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Abstract

A confidence interval is a standard way of expressing our uncertainty about the value of a

population parameter. In survey sampling most methods of confidence interval estimation

rely on “reasonable” assumptions to be true in order to achieve nominal coverage levels.

Typically these correspond to replacing complex sample statistics by large sample

approximations and invoking central limit behaviour. Unfortunately, coverage of these

intervals in practice is often much less than anticipated, particularly in unbalanced samples.

This paper explores an alternative approach, based on a generalisation of quantile regression

analysis, to defining an interval estimate that captures our uncertainty about an unknown

population quantity. These quantile-based intervals seem more robust and stable than

confidence intervals, particularly in unbalanced situations. Furthermore, they do not involve

estimation of second order quantities like variances, which is often difficult and time-

consuming for non-linear estimators. We present empirical results illustrating this alternative

approach and discuss implications for its use.

Key Words: Confidence intervals; Finite population prediction; Regression estimation;

Variance estimation; M-quantile regression.
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1. Introduction

Confidence intervals are an integral part of modern statistical inference. The concept of an

interval estimator for an unknown parameter value that includes this value a pre-specified

proportion of the time under repeated sampling permeates virtually every branch of statistics.

In survey sampling confidence intervals are routinely calculated as part of the survey

estimation process, with the ubiquitous 95% or “2 standard error” interval serving to define

what many users interpret as a “credible” interval for a target population quantity.

In large part, the validity of the “confidence” interpretation of confidence intervals in survey

sampling rests on large sample approximations and consequent application of the central limit

theorem. Typically these approximations seem reasonable. However, there is much empirical

evidence, particularly from simulation experiments, that the nominal confidence levels

ascribed to these intervals are often not achieved in practice. Why this is so is unclear in

general, although it seems to be related to failure of central limit assumptions brought about

by a combination of non-normal population structures (e.g. outliers, heavy-tailed

distributions) and sampling methods that result in “unrepresentative” or “unbalanced”

samples. Royall and Cumberland (1985) explored these issues in the context of an empirical

study of ratio and regression estimation of population totals, using both conventional design-

based variance estimators as well as robust model-based variance estimators to construct

nominal 95% intervals using data from samples drawn from a number of real populations.

Their results showed that in unbalanced samples all the interval estimation methods they

considered had serious under-coverage problems. They also found instances (e.g. the

Counties 70 population) where none of these intervals came anywhere close to their nominal

level of coverage on any sample, irrespective of its balance.

As far as the author is aware, the situation today, some twenty years after the publication of

Royall and Cumberland (1985), remains unchanged - confidence intervals are still routinely

produced by survey statisticians using techniques that are basically the same as those

investigated by these authors, and claims about nominal levels of coverage that cannot be

guaranteed are still being made. We still do not know how to specify a confidence interval

that lives up to its name. We make large sample approximations, invoke central limit

behaviour and keep our fingers crossed.

The purpose of this paper is to suggest that the “traditional” approach to constructing a

confidence interval, e.g. the sample value of an estimator plus or minus twice the sample

estimate of its standard error, is not the only way one can systematically approach

construction of interval estimates for unknown population quantities. There are other ways of

defining intervals that capture our uncertainty about these quantities and seem more robust

and stable than confidence intervals, particularly in unbalanced situations. Furthermore, these

intervals do not involve estimation of second order quantities like the variances of estimators,

which is often difficult and time-consuming, especially for non-linear estimators. Instead,

they are defined by calculating fairly straightforward estimates for populations that our

sample might have been drawn from. A drawback of such an approach is that the concept of

guaranteed coverage no longer applies, being replaced instead by a measure of the potential

differences between the “most likely” sampled population and reasonable alternatives that

could also have given rise to the sample data.

In the following section we first motivate the search for an alternative to confidence intervals

by considering a real life estimation problem where the sample is, by its very nature,
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extremely unbalanced. We show that efficient methods of estimation using these data do not

lead to good confidence intervals and we explore some reasons for why this is the case. In

Section 3 we then introduce an alternative method of interval estimation based on a

generalisation of the idea of quantile regression modelling. We show that interval estimates

produced using this approach are not only easy to calculate and interpretable, but also have

robust coverage properties. In section 4 we then move on to a more complex non-linear

estimation problem where methods of confidence interval estimation are extremely difficult to

implement and also have very poor coverage properties. Here we show that the alternative

quantile regression model intervals are simpler to calculate and have better coverage. Finally,

in Section 5 we explore some areas for further research.

2. Constructing Prediction Intervals for Average Hourly Pay

The New Earnings Survey (NES) was a large-scale annual survey of employees in the UK

business sector, carried out by the UK Office for National Statistics, that collected data on

salaries, hours worked and hourly rates of pay. From 2004 the NES was replaced by the

Annual Survey of Hours and Earnings (ASHE), which has essentially the same remit. We

confine our analysis in this paper, however, to data collected in the 2002 round of NES, since

data collected in ASHE are expected to be similar.

A key objective of NES was measurement of the hourly pay rates for all employees, denoted

Y from now on. By definition, this variable cannot be obtained from all sampled employees

since many are not paid by the hour. However, it is possible to calculate an implicit hourly

rate (X = derived rate) based on total earnings and hours worked, both of which are available

for all sampled employees. From Table 1 we see that the distributions of Y and X are not the

same in the NES sample. Furthermore, X is generally not the same as Y when both are

available, as can be seen in Table 2.

