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and consider the association structure within a cluster as a nuisance. However, often the
association structure is of equal interest, for example, temporal association in longitudinal
studies and association between responses to similar questions in a survey. We discuss the
use, appropriateness and interpretability of various latent variable and Markov models for the
association structure and propose a new structure that exploits the ordinality of the response.
The models are illustrated with a study concerning opinions regarding government spending
and an analysis of stability and change in teenage marijuana use over time, where we reveal
different behavioral patterns for boys and girls through a comprehensive investigation of
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Many proposed methods for analyzing clustered ordinal data focus on the regression
model and consider the association structure within a cluster as a nuisance. However,
often the association structure is of equal interest, for example, temporal association in
longitudinal studies and association between responses to similar questions in a survey.
We discuss the use, appropriateness and interpretability of various latent variable and
Markov models for the association structure and propose a new structure that exploits
the ordinality of the response. The models are illustrated with a study concerning opin-
ions regarding government spending and an analysis of stability and change in teenage
marijuana use over time, where we reveal different behavioral patterns for boys and girls

through a comprehensive investigation of individual response profiles.

1. INTRODUCTION

In sociological applications, the response variables of interest are often measured on an or-
dinal scale, such as opinions or attitudes toward sociological issues (e.g. strongly disagree,

., strongly agree). The research hypothesis typically addresses the question whether these



responses differ in various subgroups of the population of interest. There are well-established
methods for the regression analysis of ordinal responses, see e.g. Agresti (2002). However,
further complication to the modeling process arises when the ordered responses are clustered
in some way, such as responses to similar questions on the same individual, or repeated re-
sponses to the same question in longitudinal studies. In order to obtain correct inferences, the
association between responses within a cluster has to be taken into account in the analysis.
Compared to simple cross-sectional studies with independent observations, further insights
can also be gained by investigating the structure of this association.

Agresti and Natarajan (2001) surveyed various strategies for analyzing these type of clus-
tered ordinal categorical data, focusing on marginal models and cluster-specific models. Our
emphasis here, in the context of re-analyses of clustered ordinal datasets, is to present a
method that combines a marginal regression model with a meaningful model for the associa-
tion structure, and to relate it to methods surveyed in Agresti and Natarajan (2001).

The data presented in Table 1, previously analyzed by Lang, McDonald, and Smith (1999)
and Vermunt and Hagenaars (2004), comes from the US National Youth Survey, where 237
teenagers (117 boys and 120 girls), aged 13 at the beginning of the study, filled in a question-
naire yearly for five consecutive years. At the end of each year they were asked about their
marijuana use during that year. The response is ordinal, with values 1=never (non-user),
2=less than once a month (occasional user) and 3=more than once a month (frequent user).
Obvious substantive research questions involve comparisons of the prevalences of marijuana
use by age and sex of the respondent. However, investigation of the entire response profiles of

teenagers may reveal other forms of dissimilarities rather than just prevalence differences.



Table 1: Marijuana Use Data: Observed Response Profiles and Counts.
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Lang and Agresti (1994) analyzed a dataset from the 1989 US General Social Survey, where
607 adults, aged over 18 years, were asked their opinion concerning government spending on
(a) The Environment, (b) Health, (c) Assistance to Big Cities, and (d) Law Enforcement.
Each response is ordinal with levels 1=too little, 2=about right, 3=too much. Lang and
Agresti (1994) did not consider any covariates. In order to illustrate the potential of our
method, we include the covariates age, sex, race, and political party affiliation. In addition,
we include three more questions concerning government spending with a common response:
(e) National Defence, (f) Education, and (g) Assistance to the Poor. An interesting regression
task is to compare how the marginal distributions of these 7 targets of government spending
differ by political party affiliation, after adjusting for age, sex, and race of the respondent. It is
also equally interesting to study whether individuals have different tendencies when answering
questions concerning government spending in general. In order to achieve both goals, the joint
probability of a response profile needs to be parametrized in terms of univariate probabilities
and suitable dependence measures that facilitate comprehensive modeling of the association
structure.

For a multivariate binary response, Ekholm, Smith, and McDonald (1995) parametrized the
joint probability with univariate probabilities and dependence ratios. The dependence ratio
is defined as the joint success probability divided by the joint success probability assuming

independence. For example, the second-order dependence ratio is

(1)

The dependence ratio was extended to the ordinal case by Ekholm et al. (2003), who also



demonstrated how meaningful association structures can easily be specified using dependence
ratios. We present the dependence ratio parametrization for a multivariate ordinal response
in Section 2. In Section 3, we analyze the dataset from the 1989 US General Social Survey,
regarding opinions about government spending, and discuss the appropriateness of various ex-
changeable association structures presented in Ekholm et al. (2003). In Section 4, a model for
temporal association is fitted to the dataset concerning teenage marijuana use, and exchange-
able association structures are extended further by exploiting the ordinality of the response. In
Section 5 we consider maximum likelihood estimation and computational aspects. In Section

6 our approach is related to methods surveyed in Agresti and Natarajan (2001).
2. MEAN PARAMETRIZATION AND DEPENDENCE RATIOS

To formally present the connection between the joint probability of a response profile and
our parameters of interest, some notation is necessary. For a simple illustration of the
parametrization, see Section 2.1, and for a comprehensive representation of the relationship,
see Ekholm et al. (2003). Consider a response profile of length ¢ in cluster i, Y; = (Y1, ..., Yi,),
for ¢+ = 1,...,n, where the realizations of Yj;, denoted aj, are ordered, ar =1,..., f and
k = 1,...,q. For the government spending data, n = 607, ¢ = 7 and f = 3, and for the
marijuana data, n = 237, ¢ = 5 and f = 3. There are f? possible realizations of the profile
with pr(Y,; ={a1,...,a4}) = m(a1,...,a,), and when there is a time ordering, we refer to
the response profiles as paths. For example, out of 3° = 243 possible realizations, the ob-
served path of a girl in the bottom right corner of Table 1 is {3, 3,2, 3,3}, with probability
(3,3, 3,2,3). To specify the probability distribution of Y;, denote the 1 x f? vector of profile

or path probabilities by 7r;, with 7r;17 = 1. Furthermore, define dummy variables Yigf’“) =1



if Vi, = ag, else 0, for ar, =2, ..., f, and Y,c = 1—Y;§CQ) ---—Yigcf). The 1 x (f?9—1) vector

of mean parameters is given by

( (2) n 22 (f5- ,f)) (2)
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where &) = E(Y\")) and p{™™) = B(Y™) ... Y\*)). Ekholm et al. (2003) showed that
there exists a one-to-one correspondence u; — 7r; for specifying the joint distribution in terms
of these mean parameters.

