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1. Introduction

In this paper we develop and evaluate estimation methods for sample surveys with follow-up. Our

methods are applicable under follow-up of both the respondents and the non-respondents to the

initial survey. However, for simplicity we will focus on the latter case in this paper. This situation is

not uncommon in practice and has the potential to become widespread, due to increasing non-

response rates for surveys in many countries. High non-response rates can have a dramatic impact

on survey estimates, especially when auxiliary data that "explain" the non-response are not

available for post-survey adjustments. In such situations a follow-up sub-sample of the non-

respondents with a short questionnaire consisting of a few key survey questions can be helpful. At

present, however, such additional data are typically used to check survey data quality, and are not

exploited in estimation.

Innovation surveys are an important practical application of this follow-up approach. These surveys

aim to collect information on uptake and/or development of new technology by businesses.

However, they often have high non-response. It is not unreasonable in this situation to argue that it

is the businesses that are not innovative, and hence see no value in the information being collected,

who are less likely to respond to the survey. Consequently, following-up a sub-sample of these non-

respondents with a short questionnaire containing a few key questions along the lines of ‘Is your

business innovative, or has your business invested to innovative activities?’ can be a useful

exercise. If the survey is based on a personal interview, it is possible, using the information

collected in such a follow-up exercise, to clarify basic survey concepts. If a followed-up business is

not innovative no further questions are asked, while if it is innovative, some further key questions

are asked in order to assess the extent of the innovativeness of the business. Because of this

structured approach, the non-response rate to the follow-up survey is usually very low. In what

follows we therefore assume full response to this follow-up survey.
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The data collected in this exercise can be represented by the layout in Table 1. Here X  is an

auxiliary variable or group of variables, known for the entire population (in our empirical example

X corresponds to size-band), while Y denotes the variable(s) used to determine innovativeness status

(these are collected from a sub-sample of the survey non-respondents via a follow-up survey); I1 is

an initial sample inclusion indicator; R is an initial sample response indicator, and I2 is a sub-sample

inclusion indicator (by definition, all initial respondents provide information allowing their value

for Y to be computed, and so have their value of I2 set to 1). Finally, we define R* to be the response

indicator restricted to those units with I2 = 1. Note that ‘obs’ means that values are observed while

‘mis’ denotes non-observed values.

We assume that the initial sampling method is probability-based, with inclusion probabilities that

depend only on X, and so is non-informative given X. Similarly we assume that the subsequent sub-

sampling method is also probability-based, with inclusion probabilities that depend only on R and

X, and so is non-informative given R and X in the sense that pr(I2 = 1 | R = 1) = 1, while pr(I2 = 1 | R

= 0) depends only on X. In the spirit of the discussion above, we do not assume the initial sample

response R is non-informative given X. However, we assume that it is non-informative given X and

Y.

Table 1: Data structure for a survey with partial follow-up of non-respondents

X Y I2 R* R I1

obs obs = 1 = 1 = 1

obs obs = 1 = 0
obs mis = 0 mis = 0

= 1

obs mis = 0



4

Our aim is to develop estimation methods for the population total of Y (plus the associated variances

of these estimators) that fully exploit these observed data. To make the exposition straightforward,

the development and empirical results presented below assume Y is a zero-one variable (e.g.

corresponding to whether a business is innovative or not). However, our basic approach is quite

general. In particular we consider two methods - weighting and prediction - of using the information

described in Table 1 for estimating the population total of a survey variable.

2. The Weighting Approach

Compensating for sample survey non-response by re-weighting the sample respondents is a well-

established approach. The basic idea is an application of response propensity modelling and has

been discussed by Little (1986) among others. Ekholm and Laaksonen (1991) is an early application

of this approach in the sample survey context. This paper develops this approach, extending it to the

partial follow-up situation described in the previous section.

Ekholm and Laaksonen (1991) carried out respondent re-weighting at adjustment cell level. In this

paper we follow Laaksonen (1999) in implementing the method at individual respondent level.