Table 1 Distribution of NES data for 2002 based on the total sample of 162,843 employees,

of whom 75,850 provided hourly pay rate data (Y). All values are in pence.

Quantiles of distribution

Y available? 25% 50% 75%

Yes Y 482 597 843

X 492 634 892

No X 717 1014 1491

Table 2 Distributions of Y and X for the n = 59,590 employees that providing these values

and satisfied 300 ≤ Y ≤ 2000  and 300 ≤ X ≤ 3000 . All values are rounded to nearest five

pence.

Quantile Y X
100.0% 1995 2955

90.0% 1120 1190

75.0% 820 870

50.0% 600 635

25.0% 495 500

10.0% 435 440

0.0% 300 300
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The employees contributing to Table 2 were restricted in terms of their values of Y and X to

remove a large number of outliers in the NES data and to allow analysis to focus on that part

of the pay rate distribution of most interest, corresponding to hourly pay rates between 400

and 1000 pence. A scatterplot of Y versus X for these employees is shown in Figure 1. Note

the general “linearity” of the relationship between the two variables, as well as the large

variability around this straight-line relationship. Notice also the impact of the UK minimum

wage legislation, leading to a sharp drop in Y values below 400.

Figure 1 Scatterplot of observed hourly pay rate (Y) versus derived hourly pay rate (X) for the

59,590 employees in the NES sample with 300 ≤ Y ≤ 2000  and 300 ≤ X ≤ 3000 .

In what follows we use s1 to denote sample units (employees) that provide data for both Y and

X and s2 to denote the remaining sample units that provide data for X alone. The overall

sample is denoted s. Since the NES sample is essentially a simple random sample of all

employees, the desired estimator of the mean hourly pay rate is

ys = n−1 yis1
∑ + yjs2

∑⎡
⎣

⎤
⎦ .

However, as already pointed out, this statistic cannot be calculated. What can be done instead

is to use the observed values of X to impute corresponding values of Y for those units where Y
is “missing”. The above mean can then be calculated substituting imputed values of Y in the

second summation term. From Figure 1 an obvious method of imputation (and one that has

been shown to work well with these data) is simple regression imputation, based on a linear

model linking Y and X.  The imputed value of ys  is then equivalent to a regression estimator,

where we treat s as the “population” of interest, with s1 defining the “sample”, and estimate

the unobserved “population” mean ys  using the sample X values as auxiliary information.

Furthermore, given the large number of “outliers” evident in Figure 1 it would seem sensible

to use outlier robust methods of parameter estimation when calculating this regression

estimate (or equivalently, constructing imputed values).

The standard regression estimator (predictor) of ys  is
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yreg = n−1 yis1
∑ + (areg + bregx j )s2

∑( ) = n−1 wi,regyis1
∑ (1)

where

wi,reg =
n

n1
+ n2

(xi − xs1 )(xs2 − xs1 )

(xk − xs1 )
2

s1
∑ .

As noted earlier, the large variability in the Y-X relationship for those units where both of

these variables are observed suggests use of a robust regression estimator, which in this case

we write as

yrreg = n−1 yis1
∑ + (arreg + brregx j )s2

∑( ) = n−1 wi,rregyis1
∑ (2)

where

wi,rreg = 1+
n2φi

φks1
∑

1+
(xi − xφs1

)(xs2 − xφs1
)

φks1
∑( )−1

φk (xk − xφs1
)2

s1
∑

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

xφs1
= φks1

∑( )−1

φk xks1
∑

φi =
srobψ srob

−1 (yi − arreg − brregxi )( )
(yi − arreg − brregxi )

.

Here srob  is a robust estimate of the scale of the regression residuals and ψ  denotes the

influence function associated with the robust regression fit. In what follows we use the MAD

estimate for srob  and define ψ  using the Huber specification

ψ (t) = t I(| t | ≤ c) + csgn(t)I(| t | > c)

with two choices of the tuning constant, c = 1.345 (default value, very robust, but not

efficient) and c = 5 (not so robust, but more efficient). In practice computation of all these

quantities is easily carried out using a modified version of function rlm (Venables and Ripley,

2002) in R (R Development Core Team, 2004).

In the context of model-based survey sampling, confidence intervals are prediction intervals

or PIs. A large sample 95% PI for ys  based on the regression estimator is

yreg ± 2 V̂reg

where V̂reg  is a robust estimate of the prediction variance of the regression estimator (Royall

and Cumberland, 1981),

V̂reg = n−2 fi
−1(wi,reg −1)2 (yi − areg − bregxi )

2

s1
∑ + n2σ̂ reg

2( ) , (3)
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with fi = n1
−1(n1 −1) − (xk − xs1 )

2

s1
∑⎡

⎣
⎤
⎦

−1

(xi − xs1 )
2  and σ̂ reg

2 = (n1 − 2)−1 (yi − areg − bregxi )
2

s1
∑ .

