R R S CHALLENGER

CRUISES 5/78 Leg 1 : 22 March - 4 April 1978
8/78 Leg 2 : 12 May - 24 May 1978

Celtic Sea Observation Programme

CRUISE REPORT No 72

1978
INSTITUTE OF OCEANOGRAPHIC SCIENCES

Wormley, Godalming,
Surrey, GU8 5UB.
(0428 - 79 - 4141)

(Director: Dr. A.S. Laughton)

Bidston Observatory,
Birkenhead,
Merseyside, L43 7RA.
(051 - 653 - 8633)

(Crossway, Taunton,
Somerset, TA1 2DW.
(0823 - 86211)

(Assistant Director: Dr. D.E. Cartwright)
(Assistant Director: M.J. Tucker)

On citing this report in a bibliography the reference should be followed by the words UNPUBLISHED MANUSCRIPT.
R R S CHALLENGER

CRUISES 5/78 Leg 1 : 22 March - 4 April 1978
8/78 Leg 2 : 12 May - 24 May 1978

Celtic Sea Observation Programme

CRUISE REPORT No 72

1978

Institute of Oceanographic Sciences
Bidston Observatory
Birkenhead
Merseyside L43 7RA
CONTENTS

Duration .. 1
Scientific staff 1
Ship's Officers 2
Objectives of cruise 3
Narrative - Leg 1 4
 - Leg 2 ... 6
Station Report - Leg 1 11
 - Leg 2 ... 20
Equipment losses 32
Comments on ship 33
Acknowledgements 33

Tables & Diagrams
Table 1 - Nominal station positions and measured depth 34
Table 2 - List of CTD profiles and water bottle stations 35
Table 3 - list of equipment used 37
Abbreviations 39
Figures
NOTE: All times are in GMT.

DURATION

Deployment leg - sailed from Barry 0730 22 March 1978
(5/78) arrived at Barry 0630 4 April 1978

Recovery leg - sailed from Barry 0900 12 May 1978
(8/78) arrived at Barry 1930 24 May 1978

SCIENTIFIC STAFF

Leg 1
A.D. Banaszek
J. Casson
D. Flatt
P. Foden
I.D. James
A.G. Kerr
D.L. Leighton
R.I.R. Palin
D.T. Pugh
R. Spencer
K.R. Thompson

Leg 2
G.A. Alcock
J. Bolton
D. Flatt
P. Foden
A.J. Harrison
M.J. Howarth
I.D. James
A.G. Kerr
D.L. Leighton
R.I.R. Palin
K. Taylor
J. Wolf

(Principal scientist)
<table>
<thead>
<tr>
<th>Leg 1</th>
<th>Name</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G. Long</td>
<td>Master</td>
</tr>
<tr>
<td></td>
<td>P. Coombs</td>
<td>Chief Officer</td>
</tr>
<tr>
<td></td>
<td>S. Jones</td>
<td>Second Officer</td>
</tr>
<tr>
<td></td>
<td>K. George</td>
<td>Third Officer</td>
</tr>
<tr>
<td></td>
<td>R. Hagley</td>
<td>Extra Third Officer</td>
</tr>
<tr>
<td></td>
<td>P. Stone</td>
<td>Chief Engineer</td>
</tr>
<tr>
<td></td>
<td>J. Jack</td>
<td>Second Engineer</td>
</tr>
<tr>
<td></td>
<td>J. Richardson</td>
<td>Third Engineer</td>
</tr>
<tr>
<td></td>
<td>D. Hornsby</td>
<td>Fourth Engineer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recovery leg</th>
<th>Name</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. Maw</td>
<td>Master</td>
</tr>
<tr>
<td></td>
<td>P. Coombs</td>
<td>Chief Officer</td>
</tr>
<tr>
<td></td>
<td>S. Jones</td>
<td>Second Officer</td>
</tr>
<tr>
<td></td>
<td>P. Pepler</td>
<td>Third Officer</td>
</tr>
<tr>
<td></td>
<td>P. Stone</td>
<td>Chief Engineer</td>
</tr>
<tr>
<td></td>
<td>I. McGill</td>
<td>Second Engineer</td>
</tr>
<tr>
<td></td>
<td>J. O'Keeffe</td>
<td>Third Engineer</td>
</tr>
<tr>
<td></td>
<td>J. Landry</td>
<td>Fourth Engineer</td>
</tr>
</tbody>
</table>
SUMMARY OF THE SCIENTIFIC OBJECTIVES OF THE CRUISE

The programme consisted of two cruises, the first to deploy tide gauges, current meters and thermistor chains in a pattern within the Celtic Sea, with an extension over the edge of the continental shelf, and the second to recover the equipment after a recording interval of some 50 days. Although the data is to be used for many purposes, the experiment was specifically designed to study:-

A. The coherence of non-tidal coastal water level changes around the Celtic Sea over a year, relating level changes to changes in the weather and to the water density. Also, the relationship between these coastal water levels and off-shore currents.

B. The details of tidal propagation from the deep Atlantic through the Celtic Sea, and in particular the region of anomalous tidal ageing and of the anomalous S_2/M_2 current amplitude ratio.

C. Internal tides near the continental margin (Station I)

D. Thermocline development (March-May is the critical time for establishing the Summer thermocline)

E. Fluxes of mass, momentum, energy, salt and heat into and through the Celtic Sea.
NARRATIVE, LEG 1

It was planned to deploy equipment at ten stations, as shown in Figure 1. Throughout the cruise, however, continuing heavy seas and bad weather made work difficult and resulted in many delays. Eventually equipment was deployed at all except Station K.

R.R.S. Challenger sailed from Barry at 0730 on Wednesday, 22 March, 1978. Following tests on the SIMRAD logging equipment course was set for Station A. The CTD pump was put outboard at 1100. Because of worsening weather course was altered for shelter in Lundy Roads. Thursday, 23 March, was spent behind Lundy in winds up to 50 kts. Challenger sailed from Lundy at 1300 on Friday 24 March and rigs were deployed at Station A during the afternoon. The current meter rig was found to have snagged the ship on first laying and it was necessary to recover and check the instruments before relaying. Rigs were deployed at Station B early on Saturday 25 March and, in worsening weather, rigs were laid at C during the afternoon. Challenger then returned to Lundy for shelter, where she remained until sailing for Station D at 1600 on Sunday 26 March.

On reaching Station D at first light on Monday 27 March conditions were too bad for rig deployment. Periodic CTD casts were made throughout the day while hove to, to observe the combined effects of strong insolation (measured) and strong winds on stratification. The rig at D was laid at first light on Tuesday 28 March and course was set for Station E. At E the sea was too rough for work and so Challenger hove to throughout Wednesday 29 March. The rig at E was laid at first light on Thursday 30 March and two rigs were laid at F during the afternoon, the tide gauge rig having the cruciform frame as ballast. Rigs at G were deployed at first light on Friday, 31 March.
Course was then set directly to Station I as this was given higher priority than H.