Second- and higher-order means capture the information about the association between the
responses within a cluster. For a more interpretable measure of association, we replace these

by the corresponding dependence ratios. For example, the second-order dependence ratio is a

generalization of (1):

(akaal)
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for ag,a; = 2,...,f and k,l = 1,...,q, k # [, that is, the joint probability divided by joint
probability assuming independence.

To specify the joint distribution through the mean parameters in (2), the second-order
means can be expressed as a simple transformation of the marginal probabilities and the
second-order dependence ratios: pEZ{“a) = ,ugk ) ,ug”) (ai.a1) Higher-order transformations can
be expressed similarly. In what follows, we regress, using the most appropriate link function,

the univariate marginal or cumulative probabilities on explanatory variables with intercept

parameters 6 and regression coefficients 8. In order to find an underlying association model



generating dependence within a cluster, we impose a structure on f?—g(f —1)—1 dependence

through association parameters

ratiOS T = (71(5’2), . ’Tl(faqyf))

T =g(a). (4)

Equation (4) can also be extended to include explanatory variables. Note that an explicit ex-
pression 7; = f(0, 8, ) now exists for maximum likelihood (ML) estimation of the combined

regression and association model.
2.1. Illustration of the parametrization

Consider a bivariate ordinal dataset, previously analyzed by Hout, Duncan, and Sobel (1987),
concerning responses of married couples to the questionnaire item: ‘Sex is fun for me and
my partner’. The response is ordinal with levels 1=Almost Always, 2=Very Often, 3=Fairly
Often, 4=Never or Occasionally. Responses of 91 couples are summarized in Table 2. It is
of interest whether husbands and wives differ in the way they are distributed into these four
categories. In addition, it is presumable that the married couples are in some (imperfect) way
associated in their responses. Hout, Duncan, and Sobel (1987) called the former as marginal
dissimilarity, and the latter as structural dissimilarity.

Altogether 2(4 — 1) = 6 univariate marginal probabilities, that measure marginal dissim-
ilarity, and 42> — 2(4 — 1) — 1 = 9 dependence ratios, that measure structural dissimilarity,
are required to specify the joint distribution of this bivariate ordinal response. Table 3 sum-
marizes the estimates for the saturated model with 15 parameters. Marginal distributions do

not notably differ between husbands and wives. It also seems that there is little association



Table 2: Responses of married couples: Sex is fun for me and my partner.

Wife
Husband | Always fun Very Often Fairly Often Never Fun | Total
Always fun 14 9 8 2 33
Very Often 9 4 5 1 19
Fairly Often 7 3 8 2 20
Never Fun 3 2 7 7 19
Total 33 18 28 12 91

in the joint responses of the married couples: Most of the dependence ratios are close to one,
which implies near independence. However, the estimated joint probability that both of the
couples respond ‘Never or Occasionally’ is rather high, 7/91 = 0.077, compared to the joint
probability assuming independence: (12/91) x (19/91) = 0.0275. This results in a dependence

ratio estimate of 7*4 = 0.077/0.0275 = 2.79.

Table 3: Estimates of the saturated model: Sex is fun for me and my partner.

Wife
Husband | Always fun Very Often Fairly Often Never Fun | Marginal
Always fun
Very Often 722 =1.06 733 =086 73 =040 43> =0.21
Fairly Often #7632 =076 763 =130 764 =0.76 | 4® =0.22
Never Fun 742 =0.53 743 =120 (4D =279 | 4™ =0.21
Marginal pP =02 p®=031 % =013 1

In order to explore the underlying mechanisms of marginal dissimilarity, restrictions can
be imposed for the univariate probabilities in a regression model, using explanatory variables
and various choices of link functions. In addition, structural dissimilarity can be explored by
imposing a structure on the dependence ratios. This example is revisited in Section 6, where
a marginal regression model is combined with a meaningful model for the association that

explains the dependence between the responses of married couples.



2.2. Properties of the dependence ratio

The odds ratio is the most commonly used measure of association for a multivariate categorical
response; see, for example: Fitzmaurice and Laird (1993); Glonek and McCullagh (1995);
Molenberghs and Lesaffre (1994); and Lang and Agresti (1994). To elaborate the dependence

ratio measure and to relate it to the odds ratio and the relative risk in the context of one

3)

our main examples, consider the second-order dependence ratio 7'15’ at ages 13 and 14 in the

teenage marijuana use example.

e

(1) Interpretation: 712’3)

compares how many times more probable than under indepen-
dence it is that the teenager is first an occasional user and the next year a frequent user. The
construction and the interpretation of a higher-order dependence ratio is a straightforward
generalization. For example, the fifth-order dependence ratio 71(35,3:;;”’3’3) measures the proba-
bility of a teenager being a frequent user throughout the ages from 13 to 17 compared to the
probability assuming independence.

(2

(2) Relationship with the relative risk: Like the relative risk (risk ratio), &%)

is a
ratio of probabilities. Several authors favor the relative risk over the odds ratio (Greenland,
1987; Sackett, Deeks, and Altman, 1996; Davies, Crombie, and Tavakoli, 1998; King and Zeng,
2002), especially because risks and relative risks are easier to interpret than ratios of odds. In
reply to Deeks et al. (1998), Davies, Crombie, and Tavakoli go as far as saying: ‘On one thing
we are in clear agreement: odds ratios can lead to confusion and alternative measures should
be used when these are available.’

3)

(3) Invariance: Similar to the relative risk, 7% is not invariant to the coding chosen.

This means that using a reverse coding for the response results in a different set of associ-
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ation measures. However, one advantage of this asymmetry is that rg’?’) only measures the

association of a teenager being first an occasional user and then a frequent user. Therefore, if
the association of marijuana use, rather than non-use, is of interest, the dependence ratio is
focused on the association of interest.

(4) Range: While the odds ratio takes values between zero and infinity, the range of
the dependence ratio depends on the marginal probabilities. The upper bound of 71(3’3) is
min(1/ ,ugZ), 1/ ,ug)’)). This is again similar to the properties of the relative risk: For example, if
the baseline risk is 0.8, the maximum relative risk is 1/0.8 = 1.25. However, if the proportion
of marijuana users was really excessive, say 0.8, it is reasonable to argue that it would be
of more interest to model non-use, rather than use of marijuana. Therefore, to exploit fully
the preciseness of the dependence ratio as a measure of the association (see point 3 above),
it is advisable to use as the reference category the category that contains the higher observed
frequency of the first and last categories.

