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Abstract

Asymptotic multivariate normal approximations to the joint distributions of edge
exclusion test statistics for saturated graphical log-linear models, with all variables
binary, are derived. Non-signed and signed square-root versions of the likelihood
ratio, Wald and score test statistics are considered. Non-central chi-squared ap-
proximations are also considered for the non-signed versions of the test statistics.
Simulation results are used to assess the quality of the proposed approximations.
These approximations are used to estimate the overall power of edge exclusion tests.
Power calculations are illustrated using data on university admissions.
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1 Introduction

We investigate the overall power of the first step of a backward elimination
model selection procedure for graphical log-linear models (GLL) with two or
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three binary variables. We consider non-signed and signed square-root versions
of the likelihood ratio, Wald and score test statistics. We derive asymptotic
multivariate normal and non-central chi-squared approximations to the joint
distributions of the test statistics for single edge exclusion from the saturated
GLL model. We illustrate how to estimate power of single edge exclusion tests
using the proposed approximations.

In Section 2 we review edge exclusion tests for GLL models. In Section 3
we use the delta method to obtain asymptotic normal approximations to the
distributions of the test statistics, under the alternative hypothesis that the
saturated model holds. We also consider a non-central chi-squared approxi-
mation to the distributions of the non-signed test statistics. In Section 4 the
proposed distributions are used to approximate the overall power of the first
step of a backward elimination model selection procedure. Conclusions from
a simulation study, to assess the quality of such approximations, are given.
In Section 5 we illustrate power calculations using data on university admis-
sions. In Section 6 we briefly discuss the difficulties in generalizing the results
to higher dimensional contingency tables.

2 Edge Exclusion in Graphical Log-Linear Models

Graphical log-linear models are a subclass of hierarchical log-linear models
(see, for example, Agresti [1, pg. 316]) specified by setting a set of two-factor
interaction terms (and hence their higher-order relatives) to zero. The param-
eters of the GLL model are the remaining terms not set to zero. The null
hypothesis that the set of two-factor interaction terms, and all higher-order
interaction terms including it, are zero is equivalent to the null hypothesis
of conditional independence between the two corresponding factors, given the
remaining ones. Hence, GLL models can be interpreted solely in terms of con-
ditional independence and the conditional independence structure of the vari-
ables can be displayed using an independence graph. For details see Edwards
[2], Lauritzen [3] and Whittaker [4].

Consider a p dimensional contingency table, cross-classifying the p dimensional
random vector XV = X = (X1, X2, . . . , Xp)

T , with V = {1, 2, . . . , p}. Let xi

denote the observed value taken by variable Xi. In this paper all variables are
assumed binary and coded 0 and 1. Let x = (x1, x2, . . . , xp)

T denote a par-
ticular cell in the table, nV(xV) = n(x) denote the observed cell counts and
πV(xV) = π(x) denote the probabilities in each cell of the table. Let πA(xA)
denote the marginal probability of Xi = xi : i ∈ A. The total sample size
equals n∅. The p dimensional random vector X has a cross-classified multino-
mial distribution of size one if and only if its density function fV is given by
fV(x) = πV(x), assuming that πV(x) > 0 for all x and that

∑

x
πV(x) = 1.
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Note that cell probabilities have to be strictly positive to ensure the existence
of the log-linear expansions and of the conditional density functions. The fam-
ily of cross-classified multinomial distributions is closed under marginalization
and conditioning.

The log-linear expansion of the cross-classified multinomial distribution den-
sity function can be obtained as

log πV(x) =
∑

A⊆V

λA(xA),

where the summation is over all possible subsets of V , including the empty
set ∅. Each λA is a function of xA and, for reasons of identifiability, corner
point constraints are used, setting to zero the λ-term associated with the first
category (the reference category coded 0) of each variable in XA. The log-
linear expansion of the saturated graphical log-linear model with two or three
binary variables is given by

log πV(x) = W−1







λ∅

λ





 , where λT =











(λ1, λ2, λ12) if p = 2

(λ1, λ2, λ12, λ3, λ13, λ23, λ123) if p = 3

and W = W1 ⊗ W2 ⊗ · · · ⊗Wp is the Kronecker product of p Wi matrices
of the form

Wi =







1 0

−1 1





 .