During the night of Saturday 1 April conditions again deteriorated to the extent that it became necessary to turn and set course back towards land and shelter. Fortunately, conditions improved slowly during the morning and deployment at H was possible during the afternoon; to make deployment easier, the current meter/thermistor chain rig was changed from a U-shaped mooring to a pop-up mooring. Course was again set for Station I as the weather continued to improve. Following a bathymetric survey, a suitable depth was found for working. Acoustic tests were made through the night on the deep tide gauge. The current meter rig was laid without difficulty before dawn. However, because the deep STD system was broken it was necessary to make two water bottle casts to determine the temperature/salinity profiles to 2000m. Following modifications as a result of the earlier tests the deep tide gauge was deployed at 1100 on Sunday 2 April.

Because of the time lost due to bad weather, it was not possible to proceed to Station K. Instead course was set for Barry. The CTD continuous surface sampler pump failed during the night of Monday 3 April. A final CTD cast was made at 1215 in calm conditions.

Challenger arrived in Barry at 0630 on Tuesday 4 April. Figure 2 shows approximate cruise tracks for this deployment leg.
R.R.S. Challenger sailed from Barry at 0900 on **Friday 12 May 1978** to recover 16 moorings which had been deployed previously on cruise 5/78, (See Fig. 1) and to carry out a CTD and surface water sampling survey. (See Table 2.)

With the ship clear of the harbour entrance the overside pump was installed and monitoring of surface water temperature and conductivity started at 1126 hours with a sampling interval of 3 minutes. A course was set for Station A which was eventually occupied at 1810 to find the surface buoy and pellet floats on position (see Fig. 4). Recovery started at 1845 and was complete by 1919 without difficulty. The ship then moved to the current meter/tide gauge location and the surface buoy was found on position. Recovery started at 1927 but when the surface buoy anchor was brought on board it was found that the ground line to the CM/TG had been detached at the anchor and was missing (see Fig. 5). The remaining shackles at this point had all been stripped of their seizing wire and were only hand-tight. An acoustic search of the area made no contact with the pinger on the mooring so the ship left station A at 2330 after carrying out CTD profile No. 21 and proceeded to station B which was eventually occupied at 0740 the following morning, **Saturday 13 May**. The current meter/tide gauge mooring was located with the surface buoy and pellet floats on position so recovery started at 0826 but again when the surface buoy anchor was brought on board the ground line was not attached. However on this occasion the pellets floats at the CM/TG end of the mooring could be grappled and so the recovery was successfully completed by 0906. When the ship moved to the lay position of the current meter mooring nothing was sighted, but the
acoustic pinger on the mooring was then located about 1 mile off position.

Dragging started at 0938 and by 1115 the mooring was successfully recovered including the sunken surface buoy. CTD profile no. 22 completed the work at this station and the ship left at 1120 heading for station C and on route CTD profile no. 23 was taken.

When station C was occupied at 1500 the tide gauge/thermistor mooring was located on position, recovery started at once and was successfully completed by 1600 with all the equipment in good condition. CTD profile no. 24 was taken, then the pop-up current meter mooring at this site released and subsequently recovered to find the top meter tangled in the meter wire. With the work completed at station C the ship left at 1750 heading for station E and taking CTD profiles Nos. 25, 26 and 27 along the way. The following morning, Sunday 14 May at 0615, station E was occupied and the tide gauge/current meter mooring sighted on position. Recovery started immediately and was completed without difficulty at 0655 except that the top current meter was again tangled in the meter wire. CTD profile no. 28 was carried out at 0800 then the ship left the site heading for station F taking CTD profiles Nos. 29, 30 and 31 on route. Station F was occupied at 1410 and the thermistor mooring sighted on position. CTD profile no. 32 was carried out and then recovery of the mooring was carried out without difficulty and eventually completed at 1515. A second CTD profile, No. 33 was then taken at 1615 prior to deploying an experimental mooring which was completed without difficulty at 1650. The pop-up current meter/tide gauge mooring at this site was then located by means of its command pinger but all attempts to operate its release pinger failed.
At 1900 an attempt was made to drag the mooring but the drag caught on something first and the Gifford grapnel was lost. Transmission of the release signal continued thoughout the night and at 0110 the following morning, **Monday 15 May** the release finally operated and the mooring surfaced. Recovery got underway at first light and was successfully completed at 0630 when the ship left station F heading for station D.

At station D, which was occupied at 1155, there was no sign of the surface buoy making the tide gauge/current meter mooring (the sub-surface buoy and two current meters from this site had been recovered by a fisherman during April). An acoustic search using the PDR fish and dragging across the lay position failed to make contact with the mooring so the ship left station D heading for station G at 2000.

On **Tuesday 16 May** at 0740 in calm sea conditions station G was occupied and the pop-up TG pinger located. CTD profile no. 34 was taken then the TG released from the sea bed and recovered successfully at 0850. The pop-up current meter/thermistor mooring was also located and after release was recovered satisfactorily in good condition at 0942. The ship then left the site and headed for station H which was eventually occupied at 1515 and the pop-up TG recovered without difficulty at 1645. CTD profile no. 35 was carried out and then attempts were made to recover the pop-up current meter/thermistor mooring which had been located by its pinger, but after several operations of the release sequence the mooring failed to surface. Attempts were made to drag for the mooring but when no contact was made the pinger was switched off and the ship left the site heading for station I.
On the approach to the continental edge bathymetric recording started and continued throughout the deep water passage. At 0600 on Wednesday 17 May station I was occupied and a deep CTD profile no. 37 was carried out in 3800m (uncorrected) of water which was followed by a shallow CTD profile no. 38 to 300m depth. The pop-up TG at this site was released and recovered at 1104 followed by the deep pop-up current meter mooring which was recovered complete by 1547. A bathymetric survey of the site was carried out and also some of the scrap mooring wires were dumped at Austell Spur. The results of this and the survey on the previous leg are charted in Figure 11. The ship left station I at 1930 to start a CTD section through station H and carrying out profiles nos. 39 to 44 on route.

