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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by A. Edmunds

The Event-B method is a formal approach to modelling systems which incorporates the
notion of refinement. This work bridges the abstraction gap between the lowest level
of Event-B refinement and a working implementation. We focus on the link between
Event-B and concurrent, object-oriented implementations and introduce an interme-
diate, object-oriented style specification notation called Object-oriented Concurrent-B
(OCB). The OCB level of abstraction hides implementation details of locking and block-
ing, and provides the developer with a clear view of atomicity using labelled atomic
clauses. OCB non-atomic clauses are given Event-B semantics, and OCB atomic clauses
map to atomic events. Automatic translation of an OCB specification gives rise to an
Event-B model and Java source code. The Java program will have atomicity that corre-
sponds to the formal model (and therefore OCB clauses), and structure that is derived
from the OCB model.

We introduce process and monitor classes. Process classes allow specification of in-
terleaving behaviour using non-atomic constructs, where atomic regions are defined by
labelled atomic clauses. Monitor classes may be shared between the processes and pro-
vide mutually exclusive access to the shared data using atomic procedure calls. Labelled
atomic clauses map to events guarded by a program counter derived from the label. This
allows us to model the ordered execution of the implementation. The approach can be
applied to object-oriented systems in general, but we choose Java as a target for work-
ing programs. Java’s built-in synchronisation mechanism is used to provide mutually
exclusive access to data. We discuss some problems related to Java programming, with

regard to locking and concurrency, and their effect on OCB.

The OCB syntax and mappings to Event-B and Java are defined, details of tool support
and case studies follow. An extension to OCB is described in which a number of objects
can be updated within a single atomic clause; facilitated by Java SDK 5.0 features. The
extension allows direct access to variables of a monitor using dot notation, and multiple
procedure calls in a clause. We also introduce new features to atomic actions such as a

sequential operator, and atomic branching and looping.
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Chapter 1

Introduction

The dependability requirements for software vary depending on the effects of its failure.
For the most safety critical, and business critical domains there is a need for a very high
level of dependability. One approach used to improve dependability is the use of formal
methods as part of the development process. Formal techniques have been maturing for
decades, and as computing technology advances problem domains create new challenges;
at the same time the technology available to address those challenges changes, and new
theories evolve to describe the problems formally. The work presented in this thesis
forms part of the ongoing research that aims to discover better ways of understanding

and specifying software systems, with the aim that they be reliable in use.

1.1 Owur Contribution

Our work focusses on code generation for Event-B developments [6, 7, 8, 124]. We
bridge the abstraction gap between formal development, and implementation in a object-
oriented language with concurrent processes. There are some existing Event-B devel-
opments that may make use of concurrency such as the Mondex electronic purse [34],
distributed database transactions [161], and an ongoing extension of the work introduced
in [48], applied to a Flash File System. However, to date there has been no automated
code generation applicable to Event-B development, and we specifically wish to specify
developments incorporating concurrency. Code generation does exist for its predecessor
classical-B [5], via the implementation level notation B0 [43, 44]; but B0 is not aimed

at specifying developments with concurrent processing.

In our work we consider it useful to make use of a modern object-oriented language such
as Java [67, 68] as our target language. Java supports concurrency and is a widely used
platform. It is a strongly typed language with good support for structured data and

encapsulation in the form of classes. Whilst we have chosen Java as a target we would
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Existing Event-B Development

oOc-B farmal
"refine ment” refinement
feTel=] translation Event-B
Specification (provides semantics) model
. E
translation
A4
Eclipze same atomicity

Project

Java Clazses

Methods

FI1GURE 1.1: Extending an Event-B Development with an OCB Specification to Provide
an Implementation

reasonably expect to be able to apply the principles of the approach to other similar

target languages.

To bridge the abstraction gap between Event-B and the target platform we introduce
a notation that we call Object-Oriented Concurrent-B (OCB), see Figure 1.1. OCB
was developed to enable the specification of some key features of a concurrent object-
oriented development that are not so readily expressible in Event-B. In OCB we make
use of the notion of classes for encapsulating data; and procedure calls for accessing the
protected data, and constructing new instances. Consider an Event-B development that
has proceeded to the point where an object-oriented implementation is desired. At this
level a developer will wish to consider details such as processes and their interleaving,
and the sharing of data. The OCB notation facilitates the specification of these aspects
as well as providing an object-oriented notation which eases the transition to object-
oriented implementation. One important aspect of the Event-B approach is that any
enabled event may occur, but only one of the enabled events may occur at any given
time. When considering a specification involving processes with interleaved executions
we seek to introduce the notion of interleaving operations. Event-B contains no facility
of this kind since events are atomic, and we additionally need to impose ordering on the
executions of an interleaving operation. It is with this in mind that we introduce non-
atomic operations, and a sequence operator to specify the points at which interleaving
may take place. An OCB specification also embodies some degree of abstraction since
synchronization details are hidden from the developer, this will simplify the developer’s
task of reasoning about the effects of the interactions between shared objects. The
approach incorporates aspects of UML-B [89, 110, 137, 138, 140, 142] and builds upon
them to facilitate the rigorous specification of concurrent systems. The translation of an
OCB specification results in source code and an Event-B model describing the execution

of the code. The target language that we choose for this thesis is Java; however the
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approach is also applicable to other target languages such as Ada or C. The Event-B
model can be shown to refine an abstract model and therefore be considered part of the
formal development. The Java correspondence with the formal model is that the formal
model represents the implementation. We have not formulated a formal correspondence
between the two; but the simplicity of the mapping between the OCB constructs and
the formal model, and the simplicity of the mapping between the OCB constructs and

Java, leads us to have high confidence in the correspondence.

Event-B is based on the notion of discrete events that occur in systems; an event is
represented as an artefact in the formal model, which is also known as an event. In our
work when we refer to an event it is clear from the context whether we are referring
to the formal artefact rather than the more general meaning: observable events. When
addressing issues of concurrency we use the fact that an event is atomic and gives rise
to clearly bounded atomic regions in the implementation. We use the notion of labelled
atomic clauses; each atomic clause maps to an event. In the mapping to Java we can use
synchronized methods and blocks, together with the application of some simple rules,
to ensure a representative implementation of the model is produced. In an extension to
the approach based on synchronization, we extend the notion of labelled atomic clauses
to allow exclusive access to a number of shared objects. To do this we employ locking
constructs introduced in a later release of the Java platform. In addition to this we
move towards a more implementation oriented notation; for instance we replace parallel

constructs in actions with sequential constructs.

In the formalisation of the link between OCB and Event-B we use a textual version of
Event-B, similar to that used in [31], and a textual version of our OCB notation for
specification. We support the approach using a prototype tool with a translation to
Event-B models compatible with the RODIN tool [153], and Java source code. OCB
models will be constructed using a prototype GUI based editor rather than a text based
specification; so with regard to the tool support neither OCB nor Event-B is currently
text based. In the prototype tool we provide a translation to textual style OCB for

convenience.

1.2 An Overview of the Thesis

In this chapter we began with a brief introduction to the thesis and describe its contents.
In Chapter 2 we provide the context for our work by describing some important concepts
which lead to the state of the art in our field, and on which our current work is grounded.
The work presented in this thesis draws both on the world of formal methods, and that
of programming languages. Formal methods use mathematical notations to describe
systems and prove properties about them; and programming languages are translated to

instructions that computers use to perform tasks. To assist with our understanding of
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current formal approaches we describe some relevant theories, and note their historical
significance, leading us to the state of the art in our field. We describe some of the
uses of formal methods, and how object-oriented technology has been used in formal
methods. We then discuss the technologies that underpin the main focus of our work; we
describe the Event-B method, and preliminary work on object-oriented modelling that
is part of the UML-B approach. We then briefly describe the implementation language
of classical B, BO. Chapter 2 continues with an exploration of the issues involved with
Java programming, paying particular attention to problems that arise when specifying
concurrent, shared memory implementations using the Java Language Specification 2.
We conclude our background with a detailed discussion about how formal, and semi-
formal, methods have been brought to bear on the problems faced by developers using
Java. Chapter 3 introduces the OCB language; we describe the underlying semantics
of interleaving process operations, and shared monitors with atomic procedures. We
define the semantics in terms of the Guarded Command Language, and then map the
constructs to Event-B. Chapter 4 continues the introduction of the OCB language by
introducing object-oriented constructs and their mapping to Event-B, then we present
the definition of the mapping of textual OCB to Java code. Chapter 5 gives details of
the implementation of the OCB modelling and translation tools, and the integration
with the Eclipse Platform and the RODIN tool. We also provide details of how the
translator code can be annotated to link the OCB mapping rules to the Java code that
implements the mapping rules. In Chapters 6 and 7 we present case studies which
describe how OCB may be used to specify object-oriented, concurrent implementations
that form part of an Event-B development. Chapter 6 describes the development of a
shared buffer with reading and writing processes. An abstract model is used to specify
coarse grained atomic events. In subsequent refinements the atomic events are split
into a number of atomic actions which refine a single atomic event. We use diagrams
based on Jackson Structure Diagrams to visualise the relationships between events of
the abstraction and the refinements. We then provide implementation details in an
OCB specification and translate the OCB model to Event-B and Java. In Chapter 7
we present a case study presenting a limited number of features of a Flash File System
development. We specify the top two layers (the User Application Layer and File System
API Layer) of a hierarchical system specification. This chapter serves to highlight some
of the shortcomings of the approach and leads into the next chapter, Chapter 8, where
we describe how to overcome a number of the restrictions. In Chapter 8 we describe
how we can translate to a later version of Java, that of JDK 1.5 and Java Language
Specification 3 which is, in turn, reflected in a revised OCB notation. The use of this
later Java version facilitates a more flexible mutual exclusion policy, and therefore allows
more complex specifications which we describe as transactional clauses. We revise the
OCB notation to accommodate the transactional style of specification, and describe the
new mapping to Event-B and Java code. Chapter 9 concludes the discussion with an

appraisal and suggestions for future work.



Chapter 2
Background

In order to provide a context for our main contributions we discuss some founding formal
theories that underpin the state of the art in our field of interest; and give details of vari-
ous approaches that are applied to system development. Primarily we aim to improve the
reliability of software systems using formal methods and, in particular, we are interested
in linking a formal development approach with object-oriented implementations incor-
porating concurrency. So we provide an overview of some fundamental object oriented
concepts, and follow this with a general discussion about the influence of object-oriented
technology on some formal methods. We follow this by an overview of some approaches
that are used to improve the dependability of Java, discussing some formal, semi-formal
and non-formal approaches. We then describe the Event-B method [6, 7, 8, 124], which
we use to formally model systems. Since we have chosen Java [67, 68] as a platform for
our implementations we introduce related programming issues; such as programming
constructs, synchronisation, and conditional waiting. Importantly we also highlight
some of the problems that may arise when using Java implementations that make use of
concurrency constructs. Some of the modelling techniques underlying our approach are
based on the UML-B approach [89, 110, 137, 138, 140, 142] - the graphical ‘front-end’ of
Event-B. We therefore give an overview of UML-B which includes details of how classes
are modelled and instantiated. There is then a brief overview of classical-B’s implemen-
tation level notation, BO [43, 44]. The final section gives more details of the guarded
command language which we use in the definition of the OCB language. We then give

an overview of our contribution, and provide some general details about our approach.

2.1 The Basis for Formal Methods

Researchers in the field have presented many approaches to formal specification of soft-
ware systems over many years; many are traceable back to a few fundamental theories.

To begin our overview of the formal methods field we discuss some of the fundamental

5
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theories that have formed the basis of research over the years; and due to the sheer
volume of work in this field we limit our discussion to what we consider to be the most

relevant to this thesis.

2.1.1 Hoare Logic

Hoare logic [76] was first presented in 1969. It provides axioms and inference rules for
proving properties of programs. A triple P {| S |} @ denotes a precondition P, program,
S and post-condition (). The logic is used to verify that if P holds before an execution

of program S then @ will hold after the execution provided it terminates successfully.

The work goes on to present rules for program elements such as assignment, composition,

and iteration. An example of the rules is that of iteration,

P AB{SIP
P{while B do S}—~B N P

This states if the assertion P is initially true and the triple is true (the body re-establishes
P when B holds) then the equivalent program with P initially true and a while loop with
condition B, will eventually establish =B A P on termination. However the logic assumes
only partial correctness since it does not include the notion of program termination, and

simply makes it an assumption in the interpretation.

In [40] Hoare triples are used to verify correctness of programs using inference rules, for
instance, for a statement involving a sequential program statement, P {| S1 ; S |} @,

the following rule is used,

P{S}@ P{S[Q
P{l51; S} @

and the rule for a simple assignment is written as follows,

P CQlx:=¢]
P{lz:=el}Q

Hoare logic was very influential in its contribution to the state of the art and influences
can be seen in the preconditions and postconditions of Design by Contract approaches of
Eiffel [111, 112], SPARKAda [2], and JML [28, 102]. Another influence of Hoare logic was
in Dijkstra’s wp-calculus [51, 52] which later contributes to the semantic definition of the

B-method; which is a predecessor of our formal method of interest, Event-B [6, 7, 8, 124].
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2.1.2 Guarded Commands

We now move on to look at the Guarded Command Language, which we use later in our
work to specify our approach. It was also an influential contribution and the concepts
were later extended in Back’s work on the refinement calculus [18, 19]. Dijkstra proposed
in the 1970’s [52, 51, 53] that a formal approach should be used as part of program
development, and developed the Guarded Command Language. In our work on OCB
we find it useful to describe the behaviour of OCB actions in terms of Dijkstra’s Guarded
Command Language. Guarded commands are introduced which have the form G — S
where G is a boolean expression and S is a list of statements. If the guard part of the
guarded command is true then the statements in the statement list are applied, updating
the state as determined in the statements. The statement may consist of assignments,

repeating (looping), or alternative (branching) constructs.

We begin with the assignment statement, where x := y means that after the com-
putation z has the value y. Several statements in the list S can be connected using
the semi-colon operator, which is used to indicate sequential computation. In order to
describe branching behaviour the language provides the alternative construct, where
guarded statements are mutually separated by the [0 separator and contained between
the pair if fi. Any statement with a true guard may be non-deterministically selected
for evaluation, if no guards are true then the statement is equivalent to abort. The

syntax of the alternative construct follows,
’Lf Go—)S() DG1—>51 DGn—>Sn fl

The repeating construct is contained between the pair do od. While any of the guards are
true a statement with a true guard is selected and evaluated, it is typically interpreted
that the loop only terminates when all the guards are false. The terminating behaviour
of the loop do to the false guard is considered to represent normal termination of a
program. However if it is the case that all branches are false in the alternative construct

then this is considered to be abnormal termination, that is the program aborts.
d0G0—>S() DG1—>51 DGn—>Sn od

In this work Dijkstra also introduce the concept of weakest preconditions, using the
notation wp(S, R) where S is a list of statements and R is a condition on the state. The
weakest precondition is used to identify the set of all initial states such that when the
statements S are applied the program terminates and postcondition R holds. wp is a

predicate transformer that relates a precondition to any post-condition R.



Chapter 2 Background 8

2.1.3 The Z-notation

The Z-notation [143] was developed in the 1970’s. An early version of the Z notation
was described in a paper by Abrial, Schuman and Meyer [11].

7 is formally underpinned by set-theory and first-order predicate logic; the developer
describes the system being modelled using set-theoretic constructs and predicates. In
order to make the specification activity easier Z incorporates the notion of structuring,
using schemas. A schema can be used to specify the initial state of the system, and the
transformations to successor states are described using operation schemas. Operations
are atomic, and changes to state are described in terms of before and after states.
Invariant properties are used to describe constraints on the state of the system, i.e. the

values that the variables can take.

The format of a schema follows; with schema name n, declarations D and predicates P,

e

the declaration part is used to introduce and type variables and import existing schemas.
The properties part applies some constraints to the variables introduced in the decla-
ration part. An example of its use, taken from Spivey’s tutorial [144], is the simple

property that follows,

Aleph
x,y 7

T <y

which states that x and y are integers and that x < y must hold.

Schemas can be combined to form a new schema, and thus the predicate parts may
refer to variables imported from other schemas, as well as variables that are global (not
discussed here). The following operation declaration uses Aleph and the notation =
indicates that the state may not change during the operation, alternatively A could be

used to indicate that the variables of the imported schema may change.

GetVal
=Aleph

out! : Z

out! = x
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Refinement is used in the development process to proceed toward a concrete implemen-
tation. Abstract data types are data refined to concrete data types; and explicit control
variables can be added to control execution in operation refinement. In data refinement
a schema is produced, where the predicate part relates the variables of the abstract with

the variables of the refinement.

2.1.4 Refinement Calculus

The origins of the refinement calculus can be traced to works of preceding sections
involving Dijkstra [50] and the Z-notation of [143], and additionally Morgan’s work
on programming from specifications [118]. Back introduced the refinement calculus
in [18, 19], presenting a formal system which can used to show proof of refinement at
each stage of a step-wise refinement. Later work [21] introduced the notion of contracts.
Contracts are held between agents and regulate the behaviour of agents. A contract is
described using the notation o{|S|}q which states that an agent can satisfy the contract
if from an initial state o it can establish that contract S satisfies the postcondition ¢. It
can achieve this either by not breaching the contract; or it is released from the contract

by an assumption that is violated.

Contracts can be refined by other contracts, if a contract S is refined by a contract
So then we write S1 C So. In this case, for any initial state ¢ and postcondition p,
if o{|S1|}p holds then o{|S2|}p also holds. Informally this means that any condition
established by the abstract specification can be established by the refinement.

2.1.5 Classical B

The B Method [5] developed by J.R Abrial is a set-theoretic modelling method, math-
ematical theory and notation. The theory associated with the method provides its
mathematical underpinning, the notation provides syntactic sugar to make the theory
more usable for developers. The B Method has much in common with the Z notation,

mentioned above, and Abrial was also a contributor to that approach.

The B Method is described as a structured, rigorous development process. The basic
structuring element of the B-Method is the B Machine which encapsulates state and
behaviour in a modular, re-usable fashion. Rigorous proof can be performed to ensure
that the specification is self-consistent, and consistent with other machines in the de-
velopment. The B-method’s Abstract Machine Notation (AMN) is used to describe the
state, which is a mapping from variables to values; and behaviour, where operations are
defined using the generalized substitution language. The notation provides features for
deterministic and non-deterministic state transitions, for example assignment or choice.
Non-determinism is useful at a high level of abstraction since it allows design deci-

sions to be deferred, but the non-determinism is replaced by deterministic constructs
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as development proceeds by way of refinement; and must removed completely before
implementation. The invariant clause uses predicate logic to describe the properties of
the system that must hold at all times, it can contain typing information for variables
together with the desired properties relating to machine parameters, sets, constants and
variables. The abstract machine specification is type checked to identify syntax errors,
then proof obligations are generated. The proof obligations must be shown to hold
for the system description to be self-consistent; it is preferable to discharge as many
proof obligations as possible using an automatic prover, but in all but the simplest cases
there are a number of proof obligations that remain to be discharged by hand. The
user is able to guide the proof by suggesting strategies, and sub-goals in the form of
hypotheses, in the endeavour to complete the proof. The B-method supports refine-
ment, and an abstract machine can be refined several times leading to a hierarchical
structure. Refinements are related to their more abstract counterparts in such a way
that a valid refinement always satisfies a specification higher in the refinement hierarchy.
The B method uses a refinement approach to add detail to a development, and proof
techniques to establish that the a concrete refinement C refines an abstract specification
A, we say A C C. Informally we state that the concrete specification implies the ab-
stract specification. Refinement generally takes two forms, with behavioural refinement
operations are refined by weakening preconditions, strengthening guards and postcon-
ditions, and reducing non-determinism. In data refinement abstract data structures are
given more concrete representations when moving closer to the implementation level of
refinement. For example a development may use sets to represent data at a high level
of abstraction, but a more concrete representation could be an array or a sequence de-
pending on the implementation requirements. Tools supporting the B-method generate
proof obligations relating to refinement, which must be discharged in a similar manner
to those generated for proof of machine consistency. The tool with which we have the

most experience is B4Free and the Click 'n’ Prove interface described in [38].

The modelling activity makes use of mathematical concepts such as sets, constants and
variables, which are underpinned by the set-theoretic representation. These features are
used to describe the state of the system. Properties and invariants are based on first
order predicate calculus and describe the constraints that must hold on the state at all
times. Operations are substitutions that describe the changes of state, i.e. the variables
of the machine, using AMN. The AMN is designed to have constructs similar to those
used by programmers but it is, nevertheless, a modelling language. An example of a

non-deterministic specification construct is the ANY statement,

ANY z
WHERE Q
THEN S
END
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Here x is a parameter, @) is a predicate that includes the type of z, and S is a substitution.
x is non-deterministically assigned a value satisfying (). The statement is equivalent to
the GSL definition @Qz.QQ=S. The simplest substitutions are SKIP which does nothing,
and the assignment substitution,  := F; which states that x is assigned the value of

the expression F.

Proof obligations are generated which must be discharged to show that the statements do
not violate the invariant. The Classical-B approach is to find the weakest precondition
required to satisfy some postcondition P. The proof obligation generated for the simple
assignment is based on the substitution, £/z, where free occurrences of a variable z
are substituted by the expression E. The rule for generating the weakest precondition
follows,

[z := E|P = P[E/x]

and, for the ANY statement we have,

ANY z
WHERE Q
THEN S
END

Vz-(Q = [S]P)

2.1.6 The TCAL Algorithm Language

The TCAL algorithm language [96] is used to describe the behaviour of algorithms at
an abstract level, and it is then translated to the TLA™ [95] specification language for
analysis. TLAT is a set-theoretic approach to system specification which is amenable
to model-checking. The TLA™ specification makes use of the TLC model checker to
explore the state space and check all possible execution paths specified by the algorithm.
Properties such as a non-terminating algorithm, or a deadlocking algorithm, are checked
automatically. The user can also define properties that can be checked, such as the
nvariant or assert statements. The model checker ensures the invariant holds at all

times, and ensures that an assertion holds when it is encountered on the execution path.

A TCAL statement is a labelled atomic operation; and this is a concept that we make use
of in the work described in this thesis. In TCAL each statement must have a label, how-
ever the developer may omit it and allow the translator to add one automatically. The
syntax for a statement is LabelledS ::= [Label :] UnLabelledS, where UnLabelledS
is an unlabelled statement; where brackets indicate choice of zero or one. The unla-

belled statements contain a number of constructs, including assignment; looping and
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conditional constructs such as While and I f statements; and also property specification

statements such as Assert.

In TCAL there are two equivalent specification notations, the p-style and c-style nota-
tions, with p-style being more verbose. We present the following p-style statement as an

example specification showing the use of label annotations,

[1: ifa=0thena:=a+1
elsel2: b:=b+1;
end if;

Notice that each label is associated with an atomic statement, and that the atomic state-
ments are composed using the sequence operator ;. Composition of atomic statements

using the sequence operator is a feature of our work too.

2.2 Applying Formal Methods

2.2.1 State-based Methods and Process Algebras

We now consider the various approaches available to formal methods practitioners, in
particular we can identify that individual formal methods lend themselves to solving
particular types of problems. We can therefore categorize formal methods on the ba-
sis of the kinds of problems to which they may be appropriately applied (however the
definition is not strict). In general we can identify state-based and process algebraic
approaches. State-based approaches allow better descriptions of system state, whilst
process algebraic approaches better describe behaviour of processes. State-based ap-
proaches tend to be more amenable to specifying properties related to allowable states
and the transitions between them. Proving that a system satisfies the specified prop-
erties involves discharging proof obligations. Examples of state-based formal methods
include B [5, 17, 44] and its successor, Event-B [6, 7, 8, 124], Z [143], and VDM [90].
Process algebraic approaches tend to be more suited to specifying behavioural proper-
ties of concurrent, distributed systems. A developer may wish to describe properties
such as when transitions and communications can occur. Example of process algebras
are CSP [78], CCS [115] and Pi-Calculus [116]. Generally it is easier to check liveness
properties, such as livelock or deadlock, using a process algebra based model than a
state-based model. A model checker, such as FDR [63], can be used to check these
properties. Some approaches incorporate the notion of temporal logic, an extension of
modal logic, to check whether properties hold with respect to time. For example it may

be desirable to check if some property always, or eventually holds, or holds at a next
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step and so on. Formal methods with these capabilities include TLA [95], Spin [79],
SMV [109] or ASM [69].

2.2.2 Combining Technologies

It is often the case that process and state-based approaches are combined to take advan-
tage of the benefits of both. An example is the combination of CSP and B found in [30],
and similarly the C'SP || B, approach described in [131, 133]. Circus [159] is a com-
bination of CSP and Z; and Alloy [85] bridges the gap between Z and object-oriented
technology. In some cases graphical modelling approaches are combined with formal
methods to aid the development process. The work on UML-B and the U2B transla-
tor [89, 110, 137, 138, 140, 142] established a basis for specifying B developments using a
UML modelling tool; an updated version is part of the latest Event-B tool [141]. Similar
work has been done to link XASM [15], an extension of ASM, to UML in [45]. One
combined approach that is particularly relevant in our sphere of work is the combined
approach using CSP and B [30, 35, 132]. We encountered the B Method in 2.1.5 so we
proceed by providing some details of Communicating Sequential Processes (CSP). CSP
was first introduced by Hoare in [78] and formalizes the behaviour of, and interaction
between, processes. A CSP specification consists of a number of processes P and an
alphabet of events related to the process, aP. The occurrence of events is described in
a process specification, using the notion of prefix. A simple specification is P = a — Q
where a is an event and P and @) are processes. This means that, assuming « is in the
alphabet of P, the process can engage in the event a and then behave as (). The notion
of traces is introduced together with trace refinement. Properties of the system are
described in terms of the traces, and a model is interpreted in terms of the failures and
divergences of a system, based on traces. The failures of a system describe situations
where no progress is made i.e. deadlock situations. The divergences of the system de-
scribe livelock; such as the situation where the system is exhibiting continuously looping
behaviour, but is not communicating with the environment. It will therefore not make

any use ful progress. The theory of CSP was revised in Roscoe’s book [128].

In a development that uses a combined CSP and B approach the specifications are com-
bined in such a way that synchronizes B operations and corresponding CSP events with
the same name. The combined approach addresses recognised shortcomings in each of
the approach. For instance CSP is a process algebra, its strength is in behavioural
specification and it is weaker when used to describe state. The B-method’s strength is
describing the state of a system, and is weaker when it comes to the behavioural speci-
fication since it contains no high level constructs to compose events. In combining CSP
and the B method the strengths of both approaches are harnessed. In the combined ap-
proach a CSP model is typically used to impose an ordering on occurrence of operations.

We present a simple example to clarify this: we can describe a machine with variables
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v1 € Z and vy € Z, and operations,

a £ BEGIN v, :€ Z END;
b £ BEGIN v, :€ Z END

where :€ is the non-deterministic assignment operator. The operations a and b are
unguarded and we assume that the environment can non-deterministically select either
of the operations for execution if they are enabled. To impose ordering on the executions

using a combined CSP and B model, we introduce a CSP process P specified as follows,
P=a—b—P

In the combined model a and b may only occur when it is enabled in both CSP and the
B specification. In this case vy will receive it assignment before vo before moving on to

the next process P’.

2.2.3 Tool Support

For formal methods to be used efficiently tool support is necessary to establish that the
model’s properties have been satisfied. The approaches can be categorized as theorem
proving or model checking. In approaches that use theorem proving rules are applied to
the specification which give rise to proof obligations that must be discharged. When all
proof obligations have been discharged the model has been shown to be consistent. Model
checkers establish correctness using state space searches. Model checkers will search the
state space to find states where properties are not satisfied; an exhaustive search which
does not find any property violations establishes that the model is consistent. In some
cases formal approaches are amenable to both model checking and theorem proving, and
may make use of tool support from one or more sources. Event-B can be model checked
using ProB [104] within the RODIN toolset [153], and third-party provers can be added
as plug-ins. ASM can be used with the PVS [122] and KIV [56] for theorem proving, or
can be model checked [39]. The Alloy [84] tool supports the Alloy language, and makes
use of the kodkod constraint solver [154]. CSP is used with the FDR [63] model checker,
Spin is a model checker with its own specification language called Promela; and Z/Eves

is a tool for developing and analysing Z specifications [129].

Each approach has its limitations, for instance model checking approaches can suffer from
state space explosion where the number of states to be checked increases exponentially
with the number of variables in the model. With general purpose proof tools such as
PVS it is typically the case that they require a high level of expertise to use, and since
they are not tailored to a specific formal approach they are not optimised for efficiency.
Tools are often not integrated in a way that provides a seamless approach. The Rodin

tool has been designed to provide much more specific support for Event-B than a tool
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such as PVS; in this respect the Rodin tool’s aim is to simplify the proof activity, and

provide an integrated development tool to improve productivity.

As individual formal methods mature the proof tools that they make use of may change
and suites of tools may be developed to support the development effort. The Event-B ap-
proach is integrated with the RODIN tool. This is designed to be an extensible platform,
allowing for additional tool support, such as new proof tools, to be added by contributing
a plug-in to the platform. VDM has a suite of tools known as VDMTools[59].

2.3 Object Oriented Technology

Object-oriented software engineering is a well established technique for organising the
development and implementation of software systems. In its simplest form an object is
simply an area in memory that contains some data and/or some code to perform some
tasks. Usually, in a class based system, a class represents an abstract data type and is
used to specify what data an object should contain, and what behaviour it should exhibit;
instances of the class are objects that reside in memory. We use the terms instance and
object interchangeably in this work, since they refer to the same thing, but generally
we talk of instances when referring to objects of a particular class, and objects when
we are being more general. The uptake of object-oriented technology in safety critical
systems has been slower than in non-critical systems since the technology gives rise to
some difficult issues such as how to handle (or whether to prohibit) dynamic binding
and dynamic memory allocation; or how to manage inheritance, or complex control
flows through multiple classes. In the field of avionics, however, a handbook arising
from the OOTiA project [57], from the Federal Aviation Administration and National
Aeronautics and Space Administration, highlights key issues and possible approaches

for the use of Object-Oriented Technology in Aviation.

There are many object-oriented technologies including Java [67, 68], C-++ [146], C# [119],
Python [155] and Eiffel [111, 112] to name but a few. For the most part they all use
similar concepts such as inheritance, polymorphism, and encapsulation. Inheritance
and polymorphism are mechanisms that allow specifications to be re-used and tailored
for specific uses. Encapsulation is the concept of limiting access to the data contained
within an object in order to ensure that the state of the object remains consistent. In
practice most object-oriented languages rely on the skill of the programmers and system
architects to achieve a well encapsulated system. Ensuring that a system behaves as

intended, in the light of concurrent executions for instance, is not a trivial task.

A simple Java class is specified as follows,

public class C {

private int a = 1;



Chapter 2 Background 16

public int inc(){ a=a+1; return a; }

}

In the class above we can see the features associated with encapsulation, the private
modifier indicates that the field a is only visible from within the class definition itself,
the public modifier indicates that the method inc and class C' itself are visible from
anywhere. We also see the type of the field a is restricted to integer primitive values and
the method inc returns an integer primitive value. Inheritance would be used to make
available the data and behaviour in class C' to some subclass D using the following class
declaration, public class D extends C'.... In some cases the methods of a super class
can be re-defined in the subclass, in our example if inc may be defined to increment the

value by some other integer, this would be an example of polymorphism.

2.4 Formality and Object-Orientation

Object-oriented technology is commonly used in software development and its spread
has been aided by productivity tools such as the UML [121]. The domain of business
and safety critical systems has also been influenced by object-oriented technology, and

in this section we discuss this issue.

2.4.1 Object-Oriented Formal Specification

Object-oriented technology can influence formal methods, where the methods themselves
incorporate object-oriented features such as forms of inheritance. This is the case for
VDM++ [46], Alloy [84], and Object-Z [135]. In the case of Event-B it contains no
object-oriented features itself, it has however been tailored for use with object-oriented
technology using UML-B; a combination of UML style diagrams and Event-B. UML-B
provides a graphical modelling environment for Event-B, the ability to model classes and
instantiation; and additionally provides an action and constraint language for UML-B
called pB introduced in [139]. The current UML-B tool does not address issues such as
concurrent execution of processes, or the gap between the formal specification and target
implementation. In similar work a variant of the UML’s Object Constraint Language
(OCL) [120] is described by the Logic for Objects, Constraints and Associations (LOCA),
in [99], and allows constraints to be imposed locally within an class, across a number
of classes, or on associations between classes. The work focusses on the translation
of UML class diagrams to B models, but also discusses translations to Java [67, 68]
for implementation and SMV for model-checking. Another similarity between these
authors’ work and UML-B is the use of statechart diagrams, in [98], where they show
how to use statechart diagrams to specify the state transitions of reactive systems,

and a translation to B. Another approach to formalising object-oriented developments
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uses the Model Driven Approach (in the sense of Model Driven Architecture [64]). The
approach presented in [49] uses an object-oriented development with the aim of deriving
an implementation in the C language [93] from a B implementation. This work does not

however address the issue of concurrent processing.

Re-use of artefacts using inheritance mechanisms is one of the main advantages of object-
oriented technology, but it does give rise to many challenges. Some of the issues arising
from the use of these techniques including subclassing and polymorphism are discussed
in [20, 113, 114]. Due to these complexities we consider re-use to be beyond the scope

of our current work, and is not strictly necessary for the approach that we propose here.

2.5 Modelling with Event-B

In previous sections we have given an overview of the field from its foundations and
discussed how formal methods and object-oriented technology have interacted. We now
provide background in more detail on approaches that we draw from more specifically
in our work. We begin with the Event-B method [6]. Event-B is a subset of the original
B-method [5, 10, 38, 41] developed by J.R. Abrial. It is a set theoretic approach to
software systems development. Event-B has a notation, methodology and tool support
for rigorous development of software systems. The basic structural features of Event-B
are contexts and machines. Contexts are used to describe the static features of a system
using sets, constants, and the relationships between them. Machines are used to describe
the variable features of a system in the form of state variables, and guarded events which
update state. Builders within the development tools generate proof obligations which
must be discharged in order to show that the development is consistent. The proof
obligations generated in classical-B are often very complex, the Event-B approach results
in simpler proof obligations as described in [72], since Event-B consists of a simplified
action syntax which gives rise to simpler proof obligations. A further simplification was
made by adopting an event-based approach, where each atomic event has a predicate
guard and an action consisting only of assignment statements. Events correspond to
operations in the B-method; operation specification was more complex and included
constructs for specifying preconditions and return parameters; these constructs are not
features of Event-B. Due to these simplifications (and more efficient proof tools) a large
number of the proof obligations may be discharged automatically by the automatic
provers. Where un-discharged proof obligations remain the user guides the interactive
prover by suggesting strategies, and sub-goals in the form of hypotheses, in the endeavour

to complete the proof.

Event-B supports refinement; a machine can be refined several times leading to a hier-
archical structure. Refinements are related to their more abstract counterparts in such

a way that a valid refinement always satisfies a specification higher in the refinement
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hierarchy. Event-B tools generate proof obligations relating to refinement, which must
be discharged in a similar manner to those generated for proof of machine consistency.
In some cases we may model entities in an abstraction that are defined in the event pa-
rameters; and in the refinement these entities may be modelled using machine variables.
It is desirable to link the parameters of an abstract event (since they disappear in the
refinement) with their more concrete representation. To do this we provide a witness,
using the WITN ESS construct a predicate is used to describe the relationship between
an event parameter of the abstraction and a corresponding variable in the refinement.
This is then used to assist with discharging proof obligations. It is often necessary to
specify a linking invariant to describe the relationship between the variables of the ab-
stract and refinement machines. Inspection of the proof obligations can assist in this
task since some of the un-discharged proof obligations provide information about this
link. Another feature of Event-B is the ability to refine one atomic event with a number

of events, thus breaking the atomicity, as described in [32].

Event-B development begins with the abstraction of the observable events that ‘may’
occur in a system, which leads to a specification describing the state and behaviour of
the system at a high level of abstraction. Event based modelling uses the notion of
guarded events to describe the observable events. An event is said to be enabled when
the guard is true, otherwise it is disabled. Typically when an enabled event fires some
state update occurs, which is described by the event’s action. The high level abstraction
can be refined, possibly a number of times. At each refinement step new events and state
information are added. The purpose of refinement in the Event-B method is to introduce
more detail into the model and at the same time maintain the model’s consistency.
Eventually the model should describe the behaviour of the system at such a level of
detail that an OCB model can be defined. The OCB model is subsequently transformed
to an Event-B model that can be shown to refine the abstract development, and the
target source code. An example of textual Event-B is shown in Figure 2.1. The context,
named exampleContext has a set, A. Machine exampleMachine sees exampleContext to
gain access to its contents. It has variables b and ¢ which are typed in the invariant along
with any additional constraints on the state. In this example b is typed as a powerset
of A and ¢ is an Integer. The example shows an event named inc which increments
the value of ¢. The event named new non-deterministically selects an element of set
A\b and adds it to b, using set union. Events consist of guards and actions, inc has
no non-deterministic parameters, so the guard is in the WHEN clause, and the actions
are in the THEN clause. Where the event has non-deterministic parameters, as in new,
the guard is contained in the WHERF clause. Guards are predicates which describe the
conditions under which the event is enabled, actions are substitutions which describe
the effects of the event. An event describes the transition from the ‘before’ state to the
‘after’ state which happens atomically; that is, there is no intermediate state visible.
In a consistent model the guards of an event ensure that its actions do not violate the

invariant. When developing a software system it can be useful to view the occurrence
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CONTEXT exampleContext
SETS A

MACHINE exampleMachine
SEES exampleContext
VARIABLES b, ¢

INVARIANT
bCAAce0..10

EVENTS
INITIALISATION =

b:=@c:€0..10

inc =
WHEN c+1 €0..10
THEN c := c+1
END

new =
ANY x
WHERE x € A \ b
THEN b :=b U {x}
END

FIGURE 2.1: Example of Textual Event-B

of state changes, in shared memory concurrent systems, as atomic events. We aim to
relate the atomic state changes of such an implementation to atomic events described
in an Event-B model, using OCB. This will simplify reasoning about the system under
development since our abstraction does not include details of locking, unlocking and the
implementation of conditional waiting. Event-B provides the formal semantics for the

OCB notation which is introduced in subsequent chapters.

One important aspect of the Event-B approach is that any enabled event may occur, but
only one of the enabled events may occur at any one moment. When modelling certain
aspects of a system we may wish to impose an ordering of events. However, there is no
sequence operator provided in the Event-B approach. It is therefore necessary to make
appropriate use of guards and and state variables to model this aspect of a system. For
example if we wish to impose an ordering on two events evt! and evt2 so that evtl
occurs before evt2 we can use the following approach. Introduce an enumerated set
Grds = {one, two, stop} and a variable step € Grds. Initially step := one; and we

make use of step in the event guards as follows,

evtl = WHEN step = one THEN ... || step := two END
evt2 = WHEN step = two THEN ... || step := stop END

This ensures that initially evtl is enabled and ewvt2 is disabled since step = one; only
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o C

Attributes o X
© a: Z
o X: X Attributes
BNenE Events
# newCObj 0..n o X 1..1 | Statemachines
*

Statemachines Invariants
Theorems
Invariants

Theorems

F1GURE 2.2: Class Diagram for UML-B

after evtl has updated the step variable to two is evt2 enabled. At this time evtl
is no longer enabled since its guard is now false. Finally no events are enabled since

step = stop and all guards are false.

2.6 Modelling with UML-B

The formal modelling techniques of the previous section may be enhanced by the use
of graphical modelling methods, [125, 126]. There has been much work on this topic
with UML-B and the U2B translator, [110, 137, 138, 139, 140, 141, 142]. UML-B links
the graphical modelling techniques and object-oriented features of the UML, to the B-
Method and Event-B. We discuss here its application to Event-B in particular. UML-B
uses UML-type visual modelling features such as package diagrams, class diagrams and
statechart diagrams. However it should be noted that UML-B is not a UML profile for
Event-B, it has its own meta-model. It does not use the UML specialisation features
such as stereotypes, so in this sense it is only UML-like, but better suited to Event-
B specification. One feature of systems that cannot be specified in UML-B, at the
time of writing, is that of concurrency - in our work we wish to address the issue of
concurrency (but not within UML-B itself). We find it useful to apply some UML-B
modelling techniques with respect to modelling object-oriented features. An example
UML-B class is shown in Figure 2.2 and its mapping to Event-B is shown in 2.3. In the
Event-B model the formal representation of a class C' is a carrier set C_SET representing
all potential instances of C. The instances of C' are modelled as a subset of C_SET. A
constructor event adds a non-deterministically selected object, newC' from C_SET \ C,
to the set of instances C' (The class X constructor is omitted). Class C' has an attribute
a of type Z, which maps, in the generated Event-B model, to a variable a which is typed
as a function a € C' — Z. Variable a relates the instances of class C to its attribute value,
so an instance s of type C has an attribute value represented by a(s). The variables

representing instances are initially empty, no instances exist until the constructor is
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CONTEXT ctx
SETS C_SET; X SET

MACHINE mch

SEES ctx

VARIABLES C, X, a, x

INVARIANT
CCCSET AX CXSET A
acC—oZAxeC—X

EVENTS
INITIALISATION =

C=g|[|X:=0|a:=0||x=0

newCObj =
ANY self, x
WHERE self e CSET \ CAx e X
THEN C := C U {self} ||

x(self) := x ||
a(self) := 0 ||
END
run =
ANY self

WHERE self € C
THEN a(self) := a(self)+1

END

FIGURE 2.3: Event-B Machine of a UML-B Model

called. The constructor models instantiation and initialisation of the objects. Events of

a class are translated to Event-B events with the same name. We have shown a class

diagram translated to Event-B; provision is also made for translating statechart diagrams

to Event-B, transitions between states are translated to events which are guarded by

control variables derived from the names given to the states. The association x enables

the multiplicities of the instances to be specified. The owner of the association (origin

of the arrow) has multiplicity a...b, and at the opposite c...d (in Figure 2.2 a = 0,b =

n,c = d = 1). Table 2.1 describes the relationships between association multiplicities,

and the domain and range properties of the generated variables.

a b ¢ d
0 | non-surjective | - partial | -
1 | surjective injective total functional
n| - non-injective | - non-functional

TABLE 2.1: Multiplicities of Associations

Package diagrams are the top level diagram used, these describe the relationships be-

tween models and contexts, and the refinement relationships between contexts, and
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Sees
ctxl mchl
Extends Refines
ctx2 Sees refl

FI1GURE 2.4: Package Diagram for UML-B

between models. An example package diagram can be seen in Figure 2.4 where machine
mchl sees ctxl, refl refines mchl, ctx2 extends ctxl, and ref1l sees ctx2. In order to
describe event actions, and actions associated with transitions of a state machine, uB
is used. pB is an action and constraint language for UML-B which is based on Event-B
action syntax. It differs from Event-B syntax in a number of ways, for instance it uses
the reserved word self which is a reference to the current object. It also allows an
object-oriented style dot-notation for accessing instances referred to by attributes, so i.v

is equivalent to self.i.v and refers to attribute v of the object associated with self.i .

2.7 The B0 implementation Language

The aim of formal specification of a system is usually to describe a system that will
eventually be implemented. The step from the formal model to the implementation level
is our area of interest. In previous work with Classical-B, B0 [43, 44] was developed which
provides the final link between model and implementation. It is an implementation level
language which can be translated to Ada [147], C and C++ source code for compilation

into executable form; as far as we are aware no such approach exists for Event-B.

In a BO implementation machine the OPERATIONS clause contains deterministic, con-
crete substitutions; and state is described using concrete data types that are amenable
to implementation. The use of concrete substitutions at the implementation level means
that all non-deterministic substitutions of the abstract development have been removed
and can be implemented using a programming language. Therefore operations with pre-
conditions and any other form of underspecification are prohibited. The use of concrete
data refers to the fact that implementation level data structures must correspond to the
structures that can be implemented using a programming language. B0 supports the
following concrete data types: integers, booleans, arrays and records. The concrete sub-
stitutions are referred to as instructions, concrete predicates as conditions and concrete
expressions as terms - in order to distinguish them from their abstract counterparts. In-
structions include assignment, local variable declaration, operation call, branching and

looping constructs, and each instruction is atomic. We present a small example of the
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syntax to give a flavour of the style; beginning with the assignment (the becomes equal

instruction)

Becomes_equal_to_instruction ::=
id = Term

| id := Array_expression

The variable named id is assigned the value of a Term or Array_expression. Terms
are types such as an integer or boolean literal, arithmetic expression, or an identifier.
Array_expressions can be one dimensional such as the following arr; € {0..5} —=Z, or of
higher dimension such as the following two-dimensional array, arrs € {0..5} xBOOL—Z.
B0 allows atomic operation calls that return a value; the operation_call _instruction is
defined as,

Operation_call sinstruction = id, < idg,

where id,, is an identifier of a variable v and id,, is the name of an operation. Here
the return value from operation id,, is assigned to the variable named id,. In this case
both the operation call and the assignment of the return value to the variable occur in
one atomic step. B0 has a sequencing operator for instructions which permits sequential

composition within an atomic clause. It is defined as,
Sequence_instruction = Instruction ; Instruction

The conditional_instruction has optional elseif clauses and optional else clause. Con-
ditions are a subset of classical-B predicates which have corresponding constructs in an
implementation. Typical operators are =, #, <, A and —, which are used with simple
terms such as identifiers, integer literals and boolean literals; or in the case of logical
operators, conditions. The conditional_instruction is evaluated in a single atomic step.
If the first condition is true then the first atomic clause of the instruction is evaluated,
and the instruction completes. When a condition is false the next atomic sub-clause is
evaluated and the instruction completes, and so on. Branches are evaluates until either
the atomic else clause is evaluated, if one exists, or the instruction is completed with

no updates. If no else clause exists this is equivalent to the sub-clause ELSE skip. The
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instruction is defined as,

Conditional_instruction =
IF Condition THEN Instruction
[ELSIF Condition THEN Instruction)
[ELSE Instruction)
END

The while instruction is an atomic loop; that is, the whole loop completes in a single
atomic step. The loop has a variant which must be shown to be decreasing; the variant
is used to show that the loop eventually terminates. The invariant clause is used to type

the variable used in the variant.

W hile_instruction ::=
WHILE Condition DO Instruction
INVARIANT Predicate
VARIANT Expression
END

It is intended that the OCB notation performs a similar role to B0, in that it links
the formal model with a target programming language in order that an implementation
be created. However, unlike B0, we support the specification of concurrently executing
processes, and the sharing of objects. We will also be targeting the Event-B approach
instead of classical-B. To support translation to an object-oriented languages, and to
make use of encapsulated data, we introduce concepts to OCB such as class definitions;

object instantiation; and atomic procedure calls.

2.8 The Java Language Specification - Second Edition

This section deals with the Java Language Specification - second edition (JLS 2) [37]
which serves to define the language up to version 1.4 of the Java SDK. Our initial inves-
tigations begin with this as the target platform, and we begin the section by describing
Java with this version in mind. The third edition (JLS 3) [68] is introduced towards the
end of this thesis in Chapter 8 when we investigate how we can leverage the more recent

additions to the Java language.

2.8.1 Programming with Java

The Java language is the object-oriented programming language of the Java Platform, it

is typically used to specify the behaviour of applications that will run on a Java Virtual
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Machine (JVM). It is strongly typed, and incorporates mechanisms to allow concurrent
processing, using the Java notion of threads. A Java program is usually translated to
machine independent bytecode, and a platform specific JVM interprets the bytecode.
This machine independent approach is described as ‘write once run anywhere’. A Java
program may however be compiled to a native executable form - this is platform specific,
so it loses ‘write once run anywhere’ capability. Portability and cross platform support
is seen as one of the main benefits of Java over other programming languages like C [93]
and C++ [146]. Java also contains simplifications that help to reduce some of the errors
that can be introduced to C and C++ programs, such as the notion that developers do

not have access to pointers; but this is achieved at the expense of some flexibility.

Other benefits of using the Java platform are that it has multi-threading features built-
in, these features are extremely useful - a number of threads can be created, and these
threads are able to progress or wait depending on whether certain conditions are sat-
isfied. This can make for more efficient use of system resources, but does introduce a
number of problems which will be discussed further in this chapter. Java uses the notion
of synchronized monitors to achieve mutually exclusive access to shared data. When a
synchronized region is defined a lock will be obtained before the region is entered. The
use of these features is not enforced in Java however, so mutual exclusion is not guar-
anteed simply by the use of synchronized regions alone, extra effort must be expended
to ensure all accesses to a particular piece of data obtain the lock. Use of these locks
can cause threads to deadlock in certain situations and we discuss this further, later in

the chapter.

We have already mentioned that Java is a class-based, object-oriented language, the
simplest class definition, class CIName, resides in a file of the same name, CIName.java,
and the file resides in a package which is used to restrict the scope of visibility. A typical

class definition is,

public class ClName{< body >}

The body of the class can contain, field declarations, method declarations and other class
declarations. The public modifier indicates that the class is visible from any package. If
the modifier was not present then the class would only be visible from within a package.
Similar scoping rules apply to fields and methods. private is a modifier to restrict
visibility to within the declaring class; and protected is used to restrict visibility to the
declaring class and any subclasses. Inheritance is one of the main re-use mechanisms
of Java and classes are said to extend superclasses, indeed all classes defined in Java
extend the universal superclass java.lang.Object by default. We declare an extension

as follows where C'lName inherits features of SuClass,

public class ClName extends SuClass{< classBody >}
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Using this declaration SuClass’ public, and protected, fields and methods are in-
herited by ClName. Additional fields and methods can be declared in SuClass, and
overriding can be used, where new or additional behaviour can specified for an exist-
ing method. Within a redeclaration of an inherited method (including the constructor

method) super() can be used to invoke the superclass method of the same name.

Methods in Java can contain local variable declarations. The scope of these variables is
the lifetime of the method invocation and they are stored in stack memory rather than
in heap memory as fields are. Declaration of method parameters also gives rise to local

variables. A typical method declaration is as follows,

public synchronized void anOp(< paramList >){< methodBody >}

As before we use the public modifier to indicate that the method has public scope,
visible anywhere. The synchronized modifier is used to indicate that a monitor lock
must be acquired before method entry, locking is discussed in more detail in following
sections. The void modifier is used to declare that the method should not return a value.
A return type, either a primitive such as an int or a reference type, can be specified

here.

Threads are Java’s mechanism for the lightweight scheduling of executions. A class that
is required to run as a thread inherits from either java.lang.Thread or

java.lang.Runnable, Threads can be declared using the extension mechanism discussed
above, or by an alternative mechanism - interfaces. Threads can be declared by spec-
ifying that they should implement the Runnable interface. Interfaces are a flexible
mechanism used for multiple inheritance. They are used to declare class variables, and
method signatures that its subclasses must implement. In our work we will use the
Runnable interface, which we use in the following way when wishing to declare a class

P exhibiting thread behaviour,

public class P implements Runnable{< classBody >}

Class P implements the Runnable interface; this entails providing an implementation

for a run method in < classBody >.

public void run(){< methodBody >}

A thread can then be created and started using the following fragment based on the

above.

Runnable p = new P();
new Thread(p).start();
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The new keyword is used to create new instances, in this case we create a new instance
of P assigned to p and pass it to the Thread constructor. The Thread class’ start

method is invoked which in turn calls P’s run method.

2.8.2 Concurrency, Interference and Locking

We now discuss some of the pitfalls that developers should be aware of when program-
ming using JDK 1.4 (defined in JLS 2). The problems arise in part because of the
complexity that concurrency introduces to a development, and partly due to ambigu-
ities and shortcomings in the Java Language Specification itself. Lea notes, in [100],
that the concept of concurrency in difficult to pin down. In summary: Apparent and
real concurrency in Java [68] is provided by the Java Virtual Machine (JVM) and the
underlying Operating System. Java uses the notion of threads; a number of threads may
be in the running state at any one moment in time. The Java Memory Model allows for
a range of possible configurations, from one thread per processor on a multiprocessor, to
many threads per processor, and of course a single thread. The illusion of concurrency is
achieved by time-slicing when the number of threads exceeds the number of processors.
The JVM has a scheduler that allocates an amount of processor time to each thread
and decides when each should start and stop processing, each running thread uses pro-
cessor resources independently of other threads but may share main memory with other
threads. The scheduler selects threads for execution according to some arbitrary strat-
egy, and no fairness guarantees are provided about selection of individual threads for

execution.

The Java memory model defines the relationship between reads and writes of mem-
ory values and how to achieve consistency in the face of data races and optimisation.
One such problem occurs with the synchronisation of the CPU registers and cache (the
working memory), with main memory. According to the memory model each thread
can potentially run in its own CPU. Certain compiler optimisations can be performed
whereby data values may not be written to main memory but remain in the CPU cache.
These optimisations can lead to a thread having an inconsistent view of the state, and
therefore unintended behaviour may occur when applications access shared data in an
unrestricted manner; the main (shared) memory may not contain the latest updates. In
addition to these issues which can cause problems for the developer there are a number of
ambiguities related to the specification of the memory model itself. Some of these prob-
lems are highlighted by the authors of [71] where they describe the Java memory model
of the Java Language Specification [67] using ASM. They highlight the problematic na-
ture of interpreting the specification and the well known problems with suspending and
resuming threads. An additional problem with JL.S2 is that of accessing volatile fields.
By declaring a field volatile, accesses to the field by different threads are mutually exclu-

sive, but do not require a synchronized block, or method. The intention was to ensure
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that read accesses always provide the most up-to-date value. The JLS specified that
reads and writes of volatile fields should be made directly to main memory and that
caching should be prohibited. Additionally it specified that each thread’s actions on a
volatile field should be performed in the order that they were requested, and said nothing
about non-volatile fields. This was sufficient for ensuring consistency of single threaded
programs, but did not consider the potential problems with multi-threaded programs
sharing data. The problem arises since volatile and non-volatile reads and writes can be
re-ordered by the compiler. Therefore, although accesses between wvolatile fields remain
ordered, accesses between volatile and non-volatile fields may be interleaved. Therefore

between different threads the re-ordering is visible and can cause unintended behaviour.

To a large extent the Java Language specification - third edition [68] (JLS 3), which
coincides with the release of Java SDK 5, addresses many of these issues by redefining
the memory model. We use JL.S2 in our initial approach since the technology was mature,
and its problems were well understood, at the time we began the work described in this
thesis. In our work initial work we make use of the simplistic synchronization mechanism,
which corresponds well with Event-B’s event-based approach. However, the use of the
synchronization mechanism turns out to quite restrictive, and we will also explore the

use of JLS3 to overcome these restrictions.

When developing sequential (single-threaded) Java programs where the result conforms
to the Java memory model, there is no possibility of data being observed in a state
that is not consistent with the intended semantics. This is because the state is not
observable externally, and any compiler optimisation that takes place will preserve the
internal consistency, i.e. consistent intra-thread semantics. Compiler optimizations may

include re-ordering of execution at bytecode level, or omission of writes to main memory.

The introduction of multiple threads to a development does not automatically introduce
interference problems, but there are certain conditions under which it may occur. Inter-
ference can be defined as data being observed in a state that is not consistent with the
intended semantics, the cause of which is an update by a concurrently running thread. If
threads do not share state, either directly or indirectly, then no interference is possible.
In that case threads can be thought of as independent, sequential programs obeying as-
if-serial semantics. Whenever state is shared between threads in an uncontrolled manner
the potential for interference is introduced and the program execution may depart from

its intended (as-if-serial) semantics.

Uncontrolled interleaving of Java threads may cause problems due to the relationship
between Java source code and bytecode. A simple assignment such as, z=z+1, in Java
may be compiled to a number of lines of byte code. The bytecode may read z, add the
value and write the new z value in a number of discrete steps. The bytecode is able
to interleave with another thread between the read, add or store instructions. Values

may then be read or updated which may not be consistent with as-if-serial semantics.
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It is even the case, for long and double types, that higher and lower order bits may
be written at different times, so a read access may obtain a completely meaningless
value with updated low order bits and the previous value of the higher order bits. These
problems are compounded by the fact that the updated values of z may never be written

to main memory but may be retained in CPU cache due to optimisation.

To address the problem of visibility of inconsistent state Java provides a built-in syn-
chronization mechanism which has effects at both high and low levels of implementation.
The synchronized keyword is used in the method header to indicate to the compiler that
main memory must be synchronized with the CPU’s working memory. Working memory
refers to the caches and registers of a CPU. Synchronization takes place upon acquisi-
tion and release of the synchronization lock, at the beginning and end of a synchronized
method. Upon lock acquisition values are loaded from main memory to the CPU’s
working memory, upon lock release cached values are flushed from working memory
to the main (shared) memory. The built-in Java synchronization mechanism also pro-
vides mutual exclusion at a higher conceptual level, since only one calling thread can
be associated with a lock at any one time. Atomic behaviour can be achieved through
appropriate use of locking and encapsulation. However, the use of synchronized methods
and blocks is not enforced. This means that the development can contain errors which

are difficult to detect, an issue which is addressed by our approach.

The synchronized keyword is used to identify a method or block of code that needs to
access an object without interference from another thread. Java uses the synchronized
keyword to facilitate the use of monitors [77]. Each instantiated object has a monitor
with a lock. When a thread attempts to call a target object’s synchronized method
it must first obtain the monitor lock for the target object. If the lock is not available
the Java Virtual Machine (JVM) blocks the thread. It places the calling thread in
the target object’s lock wait set, with any other threads that have previously made
unsuccessful attempts to obtain the lock. These blocked threads will be made runnable
(removed from the lock wait set) by the JVM when a thread exits a synchronized block
or method. Threads in the runnable state are then available for execution, and may be
selected at some arbitrary time, by the JVM, for execution. In the case where the lock
is successfully obtained at the first attempt, execution of the method continues without
blocking. When returning from the synchronized method the lock is released and the

JVM makes threads in the lock wait set (if any have joined) runnable.

2.8.3 Conditional Waiting

In concurrently executing systems a particular thread may have to wait for some con-
dition to become true before being able to proceed. A typical example is of a producer
and consumer where producer threads and consumer threads share a buffer; if the buffer

is full the producer should wait until the buffer has space, if the buffer is empty then
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the consumer must wait for data to arrive. If the threads were to continuously loop
and check for the arrival of data the processor would be continuously engaged in this
activity. A more efficient method is to cause the thread to wait until the associated
state changes. When the state changes, the thread is notified and can check to see if it
is able to proceed. While the thread is in the waiting state it is not consuming processor
resources. The term conditional waiting is used to describe this behaviour (introduced
in [77]), where a thread waits until some condition becomes true, at which time execu-
tion may proceed into a conditional critical region (CCR). Classes used in Java inherit
(directly or indirectly) from the Object class, this class makes available the basic fea-
tures required for conditional waiting. The operations wait, notify and notifyAll are
part of the interface inherited from the Object class. The following Java fragment shows
the structure required to implement conditional waiting, (however exception handling
is omitted for clarity). The operation is guarded by an entry condition enterCCR. The
operation causes the calling thread to wait if the entry condition, entryCond, is not true.

If the entry condition is true, execution may proceed into the CCR.

public synchronized void anOp(){
while(lenterCCR){
wait();
}

... /™ Conditional Critical Region */

Consider a thread t and shared object o. A thread ¢ may invoke 0.anOp(). Thread
t must successfully acquire o’s monitor lock (prior to method entry). The wait call is
contained within the body of a while loop which continues to loop, and wait, until the
entry condition enterCCR is satisfied. The thread will remain in its waiting state until
notification is received from another thread using notify or notifyAll; or it may wake
when a specified period of time has elapsed. When the entry condition is satisfied the
execution will exit the while loop and enter its CCR. The wait call causes the calling
thread, ¢, to be added to the conditional wait set of the object, and o’s monitor lock is
released. Thread ¢ is now in the waiting state where it could remain indefinitely. To
avoid this a parameter may be supplied with the wait call, the parameter specifies a
time after which ¢ is made runnable again. Thread ¢ can also be removed from the
conditional wait set by another thread that invokes o’s notifyAll method. Thread ¢ is
now runnable and may be selected for execution by the JVM. When execution resumes
it does so by returning from the wait method, so the loop condition will be tested again.
To simplify our approach we will ignore the timed wait; and we leave the discussion of
exception handling until we deal with the implementation specifics. For now we just
note the fact that the wait method may throw an InterruptedFException, which must be

handled or propagated. This exception will occur if a waiting thread is interrupted, by a
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call to its interrupt method. Notification is used when some state is updated for which

other threads may be waiting. A Java fragment showing the call follows,

public synchronized void update(){
...some update

notify All();

Consider a thread ¢ and shared object 0. When thread ¢ invokes o.update(), notifyall
is called which causes all threads in o’s conditional wait set to become runnable. If
there are a number of threads waiting for notification then any one of them may win
the race for execution. An alternative approach is to use the notify method but this
can introduce problems and its use is not recommended in most situations. A notify
call will make runnable only a single, arbitrary, thread in an object’s conditional wait
set. In some situations using notify will fail to wake the thread that will allow execution
to proceed. In general the wait, notify and notifyAll methods must be placed inside
a synchronized method, failure to do so gives rise to an IllegalMonitorStateException
at run-time; the calling thread must own the monitor lock before calling wait. The
synchronization mechanism is used to provide mutually exclusive access to data and is
also used in conditional waiting. However, due to the fact that its use is not enforced,
inconsistent state may be visible. In the work presented in this thesis, we bring formal
methods to bear on the problem; we develop a new approach which hides the locking
and waiting implementation issues from a developer by relating atomic constructs in an
intermediate specification (model) to a formal, Event-B model. The atomic constructs
of the intermediate model are reflected in the Java implementation, but the insertion of
the Java constructs is handled by automatic translation from the intermediate model to

Java, thereby relieving the developer of this task.