(5) Connection with the transition probability: When the responses within a cluster
have a natural ordering, such as age in the teenage marijuana use example, the transition

probabilities between the states may be of interest. A simple connection exists:

3 _ Ppr(¥e =3[Yn = 2)

9= P 6

3) is, in terms of conditional probability, given the

Thus an alternative interpretation of 7'15’
teenager was an occasional user at the age of 13, how many times more probable it is that

she/he is a frequent user at the age of 14, compared to the marginal probability.

Regardless of the above mentioned differences between the odds ratio and the dependence
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ratio, we find that one of the most important advantages in using dependence ratios is a
convenient formulation of various plausible association mechanisms. We illustrate this in the

following two sections in the context of our two main examples.

3. OPINIONS CONCERNING GOVERNMENT SPENDING

We set ourselves a regression task to compare whether opinions concerning government spend-
ing on each of the 7 targets differ according to political party affiliation. Marginal frequencies

and percentages of the responses by political party affiliation are summarized in Table 4.

Table 4: Marginal frequencies (percentages) of responses regarding government spending by
political party affiliation.

Government Spending Party Too Little About Right Too Much Missing
Democrat | 35 (15.4) 86 (37.7) 98 (43.0) 9 (3.9)

National Defence Independent | 29 (16.7) 65 (37.4) 76 (43.7) 4 (2.3)
Republican | 35 (17.1) 108 (52.7) 59 (28.8) 3 ( 1.5)

Democrat 61 (26.8) 94 (41.2) 73 (32.0) 0(0.0)

Assistance to Big Cities Independent | 38 (21.8) 66 (37.9) 70 (40.2) 0 (0.0)
Republican | 35 (17.1) 80 (39.0) 90 (43.9) 0 ( 0.0)

Democrat | 156 (68.4) 58 (25.4) 14 (6.1) 0(0.0)

Law Enforcement Independent | 106 (60.9) 55 (31.6) 13(75) 0(0.0)
Republican | 116 (56.6) 76 (37.1) 13 (6.3) 0 ( 0.0)

Democrat | 175 (76.8) 51 (22.4) 2(09) 0(0.0)

Education Independent | 134 (77.0) 33 (19.0) 7(4.0) 0(0.0)
Republican | 137 (66.8) 59 (28.8) 9(44) 0(0.0)

Democrat | 164 (71.9) 49 (21.5) 15 (6.6) 0 (0.0)

Enviromnent Independent | 137 (78.7) 29 (16.7) 8(4.6) 0(0.0)
Republican | 143 (69.8) 50 (24.4) 12 (5.9) 0 (0.0)

Democrat | 176 (77.2) 37 (16.2) 14 (6.1) 1(0.4)

Assistance to Poor Independent | 125 (71.8) 36 (20.7) 10 (5.7) 3(1.7)
Republican | 101 (49.3) 72 (35.1) 29 (14.1) 3 ( 1.5)

Democrat | 186 (81.6) 32 (14.0) 10 (4.4) 0 (0.0)

Health Independent | 125 (71.8) 35 (20.1) 14 (8.0) 0 ( 0.0)
Republican | 123 (60.0) 71 (34.6) 11 (5.4) 0 (0.0)
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The original categories for party affiliation were (a) Strong Democrat, (b) Not very strong
Democrat, (¢) Independent, close to Democrat, (d) Independent, (f) Independent, close to
Republican, (g) Not very strong Republican, and (h) Strong Republican. This variable was
collapsed to a 3-level factor with levels: Democrat (a, b), Independent (c, d, e), and Republican
(f, g). In order to adjust for possible confounders, age (in years), sex (male, female), and race
(white, black, other) were also included as explanatory variables into the regression model,
denoted by R. There were 4 missing values for party affiliation, and 2 for age. These missing
values were imputed using regression imputation (Little and Rubin, 2002). Missing values in
the responses, the rightmost column in Table 4, were assumed to be missing at random (Little
and Rubin, 2002), and handled accordingly; see Section 5.

The marginal regression model, for i =1,...,607, k=1,...,7 and a = 1, 2, is of form

Mik(a) = O + B Tig (6)

where 3, is a vector of regression coefficients, constant with respect to 7 and k, x;;, a vector
of explanatory variables and 6,6, are the intercepts. For ordinal variables, the link function
n is usually a logit, probit or complementary log-log function of the cumulative probabilities
pr(Yy < a). In this case it is often plausible to assume 8, = B. However, other link
functions that operate on marginal reponse categories may be useful in some situations, such
as adjacent category logit and baseline category logit (Hartzel, Agresti, and Caffo, 2001).
For the government spending dataset, we use the most common one, the logit function for
cumulative probabilities, with regression parameters constant with respect to a = 1 and 2,

that is, the proportional odds assumption.
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An individual profile, concerning opinions about government spending, has 37 = 2187
possible realizations: {1,1,1,1,1,1,1},{1,1,1,1,1,1,2},...,{3,3,3, 3,3, 3, 3}. In addition to
marginal probabilities, altogether 3" — 7(3 — 1) — 1 = 2172 dependence ratios are required
to specify the profile probabilities. Consequently, a strong structure needs to be imposed
on these measures. Ekholm et al. (2003) presented a set of exchangeable association models
where the association is parametrized in terms of dependence ratios. We discuss the appro-
priateness of these models in the context of our analysis of the government spending dataset.
In what follows, full independence of the responses within a cluster is referred to as the null
association model, denoted by Z. For the technical details of these structures, we refer the

reader to Ekholm et al. (2003).

3.1. Necessary Factor N'

Suppose that there is a subgroup of people that, regardless of the question at hand, always
answers that the government is spending too little. This kind of association can be captured
by imposing a latent structure, denoted by A, where all responses of a subject either do or
do not carry a factor necessary for the response to be greater than one, that is, a; > 1.
Conversely, if there is a subgroup that always answers ‘too much’ regardless of the question,
this can be captured similarly by using the same association structure but with reverse coding
of the response; see also Section 2, point 4.