Odds ratios are a commonly used measure of association in a contingency ta-
ble. Let ψij denote the marginal odds ratio between Xi and Xj (with i 6= j)
and ψij·k=x denote the conditional odds ratios, given that a third binary
variable Xk = x. The marginal odds ratio ψij is obtained by summing the
cell probabilities over both categories of the remaining variables and equals
ψij = {πij(0, 0) πij(1, 1)}/{πij(0, 1) πij(1, 0)}. The conditional odds ratios, de-
fined for the two categories of Xk = x (x = 0 and x = 1), are given by ψij·k=x =
{π(0, 0, x) π(1, 1, x)}/{π(0, 1, x) π(1, 0, x)}. If variables Xi and Xj are condi-
tionally independent given the remaining variable Xk, i.e., Xi⊥⊥Xj | Xk, both
conditional odds ratios ψij·k=0 = ψij·k=1 = 1. For standard sampling schemes,

the sample odds ratio ψ̂ij is the maximum likelihood estimator (m.l.e.) of the
population odds ratio ψij.

Backward elimination is a commonly used method for selecting a GLL model.
The strategy is to start with the saturated model and test all the pairwise
conditional independence statements, using test statistics for single edge ex-
clusion. The likelihood ratio test (LRT) is the most commonly used test; alter-
natives include the Wald and the efficient score tests. Under the null hypothesis
that variables Xi and Xj are conditionally independent given the remaining
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variables in the model, i.e., the edge between Xi and Xj is absent from the
independence graph, the non-signed version of each test statistic is asymp-
totically chi-squared distributed. In the two variables case signed square-root
versions of the test statistics can also be used. Under the null these follow,
asymptotically, a standard normal distribution. The test statistics for single
edge exclusion from a saturated GLL model are functions of many parameters
(representing all higher order interaction terms), the number of parameters
depending on the number of variables being considered. Hence, in general, the
p variables case is complicated. For binary variables, Salgueiro [5] presented
closed form expressions for the test statistics, for p = 2 and p = 3, as a
function of cell probabilities.

In this paper T and T s denote, respectively, the generic non-signed and signed
square-root test statistics. The addition of the superscript L, S or W specifies,
respectively, the likelihood ratio, the score or the Wald test statistic. In the
two binary variables case H0 : X1⊥⊥X2 ⇔ λ12 = 0 ⇔ ψ12 = 1. The three
non-signed test statistics for the exclusion of edge (1,2) from the saturated
GLL model can be expressed as:

TL
12 = 2 n∅

∑

x1, x2∈{0,1}

π̂12(x1, x2) log

{

π̂12(x1, x2)

π̂1(x1) π̂2(x2)

}

, (1)

TW
12 = n∅

{

log ψ̂12

}2
{

1

π̂(0, 0)
+

1

π̂(0, 1)
+

1

π̂(1, 0)
+

1

π̂(1, 1)

}−1

, (2)

T S
12 =

n∅ {π̂(1, 1) − π̂1(1) π̂2(1)}2

π̂1(0) π̂1(1) π̂2(0) π̂2(1)
. (3)

Signed square-root versions, T s
12, can be obtained by multiplying the sign of

the log-odds ratio ψ̂12 by the positive square-root of each test statistic T12.

With three binary variables, the non-signed test statistics for excluding edge
(i, j) from the saturated GLL model, (i, j) ∈ {(1, 2), (1, 3), (2, 3)}, with H0 :
Xi⊥⊥Xj | Xk ⇔ λij = λijk = 0 ⇔ ψij·k=0 = ψij·k=1 = 1, are:
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TL
ij = 2 n∅

∑

xi, xj , xk∈{0,1}

π̂ijk(xi, xj, xk) log

{

π̂ijk(xi, xj, xk) π̂k(xk)

π̂ik(xi, xk) π̂jk(xj, xk)

}

, (4)

TW
ij = n∅







{

log(ψ̂ij .k=0)
}2

∑

xi, xj ∈{0,1} π̂−1
ijk (xi, xj, 0)

+

{

log(ψ̂ij .k=1)
}2

∑

xi, xj ∈{0,1} π̂−1
ijk (xi, xj, 1)





 , (5)

T S
ij = n∅

[

π̂k(0) {π̂ijk(1, 1, 0) π̂k(0) − π̂ik(1, 0) π̂jk(1, 0)}2

∏

xi, xj∈{0,1} π̂ik(xi, 0) π̂jk(xj, 0)