There are two variants of this approach that we now describe. In both, the probability of non-

response is explicitly modelled as a function of the survey variable Y. Since this value is only

directly observed for the initial respondents and followed-up non-respondents (i.e. where I2 = 1 in

Table 1), the first variant estimates the probability of response by fitting a logistic regression model

to the observed R* values in Table 1, using both the auxiliary variable X and the survey variable Y

as explanatory variables in this model. We denote the resulting fitted value of the probability of

response (actually the probability that R* = 1) by θ̂*(X,Y )  below. This leads to the following re-

weighted estimator for the population total of Y
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T̂ * = Yi π iθ̂
*(Xi ,Yi )⎡⎣ ⎤⎦

−1

Ai =1∑ (1)

where πi denotes the inclusion probability of population unit i and Ai denotes the indicator function

for the respondents in the initial sample (I1i = 1, Ri = 1). Note that there is nothing unique about the

use of the logistic link in (1). In the simulation study reported in section 4 we also investigated the

probit and complementary log-log with very similar results. Furthermore, unlike the situation faced

by Ekholm and Laaksonen (1991) where there was little variation in the sample weights, these

weights varied considerably in the business survey application we consider in this paper.

Consequently the logistic model underlying the probability of response was fitted using the sample

weights of the units contributing to the fit. The necessity for this weighting is made clear in section

4 where we also present results when the response model is estimated without weights. Since the

model fitting process is restricted to respondents and followed-up non-respondents, these weights

are scaled to sum to the total of the sample weights within each stratum prior to estimation of model

parameters. Similarly, the adjusted weights derived from these model-based response probabilities

that are used in (1) are also scaled to sum to the population size within each stratum.

The second variant attempts to model the actual response variable of interest (R) by imputing values

for the unobserved Y values associated with the initial non-respondents who were not followed-up.

Details of the imputation method used are set out in the next section. Treating these imputed values

of Y as actual values, the probability of response is again modelled by fitting a (weighted) logistic

regression model to the observed R-values on the entire sample, using both the auxiliary variable X

and the survey variable Y as explanatory variables. We denote the resulting fitted value of the

probability of response by θ̂imp (X,Y )  with the corresponding re-weighted estimator of the

population total of a survey variable Y given by
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T̂imp = Yi π iθ̂imp (Xi ,Yi )⎡⎣ ⎤⎦
−1

Ai =1∑ . (2)

Note that the adjusted weights used in (2) are re-scaled in the same way as in (1) prior to their use.

Estimated sampling variances of these estimators can obtained using the approach described in

Ekholm and Laaksonen (1991). In the case of stratified sampling this leads to an estimated variance

of the form

V̂ (T̂ ) = ma sa
2 (Yπ −1θ̂ −1) + 1−

ma

na

⎛
⎝⎜

⎞
⎠⎟
(Yπ −1θ̂ −1)a

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
a∑ (3)

where θ̂  can be either θ̂*(X,Y )  or θ̂imp (X,Y )  above andUa , sa
2 (U )  denote the mean and variance

of the values of the variable U. When using (3) to estimate the variance of the estimator (1), na

denotes the number of units that responded either in the initial survey or in the follow-up survey (I2

= 1) in stratum a and ma denotes the number of "non-missing" units in stratum a (i.e. those with R*

= 1), whereas when using (3) to estimate the variance of (2), na denotes the number of units initially

selected in sample (I2 = 1 or = 0) in stratum a and ma denotes the number of units with I2 = 1 in

stratum a. It should be noted that the first term of (3) is a standard sampling variance, whereas the

second shows the impact of the missingness on the variance of the estimator.

3. The Prediction Approach

The basic idea here is simple and is derived from the model-based approach to survey estimation.

See Valliant, Dorfman and Royall (2000). However, its application to partial non-response follow-

up is new, and so we develop it in more detail below. As in the previous section, we consider

estimation of the population total T of the variable Y. Note that the minimum mean squared error

(MMSE) predictor of this population total is its conditional expectation given the observed data.
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Consequently we estimate it by approximating this optimal predictor. Assuming unit level

independence, this MMSE predictor can be written

 
�T = YiAi =1∑ + YiBi =1∑ + E(Yi | Xi ,Ci = 1)

Ci =1∑ + E(Yi | Xi , I1i = 0)
I1i =0∑ (4)

where Ai was defined earlier as the indicator function for the respondents in the initial sample (I1i =

1, Ri = 1), Bi is the indicator function for the followed-up non-respondents (I1i = 1, Ri = 0, I2i = 1)

and Ci is the indicator function for the non-respondents who were not followed-up (I1i = 1, Ri = 0, I2i

= 0).