Denote the absence and presence of this kind of necessary factor by, respectively, {N; = 0}
and {N; = 1} and suppose that pr(N; = 1) = vy, for 4 = 1,...,607. Furthermore, suppose
that the responses within a cluster are conditionally independent given N;. If N; = 0, an

individual 7 will always answer ‘too little’, irrespective of the covariate values. Therefore it is
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usually more appropriate to regress the effect of the covariates on the univariate probability
conditional on the presence of necessary factor. Using the conditional univariate probabilities,

the profile probabilities can now be expressed, for a; =1, 2, 3, as

7Tz'(a1, ey 0,7) = Vl{pr(Yh = CL1|NZ' == 1) . 'pI'(Y;'7 = aﬂNi = 1)} + l{azl}(l - 1/1), (7)

where 1(,—1; = 1if {a; =--- = a7 = 1}, else 0. The association model has a single parameter
vy, and 1 — vy quantifies the proportion of people that will always answer that the government
is spending too little. To elaborate further the association model, other structures can be
imposed on the conditional probabilities in (7). Note also from (7) that the probability of the
profile {a; = --- = a7 = 1} is a sum of probabilities with and without the necessary factor. In
other words, a subject may answer ‘too little’ to all questions but still be capable of answering
otherwise.

When fitted to government spending data, N’ combined with a regression model R, gives
v = 0.99. In other words, there is little evidence that there exists a notably big subgroup

that always answers ‘too little’.

3.2. Latent Binary Factor L

Suppose that the population is divided into two groups with different response category prob-
abilities. This may happen if an important dichotomous covariate has not been recorded
or cannot be observed. Suppose that each subject 7 has a realization of a latent factor
L; = 1 or 0, and that all 7 responses are conditionally independent given L;. This asso-

ciation model, called £, has 3 parameters a = (15, kK, k®)), where 1, = pr(L; = 1) and
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the k(@) = pr(Yz = ax|L; = 0)/pr(Yix = ax|L; = 1), ax = 2,3. In other words, v, quantifies
the proportion of subjects in the latent group 1, and k-parameters are ratios of conditional
univariate probabilities for those in the latent groups 0 and 1 respectively.

For w =2,...,7, equation (4) is now defined using the following connection:

(a]_ a. ) ]/2 + (]_ — 1/2)[{,(0'1) “ .. K)(a'w)
T g - Yw — '
{vo + (1 =)@} A{vp + (1 — 1y)K(aw)}

(8)

Estimates for the combined model {R; L}, fitted to the government spending dataset, are

reported in Table 5 and discussed in Section 3.5.
3.4. Latent Dirichlet-distributed Propensities D

Suppose that there is continuous variability in the way individuals respond to questions re-
garding government spending. This may be caused by an unobserved continuous explanatory
variable, or a combination of unobserved variables, resulting in different underlying propen-
sities for each individual. This kind of association structure can be captured by utilizing a
continuous Dirichlet distribution (Kotz, Balakrishnan, and Johnson, 2000, Chap. 49), which
is an extension of the Beta distribution to more than two categories.

Denote the propensities of subject i by P; = (P, P, P® p® >0, P® + p® <1,
and suppose that P;, 1 = 1,...,607, follow independently the same Dirichlet distribution
with parameters &1,&,& > 0. In other words, each subject has an individual realization of
propensities {1 — (pl@ + pg?’)), pz(?), p,(.?’)} for, respectively, categories 1="too little’, 2=‘about

right’, and 3=‘too much’. Further suppose that all 7 responses concerning government spend-

ing are conditionally independent given the propensities. We call this association model D.
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Equation (4) can now be expressed with a0 = (§1, &, &3) using the following connection:

T(al,---yaw) _ E(P(a‘l) .. -P(aw)) . (9)
E(P(@)) ... F(Plaw))

To illustrate this association model in terms of dependence ratios, consider e.g. 7(32) 7(22.2)

73 and 7323 Assuming latent Dirichlet-distributed propensities, the corresponding equa-

tions are:

L22) _ 61+ & +E&+1)+ (6 +&) L222) _ (22 E(61+6+86+2)+2(6 + &)
S(li+&+8&+1) ’ Lo(E1 + 6+ & +2) ’

A23) (Gi+&+8&) A(223) _ (23) G +&LE+EG)+H G+ &+ 53)-

G +&E+E+1)] (& +&+E&)+26

Note that 7222 > 7(22) > 1 and 733 < 1, regardless of the values of ¢ > 0. This model, aris-
ing from the properties of a Dirichlet distribution, is therefore appropriate for studies where
it is assumed that repetition of certain response categories is more probable than under inde-
pendence. When fitted to the government spending dataset, the estimates of the association
parameters for the combined model {R; D} are £ = 0.467, & = 3.010, & = 4.804. From the

above equations, we get 7(>?) =1.19, 7322 =159, 723) = 0.89 and 7*>3) = 0.96.
3.5. Results for the combined regression and association model

The results of the regression model are summarized in Table 5. The parameter estimates for
the government spending targets of the Democrats are contrasted with spending on National
Defence. The view of the Democrats is that the government should spend more on all other

targets than on National Defence, with the greatest emphasis on Health.
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The parameter estimates for the Independents and the Republicans are contrasted with
the estimates for the Democrats. In other words, 0 indicates no difference with the views
of the Democrats on that specific target. People who call themselves Independent, have
opinions somewhere in between those of Democrats and Republicans, with views generally
slightly closer to Democrats than Republicans. The exception is The Environment, where the
Independents seem to feel the government should spend more, compared to Democrats and
Republicans, whose views do not differ.

The greatest differences in the viewpoints of the Democrats and the Republicans are in
government spending regarding Assistance to the Poor, and Health. For both these targets
the Democrats expect much stronger financial involvement. In contrast, for National Defence,
Republicans expect the government to spend more.

Since the association models presented in Sections 3.1 to 3.3 are not nested, we use Akaike’s
information criteria (AIC) to compare which of the models fit the data best. AIC for models
{R;Z}, {R; N}, {R; L}, and {R; D} are, respectively, 7039.9, 7029.8, 6971.9 and 6972.2. In
terms of the model fit, there is virtually no difference between the fit assuming a latent binary
variable, or assuming a latent continuous, Dirichlet-distributed variable. One needs to resort
to subject-matter judgement in order to distinguish which one of the two is the more plausible
mechanism. In Table 5, we report the regression model combined with a model assuming a
latent binary factor for the association.

The interpretation of the association model £ is that the population is divided into two
groups, denoted by 0 and 1, with different response category probabilities concerning govern-

ment spending. The percentage of subjects in group 0 is 100 x (1 — ) = 40%, and for those
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in that group, the probability of answering ‘about right’ is approximately one third (0.362)
of the probability in group 1. However, answering ‘too much’ is 1.541 times more probable
than in group 1. In search for explanation for the latent variable, one needs to look for a
subgroup that constitutes 40% of the target population, and is more prone to a view that the

government is spending too much, compared to their counterparts.