+
π̂k(1) {π̂ijk(1, 1, 1) π̂k(1) − π̂ik(1, 1) π̂jk(1, 1)}2

∏

xi, xj∈{0,1} π̂ik(xi, 1) π̂jk(xj, 1)

]

. (6)

3 Approximations to the Distributions of the Test Statistics

3.1 Asymptotic normal approximation

The test statistics for single edge exclusion from the saturated GLL model
presented in Section 2 can be written as a function of the λ-terms of the log-
linear expansion. Also, the asymptotic variance matrix of the m.l.e. of λ is
known. Smith [6, pg. 73] showed that, for p binary variables cross-classifying
the contingency table, the inverse information matrix based on a single obser-
vation, K, is given by K = W∗ diag{π(x)}−1 (W∗)T , where W∗ is obtained
from W (defined in Section 2) by eliminating the first row.

In the two binary variables case, K = n∅ var
[

λ̂1 λ̂2 λ̂12

]T
equals













1
π(0,0) + 1

π(1,0)
1

π(0,0) −
{

1
π(0,0) + 1

π(1,0)

}

1
π(0,0)

1
π(0,0) + 1

π(0,1) −
{

1
π(0,0) + 1

π(0,1)

}

−
{

1
π(0,0) + 1

π(1,0)

}

−
{

1
π(0,0) + 1

π(0,1)

}

1
π(0,0) + 1

π(0,1) + 1
π(1,0) + 1

π(1,1)













. (7)

Because the edge exclusion test statistics are functions of λ̂ and the asymptotic
variance matrix of λ̂ is known, Salgueiro [5] used the delta method to derive
asymptotic normal approximations to the distributions of the test statistics
for single edge exclusion from the saturated GLL model, under the alternative
hypothesis that the saturated model holds.

Let θ = vec(λ) be the vector of parameters of interest. Its m.l.e., based on n∅

observations, is θ̂ = vec(λ̂) and has an asymptotic normal distribution with
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mean θ and variance given by the inverse of the information matrix (see Cox

and Hinkley [7, pg. 294]), i.e.,
√

n∅(θ̂ − θ)
D−→ N(0,K).

The delta method (see, for example, Bishop et al. [8, pg. 493]) gives, if f(θ)
is differentiable at θ,

√
n∅

[

f(θ̂) − f(θ)
]

D−→ N



0,





{

∂f(θ)

∂θ

}T

K

{

∂f(θ)

∂θ

}







 .

In our case let fij(θ̂) = Tij/n∅, where Tij is one of the non-signed test statistics
given by Equations (1) to (6). For example, in the two variables case, using

the LRT, fL
12(θ) = 2

∑

x1, x2∈{0,1} π12(x1, x2) log
{

π12(x1,x2)
π1(x1) π2(x2)

}

. Note that f does
not depend on n∅ and is differentiable provided all cell probabilities and all
elements of λ are different from zero, which is the case for the saturated model.

Hence, the vector of test statistics is asymptotically normal distributed, with
means given by AE(Tij) = n∅ fij(θ). For p = 2 and 3, respectively, AE(TL

ij )
is given by Equations (1) and (4), AE(TW

ij ) is given by Equations (2) and (5)
and AE(T S

ij ) is given by Equations (3) and (6), with estimators replaced by
parameters.

The variance matrix of the test statistics, in the asymptotic distribution, is
obtained as n∅ ∆T K ∆, where K is the inverse of the information ma-
trix based on a single observation and ∆ is the matrix of the derivatives
of f(θ) with respect to all elements of λ. In the two binary variables case

K = n∅ var
[

λ̂1 λ̂2 λ̂12

]T
is a 3 × 3 matrix and ∆ is the vector of the deriva-

tives of f12(θ) with respect to λ1, λ2 and λ12. In the three binary variables

case K = n∅ var
[

λ̂1 λ̂2 λ̂12 λ̂3 λ̂13 λ̂23 λ̂123

]T
is a 7 × 7 matrix and ∆ is a

7× 3 matrix, having in each column the derivatives of each of the three fij(θ)
with respect to the seven λ-terms.