In section 1 we assumed probability-based methods depending only on the population values of X

are used to select both the initial sample and the follow-up sample. It is easy to see that then

E(Yi | Xi , I1i = 1,Ri = 0, I2i = 0) = E(Yi | Xi , I1i = 1,Ri = 0, I2i = 1) (5)

so the third term in the above MMSE predictor (4) can be approximated by the fitted regression of Y

on X  for the followed-up non-respondents. A similar approach can be used to approximate the

fourth term of (4). In this case we can show that

E(Yi | Xi , I1i = 0) = E(Yi | Xi , I1i = 1,Ri = 0) 1− pr(Ri = 1 | Xi , I1i = 1)( )
+E(Yi | Xi , I1i = 1,Ri = 1)pr(Ri = 1 | Xi , I1i = 1) .

It is clear that we can estimate E(Yi | Xi , I1i = 1,Ri = 1)  from the initial respondents data. Denote this

estimate by µ̂1i . Similarly, we can estimate E(Yi | Xi , I1i = 1,Ri = 0)  from the followed-up non-

respondents data. Denote this estimate by µ̂0i . Let θ̂(Xi ,Yi )  denote an estimate of the response

probability pr(Ri = 1 | Xi ,Yi , I1i = 1) . An estimate θ̂(Xi )  of pr(Ri = 1 | Xi , I1i = 1)  can then be
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obtained via a weighted average of the θ̂(Xi ,Yi ) . For example, when X  is continuous a

nonparametric kernel estimate of this conditional probability is

θ̂(Xi ) = K b−1(Xj − Xi )( )θ̂(Xj ,Yj )I1 j =1∑ K b−1(Xj − Xi )( )I1 j =1∑

where K denotes a suitable kernel (i.e. density) function and b is a bandwidth parameter. For

discrete X a corresponding non-parametric approach leads us to replace K by the indicator I(Xj = Xi).

That is, θ̂(Xi ) is then just the average of θ̂(X,Y )  for those sample units with X = Xi,

θ̂(Xi ) = I(Xj = Xi )θ̂(Xj ,Yj )I1 j =1∑ I(Xj = Xi )I1 j =1∑ .

Using (5), we can write down a "plug-in" estimator for T, based on �T  (see (4)) as

T̂ = YiAi =1∑ + YiBi =1∑ + µ̂0iCi =1∑ + µ̂1iθ̂(Xi ) + µ̂0i (1− θ̂(Xi ))( )I1i =0∑ . (6)

The problem therefore is one of determining θ̂(Xi ,Yi ) . Since we do not have values of Y1 for non-

responding units that are not followed-up, this is not straightforward. We investigate an easy to

implement but computer intensive method of doing this, based on regression hot deck imputation.

The steps in this process are

1. Impute the missing value Yi for a not followed-up non-responding unit (i.e. Ci = 1). In the

case where Y is continuous, this is by µ̂0i + ε0i
* , where ε0i

*  is a random draw from the

follow-up sub-sample residuals Yj − µ̂0 j ; I2 j = 1,Rj = 0{ } . When Y is categorical, this is by a
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random draw from the follow-up sub-sample units with the same X value as the unit being

imputed - i.e. from {Yj; Xj = Xi, I2j = 1, Rj = 0, I1j = 1}.

2. Using these imputed values of Y, apply logistic regression (or some other similar technique)

to get estimates θ̂(Xi ,Yi )  for all the sampled units. Use these estimates to compute the

values of θ̂(Xi )  for the non-sampled units.

3. Compute the "plug-in" estimator T̂  using (6).

Estimation of the prediction mean squared error for (6) is not straightforward under this imputation

approach. We therefore apply this technique below to the case where both Y and X are categorical

and show how variance estimates can be computed when θ(Xi,Yi) is estimated via imputation.