Table 5: Estimates of a model {R; L} concerning government spending

Effects Estimate Std. Error
Sex Female -0.214 0.067
Race Black —0.437 0.119

Other 0.431 0.192

Age (in years) 0.0038  0.0019
Democrat National Defence - -

Assistance to Big Cities —0.564 0.174

Law Enforcement —2.471 0.189

Education —2.919 0.201

Enviromnent —2.625 0.194

Assistance to Poor —2.904 0.204

Health —-3.170 0.213

Independent  National Defence —0.047 0.193

(Contrasted  Assistance to Big Cities 0.278 0.191

to Democrats) Law Enforcement 0.264 0.207

Education —0.024 0.239

Enviromnent —0.426 0.236

Assistance to Poor 0.191 0.235

Health 0.525 0.240

Republican ~ National Defence —0.506 0.175

(Contrasted  Assistance to Big Cities 0.503 0.191

to Democrats) Law Enforcement 0.348 0.196

Education 0.398 0.214

Enviromnent —0.017 0.210

Assistance to Poor 1.126 0.209

Health 0.931 0.220

Association 14 0.596 0.103

Ko 0.362 0.057

K3 1.541 0.138
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The association structures N, £, and D are all exchangeable, that is, independent of the
ordering of the responses Y, ..., Y;,. Forlongitudinal studies, it is more appropriate to assume
that the association between repeated measurements has mainly a temporal rather than an
exchangeable structure. In the next example, we present a model for temporal association
(Ekholm et al., 2003), and extend further the exchangeable structures by introducing a new

hierachical latent structure that exploits the ordinality of the response.

4. STABILITY AND CHANGE IN TEENAGE MARIJUANA USE

Marginal frequencies and percentages of marijuana use for boys and girls at ages 13 to 17 are
reported in Table 6. These show a monotone increase in marijuana use for both girls and boys
with age, with use being consistently more frequent for boys at each age. None of the link
functions described in Section 3 is superior over the others, so a proportional odds model is

used for estimation of the effect of age in the regression model.

Table 6: Marginal frequencies (percentages) of marijuana use for girls and boys at ages 13 to
17.

Age Girls Boys

Never Less than More than Never Less than More than

once a month once a month once a month once a month

13 | 114 (95.0) 5 (4.2) 1(0.8) 104 (88.9) 9(77) 1(3.4)
14 106 (88.3) ( 8.3) 4 (3.3) 9 (76.1) 7 (14.5) (9.4)
15 91 (75.8) (17.5) 8 (6.7) 6 (65.0) 20 (17.1) (17.9)
16 | 85 (70.8) 1(17.5) 14 (11.7) 1 (60.7) 0 (17.1) 6 (22.2)
17 75 (62.5) (25.0) 15 (12.5) 3 (53.8) 2 (18.8) (27.4)

The clustering of the repeated responses for each teenager occurs in time. Consequently,
Markov structures are a natural choice for modeling the temporal association of teenage

marijuana use in age.
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4.1. Markov Structures M

Consider a path containing five consecutive annual responses for teenager i, (Y;1, Yio, Yis, Yis, Yis),
and suppose that these satisfy the first-order Markov assumption. For ¢+ = 1,...,237 and
k=1,...,4,

pr(Yies+1y = a|Yi, ..., Yie) = pr(Yigs1) = a|Yik). (10)

Equation (10) implies that this association structure, denoted by M, has (5—1)(3—1)> =16
adjacent second-order dependence ratio parameters: T,E‘Zﬂ’““), ay,=2,3and k=1,...,4. For
such large-dimensional problems, this still leads to an unneccesarily complicated association
structure. For clearer interpretability, it is advisable to strengthen the M assumption by fur-
ther restrictions, such as functional forms for the adjacent dependence ratios, and introducing
equality of parameters for certain pairs of categories or time points.

The set of association models can also be further elaborated by assuming that the M-

structures operate, independently, within the latent classes of the exchangeable structures N’

and L.

4.2. Hierarchical Necessary Factors N'2

Consider the structure A presented in Section 3.1 in the teenage marijuana example, dividing
the teenage population into those who would never use marijuana, and to those that are
susceptible to marijuana use. Further suppose that there is another subpopulation among
the susceptibles that might try marijuana or use it occasionally, but categorically refuse to
become frequent users. We can capture this kind of behavior in the population by nesting the

latent structures £ and N.
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Suppose that £ is defined conditionally on {N; = 1}, with vy = pr(L; = 1|N; = 1) and
k(@) = pr(Yy, = ap|L; = 0, N; = 1) /pr(Yix = ax|L; = 1, N; = 1), for a; = 2,3. Furthermore,
impose a restriction k(® = 0. We denote our extension of the A association model by N2.
There are three latent classes and two necessary factors that operate in a hierarchical manner.
The profile probabilities follow from equations (7) and (8) where £ is imposed on the product
of conditional probabilities, with x® = 0. Note that 7(*+%) is here defined conditionally
on {N; = 1} and thus v, quantifies the proportion of potential frequent users within the
susceptibles. This association model has three parameters, a = (v1,vy, ?), but can be
further simplified by assuming x® = 1, which implies that the susceptibles and potential

frequent users have the same probability for occasional marijuana use.

4.3 Results of the combined regression and association model

Regardless of similar shape of the marginal probablilities, the observed paths show quite
different patterns for boys and girls. This stresses the importance of modeling the whole path
probability instead of only the marginal probabilities. It can be seen from Table 1 that the
observed paths for boys are more dispersed than for girls, with the majority of girls staying
as a non-user throughout the follow-up. This suggests that the association structures, while
temporal, are different for boys and girls. In fact, modeling girls and boys together would

require seven interaction terms with sex. Therefore, we analyze girls and boys separately.
Model for the marijuana use of boys

As was noted in Section 4.1, assuming M, some sensible constraints need to be imposed on the

16 second-order dependence ratios, without losing the essence of the form of the association.
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The dashed lines in Figure 1 summarize the 16 observed adjacent second-order dependence

ratios for boys with bootstrap 95% confidence intervals. The solid lines in Figure 1 present the

2,3) (3:2)

fitted values, where the dependence ratios for movers 7(33) and 7 are assumed to follow a

linear relationship for the consecutive pairs of ages, and dependence ratios of the stayers 7(22)
and 7(33) are assumed to be stationary across the pairs of ages. This proves to be a superior
fit over the exhangeable structures. The parameter estimates of this model Mg, where the

subscript indicates the number of association parameters, combined with a regression model

R for the age-effect are reported in Table 7.
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Figure 1: Observed second-order dependence ratios with bootstrap 95% confidence intervals
(dashed lines) compared with the fitted ones (solid lines) for model { R; Mg} for the marijuana
use of boys. Horizontal line at value 1 corresponds to independence.
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Table 7: Model {R; Mg}: ML estimates for marijuana use of boys.