Once ∆ is written as a function of the cell probabilities, multiplying n∅ ∆T K ∆

and simplifying the resulting expression gives, for the two variables case:
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var(TL
12) = 4n∅

∑

x1, x2∈{0,1}

π12(x1, x2) log2

{

π12(x1, x2)

π1(x1) π2(x2)

}

− 1

n∅
{AE(TL

12)}2,

var(TW
12 ) = 4AE(TW

12 )






1 +

logψ12

[

1
{π(0,0)}2 − 1

{π(0,1)}2 − 1
{π(1,0)}2 + 1

{π(1,1)}2

]

{

1
π(0,0) + 1

π(0,1) + 1
π(1,0) + 1

π(1,1)

}2







+
1

n∅
{AE(TW

12 )}2







1
{π(1,0)}3 + 1

{π(1,1)}3

{

1
π(0,0) + 1

π(0,1) + 1
π(1,0) + 1

π(1,1)

}2 − 1






.

It has not yet been possible to obtain a simplified formula for var(T S
12).

In the three binary variables case variances and covariances of the likelihood
ratio test in the asymptotic distribution simplify to:

var(TL
ij ) = 4 n∅

∑

xi, xj , xk∈{0,1}

πijk(xi, xj , xk) log2

{

πijk(xi, xj , xk) πk(xk)

πik(xi, xk) πjk(xj , xk)

}

− 1

n∅
{AE(TL

ij )}2, (8)

cov(TL
ij , T

L
ik) = − 1

n∅
{AE(TL

ij )} {AE(TL
ik)} + 4 n∅ (9)

∑

xi, xj , xk

[

πijk(xi, xj , xk) log

{

πijk(xi, xj , xk)πj(xj)

πij(xi, xj)πkj(xk, xj)

}

log

{

πijk(xi, xj , xk)πk(xk)

πik(xi, xk)πjk(xj , xk)

}]

.

Again it has not yet been possible to obtain simplified formulas for var(TW
ij ),

var(T S
ij ), cov(TW

ij , TW
ik ) and cov(T S

ij , T
S
ik).

In order to derive asymptotic normal approximations to the distributions of
the signed square-root test statistics for edge (1, 2) exclusion from the satu-
rated GLL model with two binary variables, let f s

12(θ̂) = T s
12/

√
n∅, so that f s

does not depend on n∅. Note that T s
12 = sign(log ψ̂12)

√
T12, where T12 is one

of the non-signed test statistics given by Equations (1) to (3).

By using the delta method, each signed square-root test statistic for edge (1, 2)
exclusion from the saturated GLL model is asymptotically normal distributed,
with mean

AE(T s
12) =

√
n∅ fs

12(θ) =
√

n∅ sign(log ψ12)
√

f12(θ) = sign(logψ12)
√

AE(T12)
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and variance

var(T s
12) = (

√
n∅)

2 var{fs
12(θ̂)} = n∅

{

sign(logψ12)

2
√

f12(θ)

}2

var{f12(θ̂)} =
var(T12)

4AE(T12)
.

Note that, under the alternative hypothesis that the saturated model holds,
the asymptotic distribution of T12 (Tij, in the three binary variables case)
tends to a normal distribution as n∅ tends to infinity. At λ12 = 0 ⇔ ψ12 = 1
(ψ12·k=0 = ψ12·k=1 = 1, in the three binary variables case) the asymptotic
distribution is degenerate with mean zero and variance zero. Hence, for the
non-signed versions, the normal approximations will be poor for very small
distances from the null.

3.2 Non-central chi-squared approximation

Local alternatives have been studied in the literature. For a composite hypoth-
esis of the type H0 : ϕ = ϕ0 and nuisance parameter ν unspecified, Cox and
Hinkley [7] showed that, under local alternatives Ha : ϕ = ϕ0 + δϕ/

√
n∅, the

non-signed likelihood ratio test statistic is approximately chi-squared, with
degrees of freedom equal to the dimension of ϕ and non-centrality parameter
n∅ δϕ

T i.(ϕ0 : ν) δϕ. Here i.(ϕ : ν) is the inverse of the variance matrix of the
asymptotic normal distribution of

√
n∅ ϕ̂, where ϕ̂ denotes the m.l.e. of ϕ.

Similar results hold for the non-signed Wald and score tests.