2.8.4 Looping and Branching Problems

Consider the following pseudocode fragment (which is slightly unrealistic but used to
demonstrate a point). Suppose a class accesses a public variable a. The public visibility
declaration means that a can be accessed from outside the class in which it is declared.
In our example a class, C is a sub-class of java.lang.Thread which runs as a thread,
and may be one of a number of threads that have access to a. In the following fragment

a is read, and then division is performed (which is undefined if the value is zero).

if (a>0){ result = n/a; }

In the following scenario we can see how interference occurs, where variable a is accessed

by thread ¢! of class C, and thread t2 which is of some other class decrements the value
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of a by one. In the following scenario variables a and o’ are the before and after values

respectively, and the initial value of a is 1.

step t1 £2 a a effect

1 a>0 1 1 condition is true
2 tl.a=tl.a-1 1 0 decrement a

3 result =n/a 0 0O error

The error occurs because the attribute a is decremented by t2 after the condition evalu-
ation and causes a divide by zero error. More generally values that are inconsistent with
the intended semantics may be read when there is a dependency between the condition
and the body. The condition and body are not evaluated atomically and the read and
write are conflicting actions. In order to prevent this kind of problem it is necessary
to restrict access to fields by making them private, thus restricting visibility to within
the class only. Access is then permitted only through the use of synchronized methods,

which enforces mutually exclusive access.

2.8.5 Deadlock

Another issue that arises in the discussion about concurrency in Java is deadlock. The
Java environment provides the conditions for deadlock, i.e. a locking mechanism which
allows a thread to hold locks while waiting for others, and no pre-emption of resources
competing for the same lock. A circular wait occurs in the following scenario which leads
to a deadlock. t1 and t2 are threads that need to acquire both locks a and b.

1. ¢1 obtains lock a
2. t2 obtains lock b
3. t1 attempts to obtain lock b,
- but blocks waiting for b (also holding lock a)
4. t2 attempts to obtain lock a,
- but blocks waiting for a (also holding lock b)

The threads t1 and t2 are blocked, forever waiting for the other’s resource to be freed.
A solution to the problem is to provide a feature which allows a thread to give-up locks
that it holds in the event that it discovers one of the locks that it wishes to acquire is not
available. Since it can be very difficult to know in advance which combinations of ac-
quisitions will lead to deadlock a cautious approach would lead us to use a non-blocking
locking strategy whenever we need to obtain more than one resource within a synchro-
nized method or block. This approach may however lead to livelock; a situation where
the threads are continuously looping and finding that the resources are unavailable, even

though they are not unavailable all of the time.
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Lock a Lock b

FIGURE 2.5: Occurrence of Deadlock

An alternative strategy, to overcome contention that gives rise to deadlock, is to impose
an ordering on lock acquisitions. An example of this is given in [25] where a type system
is specified that incorporates the specification of lock levels and specification of a partial
order between each lock level. Where a thread holds more than one lock they must be
acquired in descending order. The type checker checks that the implementation does
indeed preserve the ordering. A similar strategy, acquisition of locks in a pre-defined
order, could be used in our approach. Lea describes alternative locking strategies in [101]
which forms the basis of the java.util.concurrent.locks API. It is an implementation of
one of these strategies that we later use in Chapter 8 to implement the lock manager

for our transactional constructs.

2.8.6 Nested Monitor Problem

Another problem that affects the strategy employed in our approach is the nested mon-
itor problem, which can occur when a thread holds more than one monitor lock and a
wait is invoked. In the following scenario of Figure 2.6 a thread acquires two monitor
locks and is then caused to wait. Unfortunately the thread still holds one of the locks so
if this object is required to make the waiting threads runnable, deadlock will occur. Here
we have two threads, t1 and 2, that make calls through synchronized Admin methods.
These methods, in-turn, call synchronized methods of anObject. One method contains
a conditional wait and another contains notifyAll. The following scenario leads to t1

holding onto admin’s lock, when it is has been put into the waiting state.

1. ¢1 obtains the admin lock.

2. t1 obtains anObject’s lock - is caused to enter the waiting state,
releases anObject’s lock but retains admin lock.

3. t2 is the only thread that can wake ¢1 but it is blocked.

t1 is waiting in anObject’s conditional wait set. If another thread were to invoke a
method that issues a notifyAll call then tI would be made runnable and possibly re-
linquish all locks held. The problem arises if t2 is the only thread that can cause the
notification to be issued, and ¢2 has to go through the admin object which is held by ¢1.
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2.t1 locks anObject
then calls wait()

1. t1 obtains admin

t1 anObject

lock

t2

3. t2 blocks

FIGURE 2.6: Nested Monitor Deadlock

In this case t2 is blocked indefinitely waiting for the admin lock, ¢1 is waiting indefinitely

for notification that ¢2 would provide if it were not blocked.

2.8.7 Formal and Semi-Formal Approaches for Java Implementations

We have seen some of the problems arising from the use of Java implementations, in
particular when concurrent processing constructs are used. Much work has been done
to address these issues and we now provide an overview of some approaches seeking to
address these issues that are of interest to us. An approach addressing concurrency is-
sues is that of JCSP [157, 158], which establishes a link between CSP and Java. A fuller
account of JCSP is given in Section 2.9.1. JCSProB, described in [162], makes use of the
JCSP libraries. The ProB tool can be used to construct and model check a combined
CSP specification and B machine, which can then be translated to Java code. The work
extends the JCSP libraries to accommodate external choice and message passing that
includes data structures. The FSP notation and LTSA tool used in [108] focusses on the
modelling of Concurrent Java systems, and subsequent verification of the model using
the analyser. Several toy examples are presented but the tool falls short of automatic
translation to Java. The work of Jacobs et al. [87, 88] uses annotated Java source code
to make dependability claims about concurrent object-oriented programs, it describes
concepts such as packing and unpacking objects, and object-invariants. The resulting
formalisation is verified using a bespoke tool. Other work that attempts to clarify the
issues surrounding concurrency using a clear view of atomicity is Fondue [94]. It is a
notation that uses OCL (but is not specifically linked to Java) for the specification of
concurrent programs. Eiffel [111, 112] is an object-oriented programming language that
additionally contains formal specification constructs known as assertions, such as pre and
post-conditions, class invariants, loop variants and loop invariants. It is recommended
that updates to system state are performed by commands; and state interrogated by
queries. The separation of concerns, where commands do not return a value and func-
tions do not update state, is known as command-query separation. This approach is

however not enforced in Eiffel.

Some formal methods incorporate the Java Modelling Language (JML) [28, 102] or
OCL [120] into their specifications. The JML is a markup language used to annotate
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Java source code. The markup uses constructs such as invariants, preconditions, postcon-
ditions, atomic regions and locks to specify required behaviour that enables verification
by model checking (but fails to verify all of the atomicity requirements as found in [127]).
JML also allows insertion of runtime assertion checks. The Key system [24] uses UML
diagrams annotated with OCL, or JML, to produce Java code. The underlying formal-
ism is based on a Dynamic Logic called Java Card DL, which underpins translation to
Java Card implementations. PerfectDeveloper [55], described in [47], is an approach that
uses its own notation, in a design-by-contract style, for specifying object-oriented devel-
opments without concurrent processing. The specification gives rise to proof obligations
which are discharged by an automatic theorem prover; there is no option to perform
interactive proof; the tool targets Java or C++ [146] code. Other work is aimed at
extending the existing Java language, such as the atomic type system presented in [62],
which proposes the addition of atomic, guarded_by and requires keywords, to the Java
language. The type system is expressed formally, and maps to a Java application that

type checks the annotated code (checking for atomicity violations in the specification).

2.9 Java Correctness and Concurrency

The following section describes some of the approaches which can be used to improve
the dependability of Java implementations. Java will be the target platform for our im-
plementations, a decision influenced by its widespread use, and ability to accommodate
concurrent processing. Of the many methods available we have chosen to give details
of these in particular since they give a valuable insight to the alternative approaches to

achieving improved reliability.

2.9.1 JCSP

JCSP [157, 158] is a Java library arising from a combined CSP/Occam model, providing
a framework for implementing the Occam [134] approach to concurrency. It uses a
message passing, rendezvous style, as a basis for communication between concurrent
Java threads. [123] extends the theory to distributed networks of threads. The approach
is underpinned by CSP semantics and makes use of the notions of processes and channels
to provide a point-to-point communication style. A CSP specification of JCSP has been
verified using the FDR model checker. A monitor abstraction is used to describe the
behaviour of synchronized Java methods. Lock acquisition and release are described in
the following CSP processes STARTSY NC, and ENDSY NC'. The claim and release

events represent lock acquisition and release respectively, and o is the object being locked
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by thread ¢.

STARTSYNC(o.t) = claim.o.t - SKIP
ENDSYNC(o.t) = release.o.t - SKIP

The processes that model locking are used with the M LOCK and MLOCKED pro-

cesses which provide an ordering of events for modelling waiting, as follows,

MLOCK (o) = claim.o?.t - MLOCKED(o,t)
MLOCKED(o,t) = release.o.t - MLOCK o)
O notify.ot - MLOCKED(o,t)
O notifyAll.ot - MLOCKED(o,t)
O waita.o.t - MLOCKED(o,t)

We can see that once the lock is claimed the M LOCKFED process can choose to re-
lease the lock, perform notification, or wait. The CSP semantics of JCSP are described
in [157]. Processes are implemented using the CSProcess class which contains a run
method to initiate communication between threads. The process communicates with
other processes only through channels, or events. The JCSP One20neChannel is used
to facilitate communication between two processes, other configurations for differing
numbers of readers and writers are provided by, Any2AnyChannel, Any20neChannel
and so on. The channel classes typically have a field to store the transmitted value, a
boolean field indicating if the channel is empty, and two methods read and write. The
correspondence between the JCSP classes and the CSP model allows the behaviour to be
checked for issues such as deadlock using a tool such as FDR [63]. Various Occam fea-
tures are found in JCSP such as external choice, and parallel and sequential composition

of processes.

2.9.2 JCSProB

A recent development has been the combination of JCSP and ProB [104] called JC-
SProB [162]. The ProB model checker used in JCSProB supports a combined classical-
B/CSP model [35] albeit with some restrictions applied. Its translation utility creates
Java code based on the JCSP framework. The approach is restricted to a single CSP-
machine pair and does not feature refinement. In a combined B and CSP development
events of the CSP processes synchronize in the normal way, and when combined with
a B machine, synchronize with CSP events with the same name and parameter types.
The effect of this to facilitate an ordering on the operations of the B machine. A com-
bined operation/event with the same name and parameters is only enabled when CSP
events are enabled and the guards of the operation are true. The operation signature

0= 01,...,0m < 0p(i1,...,iy) is related to the CSP statement chliy ...l1i,701...70m,.
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We see that the CSP model sends its parameters to the B machine and receives the result
from the B machine return parameters. The following CSP process PROC restricts the
B machine of 2.1.5 to performing op; followed by ops and then op; again.

PROC = opylx17y1 — opalxs?ys — PROC

JCSProB provides a specialized channel class PCChannel for the Java implementa-
tion. The class inherits from java.lang.Thread, so implementations override the run
method to describe state updates. Four other operations implement the behaviour
which includes the possibility of parameter passing between the CSP model and B
machine. The void ready() method is used where there are no parameters to pass,
void ready(Vector in) is used where the CSP process passes parameters to a B oper-
ation, Vector ready_rtn() is used where a CSP process receives arguments from a B
operation, and Vector ready_rtn(Vector in) where a CSP process passes parameters to
B operation, and receives return parameters back from a B operation. A precondition
check can be performed in the preConditionCheck() method, it blocks the calling thread
if the precondition is not satisfied. The combined model is amenable to model checking

with ProB and can be used to check safety and deadlock properties.

2.9.3 JML

The Java Modelling Language (JML) [28, 102] is a semi-formal method based on the
design-by-contract (DBC) [111] approach. In DBC a client of a service is expected to
satisfy the preconditions of a contract in order to use a service safely. In return, the
service provider’s activity is described by the postconditions of the contract; the provider
is expected to satisfy the postconditions. In a markup language such as JML the contract
is at a higher level of abstraction than an implementation, this allows the developer
flexibility to define more than one implementation satisfying a single contract. In this
way implementations can be changed without affecting the specification, for instance
to provide a more efficient implementation. JML allows a developer to annotate Java
programs with markup contained in comments /*Q markup @*/, or following //@Q so
that traditional compilers ignore the additional information, expressions are similar in
style to Java expressions in order to make them understandable to those familiar with
Java; however JML assertions are not allowed to have side effects. As in Java, a JML
specification be inherited from a superclass, and similar scoping rules can be applied
to the JML specification itself. Properties specified using JML can, most often, be
checked mechanically. The keywords requires and ensures describe the precondition

and postcondition respectively and are the foundation of its DBC style. An example of
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their use follows,

public class Div{
int val;
//@ invariant 0 <= val;
/ * @ requires divisor! = 0;
@ assignable val;
@ ensures val == \old(val)/divisor
Q && \result == val;
@ signals(Divide Exception) val/divisor < 0
Qx /
int divide(int divisor){
if(val /divisor >=0)
val = val /divisor;
else
throw new Divide Exception(“Value to low”);

return val;

}

In the above example we see the JML specification in comments which include an in-
variant. The invariant states that val must always be greater than or equal to zero, and
if the invariant is violated during the method call an exception should be signalled. It
is possible to specify two kinds of postcondition, normal and exceptional. The signals
keyword allows identification of exceptional postconditions, and the ensures clause al-
lows specification of normal postconditions. In the case of method specifications, they
are typically followed by the Java code that implements the method specification. The
requires clause defines the precondition, the client will have to check that divisor! = 0.
The implementer of the service must guarantee that val is changed and assigned the new
value, as described in the ensures and assignable clauses. The \result clause states
which value should be returned by the method. In some situations it is necessary to
distinguish between the pre — state, the state before entering a method; and post — state,
the state on method exit. This can be seen above where \old(val) is used to access the
old value of val. Another JML feature is the ability to use quantification when specifying
properties, \ forall is used for universal quantification, and \ezists is used for existential

quantification.

There are a number of tools available that can be used with JML [29]. The JML
specification can be compiled using the jmlc compiler, which converts pre-conditions into

Java assertions and adds them to the Java bytecode; these can then be used to perform
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run-time assertion checks provided that assertion checking is enabled in the JVM. Static
checking and verification of assertions is possible using other tools. ESC/Java2 is a
static checker that has been extended to check JML annotations against Java code. The
tools create verification conditions from the annotations and code, as well as verification
conditions and makes use of a automatic theorem prover to find errors. The checker is
typically used to discover out-of-bounds array references, non-null references - and for
concurrent programs, deadlock and race conditions. ESC/Java2, however, is not used
to ‘prove’ absence of all errors, but simply that none have been found by the checker. A
more interactive approach, is to use the LOOP tool [26] to create a specification suitable
for use with the PVS theorem prover [122].

2.9.4 Java Pathfinder

Java PathFinder (JPF) [103, 156] is an approach where Java bytecode is model checked
directly using a modified Java Virtual Machine (JVM); it is particularly useful for check-
ing for concurrency issues such as deadlock and data races. The authors argue that model
checking at the bytecode level provides a number of benefits, including the fact that in-
structions in the bytecode are easy to handle in the analysis tool. It is also possible
that the application of formal methods at the design level does not prevent some errors
being introduced at the lower, implementation, level. Therefore model checking at this
lower level can eliminate these errors, however it is still the case that correct bytecode
does not imply that the Java is correct. As is common with model checking approaches
JPF suffers from state-space explosion as the complexity of the model increases; sev-
eral techniques are described to reduce this problem such as symmetry reduction and
static analysis. Symmetry reduction seeks to prevent areas with similar behaviour be-
ing re-checked, by deriving a canonical form and checking this just once; JPF uses this
technique in relation to class loading for instance. Static analysis uses slicing and partial
order evaluation techniques, among others, to reduce the state space. Slicing will typi-
cally reduce the state space by selection of a subset of the state space that is relevant
to a particular property under review. Partial order reduction (POR) techniques try to
identify interleaving/non-conflicting areas in the code which can be reduced to a single
execution path; thereby reducing the number of paths to analyse. In the current tool
POR can be carried out on-the-fly.

JPF checks the bytecode to find unhandled exceptions, data races and deadlocks in the
code. To find (but not prove absence of) potential data races it uses an algorithm based
on the Eraser algorithm of [130].

The main advantage of JPF is that it works on Java bytecode without the need for the
developer to learn a new language, but there is currently no support for many native code

libraries such as java.awt, and only limited support for java.io, Java’s I/O libraries. The
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Model Java Interface (MJI) is a partial solution to this problem, it allows a developer

to replace a code library with an abstraction.

2.9.5 JR - extended Java

JR[92] is an approach to parallel distributed computing which can also be used to specify
executions in shared memory systems. This work is interesting since it describes an
approach to handling concurrency which uses an extension to the Java language, which
is then translated back to a standard Java program to provide an implementation. JR
introduces a version of Java which is extended with the SR [13] concurrency model
(Synchronizing Resources). Initially we say a few words about SR before moving on to
JR. The SR concurrency model allows specification of one or more Virtual Machines
(VM) in an environment with one or more physical machines; each VM resides on, at
most, one physical machine and a physical machine can contain more than one VM.
Processes can share objects within a single VM or across a number of VMs. Each
VM has global and resource objects, these have a two distinct partitions - a public
and a private segments. The publicly visible part of the specification contains only
type, constant and operation declarations; additionally globals may declare variables.
The ‘private’ part is the body, which contains private declarations and the operations’
behavioural specification. The variables declared in a body are visible only from within
the body in which they are declared. In SR the units of execution are processes and
procs. processes are created and run when the enclosing resource is created; whereas
procs are invoked explicitly by a caller. In SR processes communicate using operation
invocation and this can take one of several forms, we discuss this further when dealing

with some of the Java programming aspects.

JR introduces a number of communication styles at a high level of abstraction. In
traditional Java programming Remote Method Invocation (RMI) is the highest level
of abstraction used for communication in its distributed model. Indeed the JR imple-
mentation uses RMI in its implementation, but it is hidden from the developer. The
caller of the operation can use a synchronous or asynchronous communication style,
and the operation can be serviced using a procedural style, or alternatively using an
invocation queue. Synchronous style communication is invoked using an operation call,

asynchronous communication uses a send request. Operations are serviced as follows,

e Procedure Invocation Style - an operation is serviced by an object inheriting from

ProcOp, the operation is simply invoked by executing the method body.

e Invocation Queue Style - this is derived from the SR input statement (a generalisa-
tion of Ada’s select and accept [147]), and manifests itself as an invocation queue

in JR. Operation invocation requests are queued in the called object. Operations
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wait in the invocation queue to be serviced by the inni statement, in this style the

server chooses when to invoke the operation.

When the different communication and servicing approaches are combined they give rise
to the following communication styles of Table 2.2. The first column of the table shows
the communication style from the caller, which is either a synchronous call (caller waits
for reply) or an asynchronous send request (caller does not wait for a reply). The second
columns describes the way in which a receiver can service the communication, which
is either in a procedural style (no queue) using ProcOp, or by queuing requests in an
invocation queue where the server imposes its scheduling a policy. The third column
is descriptive, but it is worth noting that an asynchronous procedure call is described
as dynamic process creation; by this we mean that a new process is created and run in

order to service the request.

Communication | Service | Style

Synchronous ProcOp | Procedure Call
Synchronous InOp Rendezvous
Asynchronous ProcOp | Dynamic Process Creation

Asynchronous InOp Message Passing

TABLE 2.2: Communication Styles of JR

In summary - JR introduces some useful extensions to Java which, at a high level of
abstraction, allow specification of distributed, concurrent systems. Features include
the creation of remote virtual machines, without the need for user configuration at
run-time; remote object/process creation; support for asynchronous and synchronous
communication styles; two methods of servicing - invocation queue and direct invocation.

JR extended-Java is translated back to a standard Java format for implementation.

2.10 Review of the Chapter

In this chapter we have provided an overview of the domain in which we make our con-
tributions. We began by introducing some formal theories that underpin the state of
the art in our field of interest; we continued with a general discussion about the various
development approaches that can be used to improve the reliability of systems. We
discussed how formal methods tend to be applied to particular kinds of problems, and
described several approaches that combine formal methods to provide broader solutions.
Next we introduce object-oriented technology and discuss how object-oriented technol-
ogy has influenced specification in the formal methods field. The next section introduces
the Event-B formal method which forms the basis for the work described in this thesis.
The UML-style graphical interface for Event-B specification, UML-B, was then intro-

duced. It is from UML-B that we take inspiration for some of our modelling techniques.
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This was followed by a description of the BO implementation language, which is the
implementation notation associated with classical-B development. We then discussed
some problems encountered in Java implementations related to the use of concurrent
executions, and sharing of memory. We concluded with a discussion of some approaches

aimed at improving the specification, and reliability of Java implementations.



Chapter 3

The OCB Language Part 1 -

Processes and Monitors

In this chapter we introduce OCB with a discussion of our motivation and the main
aspects that influence our approach. We introduce OCB in an incremental way, begin-
ning with non-atomic constructs, followed by monitors and procedure calls. Much of
this chapter, and indeed the chapter that follows it, is related to and expands upon our

paper [54].

3.1 Motivation

When modelling a software system, an Event-B model will be refined to a point where
we are ready to provide information about the implementation. Our motivation then is
to provide an approach to link Event-B with an implementation that takes advantage of
multi-threading by allowing executions to interleave at certain points. Consideration is
given to how tasks may be performed by executing processes (granularity of atomicity);
and how to specify where the processes may interleave, and the pitfalls of interleaved exe-
cutions in an environment using shared memory; how to create an approach to specifying
systems that contain features of the Event-B formal method and also of object-oriented

technology.

We shall use Java [68] as the target implementation language since it is often used to
implement concurrent systems; however our work is not limited to this target in principle.
We introduce an intermediate specification language, Object-oriented, Concurrent-B
(OCB), which we use to link Event-B models and object-oriented implementations (see
Figure 1.1). The new notation sits at the interface between the two technologies, and we
incorporate aspects of both. From OCB we define two separate translations; the first,

OCB to Event-B, gives rise to an Event-B model and thus embodies the semantics of

43
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the OCB model. The second, OCB to Java, gives rise to Java code that implements the
OCB model. We would expect to show that the Event-B model refines an existing model
in order to show that it satisfies properties of some abstract model. We aim to have a
notation which abstracts away some of the implementation detail from the developer,
and provides a simple view of atomicity with which to reason about the system under
development. We use labels to identify atomic steps, similar to those in +CAL [97],

which we map to program counters.

When defining the mapping to Java we need to ensure freedom from interference by
restricting visibility of data, and enforce a mutual exclusion policy for access to shared
data. We also utilize conditional waiting, but incorporate restrictions to avoid the
nested monitor problem [105] (where a monitor incorrectly retains a lock when a thread
waits). In particular we are concerned with preventing interference between concurrently
executing processes. Concurrent execution of interleaving processes is a typical way of
scheduling activities in a system where, using time slicing, each process can periodically
undertake some of its processing. Interference can occur when processes share memory
and values observed by a process are changed unexpectedly by some other process. A
process running in isolation from other processes is said to have as-if-serial semantics.
When a process is subjected to interference it deviates from its as-if-serial semantics as

described in [100], and we need to prevent interference in our implementation.

3.2 An Introduction to OCB

We begin by discussing some of the key issues, and the overall strategy for our approach.
An Event-B model may consist of a number of events which are abstractions, that when
implemented, are able to run in an environment that supports concurrency. Each event
of the abstract development can contain a number of updates to the state, which occur
atomically. Using OCB we impose an ordering on the interleaving atomic steps, and
translate this to an Event-B model which refines the abstract development. The events of
the implementation refinement are restricted so that they occur in the order specified in
the OCB specification. To facilitate the interleaving behaviour we introduce a sequential
operator,‘;’,; and the notion of non-atomic operations, running in parallel, which may
interleave at the point of the sequential operator. To accommodate concurrency within
our system we introduce processes. A process’ behaviour is described by a non-atomic
operation. A non-atomic operation consists of one or more labelled atomic clauses
where the labels map to program counter values in the Event-B model. The program
counters are used to guard the events, and impose an ordering on the execution of the
clauses of each process. In our system we wish to share data between the processes in
a controlled way, to do this we introduce monitors with atomic procedures. Access to
monitor variables is restricted in such a way that processes can only access the shared

variables through atomic procedure calls. We also add the restriction that monitors are
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not able to call a process’, or another monitor’s, procedures; thus preventing the nested

monitor problem.

3.2.1 Java and Event-B

Naturally, when attempting to create an interface between two technologies such as Java
and Event-B we find that some desirable, and perhaps some undesirable characteristics
manifest themselves. We are attempting to create a specification notation at a higher
level of abstraction than Java and find that we can make use of Event-B’s notion of
atomicity. At the same time we find that we are constrained somewhat, in order to

avoid some of the problems discussed in Chapter 2.

Atomicity

Developers creating concurrent programs using a language such as Java bear the respon-
sibility of ensuring their code is thread-safe; that is, the concurrently executing threads
obey as-if-serial semantics. It is widely recognised that reasoning about these aspects of
concurrency is very difficult, mistakes are easily made and errors are hard to detect. We
simplify a developer’s task by allowing them to reason about concurrency at a higher
level of abstraction. Event-B facilitates this and leads us to a solution where the Java
developers use a simple notion of interleaving atomic clauses. The developer, using a
higher level approach, is therefore relieved of the burden of specifying the lower level
locking details. An intermediate specification notation arises, with high level atomic
constructs, which maps to atomic events in Event-B. The notation is used to describe
a formal model of an object-oriented program. The new OCB notation includes object-
oriented features to facilitate mapping to object-oriented languages. We further propose
a mapping to Java code, where the resulting program has the same atomicity as the

corresponding Event-B model.

Event-B has a very simple notion of atomic events. Unlike unprotected Java methods,
intermediate states in an event are not visible. There are discrete ‘before’ and ‘after’
states associated with a state transition. The state transition occurs when an event fires
and the actions of the event determine the new state. This simple concept of an event
is represented by an atomic clause in the OCB model; the Java program, that results
from the transformation, is made to reflect this granularity of atomicity. For shared
data, in the translation, we map an OCB procedure call (and its related event) to a
synchronized method. Unshared data does not require protecting in this way. In the
Java implementation the Java bytecode generator adds additional code - on entry to a
synchronized method; prior to method entry, the monitor lock is obtained, the critical
activity is performed, and the lock is relinquished upon method exit. This sequence

relates to the formal model when an event takes place. The synchronized method will
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only be atomic if certain restrictions are observed, such as respecting encapsulation.
These restrictions must be enforced by development processes and tools to ensure code

conforms to the formal model.

Concurrency

In Event-B two events cannot take place simultaneously so there are no concurrency
operators involving events, although Event-B can be used to describe concurrently exe-
cuting systems. It also does not contain object-oriented features. It is, however, possible
to construct an Event-B model that represents an object-oriented system that is parti-
tioned (into threads/processes) and keeps track of states of multiple threads. In such a
model the finest granularity of the interleaving is determined by the Event-B semantics
for events, where an event is atomic. In Java unrestricted interleaving can cause un-
predictable results and is difficult to reason about. So the relationship between events
and suitably protected Java code will provide a clear definition of atomicity for the Java
implementation. It is our intention that the atomicity of the Java program will corre-
spond to the atomicity of the formal model, i.e. the interleaving of the Java threads
can be shown to be equivalent to the interleaving of the formal model with its atomic
events. The relationship between OCB specifications, the Event-B model, and the re-
sulting Java program will need to take into consideration interference and deadlock. Our
current work imposes restrictions on an attribute’s visibility to prevent interference, and
each atomic clause is restricted to interact with a single monitor object. This will ensure

freedom from unintended deadlock caused by contention for multiple resources.

3.2.2 Process and Monitor Classes

In order to simplify reasoning about the interactions between interleaving threads we
stipulate that only non-shared objects can map to threads in the implementation. In
OCB this gives rise to the non-shared thread-like objects that we call processes, which
are instances of ProcessClass; and shared objects which are instances of MonitorClass,
which we refer to as monitors, see Figure 3.1. The relationship between the processes and
shared objects is similar to the relationship between Ada tasks and protected objects.
Ada tasks access a protected object’s data using its procedures, functions and entry calls;
these features ensure tasks have mutually exclusive access to shared data. ProcessClass

instances correspond to ‘runnable’ threads and each ProcessClass has a run operation

pl: ProcessClass refers to

p2: ProcessClass

FIGURE 3.1: Processes Sharing a Monitor Object

m: MonitorClass

refers to
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which is non-atomic. The run operation consists of a non-atomic construct which is
able to interleave in a controlled manner with other run operations. The constructs
have precisely defined points at which threads may interleave. In the Java translation of
a ProcessClass the resulting process object is an instance of java.lang. Runnable (the
interface for Java threads), and has a run operation containing a translated non-atomic
construct. The non-atomic construct is defined recursively, so it may contain other non-
atomic constructs. Types of construct include branching (i f —then—andthen—end), and
looping (while—do—andthen—end). It would be possible for ProcessClass definitions to
contain atomic procedure definitions providing they are non-blocking, however we refrain
from adding this feature at this moment in time in order to simplify the explanation -
we intend to add this feature as part of future work. Instances of MonitorClass are the
servants of processes and do not map to threads, they translate to monitor objects in
Java. Each MonitorClass contains only private data and atomic procedure definitions.
These procedure definitions may make use of the conditional waiting construct; however
recursive calls are prohibited in OCB due to the fact that correspondence with Event-B

would be difficult to achieve.

3.2.3 Restrictions Required for Mapping to Java

To ensure access to variables is free from interference in the implementation we impose
a number of restrictions. The operations of a ProcessClass may invoke MonitorClass
procedures; and a number of process objects may share a monitor object. As mentioned
earlier in the chapter we stipulate that access to shared variables be through atomic
procedure calls, and add the restriction that monitors are not able to call a process’, or

another monitor’s, procedures; thus avoiding the nested monitor problem.

In the translation to Java, our monitor classes should map to classes where mutually
exclusive access to data is enforced by encapsulation, together with the use of synchro-
nized method calls. The constructs that give rise to mutually exclusive access are added
automatically by the tools during the translation process. To simplify our strategy we
ensure that all of our methods are synchronized. While this is not very efficient, fur-
ther optimisations can be investigated as part of future work; for example operations
accessing attributes that are not updated after instantiation would not need to be syn-
chronized. In order to ensure that the classes arising from the translation are properly
encapsulated we require that all OCB attributes give rise to private fields. They are
therefore not directly accessible from outside of the declaring class, and we enforce the

use of synchronized methods to access data.

We now discuss the issue of integer wrap-around in Java. An integer’s value, in Java,
ranges from -2147483648 to 2147483647, and arithmetic operations on Java integers
are modular. In many cases wrap around will not cause a problem since the integer

values will be nowhere near the minimum or maximum value; or perhaps wrap-around
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behaviour in some unusual circumstances is part of the specification. If we wish to
prevent it then it is possible to define a constant named Javalnteger in the context;
the range is defined in an axiom with the interval —2147483648...2147483647. Then
we can use Javalnteger when typing the integers instead of Z which will give rise to
additional proof obligations. Our default for this work is to use Z to define integers,
and note that wrap-around is ignored for now, but the issue will be addressed in future

work.

3.3 OCB Language Features

3.3.1 The Sequence Operator

In a system where concurrently executing processes are able to interleave it is necessary
to describe the points at which the interleaving may take place, since uncontrolled in-
terleaving may lead to inconsistent state being visible. In order to facilitate interleaving
we introduce non-atomic operations, in process classes, which allow interleaving to oc-
cur at pre-determined locations. The locations at which processes may interleave are
identified by a semi-colon character, which is a sequence operator indicating left to right
ordering of evaluation. This kind of feature could be realised by either a pre-emptive or
co-operative multi-tasking implementation; but since we are targeting Java we use its
pre-emptive multi-tasking approach. The sequence operator’s operands map to labelled

atomic events.

3.3.2 Labelled Atomic Constructs

The atomic sub-clauses of non-atomic operations are identified with a unique label - when
translated to Event-B each label corresponds to a state in which an event is allowed to
fire. The model has an abstract program counter which keeps track of the current state.
We also use the label to create a unique event name, this allows us to quickly relate
events to the labelled clauses when reading the Event-B model. The event is enabled
when the program counter is in the state identified by the label, providing of course
all other guards are true. A simple example OCB fragment follows, where the labelled

constructs have an assignment Action.

labell : a :=a+ 1;
label2 :b:=b+1
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3.3.3 A Looping Construct for Processes

Since looping is a frequently required behaviour, we wish to introduce a construct that
is easy to reason about; we also impose restrictions on the loop condition to ensure that
no other process can interfere with its value. We refer to the OCB looping construct as
the while construct. In the while construct the guard refers only to private attributes
of the current class. The processes are not shared so the attributes of this class will not
be modified by another process. The andthen clause of a loop can contain a further
non-atomic construct. The OCB while clause is written as follows, with the square

brackets indicating an optional clause,
while(Guard) do Action [andthen NonAtomic] endwhile

The loop is guarded by a predicate Guard. While the guard evaluates true then the
do clause is evaluated, and the andthen clause is evaluated if one exists. The looping

behaviour continues until the guard is false.

It is important to note that this construct allows interleaving (with other threads) to
take place within the loop body. The Guard and Action of the do clause are evaluated
atomically, and this is optionally followed by a non-atomic clause in which interleaving
may take place. We consider that breaking the atomicity of the loop will allow for easier
proof, and makes for a more flexible approach. It is often the case that, during the
execution of a while loop, a number of procedure calls may be required. In OCB we are
limited to only one procedure/create call per atomic clause due to the restrictions we
have imposed to prevent deadlock. Using the andthen clause we are able to overcome

this limitation and allow two or more calls in a loop body.

3.3.4 Conditional Branching for Processes

Process class operations may specify conditional branching using the if construct. We
have a similar restriction on attributes used in the guard as for the while loop, that is,

attributes are private and non-shared. The if construct follows,
if(Guard) then Action [andthen NonAtomic| endif

There are additional branch options with an elseif and else clauses, they be discussed

more fully later in the chapter.
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3.3.5 Conditional Waiting for Monitors

In our initial work we use Java’s built-in facilities for conditional waiting, java.lang.Object’s
wait and noti fyAll methods. We allow monitor objects to block until a guard is satis-
fied. The OCB when clause, located in a monitor’s procedure definition, will translate
to these Java constructs. The conditional waiting construct has the following form,

where < and > indicate syntactic elements,
when(< Guard >){ < Action > }

The atomic Conditional Critical Region (CCR), the Action, is executed when the guard
is true. When the guard is false the operation blocks. In the Java translation the block-
ing behaviour corresponds to either unsuccessful monitor lock acquisition, or successful
lock acquisition followed by failure to satisfy the entry condition. An unsatisfied entry
condition causes the calling thread to block and the monitor lock to be released. In our
approach waiting threads are woken by notifyAll calls, which causes them to resume
and compete once more for the monitor lock. This corresponding Java conditional wait-
ing construct is as follows and may require an optional notifyAll method call if other

waiting process need to be informed of a state update that has occurred in the action.

while(!<Guard>){wait();} <Action>; notify All();

3.3.6 The MainClass Construct

The MainClass is the analogue of a Java class with a main method. This provides
the point of entry for execution in the model and facilitates the mapping to the Java
class which contains the main method. The main operation of our MainClass contains
construction clauses for process and monitor objects. In the construction clause new
instances are created. Process objects may refer to monitor objects; the name of a
monitor object can be passed to the constructor operation as a parameter, the monitor
object name is then assigned to an instance attribute in the constructor for later use.
When a ProcessClass is instantiated it is immediately available for scheduling, but
may not run for some time. In the Java implementation, the scheduling of a thread
occurs some time after the constructor call, the translator inserts a call to the Thread
object’s start method immediately after the thread is constructed, when it actually runs
is decided by the scheduler.

3.4 Mapping Processes to Event-B

We begin our formal description of OCB by describing the non-atomic, and labelled

atomic, constructs of processes. These are used to specify the behaviour of a process,
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we also give details of how the labels are used to describe the states used in program
counters. A system may have a number of processes definitions, each with a non-atomic
operation that is able to interleave with non-atomic operations of other processes. We
use a syntax based on the guarded command language [52], discussed in section 2.1.2;
and later we use syntactic sugar to provide a more object-oriented style specification.
Here we use ‘;’ as the sequence operator, [| for choice, and do od for repeating. We
also use the following BNF style annotation, where s is a symbol; [s] denotes zero or
one s is permissible; s™ denotes 1 or more s is permissible; and s* denotes 0 or more is

permissible.

NonAtomic ::=
NonAtomic ; NonAtomic
| NonAtomic [|] NonAtomic
| do Atomic [; NonAtomic] od

| Atomic

The syntax of a non-atomic clause allows a sequence, choice, loop or atomic statement.
Atomic statements have a body, optionally guarded by a predicate. The body may be an
Action involving assignment, assignments are of the form x := E, where «x is a variable
name and F is an expression. They may be composed using, ||, the parallel operator. In
our definitions of the OCB syntax we use left and right brackets, ‘<’ and ‘>’, to delimit

atomic regions. The syntax of the Atomic construct follows,
Atomic ::=  Label : < [Guard—| Body >

We present a simple example to illustrate the mapping of a sequential clause which gives
rise to two Event-B events, evtl and evt2. WHEN G THEN S END is the guarded
event syntax of Event-B with guard G containing a predicate, and body S containing
assignment actions. The labels of the specification map to values assigned to the process’

program counter variable, P,.. An example specification is,
l: ay:=xp>;1012: <x:=x+10>

which results in the following two events,

evtl £ WHEN P,. =1 THEN y :=z | Pp. := 2 END
evt2 £ WHEN P,. =2 THEN z := 2 + [ || Py := terminated END

The event evtl is enabled when the program counter is /1. The state updates are
contained in the event body, together with the program counter update where the value

is set to [2; the next label in the sequence. The next event evt2 is enabled when the
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program counter value is (2, which has been set by the assignment in the action of evtl.
Once again state updates specified in OCB are translated to the event body. During
translation we supply the value of the next label, in this case we specify that the process
terminates and assign the label terminated. Each process in the system will have such
a terminating label, although there may be some situations where translation does not
give rise to its use, such as when specifying a process with a loop that is forever true. It
should be noted that the above Event-B fragments use the £ operator in event definition.
In this thesis we will however simply use = in place of £ in the event specification, where

£ has already been used.

The processes of a system are defined as a function over class names (CNames) to

processes.

Definition 3.1. Processes = (CName — Process)

A process is defined as a set of variables and a non-atomic clause,

Definition 3.2. Process = P(Var) x NonAtomic

The variables of the resulting Event-B model will include all variables of the translated

process together with a separate program counter variable for each process.

We introduce a transformation function, T'P, which maps a process’ non-atomic clause

to a set of Event-B events. TP is typed as follows,

Definition 3.3. T'P € Processes x C Name — P(Event)

In order to define T'P we introduce a function TNV A that maps a non-atomic clause to
a set of events. The label supplied to TV A is the last program counter value assigned

in the clause. TN A is typed as follows,

Definition 3.4. TNA € NonAtomic x Label x CName — P(Events)

We denote function application, where we apply function f to one element d, as < d >f
or to a number of elements < di,...,d, > as < di,...,d, >f. We now define the
application of TP to a process with variables var, body na and name P. TP maps to

a set of events, where tp is a constant label indicating a termination state for a process.

Definition 3.5. < var, na, P >TF 2 < na, tp, P >TNA

We see that the translation of the set of variable declarations var, associated with the
process, is not addressed here. We wish to focus on the translation of the non-atomic
clauses at this point in time. We simply state that each variable declaration map directly
to an Event-B variable and typing invariant. An example declaration a € Z gives rise

to a variable a and an invariant a € Z.
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Non-atomic clauses can be nested within other non-atomic clauses forming a hierarchical
structure, the top-most level has no following clauses, so the label supplied to T'IV A at the
top level is the terminating state tp. In order to define the non-atomic syntactic elements
we specify some well-definedness constraints regarding labelling of the constructs. Non-
atomic clauses are well-defined if the start label of each operand differs; the exception to
this is the choice construct, where each label must be the same. To identify the first label
of a clause we introduce a function sLabel (for start label), which takes a non-atomic

construct as its input parameter and yields the first label of a non-atomic clause.

Definition 3.6. sLabel € NonAtomic — Label,

Applied to the non-atomic and labelled atomic clauses we have,

sLabel(l: < [g—] b >
sLabel(nal;na2) = sLabel(nal)
sLabel(nalllna2) = sLabel(nal) = sLabel(na2)
sLabel(do na od) = sLabel(na)

)
)=
)=
) =

We now look at sequential composition of non-atomic clauses; nal and na2 are sequen-
tially composed clauses. The label, [2, passed to the TN A function is the end label of

the sequence. It specifies the final program counter value for the non-atomic clause.

Definition 3.7. < nal ; na2, 12, P >TNA
£ < nal, 11, P>TNA
U < na2, 12, P>TNA

where [1 = sLabel(na2)

A branching clause is defined as follows with nal and na2 being composed using the
choice construct. Note the mapping of different label parameters on the right hand side

of the equality, when comparing to the sequence clause definition 3.7.

Definition 3.8. < nal [| na2, 12, P >TN4
L2 < pal, 12, P>TNA
U < na2, 12, P>TNA

In a well-defined branching clause the guards of each branch, and any sub-tree, are
disjoint. Labels play an important role in determining the execution order in the trans-
lated Event-B model. The branching clause maps to two T'N A transformations, where
sLabel(nal) = sLabel(na2); and both Label parameters are the same. This contrasts
with the transformation of a sequence clause where sLabel(nal) # sLabel(na2). In a se-
quence clause, the Label parameter of the first clause equals the start label of the second

clause, that is {1 = sLabel(na2), in order to model the enabling conditions for ordered
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execution. However, in a branching clause the start labels form one of the enabling

conditions used to define choice between branches.

Now we turn our attention to the looping clause, the body of the loop consists of a Body
clause, and optionally a non-atomic clause. The definition of the simpler case, without

the optional non-atomic clause, follows,

Definition 3.9. <doll: < g—b > od, 12, P >TNA
L2 (<l ag—bb>, 11, P>TIA
U{<il: a —~g— Skip > , 12, P >TEA}

Clause /1 is guarded by g; if g is true then b occurs, the program counter is unchanged
and the loop body can be evaluated again. In the case where the guard is false the action
is Skip, and the program counter is set to the value supplied as the Label parameter.
We now present the mapping where the optional non-atomic clause, na, is present. In
the following definition the program counter is updated to allow evaluation of na using
the label identified by sLabel(na). The last event arising from the clauses of na resets
the program counter to the initial value, this models the behaviour where the loop can

begin again, or exit depending on the guard.

Definition 3.10. <doll: < g—b > ;na od, 12, P >TNA
2 {<il: ag—bov 13, P>TEA
U{<ll: < —~g— Skip > , 12, P>TN4}
U< na, [1, P>TNA

where (3 = sLabel(na)

Transformation of a labelled guarded atomic action is defined next. The transformation
T LA takes an atomic statement, the end label and owning process name as parameters,
and returns one or more events. If the guard is omitted from the specification then a

true guard is assumed.

Definition 3.11. TLA € Atomic x Label x CName — P(Event)

The label of the clause forms part of the event guard, and the end label supplied to
TLA is the updated value of the program counter used in the action. The name of the
event is derived from the label and caller, and if necessary the clause type, here [1p is
P’s label I1. We define the transformation of an atomic clause with a body consisting

of action A, as follows.

Definition 3.12. < [1: < g— A > ,[2, P >TLA

A

Ip =
WHEN P, =11 A g
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THEN A || Py := 12
END

where P, is the program counter of the process P.

Note that assignment actions in A may be composed in parallel. In this case we apply
the restriction that a variable used in A may only appear on the LHS of an assignment

once.

3.5 Mapping Monitors and Procedure Calls to Event-B

We now introduce monitors and procedure calls to the system. Monitors are shared
resources which enforce mutually exclusive access to their variables through atomic pro-
cedures. Our system now has non-atomic process bodies, atomic procedure calls, and
atomic assignments. Procedures can have formal parameters, which we define as a se-
quence, LVar, of parameter declarations. Within a monitor class the names of formal
parameters must be distinct from the attribute names, this is due to the substitutions
that take place during translation, a restriction that may be overcome if required in
the future. The sequence of formal parameters correspond with the sequence of actual
parameters in a call. Translation of a procedure call results in the in-line substitution of
the procedure body in the caller, in place of the call; and formal parameters are substi-
tuted by actual parameters. Substitution of formal parameters by actual parameters is
described in [117, 118]; we use substitution by value but limit use of formal parameters
to the right hand side (RHS) of assignment expressions, and to guards. The procedure
name is unique in a monitor, but the same name may exist in another monitor. We
therefore need a way to link the called procedure with the appropriate monitor; we
use dot notation to do this. This is similar to the dot notation that we use later for
object-oriented features; except that here, on the left hand side (LHS), we are identi-
fying a monitor name; and later the name of an instance appears on the LHS. To be
well defined the monitor must contain a procedure with the called name and with the
same number of parameters. For each of a call’s actual parameters, a1, ..., a, the type
must match those of the formal parameters, f1,..., fx. To enable the specification of a
return parameter we introduce a special variable with the reserved name, return, that
can be used in an action clause. The return variable can only be used on the LHS of an
assignment statement in the procedure body. When in-lining it will be substituted by
the variable assigned to on the LHS of the procedure call. The syntax for the body of

a labelled atomic clause is extended to allow a procedure call, in addition to an action,
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where m is a monitor name, and pn is a procedure name.

Body ::=
Action

| [v:=]m.pn(a,...,ax)
Monitors is a collection of monitors over monitor names,

Definition 3.13. Monitors = (CName — Monitor)

A monitor has a set of variables and some procedures,

Definition 3.14. Monitor = P(Var) x Procedures

Procedures is a collection defined by a function over procedure names,

Definition 3.15. Procedures = (PdName — Procedure)

A procedure consists of local variable definitions (the formal parameters) guards and

actions and may specify a return type.
Definition 3.16. Procedure = LVar x Guard x Action x T
We define a T'L A mapping for the new clause. We ensure the type of the return variable

matches the assigned variable in a static check. We impose restrictions on A4, so fi,..., f&

can only appear in guards and expressions; and return only appears on the LHS of an

assignment.

Definition 3.17. < I1: < g — v :=m.pn(as,...,a;) > , 12, P >TEA
a
llp =
WHEN Ppe= 11 A gplfis- -, fi\ar, ..., ap] A ge
THEN A[f1,....fi\a1, ..., ag][return\v] || Ppe := 12
END

where procedure pn of monitor m is defined by m.pn(fi1,..., fx) =g9p = 4

In the mapping we use substitution; formal parameters are substituted for actual pa-
rameters in the guard and action, and the return variable is substituted by the as-
signed variable on the LHS of the call. We show a small example of substitution
where a variable of the caller, v, is assigned the value returned by a procedure call,
pn. We assume the monitor has some variables, x and r. We define the procedure,
pn(Integer z){x := z || return := r}, and call v := m.pn(y). Then substitution is as

follows, (x := z || return := r)[z\y][return\v] = (z := y || v := r). Substitution for
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guards is similar to that for actions. It is also worth highlighting the point, at this junc-
ture, that the procedure definitions of a monitor m, m.pn(f1,..., fx) = gp — A are not
translated directly into Event-B. Procedure definitions are used in the translation of pro-
cedure calls as described above, and the resulting event may contain additional guards
from the containing non-atomic clause (such as those derived from branch conditions),

or assignment of a return value.

3.6 Review of the Chapter

In this chapter we introduced the first aspects of our main contribution. We introduced
the notion of processes to OCB in order to model entities performing some tasks. Such a
notion does not exist in the Event-B language, but we can model processes in Event-B.
By relating OCB and Event-B we are able to define semantics for OCB using an Event-
B model. We introduced the notion of ordered, interleaving non-atomic operations for
processes. Event-B events can be used to model the activities performed by interleaving
processes, however the Event-B language itself does not provide a method of imposing
ordering of occurrence of events, however the order in which events can occur can be
dictated by appropriate choice of guards. We introduced the notion of operations which
are able to interleave and make use of sequences (using the semi-colon operator) of
labelled atomic clauses. The use of labelled atomic clauses simplifies the reasoning
process by using a simple notion of atomicity. During translation each labelled atomic
clause maps to an individual event. In the presentation we introduced the syntax of
atomic and non-atomic constructs in terms of the Guarded Command Language, and
we have shown how the constructs are related to Event-B; that is they are given Event-B

semantics.

We wish to alleviate the developer from the burden of defining the ordering guards ex-
plicitly, by using sequences of labelled atomic clauses to describe the ordered executions
of processes. The labels map to program counter values and the translator automatically
adds the appropriate program counters to event guards, and program counter updates
to actions. The sequences of labelled atomic clauses described above are facilitated by
non-atomic constructs; we have already mentioned the sequence clauses which make use
of the semi-colon sequence operator. In addition we add further expressivity to OCB
with non-atomic clauses to facilitate looping, and branching behaviour. Once again such
looping and branching behaviour is not part of Event-B language and we wish to provide

these higher level constructs as part of our OCB language.

We introduced monitors and atomic procedure calls to OCB in order to model enti-
ties sharing data between the processes; where monitors provide the mutual exclusion

mechanism. An advantage of using a monitor abstraction in OCB is that it alleviates
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the developer from the burden of reasoning about locking and implementing conditional

waiting.



Chapter 4

The OCB Language Part 2 -
Object-Oriented Features

In this chapter we introduce OCB’s object-oriented features, and then describe the
syntactic sugar that is used in the textual notation. Following this we show an example
OCB specification with its Event-B representation, the implementation in Java, and
finally discuss the Java translation rules. This chapter is a continuation of the previous

chapter which expands upon our paper [54].

4.1 Mapping Object-Oriented Features to Event-B

In the previous chapter we introduced processes and monitors, and until now there has
only been one process or monitor associated with a given monitor or process name.
We wish to extend the system to allow the use of their definitions as templates for
instantiation of objects; we refer to the process and monitor definitions as class defini-
tions. In order to facilitate instantiation we introduce constructor procedures with the
reserved name, create; new instances are constructed by processes invoking the create
procedure. Each monitor and process class can have a constructor procedure where ini-
tialisation of variables takes place. Initialisation of a class’ Integer and Boolean typed
attributes in the constructor is mandatory, since we map OCB attributes of these types
to total functions. In Java the initialisation of primitive types is as follows, ints are
initialized to zero and boolean types are initialized to false. In our work we could have
adopted the same initial values, but we decided to ensure OCB attributes are initialized
in the constructor, and perform a static check at the time of translation to ensure that
this has been done. Therefore the initial value of an attribute has to be explicitly speci-
fied, which should be of benefit in future work, the default value may be different when
extending the approach to other target platforms. When declaring attributes that are

class types the initial value may be null, a new child object may be constructed at some

59
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later time, but attribute declaration is always related to the parent instantiation. We
therefore map attributes that refer to an instance using a partial function, this means
their initialisation in the constructor is optional. Actual parameters, a, supplied to

constructors may be used to initialize attributes, by substitution of formal parameters,

1.

A system is modelled as a special class called MainClass, its non-atomic clause corre-
sponds to the Java main method - the entry point for execution in the implementation.

Since the main class is a kind of class we use a name from C'Name,

Definition 4.1. MainClass ::= CName
ProcessClass*
MonitorClass*
Var*

NonAtomic

The main class has a name, a non-atomic clause, an optional number of process class
and monitor class definitions, and some attribute declarations Var. Our approach uses
techniques introduced in UML-B [140], to model object-oriented features. We adopt the
UML-B style of modelling classes and object instantiation; to which we add processes,
non-atomic operations, program counters, and monitors. As in UML-B, for each class C'
we add a variable Cist C C to represent the current set of instances of C'. Each attribute
declaration v € T of class C' maps to a variable with the same name in Event-B, which is
typed v € Cinst — T'. A process’ non-atomic operations contain labelled atomic clauses
which map to events, and for each process class P in the system we model the flow of
execution, from one labelled clause to the next, using a program counter variable Pp..
This is typed Ppec € Pinst — Prabel. Program counter values in Pr,apel correspond to
the labels of the atomic clauses, plus the terminating state. To create an instance of a
class we invoke its constructor by calling its create procedure. We modify the syntax

of Body of Chapter 3 to accommodate a constructor call to instantiate a class C' with

actual parameters ay,...,ax .
Body ::=
Action
| [v:=]m.pn(ay,...,ax) (procedure call)
| v:= C.create(ay,...,ax) (constructor call)

We will also see later that special treatment is required when translating the attribute
references used in the bodies of atomic clauses. It is assumed that when we instanti-
ate a process its processing can begin immediately; that is, in the implementation the

threads are started immediately following creation. We now introduce definitions for
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ProcessClass and MonitorClass,

ProcessClass ::= CName Var™ NonAtomic Constructor

MonitorClass ::= CName Var* Procedure™ Constructor

Each process class has a unique name from C' Name and one or more unique (within the
class) attributes Var. Attributes of Var can be Integer, Boolean, array, or class types.
Similarly each monitor class has a unique name C'Name and zero or more attributes.
Monitor class attributes can be Integer, Boolean or class types. But it should be noted
that monitors may not call procedures of other monitors directly, however monitor ob-
jects can be passed to a process as a return value of a procedure call, then the process
can invoke a procedure on the monitor. The syntax of a process non-atomic clause, and
monitor procedure is as previously described in Chapter 3; the constructor procedure

syntax is as follows,

Definition 4.2. Constructor ::= LVar* Action Type

The constructor consists of zero or more formal parameter declarations LVar, Action
which describes the initialisation actions, and the type Type being constructed - which
is implicitly the class in which the create procedure definition is contained. The TN A
mapping function for OCB’s object oriented non-atomic clauses remains the same, as

does the T'LA mapping function.

When an attribute is used in an OCB clause its use is with respect to the class in which
it is declared, the specification is general in the sense that when we describe an action
in an OCB clause it can be applied to any instance. However, when we map to the
Event-B model we need to model the attribute with respect to a particular instance of
the class, which we represent in an event as a parameter. The instance represented by
the parameter may be the owner of the labelled clause; the target of a procedure call; or
a new instance, in the case of constructor initialisations. The mapping of an attribute
reference occurs in both actions and guards of the Event-B model. If an OCB class C'
has a declaration introducing v, and a clause referencing attribute v, then the attribute
declaration maps to an Event-B variable v as in UML-B. To model the attribute reference
in the event we introduce an event parameter s to represent an instance of class C; then
in the event guard and action v(s) is the corresponding representation of the attribute
in Event-B. To map the use of an attribute in OCB to its variable representation in
Event-B we apply the function, T'V. This function takes a guard, action or expression
as a parameter, and maps it to the corresponding Event-B representation. VarName
is the set of attribute names belonging to the class being referred to, and FventBLV ar
is the name of the Event-B parameter representing the instance. The type of TV is

defined as follows,
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Definition 4.3. TV € (Guard U Action U E) x P(VarName) x EventBLV ar
— (Guard U Action U E)

The variable renaming function TV may need to be applied a number of times to a
clause; we apply it once for each class with attributes mapped to the event guard or
action. TV is applied to an action a, expression FE, or guard g as shown in Table 4.1.
We use the notation gbOp to refer to the OCB binary operators relating to the guards,
guOp to refer to unary operators relating to guards. Operators abOp and auOp refer to

binary and unary arithmetic operators.

Action a <a, vn, s >V
ay || az <ai, vn, s >V || < ag, vn, s >TV
vi=F <wv, vn, s >V:=< E, vn, sV
Guard g <g, vn, s >TV
g1 gbOp G2 <Jgi, vn, s >TV gbop < g2, VN, S >TV
guOp g guop < ¢, UN, S >TV
BooleanLiteral | BooleanLiteral
Expression E < E, vn, s >TV
IntegerLiteral | IntegerLiteral
BooleanLiteral | BooleanLiteral
v v(s) where v € vn

v where v ¢ vn
€1 abOp €2 <ep, vn, S >TV abop < €9, UN, S >TV
auOp € auOp < e, vn, s >TV

TABLE 4.1: Variable Renaming with TV

We show an example mapping with a attribute v, used in a labelled assignment

I1:v:=wv+1, with a calling instance s. The mapping using 7'V where vn = {v} follows,
<vi=v+1, vn, s >TV=10(s):=v(s) +1

The effect of the application of T'V is that wherever a variable name appears in the
clause and also in the set of names vn a function application is created with respect to

s. Other literals and variables not in vn, and operators, are unchanged.

In subsequent definitions we use the following Event-B syntax for a guarded action with
parameters, ANY L WHERE G THEN S END. L is a list of parameters, G is a
guarding predicate, and the body S contains some assignment actions. The following
notation is used for any process class P, Ppc(s), is the program counter for process
instances of class P. Pi, is the set of current instances of class P. Py is the set of
potential instances of class P. The new definition of T LA for a labelled atomic clause

follows where the clause is defined in class P,
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Definition 4.4. <[1: a g— A > , (2, P >TLA

L

[1p =

ANY s

WHERE s € Pipg A Ppe(s) =A< g, vn, s >TV
THEN < A, vn, s >TV ||Ppe(s) := 12

END

where vn is the set of variable names of class P.

The definition of a labelled constructor clause follows, where P creates a new instance

of process class @,

Definition 4.5. <I1: < g.— v:= Q.create(as,...,a;) > , 12, P >TH
A
l1p =
ANY new, s

WHERE s € Pipgt A Ppe(s) =11 A new € Qset \ Qinst N

< gy v, s>TV
THEN < A, vp, new >TV || Ppe(s) := 12|

Qinst 1= Qinst U {new} || v(s) := new || Qpc(new) := sLabel(na)
END

For this definition we state that na is the non-atomic clause of class Q, and vg and
vp are sets of variable names, of the caller, and new instance respectively. We assume

the constructor procedure body A is defined in the following way,

Q.create(fi,...,fx) = A

A’ is the action A with occurrences of formal parameters substituted by actual param-
eters. The actual parameters may be values; or mapped attributes which are resolved

with respect to the calling instance. We define A’ as,

A2 Alfng,..., fap\ < a1, vg, s >TV, . < ag, vg, s>TV] (4.1)

here fnq,..., fni are the names of the formal parameters.

A similar mapping exists for monitor class instantiation, but excludes setting of a pro-
gram counter; monitors do not have program counters since they play a passive role in
the system. The definition of a labelled constructor clause follows, where P creates a

new instance of monitor class M,
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Definition 4.6. <I1: < g.— v:= M.create(a;,...,a;) > , 12, P >4
A
l1p =
ANY new, s

WHERE s € Pipg; A Ppe(s) =11 Anew € Mgt \ Minst A
< ge, vq, s >V

THEN < A, vp, new >TV ||Ppe(s) := 12|
Mingt := Minst U {new} || v(s) := new

END

For this definition we assume that vg and vp are sets of variable names, of the caller,
and new instance respectively. Assume that the constructor procedure is defined in the

following way, with body A
M .create(fi,...,fr) = A

A’ is the action A with occurrences of formal parameters substituted by actual param-
eters. The actual parameters may be values; or mapped attributes which are resolved

with respect to the calling instance. We define A’ in the following way,

T T
A2 Alfng,..., fap\ < a1, vg, s >TV .. < ag, vg, s>T7]

here fnq,..., fni are the names of the formal parameters.

We now look at the definition of T'LA for monitor procedure calls. We define a trans-
lation for a procedure call m.pn(ai,...,ay), where pn is the procedure name, and m
is the target instance which is a variable belonging to instance s. We assume that the

procedure call, pn, is defined in a monitor class m in the following way,
m.pn(ay,...,ax) =gp — A

and j = m(s) gives an event parameter referring to the monitor instance being called.
We will perform a static check to ensure the return type of the procedure matches the
variable being assigned to, and we prohibit use of the return variable in g, and expres-
sions (RHS of assignments) in A. There are two events resulting from this mapping, the
second handles the case where the target m does not exist for some reason in the caller
s. In the implementation an exception is thrown and the process terminates, we model

this by assigning the terminating label ¢p to the program counter.

Definition 4.7. <I1: < g.— v:=m.pn(as,...,a,) > , 12, P >TL4
A

lIp =
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ANY s,

WHERE s € Pipst A Ppe(s) =11 As € dom(m) A j=m(s) A
<gp, v, i >TV A< ge>, vg, s>TV

THEN < A, vj, j >TV ||Ppe(s) := 12

END

I _nullp =

ANY s

WHERE 5 € Py As € dom(Ppe) A Ppe(s) =11 A s ¢ dom(m) A
< g¢, Vq, S >TV

THEN P,.(s) :=tp

END

where vq and vj are sets of variable names of the caller, and monitor instance re-
spectively; and the procedure call m.pn is equivalent to the guarded action, In the

definition g’

is a procedure guard with some (but not all) substitutions applied. We
apply substitutions in two stages, the first stage shown below is used to substitute ac-
tual parameters for formal parameters in the guard; these actual parameters need to be
mapped to variables associated with the calling instance using T’V before substitution.
The substitutions related to monitor class attributes are then performed by applying

TV to gp' (seen above). The first stage substitutions are follows,
gy = gplfng, ..., fm\ < ar, vg, s>V ... < ap, vg, s >TV]

where fni,..., fng are the names of the formal parameters.