Part of model Effect Estimate Standard error
Regression model age 14 0.862 0.282
age 15 1.402 0.286
age 16 1.649 0.295
age 17 1.900 0.306
Association model 7(22) 2.366 0.292
733 3.673 0.463
T et 4049 0.814
T -1.176 0.288
T2 e 2.640 0.688
T -0.798 0.257

The subscripts intercept and slope for the association parameters correspond to, respectively,
intercept and slope of the fitted linear functions in Figure 1.

From the estimated regression parameters, with age 13 as the reference category, we conclude
that the probability of marijuana use increases from one year to the next. The interpretation
of the Markov association model is that remaining as an occasional or a frequent user at both
ages is, respectively, over two (2.366) and over three (3.673) times more probable than under
independence. However, the dependence ratios for changing their habit from frequent use to

. 2,3 . 1
) and vice versa (7'( ) )) at two consecutive ages decrease with increas-

occasional use (7'(3’2)
slope

slope
ing age, change being even less probable between ages 16 and 17 than under independence
(see Figure 1). This can be interpreted as the boys who use marijuana, gradually develop a
habit through the teenage years, which they are eventually reluctant to change.
Alternatively, if conditional dependencies are of interest, we can use equation (5) for the
interpretation: given that the boy was an occasional user at age 16, the probability of being a

frequent user at age 17 is only about half the marginal probability (4.049 — 1.176 x 3 = 0.52).

Similarly, if marijuana was used frequently at age 16, the probability of occasional marijuana
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use at age 17 is only a quarter the marginal probability (2.640 — 0.798 x 3 = 0.25).

Model for the marijuana use of girls

The observed adjacent second-order dependence ratios for girls did not reveal any clear
structure. An interpretable fit assuming a Markov structure can be achieved by assuming
stationarity over time for 7(%%), q,b = 2,3, denoted by M,. The rightmost column in Table
8 summarize the observed frequencies for girls throughout the follow-up from age 13 to 17 in
three exclusive classes: (i) a non-user at all ages, (ii) at most an occasional user at least once
and (iii) a frequent user at least once. The majority of the girls, 53%, fall in category (i), sug-
gesting that the association model, assuming first-order Markov structure, could be modified
to include a necessary factor. In other words, within this 53%, there might be a subgroup of
girls not susceptible to marijuana use. Furthermore, allowing M to operate independently
within the two latent classes of a structure £, gives an estimate of £(® near zero. Imposing
the restriction k(3 = 0 gives rise to an association model N'2M7, which is significantly better
than M, (likelihood ratio test p-value = 0.016). This association model implies that the pop-
ulation is divided into the following latent groups: the non-susceptibles and the susceptibles.
Furthermore, within the susceptibles, there is still a subgroup of potential frequent users. The

32) = k@ = 1 have negligible effect

following plausible constraints 732 = 733 and 723) = 7(
on the likelihood, but make the interpretation of the association model, denoted by N2Ms,
simpler. The improvement in the fit assuming M, and further by introducing hierarchical nec-
essary factors are epitomized in Table 8, where the fitted counts of the models with association

structures Z, M, and N'2M3 are compared with the observed counts.

Parameter estimates of the model N'2M3, combined with a regression model R for the
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Table 8: Observed and fitted counts of models with different association structures for the
marijuana use of girls.

Category | I M, N2Ms; Observed
A non-user at all ages 33.77 58.17 63.00 63
At most an occasional user at least once | 49.24 40.07 36.01 36
A frequent user at least once 36.99 21.77  20.99 21

age-effect are reported in Table 9. A similar conclusion can be made for the regression model
for the girls as for the boys. However, the interpretation of the association model is quite
different to boys: only 63% of the girls are susceptible to marijuana use through ages from
13 to 17, and out of these girls, only 42% are susceptible to frequent use. These latent
structures, however, do not account for all the dependence between consecutive measurements,
but temporal association still exists for the susceptibles; staying as an occasional user at two
consecutive years is approximately 1.5 times more probable than under independence, as is

staying as a frequent user within the latent class of potential frequent users.

Table 9: Model {R; N2M3}: ML estimates for marijuana use of girls.

Part of model Effect Estimate Standard error
Regression model age 14 1.063 0.505
age 15 2.015 0.475
age 16 2.193 0.475
age 17 2.435 0.469
Association model 2 0.629 0.087
Vo 0.422 0.085
722 =763 1553 0.281

5. MAXIMUM LIKELIHOOD ESTIMATION

We have presented a method that incorporates regression and association modeling for clus-

tered ordinal responses. However, usefulness of any method is crucially dependent on its
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implementability. As noted by Agresti and Natarajan (2001), methods for maximum likeli-
hood (ML) fitting of marginal and cluster-specific models are difficult to implement or require
approximate methods. This is especially complicated for large-dimensional problems, such as
the government spending data with a total of 7 clustered responses and several covariates,
also one continuous.

As demonstrated in Section 2, there exists under our approach a closed form expression of
the response profile probabilities in terms of the regression and association parameters and
hence ML estimation is straightforward. By assuming an underlying multinomial distribution,

the likelihood can be written as

10,8,a) = ﬁ;log{w(ail, cyGig) b (11)

In the case where some responses are missing for subject ¢, such as in the government spending
example (see Table 4), the estimation is still straightforward by only including the observed
values a;; in equation (11). This is equivalent to assuming that the values are missing at
random (MAR).

A significant computational advantage arises from the fact that when specifying 7r; in terms
of mean parameters, unconstrained maximization can be used, since this parametrization
has a built-in unit-sum constraint (Ekholm et al., 2003). What this effectively means, is
that one only needs to calculate the probability of the observed profile for each ¢ with given
parameters at each iteration. In addition, as a consequence of the closed form expression,
the fitted probabilities for the unobserved profiles can also be easily calculated using the ML

parameter estimates. However, when modeling sparse datasets, some of the fitted probabilities
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for the unobserved profiles may turn out negative. This can also happen for the conditional
univariate probabilities under the L-structure. Negative probabilities could be avoided by
imposing restrictions on the model parameters. However, we do not recommend this unless it
implies a meaningful model. We note that estimated negative probabilities are an indication
of a poorly chosen model and can be used as a diagnostic test against misspecification of the
model.