For excluding edge (1, 2) from a saturated graphical log-linear model with two
binary variables, the hypotheses are H0 : λ12 = 0 ⇔ log ψ12 = 0 and Ha :
log ψ12 = 0 + δψ12

/
√

n∅. From Equation (7), the variance of the asymptotic

normal distribution of
√

n∅λ̂12 is K[3, 3] = 1
π(0,0)

+ 1
π(0,1)

+ 1
π(1,0)

+ 1
π(1,1)

. Hence,
the distribution of each T12, at a local alternative, can be approximated by
χ2

1(γ12), a non-central χ2
1 with non-centrality parameter

γ12 = (
√

n∅ log ψ12)
2 (K[3, 3])−1

=
n∅ log2ψ12

{π(0, 0)}−1 + {π(0, 1)}−1 + {π(1, 0)}−1 + {π(1, 1)}−1
,

where logψ12 is the log-odds ratio under the alternative hypothesis. Note that
the non-centrality parameter equals the expected value of the Wald test statis-
tic in the asymptotic normal distribution, i.e., γ12 = AE(TW

12 ).

A simulation study was performed by Salgueiro [5] to assess the accuracy of
the proposed asymptotic normal and non-central chi-squared approximations,
as the sample size, the odds ratio and the marginal cell probabilities vary.
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As expected, the main results are that the normal approximation performs
better for large values of n∅, odds ratio values not close to independence and
marginal probabilities not close to zero or one. The non-central chi-squared
approximation performs better than the normal approximation at small dis-
tances from the null, i.e., for values of ψ12 close to one, particularly if n∅ is
not large.

4 Power of Single Edge Exclusion Tests

The asymptotic approximations to the distributions of the test statistics for
single edge exclusion presented in Section 3 can be used to estimate the power
of the first step of a backward elimination model selection procedure for se-
lecting the saturated GLL model. Recall that the power of a hypothesis test is
the probability of rejecting the null hypothesis given a particular value of the
interest parameter(s). Also recall that when testing for the presence of an edge
in an independence graph, the null hypothesis corresponds to (conditional) in-
dependence. For a valid interpretation of missing edges in the independence
graph using the Markov properties, it is crucial to be reasonably sure that
a missing edge in the graph indeed corresponds to conditional independence.
Therefore, power calculations are particularly important in the context of
graphical models.

In the cross-tabulation of three binary variables there are eight cell probabili-
ties that total one. Hence, the parameter space is seven dimensional. In the two
binary variables case the parameter space has dimension three. Let ξ denote
the vector of the chosen parameters, either cell probabilities or combinations
of conditional odds ratios and marginal probabilities that uniquely define the
contingency table under analysis, depending on the information available.

4.1 Power of non-signed tests

The power of a size α test for excluding edge (i, j) from the saturated GLL
model with two or three binary variables can be estimated, using the asymp-
totic normal approximations derived in Section 3.1, as

P
[

Tij > χ2
d;1−α | ξ

]

' P



Z >
χ2

d;1−α − AE(Tij)
√

var(Tij)



 , (10)

where Tij is the test statistic of interest, with mean and variance, in the
asymptotic distribution, given by AE(Tij) and var(Tij), Z ∼ N (0, 1) and
χ2

d;1−α is the upper α quantile of a χ2
d distribution. The degrees of freedom d

9



are 1 and 2, respectively in the two and in the three binary variables cases.
Also recall that formulas for AE(Tij) and var(Tij) are different in the two
and in the three binary variables cases. In the two binary variables case this
power can also be estimated, using the non-central chi-squared approximation
derived in Section 3.2, as P [X > χ2

1;1−α | ξ], where X ∼ χ2
1(γ12).

Figure 1 compares the power of the non-signed tests for excluding edge (1, 2)
from the saturated GLL model with two binary variables, using the normal
approximation (dashed line) and the non-central chi-squared approximation
(solid line), for different combinations of marginal probabilities and odds ratio
values. The dotted line is the estimated exact power, used as the standard for
comparison, based on 1 000 simulations. Note that there are only three curves
in each panel, rather than nine, because the power functions are essentially the
same for each test statistic. A sample size of 1 000 was used. The horizontal
dotted lines correspond to power values of 0 and 0.05. In each plot the odds
ratio, on the horizontal axis, varies from 1 to 4. The marginal probability π1(0)
takes the values 0.1, 0.5 and 0.9 in the plots in rows 1 to 3, respectively. The
marginal probability π2(0) takes the values 0.1, 0.2 and 0.3 in the plots in
columns a) to c), respectively.