The action clause A’ is an action with some of the substitutions applied. Again there are
two stages, and in the first stage the formal parameters of the called class are substituted
for actual parameters with 7'V applied as follows, then TV is applied to A’ (seen above)

to map monitor class attributes. We define A" in the following way,

A éA[fnlvafnk\ <ai, vg, s >TV7

., < ag, vg, s >1V][return\v]

where fni,..., fng are the names of the formal parameters.

4.1.1 OCB Arrays

Until now we have assumed that OCB attribute types are restricted to simple Integer,
Boolean and class types. We will however find it useful to have a representation of an
array of elements of these types. The array we define is similar to that of Java in that

it is zero-based and of fixed length. To facilitate array declarations we introduce OCB
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notation of the form T'[n] v, where T is either Integer, Boolean or a class name; n is the
array capacity; and v is an attribute name. Array accesses are performed using index
notation v[i], where i is typed as i € 0...n — 1. For any class in Cj,s with attribute
named v we map to an Event-B variable with the same name. The type definition in the
invariant clause depends, however, on the element type; we define T}, as the primitive

types Integer and Boolean, and T, as any class type denoted by class name.
V€ Cipst = (0..n—1) =T,

The definition associated with primitive types gives rise to a function where the range
is a total function from indices to values. We assume that Integer array elements are
initialized to zero at the time of construction (of the class), and Boolean array elements
are initialized to FALSE. These values correspond to the Java implementation where in-
teger elements are initialized to zero, and boolean elements to false. The type definition

for an array of objects follows,
v € Cipnst > (0..m—1) T,

In the constructor event of the class which defines the array attribute, initialisation of
an Integer array is performed by the following action, v(new) := A.i(i € 0..n — 1]0);
where n is the capacity of the array, and new is the new object being initialized. A

similar initialisation is used for boolean attributes.

An array of objects initially contains no elements so the range is a partial function. An
array may be used to store both process and monitor objects; but we currently have
no need to store process objects in arrays, since we have no requirement to refer to
them after instantiation. The current OCB approach creates a process instance and its
run operation is executed. We never refer to it externally since process classes are not
shared. When accessing an array element that stores a monitor object it is possible to
call one of the object’s procedures. Given a MonitorClassM and an array attribute
M {n] v containing M type objects, we may reasonably expect to locate a monitor object
in the array and call a procedure. We use the notation v[i].op() to do this, where 7 is an
integer index, and op is a procedure of M. Now it may be the case that the call is not
possible because their is no monitor object at that index. In effect v[i] would be null
in the Java implementation, or in Event-B for an instance s € Cjpst, v(s)(7) would be
undefined. We can ensure that any such call in a clause labelled (7 is well-defined by

adding an invariant clause as follows.

Vs-5 € Cinst N Cpe(s) =11 = s € dom(v) A i€ dom(v(s))

To translate calls of this type we simply use the T LA translation function 4.7 with

m = vli], then the event that handles a null target also accommodates a null array
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element. So we have,

<ll: < ge—v:=vlipnlas,...,an) > , 12, P>TH

<ll: < ge—v:=mpn(ag,...,an) >, 12, p >TLA

We now consider the issue of array bound checking. The indices that we use for arrays
of size n should be in the range 0..n — 1. We do not explicitly check the array index is
in range; instead an array access or assignment gives rise to a proof obligation which we
are required to discharge. Discharging this proof obligation will ensure that the index
is in range. In the following example we show an attempt to assign to an out of range
index, which gives rise to a proof obligation that cannot be discharged. Assume that
the array variable Integer[5] arr is declared in a class P. An index value of 5 is out of

range since 5 ¢ 0..4. The erroneous labelled atomic clause is,
I1: arr[5] :=99
The labelled atomic clause maps to the following event action,
arr(self) := arr(self) < {5~ 99}

The RODIN tool produces the following proof obligation, which we will be unable to
discharge; since clearly 5 ¢ 0 .. 4,

arr < {self — arr(self) + {5 —99}} €e P—(0..4—= Z)

Next we come to the issue of referring to array elements on the RHS of assignment
expressions and in predicates. A simple array reference v[i] such as that used in the
assignment x := v[i] is translated using the previously introduced TV function. We
apply TV to resolve any attribute names in an expression, this may include the array
index i. The application of TV to an array reference rewrites the array name with
respect to the class it is in, and will also rewrite the array index if it is an attribute
name. So where vc is a set of variables of the owning process/monitor class, and s is

the owning process, we rewrite the array expression as follows,
<li], ve, s STV = w(s)(< i, ve, s >TV)

In OCB we may have an assignment = := v[i], which assigns a value v[i] to an array

element x. In this case we need to apply TV to both left and right hand sides of the
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assignment as follows,

<z :=vli], ve, s >TV

<z, ve, s >V i=w(s)(< i, ve, s >TV)

z(s) := v(s)(< 4, ve, s >TV)

At first sight we may consider simplifying the right hand side further to match the left
hand side, but we do not do this since < 4, ve, s >TV may result in an integer literal

index.

We now discuss OCB atomic actions involving array updates, that is where an array
value appears on the left hand side of an assignment expression. In OCB we can write
v[i] := x, for some integer array v we can assign an integer value x to some element

indexed by i. Applying TV to the expression we obtain,

vfi] ==z, ve, s >TV

> A

v(s) = v(s) & {< i, ve, s >TV i< x, ve, s >V}

where <+ is function override operator. An action can involve a number of terms with v
on the LHS of an assignment, such as v[i] :=z || ... || v[j] := y. We can generalize this
approach as long as the indices of the array are unique. In any action, we collect each
assignment expression with an array reference v appearing on the LHS, and apply TV

to create a single update which uses relational override as follows,
<ofi] =z ... ||v[j] =y, ve, s >TV
I
v(s) = v(s) & {< i, ve, s >TV i< x, ves >V,
< gyve, s>V s ([ <y, ve, s>V}

It then remains to prove that the indices are indeed unique, and in bounds. Bound
checking is performed by proof, the access shown above will give rise to a proof obligation
of the form i € dom(v(self)) which should be discharged.

4.2 Syntactic Sugar for Specification

The guarded command language has served as a useful notation for defining the map-

ping to Event-B. We can however define syntactic sugar to provide a notation which
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is more familiar to implementers of object-oriented systems. We provide the following

programmatic style notation. Firstly we introduce an ¢f style choice construct.

Definition 4.8. [1:if(g;) then b; andthen na; endif
elseif(g2) then by, andthen nas endelseif . . .
else b,, andthen na, endelse
A
1: 9 g1 —b1 > ;nap
Nil: <« —g1 Aga—ba > ;naz...
N1: < =gt A=ga Ao A=gy — by > snay,

The looping construct is presented in the form of a while loop,

Definition 4.9. [1: while(g) then b andthen na endwhile

L

doll: @« g—br> ;naod

We use a when clause to guard monitor procedures,

Definition 4.10. when(g,){4}

A

4 gp—AD

The mapping to Event-B is intended to be fully automated, and we give details of the
tool support in Chapter 5. The sugared form of specification also provides for a simpler

mapping and automatic translation to Java. This is described later in Section 4.4.

4.3 An Example Mapping to Event-B

In this section we will show how a simple OCB specification gives rise to an Event-B
model. Figure 4.1 shows an OCB specification with two ProcessClass, a MonitorClass,
and MainClass, definitions. The MonitorClass called Shared has two attributes, In-
teger v and Integer tally. The shared MonitorClass stores a value in v. The constructor
procedure initialises these attributes. The MonitorClass has procedures to set and get
the value of v, setVal and getVal, and keeps a tally of read attempts in tally. The
MonitorClass is shared between two process instances, Get and Put. The Get process
stores a reference to the Shared instance in its shared attribute; the Shared instance is
passed to the process, and the shared attribute is initialised, in its constructor procedure.
The run operation’s I1 clause specifies looping behaviour. The loop calls the Shared
instance’s getVal procedure to obtain the value of v and assigns the value to i. The
clause [2 then updates the Get class’ counter attribute which is used to guard the loop.

The Put process instance provides new values for the shared class’ v attribute. It does
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ProcessClass Get{
Shared shared , Integer i, Integer count
Procedure create(Shared shd){ shared := shd ||
i:=0| count :=0 }
Operation run(){
11: while(count < 100) do i := shared.getVal()
andthen 12: count := count + 1 endwhile

}
}

ProcessClass Put{
Shared shared, Integer val, Integer count
Procedure create(Shared shd){ shared := shd ||
val := 0 || count := 0 }
Operation run(){
k1: while(count < 100) do val := count mod 5
andthen k2: shared.setVal(val) ;
k3: count := count + 1 endwhile
}
}

MonitorClass Shared{
Integer v, Integer tally
Procedure create(){ v:=1 || tally := 0 }
Procedure getVal(){
when(v > 0){ tally := tally + 1 || return := v} }:Integer
Procedure setVal(Integer v1){ v := vl }

}

MainClass Main{
Put pu, Get ge, Shared sh
Operation main(){
m1: sh := Shared.create();
m2: pu := Put.create(sh) ;
m3: ge := Get.create(sh)

}
}

FIGURE 4.1: An Example OCB Specification

this by calling the Shared instance’s setV al procedure in clause k2 which resides within
the loop guarded by the condition of clause k1. The MainClass provides the entry
point for execution. The attributes are used to keep track of the instances; the Shared
instance is created in clause m1 and passed to the process constructors in clauses m?2
and m3. The getVal procedure demonstrates the use of a conditional waiting clause; a
value is only returned by the procedure if it is greater than zero and is caused to wait

otherwise.
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In the examples that follow we use a sanitized mapping for clarity. This is mainly
achieved by shortening names, for example, the frequently used parameter sel f appears
as s; at a later stage we will present actual translations. Where a variable name is used
in more than one class we have added a subscript to identify which class they belong
to. The attributes of the OCB classes give rise to variables in the Event-B model, and
these are typed in the invariant as follows. We make use of Maing and Putst which

are carrier sets defined in the associated context.

Maininst € P(Mainget)
Mainpe € Maininsg + Mainc,
Putingy € P(Putgey)
Putpe € Putinsg + Pulctr
Getingt € P(Getget)

Getpe € Getinst + Getegr
sharedpyyy € Putinsg -+ Sharediyg
sharedge; € Getinsg + Sharedingt

sh € Mainys + Sharedinst
val € Putingg — Z
countpys € Puting — Z
countgey € Getingt — Z
pu € Mainins, + Putins
ge € Mainings + Getingg

1€ Getjnst — 7

A process’ program counter can take values mapped from its labels, plus the terminating
label maint. The labels map to constant names which form an enumerated set of
available values. The MainClass program counter Mainy is a mapping from instances
of main to an enumerated set of program counters defined in Mainc,; similarly the
program counters for the instances of the Get class are defined in Get,, and for the
instances of Put we have Put.,. The enumerated sets of program counters are axioms,

constructed by the translator, in the context as follows,

Mainey, = {m1, m2, m3, main;}
Getery = {11,12, gety }
Puteyy = {k1,k2, k3, puty}
In the following example we show the mapping of a create call in the clause labelled

m2 of MainClass Main. This maps to an event m2yain in which a new Put process

instance is created and initialized, and the program counter is updated with the next
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label in the sequence.

M2Main =

ANY new, s

WHERE s € Maininst A s € dom(Maing.) A Maing.(s) = m2A
new € Putge \ Putingg A's € dom(sh)

THEN sharedyy (new) := sh(s) || val(new) := 0 || countyyt(new) := 0||
Mainpe(s) := m3 || Putingt := Putinst U {new} || pu(s) := newl|
Putye(new) := kI

END

The event action is simply constructed as per definition 4.5. We discuss the substitution
of formal parameters and variable renaming since it is one of the more complex aspects
of the mapping. We have a formal parameter shd replaced by sh of Main (but renaming
of the actual parameter sh takes place first). So using equation 4.1 and vq = {pu, ge, sh}

we have,

A" =(sharedyy; 1= shd || val := 0 || countpy := 0)[shd\ < sh, vq, s >1"]
= “substitution, < sh, vq, s >1" = sh(s)”

(sharedpy := sh(s) || val := 0 || countyy := 0)

Then the variables vp = {sharedyys, val, countyy } associated with the newly constructed

object are renamed.

< sharedpy, := sh(s) || val := 0 || countpys := 0 , vp, new >V
= < A, vp, new >V

sharedpys(new) := sh(s) || val(new) := 0 || countyu(new) := 0

Similar events model the construction of the Get process class and the Shared monitor
class instances. We now consider the translation of the run operation of ProcessClass Put.
This gives rise to five events relating to: k1 with a true guard; k1 with a false guard; k2
with a procedure call, k2 null handler (the target does not exist) and k3 counter update.

We now show the event klpy,, the true branch that arises from the clause labelled k1
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containing a loop condition.

k1 whilepy, =

ANY s

WHERE s € Puting A s € dom(Putpe) A Putye(s) = k1A
count(s) < 100

THEN val(s) := count mod 5 || Putyc(s) := k2

END

The WHERE predicate ensure that s is in the set of instances, and that the program
counter is k1. s € dom(Putp.) simply ensures the succeeding predicate element is well
defined. count(s) < 100 arises directly from the loop condition. The event k1_falsepy

that arises due to the false guard follows,

kl_falsepys =

ANY s

WHERE s € Puting A s € dom(Putpe) A Putye(s) = k1A
—(count(s) < 100)

THEN Put,.(s) := put;

END

This event contains the negated loop condition and sets the program counter to the
value of the terminating state, since there is no other successor state following loop
termination. The third event, k2py, arises from the second clause, labelled k2, with a

procedure call,

WHERE s € Putiyg A s € dom(Putpe) A Putye(s) = k2N
s € dom(sharedyy) A m = sharedpy ()
THEN v(m) := val(s) || Putpc(s) := k3
END
The procedure call of k2 is expanded in-line, where the update of the procedure body

can be seen with the actual parameter substituted for the formal parameter. For cases

where the call is to a null target we provide the following event which terminates the
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calling process.

k2_isNullpy =

ANY s

WHERE s € Puting A s € dom(Putpe) A Putye(s) = k2N
s ¢ dom(sharedpy)

THEN Put,.(s) := put;

END

The fifth event, k3pyt, arising from the third clause labelled k3 updates count which is

used in the loop condition,

WHERE s € Putingt A s € dom(Putye) A Putye(s) = k3
THEN count(s) := count(s) + 1 || Putyc(s) := kI
END

4.4 An Example Mapping to Java

The mapping of OCB to Java is mostly self-evident, and lends itself to automatic transla-
tion, since we have intentionally made OCB object-oriented. We now present an example

mapping followed by a discussion of the translation rules.

The top-level OCB MainClass construct maps to a Java class containing a main method
which is used as the entry point for execution. More specifically the MainClass’ non-
atomic clause is mapped to the body of the main method. Each ProcessClass in an
OCB development maps to a Java class implementing the java.lang. Runnable interface;
and the non-atomic (na) clause maps to the run method body. Each MonitorClass
maps to a Java class, but in this case the resulting classes should not implement the
Runnable interface (since they do not behave as threads). Each of a monitor class’ proce-
dures map to a synchronized Java method, and these can then be called in ProcessClass
operation definitions. We now show the Main class with its main method that arises

from the translation of the MainClass,
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public class Main{
private static Put pu; private static Get ge;
private static Shared sh;
public static void main(String|| args){
sh = new Shared();
pu = new Put(sh);
new Thread(pu).start();
ge = new Get(sh);
new Thread(ge).start();
}
}

where vg = {v}

Attributes declared in the MainClass are mapped to static fields since they are referred
to in the static main method. They could however be variables local to the main
method but the choice appears to be arbitrary at this stage. They are restricted to
private visibility to prevent their direct use externally; and this is true also of fields
arising from MonitorClass and ProcessClass definitions. External access to monitor
class fields is only through Java synchronized methods, which ensures their accesses are
free from interference. We are able to see the synchronized methods of a monitor class

in the following,

public class Shared{
private int v; private int tally;
public Shared(){ v =0; tally = 0 ;}
public synchronized int getVal(){
try{while(!(v > 0))wait(); }catch(InterruptedException e){... }
tally = tally + 1 ; return v ;

}

public synchronized void setVal(int vl1){ v = vl ;}

}

The class has a constructor where the fields are initialized; and two synchronized meth-
ods, one of which (getVal) contains conditional waiting. This arises from the mapping of
an OCB when clause which is a blocking construct. Here the built-in Java wait method
is used to block entry to the conditional critical region for as long as the condition for
entry is not met. When the condition is met the conditional critical region is entered
and processing proceeds. Some other thread will unblock the waiting thread using Java’s

built-in noti fyAll method when an update is made to data held in the monitor.

We now look at the classes arising from the ProcessClass definitions,
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public class Get implements java.lang.Runnable {

private Shared shared; private int i; private int count;
public Get(Shared shd){

shared = shd; i=0; count=0;
¥
public void run(){

while(count<100){

i=shared.getVal(); count=count+1;

public class Put implements java.lang.Runnable {
private Shared shared; private int val; private int count;
public Put(Shared shd){
shared = shd; val=0; count=0;
}
public void run(){
while(count<100){

val=count % 5; shared.setVal(val); count=count+1;

The above classes declare private fields which are then initialized in the constructor
method. Notice that the process classes implement the java.lang.Runnable interface,

which requires us to provide an implementation for the run method.

4.5 Rules for Mapping OCB to Java

4.5.1 Overview

We now give an overview of some of the issues we consider when we map OCB to Java,
before giving a more thorough description. In an OCB specification the actions of non-
atomic clauses and procedure calls make use of the assignment operator ‘:=’, when we
maps to Java we substitute this operator for ‘=". When we do this we must accommodate
the difference in the semantics of parallel composition of the action, and sequential
composition of the Java statement. To do this we introduce temporary variables in
Java that store the initial values upon method entry, and substitute these in certain
places. When we implement the when clause, for conditional waiting, we must also

consider the case where a waiting thread may be interrupted. In this situation a Java
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Interrupted Exception is thrown, which must be caught by the waiting process. Another
issue is that of implementing OCB guards, with respect to conditional operators, since
their are several options one can choose from. In most cases operators of OCB guards
are mapped to Java operators, for example the OCB equality operator ‘=" maps to ‘==’
in Java and the negation —(g) maps to !(g), ‘/ = maps to ‘! =". We do however have
a choice to make with the logical operators, ‘&’ maps to Java’s conditional-AND ‘&&’;
we choose the conditional-AND option rather than the simple AND in order to make
use of the optimisation, where the right-hand branch is not evaluated if it has already
been found that the left-hand branch is false. In implementations the conditional-AND
construct is often used to perform a well-definedness check using the left-hand branch,
before evaluating the right branch. A typical example would be to check non-nullity of

some target before making a call that is used in the evaluation of the right hand branch.

In the presentation of our translation from OCB to Java we apply the translation rules
to the OCB model (a textual version of the OCB meta-model) to generate Java code.
We begin at the top level with an OCB system, and apply a succession of transformation
rules which act on the model elements, or collections of such elements. This effectively
gives rise to textual substitutions that result in Java code. The OCB System S is
comprised of a MainClass named N and a main operation mo; a set of process and
monitor classes, p1 .. p, and mq .. m, respectively; and a set of attribute declarations
sv1 .. sv,. Elements of the OCB model contained in angle brackets, <>, correspond
to elements in the OCB meta-model (discussed further in chapter 5). Translation rules
are defined over the meta-model elements, or sets of elements, and serves to clarify the
link between the specification and implementation. We indicate that a rule rule Name
should be applied to an element < el > using the notation < el >"“eName e define
the following * iterator that applies the rule to each element of a set or sequence. For a
set with n elements we have < el; .. el,, >mueNames— o], sruleName = o ~ruleName
We define booleanLiteral as {TRUE,FALSE}, integerLiteral which corresponds to
the set of integers, and stringLiteral for attribute and class names. The sysDef rule
applies appropriate rules to the constituent parts of S. In the following definitions we use
italic font for meta-variables and translation functions, and standard font for concrete

syntax.
< S >sysDef

L

< MainClass N{ sv; .. sv, mo } ~ mainDef

<piL..p >p7"ocSet*
.. Pn

<mi..m >monSet*
.My
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4.5.2 Mapping the MainClass to Java

The class that is the starting point for execution, i.e. with a main method, is generated

from the attribute declarations svy .. sv, and main operation mo as follows,

< MainClass N{ sv; .. sv, mo } ~ mainDef

A

public class N {

svSetx moDef

< SV .. SUp > < mo >

where mo 2 Operation Main(){ na } and na is a non-atomic clause. The translation

of the main class’ variable list gives rise to static fields; one for each attribute sv; in the
set of attributes sv; .. svy,, of type sv. Each OCB attribute declaration may have an

optional initial value init. An attribute sv is defined using OCB notation as follows,
sv 2 type identifier [:= init]

where type is Integer, Boolean, or a class name (of type stringLiteral). The attribute
identifier also is a literal string. An initial value must be supplied for Integer and
Boolean types, although monitor and process class types have no initial value since they
are to be instantiated in the non-atomic operation. In the case of array declarations
no initial value is required since array initialisation is as per Java defaults, i.e. zero for
ints, false for boolean, and null for class identifiers. We apply the rule svSet to each

attribute sv; in the set of attributes svy .. sv,; we define svSet in the following way,

< sv >svSet

L

tDef sviDef .
)

private static < type > identifier < init >

The translation from OCB types to Java types is shown in Table 4.2; defined types can
be either simple types or array types. In our tables we use italic font for the variables
of our translation, therefore in Table 4.2 stringLiteral is a place-holder for a string; in
the translation < type >*P¢f the string is simply written, as text, in the Java source.
However boolean is a string not a variable and that is written in the Java source as
“boolean”. Later in our work we will use tDef to translate the type of a returning

procedure, in the case where there is no value to return we translate to void.

The translation of the initialisation depends on the type of the attribute involved; literals
are unchanged, arrays use a constructor for initialisation, and any identifier is initialized
to null. Integer and Boolean types take the value in the init clause. Initialisation is
shown in Table 4.3
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type < type >tPef
Integer int
Boolean boolean
stringLiteral stringLiteral
void
Integer[integer Literal] int[]
Boolean[integer Literal] boolean]|]
stringLiteral[integer Literal] | stringLiteral[]

TABLE 4.2: Rule tDef

type it < init >sviDef
Integer integer Literal | = integer Literal
Boolean TRUE = true

Boolean FALSE = false
stringLiteral = null

Integer[integer Literal]
Booleanlinteger Literal]
stringLiteral[integer Literal]

= new int[integer Literal]
= new boolean[integer Literal]
= new stringLiteral|integer Literal]

TABLE 4.3: Rule sviDef

The discussion of OCB MainClass attribute declarations is now complete and we turn

our attention to the main operation. The main operation consists of a non-atomic clause

na,

< Operation Main(){< na >} >

A

moDef

public static void main(String[] args){< na >"P%;}

This leaves just the non-atomic clause to be expanded now, and we deal with this in the

next section.

4.5.3 Mapping Non-Atomic Clauses to Java

The translation of the non-atomic clause in the main class using naDef is shown in of

Table 4.4. naDef takes a non-atomic clause parameter and returns a JavaStatement.

The translation for the main class na clause is the same as that of process class na

clauses, so we can refer to this for processes also. The non-atomic clause na can be

either a sequence, branching, looping or a labelled atomic clause a. Square brackets

indicate features that are optional in OCB, during translation optional elements do not

generate any Java code if they do not exist.
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na < na >naDef

nai ; nas < nap >"Pef . < pay >nebef
if (< ¢ >Pe [ < a >2Pef
< na >naDef }
else if(< ¢ >PeN{ < a >Pef
< na >"ePefl]
lelse{ < a >aDef .

if(c) then a andthen
na endif
[elseif(c) then a andthen
na endelseif |
[else a andthen na endelse] < na >nabPel ]
while(< ¢ >Pef){ < q >Pef
< na >naDef }

while(c) then a andthen
na endwhile

Def.
< aq >Def.

TABLE 4.4: Rule naDef

The atomic clause a of Table 4.4 is a labelled atomic clause of which there are three
main types; action, procedure call or create call. A procedure call, or a create call, may
have a sequence of actual parameters ap which must match those of the target procedure
definition in type and number. Procedure calls optionally have an assignment involving
the return value, Table 4.5 shows the translation of the atomic clause types, where M,
Q, m and zx are stringLiterals. M and () represent a monitor class name and process
class name respectively. m is an attribute name, pn is a procedure name, and z is an

attribute name. aDef takes an action as a parameter and returns a JavaStatement.

a < a >Pef
e mpn(ap)
x :=m.pn(ap) x = m.pn(ap)

x := M.create(ap)
x := (@).create(ap)

x = new M (ap)
x = new Q(ap);

new Thread(z).start()
(< action >acDefyiniSub

action

TABLE 4.5: Rule aDef

Actions are either a single assignment or a parallel composition of assignments and
are translated using the acDef rule shown in Table 4.6. The syntax of expression F,
appearing on the RHS, is shown in appendix A. In expressions most OCB operators map
directly to Java, the exceptions are the mod operator which maps to the % operator,
and an exponent xy must be mapped to a Java statement (int) Math.pow(x,y), this

returns a double value which we cast to an int.

Now there is a problem with mapping parallel composition to Java, consider the action
where z is initially zero and then we perform the update x := 1|y := 2. This cannot be
simply mapped to x = 1 ; y = x since in this case the semantics of parallel composition

result in the post state © = 1 Ay = 0, but the incorrect Java mapping results in the



Chapter 4 The OCB Language Part 2 - Object-Oriented Features 81

action ‘ < action >%cDef

actiony || actions | < action; >%Pef; < actiony >ecPef
r:=F x=F

TABLE 4.6: Rule acDef

post state © = 1 Ay = 1. To rectify this we introduce local temporary variables which
we declare and initialize on method entry. We then use these stored initial values in
the execution of the remainder of the method body. In this way we are able to map
OCB actions with parallel composition to sequential Java statements. To achieve this we
introduce rule iniSub to apply to Java statements involving translations from actions,

which is typed as,

iniSub € JavaStatement — JavaStatement

The translation of an OCB clause involving parallel composition takes place in two steps
as follows. First we translate the OCB action into a partially complete Java statement
which looks like the incorrect Java statement previously mentioned. We then collect all
the variables v in statement s that appear on the LHS of an assignment and on the RHS
of some other assignment; or on the LHS of an assignment and in a return statement.
For each v; we declare and initialize a local variable init_v with the value of the variable
before the update, and insert this at the beginning of the statement. The variables v are
then substituted by init_v where they appear on the RHS of the other assignments or in
the return statement. Note that if x := x4+ 1 appears without z on the RHS of another
assignment no initial value substitution is required. The OCB semantics, based on Event-
B actions are equivalent to Java in this case, so < x := x + 1 >%Pef 2 5 — 4 4 1.
Returning to the example, using initial value substitution we introduce the rule iniSub

and apply it after applying acDef,
(<x:=1| y:=a>wlelymidSub & ypip o — g 2 =1; y=initx

We now describe the rules for translating parallel composition to sequential Java. We
apply a rule called iniSub to a partially translated Java statement s. This rule inserts
the initial variables and replaces the appropriate variables on the RHS of assignments.
Assume we have a number of variables v in a statement s to rewrite. We introduce
local variables [vy .. lv,, one for each variable v that we need to rewrite. We declare and
initialize each lv; of lvy .. v, to the initial value of v;. Here n is the number of variables
v appearing on the LHS of the assignment statement and also on the RHS of some other
assignment in s, or on the LHS of an assignment and also the return statement. Each
local variable lv; then replaces v; where it appears on the RHS of an assignment. More

formally lv; .. lv, maps to a sequence of semi-colon separated declaration/initialisation
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statements,

<oy oy > 2 oy = v1 ool o, = Uy (4.2)

where: for each variable v;, t; refers to the Java type of v;.

We use < lvg .. v, >5€ to insert the initialisations at the beginning of statement s as

follows,

<'s >iniSub AL

(4.3)

lvSet ]RHS

<lvy ..lv, > i slvr.oop\lvg . Loy,

where: v1 ...v, are the variables appearing on the LHS of an assignment and the RHS
of another assignment. The substitution [...]%#% is substitution restricted to the RHS

of assignment statements.

Conditional statements are used in OCB’s branching, looping and conditional waiting
clauses. The translation of each OCB condition to a JavaStatement is presented in
Table 4.7. Conditional statements may involve expressions F and guards Guard, as

shown in appendix A. The mapping here is relatively straightforward.

c < ¢ >cbef

E =F E ==

E+E El=E

E<E E<FE

E>FE E>FE

E<E EF <= F

E>F E >=F

Guard N\ Guard | Guard && Guard
Guard Vv Guard | Guard || Guard
—Guard (Guard)

TABLE 4.7: Rule cDef

4.5.4 Mapping a ProcessClass to Java

We apply procSet* to generate a Java class for each OCB process class declaration p;,
named Ppgme, in the set p; .. p, of process classes. Using OCB notation a process class

p is defined as follows,

p £ ProcessClass Pgme{ v1..v, c7 }

and where v .. v, is a set of n attribute declarations, ¢ is the create procedure, and r

is the run operation. Then the mapping to Java follows where procSet takes a process
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class definition as a parameter and returns a Java class definition,

<p >p7"0cSet

A

public class P, implements java.lang. Runnable{

vSet*

<y ..Uy > < ¢ >Pef <y SprDef

}

We first look at the mapping of the attribute declarations which give rise to variable
declarations in Java. These are similar to, but slightly simpler than, the equivalent
MainClass attribute declarations since we have no OCB initialisation to consider. All
explicit OCB initialisation is done in the create method, however certain Java fields need
to be initialized as detailed in Table 4.8 below. Assume each attribute declaration v;,
of type v, in the set of variables vy .. v, consists of a type and name identi fier defined

using OCB notation as follows, where type identifier is sugar for identifier € type,
v £ type identifier

The type can be Integer, Boolean, or a class name (of type CName). In the case of
array declarations, and class names we need to perform initialisation in the Java even
though none is explicitly specified in OCB. We apply the following rule to map each

attribute v; in the set of attributes vy .. vy,

< >1)Set

= (4.4)
private < type >'P¢f identifier < init >VPef

The translation from OCB types to Java types using tDef is shown in Table 4.2, and
we show the initialisation part in Table 4.8 where types can be either simple types or
array types. In the case of array initialisation, a new array is constructed using an array

constructor which is invoked using the new keyword.

type < init >viDef

Integer

Boolean

CName = null

Integer[integer Literal] | = new int[integer Literal]
Boolean[integer Literal] | = new boolean[integer Literal]
CNamelintegerLiteral] | = new CNamelinteger Literal]

TABLE 4.8: Rule viDef

We now consider the create procedure c of a process class named P, gme, the create
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method consists of an action a containing assignments used for attribute initialisation,
and a sequence of formal parameters fpi .. fp,. Using OCB notation the create clause

c is defined as follows,
c = Procedure create(< fp; .. fp, >){ < action > }

Translation crDef takes a create procedure as a parameter and returns a Java construc-

tor method, applying crDef to the create clause c gives rise to the following,

< e >mPef & public Puame(< fp1 .. fon >/P5*){ < action >%Pe/ .} (4.5)

Here the translation of action using acDef is shown in Table 4.6. acDef takes an
action parameter and returns a JavaStatement. The type information associated with
each formal parameter needs to be mapped to a Java type. We apply fpSeq to each of
the n formal parameters fp;, of type fp, in fp1 .. fpn. In OCB each formal parameter
fp defined as a type and an identi fier ,

fp £ type identifier
applying fpSeq to each fp we obtain,

tDef

< fp>IPSer &2 < ype > identi fier (4.6)

The identifier is written to Java source with its type derived from rule tDef of Table 4.2.

The concluding part of the discussion about process classes involves mapping of the run

operation r. We define the run operation r using OCB notation as follows,
r 2 Operation run(){< na >}

prDef takes the run operation as a parameter and returns a Java method, so applying

prDef to r we have,
< r>PrPef 2 public void run{< na >"*Y¥;}

and naDef was described in Table 4.4.

4.5.5 Mapping a MonitorClass to Java

To translate each OCB monitor class m;, of type m, in my .. m, with name M, 4me, We

apply the rule monSet to each m;. This maps each m; to a Java class. Using OCB
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notation the monitor class definition m is defined as follows,
m 2 MonitorClass Myqme { <vi..v,> <c> <pri.prp> }

where v1 .. v, is a set of attribute declarations, c is the create procedure and pry .. pry, is
the set of procedures. We have the translation function monSet which takes a monitor
class definition as a parameter and returns a Java class definition, applying monSet to

m we have,

<m >monSet

A

public class M,gme {

vSetx

<y ..vp > < e >TPef < oppy L pry, STPTSC

}

We apply vSet to each of the attributes in vy .. v, as shown in equation 4.4, and crDef
to the create clause as shown in equation 4.5. It just remains then to discuss the
transformation mprSet which is applied to each procedure pr; of type pr in the set of

procedures pry .. pr,. We define the procedure pr as follows,
pr = Procedure Prume(< fp1.. fpn >){ <mpb> }: type

A procedure pr has a name Prpgme, a sequence of formal parameters fp; .. fp,, and
a monitor procedure body mpb. The monitor procedure may contain a conditional
wait construct, and may also return a value. mprSet takes a monitor procedure as a
parameter and returns a Java method. So for each procedure pr;, of type pr, in pry..pr,

we apply mprSet as follows,

<pr >mp7“Set AL

public synchronized < type >thef Proame(< fo1 - fon >fpseq*){
(< mpb >mpref)iniSub

}

Once again we can refer to previously defined rules for tDef in Table 4.2, fpSegx in
equation 4.6, and iniSub in equation 4.3; it then only remains to define the rule mpbDe f
where we need to accommodate conditional waiting, and assignment to the reserved
attribute return. The monitor procedure body mpb is defined using OCB notation as

follows, the square brackets indicate the optional when clause,

mpb = [when(c){ ]| < action > [}]
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We first look at the translation for an mpb clause that does not a when clause, mpbDe f

takes a conditional waiting clause as a parameter and returns a Java statement.

< mpb >mpref

JAN

<

< action >%tPef.

notify All();

< action >"ePe/

>ini5ub

The body of the action may take the forms shown in Tables 4.9 and 4.10, note the return
statement is removed from the Java in actDef since retDef is used to extract this, and
insert it as the last Java statement. The return assignment, if one exists, can appear
anywhere in the action since it is not composed sequentially. The final step is to gather
the initial values and make appropriate substitutions on the RHS of assignments, where
applicable, by applying iniSub.

action < action >actDef

< action > || < action > | < action >PeSf; < action >tPes
r:=F x=F
return := F

TABLE 4.9: Rule actDef

action ‘ < action >TetDef
return:= F ‘ return F

TABLE 4.10: Rule retDef
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Now we apply mpbDef to a monitor procedure body mpb that does have a when clause,

< mpb >mpref

L

<
try{
while(! < ¢ >Pel){
wait(); < Iy .. lo, 5

}

catch(InterruptedException e){
e.printStack Trace();
}
< action >

notify All();

actDef .
)

< action >"PeS

>ini5’ub

In the translation of the when clause to Java we use the previously defined rules, lvSet
of equation 4.2, and cDef of Table 4.7. [vSet is applied after the return from the wait
clause. We reset the initial values when a thread resumes in case any of the variables have
changed by some other process while waiting. The final step is to gather the initial field
values and make appropriate substitutions on the RHS of assignments where applicable

by applying iniSub to the remainder of the statement.

4.6 Review of the Chapter

In this chapter we finalized our main contribution. We showed how, using an intermedi-
ate specification notation, we could link an Event-B development with a contemporary
object-oriented, concurrent programming language. The main focus of the contribution
is the ability to specify concurrently executing processes in the target implementation.
Although we link to an object-oriented programming language, and OCB has an object-
oriented look and feel, we have not explored the use of other object-oriented features
such as inheritance. The Event-B language does not contain object-oriented constructs
or low-level programming constructs; nor does it handle interleaving operations, so using
OCB we have been able to link these notions with Event-B and produce a mapping to
Java code. We introduced the following features to OCB to facilitate the link between

Event-B and concurrent, object-oriented implementations; ProcessClass - as templates
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for process objects, MonitorClass - as templates for monitor objects, constructor pro-

cedures - to instantiate the objects, and OCB- arrays.

OCB provides constructs for defining process classes that can be instantiated and im-
plemented as Java threads, and monitor classes that use the Java synchronization mech-
anism to ensure mutually exclusive access to shared data. The limitations of the Java
Language specification JLS 2 have been taken into consideration and the approach has
been tailored to accommodate this particular version. A feature of the OCB notation
is that a useful abstraction is made which alleviates the developer from the burden of
reasoning about locking and implementing conditional waiting, and simplifies the rea-
soning process due to the nature of the labelled atomic clauses. One of the key features
is that of OCB'’s ability to specify interleaving operations; using non-atomic clauses com-
prised of labelled atomic constructs. The Event-B language does not provide constructs
to enable specification of interleaving in the same way. The non-atomic clauses facili-
tate sequential composition, looping, and branching behaviour. These are also features
which are absent from the Event-B language. In the presentation of these non-atomic
constructs we initially use the Guarded Command Language to describe the semantics.
However, the guarded command language is not used for the specification notation it-
self, instead we introduce syntactic sugar which is more affine to modern object-oriented
notations. In this way we introduce the specification style of constructs such as while
and if. We then proceed to use this syntax to define the mapping to Java code, and
handle the issues of parallel semantics for sequential Java statements, using initial value
substitution. An alternative approach here would be to introduce a sequential operator
for use in Event-B actions; since one does not exist at present. This would facilitate a
more straightforward mapping from Event-B to Java, but would require a change to the

Event-B language to incorporate a sequence operator.

In this chapter we introduce the OCB when construct, of a procedure call. This con-
struct is a simple representation of a guarded event in Event-B, and maps to a Java style
conditional waiting loop in the implementation. The negated when-clause condition is
used as the condition for entry to the while loop invoking the wait method. Notifica-
tion statements are added to all procedures that update a monitor, in this way waiting
processes are informed of potential enabling conditions. The restrictions noted in earlier
chapters are eased somewhat in the extension presented in Chapter 8, in which we intro-
duce transactional constructs, which allow access to multiple, shared objects. Formally
verifying that the Java code is correctly synchronized and correctly corresponds to the

formal model is the subject of future work.



Chapter 5

Tool Support for OCB

In this chapter we describe the tool support provided for the approach. We provide
an overview of the Eclipse Platform, and some Eclipse projects that we make use of.
We describe the OCB meta-model which we use to create OCB models in Eclipse; the
RODIN platform and Event-B meta-model that is the target for formal analysis; and
the Java Development Toolkit, which has a Java meta-model that we use to create a

Java implementation.

In previous chapters we presented a textual version of Event-B. Our translators however
integrate with the RODIN tool, and to-date the tool has no text based editor. The
RODIN tool is a GUI based modelling environment [9], for Event-B, based on the Eclipse
platform [148]. It is designed to be an open, extensible platform for rigorous development
of complex systems. We extend the functionality of the platform with plug-ins that
facilitate specification, and translation, of OCB models. We translate to the target Java
implementation; where the Java files reside in the Eclipse workspace in a Java Project.
We also translate to an Event-B project file, where the Event-B model elements reside
in a RODIN database (this is an Eclipse Project with some additional information
attached). The formal model will be amenable to analysis with the Event-B tools and

the Java project will run as an application in Eclipse.

5.1 An Overview of Eclipse

Eclipse is an open source project that provides an extensible tool platform that functions
as a customizable Integrated Development Environment (IDE). A key feature of the
Eclipse platform is the support for extensibility through the use of plug-ins, and this
was one of the main justifications for the use of Eclipse as the basis for the RODIN tool.
We aim to develop plug-in extensions for an OCB meta-model, this will allow creation

and editing of OCB models in the Eclipse environment. We also develop a plug-in to

89
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facilitate translation of an OCB model into an Event-B model which resides in a RODIN
database, and to Java source code. In order to provide a plug-in we make use of the
Eclipse Software Development Kit (SDK).

5.1.1 The Eclipse Software Development Kit

The Eclipse platform provides the tools to discover and utilize plug-ins, and also provides
mechanisms for viewing and manipulating resources. We will develop a plug-in using
the facilities provided by the Plug-in Development Environment (PDE) which is part
of the SDK. By making use of the PDE we significantly reduce the amount of coding
effort required, since the PDE contains wizards for assisting with creation of plug-ins.
An example of another productivity enhancement is the use of an extension mechanism,
called extension points, which allow the re-use of previously written code. We use
extension points to add pop-up menus and menu-bar items to the user interface. When
implementing a pop-up menu extension, for instance, most of the code is created by the
wizard and it remains for us to specify the desired behaviour in the run method of a class
that implements [ObjectActionDelegate. Appendix E.1 shows the run implementation

for our translator plug-in.

At run time, a user can build a model using Eclipse tree editor; and when they wish
to translate to Event-B and/or Java they can select the Translate pop-up menu option
which is enabled when right-clicking over an OCB model. At this point some diagnostics
are invoked, to check the integrity of the model. The information about which elements
are allowed, and which elements must be present, are specified in the meta-model itself.
So for example we stipulate that a system must have exactly one MainClass element,
and the MainClass must have a name and a non-atomic clause. Following successful

diagnostic checks the Event-B translator and then Java translator are invoked.

5.1.2 The Eclipse Modelling Framework

In our work we have defined the OCB syntax, and we wish to carry out some modelling
activity, creating OCB models in accordance with the syntax we have described. The
Eclipse Modelling Framework (EMF) [150, 27] is equipped to provide exactly this facility.
In essence the OCB syntax that we have described will be embodied in a meta-model,
and we can use the EMF to create an editing environment that will enable a user to

construct OCB models using the meta-model.

Before we proceed we will clarify the terms that we are using in the discussion of EMF,
we frequently use the terms model and meta-model. A model is a structured description
of some artefact, and the meta-model describes the elements that will be used to build

that model, (a meta-model is also a model). Therefore a meta-model describes the
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structure of a whole range of models. The EMF and its associated tools allows us to
build an OCB meta-model; and the OCB meta-model is then used to create an OCB

model. We then use this model to translate to Event-B and Java.

In Eclipse, using the EMF meta-model creation wizard, there are a number of ways of
generating a meta-model; the source for generation can be an existing UML model, anno-
tated Java source code, or an XMI (XML Meta-data Interchange) document. We chose
to use annotated Java due to its familiarity and, with regard to the UML approach,
to reduce the reliance on other technologies. The meta-model is generated with two
additional plug-ins. The first is the edit plug-in which contains item providers for the
meta-model elements, this is used by EMF to create model elements when constructing
an OCB model using the GUIL. The second is the editor plug-in, which is used to con-
tribute to the User Interface (UI). The editor plug-in contains an EMF model creation
wizard for creating new modelling projects, and it also contains classes that contribute

to the toolbar and pop-up menu.

5.2 The OCB Meta-model

We now discuss the creation of the OCB meta-model, as discussed previously, we chose
to use annotated Java as the basis for meta-model construction. When using annotated
Java as the basis for meta-model creation we define Java interfaces for the meta-model
elements we wish to create, and provide getter methods for the child elements. The EMF
meta-model creation wizard then uses this information to create an ecore and EMF
model. During the development of the OCB meta-model we found that the syntax
mapped easily to the annotated Java. Figure 5.1 shows the annotated Java specification
the we use to construct the ProcessClass element of the OCB meta-model. Figure 5.2
shows the relationship between the OCB syntax and elements in the annotated Java.
Some explanation of the annotation follows: The @model annotation is used to identify
the meta-model elements of the ProcessClass Interface (including the interface itself)
that should be included in the meta-model; parts of the interface without annotation
will not be processed. The @model annotation associated with the ProcessClass Interface
will give rise to an ProcessClass meta-model element that can be instantiated within
the Eclipse environment as a model element. The required = true annotation is an
instruction to the model validator to check that an element of this type is present in
the model, and raise an error if it is not present. The containment annotation is an
instruction to the generator of the editor. containment = true gives rise to an element
which can be added to the model tree in the tree editor view; if it is false, or not specified,

the element appears in the properties view editor and not in the model tree.

The ProcessClass defined in Figure 5.1, gives rise to the implementation classes shown

in the class diagram in Figure 5.3. We see that the implementation classes have been
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/**
* @model
*/
public interface ProcessClass {

/**

* @model required=*“true”
*/

String getName();

/**

* @model type=*“Variable” containment=*“true”
*/
EList<Variable> getVariable();

/**

* @model required = “true” containment=“true”
*/

NonAtomicClause getRunOperation();

[
* @model containment=“true”
*/

CreateProcedure getCreateProcedure();

}

FIGURE 5.1: Annotated Java for the ProcessClass Meta-model Element

OCB Syntax | Annotated Java

ProcessClass | Interface ProcessClass

CName String getName()

Var™ EList<Variable> getVariable()
Constructor | CreateProcedure: getCreateProcedure()
NonAtomic | NonAtomicClause: getRunOperation()

FIGURE 5.2: Relationship between OCB Syntax and Meta-model

populated with various attributes and operations by the meta-model generator. These

are used by the tree editor when creating and managing the model elements.

We present an illustration of the use of the OCB meta-model, an OCB model, in Fig-
ure 5.4. The screen-shot shows the tree editor view of a model described later, in
chapter 6.1. In the tree view the details of the specification are distributed throughout
the nodes of the tree - many of which are likely to be hidden at any one time in anything
other than the most simple development. In addition part of the specification appears
in a totally separate view to the tree editor - the properties view. So, as we see, the
tree editor view may not be so easy to understand, especially when trying to convey

information about the development to others. So in addition to the tree-editor view we
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FIGURE 5.3: Meta-model - Class Diagram of the ProcessClass

have provided a utility to produce a text based view of the development, also shown in
the same figure. The textual view makes use of the syntactic sugar described in sec-
tion 4.2 and provide a pop-up menu item to translate the tree-based model to a text
file. In future work we would like to develop a text-based editor for OCB with syntax
highlighting and context sensitive code assists using a framework such as the Textual
Editing Framework (TEF) [106].

When a user wishes to create a new OCB model a new, empty model is created using the
model creation wizard built by the framework. Once created new model elements can
be added to the model using the tree editor view. The underlying framework ensures
that model elements can only be added to the appropriate tree node. To complete the
description of the OCB development, information is entered in the properties editor
view, which is visible in the properties tab at the bottom of Figure 5.4. When the model
is ready for translation it can be validated using the wvalidate menu option by right-
clicking on the MainClass, although the translator enforces validation of the model

programatically before any actual translation takes place.
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5.3 Implementing the OCB to Event-B Translator

When translating from OCB to Event-B we use a number of the published APIs from
the RODIN tools project, which we use to create and populate a RODIN database. The
model that results from running the Event-B translator on an OCB model, resides in
an Event-B project (the so-called database) which is created programatically by the
translator. The RODIN tool is comprised of a number of plug-ins, and we frequently
use the API defined in the Event-B core plug-in. The core plug-in defines elements for
use in an Event-B development, that is, the elements that are used to build Event-B

models such as events, guards and proof obligations.

In order to automatically translate an OCB model to an Event-B model it is necessary
to programatically create a RODIN project, populate an Event-B model with its repre-
sentation of the OCB model, and make the result persist. A reference to the RODIN
database manager is obtained, and this is used to create a new RODIN project which

appears in the Eclipse GUI as a folder. An attempt is made to retrieve the new RODIN
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project’s Eclipse platform project (if it does not already exist it is created) and this is
used to open the project for reading and updating. Once open we check that a RODIN
project nature is associated with it. This is used by the Eclipse platform to recognise a
RODIN project, and the platform then invokes the RODIN builders when changes are
detected. The open project is then ready to be populated with RODIN elements such
as machines, contexts, variables and events etc. Following translation the files in the
RODIN project are saved using RODIN API calls.

The translation process is initiated by right clicking on the OCB model in the Eclipse
tree editor and selecting the OCB Utilities/Translate option from the pop-up menu.
When the Translate menu option is selected a listener causes the TranslatorAction’s run
method to execute see Appendix E.1 for details. A diagnostic test is performed to ensure
required elements are present, and if successful we create two translation managers; the
FEventBM anager that manages the OCB to Event-B translation; and the JavaManager

that manages the translation from OCB to Java.

The Event-B translation manager sets up the Event-B project files and a translator
instance is created to traverse the model tree, and create the appropriate Event-B ele-

ments. The translation steps are summarized as follows,

1. Create the project, machine, and context files.
2. Prepare the project environment, add a machine file and context file.
3. Create the translator instance.

4. Invoke the translator’s translate method to add elements to the Event-B compo-

nents.

5. Save the project and components.

During translation from OCB to Event-B we add a machine and context, and traverse
the OCB model, adding sets and related axioms, variables and their typing invariants,
and events as appropriate using RODIN API methods. The formal presentation of the
translation rules of Chapters 3 and 4 elides the exact details of these additions in-order
to clarify the fundamentals of the approach. In future work we would wish to fully
define these translation details and explicitly link each translation rule to the code that

implements the rule, using code comments, for traceability.

As the translator traverses through the OCB model, OCB model elements are identified
that contribute to the Event-B model; after processing the monitor classes the translator
then processes the process classes. (Monitor classes are used by process classes so its
easier to process these first). The processing of non-atomic clauses depends on the type

of clause involved, so we find the instance type and process the specific type accordingly.
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For instance, if the clause is an OCB sequence we recursively process the left and right
branch non-atomic clauses. See Appendix E.2 for the Java method for processing the

sequence clause.

5.4 Implementing the OCB to Java Translator

In the translation to Java we use the Eclipse Java Development Toolkit (JDT) APT [149]
to create and populate a Java project with Java source code. The JDT contains a meta-
model of Java elements such as packages, classes, fields, and so on, which can be instan-
tiated to programatically build Java developments. Using our translator we traverse the
underlying OCB model and extract the information required to create the appropriate
Java elements using the JDT API. The first step is to create a Java project within the
Eclipse environment. The project is then populated with a number of compilation units
created using the JDT oryg.eclipse.jdt.core class factory methods. The Java elements cre-
ated by these factory methods are the programming elements that we wish to add, such
as class declarations, field declarations, method declarations and method calls, imports

statements, and looping and branching constructs.

The translation to a Java project is initiated by calling the JavaManager’s translate
method. As previously mentioned we traverse the OCB model building and populating
a Java project, and instantiate the meta-model elements exposed by the JDT API. The
mapping from our object-oriented OCB constructs to their counterparts in Java is rela-
tively straightforward, accommodating parallel semantics is one of the few complexities.
Creation of a Java program that is executable in the Eclipse environment involves a
number of tasks in addition to the translation task. The following steps are carried out

programatically,

1. Create an Eclipse project and apply the JDT nature.

2. Use the Eclipse project to create a Java Project.

3. Add the Java Runtime’s location to the Java project class path.
4. Create a Package to contain the source code.

5. Prepare the environment.

6. Traverse the OCB model, adding elements to the compilation unit. Each Process-
Class, MonitorClass and the MainClass gives rise to a Java File containing a Java
class. The Java classes are populated programatically with Java Fields, methods

and supporting elements.
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When programatically adding elements to the Java project using the JDT API behind
the scenes the AST Parser is syntax checking on the fly as we build a model. For
this reason it is possible to get Java syntax errors mid-way through the programmatic
construction of a development. The current tool sometimes terminates the translation
with a cryptic error message. In future work it will be necessary to improve the handling
of these errors, although we should be able to avoid the majority (if not all) of them

through improved static checking of the OCB model prior to translation.

The JavaCore API provides various utilities for creating Java elements from which we
obtain a JavaProject which appears in the Eclipse GUI as a folder. A Java package
is then added to the JawvaProject which is where the source files that we create will
reside. A translator instance is created by the translation manager to populate the
model with Java elements. The translator instance creates files and classes (from the
org.eclipse.jdt.core package) that correspond to ProcessClass, MonitorClass, and the
MainClass.

The compilation unit is the in-memory representation of a Java .java file, and has a
method to create a class (known as a type in the JDT) by invoking the createType
method. Typically when creating elements using the JDT API a parent is responsible
for creating its child elements, to populate a class with fields we use a similar approach
using IType.createField, and so on for other JDT meta-model elements. The process
of building JDT models is slightly different to that of building Event-B models. When
creating Event-B elements, factory methods provide a handle to the new object, a create
method is then used to instantiate the element, then element properties are set explicitly
using setter methods. However, when creating JDT elements we provide the API create
method with a string parameter containing the Java source code. The new Java element
is then added to the compilation unit, and source code is parsed using the AST parser.
When the translation is complete the Java files are compiled by the JDT builder into
“.class” files. These are suitable for execution in the Eclipse environment. The Java
program can then be run in the Eclipse environment by identifying the class which con-
tains the main method, derived from the MainClass main operation, and then selecting

Run As/Eclipse application.

5.5 Review of the Chapter

In this chapter we have shown how tool support is provided for the OCB approach. We
begin with an overview of the Eclipse platform, and the Eclipse Modelling Framework,
upon which our tool is based. We then discuss the construction and use of the OCB
meta-model, which provides the abstract syntax for our implementation level models.
The OCB model is traversed by the OCB Event-B translator, it makes calls into the
RODIN API to create an Event-B model that is compatible with the RODIN toolset. A
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similar translator traverses the OCB model and uses the JDT API to create and populate
a Java project. This can then be run in a JVM, or in the Eclipse environment. During
initial investigations we found construction of OCB models relatively straightforward;
and translations of the OCB models produced Java code that was executable. The

resulting Event-B models were amenable to syntax checking and proof.

The current version of tools does not provide seamless integration when refining an
existing development. The Event-B model arising from a translation is manually copied
to an existing project after which work on the refinement activity continues. In future
work we would aim to provide a more integrated approach to providing implementation
refinements of an existing development. There is no plan to achieve tighter integration
using round-trip engineering, due to the difficulty of mapping from an Event-B model to
OCB. For instance when a guard is added to an Event-B model it would unclear where
this would be added in the OCB; a single event may have guards derived from several
locations in the OCB. A closer integration with UML-B could be beneficial, due to the
potential link between UML-B classes, and ProcessClass and MonitorClass constructs,
in class diagrams for instance. There are links between an abstract development and
implementation refinement which can be brought into the foreground (of the developer’s
attention), perhaps using a GUI wizard to link the two. One example of where this
would be of use is when defining the REFINES link between events of the abstract
development and those of the OCB model; another would be the definition of witnesses
using a WITH clause of some of the refined events of the OCB model. Witnesses link
the parameters of the abstract development with the implementation refinement, and

can assist with discharging proof obligations.

In our current tool we have made use of the default Eclipse tree based editor which
provides the most basic editing functionality, such as addition and removal of nodes
representing model elements, and a properties editor which allows editing of the proper-
ties associated with model elements. To assist with understanding a model we provide
a textual OCB viewer, and in the future it would be useful to produce an OCB text
editor, such as one based on the Textual Editing Framework (TEF) [106], to compli-
ment the tools. A further enhancement would be to use the Eclipse Graphical Editor
Framework (GEF) [14] to construct a GUI which will allow the user to construct models

in an environment that uses entities similar to class diagrams.

We found that so far, in the development of the prototype tooling, that the OCB ap-
proach was not adversely affected by the use of EMF as a method of constructing a
meta-model; in fact the Eclipse tools appear to be a good facilitator for the approach,
with most of the OCB syntax embodied in the OCB meta-model. The translators,
similarly, are facilitators of the approach and there was no significant impact on the
approach due to the nature of the translator implementation, although integration with
abstract developments was not attempted. It is certainly likely that with closer in-

tegration between abstract developments and OCB modelling then the use of a more
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advanced features will feed back into the approach. This may be through the use of

patterns, or other productivity enhancements to improve the link between the abstract

development and OCB model.



Chapter 6

Case Study 1

In this chapter we present a case study of a channel buffering system. We use the
case study to introduce a systematic approach to linking an Event-B model to an OCB
specification. A diagrammatic view of the system is presented which follows the proposal
in [32] of Event Refinement Diagrams. Event Refinement Diagrams are in turn based
on Jackson Structure Diagrams [86]. These act as an aid to visualising the relationship
between the events of the abstract development and the OCB specification. We partition
the system into processes that perform tasks, and shared data structures. In our case
study we specify a shared channel which is able to hold a block of data. Processes read
data into a local buffer from the shared channel, or write data to the shared channel
from a local buffer. We begin with an abstract model which models transfer of one block
of data at a time, before refining the model based on the transfer of the packets that
make up a block. Then we link the refined model (of the abstract development) with
an OCB specification, which facilitates translation to an Event-B implementation model

and Java code.

6.1 Development of a Concurrent Read/Write Channel

The channel that we specify will have at most one reader reading, and at most one
writer writing at any one time; however a number of processes may be waiting to read
from, or write to, the channel. An important feature of our system is that at the highest
level of abstraction data is transferred as a block in a single atomic step. A write event
constitutes moving a block from a writing process to a channel buffer; and a read event
constitutes moving a block from a channel buffer to a reader. The atomicity of the
read and write activity is altered in the refinement - we introduce blocks that are made
up of packets, and each packet is written to the channel individually. This allows the
reader to begin reading as soon as there is data in the channel - without the writer

having to complete the data transfer. We also add an additional constraint that the
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reader finishes reading a writer’s data before another writer can begin writing. In effect,
we require a block of data to be moved from one writer, to one reader, via a shared
channel buffer. Figure 6.1 shows a configuration with one reader, one writer and a

number of processes waiting. In order to describe the activities that occur we make

Process (writing) Process (reading)

Process (waiting to write) Channel N » Process (waiting to read)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIGURE 6.1: The Processes Sharing a Channel

use of a graphical representation of our system, based on Jackson Structure Diagrams.
The diagrams are an informal representation of the relationship between abstract events
and events of refinements; and are used as an aid to understanding the correspondence,
in particular where an event refinement relationship is not one-one. Such relationships
may need to take into account event ordering and iteration. The diagrams consist of a
tree where nodes correspond to events; each level of the tree corresponds to a level of
refinement, and concreteness increases with tree depth. The events of each refinement
are read from left to right, at each level, and indicate the sequence in which the events
are required to occur. The solid lines connecting events represent event refinement, and
dashed lines represent events that refine skip, and add behaviour related to the abstract

event. We indicate the parameter names of each event in the form of an event signature.

We can see from the diagrams of Figure 6.2 and 6.3 the top-level Read and Write events
which are parameterized by a process p, channel ¢ and block b. In the refinement we
decompose the atomicity of the Read and Write events; the Write event is decomposed
to the three events, StartWrite, WritePacket and EndW rite, of which the last refines
Write. Similarly the Read event is decomposed in to StartRead, ReadPacket and
EndRead events. The refined events are parameterized by a process p, channel ¢, packet
k, and data d.

In all Jackson Structure type Diagrams the ‘*’ denotes possible iteration, where kx
indicates that the number of iterations is determined by a guard involving parameter
k. In diagram 6.2 kx indicates iteration for all packets k, where p is a process in proc
and c is a channel in chan; k is a packet in the buffer of p, buff(p); and the packet
is not already written to the channel ¢, k ¢ dom(data2(c)). In our model all packets
are eventually transferred to the channel buffer data2(c) and iteration ceases. A similar

scenario occurs in the read process.
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Write(p,c,b)

StartWrite(p,c) ’ ‘WritePacket(p,c,k,d) ’ ‘ EndWrite(p,c,b)J

where k* = vk,p,c-
pe proc * ce chan ”
ke dom(buff(p)) »
ke dom(data2(c))

FIGURE 6.2: Decomposing the Write Event

Read(p,c,b)

StartRead(p,c) ’ ‘ ReadPacket(p,c,k) ’ ‘ EndRead(p,c,b)]

where k* = vKk,p,c-
pe proc ~ ce chan
ke dom(buff2(p)) »
ke dom(data2(c))

FIGURE 6.3: Decomposing the Read Event
6.1.1 The Initial Event-B Model

At the highest level of abstraction we model processes, channels and data. We define
carrier sets for the set of processes Process, the set of channels Channel, and set of
data blocks represented by Block. A block of data is a function of packet identifiers
to data, Block = PKTID - DATA. Process objects are represented by a variable
proc, and channels are represented by a variable chan. Each process has a local buffer
called buf f, and channels hold data in a buffer called data. Initially we model data
transmission (reading from channel to process and writing from process to channel) as

movement of an entire block of data. The intention is to model a system where one
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block of data is copied to the channel, and a single reader copies the whole block to its

local buffer; we are not modelling a system with multiple readers.

We define the variable types in the invariant as follows and initialize the variables as

empty sets in the Initialisation clause,

INVARIANTS
proc C PROCESS
chan CCHANNEL
data € chan — Block

buff € proc — Block

The event models the write of a block of data b to a channel. The event parameters
model the writing process p, and the target channel c. In addition to these parameters
an additional local parameter b is introduced to keep track of the block of data to be
written from the local buffer; this is defined as b = buf f(p). The event is guarded to
ensure that the write only takes place if the buffer contains some data, i.e. b # @, and

the channel buffer data(c) is empty, i.e. data(c) = @.

Write =
ANY p, ¢, b
WHERE p € proc A ¢ € chan ANb=buff(p) A
buff(p) # <2 A data(c) = &
THEN data(c) :=b || buff(p) :=2
END

The block b is copied to the data buffer data(c) and the local buffer buf f(p) is emptied.

The event to read a block from the channel is parameterized by a reading process p, a
channel c¢. In addition to these parameters we introduce the local parameter b to keep
track of the block of data to be read from the channel buffer data(c), it is defined as
b = data(c). The read event takes place only when the local buffer buf f(p) is empty,
i.e. buf f(p) = @; and the channel buffer has a block of data b to be read, i.e. b # @.