At 0550 on Thursday 18 May station H was re-occupied in a final attempt to recover the missing current meter mooring but after 12 hrs of dragging the mooring was abandoned and with the completion of CTD profile no. 45 the ship left the site and headed for station F via station G continuing the CTD section with profiles nos. 46 to 53 on route. Station F was re-occupied at 1040 on Friday 19 May to find the experimental mooring on position and in good condition, so the recovery was carried out at 1237 in calm sea conditions. The ship then left station F and continued the CTD section through station C to station A taking profiles Nos. 54 to 61 on route. When the ship re-occupied station A at 0130 on Saturday 20 May an acoustic box search was started to try to locate the missing CM/TG mooring but after 15 hrs when no contact had been made the search was called off and CTD profile no. 62 was taken before the ship left station A heading for station D which was eventually re-occupied at 2314 in thick fog. An acoustics box search started at once and quickly located the pinger on the tide gauge. Marker pellets were deployed to fix the
position which was about half a mile from the lay position and then the ship stood off until daylight the following morning, Sunday 21 May. Due to thick fog dragging was delayed until 1215. The mooring wires on the rig were grappled and recovered, but the remaining current meter and the tide gauge were not attached and evidence showed that they had been broken from the mooring and so remained on the sea bed. Dragging for the TG continued for the rest of the day using the TG pinger as a beacon but was ended at 2030 without success. CTD profile no. 66 was taken then, the ship carried out two further CTD profiles Nos. 67 and 68 on a line towards station C before returning to station D at 0700 the following morning, Monday 22 May, to continue dragging. Several techniques were used throughout the day in an attempt to grapple the TG frame but all failed, so reluctantly, it was abandoned and the ship left station D at 2334 heading for station A. Similar dragging techniques were used at station A throughout Tuesday 23 May but no positive contact with the CM/TG was made.

On Wednesday 24 May an acoustic search was carried out during the morning but nothing was found so this mooring was also abandoned when the ship left the site at 1128. Surface monitoring was ended at this time and the overside pump and PDR fish were brought inboard in preparation for docking at Barry which took place at 1930 the same day.
STATION REPORT. LEG 1 - DEPLOYMENT

Times in GMT throughout. Decca coordinates are for Chain 1B - S.W. British in sequence Red, Green, Purple.

Station A

Designated position: (51°16'N, 05°15'W)
Depth: 74m

Tide gauge and current meter (Figure 5)
Surface buoy: SELCO No. 10

Gauge position: (---, H43.1, H62.8)
Anchor position: (---, H43.1, H.62.8)
 Deployment started 1515) 24.3.78
 Deployment completed 1543)

Meters: CM/TG No. 2 (1507)

Current meter rig, second deployment. (first deployment recovered - see narrative) (Figure 4)

Surface buoy: SELCO No. 8
Subsurface buoy: 32" sphere, No. 7

Subsurface buoy position: (---, H45.20, H63.59)
Surface buoy profile: (---, H45.73, H.63.53)
 Deployment started 1833) 24.3.78
 Deployment finished 1849)

Meters: 2573 (35m)
Station B

Designated position: (51°45'N, 06°38'W)

Depth: 74m

Tide gauge and current meter (Figure 5)

Surface buoy: SELCO No. 7

Gauge position: (J23.94, B30.68, H76.08)

Anchor position: (J23.89, B30.07, H76.12)

Deployment started: 0735) 25.3.78
Deployment finished: 0802)

Meters: CM/TG No. 1 (1747)

Current meter rig (Figure 4)

Surface buoy: SELCO No. 3

Subsurface buoy: 32" sphere, No. 11

Subsurface buoy position: (J23.88, B30.95, H76.63)

Surface buoy position: (J23.90, B30.16, H76.54)

Deployment started: 0900) 25.3.78
Deployment finished: 0918)

Meters: 1139 (20m), 1508 (40m)
STATION C

Designated position: (51°21'N, 06°30'W)

Depth: 94m

Tide gauge and thermistor chain (Figure 6)

Surface buoy: SELCO No 11

Subsurface buoy: 32" sphere, No 3

Subsurface buoy position: (---, B41.75, G72.20)

Surface buoy position: (---, B41.16, G71.78)

Deployment started 1340)

Deployment finished 1438) 25.3.78

Meters: TG2A 64, Thermistor chain No 212, Logger No. 178 - first sample timed for 1230 4.4.78 (25m - 75m)

Pop-up current meter rig (Figure 10)

Subsurface buoy 32" sphere, No. 2

Anchor position: (---, B44.86, G69.47)

Deployment started 1543)

Deployment finished 1551) 25.3.78

Meters: 1506 (15m), 3277 (40m), 567 (60m)
STATION D

Designated position : (50°35'N, 06°10'W)
Depth : 94m

Tide gauge and current meters (Figure 6)

- Surface buoy : SELCO No 1
- Subsurface buoy : 32" sphere No 8

Subsurface buoy position : (A9.22, C45.36, E57.82)
Surface buoy position : (A9.28, C45.12, E58.16)
 - Deployment started : 0611
 - Deployment finished : 0650

Meters : Marconi logger no. 2; 2969 (15m), 568 (40m), 1750 (65m)
STATION E

Designated position : (51°26'N, 07°55'W)
Depth : 87m

Tide gauge and current meters (Figure 6)

Surface buoy : SELCO No 13
Subsurface buoy : 32" sphere No 4
Subsurface buoy position : (A2.96, D41.94, G66.50)
Surface buoy position : (A3.94, D42.18, G66.10)
 Deployment started : 0605) 30.3.78
 Deployment finished : 0633

Meters : Marconi logger No 4; 2971 (15m), 1002 (40m), 1867 (60m)
STATION F

Designated position : (50°33'N, 7°26'W)
Depth : 111m

Pop-up tide gauge and current meters (Figure 9)

Subsurface buoy : 32" sphere No 1, cruciform ballast
Anchor position : (A17.03, F41.14, E61.93)
 Deployment started : 1320)
) 30.3.78
 Deployment finished : 1340)

Meters : Experimental strain gauge and Aanderaa 280 : 2576 (25m), 2757 (65m)

Thermistor chain (Figure 8)

Surface buoy : SELCO No 12
Subsurface buoy : 32" sphere No 9

Subsurface buoy position : (A17.57, F42.39, E61.07)
Surface buoy position : (A17.62, F42.51, E61.01)
 Deployment started : 1421)
) 30.3.78
 Deployment finished : 1445)

Meters : Thermistor chain No. 260, logger No. 245 - first sample timed for 1210 9.4.78 (45m - 95m)
STATION G

Designated position : (49°38'N, 08°30'W)
Depth : 144m

Pop-up current meters and thermistor chain rig (Figure 10)

Subsurface buoy : 32" sphere No 10
Anchor position : (B23.24, G45.42, D50.52)
 Deployment started : 0614) 31.3.78
 Deployment finished: 0622)

Meters : 1865 (30m), 2970 (104m); Thermistor chain No 220, logger No 206 - first sample timed for 1800 9.4.78, (52m - 102m).

