,q (R)R dﬁ;?IER)}: _{ F,(R)R %}: = (U; U2l F, (R)F, (R)RAR. (AS) |

From (6), the left-hand side of (A5) is zero. Hence, the inner product is noniero if p is different
from ¢, and otherwise zero. On the other hand, the maximality is trivial when we recall that

F,’s are all the possible solutions of the bdundary condition in (7). Hence, the orthogonality and

maximality are completely proved.

B. Retrieval of mutual intensity profile

For retrieval of the niutuél intensity profile, wAellllse the method proposed by Rayman et. al. in ref.
17. The method uses Wigner function transform property through two cylindrical lenses and |
Radon transformation to retrieve the mutual intensity profile. While the method was proposed to
retrieve an image, we adopt only a part of the proposed method — the retrieval of the mutual

intehsity profile. From now on, we closely follow the description in ref, 17.

The Wigner function is defined as follows'”:

18




W(x, ki, vk, ) = n.—lz J: J:exp[— 2i(kxAr + kyAy)] f(x, y; Ax,Ay)dAxdAy , (B1)

where T is deduced from the mutual intensity profile I as
l:(x, y; Ax, Ay): F(x+Ar,y+Ay;x—Ax,y-Ay). (B2)

Here each x,y, kx,ky is scaled with a common length x,, hence, is dimensionless'’. Next, it 1s

shown that after two mutually perpendicular cylindrical lenses, this Wigner function is angularly

transformed as follows'”.
W' (x5 k03755, )= Wk ks 0, ), (B3)

where

X | | cos@ sinf [ x Yo | | cos¢ sing ||y (B4)
k| [=sin® cos8 |k, [ |k, | |-sing cos¢ k| |
It is also noted that (B4) is based on the Fresnel integral from the z =0 plane to the z=D plane

after two cylindrical lenses, which relates the electric field distributions between those two

planes according to'’:

1 I ' 2 ! 2
elx,y;z= D) = -Eq J: Cexp':ik(% + % - (;T)l - (2yR)2 ﬂg(x,y)dx'dyv ’ (BS)

where C is an unimportant constant and,

19



R =R, +d, ‘

Li=(D_di)(1+di/RiO)’ ' - (B6)
11 |
R, D-d,

i

(i=12).

[ =

After two mutually perpendicular cylindrical lenses with curvature R, R,, and focal
lengths f,, f,, respectively, the intensity profiles are detected using a CCD camera. The accuracy

of the retrieval depends on the resolution and linearity of the CCD camera.

Now, we introduce the line projection £, as follows

Fay 0 35)= [ [ g ko3 3, e, ki, | . (B7)
The intensity profile at z=D, i.e., le(x, yiz= D)}2 can be expressed as follows'.

le(x,33z=DY =, (Bsin6 /L, }x, (Bsing/ L, )y), - (BS)
where the angles 0,¢ are related as
6 =—tan"'(R,/ §) (p.n—tan"(Rz/E), | (B9)

The inverse process to get W(x, k¥, ky) from Pe;, (xe, y¢) is called the inverse Radon transform.

It 1s noted that for successful inverse transformation, the angles 8,4 should be equally
distributed in the interval [0,7]"". The number of necessary angles for satisfactory exactness of

retrieval depends on the complexity of the Wigner function'”. The more angles are used, the

more exact results one can get.
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The inverse Radon transform to get the Wigner function from intensity images consists of

two distinct procedures, say, inverse Radon transform of the x,%_ pairs, and then the y, k, pairs.

Because these procedures are mutually independent from each other, we can consider only one

of the two pairs independently at a time without loss of generality.

Now consider an arbitrary function w(xl,xz) in the L, functional space. The Radon

transform is defined by

Ry )(x,0)= f w(xcos® —usin®, xsinb +u cos8)du

(B10)

The Radon transform is a line projection for a given angle 6, the line of which is parallel to a

line through the origin with angle 6 from the reference axis, say, X-axis and x is the distance

between two lines. The inverse Radon transform is carried out with Fourier transform as follows.

M, (@.0)=Fy1(x.0), = [ Ry l(x.0)expl-icacki

= J: J:l;/(x cosf ~usinf,xsinf +u coé@)exp[—itz‘fx]dudx |
Inducing new variable as
{xl } _ {cos@ —sin@][x} [C} ~ [&I cos 6}
x,| [sin6 cos@|ul || |@sing |’
gives

M (6.8)= [ [ wln.x)expl-ity —itx, Jixdx, = Al (x,x,)]

X,

21
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(B12)

(B13)



. Hence, to get l//(xl X, ), we need to solve the inverse 2-D Fourier transform as follows.

w(xl,xz)%F;‘[Mf(c,é)]c,f=4ﬂ% [ Me(€.8)explic, +igx, Jagae
. R ,  (Bl4)
=7 h J:MF(v,(p)exp[iv(xl sing + x, cos pv|d{dé

where we changed the integral variables. In practice, the integration for the angle v is carried out

- as a summation of a number of data sets.
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Table

Modes Effective Test Mt!3d|a2| Calculated Results
Index Weightlc|” || a: . 2 Error . . 2 Error
. R il |t Simulation A lcil (%) Simulation B [ci] (%)
LPO1cos | 1.4686 64 64.03 0.05 60.39 : 5.64
LPO2 cos | . 1.4604 25 } 24.90 0.40 27.45 . 9.80
LP11cos | 1.4655 4 - 3.988 0.30 4.391 9.78
LP11 sin 1.4655 9 9.045 0.50 9.829 9.21
LP21cos | 1.4615 1 : 1.003 0.30 1.100 . 10.0
- LP21 sin 1.4615 9 9.027 0.30 8.630 - 4.1
LP31cos | 1.4570 4 3.981 0.48 4.241 6.01
LP31 sin 1.4570 1 -~ 1.002 0.20 0.910 9.00

Table 1. The table lists the modes of the step-index fiber considered in the simulations and their
effective indices. For the numerical verification of our method, each mode was excited with a
power represented by the test modal weight. This was then retrieved with two different

simulation procedures, A and B, with the results shown in the table.
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Figure Captions

Fig. 1. Measurement setup for determination of the mutual intensity profile

Fig. 2. The calculated intensity distribution of each mode: (a) the modal solutions inside fiber,

(b) the modal solutions after the spherical lens

Fig. 3. A test multimode beam with arbitrary assigned initial modal power: (a) the beam intensity

inside fiber, (b) the free space beam intensity at z= f .

Fig. 4. Selected CCD images for different 6,9, 1.e., with different positions of the lenses and the
CCD array.

Fig. 5. Comparison between the test multimode beam and reconstructed beam from calculated
results. The figure shows the intensity pattern of the test multimode beam inside the fiber (solid
line), the reconstructed image from simulatiqn A (ciashed line), and the reconstructed image from
simulation B (dotted line). Fig 5(b) is a magnified portion of F 1g 5(a) to clarify the small

differences between results.

Fig. 6. The modal power distribution among modes. The test modal power distribution, and the

results with simulations A and B are shown.
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Fig. 2
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Fig. 3~
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Fig. 4
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Fig. 5
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Fig. 6
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