Constructing PIs using the robust regression estimator is not as straightforward. This is a non-

linear estimator, so we use the bootstrap to calculate these intervals. Here we consider two

options. The first is what we call the Naïve Bootstrap, which in this case is defined via the

following simple process:

• A bootstrap sample s1
B  is obtained by re-sampling n1 times with replacement from s1 .

• A robust regression estimate is calculated using the data in s1
B .

• The preceding two steps are repeated 250 times in order to generate a bootstrap

distribution of robust regression estimate values, with PI bounds then defined by the

2.5% and 97.5% values of this bootstrap distribution.

The second is more complicated and is sometimes referred to as Bootstrap World (Presnell

and Booth, 1994; see also Chambers and Dorfman, 2003). It is defined as follows:

• An initial bootstrap sample s1
B1  is obtained by re-sampling n1 times with replacement

from s1 . This sample is used to calculate robust regression coefficients arreg
B1 , brreg

B1  and

corresponding studentised residuals ri
B1 = fiB1

−0.5 (yi − arreg
B1 − brreg

B1 xi ) , where fiB1  is the

bootstrap sample s1
B1  version of fi  above.

• A bootstrap “population” of n values is formed by randomly sampling n times with

replacement from the n1 ri
B1  values to get n  error values {ui

B}  and setting

yi
B = arreg

B1 + brreg
B1 xi + ui

B . A second bootstrap sample s1
B2  is obtained by taking a simple

random sample of size n1 without replacement from this population. The values

(yi
B , xi;i ∈s1

B2 )  are then used to compute the bootstrap value of the robust regression

estimate.

• The preceding steps are repeated 250 times in order to generate a bootstrap distribution

of robust regression estimates, with PI bounds defined by the 2.5% and 97.5% values

of this distribution.

In order to evaluate these methods for constructing prediction intervals, a simulation study

was carried out using data from the same employees that contributed to Table 2 and Figure 1.

This study involved two types of simulations. In the first the probability that a sample value

of Y is unavailable was determined purely by its value of X. This is a “Missing At Random”

(MAR) scenario. In the second this probability was determined by the missing value of Y and

corresponds to a “Not Missing At Random” (NotMAR) scenario. For the MAR simulation,

employees were randomly split into 2 groups, U1 of size 29590 and U2 of size 30000 with

Pr(inclusion in U2) ∝  X 2
. Five hundred independent samples of n = 1000 employees were

then taken by first randomly sampling n1 employees from U1 in order to determine s1. The

remaining n2 = n – n1 sample units making up s2 were then obtained by randomly selecting

500- n1 employees from U1 and 500 from U2. Employees in the s1 sample were assumed to

provide values of both Y and X, while those in the s2 sample were assumed to only provide

values of X. The same procedures were used in the NotMAR simulation, the only difference

being construction of U1 and U2, with Pr(inclusion in U2) ∝ Y2
.
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Results from these simulations are set out in Tables 3 and 4. Here Reg denotes the standard

regression estimator (1), while the two cases of the robust regression estimator (2) are defined

by RReg(5), corresponding to c = 5, and RReg(1.345) corresponding to c = 1.345. In these

tables Bias denotes the average difference between the regression estimate and the unknown

“full sample” mean of Y over the 500 simulations and RMSE denotes the square root of the

average of the squares of these differences. Coverage denotes the proportion of simulations

where the PIs generated by the regression estimate in the simulations included the “full

sample” mean of Y, while Av. Width denotes the average width of these PIs over the

simulations. The PIs underlying the Coverage and Av. Width results for the robust regression

estimators RReg(5.0) and RReg(1.345) were generated by the Naïve Bootstrap. Corresponding

Bootstrap World PIs had poorer coverage and these results are omitted.

Examination of Tables 3 and 4 shows that even with a sample size as large as 500 and a

sampling fraction of 0.5 the regression estimator generates PIs with below nominal coverage

under MAR. Under NotMAR the bias in this estimator makes its PIs useless. In contrast, the

robust regression estimator with c = 1.345 is extremely stable, but with a bias under MAR

that makes its bootstrap-generated PIs increasingly useless as the sample size increases.

Rather fortunately, this bias essentially cancels out under NotMAR, making its bootstrap PI

coverage look much better. However, this is an artefact of the simulation method rather than

any intrinsic property of these PIs. Finally, we see that in terms of RMSE the robust

regression estimator with c = 5 seems a reasonable compromise under both MAR and

NotMAR. Unfortunately, its bootstrap PIs have poor coverage in both situations.

Is this lack of coverage due to sample imbalance? Royall and Cumberland (1985) observed

that most methods of variance estimation do not work well in unbalanced samples. However,

when we examine the conditional behaviour under MAR of both the regression estimator

error and the estimated standard error derived from (3) as the difference between the “sample”

(s1) and  “non-sample” (s2) means of X increases we see no decreasing trend in coverage.

What we do see, however, is clear negative association between this error and the estimated

standard error. There are too many samples where the estimated standard error is low and the

estimation error is large and positive, leading to a decrease in coverage relative to nominal

levels. Furthermore, this negative association is even more pronounced for the robust

regression estimators, being most marked for c = 1.345.