Pop-up tide gauge

Position when gauge reaches sea floor : (B22.89, G45.48, D50.71)
 Deployment started : 0540) 31.3.78
 Deployment finished: 0551

Meter : Mark I, No 9.
STATION H

Designated position : (48°55'N, 09°19'W)

Depth : 164m

Pop-up current meters and thermistor chain rig (Figure 10)

Subsurface buoy : 40" sphere No 13

Anchor positions : (C20.06, G43.52, C62.32)

Deployment started : 1257) 1.4.78

Deployment finished : 1308)

Meters : 2574 (29m), 1746 (119m) ; Thermistor chain No 334, logger No 294 - no time delay, (43m - 118m)

Pop-up tide gauge

Position when gauge reaches sea floor : (C19.99, G42.55, C62.50) (SAT NAV. 48°54.8'N 09°22.3'W)

Deployment started : 1313) 1.4.78

Deployment finished : 1323)

Meter : Mark I, No 14
STATION I

Designated approximate position: 47°45'N 10°32'W, 3850m true depth

Pop-up current meter rig (Figure 10)

Subsurface buoy: 48" sphere no 16
Anchor position: (D23.23, G35.03, B74.77) (SAT NAV 47°48.1'N, 10°18.3'W)
Actual depth: 3905m uncorrected (3913m corrected)
Deployment started: 0400)
Deployment finished: 0547)
Meters: 3261 (260m), 3260 (760m), 3259 (1260m), 3258 (1960m), 3257 (2660m), 1749 (3360m)

Pop-up tide gauge

Position when gauge released: (D21.6, G35.5, B75.8) (SAT NAV 47°51.1'N, 10°22.6'W)
Depth: 3855m uncorrected (3862m corrected)
Gauge released: 1058 2.4.78

Meter: Deep sea tide gauge no 17 (Mk III with Mk IV inside)
STATION REPORT, LEG 2 - RECOVERY

Times given in GMT throughout

Decca coordinates for chain 1B - SW British,
in sequence Red, Green, Purple.

STATION A

Tide gauge and current meter

Current meter No 1507
Pressure sensor, Digiquartz S/No 275
Command pinger No 1

Deployed position (A1.00, H43.1, H62.8)

Only the surface buoy was recovered from this position.

Current meter rig

Current meter No 2573
Command pinger No 4

Deployment position (A0.88, H45.20, H63.59)
Recovery position (A1.05, H45.64, H63.62)
Recovery started at 1845 12 May 78
Surface buoy on deck 1855
Surface buoy anchor on deck 1905
CM on deck/acoustics 1916
Sat surface buoy on deck and recovery complete 1919

All equipment recovered in good condition and operating except for a bent CM spindle.

CTD profile no 21 carried out at 2115 12 May 1978
STATION B

Tide gauge and current meter

Rig No 1

Current meter No 1747

Pressure sensor, Digiquartz No 280

Command pinger No 2

Deployment position (J23.94, B30.68, H76.08)

Recovery position (- , B30.01, H76.12)

Recovery started at 0826 13 May 78

Surface buoy on deck 0833

Surface buoy anchor on deck 0840

Pellets grappled 0855

CM/TG on deck 0900

Ground line recovered and recovery complete 0906

All equipment recovered in good condition and operating but the ground line had been detached from the surface buoy anchor.

Current meter rig

Current meter No 1508 top

1139 bottom

Command pinger No 5

Deployed position (J23.88, B30.95, H76.63)

Recovery position (J23.99, B30.16, H76.14)

Rig recovered by dragging

Recovery started at 0938 13 May 78

Meter wire caught by grapnel 1018

Bottom CM on deck 1023

Top CM on deck and subsurface buoy 1025
surface buoy anchor on deck 1106
sunken surface buoy on deck and recovery complete 1110

All equipment in good condition and operating except for wrecked surface buoy.

CTD profile No 22 carried out at 1115 13 May 78
STATION C

Tide gauge and thermistor chain rig

Aanderaa TG-2A No 64
Thermistor logger No 178, Chain No 212
Command pinger No 3

Deployment position (AO.55, B41.75, G72.20)
Recovery position (AO.68, B41.15, G72.03)
Recovery started at 1516 13 May 78
Surface buoy on deck 1523
Surface buoy anchor on deck 1531
TG on deck 1538
Subsurface buoy anchor on deck 1556
Subsurface buoy and thermistor chain on deck recovery complete 1600

All equipment recovered in good condition

Pop-up current meter rig

Current meters No 567 Top
3277 Mid
1506 Bottom

Release pinger No CR221

Deployment position (AO.84, B44.86, G69.47)
Recovery position (- , B44.83, G69.51)
Recovery started at 1720 13 May 78
Subsurface buoy on deck 1738
3 current meters on deck and recovery complete 1745

All equipment recovered in good condition except for top current meter which was tangled with the meter wire.

CTD profile No 24 carried out at 1655 13 May 78
STATION D

Mk II Off-shore tide gauge and current meter rig with 3 meters

Logger 002 Sensor 1/5 VIB
 2/6 S.G.
 2/11 S.G. (Exp)
 2/12 S.G. (Exp)
 6/2 DIG

Command pinger No CB220

Current meters No 1750 Top
 568 Mid
 2969 Bottom

Deployment position (A9.22, C45.36, E57.82)
Pinger located at (A9.22, C45.90, E59.00)

at 2342 on 20 May 1978 but no instruments were recovered from
this station during the cruise. A fisherman recovered the
sub-surface buoy and two current meters Nos. 1750 and 568
during April at position (A6.0, B46.10, E69.54)

The TG was recovered in good condition and complete at 0225
on 13 September 78 by Naval divers from the M.V. Seaforth
Clansman on charter to the Royal Navy.

CTD profiles No 66 carried out at 2104 21 May 78.
STATION E

Mk II off-shore tide gauge and current meter rig with 3 meters

Logger 004 Sensor: 1/4 VIB
 2/7 S.G.
 6/1 DIG

Command pinger No CB 231

Current meters No 1867 Top
 1002 Mid
 2971 Bottom

Deployment position (A2.96, D41.94, G66.50)
Recovery position (A3.19, D40.18, G66.40)
Recovery started at 0625 14 May 1978
Surface buoy on deck 0630
Surface buoy and anchor on deck 0635
Tide gauge on deck 0643
Sub-surface buoy on deck 0649
3 meters and sub-surface buoy on deck, recovery complete 0655

All equipment in good condition but top meter tangled in meter wire.