From Figure 1 it is possible to conclude that, even for a sample size of 1 000,
the normal approximation is a poor approximation for values of the odds
ratio close to one. Indeed, at an alternative close to the null the non-central
chi-squared approximation performs much better. When the odds ratio value
is far from one and π1(0) is around 0.9, the normal approximation performs
better than the non-central chi-squared approximation (see the plots in row
3). Note that, in such cases, the minimum expected cell counts can be very
small: in plot a.3) values of 3.8 and 2.9 are reached for ψ12 equal to 3 and 4,
respectively. The chi-square approximation is very poor then. The non-central
chi-squared approximation performs very well when π1(0) is around 0.5 (see
the plots in row 2).

For a sample size of 10 000 (considered a very large sample size for a GLL
model with two binary variables) the normal approximation is still a poor
approximation for odds ratio values close to one. Also the non-central chi-
squared approximation performs better than the normal approximation. For
further details see Salgueiro [5].

The traditional definition of power relates to a test of a single null hypothesis.
If there are three or more binary variables in the GLL model, the first step of
a backward elimination model selection procedure may involve testing a set of
null hypotheses. As the true model is the saturated model, all the hypotheses
in this set are false. The probability of rejecting all these null hypotheses,

10
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Fig. 1. Simulated (dotted line) and theoretical power values for T12, with an asymp-
totic normal approximation (dashed line) and a non-central χ2

1 approximation (solid
line); n∅ = 1 000. Odds ratio ψ12 from 1 to 4 in each plot. π1(0) equals: 1) 0.1, 2) 0.5
and 3) 0.9. π2(0) equals: a) 0.1, b) 0.2 and c) 0.3. The horizontal dotted lines cor-
respond to power values of 0, 0.05 and 1.

i.e., of selecting the true (saturated) model has been termed overall power in
the multiple comparisons literature (see, for example, Hochberg and Tamhane
[9]).

In the three binary variables case the probability of excluding neither of the
two edges (i, j) and (i, k) from the saturated GLL model, when two separate
edge exclusion tests are performed, can be approximated by

P
[

min(Tij, Tik) > χ2
2;1−α | ξ

]

'
∫ ∞

χ2
2;1−α

∫ ∞

χ2
2;1−α

φ2 (µ, Σ) dTij dTik, (11)

where φ2(µ,Σ) is a bivariate normal density with mean vector µ and variance
matrix Σ given by the formulas for non-signed tests presented in Section 3.1.
If the LRT is used, for example, means, variances and covariances are given,
respectively, by Equations (4) (with estimators replaced by parameters), (8)
and (9).
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The power of selecting the saturated GLL model with three binary variables is
the probability that each of the test statistics T12, T13 and T23 is greater than
χ2

2;1−α, given the values of the chosen parameters in ξ. A generalization of
Equation (11), with a three-dimensional integral, can be used to approximate
this power.

4.2 Power of signed square-root tests

Recall that, in the two binary variables case, signed square-root test statistics
T s

12 equal sign(logψ̂12)
√

T12, where T12 is one of the non-signed test statistics
given by Equations (1) to (3).

For a two-sided test of size α, the null hypothesis that λ12 = 0 ⇔ ψ12 =
1 is rejected if the absolute value of the signed square-root test statistic is
greater than z1−α/2, where z1−α is the upper α quantile of the standard normal
distribution. Hence, the power for the two-sided size α signed square-root
test of excluding edge (1,2) from the saturated GLL model with two binary
variables can be approximated by

P
[

|T s
12| > z1−α/2 | ξ

]

' P

[

Z <
zα/2 − AE(T s

12)
√

var(T s
12)

]

+ P

[

Z >
z1−α/2 − AE(T s

12)
√

var(T s
12)

]

,

(12)

where T s is the signed square-root version of the test statistic of interest,
with mean and variance, in the asymptotic distribution, given by AE(T s

12)
and var(T s

12). The power for a one-sided test of size α/2 is approximated by
either the first or the second term on the right-hand side of Equation (12),
depending on the direction of the alternative hypothesis.