Where do we go from here? It seems clear that the conventional “confidence interval”

approach to PI construction does not work well with the regression estimators (1) and (2) for

the NES data. This may be due to a combination of estimator bias (c = 1.345), breakdown in

population assumptions (MAR vs. NotMAR) and unreliable variance estimators for the

unbalanced samples that are an inevitable consequence of the NES “missingness” structure. In

what follows, therefore, we develop an alternative approach to PI estimation that appears to

perform better in this type of situation.
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Table 3 MAR simulation results for regression estimators. Average value of sample mean ys
is 704.9.

Estimator Bias RMSE Coverage Av. Width
n1 = 500

Reg 2.436 8.050 0.902 27.9

RReg(5) 8.116 10.227 0.850 29.0

RReg(1.345) 21.825 22.321 0.056 21.5

n1 = 250

Reg 2.673 11.471 0.906 41.8

RReg(5) 7.584 11.848 0.874 36.8

RReg(1.345) 22.922 23.820 0.220 24.4

n1 = 100

Reg 2.072 18.124 0.914 66.7

RReg(5) 5.792 15.973 0.896 54.9

RReg(1.345) 21.737 24.048 0.574 38.0

n1 = 50

Reg 1.377 27.015 0.886 90.2

RReg(5) 2.686 22.877 0.876 76.1

RReg(1.345) 18.513 25.029 0.696 58.3

Table 4 NotMAR simulation results for regression estimators. Average value of sample mean

ys  is 704.4.

Estimator Bias RMSE Coverage Av. Width
n1 = 500=

Reg -47.235 48.506 0.002 41.8

RReg(5) -33.199 34.750 0.050 44.3

RReg(1.345) -9.342 13.029 0.830 37.0

n1 = 250

Reg -45.205 48.079 0.102 57.9

RReg(5) -32.071 35.887 0.326 59.7

RReg(1.345) -5.532 15.221 0.916 52.6

n1 = 100

Reg -43.000 49.267 0.506 83.8

RReg(5) -32.619 41.172 0.644 83.0

RReg(1.345) -5.318 23.405 0.916 79.0

n1 = 50

Reg -40.869 52.129 0.688 107.4

RReg(5) -33.420 48.067 0.756 100.7

RReg(1.345) -7.235 33.018 0.916 103.1

3 An Alternative Approach to Prediction Intervals

There are two basic assumptions that underpin use of prediction intervals in model-based

sample survey theory. The first is that the conditional mean of Y given X in non-sampled part

(r) of the population is same as that in the sampled part (s), i.e.

gs (x) = E(yi | xi = x, i ∈ s) = E(yk | xk = x, k ∉ s) = gr (x) .
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The second is that the estimator ĝs (x)  of gs (x)  is unbiased at every value of X = x in the

population. Both assumptions need not hold. The first is usually justified on the basis that s
and r are defined through some form of random sampling. However, even if this is true, the

second assumption can still fail, and in unbalanced samples it may be extremely difficult to

detect this failure. If either assumption is invalid, standard PIs will fail, with the problem

getting worse as the sample size increases.

Our alternative approach tackles these potential misspecification issues directly when forming

a PI. That is, rather than generating an interval estimate to have a nominal level of coverage,

we generate one that corresponds to a bound on the potential difference between the predicted

values (the regression imputed values in the pay rate example) of Y and the actual non-

sampled values of this variable. That is, we specify bounds ĝLs (x) ≤ ĝs (x) ≤ ĝUs (x)  and then

define our interval as [ ŷL , ŷU ] , where

ŷL = N −1 yi + ĝLs (xk )k∉s∑i∈s∑( )
ŷU = N −1 yi + ĝUs (xk )k∉s∑i∈s∑( )

In order to implement this idea we need a sensible way of specifying bounds for non-sample

data given sample data. A straightforward way of doing this is via quantile regression

(Koenker and Bassett, 1978), where, rather than modelling the expected value of the

conditional distribution f(y |x) of Y given X, we model the percentiles of this conditional

distribution. In the linear case this leads to a family of linear models indexed by the value of

the corresponding percentile “coefficient”, q  ∈  (0,1), where for each value of q , the

corresponding model shows how the qth
 percentile (quantile) of f(y|x) varies with x. Thus, the

q = 0.5 line shows how the “middle” (median) of f(y|x) changes with x, while the general q-

quantile line separates the “top” 100(1 - q)% of f(y|x) from the “bottom” 100q% - i.e. it

represents conditional behaviour that is better than the worst 100q % in the data and worse

than the best 100(1 - q)% in the data. Note that homoskedastic data will lead to parallel

quantile regression lines, while heteroskedastic data will cause these lines to “spread out”.

Standard quantile regression lines can be unstable and non-unique. Breckling and Chambers

(1988) introduced a generalisation of quantile regression models that they call M-quantile

regression models. These models extend the quantile regression concept to robust regression

defined by influence functions and can be fitted easily using iterated weighted least squares,

with positive residuals weighted by q and negative residuals weighted by 1 – q. For any value

of q we can then use the sample data to calculate robust q-quantile coefficients arreg
(q) , brreg

(q)  of a

linear model for the qth
 M-quantile of the conditional distribution of Y given X. These M-

quantile regression lines have the same interpretation as q-quantile regression lines but

depend on specification of an influence function. For ease of exposition, and because it works

well in practice, we assume from now on that this influence function is Huber-type with

tuning constant c. By construction (see Appendix 1) these lines are monotone in q over the

range of population X-values and span virtually the entire range of the conditional distribution

of Y given X.