CTD profile No 28 carried out at 0700 14 May 78
STATION F

a) Thermistor chain rig

b) Pop-up current meter/tide gauge rig with 2 meters

c) Experimental bottom mounted current meter and tide gauge

Thermistor chain rig

Thermistor logger No 245

Chain No 260

Command pinger No 6

Deployment position (A17.57, F42.39, E61.07)

Recovery position (A17.80, F42.79, E61.04)

Recovery started at 1444 14 May 78

Surface buoy on deck 1447

Surface buoy anchor on deck 1454

Sub-surface buoy anchor on deck 1508

Thermistor chain on deck 1512

Sub-surface buoy on deck and recovery complete 1515

Pop-up current meter/tide gauge rig

Current meter No 2575 Top

2576 Bottom

Release pinger No CR 223

Aanderaa SG/TG No 280

Aanderaa SG/TG No 281

Deployment position A17.03, F41.14, E61.93

Recovery position A16.81, F41.25, E62.10
Release operated 0105 15 May 78
Sub-surface buoy on sea surface 0110
Recovery started at 0610
Sub-surface buoy on deck 0620
2 current meters on deck 0627
Recovery complete 0628

Experimental bottom mounted current meter and tide gauge

Current meter No EX 302
EXP Aanderaa SG/TG No 282

Deployment position (A17.86, P42.91, E60.86)
Deployment depth 110m
Deployment started 1626 14 May 78
Deployment complete 1650
Recovery started at 1200 19 May 78
Surface buoy on deck 1210
Surface buoy anchor on deck 1216
CM & TG on deck and 1230
Recovery complete 1233

All the equipment recovered from this station was in good condition and operational

CTD profile No 32 carried out at 1417 14 May 78
" No 33 " " 1615
STATION G

Mk I Pop-up tide gauge

TG No 9 in ALU sphere with SG pressure sensor No 1/19
"" sensor No 1/21
and platinum resistance temperature sensor No 1/T9

Deployment position (B22.89, G45.48, D50.71)
Recovery position (B22.76, G45.38, D50.45)
Release operated 0830 16 May 78
Recovery started 0845
Recovery completed at 085

Pop-up current meter/thermistor chain rig

Current meter No 2970 Top

1865 Bottom

Thermistor logger No 206, chain No 220
Release pinger No CR 227

Deployment position (B23.24, G45.42, D50.52)
Recovery position (B22.95, - D50.44)
Release operated 0903 16 May 78
Sub-surface buoy on surface 0914
Recovery started at 0926
Top CM & thermistor logger on deck 0937
Bottom CM & Pinger on deck & recovery complete 0942

All the equipment recovered from this station was in good condition and operational but the pellet line attached to the subsurface buoy on the CM rig was tangled with the meter wire below the subsurface buoy but not to the CM rotor.

CTD profile No 34 carried out at 0805 16 May 78
STATION H

Mk I Pop-up tide gauge

TG No 14 in ALU sphere with SG pressure sensors No 1/13

" " " No 1/22
and platinum resistance temperature sensor No 1/T8

Deployment position (C19.99, G42.55, C62.50)
Recovery position (C20.00, - C62.39)
Release operated 1623 16 May 78
Recovery started 1635
Recovery complete 1645

The TG was in good condition and operational.

Pop-up current meter/thermistor chain rig

Current meter No 1746 Top
2574 Bottom

Thermistor logger No 294, chain 334

Release pinger No CR 230

Deployment position (C20.06, G43.52, C62.32)

Pinger located at the above position at 1717 16 May 78
but nothing was recovered during the cruise. A French
fisherman later recovered the floating subsurface buoy
and the top current meter.

CTD profile No 35 carried out 1652 16 May 78
STATION I

Pop-up tide gauge

TG No 17 in ALU sphere with SG pressure sensor No D1/78

" " " D2/78

" " " D3/78

DIG " " 2262

Platinum resistance temperature sensor 2/T10

Deployment position (D21.6, G35.5, B75.8)

Recovery position (D21.67, G35.38, B75.53)

(SAT NAV 47°49.40'N, 10°20.46'W)

Release operated 0946 17 May 78

Recovery started 1058

Recovery complete 1104

Pop-up current meter rig

Current meter No 1749 Top

3257

3258

3259

3260

3261 Bottom

Release pinger No CR 228 and CB 235C

Deployment position (D23.23, G35.03, B74.77)

Recovery position (D23.11, G34.91, B74.43)

(SAT NAV 47°46.95'N, 10°19.10'W)

Release operated 1348 17 May 78

Sub-surface buoy on surface 1354

Recovery started 1400

Recovery complete 1547

All the equipment was recovered in good condition and operational.
DEEP CTD profiles No 37 at 0700 17 May 1978
SHALLOW CTD profiles No 38 at 1020
SHALLOW CTD profiles No 39 at 1615
<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Make/Model</th>
<th>Station No.</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current meters</td>
<td>Aanderaa type RCM4</td>
<td>1507</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2574</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2969</td>
<td>D</td>
</tr>
<tr>
<td>Thermistor chains</td>
<td>Aanderaa type TR-1</td>
<td>294/334</td>
<td>H</td>
</tr>
<tr>
<td>Pressure sensor</td>
<td>Digiquartz</td>
<td>275</td>
<td>A</td>
</tr>
<tr>
<td>Acoustic command pinger</td>
<td></td>
<td>CR230</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP1</td>
<td>A</td>
</tr>
<tr>
<td>Surface buoy</td>
<td>Selco</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>
COMMENTS ON THE SHIP

During the difficult conditions of LEG 1 Challenger proved suitable for our work in all but the most extreme seas.

This was the first cruise on this ship since the deck winches had been modified to take mooring wires and shackles. Both winches worked well and control from the console was satisfactory. However, the lack of spooling gear meant that the wire had to be guided on by hand and this led to problems at times.

Challenger is well suited to deployment and recovery of the type of mooring used during manoeuvrability and control.

ACKNOWLEDGEMENT

We would like to thank the Masters, Officers and crew of the RRS Challenger for their cooperation and assistance during these cruises.

The role played by the MOD (Navy) and the SEAFORTH CLANSMAN in the recovery at station D is also gratefully acknowledged.
<table>
<thead>
<tr>
<th>Station</th>
<th>CM/TG</th>
<th>CM</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>57° 15.6'N</td>
<td>50° 14.3'N</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>51° 17.3'N</td>
<td>50° 7.0'W</td>
<td>74</td>
</tr>
<tr>
<td>B</td>
<td>51° 45'N</td>
<td>60° 39'W</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>51° 43.5'N</td>
<td>60° 37.8'W</td>
<td>74</td>
</tr>
<tr>
<td>C</td>
<td>51° 19'N</td>
<td>60° 33'W</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>51° 19.0'N</td>
<td>60° 34.8'W</td>
<td>94</td>
</tr>
<tr>
<td>D</td>
<td>50° 35.5'N</td>
<td>60° 8.1'W</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>51° 27.5'N</td>
<td>70° 50.4'W</td>
<td>87</td>
</tr>
<tr>
<td>E</td>
<td>51° 27.5'N</td>
<td>70° 50.4'W</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>50° 32.0'N</td>
<td>70° 28.7'W</td>
<td>111</td>
</tr>
<tr>
<td>F</td>
<td>49° 39'W</td>
<td>80° 30'W</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>49° 37.3'N</td>
<td>80° 35.5'W</td>
<td>111</td>
</tr>
<tr>
<td>G</td>
<td>49° 55'N</td>
<td>90° 15'W</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>49° 55'N</td>
<td>90° 15'W</td>
<td>111</td>
</tr>
<tr>
<td>H</td>
<td>47° 50'N</td>
<td>100° 21.5'W</td>
<td>3848</td>
</tr>
<tr>
<td></td>
<td>47° 47.2'N</td>
<td>100° 18.7'W</td>
<td>3897</td>
</tr>
</tbody>
</table>