3.1 Imputation-Based Approach with Categorical Data

As noted above we assume both X and Y are categorical. In particular, we use Xi = a to denote that

the ith population unit belongs to category a of X, and assume Y is a zero-one variable (e.g. denoting

whether a business is not innovative/innovative respectively). We assume simple random sampling

for both the initial and follow-up sample within each level of X.

A simple approach that makes minimal assumptions is to assume a saturated model for the Y×X×R

cross-classification. In this case we can use (5) to write down simple unbiased estimates for the

various population parameters in (6). Define

myx = # responding sample units (I1 = 1, R = 1) with X = x and Y = y

k1yx = # followed-up non-responding sample units (I1 = 1, R = 0, I2 = 1) with X = x and Y = y

k0yx = # not followed-up non-responding sample units (I1 = 1, R = 0, I2 = 0) with X = x and Y = y

k1x = # followed-up non-respondents with X = x
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k0x = # not followed-up non-respondents with X = x

mx = # responding sample units with X = x

nx = # selected sample units with X = x

In practise, k0yx will not be known. We shall assume however that this value is available from the

imputed values of Y for the not followed-up non-respondents. We denote this imputed value by k0yx
*

below. Then

µ̂1a =
m1a

ma

 = proportion of respondents with Y = 1 and X = a

µ̂0a =
k11a + k01a

*

na − ma

 = proportion of non-respondents with Y = 1 and X = a

θ̂(a,1) =
m1a

m1a + k11a + k01a
*

 = respondent proportion of units with Y  = 1 units and X = a

θ̂(a,0) =
m0a

m0a + k10a + k00a
*

 = respondent proportion of units with Y = 0 units and X = a

and so our estimator of

θa = pr(R = 1 | X = a, I1 = 1)
= pr(R = 1 | X = a,Y = 1, I1 = 1)pr(Y = 1 | X = a, I1 = 1)
+ pr(R = 1 | X = a,Y = 0, I1 = 1)pr(Y = 0 | X = a, I1 = 1)

is just the initial non-response rate for sample units with X = a,

θ̂a = θ̂(a,1) m1a + k11a + k01a
*

na

⎛
⎝⎜

⎞
⎠⎟

+ θ̂(a,0) m0a + k10a + k00a
*

na

⎛
⎝⎜

⎞
⎠⎟

=
ma

na
.
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The estimator (6) can then be written

T̂ = maµ̂1a + (na − ma )µ̂0a + (Na − na ) θ̂aµ̂1a + (1− θ̂a )µ̂0a
⎡⎣ ⎤⎦{ }a∑ . (7)

In order to estimate the prediction mean squared error Var(T̂ − T )  of (7) under the saturated model

assumption, we use a sequence of iterated expectation arguments, first conditioning on the initial

and follow-up sample data (thus obtaining the variability caused by the imputation process), then

conditioning on the initial sample data (obtaining the variability due to the follow-up sampling

process), and finally recovering the variability due to the initial sampling process. To start, we note

that

Var(T̂ − T ) = var k01a
* − k01a + (Na − na ) θ̂aµ̂1a + (1− θ̂a )µ̂0a

⎡⎣ ⎤⎦ − Yi
I1i =0
Xi =a

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
a∑

=

E V * k01a
* + (Na − na )(1− θ̂a )µ̂0a( )⎡

⎣
⎤
⎦ +

var E*(k01a
* ) − k01a + (Na − na ) θ̂aµ̂1a + (1− θ̂a )E

*(µ̂0a )⎡⎣ ⎤⎦ − Yi
I1i =0
Xi =a

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

a∑

where E* and V* denote expectation and variance with respect to the imputation process. In order to

evaluate the above expression we observe that

k01a
* = ∆iYiFa

∑

where Fa denotes the followed-up non-responding sample units with X = a and ∆i is the number of

times unit i is selected as a donor. Hence
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E*(k01a
* ) = k0ak11a / k1a