Simulation results (Salgueiro [5]) showed that the normal approximation to
the power of the signed square-root tests of excluding edge (1, 2) from the sat-
urated model is a very good approximation, even for moderate sample sizes,
marginal probabilities close to zero or one and odds ratio values close to one.
Her simulation results also showed that the asymptotic normal approximations
are more accurate for the signed square-root versions than for the non-signed
versions, suggesting that, when there is a choice, signed square-root test statis-
tics should be preferred.

5 An Example: University Admissions

Data on graduate admissions to the University of California at Berkeley in
1973, presented by Agresti [1, pg. 63], are used to illustrate power calculations.
In particular, the associations between admission (A: y or n), gender (G: m
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or f) and department (D: 3 or 4) are investigated. For these data, ψ̂GA = 1.02
and, conditioning on D, ψ̂GA·D=3 = 1.13 and ψ̂GA·D=4 = 0.92. For n∅ = 1710,
the LRT statistic for H0 : G⊥⊥A|D is 1.05, with a p-value of 0.59, and a
backward elimination model selection procedure chooses model GD,A (α =
0.05). Hence, there is no evidence of gender discrimination in the admission
process for departments 3 and 4.

To investigate the power associated with this LRT and this model selection
procedure, values of ψ̂GA·D=3 and ψ̂GA·D=4 more extreme than the observed
are considered. The five remaining parameters in ξ are selected to be the
marginal probability of D = 3, πD(3), the probabilities of G = m given D = d,
πG·D(m, d), and the probabilities of A = y given D = d, πA·D(y, d). These five
parameters are set close to their observed values: πD(3) = 0.54, πG·D(m, 3) =
0.35, πG·D(m, 4) = 0.53 and πA·D(y, 3) = πA·D(y, 4) = 0.35.

For the LRT of H0 : G⊥⊥A|D, the power is greater than 0.62 (0.88) if one
(both) of ψ̂GA·D=3 and ψ̂GA·D=4 is (are) outside (0.67, 1.50). Hence, a sample
of 1710 has enough power to detect a substantively interesting (conditional)
association between G and A. For the power of selecting the saturated model
the picture is less clear, as can be seen from Table 1. If one of the conditional
odds ratios is less than 0.67 and the other is greater than 1.50 then the power is
greater than 0.87. However, if they are both less than 0.67 or both greater than
1.50 then the power can be much lower. This is because for such values of ψ̂GA·D

and the remaining values of ξ set close to their observed values, the induced
conditional association between A and D is small and hence the corresponding
edge is not required in the model. The results in Table 1 highlight the need for
care when specifying the values in ξ to ensure that power calculations relevant
to the hypotheses of interest are being performed.

6 Discussion

Presented in this paper are methods for estimating the power of single edge ex-
clusion tests and a backward elimination model selection procedure for a GLL
model with two or three binary variables. The methodology presented in this
paper, in principle, can be used for GLL models with four or more binary vari-
ables. However, there is currently no straightforward way of generalizing the
formulas presented, due to the complexity and dimensionality of the param-
eter space. In contrast, in the graphical Gaussian framework generalizations
are straightforward, as shown by Salgueiro et al. [10].
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Table 1
Power of selecting the saturated model for various values of ψ̂GA·D=3 (in rows) and
ψ̂GA·D=4 (in columns); n∅ = 1710.

0.25 0.33 0.50 0.67 0.90 1.10 1.50 2.00 3.00 4.00

0.25 0.45 0.49 0.82 0.96 0.99 0.99 0.99 0.99 1.00 1.00

0.33 0.50 0.26 0.49 0.81 0.96 0.99 0.99 0.99 0.99 1.00

0.50 0.83 0.50 0.03 0.16 0.64 0.85 0.98 0.99 0.99 0.99

0.67 0.96 0.82 0.16 0.00 0.10 0.45 0.87 0.98 0.99 0.99

0.90 0.99 0.96 0.65 0.10 0.00 0.00 0.47 0.86 0.99 0.99

1.10 0.99 0.99 0.86 0.46 0.00 0.00 0.11 0.66 0.97 0.99

1.50 0.99 0.99 0.98 0.88 0.48 0.12 0.00 0.17 0.82 0.96

2.00 0.99 0.99 0.99 0.98 0.87 0.68 0.18 0.03 0.50 0.85

3.00 1.00 0.99 0.99 0.99 0.99 0.97 0.83 0.52 0.29 0.54

4.00 1.00 1.00 0.99 0.99 0.99 0.99 0.97 0.86 0.56 0.51
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