An important aspect of the applicability of any novel methodology is user-friendly and
versatile software. For the freely available software R (Ihaka and Gentelman, 1996), a package
has been developed for estimation of clustered binary and ordinal datasets using dependence
ratios as measures of the association, which is available from the first author. This package
allows the user to fit regression models, with several alternative link functions, combined
with the association models described in Section 3 and 4. In the case of missing values, the
software by default assumes that the data are MAR. Furthermore, for longitudinal studies with
monotone missing patterns the package allows a selection model (Diggle and Kenward, 1994)
to be specified on top of the regression and association model to investigate the sensitivity of
the results to various models for the non-response mechanisms. See Ekholm et al. (2003) for

an example.

6. OTHER APPROACHES TO THE ANALYSIS OF CLUSTERED ORDINAL DATA

There are three main approaches to analysis of clustered caregorical data: marginal models,
random-effects models and transition models. Transition models are mainly applicable if
the clustering occurs in time. A common way of specifying transition models is to include

previous responses as explanatory variables into equation (6). Regression coefficients are then
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to be interpreted as effects conditional on previous responses. For a representation of different
specifications of such models, see e.g. Lindsey (1999, pp. 63-67). For a more flexible approach
to conditional modeling of ordinal longitudinal response, using generalization of the Kalman
filter, see Lindsey and Kaufmann (2004).

If the population-averaged effects of the covariates are of interest, marginal models can be
applied. A third option are random-effect models, where the parameters of the regression
model are to be interpreted as subject-specific effects. For a survey of these two latter ap-
proaches, see Agresti and Natarajan (2001). We review these two approaches in relation to
our method, using the sexual fun data in Table 2, and an example concerning reviews of 93

movies by four critics, previously analyzed by Hartzel, Agresti, and Caffo (2001).

6.1. Marginal models

Consider again the example concerning responses of married couples to the questionnaire item:
‘Sex is fun for me and my partner’. A parsimonious model is achieved with a regression model
without explanatory variables, i.e., assuming that the marginal distributions of the couples
responses are the same. Association model £ with a parameter restriction x*) = 0 fits the data
well, yielding a likelihood ratio test statistic L? = 4.92 with 9 df, compared to the saturated
model. This model implies that the observed weak association between couples, according to
the saturated model in Table 3, may be a result of a latent binary factor. In other words, the
observed association between couples is a consequence from the fact that the population of
couples is divided into two groups with different response probabilities. Fitted marginals and
dependence ratios of this model are summarized in Table 10.

In addition to marginal probabilities, conditional probabilities can also easily be obtained.
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Table 10: Fitted parameters of model £: Sex is fun for me and my partner

Wife
Husband | Always fun Very Often Fairly Often Never Fun | Marginal
Always fun
Very Often 722 =121 7323 =090 734 =045 | @ =0.20
Fairly Often 762 =090 733 =1.05 769 =127 p® =0.26
Never Fun 742 =045 743 =127 704D =245 | u® =0.17
Marginal p@ =020 u® =02 px* =017 1

Table 11 summarizes the probabilities of couples in the two latent groups. Note that the
interpretation of , = 0.41 and restriction k) = 0 is that 100 x (1 — ) = 59% of the couples

would never answer ‘Never or Occasionally’ to a question concerning sexual fun.

Table 11: Fitted conditional probabilities of model £: Sex is fun for me and my partner

Latent factor L;,=1 L;=0
Proportion in the population v, =0.41 1— v, =0.59
Always fun 0.16 0.50
Very Often 0.09 0.28
Fairly Often 0.33 0.22
Never Fun 0.42 0.00

Marginal modeling is generally interpreted as an approach that focuses on the marginal prob-
abilities and treats the dependence structure as a nuisance (Agresti and Natarajan, 2001). A
popular approach is the GEE-methodology (Liang and Zeger, 1986), where models are speci-
fied only for marginal distributions and hence do not support maximum likelihood estimation.
Without building models for the entire response profile, a comprehensive modeling of the
association structure is not feasible.

For likelihood-based methods, log-linear modeling formulation is typically applied for the

association. Fitzmaurice and Laird (1993), extended to the multicategorical case by Heumann
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(1996), used conditional log odds ratio parameters to specify the association, which are the
canonical parameters of the log-linear model. For the sexual fun data, Hout, Duncan, and
Sobel (1987) fitted log-linear models with various quasi-symmetry constraints for the associa-
tion. Other form of constraints, such as common local or global odds ratios (Lang and Agresti,
1994; Molenberghs and Lesaffre, 1994) have also been suggested for clustered ordinal data.
Although useful in many situations for examining the form of the association, especially in the
bivariate case, these constraints can be viewed as expedient ways of handling the association
when the complexity of the data increase. For example, Fitzmaurice and Laird (1993) con-
sider the association parameters as pure nuisance. In our case, symmetry constraints on the
fitted dependence ratio parameters in Table 10 are a result of the fit for the underlying mech-
anism that has generated the association. Parameter interpretation is also straightforward, as
proportions of the population or ratios of probabilities.

Agresti and Natarajan (2001) suggested that for purposes of conveying information, it is
sometimes useful to provide results through univariate probabilities rather than parameter
estimates. Depending on the research question, either the marginal probabilities or the con-
ditional probabilities within the latent classes may be of interest. For models with latent
structures A and £, not only the marginal, but also the conditional probabilities of response

categories can easily be obtained, as is shown in Table 11.

6.2. Random-effects models

Hartzel, Agresti, and Caffo (2001) analyzed a dataset from Variety magazine, containing
reviews of 93 movies by four critics: Medved, Siskel, Ebert and Lyons. Each review is rated

as 1=Pro (positive), 2=Mixed (mixture of positive and negative) or 3=Con (negative). An
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obvious regression task is to compare the distribution of the ratings for each of the critics. In
addition, the investigation of the rater agreement may be considered to be equally important.

As the four critics do not have an ordering, it is natural to assume that the dependence
between their ratings is exchangeable. A notable observation in the dataset, summarized in
Hartzel, Agresti, and Caffo (2001), is that the 4 largest profile frequencies seem to indicate
a moderate agreement between the raters (Medved, Siskel, Ebert, Lyons): 15 {1, 1, 1, 1},
8{3,1,1,1}, 4 {3, 3, 3,3}, and 4 {3, 1, 1, 3}. This suggests the appropriateness of asso-
ciation structures such as N or D. The most parsimonious fit for the regression model,
comparing the critics, is achieved with the adjacent category logit link with differing rater
effects for a = 1 and 2. The left hand side of Table 12 compares the fits of the exchangeable
association structures when the regression model for the critics effect, denoted by R, is speci-
fied with an adjacent category logit link. According to AIC, association model D produces the
most parsimonious fit compared to the other structures. Regression and association parameter

estimates for the combined model, using D, are reported in the right hand side of Table 12.