V *(k01a
* ) = k0ak11ak10a / k1a

2

and so

Var(T̂ − T ) =

E k0a
k11ak10a
k1a
2

⎛
⎝⎜

⎞
⎠⎟
1+

(Na − na )(1− θ̂a )

na − ma

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+Var

k11ak0a
k1a

− k01a

+(Na − na ) θ̂aµ̂1a + (1− θ̂a )
k11a (1+ k0a / k1a )

na − ma

⎡

⎣
⎢

⎤

⎦
⎥ − YiI1i =0,Xi =a∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

a∑

To proceed further, we note that the use of simple random sampling within each category of X

implies that the number of successes in the respondent, non-respondent follow-up and non-

respondent non-follow-up groups are mutually independent given the respective sizes of these

groups, with k11a distributed as binomial(k1a, µ0a),  k01a distributed as binomial(na−ma−k1a, µ0a) and

m1a distributed as binomial(ma, µ1a).  Hence, after some simplification we obtain

Var(T̂ − T ) =

E k0a
k11ak10a
k1a
2

⎛
⎝⎜

⎞
⎠⎟

Na

na

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
Na − na
na

⎛
⎝⎜

⎞
⎠⎟

2

µ1a − µ0a( )2 naθa (1− θa )

+E

µ0a (1− µ0a )
1

k1a
k0a +

Na − na
na

⎛
⎝⎜

⎞
⎠⎟
(na − ma )

⎛

⎝⎜
⎞

⎠⎟

2

+ k0a
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
Na − na
na

⎛
⎝⎜

⎞
⎠⎟

2

maµ1a (1− µ1a )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+ (Na − na ) µ1aθa + µ0a (1− θa )( ) 1− µ1aθa − µ0a (1− θa )( )

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

a∑ . (8)
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An obvious "plug-in" estimator V̂  of (8) then follows, where we replace unknown parameters in

expression by their estimates, and expectations of random variables are replaced by realised values.

That is

V̂ =

k0a
k11ak10a
k1a
2

⎛
⎝⎜

⎞
⎠⎟

Na

na

⎛
⎝⎜

⎞
⎠⎟

2

+
Na − na
na

⎛
⎝⎜

⎞
⎠⎟

2

µ̂1a − µ̂0a( )2 naθ̂a (1− θ̂a )

+ µ̂0a (1− µ̂0a )
1

k1a
k0a +

Na − na
na

⎛
⎝⎜

⎞
⎠⎟
(na − ma )

⎛

⎝⎜
⎞

⎠⎟

2

+ k0a
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
Na − na
na

⎛
⎝⎜

⎞
⎠⎟

2

maµ̂1a (1− µ̂1a )

+ (Na − na ) µ̂1aθ̂a + µ̂0a (1− θ̂a )( ) 1− µ̂1aθ̂a − µ̂0a (1− θ̂a )( )

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

a∑ . (9)

3.2 Prediction Based on a Non-Saturated Model

In this case we apply logistic regression techniques to the sample data to fit an unsaturated model to

θ(Xi,Yi), again treating the imputed Y-values of the not followed-up non-respondents as “real” data.

Let θ̂(Xi ,Yi )  denote the fitted values generated by this model. One estimator of θa is then

θ̂a = θ̂(a,1) m1a + k11a + k01a
*

na

⎛
⎝⎜

⎞
⎠⎟

+ θ̂(a,0) m0a + k10a + k00a
*

na

⎛
⎝⎜

⎞
⎠⎟

. (10)

Note that (10) estimates pr(Y = 1 | X = a, I1 = 1)  by the sample proportion of units with X = a that

also have Y = 1. However, a more sophisticated approach could easily be used here as well,

modelling Y in terms of X. From the definition of θa , we see that

θa =
θ(a,1)µ0a + θ(a,0)(1− µ0a )

[1− {θ(a,1) − θ(a,0)}(µ1a − µ0a )]
. (11)
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An alternative to (10) is therefore to substitute the logistic model-based estimates θ̂(a,1)

andθ̂(a,0) , together with µ̂1a =
m1a

ma

 and µ̂0a =
k11a + k01a

*

na − ma

, in (11).

Regardless of whether (10) or (11) forms the basis for estimation of θa , the final estimator of T is

then given by (7).