Read =
ANY p, ¢, b
WHERE p € proc A ¢ € chan A b= data(c)
buff(p) =@ A data(c) # &
THEN data(c) := @ || buff(p) :=b
END
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The block in the channel buffer b is copied to the local buffer buf f(p) and the channel
buffer data(c) is emptied.

The event NewProc adds processes from PROCESS \ proc to the set proc, which is

similar to the modelling of instantiation.

NewProc =
ANY p, b
WHERE p € PROCESS \ proc A b€ Block
THEN proc = proc U {p} || buff(p) =10
END

The event NewChan adds channels from CHANNEL \ chan to the set chan,

NewChan £
ANY ¢
WHERE c € CHANNEL\ chan
THEN chan = chan U {c} || data(c) = @
END

6.1.2 Refinement with Data Packets

In the first refinement of the abstract machine we introduce writing behaviour which
is performed in three steps, relating to the StartWrite, WritePacket, and EndWrite
events. Similarly StartRead, ReadPacket and EndRead perform reading. We record
which activity (either reading or writing) a process may be engaged in using the variables
reading and writing. We also introduce buf f2 which is a local buffer where data can
be added or removed one packet at a time; and data2 which is a channel buffer where
data can be added or removed one packet at a time. We type the additional variables

of the machine as follows,

Invariants
writing € proc -~ chan
reading € proc -~ chan
buf f2 € proc — Block

data2 € chan — Block

The typing invariant for writing ensures that any process in the domain of writing is
linked to at most one channel in chan; and that the channel is related to, at most, one

process. So only one process can write to a channel. Similarly, reading ensures that
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any process in the domain of reading is linked to at most one channel in chan; and that
the channel is related to, at most, one process. So only one process can read from a
channel. Each reading or writing process has a single local buffer buf f2; any process in
the domain of buf f2 is related to a block of data of type Block. Each channel also has
a single local buffer, data2, in which to store data; each channel in the domain of data2
is related to a block of data of type Block.

We ensure processes cannot be reading and writing at the same time with the invariant,
dom(writing) N dom(reading) = &

However we allow channels to be in the range of both reading and writing simultane-

ously.

We now look at the added events, firstly StartWrite which refines skip. The event can
occur when process p and channel ¢ are not involved with writing and p is not reading.
Additionally the local buffer buf f2(p) must have some data to transfer, i.e. buf f2(p) #
&; and the receiving channel buffer data2(c) must be empty, i.e. data2(c) = @.

StartWrite £
ANY p, ¢
WHERE p € proc A ¢ € chan A p ¢ dom(writing) A
¢ & ran(writing) N buff2(p) # @ A data2(c) = IA
p ¢ dom(reading)
THEN writing := writing U {p — ¢}
END

The process and channel p — ¢ are added to the set of writing pairs.

Once a process-channel pair are added to the set of writing pairs we can transfer in-
dividual packets of data, represented by the maplet & — d, from one to the other.
Here k represents the packet identifier and d represents the data. We introduce the
Write Packet event which refines skip to do this. The event will occur only when there
is data to transfer out of the local buffer that is not already in the channel buffer, so it

is guarded by,

k€ dom(buff2(p)) N d=0buff2(p)(k) N k¢ dom(data2(c))
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The channel buffer may or may not be empty. The WritePacket event is defined in the

following way,

WritePacket 2
ANY p, ¢, k, d
WHERE p — ¢ € writing A k € dom(buf f2(p)) A
d=0buff2(p)(k) N k¢ dom(data2(c))
THEN data2(c) := data2(c) U {k — d}
END

In the WritePacket event a packet k — d is added to the channel buffer data2(c).

The EndWrite event refines Write. The write activity ends when the channel buffer is
equal to the local buffer, data2(c) = buf f2(p). We introduce a witness using the WITH
clause to link the abstract block of data in the buffer b, to the refined buffer buf f2.

EndWrite =
REFINES Write
ANY p, ¢
WHERE p — ¢ € writing A ¢ € chan A data2(c) = buf f2(p)
WITH b = buff2(p)
THEN writing := {p} < writing || buf f2(p) := @
END

The process p is removed from the set of writers writing := {p} 9 writing and the local
buffer is cleared, buf f2(p) := @.

The read activity begins with a Start Read which refines skip. It can occur when process
p and channel ¢ are not involved with reading, p ¢ dom(reading) A c ¢ ran(reading) ;

and p is not writing, p ¢ dom(writing).

StartRead =
ANY p, c
WHERE p € proc A\ ¢ € chan A p ¢ dom(reading) A
c ¢ ran(reading) N p ¢ dom(writing) N data2(c) # @ N buff2(p) =@
THEN reading U {p — c}
END

The process and channel pair p — ¢ are added to the set of reading pairs.

The reading of individual packets, represented by the maplet k — data2(c)(k), can occur

as soon as a packet appears in the channel buffer, & € dom(data2(c)). Here k is a packet
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identifier and data2(c)(k) relates to the data. The event can transfer data as long as
it is not already in the local buffer; it is guarded by k ¢ dom(buff2(p)). The event
ReadPacket refines skip, and has a process p and channel ¢. A process can only read

from a channel when it is in the set of reading pairs denoted by p — ¢ € reading.

ReadPacket =
ANY p, ¢, k
WHERE p — ¢ € reading A k € dom(data2(c)) N k ¢ dom(buff2(p))
THEN buf f2(p) := buf f2(p) U {k — data2(c)(k)}
END

A packet from the channel buffer, represented by k +— data2(c)(k), is added to the local
buffer buf f2(p).

Reading of packets ends when the channel buffer is equal to the local buffer, buf f2(p) =
data2(c); and the channel is no longer being written to, represented by the guard c ¢
ran(writing). We introduce a witness using the WITH clause to link the block of data
b in the abstract event to the channel buffer data2(c). The EndRead event refines Read

and is defined as follows,

EndRead =
REFINES Read
ANY p, ¢
WHERE p € proc A ¢ € chan Apw— c € reading N
¢ ¢ ran(writing) A buf f2(p) = data2(c)
WITH b = data2(c)
THEN data2(c) := @ || reading := reading \ {p — c}
END

The channel buffer is emptied in the event action, data2(c) := &, the data is considered
to have been consumed by the reading process. The process-channel pair is removed

from the set of reading pairs, reading := reading \ {p — c}.

During the refinement process a number of gluing invariants were added. In order to
show that the channel data block data is equal to the packetized data data2, except

when the process is writing, we have the following invariant,

Ve-c € chan A ¢ ¢ ran(writing) = data(c) = data2(c)
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We have a similar invariant to show that the process block buffer buff must be the

same as the packetized buffer buf f2, except when the process is reading.

Vp-p € proc A p ¢ dom(reading) = buf f(p) = buf f2(p)

The refinement of the abstract development is now complete, and we have been able
to discharge all proof obligations that have arisen. We are now ready to begin the

implementation stage of development.

6.1.3 The OCB Specification

When we are making design decisions about the implementation of the reading and
writing processes we made use of the diagrams of Figures 6.2 and 6.3 to help visualise
the required implementation. For example, from the diagrams we can see that the
write behaviour needs to be implemented as a sequence of atomic steps, and one of the
steps, writePacket, is iterative so the use of the looping construct will be required. In
the implementation level diagram we use the OCB clause labels to describe the atomic
events, which can be seen in Figures 6.4 and 6.5. In the implementation level diagram
we indicate iteration of a group of clauses by attaching the loop condition annotation
to an enclosing box. In our OCB specification we implement the events of the abstract
development with one or more OCB labelled atomic clauses, one of which explicitly
refines an abstract event (the others refine SKIP).

In the OCB refinement of the abstract development, design decisions need to be taken to
define the relationship between the OCB process class specification and the abstraction
needs to be defined. We know that the read and write behaviours are mutually exclusive,
that is a process will either read or write, but not both. We could implement the
processes as two separate classes embodying the separate behaviours. Alternatively we
can implement one process class specification that can do either task, and we differentiate
between readers and writers by supplying a parameter at the time of invocation. It is
the latter approach that we choose for our implementation. The only construct that is
shared between processes is the channel, we specify the channel as a monitor class, but is
not apparent from the Jackson Structure type Diagrams since they describe behavioural
aspects of the system and monitor classes play a passive role in the system. Figures 6.4
and 6.5 show the relationship between the events of the abstract development to the
corresponding clauses of the OCB specification; clause labels are used instead of event
names, in the diagram to describe the implementation level constructs. Iteration of
clauses, at the implementation level, are grouped by an enclosing box and the labelled

annotation show the loop condition.

We can see that the StartWrite event is implemented by clauses labelled p1 and p2 which

make preparations for writing by obtaining the size of the local buffer and obtaining
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Write(p,c,b)

IDIDIGIENG

_________________

where k* = vk,p,C-
pe proc * ce chan
ke dom(buff(p)) »
ke dom(data2(c))

p3* = loop condition: tmpBuffSz > 0

FIGURE 6.4: Decomposing the Write Event - at the Level of OCB Specification.

Read(p,c)

pl_else } ( p8j ( pgj (ploj E pll
where k* = vKk,p,c-
pe proc ~ ce chan p8* = loop condition: tmpBuffSz > 0
ke dom(buff2(p)) »
ke dom(data2(c))

FIGURE 6.5: Decomposing the Read Event - at the Level of OCB Specification.
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the write channel if it is free (and blocking otherwise). In the abstraction a channel
is restricted to being written to by one process. This is embodied in the guard ¢ ¢
ran(writing) of the StartWrite event. However in the implementation we do not have
access to set constructs so we introduce an attribute wPID to the shared channel class.
Each process will have a unique identifier and it is assigned to wPID when the process
is writing to the channel, or otherwise has the value -1 if no process is writing to it. In
this way only a single process/channel pair are linked for the purposes of writing, and
since the getW Chan procedure is guarded by the when clause when(wPID = —1.. .,
only a single writing process can be associated with the channel at any one time. In
the generated Event-B model a guard causes the event to block if —wPID = —1. So
the blocking behaviour described by OCB’s when construct will cause a process to wait
when attempting to obtain a channel which is not available. We also use this approach
when a reader tries to request data from a channel but there is none in the buffer, yet
the write is not complete. The freeW Chan procedure then resets the wPID attribute

to the value of -1 when the write has finished.

Now we return to the discussion about processes and refer again to Figure 6.4 - The clause
p2 obtains mutually exclusive access to the channel by calling the getW Chan procedure,
which directly refines the StartWrite event. In the abstraction the Write Packet event
then iterates over the packets of data in the buffer. We implement this as a while loop
with labelled clauses p3...p5. Following this clause p6 releases the channel by calling
the freeW Chan, so it directly refines the EndWrite event. A description of the write
process behaviour is summarized in the following table, which also includes the reading

process description.
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Label | Description

pl If the process is a writer then get the size of the local buffer.
p2 Obtain the write channel if it is free else block.

The process ID and number of packets to send are parameters
p3 While there is a packet to send from the local buffer

remove the packet assigning to the temporary attribute.
p4 Add the data to the channel buffer.
p5 Decrement the count of packets.
p6 Release the channel for other writers.

pl_else | If the process is a reader obtain a read channel

if it is free, else block.

p7 Obtain the number of packets to read from the channel.
p8 While there are packets remove a packet from the channel

buffer and assign to the temporary attribute.

P9 Add the packet to the local buffer.
p10 Decrement the buffer counter.
pll Free the read channel for another reader.

We can see in the diagram that the labelled atomic clauses p2...p6 ultimately imple-
ment the most abstract Write event, and we can also see that clauses p3 ... p5 refine the
WritePacket event. Each of the events StartWrite, WritePacket and EndWrite are
refined by exactly one labelled OCB clause, along with a number of associated labelled
clauses. The additional associated clauses contain loop control information, and manip-
ulate the data. For example the loop p3...pb relies on keeping track of the number of
packets of data to write. The number of elements to write is initially obtained in clause
pl by calling buf f’s getSize procedure - only clause p4 refines WritePacket explicitly
which involves the write of a packet of data to the channel. This can be seen in the

following Proc process class specification.

In our implementation we specify reading and writing processes in the same class, the
behaviour of the process is determined by the boolean parameter isWriter supplied at

instantiation. The process class Proc specification follows,

ProcessClass Proc{
Buffer buff, Boolean isWriter, Channel c, Integer id,
Integer tmpBuffSz, Integer tmpDat
// The constructor procedure
Procedure create(Integer pid, Buffer bff,
Boolean isWritr, Channel ch){

id:=pid || buff:=bff || isWriter:=isWritr || c:= ch ||
tmpBuffSz:=-1 || tmpDat:=-1
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}

// The process behaviour
Operation run(){
pl: if(isWriter=TRUE) then
tmpBuffSz:=buff.getSize() andthen
p2: c.getWChan(id, tmpBuffSz); // refines StartWrite
p3: while(tmpBuffSz>0) do tmpDat:=buff.remove() andthen
p4: c.add(tmpDat); // refines WritePacket
p5: tmpBuffSz:=tmpBuffSz-1 endwhile ;
p6: c.freeWChan() endif // refines EndWrite
else c.getRChan(id) andthen // refines StartRead
p7: tmpBuffSz:=c.getWriteSize();
p8: while(tmpBuffSz>0) do tmpDat:=c.remove() andthen
p9: buff.add(tmpDat); // refines ReadPacket
pl0: tmpBuffSz:=tmpBuffSz-1 endwhile ;
pll: c.freeRChan() endelse // refines EndRead

The process class constructor parameters include a process identifier pid, an internal
buffer bf f, and the shared channel ch. There are additional attributes for temporary
storage of values used during processing. We have now specified the Proc process class
and Channel monitor class that we need to implement the system. There is however
another class, the local Buffer class, used within the process class. It is very similar
to that of the channel class, with add and remove procedures for which we provide no
further details here (see Appendix C.4 for details)

We next discuss some more aspects of the monitor class specification of the Channel.
The OCB Channel specification has an array buffer buf f of, capacity 50; integer data
elements are added to the write location wLoc and read from the read location rLoc
of the buffer. The add procedure limits bursts of data to 5 items using the guard
wLoc — rLoc < 5 in the when clause, but can only transmit up to 50 elements in total
due to the array size. The attributes rPID, wPID and writeSize record the identifier of
the reading process, writing process, and size of block to be written respectively. rPID
and wPID are initially assigned a value of —1 which we will not use for a process iden-

tifier. There are seven monitor procedures for which we summarize in the following table,
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add Add a packet to the buffer at the write location.
Block if the write limit is reached
remove Remove and return a packet from the buffer at the read.
Block the caller if there is nothing to remove.
getWChannel Obtain a channel for writing if it is available
and there is no reader, else block the caller.
freeWChan Release a write channel by removing the process ID.
getRChannel  Obtain a channel for reading if it is available
and there is data to read, else block the caller.
freeRChan Release a read channel by removing the process ID.
getWriteSize  Returns the size of the data block.

We reproduce the Channel specification here for reference,

MonitorClass Channel{

// Attributes

Integer[50] buff, Integer rLoc, Integer wLoc,
Integer rPID, Integer wPID, Integer writeSize

// The Constructor
Procedure create(){
0 || wLoc:= 0 || rPID:= -1 ||

rLoc:
wPID:

}

-1 || writeSize:= -1

// ‘Refines’ WritePacket - in a call from clause p4
Procedure add(Integer val){
when (wLoc - rLoc <= 5){
buff [wLoc]:= val || wLoc:= wLoc + 1}

// The value is stored in a temporary buffer in a
// call from clause p8 - implementing ReadPacket
//as part of the reading activity.
Procedure remove(){
when (wLoc - rLoc > 0){
return:= buff[rLoc] || rLoc := rLoc+l }

}: Integer

// Called in pl_else clause - refines StartRead.
// Set the channel for reading, by the process
// with identifier pid.
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// Block if it is already owned or has nothing to read.
Procedure getRChan(Integer pid){
when (rPID=-1 & writeSize>0){rPID:= pid}

}

// Called in pll clause - refines EndRead.
// Free the channel for reading.
Procedure freeRChan(){

rPID:= -1 || writeSize:= -1

}

// Called in pl clause - implementing StartWrite.

// Set the channel for writing writesze bytes, by

// the process pid.

// Block if the channel <s already owned for writing or

// has bytes still to write.

Procedure getWChan(Integer pid,Integer writeSze){
when (wPID=-1 & writeSize<=0){

wPID:= pid || writeSize:= writeSze}

// Called in p6 clause - refines EndWrite.
// Free the channel for writing.
Procedure freeWChan(){ wPID:= -1 }

// Return the number of bytes to write.

Procedure getWriteSize(){ return:= writeSize }: Integer

}

A MainClass is specified in Appendix C.3, with a main operation, which is used as
the entry point for execution. In clauses labelled m1...m4 local buffers are constructed
for use by four processes. Two of these processes will be reader processes and two
will be writer processes, which is determined by supplying the appropriate constructor
parameter. In mb5 a channel is created. In m6...m8 the buffers used for writing are

filled with some arbitrary data. Clauses m9...m12 are used to create the four processes.

6.2 The Event-B Model of the OCB Specification

The Event-B model arising from the OCB specification is too large to discuss in detail

in its entirety; we focus on the Proc class’ write activity specified in clauses pl...p6 to
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provide an overview, more details are available in Appendix C.8. Proc_pl is the event

that arises from the clause labelled p1,

Proc_pl &

ANY self, target

WHERE self € Proc A self € dom(Proc_state) N
Proc_state(self) = pl N Proc_isWriter(self) = TRUE A
self € dom(Procbuff) A target = Proc_buf f(self)

THEN ProctmpBuffSz(self) :=
Buf fer wLoc(target) — Buf fer_rLoc(target) ||
Proc_state(self) := p2

END

Proc_state(sel f) = pl is the guard relating to the program counter, the guard relating to
the when clause is Proc_isWriter(sel f) = T RUE, and identification of the target of the
procedure call is target = Proc_buf f(self). In the event action Proc_state(self) := p2
the program counter is advanced. The getSize procedure call is expanded to create the

assignment,
ProctmpBuf fSz(self) := Buf fer wLoc(target) — Buf fer_rLoc(target)

The event arising from the clause p2 obtains the channel’s buffer for writing, or else
blocks. This is embodied in the guard Channel_wPID(target) = —1. The process also
blocks if data in the channel buffer is still being read, which is associated with the guard
Channel_writeSize(target) < 0. The value of

Channel_writeSize(target) is reset when a reader frees the channel using free RChan,
and similarly the value of Channel_wPID(target) is reset when a writer frees a channel
using freeW Chan.

Proc_p2 refines StartWrite of the first refinement. The StartW rite process p is related
to self of Proc_p2 using a predicate p = self in the event’s WITH clause. Relating
the OCB specification to the abstract development, and how it can best incorporated

into the approach, is the subject of future work; for now we just state the relationships.
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The StartWrite channel c is related to target of Proc_p2 with ¢ = target.

Procp2 &

REFINES StartWrite

ANY self, target

WHERE self € Proc A self € dom(Proc_state) N\
Proc_state(self) =p2 N self € dom(Proc-c) N
target = Proc_c(self) A Channel_.wPID(target) = —1 A
Channel writeSize(target) <0

THEN Channel_wPID(target) := Proc_id(self) A
Channel writeSize(target) := Proc_tmpBuf fSz(sel f)
Proc_state(self) := p3

END

In the event action the process identifier is supplied to the channel as the writer identifier,
Channel wPID(target) := Proc_-id(self). The number of packets to write is set in the

channel’s writeSize attribute using,
Channel writeSize(target) := Proc_tmpBuf fSz(sel f)

and the program counter is updated to the next value.

In the event Proc_p3 repeating behaviour begins, a packet of data is removed from the
local buffer and stored for insertion into the channel buffer in the next clause. The
condition of the OCB while clause gives rise to the guard Proc_tmpBuf fSz(self) > 0;
other guards arise from the conditional waiting clause relating to the remove procedure
call - this is the same as channel’s remove procedure (since the buffers are the same size).
The process is required to wait if there is no data to remove from the channel, progress is
enabled therefore by the guard Buf fer_wLoc(target)Buf fer_rLoc(target) > 0. Other
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guards are added to assist with discharging the well-definedness proof obligations asso-

ciated with partial functions, such as self € dom(Proc_buf f).

Proc_while_p3 &

ANY self, target

WHERE self € Proc A self € dom(Proc_state) A
Proc_state(self) = p3 N ProctmpBuffSz(self) >0 A
self € dom(Procbuff) A target = Proc-buf f(self) A
Buf fer wLoc(target) — Buf fer_rLoc(target) > 0

THEN Proc_tmpDat(self) :=

Buf fer_buf f(target)(Buf fer_rLoc(target)) ||

Buf fer_rLoc(target) := Buf fer_rLoc(target) + 1 ||
Proc_state(self) := p4

END

In the following fragment the value at the read location rLoc of the buffer is assigned to

an attribute,
Proc_tmpDat(self) := Buf fer_buf f(target)(Buf fer_rLoc(target))
the buffer read location is then incremented,
Buf fer_rLoc(target) := Buf fer_rLoc(target) + 1

The details shown here have given an overview of how the OCB specification maps to
Event-B. We discuss briefly the refinement of the WritePacket and EndWrite events,
but with less detail. WritePacket is refined by Proc_p4, which models the addition of
packets to the channel buffer using Channel’s add procedure. The greatest complexity
with this part of the mapping is the relational override associated with an array update.
The add procedure contains the clause buf f[wLoc| := val which specifies the addition
of the packet val to the channel buffer at the wLoc index.

Channel_buf f(target) :=
Channel buf f(target) < {Channel_wLoc(target) — Proc_tmpDat(self)}

In the mapping the OCB formal parameter val, is substituted with the actual parameter,
Proc_tmpDat(self). Channel wLoc(target) corresponds to the index value wLoc. The
guard Channel_wLoc(target) — Channel_rLoc(target) < 5 causes the writing process
to block if the channel buffer has 5 elements and allows the reading to commence. In

the action of the event Proc_p5 the count of packets in the buffer is decremented.



Chapter 6 Case Study 1 118

ProctmpBuf fSz(self) := ProctmpBuf fSz(self) — 1

EndWrite is refined by Proc_p6, we indicate that the process is no longer in the writing
set by setting the channel’s wPID to —1 in the freeW Chan procedure; no process will
have this identifier. The event action for the mapping is Channel_wPID(target) := —1.

When proving the refinement of the implementation model we use gluing invariants to

relate the abstraction with the implementation. An example of such an invariant follows,
Vself-self € ProcA self € dom(Proc_id) => Proc_id(self) > 0

We include the invariant above because we wish to ensure that no processes have the
identifier -1, which is reserved for indicating that the channel has no reader/writer. We
then have an invariant that states that if a channel does not have a writing process
identifier value as its wPID attribute (since Channel wPID(Proc_c(self)) = -1) then

this implies that the process is not in the domain of the writing set in the abstraction.

Vself-self € Proch

self € dom(Proc_c)\

Channel wPID(Proc_c(self)) = —1
= self ¢ dom(writing)

We also relate the channel to the abstract writing set,

Vself-self € Proch
self € dom(Proc_c)A\
Channel wPID(Proc_c(self)) = —1

= Proc_c(self) ¢ ran(writing)
Similar invariants exists for the readers.

We state that all process identifiers should be unique in the following invariant:

Vp,q-p € Proc A\ q € Proc/

pP#q
= Proc_id(p) # Proc_-id(q)
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We ensure that the write location wLoc remains in the bounds of the array with the

invariant:

Vself-self € ProcA
self € dom(Proc-buf f)
= Buf fer_rLoc(Procbuf f(self)) € 0..49

To assist with the proof we added the following theorem. It is a form of re-use strat-
egy; the predicate was frequently added to the hypothesis and used to discharge proof

obligations. By adding it as a theorem it becomes available to the automatic proof tools.

(Mi-i€0..49) € (0..49—7Z)

6.3 The Java Implementation

The mapping to Java is mostly self evident since it is very similar to the OCB spec-
ification. We present the source code for the Channels Class, Proc and CommBuffer
respectively in Appendices C.5,C.6,C.7. The remove method of the channel class C.5
shows the conditional waiting mapping, and the temporary initial variables required to
provide parallel semantics. We also see that all methods in the Channel are synchronized
and those that may update state also call noti fyAll to wake waiting threads. The main

method of the CommBuf fer class shows the creation and starting of the new threads.

6.4 Issues Arising from the Case Study

The motivation for the case study was to provide an implementation of a channel buffer-
ing system. We initially described the development using an abstract model which mod-
els transfer of one block of data at a time. We then refined the model using the transfer
of the packets that make up a block. Then we presented a systematic approach to link-
ing the refined model with an OCB specification which resulted in a translation to an
Event-B model and Java code. We found the Jackson Structure type Diagrams were
a useful aid to visualising the relationships between the abstract events and the events
of the refinement. The Jackson Structure type Diagrams embody both sequencing and

iteration, and we see how this links to sequence and looping in the OCB specification.

The OCB specification consists of a MainClass, one process class, and two monitor
classes. There are 23 labelled clauses in total. These give rise to 41 events and 36 typing
invariants in the Event-B model. The number of proof obligations generated from just
these (before proving refinement) totalled 330, 300 of which were discharged immedi-

ately by the auto-prover, and the remainder were discharged relatively quickly in the
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interactive proof environment. The proof of OCB refinement has not yet been com-
pleted, but all the proof obligations of the abstract development have been discharged.
With regard to the refinement of an abstract development using OCB, we recognised
some opportunities to incorporate productivity enhancements - such as adding refines
and witness clauses to OCB operations. This will enable developers to indicate, dur-
ing the specification stage, the relationship between OCB operations and the abstract
events that they refine. Let us take a brief look at witnesses, which are useful when
discharging proof obligations since they relate parameters of the abstract event to the
refined event. Parameters of an abstract event do not have to appear in an event that
refines it, but if they do not appear they can be linked to some variable, or param-
eter, in the refinement using a witness clause. In our example the StartWrite event
is refined by Proc_p2 event. In the abstraction we have local variables p and ¢ where
p € proc A ¢ € chan. We link these to concrete objects in the OCB refinement using
witnesses p = self A ¢ = Proc.c(self). A refines clause could be associated with a
labelled OCB clause to indicate which abstract event it refines. The translation from
the OCB specification to Java code worked as expected, and we were able to run the

program in the JVM.

6.4.1 Tooling Issues

In this section I describe how progress was hampered by some tooling issues which
prevented proof of refinement. We then describe one possible solution to overcome some
of the problems. The implementation level model contains over 600 proof obligations, 60
Invariants and 40 events. The majority of these proof obligations have been discharged
with the addition of new gluing invariants; over 250 automatically and over 250 using the
interactive prover. There remain 40 or so (non-trivial) proof obligations to discharge.
However as modelling progressed it became clear that the tool was having difficulty with
the relatively large model. Throughout our investigations we have found that the size of
Event-B models, associated with OCB models, is large and complex when compared to
more abstract models. This results in extremely slow interaction with the proof tools.
The tool’s responsiveness to changes made by the user has made it difficult to finish
proof of refinement in a reasonable period of time; and also various technical problems
have hampered progress. In the remainder of this text we describe some of the problems
encountered when working with larger, more complex models and give details of the
responsiveness of the system. We then propose a solution which involves decomposition
of the models into smaller parts. The solution that we propose will also serve to reduce

the abstraction gap between the abstract Event-B development and implementation.

The use of implementation level models exposes several Rodin tool problems. For in-
stance when the model is rebuilding Java out-of-memory errors are quite often encoun-

tered. To overcome this we can invoke the prover manually, on a smaller number of
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proofs, but this slows the proof activity again and train of thought can be broken. Oc-
casionally the database does not remain synchronized with the user interface; this gives
rise to the proof appearing to be discharged in one pane, but not in another. Sometimes
the prover enters a loop and does not exit; this leaves the database in an inconsistent
state, and the model must be cleaned to restore the integrity. This gives rise to a loss
of the recent proof activity, a loss of time, and disruption in the process of reasoning.
On occasions, when trying to access a proof obligation by clicking on it, an exception
is thrown stating that a proof attempt already exists. This again seems to be revealing
inconsistent state in the Rodin database when compared to the user interface. These
problems seem to manifest themselves more often in larger models; experience indicates
that smaller models give rise to fewer problems. This is one of the reasons (but by
no means the only reason) for proposing an approach involving decomposition of an

implementation level model into smaller parts.

Partitioning of the models will improve responsiveness of the tool, i.e. the time taken
to react to changes made by the user. We have measured the response time of the
system by measuring the time taken to re-build the model, and attempt to automatically
discharge the proof obligations, as a result of adding an invariant. In table 6.1 we can
see a comparison between the time taken for versions 0.9.2 and 1.1 of the Rodin tool.
The OCB Event-B translator is compatible with Version 0.9.2; The translation tool is
not compatible with version 1.1, but we are able to import a model for comparison
of performance. During the test we invoke an external prover known an the Mono-
Lemma (ML) prover, a legacy component, and compare the time taken without the ML
prover in both versions of the Rodin tool. There is a trade off in using the ML prover

since it automatically discharges a large number of proofs, but it is slow. The data in

Rodin version | with ML | time (mins)
0.9.2 no 2.5

0.9.2 yes 2.75

1.1 no 1.5

1.1 yes 4

TABLE 6.1: Time to re-build a model

Table 6.1 indicates that there have been improvements in the performance of the proof
tool, between versions 0.9.2 and 1.1, when used without the legacy ML component. So
although a wait of 1.5 minutes is still quite a long time for a response to an update, it is
an improvement on the older version of the tool. The data also suggests that the use of
the ML prover is much less appropriate in the newer version of the tool. This increase
may be due to an internal timeout having a different value in the two tool versions,
rather than being a performance issue. The ML tool will eventually be replaced by a
rule based prover of [107], which we expect to be more efficient. In summary we expect
further performance gains to be made as tool development proceeds, so larger models

will be more tractable. However we still propose that partitioning of the system will
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bring other benefits, such as modular reasoning, and we continue with a description of
out proposal. Our experience of OCB tool development, use of the tool and proof, and

an overview of our proposed solution will be presented in [12].

6.4.2 Decomposition in Event-B with a View to Automatic Code Gen-

eration

We now propose our modular approach for using shared event decomposition to over-
come the problems of models described in the previous section. Event-B modelling of
concurrent systems sharing data, near the implementation level, can give rise to a model
with considerable complexity. By splitting the specification we should be able to deal
with more tractable partitions of the system. Our proposal is to make OCB an extension
of the Event-B approach (with Event-B semantics). An abstract development can be
decomposed using refinement into ProcessM achines and SharedMachines. By using a
decomposition approach we allow for a number of refinement levels; instead of the single
level of an OCB specification. In doing so we reduce the abstraction gaps between the
abstract development and implementation. The proposed Event-B extension performs
a similar role to OCB and many of the OCB elements, such as sequence, looping, pro-
cedures, procedure calls, and so, on are used. In this work we will therefore retain the
name OCB to describe the extension. Following the decomposition of an abstract devel-
opment into a number of machines (which may be independently refined further) we can
use the features of OCB to map the decomposed machines to the target implementa-
tion. We will have maintained the refinement link using the Event-B extension using its
Event-B semantics; there will also be an underlying Event-B model which may be the
result of a translation, or may be synchronized with the OCB model using Eclipse tools.
The final translation to Java would be done using the approach described in the main
body of the thesis. In our extension ProcessMachines are implemented by threads,
and SharedMachines are implemented as monitors. A SharedM achine specification
is simply an Event-B machine, as in the current Rodin tool; this machine can the be
further refined independently. A ProcessMachine can refer to SharedM achines and
call their procedures. The procedure call will be modelled using the shared event de-
composition approach of [33]. So a procedure call is modelled as a shared event where
the events synchronize using their guards; guards also define the values of the input and
output parameters. Figure 6.6 shows how the abstract development can be linked to the

implementation through the decomposed machines.

We now provide details of the proposed new Event-B constructs, and the shared event
approach. To accommodate decomposition into process machines and shared machines
in Event-B we extend Event-B to allow a process to call a SharedM achine’s procedure,

and denote such a call using the call keyword. A process machine 1" may call shared
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machine M’s event Fvt2 using a call clause as follows:

Process Machine T

Variables v, z, y,

Events

process Fut2 £
x| G1;
y < call M.Evt2(x);

A

The extended Event-B annotation permits the restricted use of sequence clauses in an

event. One of the problems with the approach as it exists is that there are more atomic

clauses than are strictly necessary. These give rise to more events (and therefore more

complexity) than are strictly necessary. We have identified a frequently used pattern

that can be used to reduce the number of events generated. In the above clause a non-

deterministic assignment x : |G1 provides a value for z satisfying guard G1. Note that

x is local to the process machine 7', but is shared via a parameter in the call clause.

The clause call M.Evt2(zx) calls a shared machine’s event, and the result is assigned to

the variable y atomically. Some remaining local processing may be undertaken in clause

A, each variable’s value may only be assigned once in each event. This is because we

Abstract Development

Refines Refines
Process Process
Machine_1 Machine_n
Translation Translation
4

Class Thread_1

Class Thread_n

Refines

Shared Machine

Translation

Class Monitor

OCB (Extended Event-B)

FIGURE 6.6: Decomposition of an Abstract Development
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Process Machine T Shared Machine M

Evt2

X! y? X? y!

FIGURE 6.7: A Shared Event Refinement

wish to simplify the proof effort and do not wish to introduce a sequence operator to

the underlying Event-B syntax for this solution.

The extended Event-B model has a representation of a ProcessMachine in the under-
lying Event-B model. That is, the implementation level model will be different to its
underlying representation, as is the case for the approach described in the main body
of the thesis. However a SharedMachine will appear as a normal machine in the im-
plementation level specification; and this will include an extension to the decomposition
approach. The extended decomposition approach will make use of annotations defining
input and output parameters for events. We denote an input parameter z using the
annotation z?, and an output parameter y as y! . The input and output values of the

variables are shown in Figure 6.7.

Using this approach we hope to decompose the model into tractable partitions, and
provide a more intuitive link between Event-B and the implementation. The extended
Event-B will have subsumed OCB and will be used to specify instantiation, and ordering
of events. It will also allow us to specify points for interleaving, as before, in non-atomic
constructs. The partitioning into smaller models should give rise to fewer problems
when using the tools. In addition to this smaller models are easier to reason about, and

machines can be refined independently.

Due to constraints applied to our approach we are limited in the form of implementation;
and we will investigate further, in an extension to this work, a transactional approach.
We propose an approach to facilitate access to a number of objects directly. Currently
the user interface is in need of some improvement, and much could be done to smooth

the development process on this front.
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Case Study 2

In this chapter we present a case study arising from investigations into the modelling
of the Intel Flash File System Core Reference Guide [82], which used as a reference
document for the Verification Grand Challenge [66]. We show how OCB can be used
to implement part of the Flash File System API layer of the Flash File System Core
Reference. A formal presentation of a tree structured file system is presented in [48],
but our focus is at a higher level in the hierarchical specification, closer to the user
interface. We present a systematic approach to linking the refined model with an OCB
specification which results in a translation to an Event-B model and Java code. This case
study highlights a significant limitation of the approach that we have advocated thus
far, and incentivises further work introduced in Chapter 8. We begin with an overview
of the Flash File System in question, giving details of the parts that we will model and

implement.

7.1 The Flash File System Core

During this work we will refer to the Intel Flash File System Core Reference Guide as the
FFS guide. In our investigation we do not attempt to provide a complete implementation
for all of the API layers described in the FFS guide. We focus instead on a small subset
of features that will allow creation and opening of file; as well as writing to, and reading
from, files. To do this we restrict our attention to the File System Layer API, and a
layer above this which represents the user of API, the application layer (see Figure 7.1).
In our investigation the layers below the File System Layer are simulated, and in future
work we could incorporate more detail of the lower layers based on the extension of our
work presented in Chapter 8. The reason that we limit ourselves here to implementing
just one layer of the API is due to the restrictions we place on OCB. The file system
specification is hierarchical, each API layer may make calls into the API layer below it;

in order to reflect this in our OCB specification instances defined in an API layer must
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Application Layer

FFS Core

* Model and File System Layer
I mplement
‘ Simulate

DataObject Layer

Basic Allocation Layer

‘other layers \

/ Flash Array

Low Level Layer (Device Driver)

Hardware

F1GURE 7.1: Flash File System Hierarchy

make calls to instances in the API layer beneath. In OCB the restriction that monitor
objects cannot refer to other monitors (to prevent the nested monitor call problem and

potential deadlocks) prevents easy access to lower API layers.

It is also worth noting at this point that the target implementation of the FFS guide
is C [93]. In order to provide a Java implementation we create an Event-B abstraction
of the implementation details that have been described using the C language, and then

provide our Java implementation via translation of OCB specification.

7.1.1 The Flash File System API

The File System layer API specifies a number of features and we will look at just a
few which are related to opening, reading from, and writing to, files. In the case study
we model the capability to create and open a file, write to the file and read from the
file. To do this we will first model in Event-B, and then OCB, the FFS API functions
that we describe in this section. We are then able to translate the OCB to a Java
implementation. In the description that follows we omit much of the detail in the FFS
specification [82], since it is not relevant to our discussion here. For instance when we
describe the functions of the FFS API we omit some of the parameters to aid clarity.
The types used in the FFS guide include character strings, and types defined in the

FFS guide itself. However, when modelling the system we use abstraction, and choose
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to convert these more complex types, such as a files name, or access mode, to simple
integer representations. These abstractions are also then carried into the simulated
implementation. The C code used in the specification uses pointers, and we wish to
abstract away from this also. Generally when we encounter a pointer indirection in the
C specification we model the structure that the pointer refers to. As we move toward
implementation using OCB, the pointer indirection in C relates to an attribute; and in

Java, a field name.

We now show the first function header from the FFS specification, F'S_WriteF'ile, that

we wish to implement.

FFS_Status FS WriteFile(FS_FileHandle han,
VOID_PTR dat,
UINT32_PTR sze,...)

FS_WriteFile writes sze bytes from the buffer dat to the file specified by the handle
han. Writing to han starts at the current offset, which is advanced as each byte is

written.

Next we look at the function, F'S_ReadF'ile Dir which reads data from a file or directory.

FFS _Status FS_ReadFileDir(VOID_PTR buf,
FS_FileHandle han,
UINT32_PTR sze,...)

FS_ReadFileDir reads sze bytes from an open file identified by han into a buffer
identified by buf, starting at the current file offset. The file offset is advanced as each
byte is read.

In order to read or write to a file it must first have been created. The last function that
we will present here is the F'S_OpenF'ileDir function which we use to create and open
a new file. The function may also be used to open an existing file, or create a directory,

but we do not use it in this way here.

FFS_Status FS_OpenFileDir(mOS_char pth,
FS_FileHandlePtr han, ...,
FS_OpenMode omd,
FS_ShareMode smd, ...)

The pth parameter is the full path (including file name) of the file to open. han is a
pointer to the open file; omd is the open mode of the file, which dictates if a new file is
always created, if an existing file can be overwritten to create a new file, and if it is to
be open for read only, write only or read/write access. The smd parameter is used to

specify whether the file is allowed to be shared, i.e. do not care about share, do not share
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at all, only share among readers (fail on open for write), or only share among writers
(fail on open for read). The return parameter of this function is of type FFS_Status

which is used to report the success, or otherwise, of the request.

7.1.2 The Data Object Layer API

The File System Layer makes calls into the Data Object Layer using the Data Object
Layer API. We have discussed the limitation of OCB to model nested objects, so we
will be simulating this, and lower layers of the specification using an abstraction of the
following API functions. DO_Allocate DataObject is called by the File System Layer to
allocate space for data objects. This function call is used to allocate space for files, and
directory objects, as well as data objects used for file system management. It is used

when creating new data, and may be used to overwrite existing data.

FFS _Status DO _AllocateDataObject(BA_UnitLocationPtr dst,
BA_UnitLocationPtr src,
BA_UnitType type)

The dst parameter is a pointer to the newly allocated data object. src is a pointer to
an existing data object that is to be modified (or NULL if a new allocation is required),
and typ is the type required. The type, of a new file/directory object is defined as
BA_UnitTypeFileDir in the BA_UnitType definition.

To read a data object the Data Object Layer exposes the following function called
DO _ReadDataObject. The DO_ReadDataObject function is typically called by func-
tions of the layer immediately above, the File System Layer, in response to some request

from the User Application Layer.

FFS_Status DO_ReadDataObject(VOID_PTR buf,
BA_UnitLocation obj,
UINT32_PTR sze,
UINT32 of f,...)

The DO_ReadDataObject function transfers sze bytes of data from the data object
identified by obj into the buffer identified by buf. The read begins at the offset specified

by of f.

FFS_Status DO _WriteDataObject( . .., BA_UnitLocationPtr obj,
VOID_PTR dat,
UINT32 sze,
UINT32 of f,...)
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DO _WriteDataObject is called by the File System Layer to write sze bytes from the
buffer dat to the data object obj from the offset of f.

7.2 Modelling the Flash File System

We present a model describing the behaviour at a high level of abstraction, and then a
further refinement that we will implement. We introduce three events in our first model:
create to perform file creation; write to perform writes to the flash memory; and read

to perform reads from flash memory.

7.2.1 The Abstract Model

We begin by defining the context where we introduce some of the sets and constants of

the development.

SETS
DataObject_Set

CONSTANTS
Data

AXIOMS
axml : Data C 7Z

The set DataObject_Set represents the potential data objects of the development. Data
represents the data that can be stored in data objects, we use integer data as a convenient
abstraction; the integer representing an index into the dataset where the data resides.

We now look at the variables of the abstract machine and their typing invariants,

VARIABLES
DataObject, data, usr_R_Buff

INVARIANT
DataObject € DataObject_SetN
data € DataObject + P(Data)A\
usr_R_Buf f € DataObject + P(Data)

DataObject represents the set of instantiated data objects, data represents the data

associated with a particular data object. The locations that have been written form the
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set data, we assume the range of locations from P(Data) are available. usr_R_Buf f
represents a buffer in the application layer and relates a data object to its data. The

Initialisation event initializes the variables of the machine,

INITIALISATION =
DataObject := 2|
data := ||
usr_R_Buff :=o

The create event models the behaviour of the F'S_OpenFlileDir function with the pa-
rameter omd set to F'S_CreateNew, which is the flag indicating that a new file is
required. The read and write events relate to, F'S_ReadFileDir, and F'S_WriteFile

respectively.

create = // create a new file

ANY file

WHERE
file € DataObject_Set \ DataObject

THEN
DataObject := DataObject U { file}||
data(file) := &

END

The create event models creation of a file data object. We model instantiation of
a data object represented by the file parameter, where the file data object is non-
deterministically selected from the set of uninstantiated data objects, DataObject_Set \
DataObject. We add the file to the set of DataObject instances with DataObject :=
DataObject U { file} .

Next we look at modelling the write function,

write = // write a chunk of bytes from UserBuffer (to disk)
ANY bytes, file
WHERE
bytes C DataN
file € DataObjectN
file € dom(data)
THEN
data(file) := data(file) U bytes
END
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File System Layer ‘ Abstract Events ‘ Refined Events

FS_OpenFileDir create create
FS_WriteFile write w_start, w_step, w_end
FS_ReadFile read r_start, r_step, r_end

TABLE 7.1: File System Layer Abstraction and Refinement

The write event models writing a chunk of byte data represented by the parameter
bytes, to a file data object, represented by the parameter file. The write is modelled
using the action data(file) := data(file) Ubytes where bytes is added to the set of data
of file.

We model the read behaviour in a similar way as follows,

read = // read a chunk of bytes (from disk) to a buffer
ANY file,bytes
WHERE
file € DataObject/N
file € dom(data)
bytes C data(file)
THEN
usr-R_Buf f(file) := bytes
END

The read event models the transfer of a non-deterministically selected chunk of a file’s
data, represented by bytes, into the user’s read buffer that is associated with file; the

transfer is expressed by the action, usr_R_Buf f(file) := bytes.

7.2.2 The Final Event-B Refinement

We now describe the last refinement step of the abstract development, just prior to
the use of OCB to specify the implementation details. We introduce, to the model,
processes initiated by the user in the User Application Layer that are used to write
to, and read from, files. To model the set of user writing processes we add a set to
the context, User AppWriteFile_Set. Table 7.1 shows the relationship between the File
System Layer functions, the abstraction, and subsequent refinement, of interest to us in

the case study.

As in the case study of Chapter 6 we use Jackson Structure type Diagrams, of [32, 86],
to describe the refinement, and we remind the reader that the diagrams are an informal
representation of the relationship between abstract events and events of refinements.

They are used as an aid to understanding the correspondence between the events of



Chapter 7 Case Study 2 132
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FIGURE 7.2: Abstract Development of the Flash File System

the abstraction and those of the refinements. Figure. 7.2 shows that the read and
write steps have been split into a number of events with the solid line representing
explicit event refinement. Iteration, where each byte is written from a user’s buffer
to a file, is represented by bwx%; and where each byte is read from a file to a user’s
buffer is shown as brx. There are also additional events to create the user’s write
buffer, makeUW Buf f; and an event which models opening a file for reading or writing,

open_rw. This corresponds to setting the file’s access mode to F'S_AccessReadW rite.

When a file is to be used for reading or writing, it has to be opened first. It is at
this point that the access permissions are checked, for instance, to see if a file has been
previously opened by a user requiring exclusive access. It is at this point also that the
current user requests exclusive access to the file. Due to this activity we do not consider

the open_rw event to be part of the refinement of the write event.

The open_rw event is as follows,

open_rw = // open file for read/write
REFINES open_rw
ANY file
WHERE
file € DataObject
THEN
rwAccess := rwAccess U { file}

END
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rwAccess represents a set of files that have been given read/write access on opening.
The event describes a file data object that is non-deterministically selected and added to

the set of files with read/write access using the action, rwAccess := rwAccess U { file}.

It can also be seen in Figure 7.2 that the write activity itself has been broken into three
steps - w_start, w_step and w_end. w_end refines write of the most abstract model.
The next event we present is the first writing step w_start, which initiates the process

of writing to a file by adding it to the set of writing files.

w_start = // initiate writing to disk(file.data)
from user write buffer
REFINES w_start
ANY file, writer
WHERE
file € rwAccessN
file ¢ writing/\
file ¢ reading/A
writer € User AppWriteFile_SetA
writer ¢ ran(fileWriter)
THEN
writing := writing U { file}||
fileWriter(file) := writer
END

The event guard file € rwAccess ensures that the file has read /write access, and file ¢
writing ensures that the file is not already writing where writing represents the set
of files that are writing. A similar guard exists to ensure the file is not reading. The
fileWriter is a function, fileWriter € DataObject -+ U ser AppWriteF'ile_Set, which
links a file instance to a writer process instance. In the next event we see that the
writer contains a buffer with the data to be written, it has the type usr W _Buff €
UserAppWriteFile_Set + P(Data). The w_step event repeatedly copies a byte from



Chapter 7 Case Study 2 134

the user’s write buffer to the file as follows,

w_step = // step writing bytes to disk
REFINES w_step
ANY file, byte
WHERE
file € writing A
file € dom( fileWriter) A
fileWriter(file) € dom(usr-W_Buff) A
byte € usr W _Buf f(fileWriter(file)) A
file € dom(data2) N
byte ¢ data2(file)
THEN
data2(file) := data2(file) U {byte}
END

The file data is represented by data2, which relates files to data, data2 € DataObject —
P(Data). w_step non-deterministically selects a byte in the user’s buffer that has not

already been copied. This is guarded by
byte € usr W _Buf f(fileWriter(file)) N byte ¢ data2(file)

The other guards constrain the event so that only the file linked to the writing process

write buffer can write to the file on the disk. The action,
data2(file) := data2(file) U {byte}

copies the byte from the buffer associated with the file usr W _Buf f( fileWriter(file))
to the disk represented by data2(file). The file is removed from the set of file being
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written when all the bytes have been transferred, in the EndWrite event.

endWrite = // finish writing from buffer
REFINES w_end
ANY file
WHERE
file € writing A
file € dom(data2) N
Vb(b € usr W_Buf f(fileWriter(file)) = b € data2(file))
THEN
writing € writing \ { file}
END

The file is guarded so that the endWrite event is enabled when each byte in the user
buffer is also on the disk, Vb(b € usr-W_Buf f(fileWriter(file)) = b € data2(file)). A
similar approach was used to break the read event of the abstraction into three events,
where the r_end event refines read but we do not show the specification here to avoid

repetition.

7.2.3 An OCB Specification for Writers

After specifying an abstract development of the FFS we can provide implementation
details which will allow translation to a Java implementation using OCB. Using our
knowledge of the abstract development we identify a number of elements that can be
implemented, for example we can see that some elements lend themselves to implemen-
tation as active process objects, such as readers and writers, that carry out tasks. We
can also identify some elements that are shared between the process objects that do not
play an active role, such as the data objects; we can implement these as shared monitor
objects. Table 7.3 shows the main OCB classes that we introduce to implement the File

System, for the full specification see Appendix D. The classes of the User Application

API Layer Class Type Description

User Application | UserAppCreateFile | Process | User Invokes CreateFile
User Application | UserAppWriteFile | Process | User Invokes WriteFile
User Application | UserAppReadFile Process | User Invokes ReadFile

User Application | UserBuffer Monitor | Container for data

FFS CreateFile Process | Implements create

FFS WriteFile Process | Implements write

FFS ReadFile Process | Implements read
DataObject DataObject Monitor | Represents a data object

FicUure 7.3: OCB Classes for the Flash File System
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Layer specify processes which are created and run by users which, in turn, create files,
and read or write to them by calling into the Flash File System Layer below it. We
effectively have two processes associated with each create, read and write activity. This
is a result of respecting the hierarchical nature of the development i.e. splitting into the
User API and FFS API, and DataObject API; combined with the fact that procedure
calls cannot be nested. We were forced to create another process to access the data in the
DataObject API, which was referred to in an object of the FFS API. The CreateFile
process class implements the abstract create event, the WriteF'ile process class imple-
ments the abstract write event, and the ReadF'ile process class implements the abstract
read event. The File System Layer processes call into the Data Object Layer below;
but, since we are unable to make calls into the layers below the Data Object Layer, we
simulate the activity of the Data Object Layer, where we allow a data object instance
to store data in a buffer until it is full. To facilitate a realistic implementation we would
have to accommodate acquisition of fresh data objects, to continue the write across a
number of data objects when the current data object becomes full. The Data Object
layer needs to invoke methods of the Basic Allocation Layer, directly below it in the
API structure, to facilitate these activities. This layered structuring is not achievable in

the current version of OCB due to the restriction on nested monitor classes.

Figure 7.4 shows the Jackson Structure type Diagram for the OCB implementation
of the write event. The diagram is interpreted in the following way. Refinement of
the abstract development is shown as in earlier diagrams. At the implementation level
however, when no further refinement takes place, we interpret the diagram in a slightly
different way. Sequences of OCB clauses identified by their labels are read from left
to right. But branching gives rise to columns indicating a sequence within a branch.
Iteration of a group of clauses is indicated by attaching the loop condition annotation
to an enclosing box. It may be useful to make this notation more expressive in future,
and we may wish to add additional features. For instance, in the case of clauses labelled
wf8 .. 10, the branches lead to process termination, and this could be defined on the
diagram. A clause on the diagram may be associated with a false conditional branch, or
false loop branch, which is not explicitly specified in textual OCB. This may occur, for
instance, with while loop termination such as wf12_false. We wish to include this on
the diagram since wf12_false refines w_end. As a shortcut we group a sequence, m..n,

of clauses with label name [, as [,,..,.

We now take a look at the OCB specification of the WriteF'ile process class, which de-
scribes the process responsible for writing to a file. The process’ behaviour is described
in its run operation, shown in Figure 7.5. There is a close correspondence between the
specification shown here and the diagram of Figure 7.4. The run operation’s labelled
clauses are shown in the diagram, as are the concepts of sequence, iteration and branch-
ing. Prior to creating a WriteF'ile process the user application layer will have access to,

or will have created, a store of open files - OpenF'ileStore discussed in 7.2.4. The caller
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FIGURE 7.4: Diagram of the Refined FFS Write Event

of the WriteFile class create procedure, in the application layer, provides the neces-
sary parameters to allow the WriteF'ile process to locate the file in the OpenF'ileStore

object.

The clauses labelled wf2 to wf7 perform a search of the store of open files, up to
openF'ileCnt which is obtained in clause wf1. If the file is found then the access mode
is checked in w f9, otherwise an error is logged and the process terminates. The errors
logged are; code 1 - id not found, code 4 - invalid access mode, and code 7 - data
object full. The access modes are mode 0 - read only, mode 1 - write only, and mode
2 = read/write, and correspond with those defined in the FFS guide. If the access
check fails then an error is logged in clause w f9_else, otherwise the clause w f9 attempts
to reserve space for the bytes to be written. Clause wf10 checks that this has been
successful, and logs and terminates if not; otherwise all the checks have succeeded and
we reset the file offset and write the bytes from the beginning of the file. It is intended
that wf14 refines the w_step event; the event that models the write of a byte of data.
We do not currently provide a refines clause in OCB to link the OCB specification and
the abstraction, but it could easily be added in future work. In the meantime we add

the refines clause manually as we also do for the witness clause.
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ProcessClass WriteFile{

// Attributes.

OpenFileStore openFileStore, UserBuffer buffer, Integer id,

Integer tmpName, OpenFileInfo file, Integer bytes, Integer index,
Integer openFileCnt, Boolean fileFound, FileDirInfo fileDirInfo,
Integer data, DataObject dataObject, Integer offset, Integer aMode,
ErrorLog errorlLog, Integer freeSpace

// Constructor procedure.
Procedure create(OpenFileStore openFileStor,Integer fName,
UserBuffer buffr,Integer byts,ErrorLog errorLg){
openFileStore:=openFileStor| |id:=fName| |buffer:=buffr| |bytes:=byts] |
index:=0| |openFileCnt:=0| |fileFound:=FALSE| | tmpName:=-1| |data:=-1]| |
offset:=0| |aMode:=-1| |errorLog:=errorLg| |freeSpace:=0

}

// Description of the process’ behaviour.
Operation run(){
wfl: openFileCnt:=openFileStore.getSize();
wf2: while(index<openFileCnt & fileFound=FALSE) do
file:=openFileStore.getAtIndex(index) andthen
wf3: dataObject:=file.getDataObject();
wf4: fileDirInfo:=dataObject.getFileDirInfo();
wf5: tmpName:=fileDirInfo.getID();
wf6: if (tmpName=id) then fileFound:=TRUE endif ;
wf7: index:=index+1 endwhile ;
wi8: if (fileFound=TRUE) then aMode:=file.getAccessMode() andthen
wf9: if (aMode=1 or aMode=2) then
freeSpace:=datalbject.reserveSpace() andthen
// Clause wf10 refines w_start
wfl10: if (freeSpace>0) then index:=0 andthen
wfll: file.resetOffset();
// Clause wf12_false, where —(index < bytes), refines w_end
wfl2: while(index<bytes) do data:=buffer.get(index) andthen
wf13: offset:=file.getOffset();
// Clause wfl4 refines w_step
wfld: dataObject.write(data, offset);
wfl5: index:=index+1;
wfl6: file.incOffset() endwhile endif
else dataObject.unReserve() andthen
wfl7: errorLog.add(7) endelse endif
else errorLog.add(4) endelse endif
else errorLog.add(l) endelse

}
}

FIGURE 7.5: The WriteFile OCB Specification
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7.2.4 MonitorClasses for the Flash File System Implementation

The repositories and structures of the FFS guide can be shared between processes and
are implemented in OCB using the MonitorClass construct. We have defined the fol-
lowing monitor classes - DataObject, DOStore, OpenF'ileInfo, OpenF'ileStore, and
FileDirInfo. See Appendix D for details. We continue with a brief overview of these
classes, but note that we simulate the DataObject implementation since we are un-
able to nest calls to lower API levels. The DOStore is a repository of DataObjects.
OpenFilelnfo is an implementation corresponding to F'S_OpenFileIn fo, which stores
information about the open files in the system including the access mode, current file
offset and a reference to the DataObject itself. OpenF'ileStore is the repository in which
the OpenFilelnfo objects are stored.

We now look at the specification of the DataObject monitor class in more detail. In
the OCB model we specify the DataObject MonitorClass which provides an imple-
mentation corresponding to FFS data objects. Each DataObject has a type attribute.
The value of the type attribute is an integer value defined in the FFS specification
(BA_UnitTypeFileDir has integer value 128). The DataObject monitor class uses an
integer array data to hold the data and has an attribute reference to FileDirInfo.
FileDirInfo is the implementation corresponding to the structure F'S_FileDirInfo
of the FFS guide. FileDirInfo holds information about the file such as name (or its
integer simulation in our case), create time, and file attributes. We need to retrieve
the file name from this structure during execution of WriteFile’s run operation. The

DataObject with its attributes and procedure headers can be seen in Figure 7.6.

Most of the procedures require no explanation here, but note that the file offset is
not held in the data object. Incrementing the file offset, after a read or write, is the
responsibility of the File System Layer. An OpenF'ilelnfo object, associated with the
opened data object, keeps track of the file offset. In the File System Layer the ReadF'ile,
or WriteF'ile, run operation invokes the incOf fset procedure to increment the value
of the offset. At this point we should discuss an issue that is not yet fully resolved in
our work. In the procedure body of getFile DirInfo we have included a when clause to
block the process when the fileDirIn fo attribute does not refer to an object. This is not
a completely satisfactory solution, since we should either provide some error message
or prevent the occurrence of this kind of error. To produce an error message would
require a branching statement in the procedure (which is not currently part of OCB).
The other alternative is to show that fileDirInfo is not null when it is accessed. In
Event-B we need to show that DataObject_fileDirInfo(WriteFile_dataObject(self))
is not undefined for a writing process, represented by the sel f parameter. So we require
that WriteFile_dataObject(sel f) € dom(DataObject_fileDirInfo) at the time of the

call. We can do this by adding this property as an invariant clause in the machine and
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MonitorClass DataObject{
Integer type, FileDirInfo fileDirlnfo,
Integer[10] data, Integer freeSpace

// The constructor procedure

Procedure create(Integer typ,FileDirInfo fileDirInf){
type:=typ || fileDirInfo:=fileDirInf ||

freeSpace:=10

}

// Obtain this object’s FileDirInfo object
Procedure getFileDirInfo(){
when (fileDirInfo /= null){
return := fileDirInfo

}

}: FileDirInfo

// Read the byte at the supplied offset
Procedure read(Integer offset){... }: Integer

// Write the supplied byte at the supplied offset
Procedure write(Integer val,Integer offset){... }

// Obtain the type of this data object
Procedure getType(){... }: Integer

// Reserve space for writing a byte
Procedure reserveSpace(){... }: Integer

// Unreserve space for reserved for writing
Procedure unReserve(){... }

FIGURE 7.6: The DataObject OCB Specification

relating it to the program counter [ of the caller as follows,

Vs € WriteFile N WriteFile_state(s) = [=
WriteFile_dataObject(s) € dom(DataObject_fileDirln fo)

This gives rise to proof obligations which must be discharged to show the property holds,
and we can also apply this approach to other OCB attributes, where it is necessary to

prove non-nullity.
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7.3 The Event-B Model of the OCB Specification

The OCB model of the Flash File System Layer contains many labelled clauses and we
choose the clause labelled wf14 and show WriteFile.wf14 as a typical event arising
from the translation of a labelled clause. As a brief reminder, the clause w f14 is defined

in the WriteF'ile process class as follows,
wfld: dataObject.write(data, offset);

The dataObject.write procedure call will be expanded in line. The call is defined as

follows,

Procedure write(Integer val,Integer offset){
when(offset>=0 & offset < 10){
dataloffset] :=val}

The write procedure takes val and of fset as parameters and will write the value at the
appropriate index in the array. In this implementation the procedure is guarded to ensure
the offset is in the bounds of the array. However, a more appropriate implementation is
to guard this (in a conditional clause) in the caller and set an error flag if the condition

is not satisfied. However the example is sufficient for our purposes. We now show the
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result of the translation of clause wf14 to Event-B.

WriteFile_w f14 =
REFINES w_step
ANY self, target
WHERE
self € WriteFile N
self € dom(WriteFile_state) A
WriteFile_state(sel f) = wfl4 A
self € dom(WriteFile_dataObject) A
target = WriteFile_dataObject(sel f) A
WriteFile-of fset(self) =0 A
WriteFile-of fset(self) < 10
WITH
file = WriteFile_dataObject(self) N byte = WriteFile_data(self)
THEN
DataObject_data(target) :=
DataObject_data(target)<
{WriteFile_of fset(self) — WriteFile_data(self)} |
WriteFile_state(self) := wf15
END

The translated event refines the w_step event since its action is to write the byte to the
file data object. In the final refinement of the abstract development the byte is added
to the data object data2 as follows,

data2(file) := data2(file) U {byte}

In the implementation model we relate the abstraction to the implementation model
using two witnesses. The first witness represents the file being written to, file =
WriteFile_dataObject(self), and therefore from the guard file = target. The sec-
ond witness represents the byte being written to the file, byte = WriteFile_data(self).
In the implementation the data to write is held in the buffer of the WriteF'ile instance,
represented by WriteFile_data(self).

DataObject_data(target) 1=
DataObject_data(target)<-
{WriteFile_of fset(self) — WriteFile_data(self)}
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Additionally we have sel f which parametrises the writing process where sel f € WriteFlile,
and an offset value WriteFile_of fset(self) for the data.

We add the following invariant relating the written data of data object f, data2(f)
of the abstraction, with ran(DataObject_data(WriteFile_dataObject(s))) the written
data of the implementation. We are interested in ensuring that the written data is the
same in the abstraction, and in the implementation refinement after writing is com-
plete. Writing is complete when WriteFile_state(s) = w f14 A ~(WriteFile_index(s) <
WriteFile_bytes(s)), and is described in the events w_end and the refined event,
WriteFile_while_w f12_false.