Table 12: AIC of the exchangeable association models (left) and ML estimates and standard
errors of model {R; D} (right) for movie critics.

AIC for five models || ML Estimates for a model {R; D}
Model AIC Effect Estimate Std Error
{R;T} 766.3 Pro vs. Siskel ~ -0.104 0.311
{R;N'} 747.1 Mixed Ebert  -0.060 0.324
(R; L} 7458 Lyons  0.792 0.371

(R;N2} 7381 | Mixed vs  Siskel _ 0.635 0.326
{R; D} 734.8 Con. Ebert  1.240 0.377

Lyons  -0.050 0.379

3 9.148 1.772

Association & 0.844 0.316
£ 1.252 0.509
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From the regression model, with Medved as the reference category, our conclusions are the
same as Hartzel, Agresti, and Caffo (2001), that is, the Pro versus Mixed effect is negligible
when comparing Siskel and Ebert to Medved, and the Mixed versus Con effect is negligible
when comparing Lyons to Medved. The association model suggests that there is a latent
continuous variability in the quality of the movies reviewed by the critics. This can be inter-
preted as an indication that movies do possess certain objective criteria according to which
they can be rated. One conclusion from this kind of interpretation is that judging the quality
of a movie is not entirely a matter of taste.

Hartzel, Agresti, and Caffo (2001) fitted several random-effects models to account for the
association of the ratings within a movie. Random-effects models take into account within
subject heterogeneity in the linear predictor by imposing a mixing distribution for the mean
parameter. By far the most popular choice for the mixing distribution is normal. Agresti et al.
(2000) noted that this convention is possibly a controversial issue. As Lindsey (1999, p. 212)
argued, the choice of the mixing distribution should be made on theoretical grounds in terms
of how the mean is thought to vary in the population or, if necessary, empirically. As can be
seen from Table 12, the exchangeable association models presented in Section 3 and 4 provide
a rich set of meaningful association structures and, in the absence of theoretical knowledge,
comparsion of models including and excluding within subject heterogeneity is straightforward
through likelihood ratio tests and information criteria.

The choice of a parametric or non-parametric random-effects component is usually depen-
dent on the choice of link function relating the mean and the linear predictor; see, for example,

Hartzel, Agresti, and Caffo (2001). Since for parameter interpretation or for a more parsimo-
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nious fit, certain link functions may be preferable for specific studies, this limits the choice of
random-effects models. In our case, all latent structures are imposed on the response category
probabilities which are independent of the link function used. This is a natural approach if
one wants to construct meaningful association models.

The parameter interpretation is the most important substantive distinction between random-
effects models and regression models specified using equation (6). Regression estimates from
random-effects models are cluster-specific, whereas estimates from (6) are population aver-
aged. The merits and relevance of the effects of interest should be judged according to the
problem at hand. For example, when comparing the movie critics, the question is whether the
interest lies in how the critics differ when reviewing a movie, or how they differ on average
across the movies. Agresti et al. (2000) noted that most of the discussion about this distinc-
tion has been in relation to epidemiological and clinical trial settings. However, they stressed
that it is time to consider the practical implications also in social science applications. So far,
latent variable models for clustered categorical data, where the regression model is of form

(6), have received little attention in the social science literature.

6.3. Combining the three approaches

Vermunt and Hagenaars (2004, Chap. 15) discuss the implications of marginal, transition
and random-effects approaches for ordinal longitudinal data, and fit several models applying
each of the approaches to the dataset concerning teenage marijuana use, presented in Table 1.
When summing up the deviances of the fitted models in Section 4.3 for boys and girls, we
obtain L? of 177.38 with 464 df, which indicates significant improvement in terms of the model

fit compared to all the alternative versions presented in Vermunt and Hagenaars (2004).
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In another application of the marijuana use data, Vermunt, Rodrigo, and Ato-Garcia (2001)
proposed a modification of the approach suggested by Lang and Agresti (1994) for combining
marginal, transitional, and cluster-specific approaches in a single framework. However, the ap-
plication was limited to four time-points rather than all five. Our modeling approach can also
be viewed as a combination of the three methods. Consider the models presented in Section 4:
marginal modeling is applied for the univariate probabilities; cluster-specific models are ap-
plied using the hierarchical necessary factor; and finally, the transitions are modeled using the
Markov model specification, and interpreted using the link between transition probabilities

and dependence ratios.

7. CONCLUDING REMARKS

A strong age effect in the prevalence of teenage cannabis use has been widely reported, see
e.g. Johnston, O’Malley, and Bachman (2000). Also the higher prevalence among teenage
boys, compared to the girls of same age, is well-known (Hall, Johnston, and Donnelly, 1999).
However, in addition to marginal prevalences, investigation of individual profiles of cannabis
use has not gained similar attention. Some of this may have been because suitable tools for
this joint task have not been available. We have presented a methodology that allowed us to
extract valuable additional information about the different behaviors of girls and boys through
a comprehensive investigation of individual response profiles.

We presented in Sections 3 and 4 latent structures that provide a meaningful alternative to
random-effects models for modeling the association structure. Alternatively for longitudinal
studies, Markov-structures in Section 4.1 can be used to describe the temporal association.

Furthermore, combining some of these structures is straightforward and therefore provides an
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ample set of association models for multivariate categorical responses.

There exists an explicit expression for the joint probability in terms of marginal probabilities
and dependence ratios. In addition, the mean parametrization facilitates maximum likelihood
estimation, and is therefore straightforward and feasible even for large-dimensional problems.
However, sometimes fitted probabilities for non-observed response profiles are negative, which
indicates model misspecification. Pursuing meaningful models for both the regression and
association structures for a multivariate categorical response is a challenging task. Extra care
is needed when fitting models to sparse datasets. Therefore, fitted response profile probabilities
serve as a helpful tool for checking the plausibility of the fitted model.

Agresti (1999) stressed that with the continuing development of more complex models, an
increasingly important but difficult task is communicating to non-statisticians the interpre-
tation of the models and their parameters. The dependence ratio is a measure of association
which, for researchers used to concepts like relative risks, is easy to grasp. In addition, the
parameters of the latent variable models, such as those for the hierarchical necessary factor
in the model of marijuana use by girls, have a clear and simple interpretation as proportions
of the population. Compared to the multivariate normal case, the association structure of
a multivariate categorical response is very complex. Further development of more complex
models is therefore an admirable goal. Our view is, however, that this should not be made at

the expense of the interpretability of the model.
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