Let q < 0.5. The M-quantile interval (MQ-interval) for ys  corresponding to q is then

(ŷsq , ŷs(1−q) ) , (4)



10

where ŷsq = N −1 yi + (arreg
(q) + brreg

(q) xi )s2
∑s1

∑( ) . Note that the robust regression estimator is

equal to ŷs0.5 . Furthermore, the MQ-interval (ŷsq , ŷs(1−q) )  always includes this robust

regression estimator, is generally not symmetric about ŷs0.5  and increases in width as q
decreases to zero. Figure 2 illustrates the M-quantile regression fit to one sample from the

MAR/n=500 simulation, and the resulting MQ-interval for the unknown value of ys .

Figure 2 Scatterplot of data from one sample used in the MAR/n=500 simulation. The black

“+” markers denote values from s1, while the red “�” markers denote values from s2. The

robust regression fit to the s1 data based on c = 1.345 is shown as a solid line while the

corresponding M-quantile fits defined by q = 0.15 and q = 0.85 are shown as dashed lines.

The horizontal lines show the estimated value of ys  based on this fit (solid line), the MQ-

interval around this estimate corresponding to q = 0.15 (dashed lines) and the actual value of

ys  (dotted line).

It is important to realise from the outset that MQ-intervals are not confidence intervals and

should not be interpreted as such. An MQ-interval represents an estimate of the range of

possible values of ys  conditional on the regression M-median of the unobserved Y-values

falling between the q and 1 – q regression M-quantiles of the observed Y-values. Our

“confidence” in such an interval therefore depends on whether we believe this condition holds

or not – it has nothing to do with the (repeated sampling) concept of coverage.

How then to choose q in (4)? Our preference is to adopt the same type of reasoning that is

used to justify 95% as a “reasonable” nominal coverage level for general use in confidence

intervals. In this case, a corresponding argument for q might be along the lines that it is

extremely unlikely in practice that the non-sampled part of a population will have an average

relationship between Y and X that is more extreme than that indicated by either the 25% or the

75% quantile regression lines in the sample. That is, we would choose q = .25 in (4) if the

lines defined by the coefficients arreg
(q) , brreg

(q)  are quantile regression lines.

When we define these coefficients via M-quantile regression, however, we need to adjust this

value of q to allow for the fact that in general the q = .25 and q = .75 M-quantile regression
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lines are closer together than corresponding quantile regression lines. It follows that we need

to decrease q in this case. For the N(0,1) distribution the .25 quantile is -0.6745, while for the

same distribution the .25 M-quantile with c = 1.345 is -0.4668. Equivalently, the .25 M-

quantile defined by c = 1.345 is approximately the same as the .32 quantile of a N(0,1)

distribution. Similarly, the .25 M-quantile corresponding to c = 5 approximately equates to

the .33 quantile of a N(0,1) distribution. In fact, for c = 1.345, the .17 M-quantile is basically

the same as the .25 quantile of a N(0,1) distribution, suggesting that if we want the interval

defined by (4) to have the “level of protection” described in the previous paragraph, and our

robust regression estimator is defined by c between 1.345 and 5, then a “safe” choice is to put

q = .15 in (4).

An obvious problem with this argument is that ignores the impact of sample size and

population variability on choice of q. Here, however, we can draw parallels with the coverage

behaviour of confidence intervals. In particular, we suggest the following guidelines:

1. Given samples taken from a fixed population, as the sample size increases (decreases)

the width of a prediction interval with a specified level of confidence decreases

(increases). Consequently, under the same conditions, the value q should be chosen to

increase towards (decrease away from) 0.5.

2. Given samples of the same size taken from populations with increasing (decreasing)

variability, the width of a prediction interval with a specified level of confidence

increases (decreases). Consequently, under the same conditions, the value q should be

chosen to decrease away from (increase towards) 0.5.

Suppose now that we want to choose q so that the coverage probability of the associated MQ-

interval is at least approximately known. Unfortunately, the preceding guidelines provide

little help on what to do in this regard. What is needed is a more formulaic approach to

choosing this parameter. We therefore again use normal theory to guide our choice and “map”

an appropriate normal theory prediction interval with a specified level of coverage to an

interval between the q and 1 - q quantiles of the underlying normal population distribution.

The value q defined by this map is then used in (4).

How to choose an “appropriate” normal theory interval? Clearly there is nothing to be gained

by taking the actual (and possibly flawed) interval generated by our estimation method (e.g.

the robust regression estimator) and mapping this to a value of q since this will just recover

the interval. Instead, we choose q so that it recovers the normal theory confidence interval in a

situation where we believe the latter. In particular, let Xi; i ∈ s1 ~ NID(µ,σ1
2 )  and

Xi; i ∈ s2 ~ NID(µ,σ 2
2 ) . Furthermore, suppose we use the mean X1  from s1  to predict the

overall mean X = N −1(nX1 + (N − n)X2 ) . Assuming uncorrelated population data, this mean

has prediction variance

Var(X1 − X) = 1−
n

N
⎛
⎝⎜

⎞
⎠⎟
2 σ1

2

n
+

σ 2
2

N − n
⎛
⎝⎜

⎞
⎠⎟

.