Summary of Station positions and equipment deployed.
<table>
<thead>
<tr>
<th>PROFILE NUMBER</th>
<th>DATE</th>
<th>TIME STARTED</th>
<th>POSITION LATITUDE LONGITUDE</th>
<th>RIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24/3/78</td>
<td>19.30</td>
<td>N 51 17.6 W 5 18.1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>24/3/78</td>
<td>22.10</td>
<td>N 51 24.7 W 5 23.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25/3/78</td>
<td>1.50</td>
<td>N 51 35.1 W 5 46.8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25/3/78</td>
<td>5.20</td>
<td>N 51 59.8 W 6 44.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25/3/78</td>
<td>9.14</td>
<td>N 51 45.3 W 6 39.3</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>25/3/78</td>
<td>11.20</td>
<td>N 51 32.8 W 6 33.8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>26/3/78</td>
<td>21.35</td>
<td>N 50 55.5 W 5 16.3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>27/3/78</td>
<td>9.15</td>
<td>N 50 34.5 W 6 0.6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>27/3/78</td>
<td>12.50</td>
<td>N 50 25.9 W 6 27.9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>27/3/78</td>
<td>16.2</td>
<td>N 50 23.5 W 6 38.5</td>
<td>D</td>
</tr>
<tr>
<td>11</td>
<td>27/3/78</td>
<td>18.41</td>
<td>N 50 23.6 W 6 38.4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>28/3/78</td>
<td>7.10</td>
<td>N 50 35.5 W 6 10.4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>30/3/78</td>
<td>6.30</td>
<td>N 51 27.0 W 7 50.8</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>30/3/78</td>
<td>10.10</td>
<td>N 50 57.5 W 7 34.0</td>
<td>E</td>
</tr>
<tr>
<td>15</td>
<td>30/3/78</td>
<td>14.50</td>
<td>N 50 31.1 W 7 30.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>30/3/78</td>
<td>18.20</td>
<td>N 50 13.9 W 8 1.0</td>
<td>F</td>
</tr>
<tr>
<td>17</td>
<td>31/3/78</td>
<td>6.28</td>
<td>N 49 37.0 W 8 35.5</td>
<td>G</td>
</tr>
<tr>
<td>18</td>
<td>1/4/78</td>
<td>13.35</td>
<td>N 48 54.5 W 9 20.5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2/4/78</td>
<td>8.50</td>
<td>N 47 50.5 W 10 23.6</td>
<td>I</td>
</tr>
<tr>
<td>20</td>
<td>3/4/78</td>
<td>12.5</td>
<td>N 50 27.2 W 5 56.0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>12/5/78</td>
<td>20.57</td>
<td>N 51 16.7 W 5 15.5</td>
<td>A</td>
</tr>
<tr>
<td>22</td>
<td>13/5/78</td>
<td>11.10</td>
<td>N 51 44.7 W 6 37.4</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>13/5/78</td>
<td>13.16</td>
<td>N 51 30.0 W 6 33.3</td>
<td>B</td>
</tr>
<tr>
<td>24</td>
<td>13/5/78</td>
<td>16.54</td>
<td>N 51 20.7 W 6 35.0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>13/5/78</td>
<td>20.9</td>
<td>N 51 20.7 W 6 50.0</td>
<td>C</td>
</tr>
<tr>
<td>26</td>
<td>13/5/78</td>
<td>23.3</td>
<td>N 51 22.4 W 7 13.3</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>14/5/78</td>
<td>2.20</td>
<td>N 51 23.6 W 7 33.0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>14/5/78</td>
<td>6.55</td>
<td>N 51 25.4 W 7 48.0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>14/5/78</td>
<td>8.40</td>
<td>N 51 14.9 W 7 43.1</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>14/5/78</td>
<td>10.22</td>
<td>N 51 2.3 W 7 39.8</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>14/5/78</td>
<td>12.16</td>
<td>N 50 16.8 W 7 33.9</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>14/5/78</td>
<td>14.17</td>
<td>N 50 31.1 W 7 32.1</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>14/5/78</td>
<td>16.4</td>
<td>N 50 30.1 W 7 29.8</td>
<td>F</td>
</tr>
<tr>
<td>34</td>
<td>16/5/78</td>
<td>8.0</td>
<td>N 49 90.0 W 8 31.5</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>16/5/78</td>
<td>16.50</td>
<td>N 48 54.2 W 9 21.9</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>18/5/78</td>
<td>2.39</td>
<td>N 48 31.1 W 9 43.4</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>18/5/78</td>
<td>4.56</td>
<td>N 48 43.5 W 9 30.0</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>18/5/78</td>
<td>18.25</td>
<td>N 48 54.1 W 9 20.9</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>18/5/78</td>
<td>20.30</td>
<td>N 49 5.1 W 9 7.5</td>
<td>H</td>
</tr>
<tr>
<td>40</td>
<td>18/5/78</td>
<td>22.20</td>
<td>N 49 15.5 W 8 56.1</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>19/5/78</td>
<td>0.5</td>
<td>N 49 26.8 W 8 44.0</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>19/5/78</td>
<td>2.5</td>
<td>N 49 38.7 W 8 36.2</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>19/5/78</td>
<td>4.0</td>
<td>N 49 48.7 W 8 18.1</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>19/5/78</td>
<td>6.28</td>
<td>N 50 5.2 W 7 59.9</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>19/5/78</td>
<td>8.54</td>
<td>N 50 16.3 W 7 42.6</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>19/5/78</td>
<td>10.45</td>
<td>N 50 29.3 W 7 31.7</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>19/5/78</td>
<td>14.18</td>
<td>N 50 42.8 W 7 15.0</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>19/5/78</td>
<td>15.48</td>
<td>N 50 51.8 W 7 4.9</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>19/5/78</td>
<td>17.15</td>
<td>N 51 1.3 W 6 53.9</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>19/5/78</td>
<td>18.45</td>
<td>N 51 9.5 W 6 43.6</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>19/5/78</td>
<td>20.22</td>
<td>N 51 19.5 W 6 30.0</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>19/5/78</td>
<td>22.2</td>
<td>N 51 18.0 W 6 12.9</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>19/5/78</td>
<td>23.42</td>
<td>N 51 18.0 W 5 53.1</td>
<td>C</td>
</tr>
<tr>
<td>54</td>
<td>19/5/78</td>
<td>1.0</td>
<td>N 51 17.3 W 5 35.3</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>20/5/78</td>
<td>16.20</td>
<td>N 51 12.7 W 5 19.7</td>
<td>A</td>
</tr>
<tr>
<td>56</td>
<td>20/5/78</td>
<td>17.45</td>
<td>N 51 6.3 W 5 28.0</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>20/5/78</td>
<td>19.28</td>
<td>N 50 56.6 W 5 39.8</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>20/5/78</td>
<td>21.7</td>
<td>N 50 47.4 W 5 54.1</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>21/5/78</td>
<td>21.37</td>
<td>N 50 36.6 W 6 8.7</td>
<td>D</td>
</tr>
<tr>
<td>60</td>
<td>22/5/78</td>
<td>0.5</td>
<td>N 50 47.8 W 6 12.8</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>22/5/78</td>
<td>2.8</td>
<td>N 51 0.3 W 6 20.0</td>
<td></td>
</tr>
</tbody>
</table>
Table 2(b)