Vf,s- f € DataObject N s € WriteFile N\
WriteFile_state(s) = wf12 A

—(WriteFile_index(s) < WriteFile_bytes(s))

=

data2(f) = ran(DataObject_data(WriteFile_dataObject(s)))

During the writing steps when there are bytes left to write, WriteFile_index(s) <
WriteFile_bytes(s), we equate the data, data2(f), of the abstraction, with

ran(DataObject_data(WriteFile_dataObject(s))) in the following invariant. This en-
sures that the implementation writes satisfy the writes specified in the abstraction, the

write steps are described in the event w_step and the refined event, WriteFile_w f14.

Vf,s- f € DataObject N s € WriteFile A
WriteFile_state(s) = wfl4

=

data2(f) = ran(DataObject _data(WriteFile_dataObject(s)))

Similar invariants ensure the data reads of the implementation satisfy the abstraction.

At run time the program can accommodate the fact that a call may be made to an object
that does not exist. We provide a default handler for a monitor procedure call where
the target is a null reference - the process simply terminates. In the implementation
this corresponds to throwing an exception and terminating. We can optionally specify
some activity performed before the process terminates, such as logging the error. Mon-
itor class procedures may also contain null references, these are not currently handled

satisfactorily; the process simply blocks. A mechanism could be introduced in future
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work to ensure non-nullity as discussed previously in 7.2.4

WriteFile_w f14_isNull =
ANY self
WHERE
self € WriteFile N
self € dom(WriteFile_state) A
WriteFile_state(self) = wfl4 A
—(self € dom(WriteFile_dataObject))
THEN
WriteFile_state(sel f) := terminatedWriteFile
END

In this section we have shown the events arising from the translation of the labelled OCB
clause wf14 which refines the w_step event. The translation of other process clauses
give rise to events modelling creation of files, and reading from, and writing to them.
The top layer OCB specification consists of a MainClass which is the entry point for
execution. The user’s Application Layer operations are called from the MainClass. The
File System Layer operations, described above, are then called from within the user’s

Application Layer.

7.4 The Java Implementation

We now discuss the Java code that arises from the translation from OCB. We will con-
tinue with our discussion of the writing process with the WriteF'ile Java class shown
in Figure 7.7, and the DataObject class as an example of a monitor class, shown in
Figure 7.8. The WriteF'ile process class defined in OCB gives rise to the WriteF'ile
Java class that implements java’s Runnable interface for defining the thread behaviour.
The OCB attributes of the WriteF'ile process class are translated to private Java fields
which are initialized in the constructor method. The run method consists of the trans-
lations arising from the process class’s run clause, with its labelled atomic clauses; the
Java code closely resembles the OCB specification in this section. The Java code for the
DataObject class closely resembles the OCB specification, and we have not reproduced
it in its entirety. We just point out that OCB attributes map to private Java Fields,

and that synchronized methods are used to implement procedures.



Chapter 7 Case Study 2

145

public class WriteFile implements Runnable{

private OpenFileStore openFileStore = null;

private UserBuffer buffer = null; private int id;
private int tmpName; private OpenFileInfo file = null;

private int bytes; private int index; private int openFileCnt;
private boolean fileFound; private FileDirInfo fileDirInfo = null;

private int data; private DataObject dataObject = null;
private int offset; private int aMode;
private ErrorLog errorLog = null; private int freeSpace;

public WriteFile(OpenFileStore openFileStor, int fName,

UserBuffer buffr, id = fName; int byts, ErrorLog errorLg){
openFileStore = openFileStor; buffer = buffr; bytes = byts;

index = 0; openFileCnt = 0; fileFound = false; tmpName
data = -1; offset = 0; aMode = -1; errorLog = errorlg;
freeSpace = 0;}

public void run(){
openFileCnt = openFileStore.getSize(); // wfl
while(index < openFileCnt && fileFound == false){
file = openFileStore.getAtIndex(index); // wf2
dataObject = file.getDataObject(); // wf3
fileDirInfo = dataObject.getFileDirInfo(); // wf4
tmpName = fileDirInfo.getID(); // wfb
if (tmpName == id) {
fileFound = true; /xwf6x/ }
index = index + 1; /*wf7x/ }
if (fileFound == true){
aMode = file.getAccessMode(); // wf8
if (aMode == 1 || aMode == 2) {
freeSpace = dataObject.reserveSpace(); // wf9
if (freeSpace > 0){
index = 0; // wf10
file.resetOffset(); // wfiil
while(index < bytes){
data = buffer.get(index); / wfl2
offset = file.getOffset(); // wfl3

dataObject.write(data, offset); // wfld

index = index + 1; // wf15
file.incOffset(); /*wfl6*/}}}
else{ dataObject.unReserve();
errorLog.add(7); /+wf17x/}}
else{errorLog.add(4);}}}
else{errorLog.add(1);}}

}

FIGURE 7.7: The WriteFile Java Code
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public class DataObject {

private int type; private FileDirInfo fileDirInfo = null;
private int[] data = new int[10]; private int freeSpace;

public DataObject(int typ, FileDirInfo fileDirInf){
type = typ; fileDirInfo = fileDirInf; freeSpace = 10; }

public synchronized FileDirInfo getFileDirInfo(){... }
public synchronized int read(int offset){... }

public synchronized void write(int val, int offset){...}
public synchronized int getType(O{... }

public synchronized int reserveSpace({... }

public synchronized void unReserve(){...}

FiGURE 7.8: The DataObject Java Code

7.5 Issues Arising from the Case Study

The motivation for the case study was to attempt to provide an implementation of part of
the flash file system specified in the Intel Flash File System Core Reference Guide (FFS
Guide) [82]. In particular we wanted to see how an OCB implementation could be used
to implement part of an existing system, and the problems that would be encountered.
In related work, modelling of the flash memory has been undertaken using Z [36] but
deals with lower level parts of the ONFI specification [83]; our interest in this case study
is specification at higher level. VDM++ has also been used to create a model [58] based
on the FFS guide, the paper presents the activity of deleting a file from the file system.
The resulting model was translated to, and analysed with, Alloy [85] and HOL [3]. A key
feature of the VDM++ work was the integration of the tools and techniques, our main
focus is the integration of the Event-B method and an object-oriented implementation
that makes use of concurrency. The Event-B approach and Rodin toolset have been
designed, from the outset, to simplify the process of specifying and discharging proofs.
In some respects the expressiveness of the tools have been limited, in order to support
a simpler approach to proof. In other respects Event-B can be seen as much more
general since it is not limited to modelling software systems. Approaches such as Z and
classical-B support a design by contract approach using preconditions and postconditions
and are therefore much more tailored to modelling software systems. In this way one
could view Z and classical-B as more expressive than Event-B in that they provide

more language structures; but the simplicity of Event-B can be seen as providing a
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much clearer view of a system as development proceeds. The Rodin tool and Event-B
approach were developed to be used together which gives rise to an integrated approach.
This approach of VDM++ work above differs since the VDM++ model of the file system
was translated to Alloy and HOL. In the Z model of flash memory the proof was not
discussed, but typically the Eves prover [129] would be used since it has been tailored

for use with Z.

The FFS Guide describes a complex system and a number of APIs, layered in a hierar-
chical fashion, are used to partition the specification. It quickly became apparent that
our OCB implementation would not be able to follow the hierarchical structure, and
attention was restricted to an implementation of the User’s Application Layer, and the
File System API only. With the Data Object layer and those below being simulated.
The problem occurs mainly because we prevent monitor class procedures from invoking
procedure calls of other monitor classes, a restriction imposed in order to prevent dead-
lock and the nested monitor problem. This demonstrates the need for an extension to
existing work that has a more flexible approach. In an implementation that does not
block the process on a failed lock acquisition attempt, we would be able to accumulate
a number of object locks without fear of deadlock. If we encountered a lock that was
held by some other object we could simply release the accumulated locks. If we are able
to accumulate locks then we may then be able to entertain the notion of nested monitor
objects and allow procedure calls on them. In the next chapter we discuss our extension
of the OCB approach which should allow a transactional approach, which will allow us
to access multiple objects from within a labelled clause. However, the OCB notation
seemed to be most suitable for the specification of the User Application Layer and the

Flash File System Layer, which is where the processes of the system are invoked.

We initially described the part of development we are interested in using an abstract
model where readers and writers copy a chunk of bytes to disk atomically. We then
refined the model to model the transfer of the bytes individually, that make up a chunk
of data. We then presented a systematic approach to linking the refined model with an
OCB specification which resulted in a translation to an Event-B model and Java code.
We found that the Jackson Structure type Diagrams were a useful aid to visualising
the relationships between the abstract events and the events of the refinement at the
implementation level. The Jackson Structure type Diagrams can embody sequencing,
iteration and branching; and we see how this links to sequence, looping, and branching
in the OCB specification.

In the OCB approach a single monitor procedure call can be invoked in a labelled atomic
clause. However, it is not always possible to know in advance when a target refers to
an object or is undefined. There are approaches that attempt to ensure this within
certain constraints, such as Spec# [23]; but this is not a general solution since it does
not cater for non-null types in arrays. We have handled this approach by modelling

process termination, where in the Java implementation the thread throws an exception
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and terminates. We showed an additional associated problem, where an attribute inside
a procedure body may be undefined. We showed that we could add an invariant and, in
this case, use proof to show non-nullity, and we think that this approach could also be

used to prove non-nullity in most other circumstances.

The OCB specification consists of a MainClass, 6 process classes, and 7 monitor classes.
There are 62 labelled clauses in total. These give rise to 127 events and 113 typing in-
variants in the Event-B model. The number of proof obligations generated from just
these (before proving refinement) totalled 827, 777 of which were discharged immedi-
ately by the auto-prover. A further 77 were discharged relatively easily and 18 remain
to be discharged. The size of the translated Event-B model caused some problems, with
the automatic prover taking a very long period of time to run through the proof obli-
gations. The problem that this caused indicates that we should consider some form of
modularity, or decomposition of the model into more tractable partitions. The proof of
refinement has not yet been completed, but there is room for including some productiv-
ity enhancements such as adding witnesses and refines clauses to OCB operations, thus
indicating their relationship with the abstract events. The translation from the OCB
specification to Java code worked as expected, and we were able to run the program in
the JVM.

The user interface, in its current state, is suitable only to for use in investigating, and
experimenting with, the approach. We make use of the Eclipse tree editor which is not
well tailored to our needs. It would seem natural to use a UML-like diagram editor with
class diagrams, such as that used in the UML-B tool, to specify our process and monitor
classes. This would then provide a natural progression from Event-B modelling, using
UML-B, to OCB specification.



Chapter 8

Extending OCB with

Transactional Constructs

In this chapter we propose a transactional version of OCB constructs which makes use of
a later Java platform version that has greater control over locking and conditional wait-
ing. The transactional version of OCB introduces a number of features which overcome
the limitations of the OCB described in previous chapters. We first discuss the newer
features of Java, introduce the new syntax, and then describe mappings to Event-B and

Java.

8.1 The Java Language Specification - Third Edition

There were many concerns about the Java Language Specification - Second Edition
(JLS 2)[37], which was shown to contain many ambiguities and omissions. Problems
most typically manifested themselves in systems where concurrent execution of threads
was employed; to the extent that sharing of data that could modified was eliminated by
design if at all possible, as suggested in [100]. Much has been written on the subject of
overcoming concurrency problems in Java, some by proposing extensions to the language,
or adding annotations to Java [22, 25, 62, 81, 88, 92], or some by suggesting how to work
with this, and the previous, Java edition with careful checking [16, 61, 80].

The memory model has been redefined in the Java Language Specification - third edition
(JLS 3)[68] which serves to define the language up to version 1.5 of the Java SDK. The
specification has a more detailed description of the read and write actions of threads
to overcome the ambiguities in the previous version; and there are new features to
assist with programming for concurrency. There is an atomic Compare and Set (CAS)

operation associated with objects that have atomic updates that makes use of atomic

149
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primitives recently introduced in the latest processor technology. It has the form,
boolean compareAndSet(expected, newVal)

where the newVal is assigned to the object, and returns true, if the value of the object
equals expected; else returns false and makes no change. JLS3 makes use of this new
feature to provide the AtomicInteger, AtomicBoolean and AtomicReference types,
among others, which are part of the java.util. concurrent.atomic API. The java.util. concurrent
API provides a Semaphore class which allows threads to acquire permits, and block if no
permit is available. A semaphore can make a number of permits available in order that
each object of a pool of resources can be acquired; each acquisition is atomic. Permits
are released when no longer required by a thread and other threads are notified and may
compete for the resource. A semaphore with a single permit can function as a mutex
lock. The semaphore makes use of the new atomic constructs such as AtomicInteger

and compareAndSet in its implementation.

Another feature of JLS3, that is an improvement over JLS2, is in the area of locking
objects and conditional waiting. JLS3 introduces the java.util.concurrent.locks API
which provides features that allow explicit control over object locking. It is intended that
the new locking constructs should not be used in conjunction with the synchronization
mechanism of JLS2 since the two mechanisms are independent of each other. One
useful feature that we can make use of is non-blocking lock acquisition. In JLS2 if an
object’s monitor lock is held by a thread, if a second thread attempts to acquire the lock
then it is blocked. The developer has no control over this behaviour, JLS3 enables the
creation of Lock objects with a tryLock method. The tryLock method will simply return
false if the lock is already held by some other thread, thus facilitating non-blocking lock
acquisition. A lock can also be released using the unlock method. The API also provides
a ReadLock that can be shared among readers and a WriteLock that allows mutually

exclusive access, but waits until all readers have finished reading.

Conditional waiting has been enhanced by the use of explicit Condition objects upon
which a thread may wait. A new Condition object is obtained from an existing Lock
object by the use of the newCondition method. The Condition object’s await, signal
and signal All methods perform the same function as the wait, notify and notifyAll
methods. The advantage of explicit Condition objects is that a number of such objects
can be associated with a single lock. Each can have its own condition attached, and is
therefore more flexible than the old method. Of the Lock types that are specific to read
and write activities, it is possible to associate a Condition object with a WriteLock,

but not a ReadLock - an exception is thrown if this is attempted.
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8.2 Transactional Constructs

We are able to use the new language features of JLS3 to implement a more flexible OCB
approach, and introduce access to a number of objects in an atomic clause - rather than
restrict access to one object as is the case of out initial OCB approach. Since we are
able to access more than one object in a labelled atomic clause we refer to the extension
of our approach as Transactional-OCB. When we compare the original approach we will
refer to it as Synchronized-OCB, due to its reliance on this method of locking objects.
Figure 8.1 is an aid to visualising the difference between monitor locks and the use of a
lock manager. The reader should note at this point are discussion of object locking is an
implementation issue - the locking scheme should remain largely transparent to the user
of OCB. The only exception may be any restrictions that we introduce to ensure that
the approach is transactional. So, with respect to the implementation of Synchronized-
OCB, a process can only obtain a single lock for an object; this is facilitated by the use
of Java’s synchronized method calls. In contrast, the lock manager of the Transactional-
OCB approach is able to gather a number of object’s locks; and furthermore, it is able
to release the held locks if the manager is unable to acquire any particular lock of a set
of required locks. In Transactional-OCB each labelled clause is associated with a set of
locks that it requires; and the set of locks is to be acquired before entry into the critical
region of the clause. It is for this reason that all the locks should be known prior to
the clause body being executed. If we cannot decide which locks are required before
entry to the critical region then it may be the case that one of those is not available
and the transaction could not proceed. This would be problematic in the middle of
a transaction since we have no roll-back facility, any state updates that we have made
would be permanent. To ensure that procedure calls are decidable in advance we impose
the restriction that if multiple procedure calls are made in a labelled atomic clause then
the procedures that are called are getter methods only, that is, when determining which
locks are required to effect the procedure call, they will not update state before entry
to the critical region. This restriction can be checked statically prior to the automatic
translation begins. So the calls may be nested, but they must in turn only be to getter
methods. In this way we avoid having computations involving state updates at the lock

acquisition stage.

We now present some examples of Transactional-OCB clauses in which we make use of

two procedure definitions, add and sub specified as follows,
Procedure add(Integer a){ z:=z+a }
The sub procedure subtracts an amount from x and returns the new balance,

Procedure sub(Integer a){ x :=x —a ; return:=z } : Integer
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ProcessClass ProcessClass

Labelled Clause

Labelled Clause

Lock Manager

MonitorClass

SharedClass SharedClass | ....... SharedClass

Objects in Synchronized OCB Objects in Transactional OCB

F1Gure 8.1: OCB Locking Strategy

The following labelled atomic clause involves a sequence of updates to different objects
using the procedure calls defined above, note that we now allow more than one procedure

call in a labelled clause.

I1: < ml.sub(amt) ; m2.add(amt) >

The brackets enclosing atomic regions, < and >, are introduced to the specification here.
We use these to make it clear which areas are contained within an atomic region. The
sequence operator, used in labelled atomic clauses, does not permit interleaving so in this
sense the operator differs from the sequence operator used in non-atomic clauses. It is
simply used to sequence updates within an atomic region. The sequence operator makes
the use of the parallel operator redundant in the actions of labelled atomic clauses. In
the preceding clause the object referred to by attribute m1 has its sub procedure called
and is passed the parameter amt, then the object referred to by m2 has its add procedure

invoked with the parameter amt being passed.

Using the above clause we can atomically update two distinct objects without inter-
ference by some other process, or threat of deadlock. The type of deadlock situation
that may arise here is caused by resource contention conflicts. We discussed interference
and deadlocks earlier in Section 2.8.2. Deadlock prevention is achieved using explicit
lock objects, and the tryLock method, where an unsuccessful lock acquisition attempt
releases any held locks. We are also able to accommodate OCB when clauses in these

objects since we can wait on a condition after releasing the locks already held.

We also introduce direct access to owned object attributes which can be seen in the
following clause. In Synchronized-OCB a labelled clause may only update the attributes
of a shared object through a procedure call, in Transactional-OCB we can make use

of direct access to objects referred to by attributes. This can however be viewed as
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syntactic sugar; an alternative to the use of procedure calls.

1: at2:=m2.x; m2x:=mlx; mle:=t2>

We are now able to make the actions of labelled atomic clauses more expressive, and
would like to add some other features that correspond to implementation level constructs.
We introduce a branching clause for use in our labelled atomic clauses which is used as

follows,

I1:<if(ml.getz() — amt > 0) then

ml.sub(amt) ; m2.add(amt) endif >

In this clause the whole branch is enclosed in atomic brackets. This branching clause
differs from the non-atomic version since the non-atomic version allows interleaving
between the atomic part and the ‘andthen’ clause. The branching construct works in
the usual way with a conditional part, and an action that is evaluated if the condition
is true. The clause may also have a number of else branches to describe alternative
branches. We also extend the notation to allow invocation of a procedure call in the
condition, providing the call just retrieves a data value from an object and is free of side-
effects. We will discuss restrictions on procedure invocation in detail when we discuss
lock management later. In this branching clause, then, conditional evaluation and any
subsequent updates occur atomically. The branching clause may also co-exist with other

clauses which will also form part of the same atomic update.

The following atomic while construct will also be useful for performing loops in labelled
atomic clauses. It once again differs from the non-atomic looping construct introduced
earlier, since it does not provide a mechanism for interleaving at the end of each loop

iteration.

[1: < while(i > 3) do
t1:=ml.getx() —1; t2:= m2.getx() + 1 ;
ml.setx(tl) ; m2.setx(t2) ; i :=i — 1 endwhile >

The looping construct consists of a condition which is evaluated and an action that is
performed if the condition is true, else the loop terminates if false. It may be desirable
to prove that a loop can always reach its termination condition, in which case a natural
number loop variant can be specified. The clause’s action must always decrease the
variant; in the example above a suitable loop variant is ¢ — 3, which is decreased by the

action ¢ := 17 — 1.
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8.2.1 Transactional-OCB syntax

In our approach using transactional constructs we re-use the non-atomic syntax of earlier
chapters. In the Java implementation we can protect critical regions using either a lock-
based management scheme, for which we have a prototype; or we could implement
a solution based on Software Transactional Memory (STM) as discussed in [73, 74,
75]. STM provides a transaction-based solution that maps well to the transactional
constructs of OCB. STM constructs provide the usual commit and abort utilities. One
drawback with an STM implementation is the overhead associated with keeping track
of the changes data; all changes by transactions are recorded temporarily, regardless of
whether a transaction succeeds in committing. This may be an inefficient use of memory
space in a system where contention is high. There is also a time overhead associated with
committing resources. A more memory efficient implementation may prevent changes to
the data being made by locking the data objects, reducing the amount of modified data
in memory, but increasing the time processes spend waiting (a reduction of the amount
of concurrent processing being done). We give more details of the STM approach and our
lock-based implementation later in the chapter. We choose a lock-based implementation
over an STM style implementation for our work for simplicity. In this extension to our
work we retain the concepts of process classes and introduce the notion of shared classes
which we use instead of monitor classes. Re-capping, the syntax for a process class is
defined as,

ProcessClass := C Name Var™ NonAtomic Constructor
and for shared classes we have,
SharedClass ::= C Name Var* Procedure®™ Constructor

Process classes have a name C Name, a set of instance variables Var, a non-atomic clause
declaration NonAtomic, and a constructor procedure Constructor. Shared classes are
similar to process classes but have a set of procedures Procedure instead of a non-atomic

clause. The definition of NonAtomic remains the same.

NonAtomic ::=
NonAtomic ; NonAtomic
| NonAtomic [| NonAtomic
| do Atomic [; NonAtomic] od

| Atomic
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We modify the previous definition of a labelled atomic clause, replacing Body with

Action, since Action now contains all the clauses we require,

Atomic ::= StartLabel : < [Guard—] Action >

The guard that follows the start label is related to the wait condition when construct.
In Transactional-OCB we move conditional waiting out of procedure definitions - up to
the level of the Atomic clause. An example of the textual definition follows where a

labelled clause with a when construct contains an action,
[1: < when(c){a} >

where ¢ € Guard and a € Action

If condition ¢ is false then the process will block. In the implementation the thread is
blocked by invoking the await method, and waits for a signal from some other thread,
we will describe this more fully later in the chapter. Another difference between syn-
chronized and Transactional-OCB is that we allow procedure calls in the conditions of
looping and branching constructs, but only where the procedure is free of side-effects,
and returns an appropriate value (which can be checked statically). We require freedom

from side-effects since a condition should contain only a predicate guard.

An Action in Transactional-OCB differs from Synchronized-OCB since actions can
be composed using a sequence operator, the parallel operator is no longer used in
Transactional-OCB. This introduces the requirement for a sequence operator in the
Event-B language which does not exist at the time of writing; we do not discuss the
ramifications of introducing this to Event-B, at this stage, and simply assume that it
is possible to do so. We know that the sequence operator existed in classical-B below
the abstract machine level; in refinements and implementation machines. We therefore
have some confidence that it is feasible, and we know that one of the reasons that it
was not included in Event-B was to reduce complexity. We argue that it will be useful
(and indeed necessary) to be able to describe this kind of sequential behaviour when
working at the implementation level. We now discuss the justification for not having
the sequence operator in Event-B, presented in [72]. We know that an invariant I in-
volving variables = and y can be written as I(z,y). We wish the invariant to hold for

the following program,
xi=E(z,y); y:=F(z,y)
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To show that the invariant holds we have the following proof obligation which we must

discharge,

I(z,y)
l_

I(E(z,y), F(E(z,9),y))

We can see that expressions on the right-hand side of assignments are carried forward,
and become nested in the proof of subsequent assignments. The complexity does increase
as the number of clauses in the composition increase. However, in our work at the im-
plementation level, we will not use non-deterministic constructs. This therefore reduces
some of the complexity alluded to in the justification for not including the sequence op-
erator. We also introduce branching and looping constructs to actions without in-depth
discussion; this will of course involve the introduction of the corresponding constructs in
Event-B. Branching constructs were included at all levels of classical-B modelling, from
abstract machines down; and looping was included at the implementation level. The
assignment clause used in Transactional-OCB is the same as that of the Synchronized-
OCB syntax. Another difference from the previous Action syntax is the ability to make a
number of procedure calls in an action - in Synchronized-OCB we were restricted to just
one call per labelled atomic clause; in addition we now allow direct access to another
class’s attributes whereas in Synchronized-OCB all such accesses were via procedure
calls. This leads us to redefine our syntax where once we used a simple attribute v in
our definition, we now expand the syntax to include the notion of an attribute v which
can either be a name; a composition of attribute names using the dot-notation; or an

array access. The syntax for v follows,

V=
identi fier
| identifier'[ IntegerLiteral ‘|’

| identifier ¢ .’ identifier

Procedure calls, of Synchronized-OCB’s Body clause, are subject to some rigid con-
straints. Procedures are only allowed to be called by process classes and the target must
be a shared class. In Transactional-OCB we define procedure calls as part of an Action
and relax some of the constraints. We allow calls to locally defined procedures (calling
of procedures defined within the same process or shared class as the caller), shared class
procedures (as before but multiple calls in an action), and constructors. We still, how-
ever, wish to prevent recursive procedure calls - Event-B proof rules would need to be
developed to handle recursion. So we need to ensure the absence of recursion statically,
or prohibit calls to procedures that have calls themselves. In Transactional-OCB we do

not permit the use of the when clause (for conditional waiting) in procedures. Since
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an atomic clause can now contain a number of procedure calls the conditional waiting
construct is defined at a higher level in the hierarchy of clauses, then evaluation of the

conditions will occur before entry to the atomic clause containing the procedure calls.

Action =
Action ; Action
| if(Guard) then Action endif
(elseif(Guard) then Action endelseif )*
[else Action endelse]

| while(Guard) then Action endwhile

|v:=F
| [v:=] m.pn(as, ... ax)
| v:= C.create(ay,...,a)

The sequence operator used in Action is different to that of NonAtomic since it does
not indicate a location for interleaving. Rather, the atomic sequence operator is used

for updates within a transactional clause and is not visible externally.

8.2.2 The Mapping to Event-B

The definition of the mapping once again uses the Guarded Command Language of[52],
as used in Chapter 3; atomic regions are bracketed thus, < >, as before and the TN A

translations are as defined in Chapter 4

The T LA mapping for Synchronized-OCB is shown in Definition 3.11, where the T'LA
mapping gives rise to an event, but the OCB actions require further ‘treatment’ when
compared to Synchronized-OCB. At this point in the discussion we see the introduction
of more features that differentiate Synchronized-OCB and Transactional-OCB. At the
level of the Action clause we introduce some new concepts: Firstly we introduce direct
access to attributes, which means there will be a change to the renaming function TV
of section 4.1. Recall that attribute names used in the OCB actions are renamed with
respect to the caller using the T'V mapping function of Table 4.1. Actions now need to
accommodate attributes of the form id;.ido> where id; is an attribute of type M Name,
representing a SharedClass instance known to the class, and ids is an attribute name
belonging to that instance. The mappings defined in Table 4.1 are similar but we now
accommodate a compound identifier which uses dot-notation in v. Table 8.1 supersedes
the TV translation for the variable v, as shown in Table 4.1. The set of attributes vp
are all of the attributes visible from the instance s. Currently all attributes have public
scope by default, that is, they are navigable from any class; however we may wish to
restrict this in future work by introducing a private scope, so vp will contain only the

set of attributes navigable from a particular class.
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identifier v | <wv, vp, s >TV

idy. - ady | ip(in—1 .. (11(9))) where id;. - - - .id,, € vp
idy. -+ .id, where id;. - - - .id, ¢ vp
Vs.s € P A where P is the calling process
s € dom(idy) A add well-definedness invariant

idi(s) € dom(ida) A
idg(idl(s)) € dom(idg) VANRAN
Z'dnfl(idnfg . . (’Ldl(S)) € dom(zdn)

id;[v] = id;(s)(< v,vp, s >TV) where id; is an array access
indexed by v

TABLE 8.1: Rule TV applied to v

In OCB, when accessing an attribute, we wish to ensure that the object exists but any
of the attributes of the compound identifier are potentially undefined. In the imple-
mentation if an attempt is made to access an object that does not exist, a null pointer
exception would be thrown; and we can avoid this by proving, in advance, that the
partial function is well-defined. To facilitate this we add a well-definedness invariant to
the Event-B machine which is defined in Table 8.1. In Synchronized-OCB we simply
add an event to handle the case where a call is made to a null target. We however think
the proof approach used here is an improvement on the approach used in Synchronized-
OCB, and could indeed be used there too. We now show an example of the mapping of a
compound identifier to Event-B, where w,y and z are attributes used in the compound

identifier, and wvp is the set of attributes visible to the instance s.

< w.y.z, vp, S >TV

2(y(w(s)))

Table 8.1 also defines the mapping of an array reference. We previously discussed map-

ping array accesses in 4.1.1, and to recap, we defined the mapping as follows,
<li], vp, s >TV=w(s)(< i, vp, s >1V)

In the application of TV to the OCB fragment the variable part and the index part of
an array access is split into two parts. In the resulting Event-B fragment we have a
function application v parameterised by instance s, this is then composed functionally
with the translated index i. In Transactional-OCB’s mapping of array accesses we split
the variable and index parts in the same way, We can also see that if y was an array

access y[i|, indexed by attribute i, and we had a compound identifier involving an array
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>TV

access w.y|i].z, then < w.yli] would yield the following,

< w.yli] STV y(w(s))(< i, vp, s >TV)

and so for the complete identifier, we have,

<wylil.z >TV= z(y(w(s))(< 4, vp, s >TV))

and thus we accommodate array accesses in compound identifiers.

The next feature of Transactional-OCB to consider is that of procedure calls in OCB
actions. In the Synchronized-OCB definition actions were simply copied to event actions
with the variables renamed. In Transactional-OCB actions we allow multiple procedure
calls and create calls, these are expanded in-line where they occur in an action, and the
variables are renamed. The easiest way to define the mapping is to modify the mapping
of the labelled guarded action as defined in 4.4, we use P to denote the class in which
the labelled clause is defined,

So the labelled guarded action is,

Definition 8.1. <il1: < g—a > , [2, P >TLA
A

I1p =

ANY s

WHERE s € Pipgt A Ppe(s) =1UAN<g, vp, s >TV
THEN < a, vp, s, P, I1 >T ; Py(s):=12
END

where vp is the set of variable names visible to class P.

We now have two translation functions, T'A defined in Table 8.2, and T'A2 defined in
Table 8.3. T A maps a simple action to an Event-B action. T'A delegates the more
complex task of procedure calls and constructor calls to T'A2. In a constructor call, for
instance, we add an additional parameter to represent the new instance. We also need to
add a guard to type the new variable and initialize them using a mapping of the create
procedure. Procedure calls also result in a similar in-line expansion of the procedure
action. Each variable involved in a procedure call must be renamed with respect to the
appropriate object, i.e. parameters are substituted and renamed with respect to the
caller. Other variables accessed in the procedure body belong to the target, and are

renamed with respect to the target instance. We define T'A as follows,

Definition 8.2. T'A € Action x P(VarName) x EventBLV ar x CName x Label
— EventBAction
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Action is the action to be mapped, P(VarName) is a set of variable names of the
process class being mapped, C Name is the process class name, label is the next label
in the sequence of labelled clauses, or the terminating label if there is none. Table 8.2
contains the mapping of simple actions using T'A, they map directly to the new Event-B

constructs after variable renaming,

Action < Action, vp, s, P, 11 >T4

Actiony ; Actiong < Actiony, vp, s, P, 11 >T4
< Actions, vp, s, P, 11 >T4

if(Guard) then if(< Guard, vp, s >TV) then
Action endif < Action, vp, s >TV endif
elseif(Guard) then elseif(< Guard, vp, s >T") then
Action endelseif < Action, vp, s >TV endelseif
else Action endelse else < Action, vp, s >V endelse
while(Guard) then while(< Guard, vp, s >TV) then
Action endwhile < Action, vp, s >TV endwhile
identifier == E < identifier, vp, s >TV:=

< FE, vp, s >TV

identi fier 1= < identifier :=
Q.create(ay, ..., ax) Q.create(ay,...,ax), vq, vp,
s, newg, P, [1 >TA2

identi fier := < identifier :=
M .create(ay,...,ar) M .create(ay,...,a), vm, vp,
s, newy, P, 11 >T42

identi fier := < identifier :=
id.pn(ay, ..., ap) id.pn(ay,...,ay), vq, vp,
s, j, P, 11 >T42

where: s represents the calling instance.

P represents the class that contains the clause /1.
new, represents a new process instance.

vq is the set of variable names of Q.

vp is the set of variable names of P.

newy, represents a new passiveClass instance.

vm is the set of variable names of M.

j represents the target instance.

TABLE 8.2: Rule TA

It now remains to define the mapping function for procedure and create calls, T A2.
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The definition is similar to T'A except for the addition of a parameter FventBLvar
representing the new instance or target, and a set of variable names P(Var Names) of

the new instance; or target in the case of a procedure call.

Definition 8.3. T'A2 € Action x P(VarNames) x P(VarNames) x EventBLV ar
x BEventBLVar x CName x Label — EventBAction

For mappings associated with T A2 see Tables 8.3, 8.4, and 8.5. We separate the map-
ping of the procedure call and constructor constructs into separate tables since each
contributes to the parameters, guard and action of the event. For each action involving
a process create call we add a unique parameter new, to the set of parameters of the
event. The mapping of constructors for processes and shared classes are slightly different

so we consider each in turn beginning with the process constructor, The shared class

Add < v:= Q.create(ay,...,a;), vq, vp,
s, newg, P, 11 >TA2

Event parameter | newg
Event Guard newg € Qset \ Qinst

Event Action <d, vq, new, STV Qinst 1= Qinst U {new,} ;
v(s) 1= newy ; Qpc(newy) := sLabel(na)

where: s represents the calling instance, and new, represents the new instance.
vq is the set of variable names of (), and vp is the set of variable names of P.

Q.create(fi,..., fr) =a
a =alfni,..., fa\ <ai, vp, s >TV ... <ag, vp, s >TV]
na is the non-atomic clause of process @), and sLabel is defined in definition 3.6

TABLE 8.3: Rule TA2 for a Process Constructor

constructor is identical except there will be no program counter set for the new instance,
and is shown in 8.4. The last action we consider is the procedure call, and is shown
in 8.5

8.3 Examples Mapped to Event-B

8.3.1 The Sequential Operator within a Transactional Clause

In the following examples we make use of a shared class M with two instances m1 and
m2, and a ProcessClass P containing the labelled clauses which refer to the shared
classes. We describe how various OCB features map to Event-B, and we conclude the
section by drawing together the examples to show the complete OCB specification. In
the first example we illustrate the ability to update multiple objects in a single clause.

We swap the values of attributes ml.x and m2.x atomically, using direct access. We
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Add < v:= M.create(ay,...,a;), vm, vp,
S, newy,, P, 11 >T42

Event parameter | new,,
Event Guard newy, € Mget \ Minst

Event Action <, om,newy, >TV ; Ming := Mings U {new,} ;
v(s) := newy,

where: s represents the calling instance, new,, represents the new instance.
vp is the set of variable names of P, vm is the set of variable names of M.
M.create(f1,...,fr) =a

a =alfni,..., fa\ <ai, vp, s >TV ... <ag, vp, s >TV]

TABLE 8.4: Rule TA2 for a Shared Class Constructor

Add <wv:=1idpn(ay,...,a,), vq, vp,
s, j, P, 11 >T42

Event Action <d, vj, j>TV

Invariant Clause | Vs-s € P A's € dom(Py.)
Py =11=
s € dom(id)

where: id refers to an instance, and may be a compound identifier,
s represents the calling instance, and j represents the target instance,
id.pn(ai,...,ax) = a
vp is the set of variable names visible to class P.
vj is the set of variable names visible to the target instance, id,
a =alfny,..., fap\ <ai, vp, s >TV ...,
< ag, vp, s >TV][return\v]

TABLE 8.5: Rule TA2 for a Procedure Call

use an attribute £2 of P to temporarily store the value of m2.z. Note that the Event-
B action makes use of a sequentially composed clause, facilitated by our proposal to

introduce the sequence operator into the Event-B syntax,

<ll: <« t2:=m2x; m2x:=mlx; mlx:=t2 > ,12, P >TLA
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This maps to the event,

g £

ANY s

WHERE s € Pyg A Ppe(s) = U1

THEN 12(s) := 2(m2(s)) ; #(m2(s)) := 2(ml(s)) ;
2(ml(s)) = t2(s) ; Poe(s) := 12

END

Together with the invariant to ensure that the references are well defined,

Vs-s € Ppst A s € dom(Ppe) N Ppe(s) =11
=
s € dom(m2) A m2(s) € dom(x) A

s € dom(ml) A ml(s) € dom(x)

8.3.2 Branching in a Transactional Clause

In Transactional-OCB we retain the non-atomic if statement of Synchronized-OCB
which is defined as choice between branching clauses; this may contain further branches
using additional else clauses. In each branch the atomic part of the clause may be
followed by another non-atomic construct permitting interleaving with other processes.
In Transactional-OCB we introduce a branch construct which consists of a single atomic
clause; with no opportunity to interleave between the i f and else branches. This atomic

branching clause gets mapped directly to the proposed Event-B, atomic branching clause.

In the following example we show a clause labelled [2 which transfers an amount, amt,
from mi1.z to m2.x if ml.x — amt > 0, else makes no changes. We specify the clause
using two procedure calls which gives rise to an event with the procedure bodies in-lined,
formal parameters will be replaced with actual parameters and variables are renamed.

The add procedure adds an amount a to a value x,
Procedure add(Integer a){ z:=z +a }
The sub procedure subtracts an amount from x and returns the new balance,
Procedure sub(Integer a){ :=x —a; return:=x } : Integer

In the current example the return value of sub can be ignored since there is no assignment
involved, but we will use this in a later example. The following procedure getr has no

side-effects, so we are able to use it in an expression and simply substitute in-line, and
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rename using 7'V, the RHS of the return statement.

Procedure getx(){ return:=x } : Integer

The OCB specification to make an atomic transfer of an amount amt follows,

<12: <« if(ml.getx() — amt > 0) then
ml.sub(amt) ; m2.add(amt) endif > 13, P >Tt4

This maps to the following,

ANY s
WHERE s € Py A Ppe(s) =12
THEN if(z(ml(s)) — amt(s) > 0) then

x(ml(s)) := x(ml(s)) — amt(s) ;
x(m2(s)) := x(m2(s)) + ami(s) endif ;
Pye =13

END

and we add the following invariant to ensure that the references are well defined,

Vs-s € Ppst A s € dom(Ppc) N Ppe(s) =12
=

s € dom(m2) AN m2(s) € dom(z) A

s € dom(ml) A ml(s) € dom(z) A

s € dom(amt)

The branching clause will give rise to a proof obligation, based on that of the classical-
B [5] branching construct. We ensure that a post condition P is established after the

branch; so for a branch if g then a; else a2 endif; we show that the following holds,

(g A [ar]P)V (=g A [a2] P)

8.3.3 Looping in a Transactional Clause

The following loop accesses variables using a procedure call to set the value of an at-
tribute . We decrement z of mI, and increment z of m2, i times, using a procedure

setx (defined as follows) to set the value of x,

Procedure setx(Integer v){ z:=wv }
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We assign the value of m1’s x attribute to t1 after decrementing it, and then we assign
the value of m2’s x attribute to t2 after incrementing it. These are passed as parameters

to the setx procedure calls,

<13: < while(i > 3) do
tl :=ml.getx() —1; t2:= m2.getzx() + 1 ;
ml.setz(tl) ; m2.setx(t2) ; i :=i— 1 endwhile > , 14, P >Tt4

We show the mapping to Event-B now where /4 is supplied as the next label parameter,

ANY s
WHERE s € Pt A Ppe(s) =13
THEN while(i(s) > 3) do
t1(s) :=x(ml(s)) —1; t2(s) :=x(m2(s)) + 1 ;
£(mi(s)) = £1(s) : w(m2(s)) := £2(s) :
i(s) :=i(s) — 1 endwhile ;
Poc =14
END

and we add the following invariant to ensure well-definedness of attributes,

Vs-s € Ppst A s € dom(Ppe) N Ppe(s) =13

t1) A s € dom(t2) A
s € dom(ml) A ml(s) € dom(x)
s € dom(m2) N m2(s) € dom(x) A

Treatment of proof obligations for loops in OCB is based on that of the classical-B
looping construct. It may be necessary to prove loop that a loop terminates - that is, it
does not continue looping forever. To do this we add a natural number loop variant and
show that the loop always decrements the variant. We add a loop variant to a clause in

the following manner,

while g do a

variant V endwhile

A proof obligation is then generated which must be discharged to show that the variant
decreases during each iteration. So for any variant V, and its updated value V', we

must show that V/ < V. Now, the variant V is a natural number, and it must be the
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case that the loop eventually terminates since a natural number cannot be decremented
forever. In addition it is also necessary to show that, after each loop iteration, that
the loop invariant I holds, which is shown by I A g = [a]I. We therefore show that if
the loop invariant I and the loop condition g holds initially then the action a should
re-establish the invariant. Finally, if the loop condition no longer holds, that is —g, then
some postcondition P is shown to hold. The complete proof obligation follows, where x

is the list of state variables that can be changed in the loop body.

~

A
Vae-(IANg=la]l) A

Vo (I=V eN) A

Ve-(IANgAV =V = [a](V < V)) A
Va-(I A —g=P)

8.3.4 Procedure Bodies

We extend the use of the new constructs to procedures. A procedure body can make
use of the new sequential, branching and looping constructs. We present an example
that uses a while loop in the procedure body, and show its mapping to Event-B. The

procedure call iter is defined in a class M which contains a loop,

Procedure iter(){ while(c >0) doz:=z+1; ¢:=c¢— 1 endwhile }

In the following labelled clause m1, an attribute of type M, is used to call M’s iter

procedure,

<l14: <« mliter() > , terminated, P >Tt4

This maps to,

ANY s
WHERE s € Py A Pype(s) = UY
THEN while(c(ml1(s)) > 0) do
w(m1(s)) = (ml(s)) +1
c¢(ml(s)) := c¢(ml(s)) — 1 endwhile ;
Py(s) := terminated

END
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and we add a well-definedness invariant,

Vs-s € Ppst A s € dom(Ppc) N Ppe(s) =14
=

s € dom(ml) A ml(s) € dom(z) N ml(s) € dom(c)

We show the complete specification in Figure 8.2, notice the use of brackets < ... > to
enclose atomic clauses in the textual specification, this corresponds to out use of <...>

in the rule definitions.

ProcessClass P{
M ml, M m2, Integer i, Integer tl, Integer t2, Integer amt
Procedure create(M ma, M mb, int amount){
ml:=ma; m2:=mb; i:=6; t1:=0; t2:=0; amt:=a.mount}
Operation run(){
11: <t2 = m2.x ; m2.x :=ml.x ; ml.x := t2> ;
12: <if(ml.getx()-amt >= 0) then ml.sub(amt) ; m2.add(amt) endif> ;
13: <while(i>3) do t1l:=ml.getx()-1 ; t2:=m2.getx()+1 ;
ml.setx(tl) ; m2.setx(t2) ; i := i-1 endwhile> ;
14: <ml.iter(i)>

}
}

SharedClass M{

Integer x, Integer c

Procedure create(){x := 0 ; ¢ := 3}

Procedure getx(){return := x}:Integer

Procedure setx(Integer v){x := v}

Procedure add(Integer a){x := x+a}

Procedure sub(Integer a){x := x-a;return := x}:Integer

Procedure iter(D{ while(c>0) do x:=x+1 ; c:=c-1 endwhile}

FIGURE 8.2: A Transactional-OCB Specification

8.4 Mapping to Java

In OCB specifications, and the corresponding Event-B actions, we use sequential com-
position. Therefore the mapping to Java is straightforward, and most OCB actions can
be mapped directly to Java statements. Both the OCB atomic and non-atomic semi-
colon operators map directly to the Java semi-colon delimiter; the complexity lies in
making the action transactional. That is, we require a method of isolating the actions

of one process from the actions of other processes in order to prevent interference. If a
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transaction cannot progress (perhaps a lock cannot be acquired) then no changes should

be visible to other processes - no partial updates must be seen by other processes.

We previously mentioned the STM approach to implementing transactions, and we may
investigate STM as an alternative to a lock-based scheme in the future. We give an
overview of an STM implementation in Section 8.4.4, but continue our discourse using

our own lock-based implementation using some of Java 1.5’s new concurrency features.

8.4.1 Locking

Before elaborating on the mapping to Java we need to discuss locking of objects in some
detail. We describe a locking scheme so that the objects accessed in an OCB clause
will be locked in the corresponding Java implementation to allow mutually exclusive
updates. We also have a similar conditional locking feature to Synchronized-OCB, but a
when clause guards a whole labelled transactional clause. The conditional critical region
may therefore contain a sequence of assignments and procedure calls which are executed
atomically, i.e. the contents of a labelled transactional clause. This is in contrast to
the conditional critical region of Synchronized-OCB, which is specified wholly within
the procedure body of an atomic procedure call. In an OCB specification there is
no explicit notation added to wake blocked processes, rather the translator adds the
appropriate calls to wake waiting processes. In Java 1.5 threads are caused to wait
by calling a C'ondition object’s await method. They are woken by calling a condition
object’s signal All or signal method. To wake threads we insert a signal All call near to
the end (prior to lock release) of methods which make updates to shared class variables.
The blocking and signalling of threads is hidden from the developer in order to simplify
reasoning about the behaviour of the system. We now summarize the steps for ensuring

mutually exclusive access to shared objects accessed in labelled atomic clauses,

e A process locks each shared object accessed in the clause.

If the clause is guarded - check the entry conditions

— If an entry condition is not satisfied for some shared class, then block waiting
for its data to be updated after releasing appropriate locks ; return to the

first step upon waking.

— Continue to critical region if entry conditions are satisfied.

Perform updates in the critical region.

Release locks

Each transactional clause can refer to one or more instances, these instances are identified

by attributes, declared in the class in which the clause is used. To prevent interference
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by other processes a process must own the locks of the instances it accesses before
reading or updating variables. We use a non-blocking approach to lock acquisition
where each labelled clause is associated with a number of locks. Since shared classes
may contain other shared classes (a parent-child relationship) it is not possible to know,
before obtaining a parent class’ lock, which instance (the child) a particular attribute
refers to. This is because if a process does not hold a parent’s lock, some other process
is free to change the object that the attribute refers to. It is for this reason that it is
necessary to obtain each parent’s lock before ascertaining which instance its attributes
(children) refer to; and therefore which instances needs locking. In the event of failure
to acquire a lock, previously acquired locks are released and the thread remains active.
The locking activity takes place within a loop that only terminates when all locks have
been acquired. Releasing previously acquired locks, in the event of a failure to acquire

a lock, alleviates the problem of deadlock due to resource retention.

We demonstrate the locking policy using an example. Given an OCB clause containing
access to an attribute a.b where b is an instance of some class, we say that b is nested
in a; and later we refer to the top-level with a as level 1, and the second level with b
as level 2, and so on. When we want to acquire the top-level lock a we already know
which instance a refers to - the process class is not shared so it cannot be changed by
any other process - so we try to obtain the lock. If successful we then attempt to obtain
the lock of the next level, b. Now since a is a shared object b can be changed by another
process; but the calling process owns a’s lock, so no other process will be able to access
b and interfere with it. Lock acquisition proceeds in this way, traversing the lock levels,
until all locks are successfully acquired. It may be the case that instead of using direct
access a procedure call may be used to access b, such as a.getB() instead of a.b. In
such circumstances, as long as the call has no side-effects (to be checked statically), we
proceed in the same way as with direct access; until we encounter a procedure call. We
would then invoke the getter method to obtain the object, and continue as before by

attempting to obtain that object’s lock.

A ProcessClass maps to a Java class implementing the java.lang.Runnable interface.
The run method is populated by method calls derived from the OCB labelled transac-
tional clauses of the OCB run operation. Each of the run operation’s clauses is linked
to a method call, and a corresponding method declaration implementing the required

behaviour.

public void run() {

// Sequence of atomic clause calls
110;
120;. ..

}
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SharedClass

ProcessClass

lockManager: MutexL ockM anager reentrantLock: ReentrantL ock

s. SharedClass
public void run(){11();......:InO} public ReentrantL ock getL.ock()

private void 11(){ ......}
MutexL ockM anager

private void In(){ .....} - -
] ) claimedLocks: Collection
private List<ReentrantL ock>

getLVI 1L OCkS_l 1(){ ...... } pUbI ic boolean tr{L OCkS(

List<Reentrantl ock> requestedL ocks){ ......}
public void releasel ocks(){ ......}

public void releasel ocksComplement(
ReentrantLock lock ){......}

private List<ReentrantLock>
getLvinLocks In(){......}

FiGURE 8.3: The LockManagement Structure

// Implementations of atomic clauses
public void 110 { ... }
public void 120) { ... }...

}

To implement the mutual exclusion policy each SharedClass instance has a lock provided
by java.util.concurrent.locks. ReentrantLock. We use its trylock and unlock methods to
lock and unlock the object. Each labelled transactional clause is related to one or more
helper methods that returns a collection of locks. These methods acquire the locks of a
given nesting level for each clause, so getLvllLocks_l1 is a getter method for the level
1 locks of the clause labelled {1. All of a clause’s required locks, at each level, must
have been claimed before entry to the critical region is possible. We show a diagram
of the classes involved in Figure 8.3. The collections returned by the helper methods
are used by a lock manager (an instance of MutexLockManager) to co-ordinate lock
acquisition and release. There is one lock manager instance per labelled transactional
clause. The MutexLockManager class has a method tryLocks to obtain locks, this calls
the ReentrantLock’s tryLock method for each lock in the collection; and releases the
locks contained in the claimedLocks collection in the event of failure to acquire any lock.
The MutexLockManager class also has a releaseLocks method to release all of the locks
in the claimedLocks collection. The MutexLockManager class is shown in Figure 8.4.
Successfully claimed locks are stored in a collection, claimedLocks. We now extend the
OCB model of Figure 8.2, to demonstrate our approach to locking objects referred to
by a compound identifier. To the existing model we add the following shared class with

an integer attribute w,

public class N{public int w = 0; }
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public class MutexLockManager {
private List<ReentrantLock> claimedLocks =
new ArrayList<ReentrantLock>();

public boolean tryLocks(List<ReentrantLock> requestedLocks){
for(int i = 0; i<requestedLocks.size();i++){
ReentrantLock lock = requestedLocks.get(i);
if (Lock.isHeldByCurrentThread()) claimedLocks.add(lock);
else{
if (lock.tryLock())claimedLocks.add(lock);
else{
if (claimedLocks.size()>0) releaselLocks();
return false;

}
}
¥

return true;

}

public void releaseLocks(){
while (claimedLocks.size ()>0){
ReentrantLock lock = claimedLocks.get(0);
lock.unlock();
claimedLocks.remove (lock) ;

}
}

FIGURE 8.4: Part of the MutexLockManager Class

We add a clause 15 to the process class run method, see Figure 8.5. The clause simply
increments the attribute w of shared class n, but has to first acquire the lock of m1 and
then n.

5:mlnw:=mlnw-+1

In any implementation we must first acquire the top-level lock, in this case that of ml
- and then acquire n’s lock. To do this we use helper the methods, getLevellLocks_l5
and getLevel2Locks_15 (shown in Figure 8.6) to return required locks for each level, and
pass the resulting collection to the ¢ryLocks method. The helper methods are created

as part of the translation process.

We now explore the use of procedure calls to specify the equivalent clause. In the
following we can envisage getter procedures to obtain the values of n and w used in the
following way,

15 :ml.getN().getW () := ml.getN().getW () + 1

Here, ml.getN() obtains the object associated with attribute n belonging to m1l; in

turn the getW procedure obtains the value of attribute w associated with the object
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ProcessClass P{
M ml, M m2, Integer i, Integer tl, Integer t2, Integer amt
Procedure create(M ma, M mb, int amount){

ml:=ma; m2:=mb; i:=6; t1:=0; t2:=0; amt:=amount}
Operation run() {

15: <ml.n.w :=ml.n.w + 1>

}
}

// This class is nested in M
public class N{
public int w = 0 ;

}

// This class contains class N

SharedClass M{

Integer x, Integer c, N n

Procedure create(N ne){x := 0 ; c := 3; n:= ne}

FIGURE 8.5: A Transactional-OCB Specification with a Compound Identifier

referenced by n. In this situation we must ensure that the getter procedures are side-
effect free. So the getter procedures for n and w would simply access an attribute and
return its value. However, if side-effects were allowed then the lock manager would have
to perform the processing prior to obtaining the lock (at the lock acquisition stage) and
therefore it may cause updates to state before entry into the critical region which is not
allowed. Omne could also envisage the situation where updates, caused by a call to a
procedure causing side-effects, would have to be rolled back if a subsequent lock is not
available. Rollback behaviour in these circumstances is beyond the scope of this thesis.
The mapping of the OCB procedure calls to Java code is a straightforward copy with

the becomesequal operator substituted for assignment.

In order to implement the locking strategy we place tryLocks and releaseLocks calls
in appropriate positions in the resulting code. An example of this can be seen in our
extension of process P, in Figure 8.6, where we acquire the locks of nested objects related
to the clause labelled 5.

8.4.2 Translating Transactional Clauses to Java

We can say that much of the translation from an OCB specification to Java proceeds as
for the Synchronized-OCB translation; until we consider the translation of non-atomic

constructs and labelled atomic clauses. The translation is similar to the translation
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public class P implements Runnable{

protected MutexLockManager lockManager= new MutexLockManager();

// variables belonging to the process
private M1 mi;

private List<ReentrantLock> getLevellLocks_15(){

}

private List<ReentrantLock> getLevel2Locks_15(){

}

// the process calls the method related to the labelled transaction
public void run(O){ ... 150; }

// compound id example, mi.n.w := ml.n.w + 1

private void 150 {

// acquire locks

boolean hasLvl1Locks
boolean hasLv12Locks
// any fatlure will reset level 1 locks

false;
false;

// no failure allows progress
while ('hasLvliLocks){

// get levell locks
hasLvliLocks = lockManager.tryLocks(getLevellLocks_15());
// if successful get level 2 locks
if (hasLvliLocks){
while (!'hasLvl2Locks){

hasLvl2Locks = lockManager.tryLocks(getLevel2Locks_15());

}

// if level2 (or deeper) cannot be obtained, any claimed locks
// will have been released, so reset the levell lock flag too
if ('hasLvl2Locks) hasLvliLocks = false;

}

//ENTER CCR

ml.n.w =ml.n.w + 1;

//EXIT CCR
lockManager.releaseLocks();
hasLvliLocks=false;
hasLvl2Locks=false;

FIGURE 8.6: The Locking of Nested Shared Classes

List<ReentrantLock> levellLocks_15= new ArrayList<ReentrantLock>();
levellLocks_15.add(ml.getLock());
return levelllLocks_15;

List<ReentrantLock> level2Locks_15= new ArrayList<ReentrantLock>();
level2Locks_15.add(ml.n.getLock());
return level2Locks_15;
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defined in Table 4.4, except now a non-atomic construct may give rise to one or more
method declarations, and statements that invoke those methods placed in appropriate
locations in the code. The labelled transactional clauses are translated to Java by
applying the translation function ltDef of Figure 8.7. The modified translation naDef is
shown in Table 8.6, and for now we ignore conditional waiting. We will try to simplify the
explanation of the translation as much as possible. In order to simplify the description
of the transactional constructs we provide a pseudo methods, ...acquire, ...release to

describe the location of locking acquisition and release code.

The first step in translation of a non-atomic construct to Java code is to apply the trans-
lation function naDef, with the non-atomic passed as a clause parameter. This gives
rise to, for each labelled clause in the non-atomic construct, one or more Java method
declarations in the class body, and one or more method calls invoking these methods,
to perform the behaviour specified in the labelled clause. The looping construct, for in-
stance, gives rise to an atomic method, implementing the condition check and associated
action - followed by other atomic methods that implement the any other atomic clauses
on the ‘true’ branch. If the condition is false the loop quits without performing updates.
The branching construct atomically evaluates the condition and performs any updates
for the appropriate branch; a variable, local to the specifying class, records which branch
was executed and later uses this to invoke the appropriate branch when executing the

non-atomic part of the construct.

Now we discuss the translation of labelled transactional clauses /;, which are composed
using the non-atomic construct of na. The translation to Java gives rise to two state-
ments; a method call /;(), and a method declaration. The method declaration arises
from the application of the translation function ltDef to the labelled transactional
clause. During the translation [tDef adds method calls to the method body, to obtain
and release the locks. The added method calls are to the tryLocks and releaseLocks
methods described earlier in Section 8.4.1. The translation of Transactional-OCB atomic
actions is shown in Definition 8.7. where a is an Action.

< 1:q >'tPef

public void 11(){
...acquire ;
< a >Pel; /*Critical Region*/

...release ;

FiGURE 8.7: Rule ltDef for Labelled Atomic Clauses

The atomic actions map quite easily to Java and use the definition of cDef of 4.7,
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na call < na >nebef
nay ; Nas < nap >"Pef . < pay >naDef
l; : if(c1) then a andthen ;) L0O{
na, endif ...acquire
[elseif(c;) then a andthen l;_aux(b) if(< c1 >Pe){ < a >aPe/;
na; endelseif | b=1;}
[else a andthen na, endelse] else if(< ¢; >Pe){ < a >Pe/;
b=1i;}]
[else{< a >P¢f . b =mn; }]
...release

l; - while(c) then a andthen
na endwhile

I _while(l; s())
Li £();

Li()

}
l;—aux(b){
switch(b){
case 1: < na; >"*Pef; break;
[case i: < na; >"*Pef; break;)
[case n: < na, >"*P¢/; break;]

lis(){

...acquire

if (< ¢ >ePef){
<a >aDef;
...release;
return true;}

else{
...release;
return false;}

}
Li£0){

< na >naDef

Def.
< a >Def,
<l q >htDef

TABLE 8.6: Rule naDef for Transactional Clauses

8.4.3 Conditional Waiting

It may be the case that we require some condition to be satisfied before processing of

a transaction continues. It is therefore appropriate to check the condition, immediately

after the locks have been acquired, and before entry into the critical region. Assume

that we have specified two buffers belonging to channel ¢ which are accessed using dot

notation as follows, c.buf f1 and c.buff2, and that the size is held in an attribute size

of the buffer; we may wish to ensure that both buffers are empty before executing action
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a < a >aPef

a;a < aq >Pef . < g >aDef

if(c) then a endif if(< ¢ >Pef){< a >2Pef )

[elseif(c) then a endelseif | [else{if(< ¢ >°Pef){< a >Pef;}}]

[else a endelse] [else{< a >P¢f;}]

while(c) then a endwhile while(< ¢ >Pef){< q >aDely

identifier := F identifier = E;

identifier.pn(ay, ..., ay) identifier.pn(ay,...,ax)

identifier := identifier.pn(ay,...,ax) | identifier = identifier.pn(a,...,ay)

identifier := Q).create(ay, ..., ay) identifier = new Q(a1,...,ax);
new Thread(identi fier).start()

identifier := M.create(ay,...,ar) identifier = new M (ay,...,ax);

TABLE 8.7: Rule aDef for Atomic Actions

a, or blocking otherwise, by writing a conditional statement as follows,
I1:<when( chuffl.size=0 A cbuff2.size=0){a}>

This can be represented as a guarded action of the type 1 : < g— a 1>, so for the above

example the guarded action is,

I1: < (cbufflsize=0 A cbuff2.size=0)—an

Any labelled clause may contain a when clause, with a condition that guards entry
to a critical region. The condition consists of a number of guards, but we stipulate
that each guard is must be associated with only one shared class. In this way we
are able to associate a failed condition with a particular shared class and block the
thread until that particular shared class is updated. We discuss this issue in more detail
later in the section, but for now we show the updated naDef translation function,

where we add guarded actions to the allowable na clauses of Table 8.8, We update the

na ‘ < na >nebef

I1: @« g—ar |11
<ll: ag—an >tPef

TABLE 8.8: Rule naDef for a Conditional Transactional Clause

ltDef translation function to accommodate the guarded clause, we use a pseudo-method



Chapter 8 Extending OCB with Transactional Constructs 177

public void releaseLocksComplement (ReentrantLock lock){
claimedLocks.remove(lock) ;
while(claimedLocks.size()>0){
ReentrantLock 1 = claimedLocks.get(0);
1.unlock();
claimedLocks.remove(l);

}
}

FI1GURE 8.8: The MutexLockManager releaseLocksComplement Method

acquireConditionally for simplicity, to show placement of the conditional evaluation
code, and explain in more detail in the text that follows. The translation [tDef of a

guarded action follows,

<l1:g—>a>ltD€f

public void 11(){
...acquireConditionally ;
< a > /*Critical Region*/
...release ;

}

where a is an Action. To implement this conditional waiting approach we make use
of the java.util.concurrent.locks. Condition API; each shared class in a guarded clause’s
condition has a Condition object associated with it. We use the await and signalAll
methods associated with the condition object to block and wake threads respectively.
We provide an X_GuardManager class for each labelled clause with label X that has
a guard associated with it; the guard manager contains methods which evaluate the
guards, and in the case of a false guard releases locks and blocks the calling thread. A
lockManager may have acquired a number of locks, and if a condition is not satisfied all

the locks should be released, that is except for the one associated with the condition we

wish to wait for (we wait for the shared class associated with the failed entry condition,
and the await method contains an implicit lock release). To unlock the locks (with
the single exception noted) and remove all locks from the list of claimed locks we use
the releaseLocksComplement method. The method releaseLocksComplement is shown in
Figure 8.8, where we pass the lock that we do not want to unlock as a parameter, and
remove this from the list of claimed locks. We then unlock and remove the remainder of
the locks from the list of claimed locks. Any shared class with a condition object needs
to invoke the condition object’s signalAll method after making state updates. This
will wake any threads waiting on the shared class’s condition object, allowing threads

to attempt to acquire the lock and re-check the entry condition. Assignment to an
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attribute of a calling process is possible for procedures returning a value; this aspect is

not affected by the new style conditional waiting construct.