A “2-sigma” prediction interval for X  is therefore
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X1 ± 2 1−
n

N
⎛
⎝⎜

⎞
⎠⎟

σ1
2

n
+

σ 2
2

N − n
.

In large samples this interval approximates the interval between the q and 1 - q quantiles of a

N(µ,σ1
2 )  distribution, where

q = Φ −
2

n
1−

n

N
⎛
⎝⎜

⎞
⎠⎟
1+

nσ 2
2

(N − n)σ1
2

⎛

⎝
⎜

⎞

⎠
⎟ .

Given estimates σ̂1  and σ̂ 2 (e.g. calculated via the procedure outlined in Appendix 2), we

could therefore use the q-value

q̂norm = Φ −
2

n
1−

n

N
⎛
⎝⎜

⎞
⎠⎟
1+

nσ̂ 2
2

(N − n)σ̂1
2

⎛

⎝
⎜

⎞

⎠
⎟

in (4). However, this interval is likely to be too small (i.e. q is too close to 0.5) because it

assumes normal data, which is unlikely to be the case. We therefore put a non-conservative

upper bound of 0.25 on q. Also, for values of q too close to zero (in particular, less than 1/n)

the M-quantile fit becomes unstable, so we put a lower bound on q equal to the maximum of

1/n and 0.01. That is, our final expression for q in this case is

q = min(max(n−1, 0.01, q̂norm ), 0.25) . (5)

In order to evaluate the performance of MQ-intervals (4) defined either by a fixed “safe”

choice of q (e.g. q = 0.15) or via a normal coverage map as specified by (5), we return to the

NES simulation underlying Tables 3 and 4 and use the samples generated in this simulation to

calculate MQ-intervals based on the robust regression estimators RReg(5.0) and RReg(1.345).

The coverages and average widths of these intervals are displayed in Tables 5 to 8.

The performance of MQ-intervals set out in Tables 5 – 8 is very encouraging. For the fixed q
case (Tables 5 and 6) we see that MQ-intervals defined by q = .15 (the conservative choice

for Huber-type influence functions with c between 1.345 and 5) record coverages above .94 in

all cases for the very robust, but biased, c = 1.345 estimator, while for the less robust c = 5

estimator these coverages only drop below .95 in the NotMAR case for n = 500 (when the

impact of the NotMAR-induced bias is greatest) and n = 50 (when variability in these

intervals starts to become important). When the MQ-intervals are defined using the value of q
given by (5), see Tables 7 and 8, the coverage results are slightly worse, but still much better

than those recorded in Tables 3 and 4. Interestingly, the intervals defined by (5) are on

average not as wide as those defined by the fixed q = 0.15 option, reflecting the fact that (5) is

able to take account of sample size and population variability. Not surprisingly, the average

widths of the intervals based on the robust regression estimators in Tables 3 and 4 are

substantially smaller than those in Tables 5 – 8, but this merely reflects their poor coverage

performance.
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Table 5 Performance of fixed q MQ-intervals defined by robust estimates - MAR case

Coverage Average Width

q = 0.25 q = 0.15 q = 0.05 q = 0.25 q = 0.15 q = 0.05

n = 500

RReg(5) 1.000 1.000 1.000 50.0 82.6 168.1

RReg(1.345) 0.968 1.000 1.000 46.1 88.1 175.8

n = 250

RReg(5) 0.998 1.000 1.000 62.9 106.3 222.7

RReg(1.345) 0.932 0.998 1.000 57.1 110.2 227.7

n = 100

RReg(5) 0.954 0.996 1.000 72.1 125.5 256.4

RReg(1.345) 0.858 0.994 1.000 65.5 124.7 261.7

n = 50

RReg(5) 0.848 0.950 0.992 77.1 136.3 261.2

RReg(1.345) 0.776 0.946 0.994 72.7 132.7 282.3

Table 6 Performance of fixed q MQ-intervals defined by robust estimates - NotMAR case

Coverage Average Width

q = 0.25 q = 0.15 q = 0.05 q = 0.25 q = 0.15 q = 0.05

n = 500

RReg(5) 0.562 0.818 0.998 87.0 119.0 171.0

RReg(1.345) 1.000 1.000 1.000 101.6 141.8 202.8

n = 250

RReg(5) 0.810 0.968 1.000 105.3 146.4 214.2

RReg(1.345) 1.000 1.000 1.000 124.2 174.3 256.5

n = 100

RReg(5) 0.800 0.954 0.998 110.8 156.9 233.7

RReg(1.345) 0.976 0.998 1.000 133.5 188.9 280.7

n = 50

RReg(5) 0.716 0.896 0.990 105.5 152.7 230.1

RReg(1.345) 0.942 0.988 1.000 132.8 189.7 277.3

Table 7 Performance of MQ-intervals where q is defined by (5) - MAR case.

Coverage (average q-value) Average Widthn
RReg(5) RReg(1.345) RReg(5) RReg(1.345)

500 1.000

(0.250)

0.974

(0.214)

61.5 84.0

250 0.998

(0.249)

0.946

(0.218)

80.3 84.6

100 0.964

(0.240)

0.912

(0.191)

100.1 111.8

50 0.894

(0.228)

0.850

(0.170)

112.9 126.5
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Table 8 Performance of MQ-intervals where q is defined by (5) - NotMAR case.