<table>
<thead>
<tr>
<th></th>
<th>1020</th>
<th>31.3.78</th>
<th>49°15'N</th>
<th>8°57'W</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0745</td>
<td>1.4.78</td>
<td>48°52'N</td>
<td>8°51'N</td>
</tr>
<tr>
<td>4</td>
<td>0910</td>
<td>2.4.78</td>
<td>47°52'N</td>
<td>10°25'W</td>
</tr>
<tr>
<td>5</td>
<td>0915</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water bottling

STATION F

CAST A Sample depths, 600m, 900m, 1200m, 1500m, 1800m

CAST B Sample depths 450m, 750m, 1050m
TABLE 3

List of Equipment Deployed

1. **Surface buoys**
 - SELCO No. 1, 3, 7, 10, 12, 13
 - (fitted with flashing light)
 - Manufactured by Selco, Oslo, Norway.

2. **Sub-surface buoys**
 - Hollow steel sphere
 - 32" diameter No. 1, 4, 7, 8, 9, 10, 11
 - 40" diameter No. 13
 - 48" diameter No. 16
 - Manufactured to IOS design
 - 175kg buoyancy

3. **Current Meters**
 - No. 567, 568, 1002, 1139, 1506, 1508, 1746, 1749, 1750, 1865, 1867, 2573, 2574, 2575, 2576, 2969, 2970, 2971, 3257, 3258, 3259, 3260, 3261, 3277.
 - Manufactured by Aanderaa, Bergen, Norway. Type RCM4.

4. **Thermistor Chain/Logger**
 - No. 212/178
 - 220/206
 - 260/245
 - 334/294
 - Manufactured by Aanderaa, Bergen, Norway. Type TR-1.

5. **Off-Shore tide gauges**
 a) **MkI Pop-up TG consisting of a data logger, acoustic release system, 2 pressure sensors and 1 temperature sensor**
 - Logger TYPE 1020
 - Manufactured by N.G.L.
 - Pressure transducer element
 - Manufactured by Bell & Howell, Basingstoke, UK.
 - Strain gauge
 - IOS, Bidston
 b) **MkII Moored TG consisting of a data logger with 3 or 5 pressure/temperature sensors**
 - IOS, Bidston
Logger 002, 004
Pressure Transducer elements
VIB (Vibratory wire)
S.G. (strain gauge)
Digiquartz Depth sensor (quartz crystal)
c) Mk III Pop-up TG consisting of a data logger, 4 pressure sensors and 1 temp. sensor
Mk III Pop-up TG consisting of a data logger, 4 pressure sensors and 1 temp. sensor
d) Moored TG incorporating Aanderaa Water Level recorder TG-2A S/No. 64
Logger Type 610
Pressure transducer elements
Strain gauge
Digiquartz (quartz crystal) S/No. 2262
Manufactured by Marconi Space & Defence
Manufactured by Sundstrand Data Control Washington USA
Manufactured by Bell & Howell Basingstoke, UK
Manufactured by Paroscientific Washington, USA
IOS Bidston
Manufactured by Aanderaa Instruments, Victoria Canada
Sea data Corporation Massachusetts, USA
Manufactured by Bell & Howell, Basingstoke, UK
Manufactured by Paroscientific Washington, USA Model 75K-002

6. Bottom mounted CM/TG
Moored CM/TG system consisting of a current meter, direction vane and pressure sensor
Current meter No 1507, 1747
Pressure sensor element Digiquartz (quartz crystal) No. 275, 280
Manufactured by Aanderaa Norway, Type RCM4
Manufactured by Paroscientific Washington, USA Model 2400A.

7. Acoustic Command Pinger
Pinger Nos. CP 1, 2, 3, 4, 5, 6 CB 220, CR 221, CR 223
CR 227, CR 228, CR 230 CB 231, CB 235C.
IOS Bidston/Wormley
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOS</td>
<td>Institute of Oceanographic Sciences</td>
</tr>
<tr>
<td>CM</td>
<td>Current meter</td>
</tr>
<tr>
<td>CM/TG</td>
<td>Current meter/tide gauge</td>
</tr>
<tr>
<td>TG</td>
<td>Tide gauge</td>
</tr>
<tr>
<td>S/S</td>
<td>Sub-surface buoy</td>
</tr>
<tr>
<td>T/C</td>
<td>Temperature/conductivity</td>
</tr>
<tr>
<td>CTD</td>
<td>Conductivity, Temperature, Depth</td>
</tr>
<tr>
<td>TC</td>
<td>Thermistor chain</td>
</tr>
</tbody>
</table>
CURRENT METER MOORING SYSTEM
INSTITUTE OF OCEANOGRAPHIC SCIENCES BIDSTON