We now return to the subject of the guards in the conditional waiting clause. We specify
a Transactional-OCB clause using conditional waiting as follows, {1 : < when(g){a} >.
Here g is a conjunction of guards defined as, g = ¢; A ... A cg. In the specification if
g is true then a occurs, or blocks otherwise. In the implementation a method is used
to evaluate each guard, ¢;, in turn - and the method returns true if all the guards are
true, or returns false otherwise. If one of the guards is not satisfied then the condition’s

await method is called, after calling releaseLocksComplement.

One restriction, which we discuss but do not attempt to resolve at this time, is where
a condition refers to more than one shared class and the guard fails - which shared
class should we wait for? In a condition such as a.x < b.xz two shared classes a and b
are involved, each with an attribute . Changes to either shared class by some other
process could make the condition true, so we really need to wait for changes to either
shared class. Implementing this behaviour will require additional coding effort; and we
save this for future work. In the mean time we simply restrict association of each guard
with a single shared class. One work-around for the moment is to perform a static
check, and issue a warning when two shared classes are referred to in a conjunct; the

implementation will however block on the first shared class encountered in the guard.

The guarded clause, defined above, maps to a method 1 Guard in the L1GuardManager
class, shown in Figure 8.9. The shared classes m; ... m, referred to in the guards are
passed as parameters, this shared class instance is the one which will send the signal to

wake the process, and the caller of [1Guard determines which shared class to wait for.

If all guards are satisfied the calling process can proceed to the Conditional Critical
Region (CCR). Figure 8.10 shows the method /1Guard guarding the CCR. The CCR will
not be entered until the guard returns true which enables termination of the containing
loop. The getlock method returns the ReentrantLock object associated with a shared
class, and getCondition returns its Condition object. The definition of rule aDef for

Transactional-OCB actions is shown in Table 8.7.

8.4.4 An Alternative: Locking Based on STMs

An alternative approach to implementing our Transactional-OCB constructs could be
based on the STM implementation described in [74] which uses Java SDK 1.2. tech-
nology. The advantage of STM over a more traditional locking strategy is that the
approach allows more concurrency for the non-conflicting operations, and there is a sim-
plified approach to specifying conditional waiting. The STM approach requires a number

of memory consistency rules be adhered to ensure that the integrity of the transactions
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public boolean [1Guard(MutexLockManager 11_lockManager, M my, ..., M my){
(191
1 lock M anager.release LocksComplement(m;.get Lock());
try {m1.getCondition().await(); }
catch(Interrupted Exception e){...}
return false;
telse. ..

else if(lgx){
[1_lockManager.release LocksComplement(my.get Lock());
try{my.getCondition().await(); }
catch(InterruptedException e){...}
return false;

telse return true; }

where m; is the shared class associated with guard g;, for each i € 1...k
FI1GURE 8.9: Implementation of Conditional Wait in the GuardManager Class

Manager gm = new L1GuardM anager();

private void [1(){
boolean success = false;
while(!success){
...acquire ;
success = gm.I1Guard(l1_lockManager,my, ..., my);

}
//enter CCR

< q >Def,
//exit CCR

...release ;

}

FIGURE 8.10: Guarding the CCR with a GuardManager Instance

within the system are not violated. For instance, native code cannot be used in STM

transactions apart from some very limited cases, such as cloning objects for local use.

In the STM approach the specification of an atomic region with conditional waiting is

as follows,

atomic(condition){
// enter CCR
statements;

// exit CCR

}

If conditional waiting is not required then the conditional part is just omitted. The
atomic region is bounded by braces and condition is evaluated before entry into to the

critical region; if false the process blocks by putting the transaction into a sleeping state.
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Field Ownership Record Transaction Descriptor

L.n 11 version: Integer 1.n 0.1| Status: {COMMITTED, ACTIVE,

\ . ABORTED, SLEEPING}
version

y
field \/

OR

name: String

value: T

0..n entries

Entry

preval: T
preVer: Integer
newVal: T
newVer: Integer

FicUre 8.11: Class Diagram of an STM Implementation

The various transaction states can be seen in the Transaction Descriptor’s status field
in Figure 8.11. When a transaction is sleeping it is waiting to be woken when some
other transaction may have updated state that the transaction refers to,that is when the

ownership record associated with that state has been updated.

This STM implementation uses ownership records and transaction descriptors. The
transaction descriptors keep track of the old and new values of fields accessed by a
transaction, together with a versioning scheme which keeps track of the changes to indi-
vidual fields. The ownership records (orecs) keep track of which variables are accessed by
which transaction descriptors. There are a number of STM API methods which are used
to implement the approach described in Table 8.9, which correspond to usual operations

involving transactions. We now give more details of the descriptors, orecs and their

Method Description

STMStart() Allocates a Descriptor, Status = ACTIVE
STMAbort() Status = ABORTED

STMCommit() | Acquire orecs, Status=COMMITTED
update field values, release orecs
STMValidate() | Version checking of fields

STMWait() Conditional wait, Status = SLEEPING
STMRead() Read from existing descriptor if it exists
else determine logical state

STMWrite() Write new descriptor entry

TABLE 8.9: STM API Methods

relationship with fields. Figure 8.11 describes the relationships in an implementation.
The fields that the transaction can refer to have a name, a value of its declared type T,
and an ownership record. The ownership record stores either a version number (if no
transaction has acquired the field’s orec since it was last committed) or a transaction
descriptor that has been acquired to commit changes to the field. When a transaction
reads or writes to a field it will create an entry in the transaction descriptor that stores

the initial value and version number in its preVal and preVer fields, and stores the
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updated value and version number in the newVal and newVer fields. The new version
number is obtained from an existing entry in the same transaction descriptor if one
exists, or from the orec itself otherwise. The initial values of a field are described as
its logicalstate, and this is derived from the information held by the system including;
which field is being accessed, its associated orec, the status of any transaction descrip-
tors that have acquired the orec of the field, and the various descriptor entries of those
transaction descriptor. A decision procedure is applied to determine the logical state,
which depends on whether the field has been accessed by another transaction since it
was last committed; whether the current transaction has previously accessed the field;
and also whether some other transaction involving the fields has been committed, but

the field has not yet been updated in memory.

The key to the atomic update of this STM implementation resides in the status of the
transaction descriptors that have accessed a particular field’s orec. If a transaction de-
scriptor changes its status to commit, it is considered to have completed the transaction
even though the changes may not have been applied to the field value. This means that
any other transaction, trying to commit with a field contained in an already committed
transaction, must fail. The unsuccessful transaction commit will fail when it checks to
see if it has the latest version of field value and finds that some other transaction has
made a more recent update - that is, it has a higher version number. The check is
implemented in the following acquire method, called by the ST M Commit operation.
It which accepts a descriptor parameter, and an entry, ¢. During an attempted commit
phase each entry ¢ in the list of entries is checked using acquire. Returning TRUFE
indicates that the orec for a particular field was acquired, FFALSE indicates failure to
acquire the orec since the version has changed, and BUSY indicates that some other
transaction is already active with the orec. The following operation refers to attributes

shown in Figure 8.11,

acquire(Descriptor descriptor, int i) {

Entry e = descriptor.entries[i];

Object seen ; // Holds an Integer or Transaction Descriptor
seen = CAS(e.field.orec.version, e.preVer, descriptor);

// Existing descriptor held or successful installed

if(seen == e.preVer || seen == descriptor) return TRUE;

// orec holds some other version - changed by another transcation
else if(seen instanceof Integer)) return FALSE;

// seen must be a transaction descriptor - so its busy

else return BUSY;

The code of the preceding fragment attempts to install the descriptor d in the owner-

ship record associated with the transaction entry. It makes use of the getOrec(e.field)



Chapter 8 Extending OCB with Transactional Constructs 182

method which obtains the orec associated with the field in the entry e. This is then used
in a CAS method (an atomic compare and swap method used to update a field atom-
ically). The CAS method has three input parameters currentVal, expectedVal, and
newVal; and returns currentVal. The method compares a current value, currentVal,
with an expected value expectedVal. If the current value is equal to the expected value
then a new value newVal is set. In the fragment above e.oldVersion refers to the orec
initially seen by the entry; then if the orec known to the field is the same as the orec
initially seen by the entry then no change has been made, and the new descriptor is
installed in the orec. In either case the orec obtained by getOrec(e.field) is returned. If
the CAS is successful then acquire returns TRU E and continues until orecs for all en-
tries have been acquired, or else the transaction is aborted. If all orecs are acquired then
the commit can proceed. The failure cases for the acquire method are that the method
call, holds_version_number(seen), returns true - which is the case if an orec has only
a version number and does not refer to a descriptor. This indicates that the field has
been changed and there is a different version number seen than expected. This causes
the acquire method to return FALSE and the transaction is aborted. The remaining
failure case is when the orec is being accessed by another transaction, and BUSY is

returned; again the transaction will be aborted.

There are a number of STM implementations such as that of the XSTM [4] project, which

includes a Java version, JSTM; and another Java STM implementation, Multiverse [1].

8.5 Tooling

During our investigation of the transactional version of OCB we have translated code to
Java manually, focussing on the practicalities of the approach rather than the tooling,
so we have no Eclipse plug-ins for a Transactional-OCB meta-model, and we have no
automatic translation tools. This is in part due to the fact that our proposed extensions
to the RODIN tool, e.g. the sequential operator, would have to be introduced to make
such a translation useful. The extension of the RODIN tool to accommodate this is
beyond the scope of current work. To investigate and verify the lock management
approach we used manual translation to Java code, and used specifications that had
actions with parallel composition (instead of sequential). It would be possible to develop
further a meta-model and translator plug-ins to automate this version but we leave that

decision for the future.

There is some scope for optimisation of the lock acquisition process, even at this early
stage of investigation. For example a simple exponential back-off approach can be used,
where the thread goes to sleep for a successively longer duration after each failed at-

tempt - before reattempting lock acquisition. An implementation of this can be seen in
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Figure 8.12. An upper limit for waiting is supplied as a parameter, preliminary inves-
tigations indicate that a value of 5 provides a useful maximum sleep time (e’ms = 148
ms). However the topic of optimising a system in such a way is beyond the scope of this
piece of work, we merely wish to highlight that we are aware of the limitations of the

approach.

protected void exponentialBackoff (int limit){
if (backoff<limit){
backoff++;

}
try {
Thread.sleep((long) Math.exp(backoff));
} catch (InterruptedException e) {
e.printStackTrace();

}
}

F1GURE 8.12: Exponential Back-off Java Implementation

8.6 Review of the Chapter

In this chapter we presented an extension to the approach where atomic actions are able
to access more than one object. We note that for the target implementation a Software
Transactional Memory approach may provide an efficient implementation. However we
adopted a lock based approach in order to investigate its feasibility, and investigate
the limitations that such an approach may give rise to. In this extension to original
work we are able to remove some restrictions, the most significant of which is to enable
more than one shared object to be referenced in an atomic action. We also introduce
an atomic sequential construct which provides sequencing within an atomic statement.
However the introduction of the atomic sequential construct does rely on an update
to the existing Event-B approach to permit the use of a sequential operator in event
actions. This would also give rise to a change in the proof obligation generator, which
have to generate different proof obligations to accommodate the sequential construct.
However we (as designers of the methodology) still need to be wary of the nested monitor
problem, since this can still arise when using JLS3. The difference between JLS2 and
JLS3 is that with JLS3 the programmer has the ‘tools’ to ensure the nested monitor
problem does not occur; this is done by releasing all held locks when a condition causes
a thread to wait. The benefit to Transactional-OCB users is that this should be taken
care of by the tools.

We began the chapter with an overview of the Java Language Specification 3 locking

and blocking features. The use of JLS3 allows us to remove many of the restrictions
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when compared to Synchronized-OCB. The limitations imposed because of JLS2 were
mainly due to the lack of control of monitor locking. We developed a new syntax, and
introduce features such as direct access to objects using dot notation. We also introduced
invariants that ensure well-definedness of each of the reference attributes. This ensures
that null references are not accessed during either direct access or a procedure call. In
Transactional-OCB we may have more than one method call per action; we change the
conditional waiting approach so that conditions are declared (using the when clause) on
entry to the labelled atomic clause, rather than in individual procedure definitions. This
is because we may have more than one procedure call in an action. In this way it is easy to
identify the entry conditions for the labelled action. We defined the translation of actions
into Event-B, noting that the mapping at a higher level is the same as Synchronized-
OCB; and we showed some simple examples to illustrate use of the new constructs.
Then we discussed the issue of lock acquisition in the Java implementation, followed
by the translation of the OCB notation to Java. We showed how conditional waiting is
implemented in Java, illustrating its use in an example. We also discussed an alternative
approach to locking using Software Transactional Memory. Finally we discussed tooling

issues and implementation issues, noting that our locking strategy could be optimised.



Chapter 9

Conclusions and Future Work

In this thesis we have shown how to link an Event-B model to an object-oriented imple-
mentation by means of an intermediate specification using the OCB notation. The main
contribution of the work is the introduction of means of specifying concurrent aspects
of a development, rather than an attempt to incorporate object-oriented aspects into an
Event-B development. An OCB specification incorporates the concurrent aspects of an
implementation, allowing specification of process classes with interleaving, non-atomic
operations. The non-atomic operations are comprised of a number of labelled atomic
clauses. An atomic clause can be an atomic action, or an atomic procedure call. Data
can be shared between processes using monitor classes with atomic procedure definitions.
The transition between the Event-B development and OCB specification is greatly as-
sisted by the use of diagrammatic representations of the link between abstract events
and the implementation level constructs that implement and refine them. Since the di-
agrammatic representation describes sequences of atomic clauses in the abstraction and
atomic clauses at the implementation level, it provides a relatively intuitive way to group
related activities. These related activities, in the abstraction, can be implemented as
related activities in the implementation; typically in the body of a single process. This
is of course at the discretion of the developer who will be making implementation level

design decisions.

An extension of the work allows access to multiple objects within a transactional, la-
belled clause. We call this approach Transactional-OCB to differentiate it from the
simpler form, Synchronized-OCB. We believe that specification using OCB can ease the
transition between formal modelling at an abstract level, and provision of a concurrent
implementation. Reasoning about concurrency is simplified by providing a clear view
of atomicity, which is achieved by abstracting away the locking details. We do not aim
to provide formal verification of the link between the formal development and imple-
mentation, however we are confident that the semantic gap between the OCB and the

implementation is sufficiently small for the relationship to be justified by inspection.

185
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9.1 Review of Thesis

We began the thesis with an overview of our contribution and the structure of this
thesis. We continued in Chapter 2 with an introduction to formal methods and discussed
how object-oriented techniques and formal methods have influenced each other, and
how they have been applied in the software development process. We went on to give
details of the main issues that have influenced our work, including descriptions of the
Event-B approach, UML-B, and B0. We followed this by discussing some programming
problems associated with implementing concurrent Java programs, and then discussed

some approaches for improving the dependability of Java programs.

Chapters 3 and 4 present the most significant contribution, it is here that we define the
Synchronized-OCB syntax, present the rules for mapping Synchronized-OCB to Event-B
and show an example translation to an Event-B model. We then look at producing a Java
implementation from an OCB specification and define the translation rules for mapping
OCB to Java. Initially the syntax and mapping from OCB to Event-B are defined using
the Guarded Command Language where we introduce the notion of processes with non-
atomic operations. These consist of labelled atomic clauses; the labels of the clauses map
to program counter values, and these are used in guards to model the order of executions.
A clause’s action maps to an event action and a guard maps to an event guard. We
introduced the notion of shared monitors; processes share monitors and access their data
using atomic procedure calls. Mapping of procedure calls to Event-B results in in-line
expansion of procedure bodies in the calling process. Input and return parameters were

added, which involves substitution of formal parameters for actual parameters.

The modelling of object-oriented features is based on the approach that underlies the
modelling of objects in UML-B [140]. Mapping of variables was discussed; each variable
belongs to an OCB class and can be referred to in OCB clauses (in guards and actions).
Due to the fact that we map an OCB specification to a model with instances, we require
a translation function to map each occurrence of a variable in an OCB clause, to a
variable associated with a specific instance in the corresponding Event-B clause. Finally

we discuss the definition of OCB arrays, and their mapping to Event-B.

Following the presentation of the Event-B semantics underlying Synchronized-OCB we
introduce syntactic sugar that provides a simple mapping to Java - for the branching,
looping and guarding (conditional waiting) constructs. The syntactic sugar is a textual
notation for use in specifications that is object-oriented in style, and is more appropri-
ate for the specification of implementation related details than the guarded command
syntax. We then presented an example translation from OCB to Event-B. The resulting
Event-B model is intended to fit within the refinement approach to system development,
since we can show that it refines some abstract model. However, the Event-B model of

the implementation seems to be somewhat verbose when compared to the related Java
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source code. This is due to the assumptions and hidden dependencies within a Java de-
velopment, and in practice may lead to difficulty in establishing proof of refinement. We
will therefore seek to rationalize the approach, which could be achieved by the develop-
ment of some patterns and guidelines, and maybe a calculus. This will aid construction
of OCB specifications from Event-B models. We have seen how the intricacies of the
Java implementation can influence the design of the specification language, so mappings
to other target implementations may further influence the OCB language. For instance,

in future it will be interesting to investigate a mapping to the RavenSpark [2] subset
of SPARK Ada.

An example mapping to Java code was presented and the translation rules for the map-
ping from Synchronized-OCB to Java code was then defined. The OCB specification
makes use of clearly defined atomic regions, which map to Java code with corresponding
atomic regions. We are confident that the mapping will give rise to interference free
execution, due to the restrictions we impose. We are also confident in the correctness
of the correspondence between formal model and the implementation; however proof of
this will be the subject of future work. In Chapter 5 we briefly outline the tooling issues

associated with implementing our prototype OCB modelling and translation tools.

In the case study of Chapter 6 we showed how to specify and implement an object-
oriented, concurrent system involving processes that read and write to shared buffers.
We began with an abstract development and used diagrams, similar to Jackson Structure
Diagrams of [86], to visualise the refinement and the OCB specification. We noted
that behaviour such as looping and branching is more readily apparent in the Jackson
Structure Diagram and is therefore an aid to visualising the development at the OCB
specification level. We also noted that the size of the Event-B implementation refinement
is large with respect to the size of the development, which leads us to conclude that
models may need to be decomposed in future developments to make them manageable.
At the OCB specification level we implemented a process class that could either read or
write, depending on the parameter supplied, to a shared buffer; and the shared buffer
was implemented as a monitor class. A main class can instantiate readers, writers
and shared buffers, and in our implementation we created a single channel that was
shared between two pairs of reading/writing processes. The translation resulted in a
Java implementation that was executable and an Event-B model that was amenable to
proof although the model itself was somewhat large and unwieldy. We note some of the
difficulties experienced while trying to prove refinement of the abstract development;
we propose a method of decomposing models to make them more manageable. The
decomposition approach would also provide a way of reasoning about the model in a
modular fashion, as well as providing the opportunity to reduce the abstraction gap

between the abstract development and code.

The second case study of Chapter 7 describes the implementation of the User Application
Layer API, and File System Layer API, of a flash file system based on the Intel Flash
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File System Core Specification [82]. The API layers were implemented using an OCB
specification, but the system described by the lower layer APIs were simulated due to
the restriction to one procedure call per labelled atomic clause. The implementation of
the case study using OCB specification made use of Jackson Structure type Diagrams
which were again a useful aid to visualising the development. As in the previous case
study the translator gave rise to Java code that was executable and an Event-B model
that was amenable to proof. However in this case the lower level API layers of the
Flash File System specification involve simulation. We believe that the Transactional-
OCB extension will be of use here, to allow access to the lower layers of the hierarchical
specification using dot-notation and getter methods. In Transactional-OCB extension
objects may be nested, and procedure calls to those objects are permitted provided no
state updates take place during the call. The approach is therefore to have procedure
calls which are getter methods to be used in expressions; or updates can be made
directly to nested objects using dot-notation after having acquired an object using a

getter method.

We have developed prototype tool support for our approach, integrating with the RODIN
Event-B tool. Details are presented in Chapter 5. The tool consists of several plug-ins
which integrate with the Eclipse Platform [148]. The plug-ins contribute the OCB
meta-model, and factory classes for instantiation of the meta-model; a tree-editor for
construction of OCB specifications; an OCB text viewer to view the OCB specification

as a text file; and the translators.

In our extension of the OCB approach of Chapter 8 we present Transactional-OCB. The
transactional constructs allow direct access to multiple shared objects in an atomic re-
gion, as well as multiple procedure calls in an atomic region. Many of the restrictions that
were imposed on Synchronized-OCB have been removed. We used the java.utils. concurrent
packages for greater efficiency and flexibility, for instance techniques we overcome the
nested monitor problem by controlling lock acquisition and release. The extended ap-
proach retains the concept of process classes of Synchronized-OCB, but instead of the
MonitorClass we have the SharedClass construct. The procedures of the SharedClass
do not have waiting constructs, but the waiting construct now appears as the first clause
of a labelled atomic action. In the extension the locks are acquired and released by lock

managers that are created during the translation process.

The initial approach was to give synchronized-OCB similar an object-oriented look and
feel in order to simplify the mapping to the Java target language. However an OCB
specification is at a higher level of abstraction than a programming language such as
Java and C. We abstract away details such as synchronization, or lock acquisition,
and conditional waiting. In OCB, processes perform activities; monitors are shared
between the processes, but are not active unless called by a process. OCB monitors
provide an encapsulation mechanism giving the processes mutually exclusive access to

the data. In our Java implementation processes are implemented using threads; and
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the mutual exclusion mechanism is provided by appropriate use of data encapsulation,
and the enforced use of synchronized methods. It is also the case that alternative target
implementations should map to the OCB constructs relatively easily. For example, we
can compare the process abstraction to Ada tasks [147], and the monitor abstraction
to Ada protected objects. OCB procedures map easily Ada procedures and functions
(functions may be used if no state updates are performed). Conditional waiting can be
implemented using Ada entry barriers. The correspondence with C [93] is not quite so
simple, but still feasible. Class data may be implemented using structs and the struct
can be passed as an argument to functions performing updates to the class’ data. This
is similar in nature to Ada’s idiom for implementation of Abstract Data Types. Thread
implementation, and synchronization, can be done using the the features of a library
such as POSIX [151]. The POSIX library for C provides a set of features including

pthreads, mutex locks and conditional waiting.

9.2 Related Work

The motivation for this work was to explore the link between Event-B and object-
oriented implementations; with the specific aim of discovering an approach facilitat-
ing concurrent implementations for formal developments undertaken using the Event-B
method. To our knowledge no other work has been undertaken to facilitate this, so
the foundations for our work are drawn from a number of areas. In this respect the
nearest comparable work is that involving implementations for Classical-B [5] using the
B0 implementation notation described in [43]. BO is similar to a programming language,
and consists only of concrete programming constructs that map to programming con-
structs in programming languages. B0 forms part of the Classical-B refinement chain,
so the implementation level specification is shown to refine an abstract development.
Translators are available to translate the implementation level specification to various
target programming languages, which are described in [42] to executable code. Our
OCB implementation notation exists at a similar level to B0 in the refinement chain,
between the formal model and implementation; and similarly the constructs we chose
for OCB have convenient mapping to constructs in our target domain - that of object-
oriented programs. It should be noted though whilst BO can be translated to the C++
programming language [146] there is no support for concurrent processing of threads;
and the main factor for choosing Java in our work was its good support in this respect.
Other target languages of the B0 translators are C [93], and High Integrity Ada (based
on SPARK Ada [2]). SPARK Ada is a target programming language that we could
consider translating to in future work since it incorporates proof of program consistency

using a Design-by-Contract approach.

In the early stages of our investigations we considered using a combined CSP and B

approach to specify the order in which the atomic actions may occur, and to specify
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points at which the actions of processes may interleave. In such a development the
specifications are combined so that the B operations synchronize with the corresponding
CSP events with the same name. We considered this approach to be more complex than
the approach we ultimately adopted, and introduced the sequence operator and labels
for atomic clauses, to OCB. The sequence operator, together with the labels (mapped
to program counters in Event-B), perform the same role as the CSP specification by
imposing an ordering on the events. Additional considerations in making this choice, at
the time, were the lack of tool support for combined Event-B and CSP, and the potential
overlap with the work on JCSProB [162] that we discuss later. The combined CSP and
B approach, CSP || B, [131, 133] continues to be of interest to researchers.

Other work with CSP, related to our approach, is JCSP [157, 123] and JCSProB [162].
JCSP links the OCCAM [134] subset of the CSP process algebra and the Java pro-
gramming language. The result is the ability to specify process behaviour in CSP, and
translate to Java. The resulting Java is a message passing style implementation of com-
munication between processes. This differs from the shared memory approach described
in our work. JCSProB combines the CSP and classical-B formal methods, the ProB
tool can be used to provide a unified approach for specification and model checking.
The most obvious difference between the JCSProB approach and OCB, once again, is
that our work is aimed at the more recent Event-B approach. JCSProB uses the CSP
prefix operator to provide an ordering on the events that occur, with the operations of
the B machine synchronizing with the CSP events. A CSP process may specify events
that are not shared with other processes, this allows processes events to interleave -
restricted only by the ordering imposed by the sequence operator (since the processes
do not synchronize on common events). In OCB we can specify when interleaving may
occur at certain points in non-atomic constructs, such as at the end of each while loop
iteration. We also order the executions of labelled atomic clauses, using a sequential
operator. The sequence operator is used in a process class’ run operation to define an
ordering of executions and to define points where other processes may interleave. In
both JCSProB and OCB the specifications are translated to threads which can run

concurrently, and perform state updates.

Other work involving CSP is that of Clircus [159], which is a combined approach using
CSP and Z — notation [144]. In a Circus specification the Z and CSP constructs are
used to build a specification that is amenable to model checking using [160]. In this
respect Circus has more in common with JCSProB than OCB since it is a combined
approach using model-checking technology, OCB is not a combined approach. Clircus

can be translated to Java as described in [65], making use of the JCSP library code.

The OCB approach we advocate has a strong object-oriented bias, which is in part due
to our choice of target implementation. In addition though, the use of an object-oriented
specification style in OCB has many benefits; such as the use of classes as templates for

instantiating multiple objects and encapsulating data. The benefits of object-oriented
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techniques have been applied to a number of formal approaches, one such approach in-
volving object-oriented technology and Event-B, is that of UML-B. UML-B is a graphical
front-end for Classical-B and Event-B and provides facilities to model a wide range of
developments diagrammatically using class and statechart diagrams. We gained insight
into the modelling of classes, objects, and ordering of events from UML-B; however there
is no facility to translate the model to an implementation. The additional information
contained in the ProcessClass and MonitorClass specifications of OCB, provide the
necessary information to facilitate the translation to an object-oriented implementation.
Due to the similarity of approaches it therefore possible that some UML-B develop-
ments will be intuitively refined by OCB specifications; in particular this would be quite

apparent if a graphical front-end, similar to UML-B, were created for OCB.

There have been other approaches involving formal methods and object oriented technol-
ogy. VDM++ is an object-oriented extension to VDM-SL formal specification language.
Models can be described textually; or using a graphical interface using UML diagrams,
in much the same way as UML-B does for B and Event-B. VDM++ can be used with the
VDM++ Toolbox to generate C++ and Java code. VDM++ can be used to model and
implement developments with concurrently executing processes, using threads. Condi-
tional waiting can be specified using permission predicates, in a similar way to the OCB
when construct. Another approach that is derived from VDM and additionally CSP is
the RAISE Method [152]. The RAISE Method describes how formal development may
be undertaken in a number of different ways. There are guidelines for applicative (func-
tional) and imperative specification styles, for both sequential and concurrent systems.
The approach covers the development activity from requirements specification through
to translation, which is most relevant for this discussion. The RAISE method uses
a specification notation called the RAISE Specification Language (RSL). A developer
may initially make use of the language’s high level specification constructs, that involve
non-determinism, and may use a step-wise refinement approach to move towards imple-
mentation. RSL also contains the low level implementation constructs used at this level
- unlike OCB in which we distinguish Event-B from OCB. The implementation level
specification can then be translated into a traditional programming language, due to
the similarity of the low level RSL constructs and traditional programming constructs.
Following this the resulting code is compiled into executable, or interpreted code, in a
similar way to the OCB approach. As with OCB the RAISE approach recognises the

difficulty of formally linking the executable code and the related abstract specifications.

Object — Z [136] is an object-oriented approach to development using Z. Unlike the
work presented in the thesis, the Object-Z approach allows the use of inheritance and
polymorphism in specifications. In Object-Z operations are blocked if the pre-condition
is not true, which is similar to the OCB conditional waiting construct. A route to
implementation is described using a translation to Per fectDeveloper [55] in [145].

Per fectDeveloper’s approach is to use verified-Design By Contract, where verification
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conditions are generated from a specification using constructs such as pre and postcon-
ditions, class and loop invariants, and assertions. The verification conditions must be
shown to hold in order to show the specified contracts are satisfied by the implementa-
tion. They are generated for each method entry to show that the precondition holds, for
each method exit to show that the postcondition holds, and wherever an assertion ap-
pears. Per fectDeveloper provides automatic, and semi-automatic, translations to Java
and C++4 but appears not to support concurrent processing. In future work we will con-
sider linking OCB to a verifiable implementation language such as SPARK Ada, here
concurrency may be facilitated using the RavenSPARK version. Another approach
would be to investigate the use of JML [102] annotations to specify a contract which we

should ensure is satisfied.

9.3 Future Work

The work described in the thesis leaves open many opportunities for improvement, to
both the existing approach and tool support, and for extensions to the approach with
corresponding tool support. We now provide brief details of some of the work required

to make the tool more usable, and implementations more efficient.

e Introduce the decomposition approach to provide smaller models at the implemen-

tation level.
e Improve the static checks that the tool performs.

e Improve integration with the RODIN tool, add the option to inject the Event-B
output into an existing RODIN Project. Also improve the means of relating the
abstract development to the OCB specification - at the moment relating the two is

difficult, investigate patterns and tooling aids to enhance developer’s productivity.

e Add a text-based editor (TEF based) with syntax checking and context highlight-
ing and a graphical interface (GEF based).

e There are some smaller issues to be addressed, e.g. allow the use of guard predi-
cates in a conditional statement, so —(c) could contain a guard predicate ¢ instead

of restricting ¢ to be an attribute of boolean type.

e In the Synchronized-OCB translators we need to replace approach for handling null
references at the time of a procedure call with proof of its absence using suitable

invariants.

e Model the Java integer range by adding a constant of interval type -2147483648
... 2147483647 and use this to type OCB integer attributes.
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e Optimise locking strategies, and investigate alternative approaches such as that

based on Software Transactional Memory.

Other work can extend the functionality of OCB and Event-B,

Extend to other target platforms, such as SPARK Ada or C + +.

Investigate the link between UML-B and OCB to make best use of features common
to both.

Investigate Re-use of OCB specifications using modularity and inheritance.

Extend Event-B actions with the necessary operators, sequence, loop and branch.

Other issues are,

e Add non-blocking atomic procedure definitions to ProcessClass definitions,

e The Transactional-OCB conditional waiting construct requires further work. A
particular thread may be blocked when a guard fails, if the guard refers to more
than one object the thread has to wait for changes to either shared object. An

await /signal scheme needs to be implemented to facilitate this behaviour.

During our work we also identified the need for another kind of class. This is a class that
performs a similar role to a MonitorClass but is not shared. The class is simply part of
the representation of some other object, so it does not need the same disciplined locking
approach required by a shared class. The concept of such representation objects has
been investigated in [127, 87].
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Syntax for OCB

In the following, s is a symbol, [s] denotes zero or one s is permissible, s+ denotes 1 or

more s is permissible, and s* denotes 0 or more is permissible.

MainClass ::=
CName
ProcessClass*
MonitorClass*
Var*

NonAtomic
ProcessClass ::= CName Vart NonAtomic Constructor
MonitorClass ::= CName Var* Proceduret Constructor

NonAtomic ::=
NonAtomic ; NonAtomic
| NonAtomic [| NonAtomic
| do Atomic [; NonAtomic| od

| Atomic
Atomic ::= startLabel :< [Guard—|Body >

Body ::=
Action
| [v:=] m.pn(a, ... ax)

| v:= C.create(ay,...,ax)

v =
identi fier

| identifier‘[ Integer Literal ‘|’

194
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Action =
Action || Action
|v:=F

Var .=
v € Type
[v:=E]|

Type .=
CName
| Integer

| Boolean

| CName'[" IntegerLiteral |’
| Integer]’ IntegerLiteral |’

| Boolean'|" IntegerLiteral ‘|’

E =
ArithmeticExpression

| BooleanLiteral

ArithmeticExpression ::=
Integer Literal

| v

| ArithmeticExpression ArithBinOp ArithmeticExpression
| ArithUnOp ArithmeticExpression

ArithBinOp ::=
+ = =/ mod]|"

ArithUnOp ::=

Guard ::=

ArithmeticExpression GuardBinOp (ArithmeticExpression | BooleanLiteral)
| Guard GuardBinOp Guard

| GuardUnOp Guard

GuardBinOp :=

=] #l <l >[ <] 2] AlV

GuardUnOp :=

—_

APar .= FE
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Procedure := pdName LV ar* [Guard]| Action
LVar = v & Type

Constructor := LVar* Action Type



Appendix B

OCB Syntax Extension

In the following, s is a symbol, [s] denotes zero or one s is permissible, s+ denotes 1 or
more s is permissible, and sx denotes 0 or more is permissible. Symbols beginning with

an upper case character are non-terminals and are terminals otherwise.

MainClass ::=
CName
ProcessClass*
PassiveClass*
Var*

NonAtomic
ProcessClass ::= CName Vart NonAtomic Constructor
PassiveClass ::= CName Var* Proceduret Constructor

NonAtomic ::=
NonAtomic ; NonAtomic
| NonAtomic [| NonAtomic
| do Atomic [; NonAtomic] od

| Atomic
Atomic == startLabel :< [Guard—] Action >

Action 1=
Action ; Action
| if(Guard) then Action endif
[else if(Guard) then Action endelseif]
[else Action endelse]
| while(Guard) then Action endwhile
| identifier .= E
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| [identifier :=| identifier.pn(aq,. .., ax)

| identifier := C.create(ay,...,ay)
identi fier =

identi fier

| identifier‘ IntegerLiteral ‘|’

| identifier ¢ .’ identifier

Var .=
identifier € Type
[identifier := E]

Type .=
CName
| Integer
| Boolean
| CName'[" IntegerLiteral |’
| Integer]’ IntegerLiteral |’
| Boolean'|" IntegerLiteral ‘|’

E =
ArithmeticExpression

| BooleanLiteral

ArithmeticExpression ::=
Integer Literal
| identifier
| identifier.pn(ay,...,ax)
| ArithmeticExpression ArithBinOp ArithmeticExpression
| ArithUnOp ArithmeticExpression

ArithBinOp ::=
+1 = =/ mod]|"

ArithUnOp ::=

Guard ::=
ArithmeticExpression GuardBinOp (ArithmeticExpression | BooleanLiteral)
| Guard GuardBinOp Guard
| GuardUnOp Guard

GuardBinOp 1=
=] #l <| > | 2] AlV
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GuardUnOp =

APar 2= FE

Procedure ::= pdName LV ar* [Guard] ProcAction
LVar ::= identifier € Type

Constructor :== LVar* Action Type

ProcAction ::=
ProcAction ; ProcAction
| if(Guard) then ProcAction endif
| while(Guard) do ProcAction endwhile
| identifier := E
| [identifier :=] Internal ProcCall

Internal ProcCall ::= pdName APar*



Appendix C

Case Study 1 - OCB and Event-B
Models, and Code

C.1 OCB Channel Specification

MonitorClass Channel{

// Attributes

Integer[50] buff, Integer rLoc, Integer wLoc,
Integer rPID, Integer wPID, Integer writeSize

// The Constructor

Procedure create(){
rLoc:= 0 || wLoc:= 0 || rPID:= -1 ||
wPID:= -1 || writeSize:= -1

}

// ‘Refines’ WritePacket - in a call from clause p4
Procedure add(Integer val){
when (wLoc - rLoc <= 5){
buff [wLoc]:= val || wLoc:= wLoc + 1}

// The value is stored in a temporary buffer in a
// call from clause p8 - implementing ReadPacket
//as part of the reading activity.
Procedure remove(){

when (wLoc - rLoc > 0){

return:= buff[rLoc] || rLoc := rLoc+l }

200
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}: Integer

// Called in pl_else clause - refines StartRead.
// Set the channel for reading, by the process
// with identifier pid.
// Block if it ts already owned or has nothing to read.
Procedure getRChan(Integer pid){
when (rPID=-1 & writeSize>0){rPID:= pid}

}

// Called in pl1 clause - refines EndRead.
// Free the channel for reading.
Procedure freeRChan(){

rPID:= -1 || writeSize:= -1

}

// Called in pl clause - implementing StartWrite.

// Set the channel for writing writesze bytes, by

// the process pid.

// Block if the channel <s already owned for writing or

// has bytes still to write.

Procedure getWChan(Integer pid,Integer writeSze){
when (wPID=-1 & writeSize<=0){

wPID:= pid || writeSize:= writeSze}

// Called in p6 clause - refines EndWrite.
// Free the channel for writing.
Procedure freeWChan(){ wPID:= -1 }

// Return the number of bytes to write.

Procedure getWriteSize(){ return:= writeSize }: Integer

}

C.2 OCB ProcessClass Specification

ProcessClass Proc{
// Attridbutes

Buffer buff, Boolean isWriter, Channel c, Integer id,
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Integer tmpBuffSz, Integer tmpDat
// The constructor procedure
Procedure create(Integer pid, Buffer bff,
Boolean isWritr, Channel ch){
id:=pid || buff:=bff || isWriter:=isWritr || c:= ch ||
tmpBuffSz:=-1 || tmpDat:=-1
}
// The process behaviour
Operation run(){
pl: if(isWriter=TRUE) then
tmpBuffSz:=buff.getSize() andthen
p2: c.getWChan(id, tmpBuffSz); // Clause p2 refines StartWrite
p3: while(tmpBuffSz>0) do tmpDat:=buff.remove() andthen
p4: c.add(tmpDat); // Clause p4 refines WritePacket
p5: tmpBuffSz:=tmpBuffSz-1 endwhile ;
p6: c.freeWChan() endif // Clause p6 refines EndWrite
else c.getRChan(id) andthen // Clause pl_else refines StartRead
p7: tmpBuffSz:=c.getWriteSize();
p8: while(tmpBuffSz>0) do tmpDat:=c.remove() andthen
p9: buff.add(tmpDat); // Clause p9 refines ReadPacket
pl0: tmpBuffSz:=tmpBuffSz-1 endwhile ;
pll: c.freeRChan() endelse // Clause pll refines EndRead

C.3 OCB MainClass Specification

MainClass CommBuffer{

// Attributes

Buffer rBuffl, Buffer rBuff2, Buffer wBuffl, Buffer wBuff2,
Channel chan, Proc wProcl, Proc wProc2, Proc rProcl,

Proc rProc2, Integer v:=b

// Program entry point.
Operation main(){
ml: rBuffl:=Buffer.create();
m2: rBuff2:=Buffer.create();
m3: wBuffl:=Buffer.create();
mé4: wBuff2:=Buffer.create();

m5: chan:=Channel.create();
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m6: while(v<8) do wBuffl.add(v) andthen

m7: wBuff2.add(v);

m8: v:=v+1l endwhile ;
m9: wProcl:=Proc.create(1,wBuffl,TRUE,chan);
m10: wProc2:=Proc.create(2,wBuff2,TRUE,chan);
mll: rProcl:=Proc.create(3,rBuffi,FALSE,chan);
ml12: rProc2:=Proc.create(4,rBuff2,FALSE,chan)

}
}

C.4 OCB Buffer Specification

MonitorClass Buffer{
// Attributes
Integer[50] buff, Integer rLoc, Integer wLoc,

Procedure create(){

rLoc:=0 || wLoc:=0

}

// Add val to the channel buffer wLoc
Procedure add(Integer val){
when (wLoc - rLoc <= 5){
buff [wLoc]:= val || wLoc:= wLoc + 1}

// remove, and return, the value at the rLoc of the channel buffer

Procedure remove(){
when (wLoc - rLoc > 0){
return:= buff[rLoc] || rLoc := rLoc+l }
}: Integer

}

C.5 Channel Java Code

public class Channel {
private int[] buff = new int[50];
private int wLoc;private int rLoc;

private int rPID;private int wPID;private int writeSize;
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public Channel() {
wLoc = 0; rLoc = 0; rPID = -1;

wPID = -1; writeSize = -1;

}

public synchronized void add(int val) {
try {
while (!(wLoc - rLoc <= 5)) {
wait();
}} catch (InterruptedException e) { e.printStackTrace(); }
buff [wLoc] = val;
wLoc = wLoc + 1;
notifyAllQ);

public synchronized int remove() {
int initial_rLoc = rLoc;
try {
while (!(wLoc - rLoc > 0 )) {
wait();
initial_rLoc = rLoc;
} catch (InterruptedException e) { e.printStackTrace();}
rLoc = rLoc + 1;
notifyAl1(Q);

return buff[initial_rLoc];

}
public synchronized void getRChan(int pid) {
try {
while (!(rPID == -1 && writeSize > 0)) {
wait();

}} catch (InterruptedException e) { e.printStackTrace(); }
rPID = pid;

notifyAllQ);
}
public synchronized void freeRChan() {
rPID = -1;
writeSize = -1;
notifyAll1(Q);

}
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public synchronized void getWChan(int pid, int writeSze) {

try {

while (!(wPID == -1 && writeSize <= 0)) {

wait();

}} catch (InterruptedException e) { e.printStackTrace(); }
wPID = pid;
writeSize = writeSze;
notifyAllQ);

}

public synchronized void freeWChan() {
wPID = -1;
notifyAll();

}

public synchronized int getWriteSize() {

return writeSize;

}
}

C.6 The Proc Class Java Code

public class Proc implements Runnable {

private Buffer buff = null; private boolean isWriter;
private Channel c¢ = null; private int id;

private int tmpBuffSz; private int tmpDat;

public Proc(int pid, Buffer bff, boolean isWritr, Channel ch) {
id = pid; buff = bff; isWriter = isWritr; c = ch;
tmpBuffSz = -1; tmpDat = -1;

}

public void run() {
if (isWriter == true) {
tmpBuffSz = buff.getSize(); // pl
c.getWChan(id, tmpBuffSz); // p2
while (tmpBuffSz > 0) {
tmpDat = buff.remove(); // p3
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c.add(tmpDat); // p4

tmpBuffSz = tmpBuffSz - 1; // p5

}

c.freeWChan(); // p6

telse {

c.getRChan(id) ;
= c.getWriteSize(); // p7
while (tmpBuffSz > 0) {

tmpBuffSz

tmpDat =

c.remove();

// p8

buff.add(tmpDat); // p9
tmpBuffSz = tmpBuffSz - 1; // pl0

}

c.freeRChan(); // pil

¥
}
¥

C.7 The CommBuffer Java Code

public class CommBuffer {
Buffer rBuffl = null;
Buffer rBuff2 = null;
Buffer wBuffl = null;
Buffer wBuff2 = null;

private static
private static
private static
private static
private static
private static
private static
private static
private static

private static

Channel chan

Proc wProcl
Proc wProc2
Proc rProcl
Proc rProc2

int v = 5;

= null;
null;
null;
null;

= null;

public static void main(String[] args) {

rBuffil
rBuff2
wBuffil
wBuff2

new Buffer(); // ml
new Buffer(); // m2
new Buffer(); // m3
new Buffer(); // m4

chan = new Channel(); // mb

while (v < 8) {
wBuffl.add(v); // m6
wBuff2.add(v); // m7
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v=v+1; // m8

}

wProcl = new Proc(1l, wBuffl, true, chan);
new Thread(wProcl).start(); /* m9 */
wProc2 = new Proc(2, wBuff2, true, chan);
new Thread(wProc2).start(); /* m10 */
rProcl = new Proc(3, rBuffil, false, chan);
new Thread(rProcl).start(); /* mill *x/
rProc2 = new Proc(4, rBuff2, false, chan);
new Thread(xProc2).start(); /* ml2 */

C.8 Event-B Model of Shared Channel

MACHINE CommBufferSimple
REFINES m4
SEES CommBufferSimple CTX

VARIABLES

Buffer, Buffer buff, Buffer wLoc, Buffer rLoc, Channel, Channel buff,
Channel _wLoc, Channel _rLoc,Channel_rPID, Channel wPID,

Channel writeSize, Proc, Proc_state, Proc_buff, Proc_isWriter,

Proc_c, Proc_id, Proc_tmpBuffSz, Proc_tmpDat, CommBufferSimple,
CommBufferSimple rBuffl, CommBufferSimple rBuff2,

CommBufferSimple wBuffl, CommBufferSimple wBuff2, CommBufferSimple_chan,
CommBufferSimple wProcl, CommBufferSimple wProc2, CommBufferSimple_rProcl,

CommBufferSimple rProc2, CommBufferSimple_v, CommBufferSimple_state

INVARIANTS
Buffere P (Buffer_Set)
Buffer buffcBuffer — (0 .. 499 — Z )
Buffer wLoce€Buffer — Z
Buffer rLoc€Buffer — Z
Channel€ P (Channel_Set)
Channel buffeChannel — (0 .. 49 — Z )
Channel wLoc&Channel — Z
Channel rLoc€Channel — Z
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Channel rPIDEChannel — Z
Channel wPIDEChannel — Z
Channel writeSizecChannel — Z
Proce P (Proc_Set)
Proc_state €& Proc + Proc_states
Proc_buffeProc -+ Buffer
Proc_isWriter€Proc — BOOL
Proc_c€Proc + Channel
Proc_id€Proc — Z
Proc_tmpBuffSz€Proc — Z
Proc_tmpDateProc — Z
CommBufferSimplecCommBufferSimple_Set
CommBufferSimplec [P(CommBufferSimple_Set)
CommBufferSimple rBufficCommBufferSimple -+ Buffer
CommBufferSimple rBuff2cCommBufferSimple —+ Buffer
CommBufferSimple wBufflcCommBufferSimple -+ Buffer
CommBufferSimple wBuff2€CommBufferSimple —+ Buffer
CommBufferSimple_chancCommBufferSimple -+ Channel
CommBufferSimple wProcl€CommBufferSimple + Proc
CommBufferSimple wProc2€CommBufferSimple -+ Proc
CommBufferSimple rProcl€CommBufferSimple + Proc
CommBufferSimple rProc2c€CommBufferSimple + Proc
CommBufferSimple veCommBufferSimple — Z
CommBufferSimple state & CommBufferSimple - CommBufferSimple_states
Channel = chan
Proc = proc
V p,q - pEProc A

gqeProc A

P # 4

=

Proc_id(p) # Proc_id(q) // all Proc_ids must be different
V self - self € Proc A

self € dom(Proc_id) =

Proc_id(self) > 0 // Process IDs are Natural numbers
V self - self € Proc A

self € dom(Proc_buff) =

Buffer rLoc(Proc_buff(self)) € 0 .. 49 // Bound on Buffer rLoc
V self - self € Proc A

self € dom(Proc_buff) =

Buffer wLoc(Proc_buff(self)) € 0 .. 49 // Bound on Buffer wLoc
V self - self € Proc A
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self € dom(Procc) =

Channel wLoc(Proc_c(self)) € 0 .. 49 // Bound on Channel wLoc
V self - self € Proc A

self € dom(Procc) =

Channel rLoc(Proc_c(self))€0 .. 49 // Bound on Channel rLoc
V self - selfe CommBufferSimple A

selfedom(CommBufferSimple wBuff1l)

=

Buffer rLoc(CommBufferSimple wBuffi(self)) € 0 .. 49
V self - selfe CommBufferSimple A

self edom(CommBufferSimple wBuff1)

=

Buffer wLoc (CommBufferSimple wBuffl(self))
V self - selfe CommBufferSimple A

selfedom(CommBufferSimple wBuff2)

=

Buffer_rLoc(CommBufferSimple wBuff2(self))
V self - selfe CommBufferSimple A

selfcdom(CommBufferSimple wBuff2)

=

Buffer wLoc (CommBufferSimple wBuff2(self)) € 0 .. 49
V self - selfe CommBufferSimple A

selfedom(CommBufferSimple_chan)

. 49

m
o

. 49

m
o

=

Channel wLoc (CommBufferSimple chan(self)) € O .. 49
V self - selfe CommBufferSimple A

selfcdom(CommBufferSimple_chan)

=

Channel rLoc(CommBufferSimple chan(self)) € 0 .. 49
V self - selfe CommBufferSimple A

selfcdom(CommBufferSimple rBuffl)

=

Buffer rLoc(CommBufferSimple rBuffi(self)) € 0 .. 49
V self - selfe CommBufferSimple A

selfcdom(CommBufferSimple rBuffl)

=

Buffer wLoc(CommBufferSimple rBuffi(self)) € 0 .. 49
V self - selfc CommBufferSimple A

selfedom(CommBufferSimple rBuff2)

=

Buffer rLoc(CommBufferSimple rBuff2(self)) € 0 .. 49
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V self - selfe CommBufferSimple A
selfcdom(CommBufferSimple rBuff2)
=
Buffer wLoc (CommBufferSimple rBuff2(self)) € 0 .. 49
V self - self € Proc A
self € dom(Proc.c) A
Channel wPID(Proc_c(self)) = -1
=
self ¢ dom(writing) // Channel wPID is unset means that
//the process is not in the writing set
V self - self € Proc A
self € dom(Proc_c) A
Channel wPID(Proc_c(self)) = -1
=
Proc_c(self) ¢ ran(writing) // Channel wPID is unset means that
//the Channel is not in the writing set Channel
V self - self € Proc A
self € dom(Proc_c) A
Channel rPID(Proc_c(self)) = -1
=
Proc_c(self) ¢ ran(reading) // Channel rPID unset means that
// the Channel is not in the reading set
V self - self € Proc A
self € dom(Procc) A
Channel rPID(Proc_c(self)) = -1
=
self ¢ dom(reading) // Channel rPID is unset means
// that the process is not in the reading set
V self - self € Proc A
self € dom(Proc_state) A
Proc_state(self) = p2
=
self ¢ dom(reading) // the process counter is at p2 means
// that the process is not reading
V self - self € Proc A
self € dom(Proc_state) A
Proc_state(self) = pil
=
self ¢ dom(reading)
// If Counter = pl then the process is not reading
V self - self € Proc A
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self € dom(Proc_c)
=
dom(data2(Proc_c(self))) = 0 .. 49
V self - self € CommBufferSimple A
self € dom(CommBufferSimple_chan) A
CommBufferSimple chan(self) € dom(data2)

=
dom(data2(CommBufferSimple _chan(self))) = 0 .. 49
V self - self € Proc A

self € dom(Proc_state) A

Proc_state(self) = pl A

selfedom(Proc_buff) A

selfedom(buff2) A

Buffer_rLoc(Proc_buff (self)) > 0O

=

buff2(self) # @ // If a buffer’s read location > 0
// when pc = pl then the buff2 is not empty

V self - self € Proc A

self € dom(Proc_state) A

Proc_state(self) = p2 A

selfedom(Proc_buff) A

selfedom(buff2) A

Buffer rLoc(Proc_buff (self)) > 0O

=

buff2(self) # @& // the tmpBuffSz > 0 implies that
//buff2 is non-empty when pc =p2

THEOREM
(Ai-1ie0 .. 49 0) € (0O .. 49 — Z )
EVENTS
INITIALISATION =
THEN
Buffer Buffer := o
Buffer buff Buffer buff := o
Buffer wLoc Buffer wlLoc := O
Buffer rLoc Buffer rlLoc := O
Channel Channel := ¢

Channel _buff Channel_buff :=

Channel _wLoc Channel_wLoc :

Channel rLoc Channel_rlLoc :
Channel rPID Channel_rPID :=

QY QR
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END
Proc_pl

A
W

T

END

Proc_pl_
A

Channel wPID Channel wPID :=

Channel writeSize Channel writeSize :=
Proc Proc := o

Proc_state Proc_state := 6]

Proc_buff Proc_buff := &

Proc_isWriter Proc_isWriter := O

Proc_c Procc := O

Proc_id Proc_id := o

Proc_tmpBuffSz Proc_tmpBuffSz := O
Proc_tmpDat Proc_tmpDat := &
CommBufferSimple CommBufferSimple :=
CommBufferSimple rBuffl := <
CommBufferSimple rBuff2 :=
CommBufferSimple wBuffl :=
CommBufferSimple wBuff2 :=
CommBufferSimple_chan :=

[OEECERN

CommBufferSimple wProcl :=

CommBufferSimple wProc2 :

CommBufferSimple_rProcl :

QY QR

CommBufferSimple_rProc2 :=
CommBufferSimple v := &
CommBufferSimple_state =

NY self, target

HERE

self € Proc

self € dom(Proc_state)
Proc_state(self) = pl
Proc_isWriter(self) = TRUE
self € dom( Proc_buff )
target = Proc_buff (self)
HEN

Proc_tmpBuffSz ( self ) :=

Buffer wLoc ( target ) - Buffer_rLoc ( target )

Proc_state(self) := p2

isNull £

NY self
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WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = pi
Proc_isWriter(self) = TRUE
- ( self € dom( Proc_buff ) )
THEN
Proc_state(self) := terminatedProc

END

Proc_p2 =
REFINES StartWrite
ANY self, target
WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = p2
self € dom( Proc_c )
target = Proc_c(self)
Channel wPID ( target ) = - 1
Channel writeSize ( target ) < O
Proc_tmpBuffSz ( self ) > O
WITH
p
C
THEN
Channel wPID ( target ) := Proc_id ( self )
Channel writeSize ( target ) := Proc_tmpBuffSz ( self )

self
Proc_c(self)

Proc_state(self) := p3
END
Proc_p2_isNull =
ANY self
WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = p2
- ( self € dom( Procc ) )
THEN
Proc_state(self) := terminatedProc

END
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Proc_while_p3 =
ANY self, target
WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = p3
Proc_tmpBuffSz(self) > 0
self € dom( Proc_buff )
target = Proc_buff (self)
Buffer wLoc ( target ) - Buffer_rLoc ( target ) > O
THEN
Proc_tmpDat ( self ) :=
Buffer buff ( target ) ( Buffer_rloc ( target ) )
Buffer rLoc ( target ) := Buffer.rLoc ( target ) + 1
Proc_state(self) := p4
END

Proc_while_p3_isNull =2
ANY self
WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = p3
Proc_tmpBuffSz(self) > 0O
- ( self € dom( Proc_ buff ) )
THEN
Proc_state(self) := terminatedProc
END

Proc_p4 =
REFINES WritePacket
ANY self, target
WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = p4
self € dom( Proc.c )
target = Proc_c(self)
Channel wLoc ( target ) - Channel rloc ( target ) < 5
Channel wLoc ( target ) < 49
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WITH
p = self
c = target
k = Channel wLoc( target )
d = Proc_tmpDat( self )
THEN

Channel buff ( target )

Channel buff ( target )

{Channel wLoc
Channel wLoc ( target )
Proc_state(self) p5

END

Proc_p4_isNull
ANY self
WHERE

self € Proc
self € dom(Proc_state)
Proc_state(self) = p4

- ( self € dom( Proc_c ) )

THEN
Proc_state(self)

END
Procpb =
ANY self
WHERE

self € Proc

self € dom(Proc_state)

Proc_state(self) = pb
THEN

Proc_tmpBuffSz ( self )

Proc_state(self) p3

END
Proc_while p3_false =
ANY self
WHERE

self € Proc

self € dom(Proc_state)

Proc_state(self) = p3

(

Q_
target ) +— Proc_tmpDat ( self )}
Channel wLoc ( target ) + 1

terminatedProc

Proc_tmpBuffSz ( self ) - 1
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- ( Proc_tmpBuffSz(self) > 0 )
THEN
Proc_state(self) := p6
END

Proc_p6 =

REFINES EndWrite

ANY self, target

WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = p6
self € dom( Proc._c )
target = Proc_c(self)

WITH
p
c

THEN
Channel wPID ( target ) := -1

self
Proc_c(self)

Proc_state(self) := terminatedProc
END

Proc_p6_isNull £

ANY self

WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = p6

- ( self € dom( Procc ) )

THEN

Proc_state(self) := terminatedProc
END

Proc_pl_else =

REFINES StartRead

ANY self, target

WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = pil

- (Proc_isWriter(self) = TRUE )
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self € dom( Proc.c )
target = Proc_c(self)

Channel rPID ( target ) = - 1
Channel writeSize ( target ) > O
WITH
p = self
c = target
THEN
Channel rPID ( target ) := Proc_id ( self )
Proc_state(self) := p7

END

Proc_pl_else_isNull =
ANY self
WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = pi
- (Proc_isWriter(self) = TRUE )
- ( self € dom( Procc ) )

THEN
Proc_state(self) := terminatedProc
END
Proc_p7 =
ANY self, target
WHERE
self € Proc

self € dom(Proc_state)
Proc_state(self) = p7
self € dom( Proc._c )
target = Proc_c(self)

THEN
Proc_tmpBuffSz ( self ) := Channel writeSize ( target )
Proc_state(self) := p8
END

Proc_p7_isNull £
ANY self
WHERE

self € Proc
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self € dom(Proc_state)
Proc_state(self) = p7
- ( self € dom( Procc ) )
THEN
Proc_state(self) := terminatedProc
END

Proc_while_p8 =

ANY self, target

WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = p8
Proc_tmpBuffSz(self) > 0
self € dom( Proc.c )
target = Proc_c(self)

Channel wLoc ( target ) - Channel rLoc ( target ) > O

Channel rLoc ( target ) < 50
THEN
Proc_tmpDat ( self ) :=

Channel buff ( target ) ( Channel rLoc ( target ) )
Channel rLoc ( target ) := Channel rLoc ( target ) + 1

Proc_state(self) := p9
END

Proc_while_p8_isNull =
ANY self
WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = p8
Proc_tmpBuffSz(self) > 0
- ( self € dom( Proc_c ) )
THEN
Proc_state(self) := terminatedProc
END

Proc p9 =
REFINES ReadPacket
ANY self, target
WHERE
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self € Proc

self € dom(Proc_state)
Proc_state(self) = p9

self € dom( Proc_buff )
target = Proc_buff (self)
Buffer wLoc ( target ) < 49
self € dom(Proc_c)

WITH
p
c
k

THEN
Buffer buff ( target ) :=

Buffer buff ( target ) <

self
Proc_c(self)
Buffer wLoc( target )

{Buffer_wLoc ( target )
Buffer wLoc ( target ) := Buffer wloc ( target ) + 1

Proc_state(self) := pl0
END

Proc_p9_isNull =

ANY self

WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = p9

- ( self € dom( Proc_ buff ) )

THEN

Proc_state(self) := terminatedProc
END

Proc_pl10 =
ANY self
WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = pi10

THEN
Proc_tmpBuffSz ( self ) := Proc_tmpBuffSz ( self ) - 1
Proc_state(self) := p8

END

— Proc_tmpDat ( self )}
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Proc_while_p8_false =

ANY self

WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = p8

- ( Proc_tmpBuffSz(self) > 0 )

THEN

Proc_state(self) := pil1l
END

Proc_pl1l =

REFINES EndRead

ANY self, target

WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = pi1
self € dom( Proc.c )
target = Proc_c(self)

WITH
p = self
c = target

THEN
Channel rPID ( target ) = -1
Channel writeSize ( target ) := -1
Channel wLoc ( target ) := 0
Channel rLoc ( target ) := 0
Proc_state(self) := terminatedProc

END

Proc_pl1_isNull =
ANY self
WHERE
self € Proc
self € dom(Proc_state)
Proc_state(self) = pi1
- ( self € dom( Procc ) )
THEN
Proc_state(self) := terminatedProc
END
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loadCommBufferSimple £

ANY self
WHERE
self self € CommBufferSimple Set \ CommBufferSimple
THEN
CommBufferSimple := CommBufferSimple U {self}
CommBufferSimple_state(self) := ml
CommBufferSimple v(self) := 5
END

CommBufferSimple ml =
ANY self, new
WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
new € Buffer Set \ Buffer
CommBufferSimple _state(self) = ml

THEN

Buffer buff(new) := A i - i€0 .. 490

Buffer wLoc ( new ) := O

Buffer rLoc ( new ) := 0

Buffer := Buffer U {new}
CommBufferSimple rBuffil(self) := new
CommBufferSimple_state(self) := m2

END

CommBufferSimple m2 =
ANY self, new
WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
new € Buffer Set \ Buffer
CommBufferSimple state(self) = m2

THEN
Buffer buff(new) := A i - i€0 .. 490
Buffer wLoc ( new ) := 0
Buffer rLoc ( new ) := 0
Buffer := Buffer U {new}
CommBufferSimple rBuff2(self) := new

CommBufferSimple state(self) := m3
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END

CommBufferSimple m3 =
ANY self, new
WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
new € Buffer Set \ Buffer
CommBufferSimple state(self) = m3

THEN

Buffer buff(new) := A i - i€0 .. 490

Buffer wLoc ( new ) := 0

Buffer rLoc ( new ) := 0

Buffer := Buffer U {new}

CommBufferSimple wBuffl(self) := new

CommBufferSimple state(self) := m4
END

CommBufferSimple m4 =
ANY self, new
WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
new € Buffer Set \ Buffer
CommBufferSimple_state(self) = m4

THEN

Buffer buff(new) := XA i - i€0 .. 490

Buffer wLoc ( new ) := 0

Buffer rLoc ( new ) := O

Buffer := Buffer U {new}

CommBufferSimple wBuff2(self) := new

CommBufferSimple_state(self) := mb
END

CommBufferSimple_mb =
REFINES newChan
ANY self, new
WHERE
self € CommBufferSimple
self € dom(CommBufferSimple state)
new € Channel Set \ Channel
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CommBufferSimple state(self) = mb
THEN

Channel buff (new) := A i - i€0 .. 490

Channel wLoc ( new ) := O

Channel rLoc ( new ) :=

Channel rPID ( new ) := -1

Channel wPID ( new ) := -1

Channel writeSize ( new ) := -1

Channel := Channel U {new}

CommBufferSimple _chan(self) := new

CommBufferSimple_state(self) := m6
END

CommBufferSimple while m6 =
ANY self, target
WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
CommBufferSimple state(self) = m6
CommBufferSimple v(self) < 16
self € dom( CommBufferSimple wBuffl )
target = CommBufferSimple wBuffil(self)
Buffer wLoc ( target ) < 49
Buffer_wLoc ( target ) > 0
THEN
Buffer buff ( target ) :=
Buffer buff ( target ) <
{Buffer_wLoc ( target ) +> CommBufferSimplev ( self )}
Buffer wLoc ( target ) := Buffer wlLoc ( target ) + 1
CommBufferSimple_state(self) := m7
END
CommBufferSimple while m6_isNull =
ANY self
WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
CommBufferSimple_state(self) = m6
CommBufferSimple v(self) < 16
- ( self € dom( CommBufferSimple wBuffl ) )
THEN
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CommBufferSimple_state(self) := terminatedCommBufferSimple

END

CommBufferSimple_m7 =

ANY self, target

WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
CommBufferSimple state(self) = m7
self € dom( CommBufferSimple wBuff2 )
target = CommBufferSimple wBuff2(self)
Buffer wLoc ( target ) < 49
Buffer wLoc ( target ) > 0

THEN
Buffer buff ( target ) :=

Buffer buff ( target ) <
{Buffer wLoc ( target ) ~—CommBufferSimple v (self) * 2}

Buffer wLoc ( target ) := Buffer wloc ( target ) + 1
CommBufferSimple state(self) := m8
END
CommBufferSimple m7_isNull =
ANY self
WHERE

self € CommBufferSimple
self € dom(CommBufferSimple_state)
CommBufferSimple_state(self) = m7
- ( self € dom( CommBufferSimple wBuff2 ) )
THEN
CommBufferSimple_state(self) := terminatedCommBufferSimple
END

CommBufferSimple_m8 =

ANY self

WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
CommBufferSimple_state(self) = m8

THEN
CommBufferSimple v ( self ) :=
CommBufferSimple state(self) := m6

CommBufferSimple v ( self ) + 1
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END

CommBufferSimple while m6_false =
ANY self
WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
CommBufferSimple_state(self) = m6
- ( CommBufferSimple v(self) < 16 )
THEN
CommBufferSimple_state(self) := m9
END

CommBufferSimple m9 =

REFINES newProc

ANY self, new

WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
new € Proc_Set \ Proc
CommBufferSimple state(self) = m9
self € dom(CommBufferSimple wBuff1l)
self € dom(CommBufferSimple_chan)
1 ¢ ran(Proc_id)

WITH
p = new
b = Buffer_buff (CommBufferSimple wBuffl ( self ))
THEN
Proc.id ( new ) = 1
Proc_buff ( new ) := CommBufferSimple wBuffl ( self )
Proc_isWriter ( new ) := TRUE
Proc.c ( new ) := CommBufferSimple chan ( self )
Proc_tmpBuffSz ( new ) := -1
Proc_tmpDat ( new ) := -1
Proc_state(new) := pil
Proc := Proc U {new}
CommBufferSimple wProcl(self) := new
CommBufferSimple_state(self) := ml0
END

CommBufferSimple m10 =
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REFINES newProc

ANY self, new

WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
new € Proc_Set \ Proc
CommBufferSimple state(self) = ml0
self € dom(CommBufferSimple wBuff2)
self € dom(CommBufferSimple_chan)
2 ¢ ran(Proc_id)

WITH
p = new
b = Buffer buff (CommBufferSimple wBuff2 ( self ))
THEN
Proc_id ( new ) := 2
Proc buff ( new ) := CommBufferSimple wBuff2 ( self )
Proc_isWriter ( new ) := TRUE
Proc.c ( new ) := CommBufferSimple chan ( self )
Proc_tmpBuffSz ( new ) := -1
Proc_tmpDat ( new ) := -1
Proc_state(new) := pil
Proc := Proc U {new}
CommBufferSimple wProc2(self) := new
CommBufferSimple_state(self) := mll
END

CommBufferSimplemi1l £

REFINES newProc

ANY self, new

WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
new € Proc_Set \ Proc
CommBufferSimple state(self) = ml1
self € dom(CommBufferSimple rBuff1l)
self € dom(CommBufferSimple_chan)
3 ¢ ran(Proc_id)

WITH
p = new
b = Buffer buff (CommBufferSimple rBuffl ( self ))

THEN
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Proc.id ( new ) := 3

Proc_buff ( new ) := CommBufferSimple rBuffl ( self )
Proc_isWriter ( mnew ) := FALSE

Proc.c ( new ) := CommBufferSimple chan ( self )
Proc_tmpBuffSz ( new ) := -1

Proc_tmpDat ( new ) := -1

Proc_state(new) := pl

Proc := Proc U {new}

CommBufferSimple rProcl(self) := new
CommBufferSimple_state(self) := ml2

END

CommBufferSimple m12 =

REFINES newProc

ANY self, new

WHERE
self € CommBufferSimple
self € dom(CommBufferSimple_state)
new € Proc Set \ Proc
CommBufferSimple state(self) = ml2
self € dom(CommBufferSimple rBuff2)
self € dom(CommBufferSimple_chan)
4 ¢ ran(Proc_id)

WITH
p = new
b = Buffer_buff (CommBufferSimple rBuff2 ( self ))
THEN
Proc_id ( new ) := 4
Proc_buff ( new ) := CommBufferSimple rBuff2 ( self )
Proc_isWriter ( new ) := FALSE
Proc.c ( new ) := CommBufferSimple chan ( self )
Proc_tmpBuffSz ( new ) := -1
Proc_tmpDat ( new ) := -1
Proc_state(new) := pl
Proc := Proc U {new}
CommBufferSimple rProc2(self) := new
CommBufferSimple state(self) := terminatedCommBufferSimple
END

END
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D.1 MainClass Specification

MainClass FFS2{

// Attributes.