3.3 Using Multiple Imputations

Suppose that we independently repeat the imputation process L times to define a "multiple

imputation" estimator

T = L−1 T̂l
l=1

L

∑ . (12)

Here T̂l  denotes the value of (7) based on the lth set of imputed values. The average value (12)

should then be more efficient than a single imputation value of (7). In order to estimate the

prediction mean squared error of (12) we note that

Var(T − T ) = Var L−1 (T̂l − T )
l=1

L

∑⎛
⎝⎜

⎞
⎠⎟

= L−2 Cov T̂l − T ,T̂j − T( )
j=1

L

∑
l=1

L

∑

where

Cov T̂l − T ,T̂j − T( ) = E cov*(T̂l − T ,T̂j − T )( ) + Cov E*(T̂l − T ),E*(T̂j − T )( )
= Var E*(T̂ − T )( ) .

It follows Var(T − T ) = Var E*(T̂ − T )( )  and so from (8) we obtain
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Var(T − T ) =
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⎥
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⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩
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⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

a∑ . (13)

Again, we see that an estimate of (13) is easily defined by substituting estimates for unknown

parameters and replacing expectations by realised values. This leads to the prediction mean squared

error estimator

V =

Na − na
na

⎛
⎝⎜

⎞
⎠⎟

2

µ̂1a − µ̂0a( )2 naθ̂a (1− θ̂a )

+ µ̂0a (1− µ̂0a )
1

k1a
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Na − na
na

⎛
⎝⎜

⎞
⎠⎟
(na − ma )

⎛

⎝⎜
⎞

⎠⎟

2
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
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⎛
⎝⎜

⎞
⎠⎟
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maµ̂1a (1− µ̂1a )

+ (Na − na ) µ̂1aθ̂a + µ̂0a (1− θ̂a )( ) 1− µ̂1aθ̂a − µ̂0a (1− θ̂a )( )

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
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⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

a∑ . (14)

4. Empirical Results

The population data underpinning our simulations was generated from data collected in an

innovation survey carried out in Finland in the 1990s. The population size was 4453 businesses, and

Y was an indicator variable for whether a business is innovative or not. There were a total of 2474

such businesses in this population, and this number corresponds to the target population total of Y of

interest. In each simulation a stratified random sample of size 1200 was selected from this

population. The strata corresponded to size-bands based on the number of employees of each
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business. Random non-response was generated using a threshold model defined in terms of another

variable "value added", which is strongly associated with innovation, as well as other variables

correlated with the size of the business. There were an average of 800 respondents per sample, and

since the non-response was informative, innovative businesses (Y = 1) were more likely to respond.

For each sample of initial non-respondents, a sub-sample of 150 was followed up and values of Y

obtained. There was no non-response associated with the follow-up sub-sample. Note that this is

realistic in practice since the follow-up survey can be conducted by face-to-face interview and the

questionnaire is typically reduced to a minimum.

A total of 200 independent simulations were carried out and values for various estimates of the

population total of Y and associated estimates of variance were calculated. In addition to the

“standard” estimator that ignores the non-response, we computed estimates based on the methods

described in this paper. These estimates were as follows:

Weighting Approach

Estimators were defined by either (1) or (2), with estimated variance computed using (3) in both

cases. Note that (2) was defined using a single imputation. We used two different response

propensity models with these estimators. Model (A) corresponded to a logistic specification with

main effects for size-band and value of Y, while Model (B) was the same as (A) but also included a

size-band by Y interaction term.

Prediction Approach

A single imputation estimator based on (7) with variance estimator defined by (9) was computed. In

addition, a multiple imputation estimator (L = 8) defined by (12) with variance estimator defined by

(14) was also computed.
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Table 2 shows the results from the 200 simulations. Here Mean denotes the average value of an

estimator, MSE denotes the average of the squared difference between an estimator value and the

true value of T (2474), Average(V) denotes the average of the corresponding variance estimator and

95% CI Coverage denotes the percentage of resulting confidence intervals that included the true

value. All confidence intervals were generated as the estimate value plus or minus twice the square

root of its estimated variance. All averaging is over the 200 simulations.

Table 2: Simulation Results. Each estimation strategy is identified by the equation number of the

estimator + equation number of the corresponding variance estimator. In addition, for the weighting

methods considered in the simulation, the specification includes the type of logistic model (A or B)

used and whether the fit was weighted or not.