PELLET FLOAT

FLASHING LIGHT

PILLAR BUOY

450 Kg BUOYANCY

BALLAST CHAIN

BUOY WIRE

GROUND WIRE

ANCHORS OF SCRAP CHAIN

FIGURE 4
BOTTOM MOUNTED CURRENT METER / TIDE GAUGE MOORING SYSTEM

INSTITUTE OF OCEANOGRAPHIC SCIENCES BIDSTON

PILLAR BUOY

450 Kg BUOYANCY

BALLAST CHAIN

3m OVERALL

12 mm WIRE ROPE

LARGE PELLET FLOATS

14 mm POLYPROPYLENE ROPE

TRAWL FLOAT

CURRENT METER TIDE GAUGE

3 x 68 Kg LEAD WEIGHTS

FIGURE 5
POP-UP CURRENT METER/TIDE GAUGE MOORING SYSTEM

INSTITUTE OF OCEANOGRAPHIC SCIENCES BIDSTON

FIGURE 9
POP-UP CURRENT METER MOORING SYSTEM

INSTITUTE OF OCEANOGRAPHIC SCIENCES BIDSTON

48" DIAMETER SUB-SURFACE BUOY

CURRENT METERS

-- RELEASE UNIT

ANCHOR OF SCRAP CHAIN

FIGURE 10
<table>
<thead>
<tr>
<th>CRUISE NO</th>
<th>DATE</th>
<th>REPORT NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>JUN = AUG 1963</td>
<td>1*</td>
</tr>
<tr>
<td>2</td>
<td>AUG = DEC 1963</td>
<td>2*</td>
</tr>
<tr>
<td>3</td>
<td>DEC 1963 = SEP 1964</td>
<td>3*</td>
</tr>
<tr>
<td>4</td>
<td>FEB = MAR 1965</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>54</td>
<td>JUN = AUG 1973</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>SEP = OCT 1973</td>
<td>5</td>
</tr>
<tr>
<td>56</td>
<td>OCT = NOV 1973</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>74/1+3</td>
<td>SEP = OCT 1975</td>
<td>33</td>
</tr>
</tbody>
</table>

* Reports 1 to 3 were published and distributed by the Royal Society following the International Indian Ocean Expedition.

** NIO CRI NATIONAL INSTITUTE OF OCEANOGRAPHY, CRUISE REPORT

*** IOS CRI INSTITUTE OF OCEANOGRAPHIC SCIENCES, CRUISE REPORT
<table>
<thead>
<tr>
<th>Cruise Date</th>
<th>Report No</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRS “Challenger”</td>
<td></td>
</tr>
<tr>
<td>Aug - Sep 1974</td>
<td>IOS CR 22</td>
</tr>
<tr>
<td>Mar - Apr 1976</td>
<td>IOS CR 47</td>
</tr>
<tr>
<td>RV “Edward Forbes”</td>
<td></td>
</tr>
<tr>
<td>Oct 1974</td>
<td>IOS CR 15 X</td>
</tr>
<tr>
<td>Jan - Feb 1975</td>
<td>IOS CR 19</td>
</tr>
<tr>
<td>Apr 1975</td>
<td>IOS CR 23</td>
</tr>
<tr>
<td>May 1975</td>
<td>IOS CR 32</td>
</tr>
<tr>
<td>May - Jun 1975</td>
<td>IOS CR 28</td>
</tr>
<tr>
<td>Jul 1975</td>
<td>IOS CR 31</td>
</tr>
<tr>
<td>Jul - Aug 1975</td>
<td>IOS CR 36</td>
</tr>
<tr>
<td>Aug - Sep 1975</td>
<td>IOS CR 41</td>
</tr>
<tr>
<td>Aug - Sep 1975</td>
<td>IOS CR 44</td>
</tr>
<tr>
<td>Apr - May 1976</td>
<td>IOS CR 48</td>
</tr>
<tr>
<td>Apr - Jun 1976</td>
<td>IOS CR 51</td>
</tr>
<tr>
<td>May 1976</td>
<td>IOS CR 53</td>
</tr>
<tr>
<td>RRS “John Murray”</td>
<td></td>
</tr>
<tr>
<td>Apr - May 1972</td>
<td>NIO CR 51</td>
</tr>
<tr>
<td>Sep 1973</td>
<td>IOS CR 7</td>
</tr>
<tr>
<td>May - Apr 1974</td>
<td>IOS CR 9</td>
</tr>
<tr>
<td>Oct = Nov 7. Dec 1974</td>
<td>IOS CR 21</td>
</tr>
<tr>
<td>Apr - May 1975</td>
<td>IOS CR 25</td>
</tr>
<tr>
<td>Apr 1975</td>
<td>IOS CR 30</td>
</tr>
<tr>
<td>Oct = Nov 1975</td>
<td>IOS CR 40</td>
</tr>
<tr>
<td>Aug - Oct 1975</td>
<td>IOS CR 42</td>
</tr>
<tr>
<td>Oct = Nov 1976</td>
<td>IOS CR 53</td>
</tr>
<tr>
<td>Mar = Apr 1977</td>
<td>IOS CR 66</td>
</tr>
<tr>
<td>NC “Marcel Rayard”</td>
<td></td>
</tr>
<tr>
<td>Feb = Apr 1971</td>
<td>NIO CR 44</td>
</tr>
<tr>
<td>MV “Resarcher”</td>
<td></td>
</tr>
<tr>
<td>Aug - Sep 1972</td>
<td>NIO CR 60</td>
</tr>
<tr>
<td>RV “Sarbia”</td>
<td></td>
</tr>
<tr>
<td>May - Jun 1975</td>
<td>IOS CR 30</td>
</tr>
<tr>
<td>Aug - Sep 1975</td>
<td>IOS CR 38</td>
</tr>
<tr>
<td>Mar - Apr 1976</td>
<td>IOS CR 44</td>
</tr>
<tr>
<td>RRS “N’Ackleton”</td>
<td></td>
</tr>
<tr>
<td>Aug - Sep 1973</td>
<td>IOS CR 3</td>
</tr>
<tr>
<td>Jan - Feb 1975</td>
<td>IOS CR 19</td>
</tr>
<tr>
<td>Mar - May 1975</td>
<td>IOS CR 24</td>
</tr>
<tr>
<td>Feb - Mar 1975</td>
<td>IOS CR 29</td>
</tr>
<tr>
<td>Jul = Aug 1975</td>
<td>IOS CR 37</td>
</tr>
<tr>
<td>Jun = Jul 1976</td>
<td>IOS CR 45</td>
</tr>
<tr>
<td>Oct = Nov 1976</td>
<td>IOS CR 49</td>
</tr>
<tr>
<td>Jul 1977</td>
<td>IOS CR 62</td>
</tr>
<tr>
<td>MV “Surveyor”</td>
<td></td>
</tr>
<tr>
<td>Feb = Apr 1971</td>
<td>NIO CR 38</td>
</tr>
<tr>
<td>Jun 1971</td>
<td>NIO CR 39 X</td>
</tr>
<tr>
<td>Aug 1971</td>
<td>NIO CR 42 X</td>
</tr>
<tr>
<td>DE “Vickfors Voyager” and “Pices III”</td>
<td></td>
</tr>
<tr>
<td>Jun - Jul 1973</td>
<td>IOS CR 1</td>
</tr>
<tr>
<td>X NOT DISTRIBUTED</td>
<td></td>
</tr>
</tbody>
</table>