DOStore doStore, OpenFileStore openFileStore,

UserAppCreateFile userAppCreateFile, UserAppWriteFile userAppWriteFile,
UserAppReadFile userAppReadFile, ErrorLog errorlLog

// Program entry point.
Operation main(){
s1: doStore:=D0Store.create();
s2: openFileStore:=0penFileStore.create();
s3: errorLog:=ErrorLog.create();
s4: userAppCreateFile:=UserAppCreateFile.create(doStore,openFileStore,
errorLog) ;
s5: userAppWriteFile:=UserAppWriteFile.create(openFileStore,errorLog);

s6: userAppReadFile:=UserAppReadFile.create(openFileStore,errorLog)

}
}

D.2 ProcessClass CreateFile Specification

ProcessClass CreateFile{
// Attributes.

228
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DataObject newFile, DOStore doStore, Integer doSpace,

Integer openflSpace, OpenFileInfo openFilelnfo,

OpenFileStore openFileStore, Integer id, FileDirInfo fileDirImnfo,
Integer oMode, Integer sMode, Integer aMode, Datalbject tmpObj,

Integer tmpName, Boolean idFound, Integer index, ErrorLog errorLog

// Constructor procedure.
Procedure create(DOStore doStor,OpenFileStore openFileStor,

Integer nameID, Integer oMde,Integer sMde,

ErrorLog errorLg){
doSpace:=-1| |openflSpace:=-1||doStore:=doStor| |
openFileStore:=openFileStor|| id:=nameID||oMode:=oMde| |sMode:=sMdel |
aMode:=-1||tmpName:=-1| |idFound:=FALSE| | index:=0| |errorLog:=errorLg

}

// Description of the process’ behaviour.
Operation run(){
cfl: doSpace:=doStore.getSize();
cf2: while(index<doSpace & idFound=FALSE) do
tmpObj:=doStore.getAtIndex(index) andthen
cf3: fileDirInfo:=tmp0Obj.getFileDirInfo();
cf4: tmpName:=fileDirInfo.getID();
cf5: if (tmpName=id) then idFound:=TRUE endif ;
cf6: index:=index+1 endwhile ;
cf7: if (oMode=1 & idFound=FALSE) then aMode:=2 andthen
cf8: openflSpace:=openFileStore.reserveSpace();
cf9: if (openflSpace>0) then doSpace:=doStore.reserveSpace() andthen
cf10: if(doSpace>0) then fileDirInfo:=FileDirInfo.create(id) andthen
// Clause cf11 refines create
cf11l: newFile:=DataObject.create(128,fileDirInfo);
// Clause cf12 refines open_rw
cf12: openFilelInfo:=0penFileInfo.create(aMode,sMode,newFile);
cf13: doStore.add(newFile);
cf14: openFileStore.add(openFileInfo) endif
else openFileStore.unReserve() andthen
cf15: doStore.unReserve();
cf16: errorlLog.add(6) endelse endif
else openFileStore.unReserve() andthen
cf17: errorLog.add(5) endelse endif
elseif (oMode/=1) then errorLog.add(3) endelseif
elseif (idFound=TRUE) then errorLog.add(2) endelseif
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D.3 ProcessClass WriteFile Specification

ProcessClass WriteFile{

// Attributes.

OpenFileStore openFileStore, UserBuffer buffer, Integer id,

Integer tmpName, OpenFileInfo file, Integer bytes, Integer index,
Integer openFileCnt, Boolean fileFound, FileDirInfo fileDirInfo,
Integer data, DataObject dataObject, Integer offset, Integer aMode,

ErrorLog errorlLog, Integer freeSpace

// Constructor procedure.

Procedure create(OpenFileStore openFileStor,Integer fName,
UserBuffer buffr,Integer byts,ErrorLog errorLg){

openFileStore:=openFileStor| |id:=fName| |buffer:=buffr||bytes:=byts| |

index:=0]| |openFileCnt:=0| |fileFound:=FALSE| | tmpName:=-1| |data:=-1]|

offset:=0||aMode:=-1||errorLog:=errorLg| |freeSpace:=0

}

// Description of the process’ behaviour.
Operation run(){
wfl: openFileCnt:=openFileStore.getSize();
wf2: while(index<openFileCnt & fileFound=FALSE) do
file:=openFileStore.getAtIndex(index) andthen
wf3: dataObject:=file.getDatalbject();
wf4: fileDirInfo:=datalObject.getFileDirInfo();
wi5: tmpName:=fileDirInfo.getID();
wf6: if (tmpName=id) then fileFound:=TRUE endif ;
wf7: index:=index+1 endwhile ;
wf8: if (fileFound=TRUE) then aMode:=file.getAccessMode() andthen
wf9: if (aMode=1 or aMode=2) then
freeSpace:=datalbject.reserveSpace() andthen
// Clause wf10 refines w_start
wf10: if (freeSpace>0) then index:=0 andthen
wfll: file.resetOffset();
// Clause wf12_false, where —(index < bytes), refines w_end
wfl2: while(index<bytes) do data:=buffer.get(index) andthen
wfl3: offset:=file.get0ffset();
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// Clause wfl4 refines w_step
wfl4: dataObject.write(data, offset);
wfl5: index:=index+1;
wfl6: file.incOffset() endwhile endif
else dataObject.unReserve() andthen
wfl7: errorLog.add(7) endelse endif
else errorLog.add(4) endelse endif

else errorlLog.add(1l) endelse

}
}

D.4 ProcessClass ReadFile Specification

ProcessClass ReadFile{

// Attributes.

OpenFileStore openFileStore, UserBuffer buffer, Integer id,

Integer tmpName, OpenFileInfo file, Integer bytes, Integer index,
Integer openFileCnt, Boolean fileFound, FileDirInfo fileDirInfo,
Integer data, DataObject dataObject, Integer offset, Integer aMode,

ErrorLog errorLog

// Constructor procedure.
Procedure create(OpenFileStore openFileStor, Integer fName,
UserBuffer buffr, Integer byts, ErrorLog errorLg){
openFileStore:=openFileStor||id:=fName| |buffer:=buffr] |
bytes:=byts||index:=0| |openFileCnt:=0| |fileFound:=FALSE| |
tmpName:=-1| |data:=-1||offset:=0||aMode:=-1]| |errorLog:=errorLg

}

// Description of the process’ behaviour.
Operation run(){
rfl: openFileCnt:=openFileStore.getSize();
rf2: while(index<openFileCnt & fileFound=FALSE) do
file:=openFileStore.getAtIndex(index) andthen
rf3: dataObject:=file.getDatalbject();
rf4: fileDirInfo:=datalbject.getFileDirInfo();
rf5: tmpName:=fileDirInfo.getID();
rf6: if (tmpName=id) then fileFound:=TRUE endif ;
rf7: index:=index+1 endwhile ;

rf8: if (fileFound=TRUE) then aMode:=file.getAccessMode() andthen
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// Clause rf9 refines r_start
rf9: if(aMode=0 or aMode=2) then index:=0 andthen
rf10: file.resetOffset();
// Clause rf1l_false, where —(index < bytes), refines r_end
rf11l: while(index<bytes) do offset:=file.getOffset() andthen
rf12: data:=datalbject.read(offset);
// Clause rf13 refines r_step
rf13: buffer.add(data);
rfl4: index:=index+1;
rf15: file.incOffset() endwhile endif
else errorLog.add(4) endelse endif

else errorLog.add(l) endelse

}
}

D.5 ProcessClass UserAppCreateFile Specification

ProcessClass UserAppCreateFile{
// Attributes.
CreateFile createFile, DOStore doStore,

OpenFileStore openFileStore, ErrorLog errorLog

// Constructor procedure.
Procedure create(DOStore doStor,OpenFileStore openFileStor,
ErrorLog errorLg){

doStore:=doStor| |openFileStore:=openFileStor| |errorLog:=errorLg

}

// Description of the process’ behaviour.
Operation run(){
ual: createFile:=

CreateFile.create(doStore,openFileStore,0,1,0,errorLog)

D.6 ProcessClass User AppWriteFile Specification

ProcessClass UserAppWriteFile{
// Attributes.
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OpenFileStore openFileStore, UserBuffer buffl, WriteFile writeFilel,

Integer data, ErrorlLog errorLog

// Constructor procedure.
Procedure create(OpenFileStore openFileStor,ErrorLog errorLg){

openFileStore:=openFileStor|| data:=65||errorlLog:=errorlLg

}

// Description of process’ behaviour.
Operation run(){
// Clause uawl refines makeUWBuff
uawl: buffl:=UserBuffer.create();
uaw2: while(data<70) do buffil.add(data) andthen
unaw3d: data:=data+l endwhile ;

uaw4d: writeFilel:=WriteFile.create(openFileStore,0,buffl,5,errorLog)

}
}

D.7 ProcessClass UserAppReadFile Specification

ProcessClass UserAppReadFile{
// Attributes.
OpenFileStore openFileStore, UserBuffer buffl, ReadFile readFilel,

ErrorLog errorLog

// Constructor procedure.
Procedure create(OpenFileStore openFileStor,ErrorLog errorLg){

openFileStore:=openFileStor| |errorLog:=errorlLg

}

// Description of process’ behaviour.
Operation run(){
uarl: buffl:=UserBuffer.create();

uar2: readFilel:=ReadFile.create(openFileStore,0,buffl,5,errorLog)

}
}
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D.8 MonitorClass FileDirInfo Specification

MonitorClass FileDirInfo{
// Attributes.
Integer fileOffset, Integer id

// Constructor procedure.
Procedure create(Integer nameID){
fileOffset:=0 || id:=nameID

}

// Return file ID associated with this FileDirInfo.
Procedure getID(){

return:=id
}: Integer

}

D.9 MonitorClass DataObject Specification

MonitorClass DataObject{
// Attributes.
Integer type, FileDirInfo fileDirInfo, Integer[10] data,

Integer freeSpace

// Constructor procedure.
Procedure create(Integer typ,FileDirInfo fileDirInf){
type:=typ || fileDirInfo:=fileDirInf||freeSpace:=10

}

// Return FileDirInfo associated with this data object.
Procedure getFileDirInfo(){
when(fileDirInfo /= null){
return:=fileDirInfo }
}: FileDirInfo

// Return the byte at the specified offset.
Procedure read(Integer offset){
when (offset>=0 & offset < 10){
return:=dataloffset] }
}: Integer
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// Procedure called in clause wfl4 - refines w_step
// Write the value ‘val’ at the specified offset.
Procedure write(Integer val, Integer offset){
when (offset>=0 & offset < 10){
dataloffset]:=val }

// Return this data object’s type.
Procedure getType(){
return:=type

}: Integer

// Reserve space to write a byte in this data object.
Procedure reserveSpace(){
return :=freeSpacel |freeSpace:=freeSpace-1

}: Integer

// Free a previously reserved space in this data object.
Procedure unReserve(){

freeSpace:=freeSpace+1

}
}

D.10 MonitorClass OpenFileInfo Specification

MonitorClass OpenFileInfo{
// Attributes.

Integer accessMode, Integer shareMode, Integer fileOffset,

DataObject dataObject

// Constructor procedure.
Procedure create(Integer aMode, Integer sMode,
DataObject dataObj){

shareMode:=sMode || accessMode:=aMode || fileOffset:=0

dataObject:=datalb]j

}

// Return the current offset of the file associated with OpenFilelnfo.
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Procedure getOffset(){
return:=fileOffset

}: Integer

// Return the data object assoctated with OpenFilelnfo.
Procedure getDataObject(){
when (dataObject /=null){
return:=datalbject }
}: DataObject

// Reset the offset of the file assoctated with OpenFilelnfo.
Procedure resetOffset(){
fileOffset:=0

// Increment the current offset of the file associated with OpenFileInfo.
Procedure incOffset(){
fileOffset:=fileOffset+1

}

// Return the access mode of the file assoctiated with OpenFilelInfo.
Procedure getAccessMode(){
return:=accessMode

}: Integer

// Return the share mode of the file associated with OpenFilelInfo.
Procedure getShareMode (){

return:=shareMode
}: Integer

}

D.11 MonitorClass DOStore Specification

MonitorClass DOStore{
// Attributes.
DataObject [6] doArray, Integer size, Integer capacity,

Integer freeSpace

// Constructor procedure.

Procedure create(){
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size:=0 || capacity:=5 || freeSpace:=5

}

Procedure add(DataObject f){
when (size>=0 & size<capacity & capacity=5){

doArray[sizel :=f || size:=size+l }

Procedure getAtIndex(Integer indx){
when (indx>=0 & indx<size & doArray[indx] /= null){
return:=doArray[indx] }
}: DataObject

Procedure reserveSpace(){
return:=freeSpace || freeSpace:=freeSpace-1

}: Integer

Procedure unReserve(){

freeSpace:=freeSpace+1

}

Procedure getSize(){
return:=size
}: Integer

}

D.12 MonitorClass OpenFileStore Specification

MonitorClass OpenFileStore{
// Attributes.

OpenFileInfo[5] openArray, Integer size, Integer capacity,

Integer freeSpace

// Constructor procedure.
Procedure create(){

size:=0 || capacity:=5 || freeSpace:=5

}

// add the OpenFileInfo object to the OpenFileStore array.

Procedure add(OpenFileInfo f){
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when(size>=0 & size<capacity & capacity = 5){

openArray[sizel :=f || size:=size+l }

// Return the OpenFilelnfo object at the given array index.
Procedure getAtIndex(Integer indx){
when (indx>=0 & indx<size & openArray[indx] /= null){
return:=openArray[indx] }
}: OpenFileInfo

// Reserve space in the OpenFileStore for an OpenFilelnfo Object.
Procedure reserveSpace(){
return:=freeSpace || freeSpace:=freeSpace-1

}: Integer

// Free up previously reserved space in the OpenFileStore.
Procedure unReserve(){

freeSpace:=freeSpace+l

}

// Return the number of OpenFileInfo objects in the OpenFileStore.
Procedure getSize(){

return:=size
}: Integer

}

D.13 MonitorClass UserBuffer Specification

MonitorClass UserBuffer{
// Attributes.
Integer[10] buffer, Integer capacity, Integer size

// Constructor Procedure.
Procedure create(){
capacity:=10 || size:=0

}

// Procedure called in clause rf13 - refines r_step
// Add a value ‘val’ to the UserBuffer array.
Procedure add(Integer val){
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when(size>=0 & size<capacity & capacity=10){

buffer[size] :=val ||size:=size+1 }

// Return the wvalue at the given index.
Procedure get(Integer indx){
when (indx>=0 & indx<capacity & capacity=10){
return:=buffer[indx] }
}: Integer

}

D.14 MonitorClass ErrorLog Specification

MonitorClass ErrorLog{
// Attridbutes.

Integer[5] error, Integer size, Integer lastIndex

// Constructor Procedure.
Procedure create(){

size:=0 || lastIndex:=-1

}

// Add an error code to the ErrorLog.
Procedure add(Integer errorCode){

when(size>=0 & size<5){

error[size] :=errorCode || size:=size+1 || lastIndex:=size }

// Get the last error recorded.
Procedure getLast(){
return:=error [lastIndex]

}: Integer

// Remove the last error from the log.
Procedure removeLast(){
when(size>0 & size<=5){

error[lastIndex] :=0||size:=size-1||lastIndex:=lastIndex-1 }
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D.15 The Flash File System Event-B Implementation Model

MACHINE
FFS2

SEES
FFS2_CTX

VARIABLES

FileDirInfo, FileDirInfo_fileOffset, FileDirInfo_id, DataObject,
DataObject_type, DataObject_fileDirInfo, DataObject_data,
DataObject_freeSpace, OpenFileInfo, OpenFileInfo_accessMode,
OpenFileInfo_shareMode, OpenFileInfo_fileOffset,
OpenFileInfo_dataObject, DOStore, DOStore_doArray, DOStore_size,
DOStore_capacity, DOStore_freeSpace, OpenFileStore,
OpenFileStore_openArray, OpenFileStore_size,

OpenFileStore_capacity, OpenFileStore_freeSpace, UserBuffer,
UserBuffer_buffer, UserBuffer_capacity, UserBuffer_size,

ErrorLog, ErrorlLog_error, ErrorLog_size, ErrorLog_lastIndex,
CreateFile, CreateFile_state, CreateFile_newFile, CreateFile_doStore,
CreateFile_doSpace, CreateFile_openflSpace, CreateFile_openFileInfo,
CreateFile_openFileStore, CreateFile_id, CreateFile_fileDirInfo,
CreateFile_oMode, CreateFile_sMode, CreateFile_aMode, CreateFile_tmpObj,
CreateFile_tmpName, CreateFile_idFound, CreateFile_index,
CreateFile_errorlog, WriteFile, WriteFile_state, WriteFile_openFileStore,
WriteFile_buffer, WriteFile_id, WriteFile_tmpName, WriteFile_file
WriteFile_bytes, WriteFile_index, WriteFile_openFileCnt,
WriteFile_fileFound, WriteFile_fileDirInfo, WriteFile_data,
WriteFile_dataObject, WriteFile_offset, WriteFile_aMode,
WriteFile_errorlog, WriteFile_freeSpace, ReadFile, ReadFile_state
ReadFile_openFileStore, ReadFile_buffer, ReadFile_id,
ReadFile_tmpName, ReadFile_file, ReadFile_bytes, ReadFile_index,
ReadFile_openFileCnt, ReadFile_fileFound, ReadFile_fileDirInfo,
ReadFile_data, ReadFile_dataObject, ReadFile_offset,

ReadFile_aMode, ReadFile_errorLog, UserAppCreateFile,
UserAppCreateFile_state, UserAppCreateFile_createFile,
UserAppCreateFile_doStore, UserAppCreateFile_openFileStore,
UserAppCreateFile_errorLog, UserAppWriteFile,
UserAppWriteFile_state, UserAppWriteFile_openFileStore,
UserAppWriteFile_buffl, UserAppWriteFile_writeFilel,
UserAppWriteFile_data, UserAppWriteFile_errorLog,
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UserAppReadFile, UserAppReadFile_state, UserAppReadFile_openFileStore,
UserAppReadFile_buffl, UserAppReadFile_readFilel,
UserAppReadFile_errorlLog, FFS2, FFS2_doStore, FFS2_openFileStore,
FFS2_userAppCreateFile, FFS2_userAppWriteFile, FFS2_userAppReadFile
FFS2_errorLog, FFS2_state

INVARIANTS
FileDirInfo: FileDirInfo € P(FileDirInfo_Set)
FileDirInfo_fileOffset: FileDirInfo_fileOffset € FileDirInfo — Z
FileDirInfo_id: FileDirInfo_id € FileDirInfo — Z
DataObject: DataObject € P(DataObject_Set)
DataObject_type: DataObject_type € Datalbject — Z
DataObject_fileDirInfo: DatalObject_fileDirInfo €

DataObject + FileDirlInfo
DataObject_data: DataObject_data € DataObject — (0 .. 9 — Z )
DataObject_freeSpace: DataObject_freeSpace € DatalObject — Z
OpenFilelInfo: OpenFileInfo &€ P(OpenFileInfo_Set)
OpenFileInfo_accessMode: OpenFileInfo_accessMode € OpenFileInfo — Z
OpenFileInfo_shareMode: OpenFileInfo_shareMode € OpenFileInfo — Z
OpenFileInfo_fileOffset: OpenFileInfo_fileOffset &€ OpenFileInfo — Z
OpenFileInfo_dataObject: OpenFileInfo_dataObject €

OpenFileInfo + Datalbject
DOStore: DOStore € P(DOStore_Set)
DOStore_doArray: DOStore_doArray € DOStore — (0 .. 4 -+ DataObject )
DOStore_size: DOStore_size €D0Store — Z
DOStore_capacity: DOStore_capacity € DOStore — Z
DOStore_freeSpace: DOStore_freeSpace € DOStore DOStore — 7Z
OpenFileStore: OpenFileStore € P(OpenFileStore_Set)
OpenFileStore_openArray: OpenFileStore_openArray €

DOStore OpenFileStore — (0 .. 4 -+ OpenFilelnfo )
OpenFileStore_size: OpenFileStore_size € OpenFileStore — Z
OpenFileStore_capacity: OpenFileStore_capacity € OpenFileStore — Z
OpenFileStore_freeSpace: OpenFileStore_freeSpace € OpenFileStore — Z
UserBuffer: UserBuffer € P(UserBuffer_Set)
UserBuffer_buffer: UserBuffer_buffer € UserBuffer — (0 .. 9 — Z)
UserBuffer_capacity: UserBuffer_capacity € UserBuffer — Z
UserBuffer_size: UserBuffer_size € UserBuffer — Z
ErrorLog: ErrorLog € P(ErrorLog_Set)
ErrorLog_error: ErrorLog_error € Errorlog — (0 .. 4 — Z)
ErrorLog_size: ErrorLog_size € ErrorLog — Z

ErrorLog_lastIndex: ErrorLog_lastIndex € ErrorLog — Z
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CreateFile: CreateFile € P(CreateFile_Set)
CreateFile_state: CreateFile_state € CreateFile + CreateFile_states
CreateFile_newFile: CreateFile_newFile € CreateFile + Datalbject
CreateFile_doStore: CreateFile_doStore &€ CreateFile - DOStore
CreateFile_doSpace: CreateFile_doSpace € CreateFile — Z
CreateFile_openflSpace: CreateFile_openflSpace € CreateFile — Z
CreateFile_openFilelInfo: CreateFile_openFilelInfo €

CreateFile + OpenFilelnfo
CreateFile_openFileStore: CreateFile_openFileStore €

CreateFile + OpenFileStore
CreateFile_id: CreateFile_id € CreateFile — Z
CreateFile_fileDirInfo: CreateFile_fileDirInfo €

CreateFile + FileDirlInfo
CreateFile_oMode: CreateFile_oMode € CreateFile — Z
CreateFile_sMode: CreateFile_sMode € CreateFile — Z
CreateFile_aMode: CreateFile_aMode € CreateFile — Z
CreateFile_tmpObj: CreateFile_tmpObj € CreateFile —+ DataObject
CreateFile_tmpName: CreateFile_tmpName € CreateFile — Z
CreateFile_idFound: CreateFile_idFound € CreateFile — BOOL
CreateFile_index: CreateFile_index € CreateFile — Z
CreateFile_errorlog: CreateFile_errorLog € CreateFile + ErrorLog
WriteFile: WriteFile € P(WriteFile_Set)
WriteFile_state: WriteFile_state & WriteFile - WriteFile_states
WriteFile_openFileStore: WriteFile_openFileStore €

WriteFile - OpenFileStore
WriteFile_buffer: WriteFile_buffer € WriteFile + UserBuffer
WriteFile_id: WriteFile_id € WriteFile — Z
WriteFile_tmpName: WriteFile_tmpName € WriteFile — Z
WriteFile_file: WriteFile_file € WriteFile + OpenFilelnfo
WriteFile_bytes: WriteFile_bytes € WriteFile — Z
WriteFile_index: WriteFile_index € WriteFile — Z
WriteFile_openFileCnt: WriteFile_openFileCnt € WriteFile — Z
WriteFile_fileFound: WriteFile_fileFound € WriteFile — BOOL
WriteFile_fileDirInfo: WriteFile_fileDirInfo € WriteFile + FileDirInfo
WriteFile_data: WriteFile_data € WriteFile — Z
WriteFile_dataObject: WriteFile_dataObject € WriteFile - DataObject
WriteFile_offset: WriteFile_offset € WriteFile — Z
WriteFile_aMode: WriteFile_aMode € WriteFile — 7Z
WriteFile_errorlog: WriteFile_errorLog € WriteFile + ErrorLog
WriteFile_freeSpace: WriteFile_freeSpace € WriteFile — Z
ReadFile: ReadFile € P(ReadFile_Set)
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ReadFile_state: ReadFile_state & ReadFile + ReadFile_states
ReadFile_openFileStore: ReadFile_openFileStore ¢

ReadFile -+ OpenFileStore
ReadFile_buffer: ReadFile_buffer € ReadFile + UserBuffer
ReadFile_id: ReadFile_id € ReadFile — Z
ReadFile_tmpName: ReadFile_tmpName € ReadFile — Z
ReadFile_file: ReadFile_file € ReadFile - OpenFilelnfo
ReadFile_bytes: ReadFile_bytes € ReadFile — Z
ReadFile_index: ReadFile_index € ReadFile — Z
ReadFile_openFileCnt: ReadFile_openFileCnt € ReadFile — Z
ReadFile_fileFound: ReadFile_fileFound € ReadFile — BOOL

ReadFile_fileDirInfo: ReadFile_fileDirInfo € ReadFile + FileDirInfo

ReadFile_data: ReadFile_data € ReadFile — 7Z

ReadFile_dataObject: ReadFile_dataObject € ReadFile -+ DataObject

ReadFile_offset: ReadFile_offset € ReadFile — Z
ReadFile_aMode: ReadFile_aMode € ReadFile — Z
ReadFile_errorLog: ReadFile_errorLog € ReadFile —+ ErrorLog

UserAppCreateFile: UserAppCreateFile € P(UserAppCreateFile_Set)

UserAppCreateFile_state: UserAppCreateFile_state €
UserAppCreateFile —+ UserAppCreateFile_states
UserAppCreateFile_createFile: UserAppCreateFile_createFile ¢

UserAppCreateFile -+ CreateFile
UserAppCreateFile_doStore: UserAppCreateFile_doStore €
UserAppCreateFile -+ DOStore

UserAppCreateFile_openFileStore: UserAppCreateFile_openFileStore &€

UserAppCreateFile -+ OpenFileStore
UserAppCreateFile_errorLog: UserAppCreateFile_errorlLog €
UserAppCreateFile —+ ErrorLog
UserAppWriteFile: UserAppWriteFile € P(UserAppWriteFile_Set)
UserAppWriteFile_state: UserAppWriteFile_state €
UserAppWriteFile + UserAppWriteFile_states

UserAppWriteFile_openFileStore: UserAppWriteFile_openFileStore €

UserAppWriteFile - OpenFileStore
UserAppWriteFile_buffl: UserAppWriteFile_buffl €
UserAppWriteFile —+ UserBuffer
UserAppWriteFile_writeFilel: UserAppWriteFile_writeFilel €
UserAppWriteFile + WriteFile
UserAppWriteFile_data: UserAppWriteFile_data €
UserAppWriteFile — Z
UserAppWriteFile_errorLog: UserAppWriteFile_errorLog €
UserAppWriteFile -+ ErrorLog
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UserAppReadFile: UserAppReadFile € P(UserAppReadFile_Set)
UserAppReadFile_state: UserAppReadFile_state €
UserAppReadFile + UserAppReadFile_states
UserAppReadFile_openFileStore: UserAppReadFile_openFileStore €
UserAppReadFile + 0OpenFileStore
UserAppReadFile_buffl: UserAppReadFile_buffl €
UserAppReadFile + UserBuffer
UserAppReadFile_readFilel: UserAppReadFile_readFilel ¢
UserAppReadFile -+ ReadFile
UserAppReadFile_errorLog: UserAppReadFile_errorLog ¢
UserAppReadFile + ErrorLog
fFS2: fFS32 € FFS2_Set
FFS2: FFS2 € P(FFS2_Set)
FFS2_doStore: FFS2_doStore € FFS2 + DOStore
FFS2_openFileStore: FFS2_openFileStore € FFS2 —+ OpenFileStore
FFS2_userAppCreateFile: FFS2_userAppCreateFile ¢
FFS2 + UserAppCreateFile
FFS2_userAppWriteFile: FFS2_userAppWriteFile €
FFS2 + UserAppWriteFile
FFS2_userAppReadFile: FFS2_userAppReadFile €
FFS2 -+ UserAppReadFile
FFS2_errorLog: FFS2_errorlLog € FFS2 -+ ErrorLog
FFS2_state: FFS2_state & FFS2 + FFS2_states

EVENTS

INITIALISATION £

WHICH IS

ordinary

BEGIN

FileDirInfo: FileDirInfo := ¢
FileDirInfo_fileOffset: FileDirInfo_fileOffset := &
FileDirInfo_id: FileDirInfo_id := O

DataObject: Datalbject := &

DataObject_type: Datalbject_type :=
DataObject_fileDirInfo: DataObject_fileDirInfo := &
DataObject_data: DataObject_data :=
DataObject_freeSpace: DatalObject_freeSpace := U
OpenFileInfo: OpenFilelnfo := ¢
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OpenFileInfo_accessMode: OpenFileInfo_accessMode := O
OpenFileInfo_shareMode: OpenFileInfo_shareMode := &
OpenFileInfo_fileOffset: OpenFileInfo_fileOffset := O
OpenFileInfo_dataObject: OpenFileInfo_datalbject := O
DOStore: DOStore := U

DOStore_doArray: DOStore_doArray := <

DOStore_size: DOStore_size = O

DOStore_capacity: DOStore_capacity := <
DOStore_freeSpace: DOStore_freeSpace := I
OpenFileStore: OpenFileStore := &
OpenFileStore_openArray: OpenFileStore_openArray := &
OpenFileStore_size: OpenFileStore_size := O
OpenFileStore_capacity: OpenFileStore_capacity := O
OpenFileStore_freeSpace: OpenFileStore_freeSpace := O
UserBuffer: UserBuffer := O

UserBuffer_buffer: UserBuffer_buffer := ¢
UserBuffer_capacity: UserBuffer_capacity := O
UserBuffer_size: UserBuffer_size :=J

ErrorLog: ErrorLog := O

ErrorLog_error: ErrorlLog_error := &

ErrorlLog_size: ErrorlLog_size := &

ErrorLog_lastIndex: ErrorLog_lastIndex :=J
CreateFile: CreateFile :=

CreateFile_state: CreateFile_state :=J
CreateFile_newFile: CreateFile_newFile := O
CreateFile_doStore: CreateFile_doStore :=
CreateFile_doSpace: CreateFile_doSpace :=
CreateFile_openflSpace: CreateFile_openflSpace :=
CreateFile_openFilelnfo: CreateFile_openFileInfo := O
CreateFile_openFileStore: CreateFile_openFileStore :=J
CreateFile_id: CreateFile_id := o
CreateFile_fileDirInfo: CreateFile_fileDirInfo :=
CreateFile_oMode: CreateFile_oMode :=
CreateFile_sMode: CreateFile_sMode := &
CreateFile_aMode: CreateFile_aMode :=
CreateFile_tmpObj: CreateFile_tmpObj := <
CreateFile_tmpName: CreateFile_tmpName := &
CreateFile_idFound: CreateFile_idFound := &
CreateFile_index: CreateFile_index := ¢
CreateFile_errorlog: CreateFile_errorlog := O
WriteFile: WriteFile := O
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WriteFile_state: WriteFile_state =g
WriteFile_openFileStore: WriteFile_openFileStore := O
WriteFile_buffer: WriteFile_buffer =g
WriteFile_id: WriteFile_id := O
WriteFile_tmpName: WriteFile_tmpName := &
WriteFile_file: WriteFile_file := O
WriteFile_bytes: WriteFile_bytes :=J
WriteFile_index: WriteFile_index := ¢
WriteFile_openFileCnt: WriteFile_openFileCnt := O
WriteFile_fileFound: WriteFile_fileFound := &
WriteFile_fileDirInfo: WriteFile_fileDirInfo := &
WriteFile_data: WriteFile_data :=J
WriteFile_dataObject: WriteFile_dataObject := <
WriteFile_offset: WriteFile_offset = U
WriteFile_aMode: WriteFile_aMode := <
WriteFile_errorlog: WriteFile_errorlog := O
WriteFile_freeSpace: WriteFile_freeSpace :=J
ReadFile: ReadFile := ¢

ReadFile_state: ReadFile_state =g
ReadFile_openFileStore: ReadFile_openFileStore := g
ReadFile_buffer: ReadFile_buffer =&
ReadFile_id: ReadFile_id =g

ReadFile_tmpName: ReadFile_tmpName := &
ReadFile_file: ReadFile_file =g

ReadFile_bytes: ReadFile_bytes := O
ReadFile_index: ReadFile_index = O
ReadFile_openFileCnt: ReadFile_openFileCnt := O
ReadFile_fileFound: ReadFile_fileFound :=
ReadFile_fileDirInfo: ReadFile_fileDirInfo := O
ReadFile_data: ReadFile_data := O
ReadFile_dataObject: ReadFile_dataObject := O
ReadFile_offset: ReadFile_offset = O
ReadFile_aMode: ReadFile_aMode := J
ReadFile_errorLog: ReadFile_errorlLog := <
UserAppCreateFile: UserAppCreateFile := &
UserAppCreateFile_state: UserAppCreateFile_state =

UserAppCreateFile_createFile: UserAppCreateFile_createFile :
UserAppCreateFile_doStore: UserAppCreateFile_doStore := O
UserAppCreateFile_openFileStore: UserAppCreateFile_openFileStore :
UserAppCreateFile_errorLog: UserAppCreateFile_errorlog := O

UserAppWriteFile: UserAppWriteFile := O
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UserAppWriteFile_state: UserAppWriteFile_state = O
UserAppWriteFile_openFileStore: UserAppWriteFile_openFileStore := &
UserAppWriteFile_buffl: UserAppWriteFile_buffl := O
UserAppWriteFile_writeFilel: UserAppWriteFile_writeFilel := O
UserAppWriteFile_data: UserAppWriteFile_data := O
UserAppWriteFile_errorLog: UserAppWriteFile_errorlLog := &
UserAppReadFile: UserAppReadFile := &

UserAppReadFile_state: UserAppReadFile_state := O
UserAppReadFile_openFileStore: UserAppReadFile_openFileStore := &
UserAppReadFile_buffl: UserAppReadFile_buffl := O
UserAppReadFile_readFilel: UserAppReadFile_readFilel :=
UserAppReadFile_errorLog: UserAppReadFile_errorlog := O

FFS2: FFS2 = ¢

FFS2_doStore: FFS2_doStore := O

FFS2_openFileStore: FFS2_openFileStore := &
FFS2_userAppCreateFile: FFS2_userAppCreateFile := &
FFS2_userAppWriteFile: FFS2_userAppWriteFile := &
FFS2_userAppReadFile: FFS2_userAppReadFile := O

FFS2_errorLog: FFS2_errorlog := O

FFS2_state: FFS2_state =

END

CreateFile_cf1 £

WHICH IS

ordinary

ANY

self

target

WHERE

labell: self € CreateFile

label2: self € dom(CreateFile_state)
label3: CreateFile_state(self) = cfil
label4d: self € dom( CreateFile_doStore )
labell0: target = CreateFile_doStore(self)
THEN

labelll: CreateFile_doSpace ( self ) := DOStore_size ( target )
labell2: CreateFile_state(self) := cf2
END
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CreateFile_cfl_isNull =

WHICH IS

ordinary

ANY

self

WHERE

label5: self € CreateFile

label6: self € dom(CreateFile_state)

label7: CreateFile_state(self) = cfil

label8: —( self € dom( CreateFile_doStore ) )
THEN

label9: CreateFile_state(self) := terminatedCreateFile
END

CreateFile_while_cf2 =
WHICH IS

ordinary

ANY

self

target

WHERE

labell3: self € CreateFile

labell4: self € dom(CreateFile_state)
labell5: CreateFile_state(self) = cf2

labell6: CreateFile_index(self) < CreateFile_doSpace(self) A

CreateFile_idFound(self) = FALSE
labell7: self € dom( CreateFile_doStore )
label24: target = CreateFile_doStore(self)
label26: target €dom( DOStore_doArray )
label27: CreateFile_index ( self ) > 0

label28: CreateFile_index ( self ) < DOStore_size ( target )

label29: CreateFile_index ( self ) € dom( DOStore_doArray ( target ) )

THEN
label25: CreateFile_tmpObj ( self ) :=

DOStore_doArray ( target ) ( CreateFile_index ( self ) )

label30: CreateFile_state(self) := cf3
END

CreateFile_while_cf2_isNull =
WHICH IS

ordinary
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ANY

self

WHERE

labell8: self € CreateFile

labell19: self € dom(CreateFile_state)

label20: CreateFile_state(self) = cf2

label2l: CreateFile_index(self) < CreateFile_doSpace(self) A
CreateFile_idFound(self) = FALSE

label22: —( self € dom( CreateFile_doStore ) )

THEN

label23: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf3 =

WHICH IS

ordinary

ANY

self

target

WHERE

label31l: self € CreateFile

label32: self € dom(CreateFile_state)

label33: CreateFile_state(self) = cf3

label34: self € dom( CreateFile_tmpObj )

label40: target = CreateFile_tmpObj(self)

label42: target € dom( DataObject_fileDirInfo )

THEN

labeldl: CreateFile_fileDirInfo ( self ) :=
DataObject_fileDirInfo ( target )

label43: CreateFile_state(self) := cf4

END

CreateFile_cf3_isNull =

WHICH IS

ordinary

ANY

self

WHERE

label35: self € CreateFile

label36: self € dom(CreateFile_state)
label37: CreateFile_state(self) = cf3
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label38: —( self € dom( CreateFile_tmpObj ) )

THEN

label39: CreateFile_state(self) := terminatedCreateFile
END

CreateFile_cf4d £
WHICH IS

ordinary

ANY

self

target

WHERE

label44: self € CreateFile

labeld5: self € dom(CreateFile_state)

labeld6: CreateFile_state(self) = cf4

labeld7: self € dom( CreateFile_fileDirInfo )
labelb3: target = CreateFile_fileDirInfo(self)
THEN

labelb4: CreateFile_tmpName ( self ) := FileDirInfo_id ( target )
labelb5: CreateFile_state(self) := cf5

END

CreateFile_cf4_isNull =

WHICH IS

ordinary

ANY

self

WHERE

label4d8: self € CreateFile

labeld9: self € dom(CreateFile_state)

label50: CreateFile_state(self) = cf4

label51l: —( self € dom( CreateFile_fileDirInfo ) )
THEN

labelb52: CreateFile_state(self) := terminatedCreateFile
END

CreateFile_cf5 =
WHICH IS

ordinary

ANY
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self

WHERE

labelb6: self € CreateFile

labelb57: self € dom(CreateFile_state)

label58: CreateFile_state(self) = cf5

label6l: CreateFile_tmpName(self) = CreateFile_id(self)
THEN

label59: CreateFile_idFound ( self ) := TRUE

label60: CreateFile_state(self) := cf6

END

[>

CreateFile_defaultElse_cf5
WHICH IS

ordinary

ANY

self

WHERE

label62: self € CreateFile
label63: self € dom(CreateFile_state)

label64: CreateFile_state(self) = cfb

label65: —( CreateFile_tmpName(self) = CreateFile_id(self) )
THEN

label66: CreateFile_state(self) := cf6

END

CreateFile_cf6 =

WHICH IS

ordinary

ANY

self

WHERE

label67: self € CreateFile

label68: self € dom(CreateFile_state)
label69: CreateFile_state(self) = cf6
THEN

label70: CreateFile_index ( self ) := CreateFile_index ( self ) + 1
label71: CreateFile_state(self) := cf2
END

CreateFile_while_cf2_false =2
WHICH IS
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ordinary

ANY

self

WHERE

label72: self € CreateFile

label73: self € dom(CreateFile_state)

label74: CreateFile_state(self) = cf2

label75: —( CreateFile_index(self) < CreateFile_doSpace(self) A
CreateFile_idFound(self) = FALSE )

THEN

label76: CreateFile_state(self) := cf7

END

CreateFile_cf7 =
WHICH IS

ordinary

ANY

self

WHERE

label77: self € CreateFile

label78: self € dom(CreateFile_state)
label79: CreateFile_state(self) cf7
label82: CreateFile_oMode(self) 1
label83: CreateFile_idFound(self) = FALSE
THEN

label80: CreateFile_aMode ( self ) := 2
label81: CreateFile_state(self) := cf8
END

CreateFile_cf8 =

WHICH IS

ordinary

ANY

self

target

WHERE

label84: self € CreateFile

label85: self € dom(CreateFile_state)
label86: CreateFile_state(self) = cf8
label87: self € dom( CreateFile_openFileStore )
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label93: target = CreateFile_openFileStore(self)

THEN

label94: CreateFile_openflSpace ( self ) :=
OpenFileStore_freeSpace ( target )

label95: OpenFileStore_freeSpace ( target ) :=
OpenFileStore_freeSpace ( target ) - 1

label96: CreateFile_state(self) := cf9

END

CreateFile_cf8_isNull =

WHICH IS

ordinary

ANY

self

WHERE

1abel88: self € CreateFile

label89: self € dom(CreateFile_state)

label90: CreateFile_state(self) = cf8

label91l: —( self € dom( CreateFile_openFileStore ) )
THEN

label92: CreateFile_state(self) := terminatedCreateFile
END

CreateFile_cf9 £

WHICH IS

ordinary

ANY

self

target

WHERE

label97: self € CreateFile

label98: self € dom(CreateFile_state)
label99: CreateFile_state(self) = cf9
labell00: CreateFile_openflSpace(self) > 0
labell01: self € dom( CreateFile_doStore )
1label108: target = CreateFile_doStore(self)
THEN

label109: CreateFile_doSpace ( self ) := DOStore_freeSpace ( target )

labell10: DOStore_freeSpace ( target ) :=
DOStore_freeSpace ( target ) - 1
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labellll: CreateFile_state(self) := cf10
END
CreateFile_cf9_isNull =

WHICH IS

ordinary

ANY

self

WHERE

labell02: self € CreateFile

1labell103: self € dom(CreateFile_state)

labell104: CreateFile_state(self) = cf9

labell05: CreateFile_openflSpace(self) > 0

label106: —( self € dom( CreateFile_doStore ) )

THEN

labell07: CreateFile_state(self) := terminatedCreateFile
END

CreateFile_cf10 =

WHICH IS

ordinary

ANY

self

new

WHERE

labell12: self € CreateFile

labell113: self € dom(CreateFile_state)
labell14: new € FileDirInfo_Set \ FileDirInfo
labelll5: CreateFile_state(self) = cf10
labell21: CreateFile_doSpace(self) > 0

THEN

labell116: FileDirInfo_fileOffset ( new ) := 0O
label117: FileDirInfo_id ( new ) := CreateFile_id ( self )
label118: FileDirInfo := FileDirInfo U {new}
labell119: CreateFile_fileDirInfo(self) := new
labell120: CreateFile_state(self) := cfli

END

CreateFile_cf1l =
WHICH IS

ordinary
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ANY

self

new

WHERE

labell22: self € CreateFile

labell123: self € dom(CreateFile_state)

labell24: new € DataObject_Set \ Datalbject

labell25: CreateFile_state(self) = cfll

label127: self € dom(CreateFile_fileDirInfo)

THEN

labell126: DataObject_data(new):= A i- ¢€ 0 .. 9]0

labell28: DataObject_type ( new ) := 128

label129: DataObject_fileDirInfo ( new ) :=
CreateFile_fileDirInfo ( self )

label130: DatalObject_freeSpace ( new ) := 10

label131l: DataObject := DataObject U {new}

labell132: CreateFile_newFile(self) := new

labell133: CreateFile_state(self) := cf12

END

CreateFile_cfl1l2 =
WHICH IS

ordinary

ANY

self

new

WHERE

labell34: self € CreateFile

label135: self € dom(CreateFile_state)

labell136: new € OpenFileInfo_Set \ OpenFileInfo

labell137: CreateFile_state(self) = cfl12

label138: self € dom(CreateFile_newFile)

THEN

label139: OpenFileInfo_shareMode ( new ) := CreateFile_sMode ( self )
labell40: OpenFileInfo_accessMode ( new ) := CreateFile_aMode ( self )
label141: OpenFileInfo_fileOffset ( new ) := 0

labell42: OpenFileInfo_dataObject ( new ) := CreateFile_newFile ( self )
label143: OpenFileInfo := OpenFileInfo U {new}

label144: CreateFile_openFileInfo(self) := new

labell45: CreateFile_state(self) := cf13

END
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CreateFile_cf13 £

WHICH IS
ordinary
ANY

self
target
WHERE

labell46:
labell147:
label148:
labell149:
labellb5:
labellb6:
labell59:
labell60:
labell61l:

THEN

labellb7:

labellb8:
labell62:

END

self € CreateFile

self € dom(CreateFile_state)
CreateFile_state(self) = cf13
self € dom( CreateFile_doStore )
target = CreateFile_doStore(self)
self € dom(CreateFile_newFile)
DOStore_size ( target ) > 0

DOStore_size ( target ) < DOStore_capacity ( target )

DOStore_capacity ( target ) 5

DOStore_doArray ( target ) :=
DOStore_doArray ( target ) <

{ DOStore_size ( target ) +— CreateFile_newFile ( self ) }

DOStore_size ( target ) := DOStore_size ( target ) + 1

CreateFile_state(self) := cfl14d

CreateFile_cf13_isNull £

WHICH IS
ordinary
ANY

self
WHERE

labell50:
labellbl:
labellb52:
labellb3:

THEN

labellb4:

END

CreateFile_cf14 =

WHICH IS

self € CreateFile

self € dom(CreateFile_state)
CreateFile_state(self) = cf13

—( self € dom( CreateFile_doStore ) )

CreateFile_state(self) := terminatedCreateFile
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ordinary

ANY

self

target

WHERE

labell63: self € CreateFile

label164: self € dom(CreateFile_state)

label165: CreateFile_state(self) = cfl4

label166: self € dom( CreateFile_openFileStore )

labell72: target = CreateFile_openFileStore(self)

labell73: self € dom(CreateFile_openFilelInfo)

labell76: OpenFileStore_size ( target ) > 0

labell77: OpenFileStore_size ( target ) <
OpenFileStore_capacity ( target )

labell178: OpenFileStore_capacity ( target ) = 5

THEN

labell74: OpenFileStore_openArray ( target ) :=
OpenFileStore_openArray ( target ) <

{ OpenFileStore_size ( target ) ~ CreateFile_openFileInfo ( self ) }

labell75: OpenFileStore_size ( target ) :=
OpenFileStore_size ( target ) + 1

labell79: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf14_isNull =

WHICH IS

ordinary

ANY

self

WHERE

labell67: self € CreateFile

label168: self € dom(CreateFile_state)

labell69: CreateFile_state(self) = cfl4

labell70: —( self € dom( CreateFile_openFileStore ) )
THEN

labell71: CreateFile_state(self) := terminatedCreateFile
END

CreateFile_cf10_else £
WHICH IS

ordinary
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ANY
self
target
WHERE

labell180:
labell81:
labell182:
label183:
labell84:
labell91:

THEN

labell192:

labell193:

END

CreateFile_cf10_else_isNull =

WHICH IS
ordinary
ANY

self
WHERE

labell185:
labell86:
1labell87:
label188:
labell89:

THEN

1labell190:

END

CreateFile_cf15 =

WHICH IS
ordinary
ANY

self
target
WHERE

labell194:
label195:
labell196:

self € CreateFile

self € dom(CreateFile_state)

CreateFile_state(self) = cf10
—(CreateFile_doSpace(self) > 0 )

self € dom( CreateFile_openFileStore )

target = CreateFile_openFileStore(self)

OpenFileStore_freeSpace ( target ) :=
OpenFileStore_freeSpace ( target ) + 1
CreateFile_state(self) := cf15

self € CreateFile
self € dom(CreateFile_state)
CreateFile_state(self) = cf10
—(CreateFile_doSpace(self) > 0 )
—( self € dom( CreateFile_openFileStore ) )

CreateFile_state(self) := terminatedCreateFile

self € CreateFile
self € dom(CreateFile_state)
CreateFile_state(self) = cfi15
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labell97:
label203:

THEN

label204:

label205:

END

self € dom( CreateFile_doStore )
target = CreateFile_doStore(self)

DOStore_freeSpace ( target ) :=
DOStore_freeSpace ( target ) + 1
CreateFile_state(self) := cf16

CreateFile_cf15_isNull £

WHICH IS
ordinary
ANY

self
WHERE

label198:
labell99:
label200:
label201:

THEN

label202:

END

self € CreateFile

self € dom(CreateFile_state)
CreateFile_state(self) = cf15

—( self € dom( CreateFile_doStore ) )

CreateFile_state(self) := terminatedCreateFile

CreateFile_cf16 £

WHICH IS
ordinary
ANY

self
target
WHERE

label206:
1label207:
label208:
label209:
label215:
label219:
label220:

THEN

label216:

label217:

self € CreateFile

self € dom(CreateFile_state)
CreateFile_state(self) = cf16

self € dom( CreateFile_errorLog )
target = CreateFile_errorLog(self)
ErrorLog_size ( target ) > O
ErrorLog_size ( target ) < 5

ErrorLog_error ( target ) :=
ErrorLog_error ( target ) <
{ ErrorLog_size ( target ) — 6 }

ErrorLog_size ( target ) := ErrorlLog_size ( target ) + 1
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label218: ErrorLog_lastIndex ( target ) := ErrorLog_size ( target )
label221: CreateFile_state(self) := terminatedCreateFile
END

CreateFile_cf16_isNull =

WHICH IS

ordinary

ANY

self

WHERE

label210: self € CreateFile

label211l: self € dom(CreateFile_state)

label212: CreateFile_state(self) = cf16

label213: —( self € dom( CreateFile_errorLog ) )
THEN

label214: CreateFile_state(self) := terminatedCreateFile
END

CreateFile_cf9_else =

WHICH IS

ordinary

ANY

self

target

WHERE

label222: self € CreateFile

label223: self € dom(CreateFile_state)

label224: CreateFile_state(self) = cf9

label225: —(CreateFile_openflSpace(self) > 0 )

label226: self € dom( CreateFile_openFileStore )

label233: target = CreateFile_openFileStore(self)

THEN

label234: OpenFileStore_freeSpace ( target ) :=
OpenFileStore_freeSpace ( target ) + 1

label235: CreateFile_state(self) := cfl7

END

CreateFile_cf9_else_isNull =
WHICH IS

ordinary

ANY
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self
WHERE

label227:
label228:
label229:
1label230:
label231:

THEN

label232:

END

self € CreateFile
self € dom(CreateFile_state)
CreateFile_state(self) = cf9
—(CreateFile_openflSpace(self) > 0 )
—( self € dom( CreateFile_openFileStore ) )

CreateFile_state(self) := terminatedCreateFile

CreateFile_cf17 £

WHICH IS
ordinary
ANY

self
target
WHERE

label236:
label237:
label238:
label239:
label245:
label249:
1label250:

THEN

label246:

label247:
label248:
label2b1:

END

self € CreateFile

self € dom(CreateFile_state)
CreateFile_state(self) = cfl7
self € dom( CreateFile_errorLog )
target = CreateFile_errorLog(self)
ErrorLog_size ( target ) > O
ErrorLog_size ( target ) < 5

ErrorLog_error ( target ) :=
ErrorLog_error ( target ) <
{ ErrorLog_size ( target ) — 5 }

ErrorLog_size ( target ) := ErrorLog_size ( target ) + 1
ErrorLog_lastIndex ( target ) := ErrorLog_size ( target )
CreateFile_state(self) := terminatedCreateFile

CreateFile_cf17_isNull £

WHICH IS
ordinary
ANY

self
WHERE

label240:

self € CreateFile



Appendix D Case Study 2 - OCB and Event-B Models, and Code 262

label241: self € dom(CreateFile_state)
label242: CreateFile_state(self) = cfl7
label243: —( self € dom( CreateFile_errorLog ) )
THEN
label244: CreateFile_state(self) := terminatedCreateFile
END
CreateFile_cf7_elseif 0 £
WHICH IS
ordinary
ANY
self
target
WHERE
label252: self € CreateFile
label253: self € dom(CreateFile_state)
label254: CreateFile_state(self) = cf7
label255: —( CreateFile_oMode(self) =1 A

CreateFile_idFound(self) = FALSE )
label256: CreateFile_oMode(self) # 1
label257: self € dom( CreateFile_errorLog )
label265: target = CreateFile_errorLog(self)
label269: ErrorLog_size ( target ) > 0
1label270: ErrorLog_size ( target ) < 5
THEN
label266: ErrorLog_error ( target ) :=

ErrorLog_error ( target ) <

{ ErrorLog_size ( target ) — 3 }

label267: ErrorLog_size ( target ) := ErrorLog_size ( target ) + 1
label268: ErrorLog_lastIndex ( target ) := ErrorLog_size ( target )
label271: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf7_elseif_0O_isNull =
WHICH IS

ordinary

ANY

self

WHERE

label258: self € CreateFile
label259: self € dom(CreateFile_state)
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label260: CreateFile_state(self) = cf7
label261: —( CreateFile_oMode(self) =1 A
CreateFile_idFound(self) = FALSE )
label262: CreateFile_oMode(self) # 1
label263: —( self € dom( CreateFile_errorLog ) )
THEN
label264: CreateFile_state(self) := terminatedCreateFile
END
CreateFile_cf7_elseif 1 £
WHICH IS
ordinary
ANY
self
target
WHERE
label272: self € CreateFile
1label273: self € dom(CreateFile_state)
label274: CreateFile_state(self) = cf7
label275: —( CreateFile_oMode(self) =1 A
CreateFile_idFound(self) = FALSE A
CreateFile_oMode(self) # 1 )
label276: CreateFile_idFound(self) = TRUE
label277: self € dom( CreateFile_errorLog )
label285: target = CreateFile_errorLog(self)
label289: ErrorLog_size ( target ) > 0
1label290: ErrorLog_size ( target ) < b5
THEN
label286: ErrorLog_error ( target ) :=
ErrorLog_error ( target ) <
{ ErrorLog_size ( target ) — 2 }
label287: ErrorLog_size ( target ) := ErrorLog_size ( target ) + 1

label288: ErrorLog_lastIndex ( target ) := ErrorLog_size ( target )
label291: CreateFile_state(self) := terminatedCreateFile
END

CreateFile_cf7_elseif_1_isNull =
WHICH IS

ordinary

ANY

self



Appendix D Case Study 2 - OCB and Event-B Models, and Code

264

WHERE

label278:
label279:
1abel280:
label281:

label282:
label283:

THEN

label284:

END

CreateFile_defaultElse_cf7 =

WHICH IS
ordinary
ANY

self
WHERE

label292:
label293:
label294:
label295:

self € CreateFile
self € dom(CreateFile_state)
CreateFile_state(self) = cf7
—( CreateFile_oMode(self) =1 A
CreateFile_idFound(self) = FALSE A
CreateFile_oMode(self) # 1 )
CreateFile_idFound(self) = TRUE
—( self € dom( CreateFile_errorLog ) )

CreateFile_state(self) := terminatedCreateFile

self € CreateFile

self € dom(CreateFile_state)
CreateFile_state(self) = cf7

—( CreateFile_oMode(self) =1 A

CreateFile_idFound(self) = FALSE )

THEN

label299:

END

CreateFile_state(self) := terminatedCreateFile

WriteFile_wfl £

WHICH IS
ordinary
ANY

self
target
WHERE

1label300:
label301:
label302:
1abel303:
label309:

THEN

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wfl

self € dom( WriteFile_openFileStore )
target = WriteFile_openFileStore(self)