Coverage (average q-value) Average Widthn
RReg(5) RReg(1.345) RReg(5) RReg(1.345)

500 0.818

(0.250)

1.000

(0.243)

92.4 104.5

250 0.968

(0.250)

1.000

(0.236)

114.0 133.1

100 0.956

(0.250)

0.986

(0.220)

124.4 153.2

50 0.868

(0.243)

0.948

(0.191)

124.8 168.0

4 An Application to Distribution Function Estimation

The gains from using MQ-intervals instead of confidence-based intervals become even more

apparent when the target of inference is non-linear in Y. This is because variance estimation

becomes more difficult in this case. To illustrate we consider the problem of estimating the

distribution (rather than the mean) of hourly pay rates using the NES data. This estimated

distribution is a key policy relevant output from the survey and is defined by

F̂s (t) = n−1 I(yi ≤ t)
s1

∑ + I(yj ≤ t)
s2

∑⎡
⎣

⎤
⎦

for t = 400, 425, …, 1000. As with estimation of the mean, we cannot calculate this statistic

directly. Nor can we ignore the problem of the “missing” s2 data since the simple alternative

distribution function estimate based just on the data in s1, i.e. F̂s1(t) = n1
−1 I(yi ≤ t)

s1
∑ , is

highly biased (Skinner et al, 2003; Chambers, 2005). In contrast, a locally weighted predictor

of F̂s (t)  based on the approach of Chambers and Dunstan (1986) works well. This is given by

F̂CDL (t) = N −1 I(yi ≤ t)
i∈s1
∑ +

wi (x j )I arreg + brregx j + ri ≤ t( )
i∈s1
∑

wi (x j )
i∈s1
∑

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪j∈s2

∑
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(6)

where ri = yi − arreg − brregxi  and wi (x j ) = I xi − x j ≤ f −1range(x)( )  is a “local” weight. The

parameter f in this weight is chosen via a weighted type of cross-validation, with more

importance attached to smaller values of t, see Chambers (2005) where the same MAR/n=500

and NotMAR/n =500 simulation data and samples as used previously are used to explore the

performance of (6). Coverage results from two prediction interval methods based on (6) are

presented below. For computational feasibility both require that the non-sample component of

(6) be replaced by a weighted approximation, and are defined by:

(1) F̂CDL (t) ± 2SE�(F̂CDL (t)) , where the estimated standard error (SE) is calculated using a

large sample approximation to its true value. We denote this method by LARGE.
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(2) The 95% PI generated by applying a Naïve Bootstrap to F̂CDL (t) . We denote this

method by BOOT. Bootstrap World intervals were also investigated but provided

poorer coverage.

Both methods gave very low coverage at all values of t when used with the MAR/n=500

simulation data (see Figure 4), so alternative MQ-intervals for F̂s (t)  based on (6) at each

value of t were constructed. These intervals were defined by (F̂CDL
(q) (t), F̂CDL

(1−q) (t)) , where

F̂CDL
(q) (t) = N −1 I(yi ≤ t)

i∈s1
∑ +

wi (x j )I arreg
(q) + brreg

(q) x j + ri
(0.5) ≤ t( )

i∈s1
∑

wi (x j )
i∈s1
∑

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪j∈s2

∑
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.

Here arreg
(q)  and brreg

(q)  are the coefficients of the robust M-quantile fit to the s1 data at quantile

coefficient q and ri
(0.5) = yi − arreg

(0.5) − brreg
(0.5)xi  are the residuals from the median (q = 0.5) fit that

defines (6).

Figure 3 shows the q = 0.15 and q = 0.05 MQ-bounds for F̂s (t)  using the same sample as

displayed in Figure 2. Figure 4 is a plot of the coverages of the LARGE, BOOT and two MQ-

intervals defined by c = 1.345 (q = 0.15 and q defined by (5)) for the MAR/n=500 simulation.

The superiority of the MQ-intervals is clear.

Figure 3 MQ-interval bounds for F̂s (t) . Red solid lines are q = 0.15 (top) and q = 0.85

(bottom), red dotted lines are q = 0.05 (top) and q = 0.95 (bottom). Dashed black line is actual

value of F̂s (t) .
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Figure 4 Coverage performance of prediction intervals for F̂s (t)  under MAR/n=500. Red line

is LARGE method, green line is BOOT method and blue lines are M-quantile methods

defined by c = 1.345 (solid line is fixed q = 0.15, dashed line is q defined by (5)).

5 Conclusions and Open Problems

In this paper we propose an alternative approach to the construction of prediction intervals in

finite population estimation. These intervals are based on application of quantile regression

ideas to estimation and are typically much simpler to compute than standard “confidence-

based” prediction intervals when estimators are non-linear since they do not require

estimation of the prediction variance of the estimator. Our empirical investigations also show

that these MQ-intervals provide better coverage performance than standard methods in

situations where the sample is highly unbalanced.