Estimation Strategy Mean
(T = 2474)

MSE Average(V) 95% CI
Coverage

Assuming that nonresponse is ignorable 2823.5 126494 5933 0
(1) + (3), unweighted Model A 2663.5 39676 8947 49.0
(1) + (3), weighted Model A 2469.9 5141 5686 95.5
(1) + (3), weighted Model B 2475.5 4942 5699 96.0
(2) + (3), weighted Model A 2474.9 5606 5998 95.5
(2) + (3), weighted Model B 2477.4 5611 5998 95.5
(7) + (9) 2477.3 5615 5970 95.5
(12) + (14) 2477.3 4718 5291 95.5

The first row in Table 2 clearly shows the bias associated with the unadjusted estimator. All other

strategies considered in the table give better estimates than this one. The comparison between the

use of unweighted and weighted logistic propensity modelling (second and third rows of the table)

is also interesting, since the importance of weighting is very clear. As previously noted, there has

been very little discussion of whether or not one should use sampling weights in response

propensity modelling. From a design-based perspective the sample inclusion probability for unit i in

(1) should be multiplied by pr(unit i is a respondent | unit i is in sample) to get the final probability
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of inclusion in the respondent sample. However, there are two ways we can define this conditional

probability:

(a) When it corresponds to pr(R=1|Y,X) for a randomly chosen unit from the population. In this

case it makes sense to weight when fitting the response propensity model since it is a model

for the whole population.

(b) When it corresponds to pr(R=1|Y,X) for a randomly chosen unit from the selected sample. In

this case weighting the response propensity fit is not appropriate.

Our interpretation accords with (a), and so we recommend weighting when carrying out response

propensity modelling.

Comparing weighting method (1) with weighting method (2), we see that the former is preferable.

However, there is little to choose between the different weighting estimators when we compare

choice of propensity model, with estimators based on unsaturated Model A performing very

similarly to those based on the saturated Model B. Note the methods that used Model B tended to

give slightly higher estimates than those based on Model A. This lead to better estimates in the case

of weighting method (1), but no essential difference in the case of weighting method (2). This may

be interpreted as indicating that model B is slightly better fitting than model A, and can be

generalised to indicate that it is important when using weighting methods to construct as well-fitting

a response propensity model as possible.

For the prediction estimators (7) and (12), it is clear that using multiple imputations provides a

substantial benefit. In fact, in MSE terms, the multiple imputations estimator (12) performed best of

all estimators considered in our study. Also, it is interesting that the mean values of the last three

methods in Table 2 are almost equal. This is because these methods assume the same (saturated)
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model B for the response. Note that we also investigated the behaviour of the prediction approach

based on the non-saturated model A using the ideas described in Section 3.3. However, we saw very

little change and so do not report these results.

Not surprisingly, the variance estimation methods investigated in the study show more variability

than corresponding estimates of totals. In particular, it is interesting to see that the highly biased

estimation method that ignored the non-response (row 1 in Table 2) gave very similar variance

estimates to the much better performing methods that allowed for the non-response, leading to

confidence intervals with substantial under-coverage. In contrast, the variance estimators (weighting

and prediction based) that properly took account of this non-response (rows 3 to 8 in Table 2)

tended to be somewhat conservative, with all achieving nominal coverage levels. In doing so,

however, it should be noted that the variance estimates defined by (3) tended to be more positively

correlated with the corresponding estimation errors than those defined by (9) or (14). Overall,

however, our results indicate that a user will not be led astray by using these variance estimators.

5. Conclusion

In this paper we contrast two approaches to making use of partial follow-up information to adjust

for non-ignorable non-response in survey estimation. The first approach is based on weighting by

an estimate of the response propensity while the second uses the follow-up information to directly

predict the population total of interest. Our simulation results show that, properly applied, both

approaches are similar in performance and so the choice between them is matter of personal

preference.

Note that we do not consider the case of survey variables in the main survey that are not measured

in the follow up study. Both the weighting and prediction approaches can be extended to handle this
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situation, with the latter then depending on the conditional distribution of the not followed up Y

variables given the values of the followed up Y variables. This remains a topic for further research,

as does implementation of the prediction approach without recourse to imputation, which is

technically possible but not explored in this paper.

Finally, we observe that both the weighting and prediction approached can be easily extended to

multiple auxiliary variables. In practice, this should lead to better fitting response propensity models

and hence better estimates.
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