Appendix D Case Study 2 - OCB and Event-B Models, and Code 265

label310: WriteFile_openFileCnt ( self ) := OpenFileStore_size ( target )
label311l: WriteFile_state(self) := wf2

END

WriteFile_wfl_isNull =
WHICH IS

ordinary

ANY

self

WHERE

label304: self € WriteFile

label305: self € dom(WriteFile_state)

1label306: WriteFile_state(self) = wfl

1label307: —( self € dom( WriteFile_openFileStore ) )
THEN

label308: WriteFile_state(self) := terminatedWriteFile
END

WriteFile_while_wf2 £
WHICH IS
ordinary
ANY
self
target
WHERE
label312: self € WriteFile
label313: self € dom(WriteFile_state)
label314: WriteFile_state(self) = wf2
label315: WriteFile_index(self) < WriteFile_openFileCnt(self) A
WriteFile_fileFound(self) = FALSE
label316: self € dom( WriteFile_openFileStore )
label323: target = WriteFile_openFileStore(self)
label325: target € dom( OpenFileStore_openArray )
label326: WriteFile_index ( self ) > 0
label327: WriteFile_index ( self ) < OpenFileStore_size ( target )
label328: WriteFile_index ( self ) €
( OpenFileStore_openArray ( target ) )
THEN
label324: WriteFile_file ( self ) :=
OpenFileStore_openArray ( target ) ( WriteFile_index ( self ) )
label329: WriteFile_state(self) := wf3
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END

WriteFile_while_wf2_isNull £

WHICH IS

ordinary

ANY

self

WHERE

label317: self € WriteFile

label318: self € dom(WriteFile_state)

label319: WriteFile_state(self) = wf2

1label320: WriteFile_index(self) < WriteFile_openFileCnt(self) A WriteFile_fileFound(s
label321: —( self € dom( WriteFile_openFileStore ) )
THEN

label322: WriteFile_state(self) := terminatedWriteFile
END

WriteFile_wf3 =

WHICH IS

ordinary

ANY

self

target

WHERE

label330: self € WriteFile

label331: self € dom(WriteFile_state)

label332: WriteFile_state(self) = wf3

label333: self € dom( WriteFile_file )

1label339: target = WriteFile_file(self)

label341: target € dom( OpenFileInfo_dataObject )

THEN

label340: WriteFile_dataObject ( self ) :=
OpenFileInfo_dataObject ( target )

label342: WriteFile_state(self) := wf4

END

WriteFile_wf3_isNull £
WHICH IS

ordinary

ANY

self
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WHERE

label334:
label335:
label336:
label337:

THEN

label338:

END

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wf3

—( self € dom( WriteFile_file ) )

WriteFile_state(self) := terminatedWriteFile

WriteFile_wf4d £

WHICH IS
ordinary
ANY

self
target
WHERE

label343:
label344:
label345:
label346:
label352:
label354:

THEN

label353:

label3b5:

END

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wf4

self € dom( WriteFile_dataObject )
target = WriteFile_dataObject(self)
target € dom( DataObject_fileDirInfo )

WriteFile_fileDirInfo ( self ) :=
DataObject_fileDirInfo ( target )
WriteFile_state(self) := wfb

WriteFile_wf4_isNull £

WHICH IS
ordinary
ANY

self
WHERE

label347:
label348:
label349:
label350:

THEN

label351:

END

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wf4

—( self € dom( WriteFile_dataObject ) )

WriteFile_state(self) := terminatedWriteFile
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WriteFile_wf5 2

WHICH IS

ordinary

ANY

self

target

WHERE

label356: self € WriteFile

label357: self € dom(WriteFile_state)
1label358: WriteFile_state(self) = wfb
label359: self € dom( WriteFile_fileDirInfo )
label365: target = WriteFile_fileDirInfo(self)
THEN

label366: WriteFile_tmpName ( self ) := FileDirInfo_id ( target )
label367: WriteFile_state(self) := wf6

END

WriteFile_wf5_isNull £

WHICH IS

ordinary

ANY

self

WHERE

label360: self € WriteFile

label361: self € dom(WriteFile_state)

label362: WriteFile_state(self) = wfb

label363: —( self € dom( WriteFile_fileDirInfo ) )
THEN

label364: WriteFile_state(self) := terminatedWriteFile
END

WriteFile_wf6 =

WHICH IS

ordinary

ANY

self

WHERE

1label368: self € WriteFile

label369: self € dom(WriteFile_state)
label370: WriteFile_state(self) = wf6
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label373: WriteFile_tmpName(self) = WriteFile_id(self)
THEN

label371: WriteFile_fileFound ( self ) := TRUE
label372: WriteFile_state(self) := wf7

END

WriteFile_defaultElse_wf6 £

WHICH IS

ordinary

ANY

self

WHERE

label374: self € WriteFile

label375: self € dom(WriteFile_state)
label376: WriteFile_state(self) = wf6
label377: —( WriteFile_tmpName(self) = WriteFile_id(self) )
THEN

label378: WriteFile_state(self) := wf7
END

WriteFile_wf7 £

WHICH IS

ordinary

ANY

self

WHERE

1label379: self € WriteFile

1label380: self € dom(WriteFile_state)
label381: WriteFile_state(self) = wf7
THEN

label382: WriteFile_index ( self ) := WriteFile_index ( self ) + 1
1label383: WriteFile_state(self) := wf2
END

WriteFile_while_wf2_false =
WHICH IS

ordinary

ANY

self

WHERE

label384: self € WriteFile
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label385: self € dom(WriteFile_state)

label386: WriteFile_state(self) = wf2

label387: —( WriteFile_index(self) < WriteFile_openFileCnt(self) A
WriteFile_fileFound(self) = FALSE )

THEN

label388: WriteFile_state(self) := wf8

END

WriteFile_wf8 £

WHICH IS

ordinary

ANY

self

target

WHERE

1abel389: self € WriteFile

1label390: self € dom(WriteFile_state)
label391: WriteFile_state(self) = wf8
label392: WriteFile_fileFound(self) = TRUE
label393: self € dom( WriteFile_file )
label400: target = WriteFile_file(self)
THEN

label401: WriteFile_aMode ( self ) := OpenFileInfo_accessMode ( target )
label402: WriteFile_state(self) := wf9

END

WriteFile_wf8_isNull =

WHICH IS

ordinary

ANY

self

WHERE

label394: self € WriteFile

label395: self € dom(WriteFile_state)
label396: WriteFile_state(self) = wf8
1label397: WriteFile_fileFound(self) = TRUE
label398: —( self € dom( WriteFile_file ) )
THEN

label399: WriteFile_state(self) := terminatedWriteFile
END
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WriteFile_wf9 =

WHICH IS

ordinary

ANY

self

target

WHERE

1label403: self € WriteFile

labeld04: self € dom(WriteFile_state)

label405: WriteFile_state(self) = wf9

label406: WriteFile_aMode(self) = 1 V WriteFile_aMode(self) = 2

label407: self € dom( WriteFile_dataObject )

labeld14: target = WriteFile_dataObject(self)

THEN

label415: WriteFile_freeSpace ( self ) :=
DataObject_freeSpace ( target )

label416: DataObject_freeSpace ( target ) :=
DataObject_freeSpace ( target ) - 1

labeld17: WriteFile_state(self) := wfl0

END

WriteFile_wf9_isNull =

WHICH IS

ordinary

ANY

self

WHERE

label408: self € WriteFile

labeld409: self € dom(WriteFile_state)

label410: WriteFile_state(self) = wf9

labeld41l: WriteFile_aMode(self) = 1 V WriteFile_aMode(self) = 2

label412: —( self € dom( WriteFile_dataObject ) )

THEN

label413: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf10 =
WHICH IS
ordinary

ANY

self
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WHERE

label4d18:
label419:
label4d20:
label423:

THEN

labeld?21:
labeld22:

END

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wfi10
WriteFile_freeSpace(self) > 0

WriteFile_index ( self ) := 0
WriteFile_state(self) := wfill

WriteFile_wfll £

WHICH IS
ordinary
ANY

self
target
WHERE

label4?24:
labeld?25:
label4d26:
labeld27:
label433:

THEN

labeld34.:
label435:

END

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wfill
self € dom( WriteFile_file )
target = WriteFile_file(self)

OpenFileInfo_fileOffset ( target ) := 0
WriteFile_state(self) := wfl2

WriteFile_wf11l_isNull £

WHICH IS
ordinary
ANY

self
WHERE

label428:
label429:
label430:
label431:

THEN

labeld32:

END

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wfill

—( self € dom( WriteFile_file ) )

WriteFile_state(self) := terminatedWriteFile
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WriteFile_while_wf12 £
WHICH IS
ordinary
ANY
self
target
WHERE
label436: self € WriteFile
labeld37: self € dom(WriteFile_state)
label438: WriteFile_state(self) = wfi12
label439: WriteFile_index(self) < WriteFile_bytes(self)
label440: self € dom( WriteFile_buffer )
label447: target = WriteFile_buffer(self)
label449: WriteFile_index ( self ) > O
label450: WriteFile_index ( self ) < UserBuffer_capacity ( target )
labeldb1: UserBuffer_capacity ( target ) = 10
THEN
label448: WriteFile_data ( self ) :=
UserBuffer_buffer ( target ) ( WriteFile_index ( self ) )
label4b2: WriteFile_state(self) := wfl3
END

WriteFile_while_wf12_isNull £

WHICH IS

ordinary

ANY

self

WHERE

labeld44l: self € WriteFile

labeld42: self € dom(WriteFile_state)

labeld443: WriteFile_state(self) = wfl2

label444: WriteFile_index(self) < WriteFile_bytes(self)
labeld45: —( self € dom( WriteFile_buffer ) )

THEN

label446: WriteFile_state(self) := terminatedWriteFile
END

WriteFile_wf13 £
WHICH IS
ordinary

ANY
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self
target
WHERE

label453:
label4b4:
label455:
label456:
label462:

THEN

label463:
labeld64:

END

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wfl3
self € dom( WriteFile_file )
target = WriteFile_file(self)

WriteFile_offset ( self ) := OpenFileInfo_fileOffset ( target )
WriteFile_state(self) := wfl4

WriteFile_wf13_isNull £

WHICH IS
ordinary
ANY

self
WHERE

labeld57:
label458:
label459:
label460:

THEN

label461:

END

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wfl3

—( self € dom( WriteFile_file ) )

WriteFile_state(self) := terminatedWriteFile

WriteFile_wfl4 2

WHICH IS
ordinary
ANY

self
target
WHERE

label465:
label466:
label467:
label468:
labeld74:
labeld76:
labeld77:

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wfl4

self € dom( WriteFile_dataObject )
target = WriteFile_dataObject(self)
WriteFile_offset ( self ) > O
WriteFile_offset ( self ) < 10
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THEN
labeld75: DataObject_data ( target ) :=
DataObject_data ( target ) <
{ WriteFile_offset ( self ) +— WriteFile_data ( self ) }
label4d78: WriteFile_state(self) := wfi1b
END

WriteFile_wf14_isNull =

WHICH IS

ordinary

ANY

self

WHERE

labeld469: self € WriteFile

labeld70: self € dom(WriteFile_state)

labeld71: WriteFile_state(self) = wfil4

labeld72: —( self € dom( WriteFile_dataObject ) )
THEN

labeld73: WriteFile_state(self) := terminatedWriteFile
END

WriteFile_wf15 =

WHICH IS
ordinary

ANY

self

WHERE
labeld79: self € WriteFile

labeld480: self € dom(WriteFile_state)

label481: WriteFile_state(self) = wfilb

THEN

label482: WriteFile_index ( self ) := WriteFile_index ( self ) + 1
label4d83: WriteFile_state(self) := wfl6

END

WriteFile_wf16 £
WHICH IS
ordinary

ANY

self

target
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WHERE

label4d84:
label485:
label486:
label487:
label493:

THEN

labeld94:

label495:

END

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wfl6
self € dom( WriteFile_file )
target = WriteFile_file(self)

OpenFileInfo_fileOffset ( target ) :=
OpenFileInfo_fileOffset ( target ) + 1
WriteFile_state(self) := wfl2

WriteFile_wf16_isNull £

WHICH IS
ordinary
ANY

self
WHERE

label488:
label489:
label490:
label491:

THEN

label4d92:

END

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wfl6

—( self € dom( WriteFile_file ) )

WriteFile_state(self) := terminatedWriteFile

WriteFile_while_wf12_false £

WHICH IS
ordinary
ANY

self
WHERE

label496:
1labeld97:
label498:
label499:

THEN

1label500:

END

self € WriteFile
self € dom(WriteFile_state)
WriteFile_state(self) = wfl2

—( WriteFile_index(self) < WriteFile_bytes(self)

WriteFile_state(self) := terminatedWriteFile

WriteFile_wfl10_else =
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WHICH IS

ordinary

ANY

self

target

WHERE

labelb01: self € WriteFile

label502: self € dom(WriteFile_state)

label503: WriteFile_state(self) = wf10

label504: —(WriteFile_freeSpace(self) > 0 )

labelb505: self € dom( WriteFile_dataObject )

labelb12: target = WriteFile_dataObject(self)

THEN

label513: DataObject_freeSpace ( target ) :=
DataObject_freeSpace ( target ) + 1

labelb14: WriteFile_state(self) := wfl7

END

WriteFile_wf10_else_isNull £

WHICH IS

ordinary

ANY

self

WHERE

label506: self € WriteFile

label507: self € dom(WriteFile_state)

label508: WriteFile_state(self) = wfil0

label509: —(WriteFile_freeSpace(self) > 0 )
label510: —( self € dom( WriteFile_dataObject ) )
THEN

label511: WriteFile_state(self) := terminatedWriteFile
END

WriteFile_wfl7 £

WHICH IS

ordinary

ANY

self

target

WHERE

labelb15: self € WriteFile
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labelb16:
labelb17:
labelb18:
labelb24:
labelb28:
labelb29:

THEN

labelb25:

labelb26:
labelb27:
1label530:

END

WriteFile_wf17_isNull =

WHICH IS
ordinary
ANY

self
WHERE

labelb519:
label520:
labelb21:
labelb22:

THEN

label523:

END

self € dom(WriteFile_state)
WriteFile_state(self) = wfl7
self € dom( WriteFile_errorLog )
target = WriteFile_errorLog(self)
ErrorLog_size ( target ) > 0O
ErrorLog_size ( target ) < 5

ErrorLog_error ( target ) :=
ErrorLog_error ( target ) <
{ ErrorlLog_size ( target ) — 7 }

ErrorLog_size ( target ) := ErrorLog_size ( target ) + 1

ErrorLog_lastIndex ( target ) := ErrorLog_size ( target )

WriteFile_state(self) := terminatedWriteFile

A

self € WriteFile

self € dom(WriteFile_state)
WriteFile_state(self) = wfl7

—( self € dom( WriteFile_errorLog ) )

WriteFile_state(self) := terminatedWriteFile

WriteFile_wf9_else £

WHICH IS
ordinary
ANY

self
target
WHERE

labelb31:
labelb32:
labelb33:
labelb534:
labelb35:

self € WriteFile
self € dom(WriteFile_state)
WriteFile_state(self) = wf9

—(WriteFile_aMode(self) = 1 V WriteFile_aMode(self) = 2 )

self € dom( WriteFile_errorLog )
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labelb42: target = WriteFile_errorLog(self)
labelb46: ErrorLog_size ( target ) > O
labelb547: Errorlog_size ( target ) < 5
THEN
label543: ErrorLog_error ( target ) :=

ErrorLog_error ( target ) <

{ ErrorLog_size ( target ) — 4 }

labelb44: ErrorLog_size ( target ) := ErrorLog_size ( target ) + 1
labelb45: ErrorLog_lastIndex ( target ) := ErrorLog_size ( target )
labelb48: WriteFile_state(self) := terminatedWriteFile
END

WriteFile_wf9_else_isNull =

WHICH IS

ordinary

ANY

self

WHERE

labelb536: self € WriteFile

label537: self € dom(WriteFile_state)

labelb538: WriteFile_state(self) = wf9

label539: - (WriteFile_aMode(self) = 1 V WriteFile_aMode(self) = 2 )
label540: —( self € dom( WriteFile_errorLog ) )

THEN

label541: WriteFile_state(self) := terminatedWriteFile
END

WriteFile_wf8_else =

WHICH IS

ordinary

ANY

self

target

WHERE

labelb549: self € WriteFile

label550: self € dom(WriteFile_state)
labelb51: WriteFile_state(self) = wf8
label552: —(WriteFile_fileFound(self) = TRUE )
labelb53: self € dom( WriteFile_errorLog )
labelb60: target = WriteFile_errorLog(self)
label564: ErrorLog_size ( target ) > O
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labelb565: ErrorLog_size ( target ) < 5
THEN
label561: ErrorLog_error ( target ) :=

ErrorLog_error ( target ) <

{ ErrorLog_size ( target ) — 1 }

labelb62: ErrorLog_size ( target ) := ErrorLog_size ( target ) + 1
label563: ErrorLog_lastIndex ( target ) := ErrorLog_size ( target )
labelb66: WriteFile_state(self) := terminatedWriteFile
END

WriteFile_wf8_else_isNull =

WHICH IS

ordinary

ANY

self

WHERE

labelb554: self € WriteFile

labelb55: self € dom(WriteFile_state)

labelb56: WriteFile_state(self) = wf8

labelb57: —(WriteFile_fileFound(self) = TRUE )
label558: —( self € dom( WriteFile_errorLog ) )
THEN

labelb59: WriteFile_state(self) := terminatedWriteFile
END

ReadFile_rf1l =

WHICH IS

ordinary

ANY

self

target

WHERE

label567: self € ReadFile

label568: self € dom(ReadFile_state)

label569: ReadFile_state(self) = rf1l

labelb570: self € dom( ReadFile_openFileStore )
label576: target = ReadFile_openFileStore(self)
THEN

label577: ReadFile_openFileCnt ( self ) := OpenFileStore_size ( target )
label578: ReadFile_state(self) := rf2

END
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ReadFile_rf1_isNull =

WHICH IS

ordinary

ANY

self

WHERE

labelb571: self € ReadFile

label572: self € dom(ReadFile_state)

label573: ReadFile_state(self) = rfil

label574: —( self € dom( ReadFile_openFileStore ) )
THEN

label575: ReadFile_state(self) := terminatedReadFile
END

ReadFile_while_rf2 =
WHICH IS
ordinary
ANY
self
target
WHERE
label579: self € ReadFile
label580: self € dom(ReadFile_state)
label581: ReadFile_state(self) = rf2
label582: ReadFile_index(self) < ReadFile_openFileCnt(self) A
ReadFile_fileFound(self) = FALSE
label583: self € dom( ReadFile_openFileStore )
1labelb90: target = ReadFile_openFileStore(self)
labelb92: target € dom( OpenFileStore_openArray )
label593: ReadFile_index ( self ) > O
label594: ReadFile_index ( self ) < OpenFileStore_size ( target )
label595: ReadFile_index ( self ) €
( OpenFileStore_openArray ( target ) )
THEN
label591: ReadFile_file ( self ) :=
OpenFileStore_openArray ( target ) ( ReadFile_index ( self ) )
labelb96: ReadFile_state(self) := rf3
END

ReadFile_while_rf2_isNull £
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WHICH IS

ordinary

ANY

self

WHERE

labelb84: self € ReadFile

labelb85: self € dom(ReadFile_state)

label586: ReadFile_state(self) = rf2

label587: ReadFile_index(self) < ReadFile_openFileCnt(self) A
ReadFile_fileFound(self) = FALSE

labelb88: —( self € dom( ReadFile_openFileStore ) )

THEN

label589: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf3 =

WHICH IS

ordinary

ANY

self

target

WHERE

label597: self ¢ ReadFile

label598: self € dom(ReadFile_state)

label599: ReadFile_state(self) = rf3

label600: self € dom( ReadFile_file )

label606: target = ReadFile_file(self)

label608: target € dom( OpenFileInfo_dataObject )

THEN

label607: ReadFile_dataObject ( self ) :=
OpenFileInfo_dataObject ( target )

1label609: ReadFile_state(self) := rf4

END

ReadFile_rf3_isNull =
WHICH IS

ordinary

ANY

self

WHERE

label601: self € ReadFile
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label602:
1label603:
label604:
THEN
label605:
END

self € dom(ReadFile_state)
ReadFile_state(self) = rf3
—( self € dom( ReadFile_file ) )

ReadFile_state(self) := terminatedReadFile

ReadFile_rf4d £

WHICH IS
ordinary
ANY

self
target
WHERE
label610:
label611:
label612:
label613:
label619:
label621:
THEN
label620:

label622:
END

self € ReadFile

self € dom(ReadFile_state)
ReadFile_state(self) = rf4

self € dom( ReadFile_dataObject )
target = ReadFile_dataObject(self)
target € dom( DataObject_fileDirInfo )

ReadFile_fileDirInfo ( self ) :=
DataObject_fileDirInfo ( target )
ReadFile_state(self) := rfb

ReadFile_rf4_isNull =

WHICH IS
ordinary
ANY

self
WHERE
label614:
label615:
label616:
label617:
THEN
label618:
END

self € ReadFile

self € dom(ReadFile_state)
ReadFile_state(self) = rf4

—( self € dom( ReadFile_dataObject ) )

ReadFile_state(self) := terminatedReadFile

ReadFile_rf5 £
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WHICH IS

ordinary

ANY

self

target

WHERE

label623: self € ReadFile

label624: self € dom(ReadFile_state)
label625: ReadFile_state(self) = rf5
label626: self € dom( ReadFile_fileDirInfo )
label632: target = ReadFile_fileDirInfo(self)
THEN

label633: ReadFile_tmpName ( self ) := FileDirInfo_id ( target )
label634: ReadFile_state(self) := rf6

END

ReadFile_rf5_isNull £

WHICH IS

ordinary

ANY

self

WHERE

label627: self € ReadFile

label628: self € dom(ReadFile_state)

label629: ReadFile_state(self) = rfb

label630: —( self € dom( ReadFile_fileDirInfo ) )
THEN

label631: ReadFile_state(self) := terminatedReadFile
END

ReadFile_rf6 =

WHICH IS

ordinary

ANY

self

WHERE

label635: self € ReadFile

label636: self € dom(ReadFile_state)
label637: ReadFile_state(self) = rf6
label640: ReadFile_tmpName(self) = ReadFile_id(self)
THEN
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label638: ReadFile_fileFound ( self ) := TRUE
label639: ReadFile_state(self) := rf7
END

ReadFile_defaultElse_rf6 =

WHICH IS

ordinary

ANY

self

WHERE

label641: self € ReadFile

label642: self € dom(ReadFile_state)
label643: ReadFile_state(self) = rf6
label644: —( ReadFile_tmpName(self) = ReadFile_id(self) )
THEN

label645: ReadFile_state(self) := rf7
END

ReadFile_rf7 £

WHICH IS

ordinary

ANY

self

WHERE

label646: self € ReadFile

label647: self € dom(ReadFile_state)
label648: ReadFile_state(self) = rf7
THEN

label649: ReadFile_index ( self ) := ReadFile_index ( self ) + 1
label650: ReadFile_state(self) := rf2
END

ReadFile_while_rf2_false =

WHICH IS

ordinary

ANY

self

WHERE

label651: self € ReadFile

label652: self € dom(ReadFile_state)
label653: ReadFile_state(self) = rf2



Appendix D Case Study 2 - OCB and Event-B Models, and Code 286

label654: —( ReadFile_index(self) < ReadFile_openFileCnt(self) A
ReadFile_fileFound(self) = FALSE )

THEN

label655: ReadFile_state(self) := rf8

END

ReadFile_rfg =

WHICH IS

ordinary

ANY

self

target

WHERE

label656: self € ReadFile

label657: self € dom(ReadFile_state)
label658: ReadFile_state(self) = rf8
label659: ReadFile_fileFound(self) = TRUE
label660: self € dom( ReadFile_file )
label667: target = ReadFile_file(self)
THEN

label668: ReadFile_aMode ( self ) := OpenFileInfo_accessMode ( target )
1label669: ReadFile_state(self) := rf9

END

ReadFile_rf8_isNull =

WHICH IS

ordinary

ANY

self

WHERE

label661: self € ReadFile

label662: self € dom(ReadFile_state)
label663: ReadFile_state(self) = rf8
label664: ReadFile_fileFound(self) = TRUE
label665: —( self € dom( ReadFile_file ) )
THEN

label666: ReadFile_state(self) := terminatedReadFile
END

ReadFile_rf9 £
WHICH IS
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ordinary
ANY

self
WHERE
label670:
label671:
label672:
label675:
THEN
label673:
label674:
END

self € ReadFile
self € dom(ReadFile_state)
ReadFile_state(self) = rf9
ReadFile_aMode(self)

ReadFile_index ( self ) := 0
ReadFile_state(self) := rf10

ReadFile_rf10 £

WHICH IS
ordinary
ANY

self
target
WHERE
label676:
label677:
label678:
label679:
label685:
THEN
label686:
1label687:
END

self € ReadFile

self € dom(ReadFile_state)
ReadFile_state(self) = rf10
self € dom( ReadFile_file )
target = ReadFile_file(self)

OpenFileInfo_fileOffset ( target ) := 0
ReadFile_state(self) := rfiil

ReadFile_rf10_isNull £

WHICH IS
ordinary
ANY

self
WHERE
1abel680:
label681:
label682:
label683:
THEN

self € ReadFile

self € dom(ReadFile_state)
ReadFile_state(self) = rfi10

—( self € dom( ReadFile_file ) )

0 V ReadFile_aMode(self) = 2
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label684: ReadFile_state(self) := terminatedReadFile
END

ReadFile_while_rfi1l £

WHICH IS

ordinary

ANY

self

target

WHERE

label688: self € ReadFile

label689: self € dom(ReadFile_state)

label690: ReadFile_state(self) = rfill

label691: ReadFile_index(self) < ReadFile_bytes(self)
label692: self € dom( ReadFile_file )

label699: target = ReadFile_file(self)

THEN

1label700: ReadFile_offset ( self ) := OpenFileInfo_fileOffset ( target )
label701: ReadFile_state(self) := rf12

END

ReadFile_while_rf11_isNull £

WHICH IS

ordinary

ANY

self

WHERE

label693: self € ReadFile

label694: self € dom(ReadFile_state)

label695: ReadFile_state(self) = rfil

label696: ReadFile_index(self) < ReadFile_bytes(self)
label697: —( self € dom( ReadFile_file ) )

THEN

label698: ReadFile_state(self) := terminatedReadFile
END

ReadFile_rf12 =
WHICH IS
ordinary

ANY

self
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target

WHERE

label702: self € ReadFile

label703: self € dom(ReadFile_state)

1label704: ReadFile_state(self) = rfi12

label705: self € dom( ReadFile_dataObject )

label711: target = ReadFile_dataObject(self)

label713: ReadFile_offset ( self ) > 0

label714: ReadFile_offset ( self ) < 10

THEN

label712: ReadFile_data ( self ) :=
DataObject_data ( target ) ( ReadFile_offset ( self ) )

label715: ReadFile_state(self) := rfi13

END

ReadFile_rf12_isNull =

WHICH IS

ordinary

ANY

self

WHERE

label706: self € ReadFile

label707: self € dom(ReadFile_state)

label708: ReadFile_state(self) = rfi2

label709: —( self € dom( ReadFile_dataObject ) )
THEN

label710: ReadFile_state(self) := terminatedReadFile
END

ReadFile_rf13 =

WHICH IS

ordinary

ANY

self

target

WHERE

label716: self € ReadFile

label717: self € dom(ReadFile_state)
label718: ReadFile_state(self) = rfi13
label719: self € dom( ReadFile_buffer )
label725: target = ReadFile_buffer(self)
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label728: UserBuffer_size ( target ) > 0
label729: UserBuffer_size ( target ) < UserBuffer_capacity ( target )
1label730: UserBuffer_capacity ( target ) = 10
THEN
label726: UserBuffer_buffer ( target ) :=
UserBuffer_buffer ( target ) <
{ UserBuffer_size ( target ) > ReadFile_data ( self ) }

label727: UserBuffer_size ( target ) := UserBuffer_size ( target ) + 1
label731: ReadFile_state(self) := rfi4
END

ReadFile_rf13_isNull =

WHICH IS

ordinary

ANY

self

WHERE

label720: self € ReadFile

label721: self € dom(ReadFile_state)
label722: ReadFile_state(self) = rfi3
label723: —( self € dom( ReadFile_buffer ) )
THEN

label724: ReadFile_state(self) := terminatedReadFile
END

ReadFile_rf14 =

WHICH IS

ordinary

ANY

self

WHERE

label732: self € ReadFile

label733: self € dom(ReadFile_state)
label734: ReadFile_state(self) = rfi14
THEN

label735: ReadFile_index ( self ) := ReadFile_index ( self ) + 1
label736: ReadFile_state(self) := rfi15
END

ReadFile_rf15 £
WHICH IS



Appendix D Case Study 2 - OCB and Event-B Models, and Code

291

ordinary
ANY

self
target
WHERE
label737:
label738:
label739:
label740:
label746:
THEN
label747:

label748:
END

self € ReadFile

self € dom(ReadFile_state)
ReadFile_state(self) = rfi1b
self € dom( ReadFile_file )
target = ReadFile_file(self)

OpenFileInfo_fileOffset ( target ) :=
OpenFileInfo_fileOffset ( target ) + 1
ReadFile_state(self) := rfill

ReadFile_rf15_isNull £

WHICH IS
ordinary
ANY

self
WHERE
label741:
label742:
label743:
label744:
THEN
label745:
END

self € ReadFile

self € dom(ReadFile_state)
ReadFile_state(self) = rfib

—( self € dom( ReadFile_file ) )

ReadFile_state(self) := terminatedReadFile

ReadFile_while_rf11l_false £

WHICH IS
ordinary
ANY

self
WHERE
label749:
label750:
label751:
label752:
THEN

self € ReadFile
self € dom(ReadFile_state)
ReadFile_state(self) = rfiil

—( ReadFile_index(self) < ReadFile_bytes(self)

)
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label753:
END

ReadFile_state(self) := terminatedReadFile

ReadFile_rf9_else £

WHICH IS
ordinary
ANY

self
target
WHERE
label754:
label755:
label756:
label757:
label758:
label765:
label769:
label770:
THEN
label766:

label767:
label768:
label771:
END

self € ReadFile
self € dom(ReadFile_state)
ReadFile_state(self) = rf9

—(ReadFile_aMode(self) = 0 V ReadFile_aMode(self) = 2 )

self € dom( ReadFile_errorLog )
target = ReadFile_errorLog(self)
ErrorLog_size ( target ) > O

ErrorLog_size ( target ) < 5

ErrorLog_error ( target ) :=
ErrorLog_error ( target ) <
{ ErrorLog_size ( target ) — 4 }

ErrorLog_size ( target ) := ErrorLog_size ( target ) + 1

ErrorLog_lastIndex ( target ) := ErrorLog_size ( target )

ReadFile_state(self) := terminatedReadFile

ReadFile_rf9_else_isNull =

WHICH IS
ordinary
ANY

self
WHERE
label759:
1label760:
label761:
label762:
label763:
THEN
label764:
END

self € ReadFile
self € dom(ReadFile_state)
ReadFile_state(self) = rf9

—(ReadFile_aMode(self) = 0 V ReadFile_aMode(self) = 2 )

—( self € dom( ReadFile_errorLog ) )

ReadFile_state(self) := terminatedReadFile
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ReadFile_rf8_else £

WHICH IS
ordinary
ANY

self
target
WHERE
label772:
label773:
label774:
label775:
label776:
label783:
label787:
label788:
THEN
label784:

label785:
label786:
label789:
END

self € ReadFile
self € dom(ReadFile_state)
ReadFile_state(self) = rf8
—(ReadFile_fileFound(self) = TRUE )
self € dom( ReadFile_errorLog )
target = ReadFile_errorLog(self)
ErrorLog_size ( target ) > O
ErrorLog_size ( target ) < 5

ErrorLog_error ( target ) :=
ErrorLog_error ( target ) <
{ ErrorLog_size ( target ) — 1 }
ErrorLog_size ( target ) := ErrorLog_size ( target ) + 1
ErrorLog_lastIndex ( target ) := ErrorLog_size ( target )
ReadFile_state(self) := terminatedReadFile

ReadFile_rf8_else_isNull =

WHICH IS
ordinary
ANY

self
WHERE
label777:
1label778:
label779:
1abel780:
label781:
THEN
label782:
END

self € ReadFile

self € dom(ReadFile_state)
ReadFile_state(self) = rf8
—(ReadFile_fileFound(self) = TRUE )
—( self € dom( ReadFile_errorLog ) )

ReadFile_state(self) := terminatedReadFile

UserAppCreateFile_ual =
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WHICH IS
ordinary
ANY

self

new
WHERE

label790:
label791:
label792:
1label793:
label794:
label795:
label796:

THEN

1label797:
label798:
label799:

1abel800:

label801:
label802:
1label803:
label804:
1abel805:
1label806:
1abel807:
1abel808:

1label809:
label810:
label811:
label812:

END

self € UserAppCreateFile

self € dom(UserAppCreateFile_state)

new € CreateFile_Set \ CreateFile
UserAppCreateFile_state(self) = ual

self € dom(UserAppCreateFile_doStore)

self € dom(UserAppCreateFile_openFileStore)
self € dom(UserAppCreateFile_errorLog)

CreateFile_doSpace ( new ) := -1
CreateFile_openflSpace ( new ) := - 1
CreateFile_doStore ( new ) :=
UserAppCreateFile_doStore ( self )
CreateFile_openFileStore ( new ) :=
UserAppCreateFile_openFileStore ( self )
CreateFile_id ( new ) := 0

CreateFile_oMode ( new ) :=

o =

CreateFile_sMode ( new ) :=
CreateFile_aMode ( new ) := - 1
CreateFile_tmpName ( new ) := - 1
CreateFile_idFound ( new ) := FALSE
CreateFile_index ( new ) := 0
CreateFile_errorLog ( new ) :=
UserAppCreateFile_errorLog ( self )
CreateFile_state(new):=cf1l
CreateFile := CreateFile U {new}

UserAppCreateFile_createFile(self) := new

UserAppCreateFile_state(self) := terminatedUserAppCreateFile

UserAppWriteFile_uawl =

WHICH IS
ordinary
ANY
self

new
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WHERE

label813: self € UserAppWriteFile

label814: self € dom(UserAppWriteFile_state)
label815: new € UserBuffer_Set \ UserBuffer
label816: UserAppWriteFile_state(self) = uawl
THEN

label817: UserBuffer_buffer(new):= A i- i€ 0 .. 9|0
label818: UserBuffer_capacity ( new ) := 10
label819: UserBuffer_size ( new ) := 0
label820: UserBuffer := UserBuffer U {new}
label821: UserAppWriteFile_buffi(self) := new
label822: UserAppWriteFile_state(self) := uaw2
END

UserAppWriteFile_while_uaw2 =
WHICH IS
ordinary
ANY
self
target
WHERE
label823: self € UserAppWriteFile
label824: self € dom(UserAppWriteFile_state)
label825: UserAppWriteFile_state(self) = uaw?2
label826: UserAppWriteFile_data(self) < 70
label827: self € dom( UserAppWriteFile_buffl )
label834: target = UserAppWriteFile_buffl(self)
1label837: UserBuffer_size ( target ) > 0
label838: UserBuffer_size ( target ) < UserBuffer_capacity ( target )
label839: UserBuffer_capacity ( target ) = 10
THEN
label835: UserBuffer_buffer ( target ) :=

UserBuffer_buffer ( target ) <

{ UserBuffer_size ( target ) — UserAppWriteFile_data ( self ) }

label836: UserBuffer_size ( target ) := UserBuffer_size ( target ) + 1
label840: UserAppWriteFile_state(self) := uaw3
END

UserAppWriteFile_while_uaw2_isNull =
WHICH IS

ordinary
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ANY
self
WHERE

label828:
label829:
1abel830:
label831:
label832:

THEN

1abel833:

END

self € UserAppWriteFile

self € dom(UserAppWriteFile_state)
UserAppWriteFile_state(self) = uaw2
UserAppWriteFile_data(self) < 70

—( self € dom( UserAppWriteFile_buffl ) )

UserAppWriteFile_state(self) := terminatedUserAppWriteFile

UserAppWriteFile_uaw3 =

WHICH IS
ordinary
ANY

self
WHERE

label841:
label842:
label843:

THEN

label844:

label845:

END

self € UserAppWriteFile
self € dom(UserAppWriteFile_state)
UserAppWriteFile_state(self) = uaw3

UserAppWriteFile_data ( self ) :=
UserAppWriteFile_data ( self ) + 1
UserAppWriteFile_state(self) := uaw2

UserAppWriteFile_while_uaw2_false =

WHICH IS
ordinary
ANY

self
WHERE

label846:
label847:
label848:
1label849:

THEN

1abel850:

END

self € UserAppWriteFile

self € dom(UserAppWriteFile_state)
UserAppWriteFile_state(self) = uaw2

—( UserAppWriteFile_data(self) < 70 )

UserAppWriteFile_state(self) := uaw4d
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UserAppWriteFile_uaw4 =

WHICH IS
ordinary
ANY

self

new
WHERE

label851:
label852:
1abel853:
label854:
label855:
label856:
label857:

THEN

1label858:

1abel859:
1label860:
label861:
label862:
label863:
label864:
label865:
1label866:
label867:
1abel868:
label869:

1label870:
label871:
label872:
1abel873:
label874:

END

self € UserAppWriteFile

self € dom(UserAppWriteFile_state)

new € WriteFile_Set \ WriteFile
UserAppWriteFile_state(self) = uaw4d

self € dom(UserAppWriteFile_openFileStore)
self € dom(UserAppWriteFile_buffl)

self € dom(UserAppWriteFile_errorLog)

WriteFile_openFileStore ( new ) :=
UserAppWriteFile_openFileStore ( self )
WriteFile_id ( new ) := 0

WriteFile_buffer ( new ) := UserAppWriteFile_buffl ( self )

WriteFile_bytes ( new ) := 5
WriteFile_index ( new ) := 0
WriteFile_openFileCnt ( new ) := O
WriteFile_fileFound ( new ) := FALSE
WriteFile_tmpName ( new ) := - 1
WriteFile_data ( new ) := - 1
WriteFile_offset ( new ) := 0
WriteFile_aMode ( new ) := - 1
WriteFile_errorLog ( new ) :=
UserAppWriteFile_errorLog ( self )
WriteFile_freeSpace ( new ) := 0
WriteFile_state(new):=wfl
WriteFile := WriteFile U {new}
UserAppWriteFile_writeFilel(self) := new

UserAppWriteFile_state(self) := terminatedUserAppWriteFile

UserAppReadFile_uarl =

WHICH IS
ordinary
ANY
self

new
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WHERE

1abel875:
label876:
1abel877:
label878:

THEN

label879:
1abel880:
label881:
1abel882:
1label883:
label884:

END

self € UserAppReadFile

self € dom(UserAppReadFile_state)
new € UserBuffer_Set \ UserBuffer
UserAppReadFile_state(self) = uarl

UserBuffer_buffer(new):= X i- 1€ 0 .. 9]0
UserBuffer_capacity ( new ) := 10
UserBuffer_size ( new ) := 0

UserBuffer := UserBuffer U {new}
UserAppReadFile_buffi(self) := new
UserAppReadFile_state(self) := uar2

UserAppReadFile_uar2 £

WHICH IS
ordinary
ANY

self

new
WHERE

label885:
1label886:
1label887:
1abel888:
1label889:
1abel890:
label891:

THEN

label892:

1label893:
label894:
label895:
1abel896:
label897:
1abel898:
label899:
1abel900:
label901:
1label902:

self € UserAppReadFile

self € dom(UserAppReadFile_state)

new € ReadFile_Set \ ReadFile
UserAppReadFile_state(self) = uar2

self € dom(UserAppReadFile_openFileStore)
self € dom(UserAppReadFile_buff1l)

self € dom(UserAppReadFile_errorLog)

ReadFile_openFileStore ( new ) :=
UserAppReadFile_openFileStore ( self )
ReadFile_id ( new ) := 0

ReadFile_buffer ( new ) := UserAppReadFile_buffl ( self )

ReadFile_bytes ( new ) := 5
ReadFile_index ( new ) := 0
ReadFile_openFileCnt ( new ) := 0
ReadFile_fileFound ( new ) := FALSE
ReadFile_tmpName ( new ) := - 1
ReadFile_data ( new ) := - 1
ReadFile_offset ( new ) := 0
ReadFile_aMode ( new ) := - 1
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1label903: ReadFile_errorLog ( new ) := UserAppReadFile_errorLog ( self )
label904: ReadFile_state(new):=rfl

label905: ReadFile := ReadFile U {new}

label906: UserAppReadFile_readFilel(self) := new

1abel907: UserAppReadFile_state(self) := terminatedUserAppReadFile

END

[l>

loadFFS2
WHICH IS
ordinary
ANY

self
WHERE
self: self € FFS2_Set \ FFS2
THEN

label908: FFS2 := FFS2 U {self}
label909: FFS2_state(self) := sl
END

FFS2_s1 £

WHICH IS

ordinary

ANY

self

new

WHERE

1abel910: self € FFS2

label911l: self € dom(FFS2_state)
label912: new € DOStore_Set \ DOStore
label913: FFS2_state(self) = sl

THEN

label914: DOStore_doArray(new) := O
label915: DOStore_size ( new ) := 0
label916: DOStore_capacity ( new ) := 5
label917: DOStore_freeSpace ( new ) := 5
label918: DOStore := DOStore U {new}
label919: FFS2_doStore(self) := new
label920: FFS2_state(self) := s2

END

FFS2_s2 £
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WHICH IS
ordinary
ANY

self

new
WHERE
label921:
label922:
label923:
label924:
THEN
label925:
label926:
label927:
label928:
1label929:
1label930:
label931:
END

FFS2_s3 =
WHICH IS
ordinary
ANY

self

new
WHERE
label932:
1abel933:
label934:
1label935:
THEN
1label936:
label937:
1abel938:
label939:
1abel940:
label941:
END

FFS2_s4 £

self € FFS2

self € dom(FFS2_state)

new € OpenFileStore_Set \ OpenFileStore
FFS2_state(self) = s2

OpenFileStore_openArray(new) := O
OpenFileStore_size ( new ) := 0
OpenFileStore_capacity ( new ) := 5
OpenFileStore_freeSpace ( new ) := 5
OpenFileStore := OpenFileStore U {new}
FFS2_openFileStore(self) := new
FFS2_state(self) := s3

self € FFS2

self € dom(FFS2_state)

new € ErrorLog_Set \ ErrorLog
FFS2_state(self) = s3

ErrorLog_error(new):= A ¢- 1€ 0 .. 4|0
ErrorLog_size ( new ) := 0
ErrorLog_lastIndex ( new ) := - 1
Errorlog := ErrorLog U {new}
FFS2_errorLog(self) := new
FFS2_state(self) := s4
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WHICH IS

ordinary

ANY

self

new

WHERE

label942: self € FFS2

label943: self € dom(FFS2_state)

label944: new € UserAppCreateFile_Set \ UserAppCreateFile

label945: FFS2_state(self) = s4

label946: self € dom(FFS2_doStore)

label947: self € dom(FFS2_openFileStore)

label948: self € dom(FFS2_errorLog)

THEN

label949: UserAppCreateFile_doStore ( new ) := FFS2_doStore ( self )

1label950: UserAppCreateFile_openFileStore ( new ) :=
FFS2_openFileStore ( self )

label951: UserAppCreateFile_errorLog ( new ) := FFS2_errorLog ( self )

label952: UserAppCreateFile_state(new):=ual

label953: UserAppCreateFile := UserAppCreateFile U {new}

label954: FFS2_userAppCreateFile(self) := new

label955: FFS2_state(self) := sb

END

FFS2_s5 2

WHICH IS

ordinary

ANY

self

new

WHERE

label956: self € FFS2

label957: self € dom(FFS2_state)

label958: new € UserAppWriteFile_Set \ UserAppWriteFile

label959: FFS2_state(self) = sb

label960: self € dom(FFS2_openFileStore)

label961: self € dom(FFS2_errorLog)

THEN

label962: UserAppWriteFile_openFileStore ( new ) :=
FFS2_openFileStore ( self )

1label963: UserAppWriteFile_data ( new ) := 65
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label964: UserAppWriteFile_errorLog ( new ) := FFS2_errorLog ( self )
label965: UserAppWriteFile_state(new):=uawl

label966: UserAppWriteFile := UserAppWriteFile U {new}

label967: FFS2_userAppWriteFile(self) := new

label968: FFS2_state(self) := s6

END

FFS2_s6 £

WHICH IS

ordinary

ANY

self

new

WHERE

label969: self € FFS2

1label970: self € dom(FFS2_state)

label971: new € UserAppReadFile_Set \ UserAppReadFile

label972: FFS2_state(self) = s6

label973: self € dom(FFS2_openFileStore)

label974: self € dom(FFS2_errorLog)

THEN

label975: UserAppReadFile_openFileStore ( new ) :=
FFS2_openFileStore ( self )

1label976: UserAppReadFile_errorLog ( new ) := FFS2_errorLog ( self )

label977: UserAppReadFile_state(new):=uarl

label978: UserAppReadFile := UserAppReadFile U {new}

label979: FFS2_userAppReadFile(self) := new

1abel980: FFS2_state(self) := terminatedFFS2

END

END

D.16 The MainClass Java Code

public class FFS2 {

private static DOStore doStore = null;

private static OpenFileStore openFileStore = null;

private static UserAppCreateFile userAppCreateFile = null;
private static UserAppWriteFile userAppWriteFile = null;
private static UserAppReadFile userAppReadFile = null;
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private static ErrorLog errorLog = null;

public static void main(String[] args) {
doStore = new DOStore(); /* s1 *x/
openFileStore = new OpenFileStore(); /* s2 */
errorLog = new ErrorLog(); /* s3 */
userAppCreateFile =

new UserAppCreateFile(doStore, openFileStore, errorLog);

new Thread(userAppCreateFile).start(); /* s4 */
userAppWriteFile = new UserAppWriteFile(openFileStore, errorLog);
new Thread(userAppWriteFile).start(); /* s5 */
userAppReadFile = new UserAppReadFile(openFileStore, errorLog);
new Thread(userAppReadFile).start(); /* s6 */

D.17 CreateFile Java Code

public class CreateFile implements Runnable {

private DataObject newFile = null;

private DOStore doStore = null;

private int doSpace;

private int openflSpace;

private OpenFileInfo openFileInfo = null;
private OpenFileStore openFileStore = null;
private int id;

private FileDirInfo fileDirInfo = null;
private int oMode;

private int sMode;

private int aMode;

private DataObject tmpObj = null;
private int tmpName;

private boolean idFound;

private int index;

private ErrorLog errorLog = null;

public CreateFile(DOStore doStor, OpenFileStore openFileStor, int namelD,

int oMde, int sMde, ErrorLog errorLg) {
doSpace = -1; openflSpace = -1; doStore = doStor;
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openFileStore = openFileStor; id = nameID; oMode = oMde;
sMode = sMde; aMode = -1; tmpName = -1; idFound = false;
index = 0; errorlLog = errorlg;

}

public void run() {
doSpace = doStore.getSize(); /* cfl */
while (index < doSpace && idFound == false) {
tmpObj = doStore.getAtIndex(index); /* cf2 */
fileDirInfo = tmpObj.getFileDirInfo(); /* cf3 */
tmpName = fileDirInfo.getID(); /* cfd */
if (tmpName == id) {
idFound = true; /* cf5 */
}
index = index + 1; /* cf6 */
}
if (oMode == 1 && idFound == false) {
aMode = 2; /* cf7 */
openflSpace = openFileStore.reserveSpace(); /* cf8 */
if (openflSpace > 0) {
doSpace = doStore.reserveSpace(); /* cf9 */
if (doSpace > 0) {
fileDirInfo = new FileDirInfo(id); /* cf10 */
newFile = new DataObject (128, fileDirInfo); /* cfll */
openFileInfo = new OpenFileInfo(aMode, sMode, newFile); /* cf12 */
doStore.add(newFile); /* cfl13 %/
openFileStore.add(openFileInfo); /* cfl4 x/
} else {
openFileStore.unReserve();
doStore.unReserve(); /* cf15 */
errorLog.add(6); /* cfl6 */
}
} else {
openFileStore.unReserve();
errorLog.add(5); /* cfl17 */
}
} else if (oMode !'= 1) {
errorLog.add(3);
} else if (idFound == true) {
errorLog.add(2);

}
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}

}

D.18 WriteFile Java Code

public class WriteFile implements Runnable {

private OpenFileStore openFileStore = null;

private UserBuffer buffer = null;

private int id;

private int tmpName;

private OpenFileInfo file = null;

private int bytes;

private int index;

private int openFileCnt;

private boolean fileFound;

private FileDirInfo fileDirInfo = null;

private int data;

private DataObject dataObject = null;

private int offset;

private int aMode;

private ErrorLog errorLog = null;

private int freeSpace;

public WriteFile(OpenFileStore openFileStor, int fName,

UserBuffer buffr, int byts, ErrorLog errorLg) {

openFileStore = openFileStor; id = fName; buffer = buffr;
bytes = byts; index = O0; openFileCnt = 0; fileFound = false;
tmpName = -1; data = -1; offset = 0; aMode = -1; errorlog = errorlg;

freeSpace = 0;

public void run() {

openFileCnt = openFileStore.getSize(); /* wfl */

while (index < openFileCnt && fileFound == false) {
file = openFileStore.getAtIndex(index); /* wf2 */
dataObject = file.getDataObject(); /* wf3 */
fileDirInfo = dataObject.getFileDirInfo(); /* wfd =/
tmpName = fileDirInfo.getID(); /* wfb */
if (tmpName == id) {
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fileFound = true; /* wf6 */

}

index = index + 1; /* wf7 %/
¥
if (fileFound == true) {
aMode = file.getAccessMode(); /* wf8 */
if (aMode == 1 || aMode == 2) {
freeSpace = datalObject.reserveSpace(); /* wf9 */
if (freeSpace > 0) {
index = 0; /* wfl0 */
file.resetOffset(); /* wfll */
while (index < bytes) {
data = buffer.get(index); /x wfl2 x/
offset = file.getOffset(); /* wfl3 */
dataObject.write(data, offset); /* wfld */
index = index + 1; /* wflb x/
file.incOffset(); /* wfl6 */
}
} else {
dataObject.unReserve();
errorLog.add(7); /* wfl7 */
}
} else {
errorLog.add(4);
}
} else {
errorLog.add (1) ;

¥
}
}

D.19 ReadFile Java Code

public class ReadFile implements Runnable {

private OpenFileStore openFileStore = null;

private UserBuffer buffer = null;
private int id;

private int tmpName;

private OpenFileInfo file = null;
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private int bytes;

private int index;

private int openFileCnt;

private boolean fileFound;

private FileDirInfo fileDirInfo = null;
private int data;

private DataObject datalbject = null;
private int offset;

private int aMode;

private ErrorLog errorLog = null;

public ReadFile(OpenFileStore openFileStor, int fName, UserBuffer buffr,
int byts, ErrorLog errorLg) {
openFileStore = openFileStor; id = fName; buffer = buffr; bytes = byts;
index = 0; openFileCnt = 0; fileFound = false; tmpName = -1; data = -1;

offset = 0; aMode = -1; errorlLog = errorlg;

public void run() {
openFileCnt = openFileStore.getSize(); /* rfl */
while (index < openFileCnt && fileFound == false) {
file = openFileStore.getAtIndex(index); /* rf2 */
dataObject = file.getDataObject(); /* rf3 */
fileDirInfo = dataObject.getFileDirInfo(); /* rfd */
tmpName = fileDirInfo.getID(); /* rfb5 */
if (tmpName == id) {
fileFound = true; /* rf6 *x/
}
index = index + 1; /* rf7 *x/
}
if (fileFound == true) {
aMode = file.getAccessMode(); /* rf8 */
if (aMode == 0 || aMode == 2) {
index = 0; /* rf9 x/
file.resetOffset(); /* rfl10 *x/
while (index < bytes) {
offset = file.getOffset(); /* rfill */
data = dataObject.read(offset); /* rfl2 =*/
buffer.add(data); /* rfi13 */
index = index + 1; /x rfi14 */

file.incOffset(); /* rfi15 */
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1
} else {

errorLog.add(4);
}
} else {
errorLog.add (1) ;

}
}
}

D.20 UserAppCreateFile Java Code

public class UserAppCreateFile implements Runnable {

private CreateFile createFile = null;
private DOStore doStore = null;
private OpenFileStore openFileStore = null;

private ErrorLog errorLog = null;

public UserAppCreateFile(DOStore doStor, OpenFileStore openFileStor,
ErrorLog errorLg) {

doStore = doStor; openFileStore = openFileStor; errorLog = errorlg;

}

public void run() {
createFile = new CreateFile(doStore, openFileStore, 0, 1, 0, errorLog);

new Thread(createFile) .start(); /* ual */

}
}

D.21 UserAppWriteFile Java Code

public class UserAppWriteFile implements Runnable {

private OpenFileStore openFileStore = null;
private UserBuffer buffl = null;

private WriteFile writeFilel = null;
private int data;

private ErrorLog errorLog = null;
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public UserAppWriteFile(OpenFileStore openFileStor, ErrorLog errorLg) {

openFileStore = openFileStor; data = 65; errorlLog = errorlg;

}

public void run() {
buffl = new UserBuffer(); /* uawl */
while (data < 70) {
buffl.add(data); /* uaw2 */
data = data + 1; /* uaw3 */
}
writeFilel = new WriteFile(openFileStore, 0, buffl, 5, errorlLog);

new Thread(writeFilel).start(); /* uawd */

}
}

D.22 UserAppReadFile Java Code

public class UserAppReadFile implements Runnable {

private OpenFileStore openFileStore = null;
private UserBuffer buffl = null;
private ReadFile readFilel = null;

private ErrorLog errorLog = null;

public UserAppReadFile(OpenFileStore openFileStor, ErrorLog errorLg) {

openFileStore = openFileStor; errorLog = errorlg;

}

public void run() {
buffl = new UserBuffer(); /* uarl */
readFilel = new ReadFile(openFileStore, 0, buffl, 5, errorLog);
new Thread(readFilel).start(); /* uar2 */

}
}

D.23 FileDirInfo Java Code

public class FileDirInfo {
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private int fileOffset;

private int id;

public FileDirInfo(int nameID) {
fileOffset = 0; id = namelD;

}

public synchronized int getID() {

return id;

}
}

D.24 DataObject Java Code

public class DataObject {

private int type;
private FileDirInfo fileDirInfo = null;
private int[] data = new int[10];

private int freeSpace;

public DataObject(int typ, FileDirInfo fileDirInf) {
type = typ; fileDirInfo = fileDirInf; freeSpace = 10;

}

public synchronized FileDirInfo getFileDirInfo() {
try {
while (!(fileDirInfo '= null)) {
wait();
}
} catch (InterruptedException e) {
e.printStackTrace() ;

}

return fileDirInfo;

}

public synchronized int read(int offset) {

try {
while (!(offset >= 0 && offset < 10)) {
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wait();
}
} catch (InterruptedException e) {
e.printStackTrace() ;

}

return dataloffset];

}

public synchronized void write(int val, int offset) {
try {
while (!(offset >= 0 && offset < 10)) {
wait();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
dataloffset] = val;
notifyAll();

}

public synchronized int getType() {

return type;

}

public synchronized int reserveSpace() {
int initial_freeSpace = freeSpace;
freeSpace = initial_freeSpace - 1;
notifyAllQ);

return initial_freeSpace;

public synchronized void unReserve() {
freeSpace = freeSpace + 1;
notifyAllQ);

}
}

D.25 OpenFilelnfo Java Code

public class OpenFileInfo {
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private int accessMode;
private int shareMode;
private int fileOffset;
private DataObject datalbject = null;

public OpenFileInfo(int aMode, int sMode, DataObject dataObj) {
shareMode = sMode; accessMode = aMode; fileOffset = 0;

dataObject = datalbj;

}

public synchronized int getOffset() {

return fileOffset;

}

public synchronized DataObject getDataObject() {
try {
while (!(dataObject != null)) {
wait();
}
} catch (InterruptedException e) {
e.printStackTrace();

}

return dataObject;

}

public synchronized void resetOffset() {
fileOffset = O;
notifyAll();

}

public synchronized void incOffset() {
fileOffset = fileOffset + 1;
notifyAllQ);

}

public synchronized int getAccessMode() {

return accessMode;

}

public synchronized int getShareMode() {
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return shareMode;

}
}

D.26 DOStore Java Code

public class DOStore {

private DataObject[] doArray = new DataObject[5];
private int size;
private int capacity;

private int freeSpace;

public DOStore() {
size = 0; capacity = 5; freeSpace = 5;

}

public synchronized void add(DataObject f) {

try {

while (!(size >= 0 && size < capacity && capacity == 5)) {
wait();

}

} catch (InterruptedException e) {
e.printStackTrace();

}

doArray[size] = f;

size = size + 1;

notifyAll1Q);

public synchronized DataObject getAtIndex(int indx) {
try {
while (!(indx >= 0 && indx < size && doArray[indx] !'= null)) {
wait();
}
} catch (InterruptedException e) {
e.printStackTrace();

}

return doArray[indx];

}
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public synchronized int reserveSpace() {
int initial_freeSpace = freeSpace;
freeSpace = initial_freeSpace - 1;
notifyAll1Q);

return initial_freeSpace;

}

public synchronized void unReserve() {
freeSpace = freeSpace + 1;
notifyAllQ);

}

public synchronized int getSize() {

return size;

}
}

D.27 OpenFileStore Java Code

public class OpenFileStore {

private OpenFileInfo[] openArray = new OpenFileInfol[5];

private int size;
private int capacity;

private int freeSpace;

public OpenFileStore() {
size = 0; capacity = 5; freeSpace = 5;

}

public synchronized void add(OpenFileInfo f) {
try {

while (!(size >= 0 && size < capacity && capacity == 5)) {

wait();

}

} catch (InterruptedException e) {
e.printStackTrace();

}

openArray[size] = f;
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size = size + 1;
notifyAll();

}

public synchronized OpenFileInfo getAtIndex(int indx) {
try {
while (!(indx >= 0 && indx < size && openArray[indx] != null)) {
wait();
}
}catch (InterruptedException e) {
e.printStackTrace();

}

return openArray[indx];

}

public synchronized int reserveSpace() {
int initial_freeSpace = freeSpace;
freeSpace = initial_freeSpace - 1;
notifyAllQ);

return initial_freeSpace;

public synchronized void unReserve() {
freeSpace = freeSpace + 1;
notifyAll();

}

public synchronized int getSize() {

return size;

}
}

D.28 UserBuffer Java Code

public class UserBuffer {

private int[] buffer = new int[10];
private int capacity;

private int size;
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public UserBuffer() {
capacity = 10; size = 0;

}

public synchronized void add(int val) {

try {

while (!(size >= 0 && size < capacity && capacity == 10)) {
wait();

}

} catch (InterruptedException e) {
e.printStackTrace();

}

buffer[size] = val;

size = size + 1;

notifyAl1(Q);

public synchronized int get(int indx) {
try {
while (!(indx >= 0 && indx < capacity && capacity == 10)) {
wait();
}
} catch (InterruptedException e) {
e.printStackTrace();

}

return buffer[indx];

D.29 ErrorLog Java Code

public class ErrorLog {

private int[] error = new int[5];
private int size;

private int lastIndex;

public ErrorLog() {

size = 0; lastIndex = -1;

}
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public synchronized void add(int errorCode) {
int initial_size = size;
try {
while (!(size >= 0 & size < 5)) {
wait();
initial_size = size;
¥
} catch (InterruptedException e) {
e.printStackTrace();
}
error[initial_size] = errorCode;
size = initial_size + 1;
lastIndex = initial_size;
notifyAll1Q);

}

public synchronized int getLast() {

return error[lastIndex];

}

public synchronized void removeLast() {
try {
while (!(size > 0 && size <= 5)) {
wait();
¥
} catch (InterruptedException e) {
e.printStackTrace();
}
error[lastIndex] = 0;
size = size - 1;
lastIndex = lastIndex - 1;
notifyAll();
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Tooling

E.1 Pop up Menu - Translate Implementation

public class TranslatorAction implements IObjectActionDelegate {

IStructuredSelection selection;

public void run(IAction action) {
if (selection.getFirstElement () instanceof MainClassImpl){
MainClass main = (MainClass)selection.getFirstElement();
Display display = Display.getCurrent();
Shell shell = new Shell(display);
Diagnostic diagnostic = Diagnostician.INSTANCE.validate(main);
if (diagnostic.getSeverity() !=Diagnostic.0K){
for (Iterator<Diagnostic> i=diagnostic.getChildren().iterator();
i.hasNext();) {
Diagnostic childDiagnostic = (Diagnostic)i.next();
String msg=childDiagnostic.getMessage() .replaceAll("of [~ ]x*", "");
MessageDialog.openInformation(
shell,
"0CB Plug-in",
"Error in: "+ childDiagnostic.getData().get(0)+" "+ msg);
}
telse{
EventBManager e = new EventBManager (main, true);
e.translate();
JavaManager j = new JavaManager(main);

j.translate();

)

318
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E.2 OCB to Event-B Translation: OCBSequence

// Rule 3.7 process an OCB sequence
public void process0CBSequence (0CBSequence sequence, String endLabel)
throws Exception {
processNonAtomicClause (sequence.getLeftBranch(),
sequence.getRightBranch() .startLabel());

processNonAtomicClause (sequence.getRightBranch(), endLabel);
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