In developing MQ-intervals, however, we have implicitly assumed that, conditional on

auxiliary information, population data are uncorrelated. In many situations this is unlikely to

be the case, particularly where this auxiliary information is limited. Obvious examples are

social surveys where little is known about the individuals making up the population beyond

their locations. Here prediction methods typically allow for clustering in sample responses by

assuming models with random cluster effects. The extension of the quantile modelling idea to

this case needs to be investigated. Recent work on small area estimation based on M-quantile

regression models (Chambers and Tzavidis, 2005) is an example of how this might work.

Another area of current research in finite population estimation is the use of nonparametric

population models in estimation. See for example Dorfman (1992), Chambers, Dorfman and

Wehrly (1993) and Opsomer and Breidt (2000). Here quantile-type modelling is easily

applied, since most non-parametric methods of estimation are defined by solution of an

estimating equation and so are easily modified to provide M-quantile analogues. Since much

of this research has close links with the use of calibrated weights in survey estimation

(Deville and Sarndal, 1992; Chambers, 1996), this suggests that one might want to investigate

the links between the calibration idea and prediction interval estimation based on M-quantile

regression.
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The most pressing area for further research, however, concerns specification of the “right”

value of q to use when constructing an M-quantile interval. In this paper we make two

pragmatic suggestions, both based on normal theory arguments. These worked well in our

simulations, but a more rigorous approach to choice of this value is needed. Confidence

intervals have the advantage that in large samples the central limit theorem allows

specification of (nominal) coverage to be separated from specification of sample size and

population variability. This separation does not exist for q. It is true that as population

variability increases, quantiles generally “spread out” and so quantile-based intervals become

wider. Consequently a fixed q MQ-interval will adapt to changes in population variability,

provided these are reflected in changes in population quantiles. However, there is no natural

mechanism for it to adapt to changes in sample size. In fact, since M-quantile regression has

the same asymptotic behaviour as standard robust regression (Breckling and Chambers,

1988), these lines will, under the usual conditions, converge to the underlying population M-

quantile lines, so their asymptotic coverage probability for fixed q < 0.5 is one. This may or

may not be regarded as a good thing. What it does mean is that as n increases MQ-intervals

will be wider than confidence intervals.
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Appendix 1 Calculation of monotone M-quantile regression lines

Given a sample of n values of Y and X drawn from some joint distribution, the coefficients

arreg
(q) , brreg

(q)  of a linear model for the q th
 M-quantile of the corresponding conditional

distribution of Y given X are obtained by using iteratively weighted least squares to solve the

normal equations

φq (yk − arreg
(q) − brreg

(q) xk )
1

xk

⎛
⎝⎜

⎞
⎠⎟k=1

n

∑ =
0

0

⎛
⎝⎜

⎞
⎠⎟

(A1)

where φq (t) = qψ (s−1t)I(t > 0) + (1− q)ψ (s−1t)I(t ≤ 0)  and s is a robust estimate of the scale

of the residuals. In this paper we always define ψ  as the Huber Proposal 2 influence function.

Typically, M-quantile lines defined by (A1) are fitted to a grid (qk) of quantile coefficients

spanning (0,1). However, there is no guarantee that these lines are monotone. That is, for

qk < qj  on this grid, there is no guarantee that (arreg
(qk ) + brreg

(qk )x) < (arreg
(qj ) + brreg

(qj )x)  over any

particular range of X values of interest. We therefore impose monotonicity ex-post relative to

the fit at q = 0.5. That is, after estimating the coefficients arreg
(q) , brreg

(q)  on this grid, we

sequentially “nudge down” lines corresponding to decreasing values of q < 0.5 and “nudge

up” lines corresponding to increasing values of q > 0.5 in order to ensure that the final M-

quantile lines defined by the grid are monotone over the range (xmin , xmax )  of X -values of

interest. This is done in a quite straightforward way by changing either the starting point or

ending point of the line defined by the smaller (larger) value of q so that it is smaller (larger)

than the corresponding point of the line defined by the larger (smaller) value of q. Figure 4

illustrates this procedure. Note that a consequence of this procedure is that the intercept and

slope of any individual M-quantile line within the grid depends on the set of q-values that

make up the grid. We use a default grid defined by q = 0.05, 0.1, 0.15, 0.2, 0.25,0.75, 0.8,

0.85, 0.9, 0.95.

Figure 4 Modification to M-quantile lines defined by q1 < q2 ≤ 0.5 to ensure monotonicity.

Here q1 line crosses q2 line in the range of X-values of interest.

q1 line

q2 line

new q1 line



20

Appendix 2 Estimating σ1  and σ 2

Estimates of σ1  and σ 2  are needed to compute the normal theory-based q value (5). In order

to obtain these estimates we fitted a weighted linear model to the logarithms of estimates of

scale for groups within s1 and extrapolated this to provide an estimate of σ 2 . The steps in the

procedure are set out below.

1. The range of X values across the entire sample is split into g equal width groups.

2. A zero-centred MAD estimate of scale is calculated for each group using the residuals

from the robust regression fit of Y on X corresponding to the s1 units in each group.

3. Logarithms of these group-level scale estimates are regressed against the average

values of X for the groups, using weights equal to the s2 count in each group. This fit

is used to compute scale values for all groups.

4. Estimates of σ1  and σ 2  are calculated as averages of these group specific scale

values, weighted by the number of s1  and s2  units in each group respectively.


