
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Providing Concurrent Implementations

for Event-B Developments

by

A. Edmunds

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

March 2010

http://www.soton.ac.uk
mailto:ae03r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by A. Edmunds

The Event-B method is a formal approach to modelling systems which incorporates the

notion of refinement. This work bridges the abstraction gap between the lowest level

of Event-B refinement and a working implementation. We focus on the link between

Event-B and concurrent, object-oriented implementations and introduce an interme-

diate, object-oriented style specification notation called Object-oriented Concurrent-B

(OCB). The OCB level of abstraction hides implementation details of locking and block-

ing, and provides the developer with a clear view of atomicity using labelled atomic

clauses. OCB non-atomic clauses are given Event-B semantics, and OCB atomic clauses

map to atomic events. Automatic translation of an OCB specification gives rise to an

Event-B model and Java source code. The Java program will have atomicity that corre-

sponds to the formal model (and therefore OCB clauses), and structure that is derived

from the OCB model.

We introduce process and monitor classes. Process classes allow specification of in-

terleaving behaviour using non-atomic constructs, where atomic regions are defined by

labelled atomic clauses. Monitor classes may be shared between the processes and pro-

vide mutually exclusive access to the shared data using atomic procedure calls. Labelled

atomic clauses map to events guarded by a program counter derived from the label. This

allows us to model the ordered execution of the implementation. The approach can be

applied to object-oriented systems in general, but we choose Java as a target for work-

ing programs. Java’s built-in synchronisation mechanism is used to provide mutually

exclusive access to data. We discuss some problems related to Java programming, with

regard to locking and concurrency, and their effect on OCB.

The OCB syntax and mappings to Event-B and Java are defined, details of tool support

and case studies follow. An extension to OCB is described in which a number of objects

can be updated within a single atomic clause; facilitated by Java SDK 5.0 features. The

extension allows direct access to variables of a monitor using dot notation, and multiple

procedure calls in a clause. We also introduce new features to atomic actions such as a

sequential operator, and atomic branching and looping.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:ae03r@ecs.soton.ac.uk

Contents

Acknowledgements ix

1 Introduction 1

1.1 Our Contribution . 1

1.2 An Overview of the Thesis . 3

2 Background 5

2.1 The Basis for Formal Methods . 5

2.1.1 Hoare Logic . 6

2.1.2 Guarded Commands . 7

2.1.3 The Z-notation . 8

2.1.4 Refinement Calculus . 9

2.1.5 Classical B . 9

2.1.6 The +CAL Algorithm Language 11

2.2 Applying Formal Methods . 12

2.2.1 State-based Methods and Process Algebras 12

2.2.2 Combining Technologies . 13

2.2.3 Tool Support . 14

2.3 Object Oriented Technology . 15

2.4 Formality and Object-Orientation . 16

2.4.1 Object-Oriented Formal Specification 16

2.5 Modelling with Event-B . 17

2.6 Modelling with UML-B . 20

2.7 The B0 implementation Language . 22

2.8 The Java Language Specification - Second Edition 24

2.8.1 Programming with Java . 24

2.8.2 Concurrency, Interference and Locking 27

2.8.3 Conditional Waiting . 29

2.8.4 Looping and Branching Problems 31

2.8.5 Deadlock . 32

2.8.6 Nested Monitor Problem . 33

2.8.7 Formal and Semi-Formal Approaches for Java Implementations . . 34

2.9 Java Correctness and Concurrency . 35

2.9.1 JCSP . 35

2.9.2 JCSProB . 36

2.9.3 JML . 37

2.9.4 Java Pathfinder . 39

ii

CONTENTS iii

2.9.5 JR - extended Java . 40

2.10 Review of the Chapter . 41

3 The OCB Language Part 1 - Processes and Monitors 43

3.1 Motivation . 43

3.2 An Introduction to OCB . 44

3.2.1 Java and Event-B . 45

3.2.2 Process and Monitor Classes . 46

3.2.3 Restrictions Required for Mapping to Java 47

3.3 OCB Language Features . 48

3.3.1 The Sequence Operator . 48

3.3.2 Labelled Atomic Constructs . 48

3.3.3 A Looping Construct for Processes 49

3.3.4 Conditional Branching for Processes 49

3.3.5 Conditional Waiting for Monitors 50

3.3.6 The MainClass Construct . 50

3.4 Mapping Processes to Event-B . 50

3.5 Mapping Monitors and Procedure Calls to Event-B 55

3.6 Review of the Chapter . 57

4 The OCB Language Part 2 - Object-Oriented Features 59

4.1 Mapping Object-Oriented Features to Event-B 59

4.1.1 OCB Arrays . 65

4.2 Syntactic Sugar for Specification . 68

4.3 An Example Mapping to Event-B . 69

4.4 An Example Mapping to Java . 74

4.5 Rules for Mapping OCB to Java . 76

4.5.1 Overview . 76

4.5.2 Mapping the MainClass to Java . 78

4.5.3 Mapping Non-Atomic Clauses to Java 79

4.5.4 Mapping a ProcessClass to Java 82

4.5.5 Mapping a MonitorClass to Java 84

4.6 Review of the Chapter . 87

5 Tool Support for OCB 89

5.1 An Overview of Eclipse . 89

5.1.1 The Eclipse Software Development Kit 90

5.1.2 The Eclipse Modelling Framework 90

5.2 The OCB Meta-model . 91

5.3 Implementing the OCB to Event-B Translator 94

5.4 Implementing the OCB to Java Translator 96

5.5 Review of the Chapter . 97

6 Case Study 1 100

6.1 Development of a Concurrent Read/Write Channel 100

6.1.1 The Initial Event-B Model . 102

6.1.2 Refinement with Data Packets . 104

6.1.3 The OCB Specification . 108

CONTENTS iv

6.2 The Event-B Model of the OCB Specification 114

6.3 The Java Implementation . 119

6.4 Issues Arising from the Case Study . 119

6.4.1 Tooling Issues . 120

6.4.2 Decomposition in Event-B with a View to Automatic Code Gen-
eration . 122

7 Case Study 2 125

7.1 The Flash File System Core . 125

7.1.1 The Flash File System API . 126

7.1.2 The Data Object Layer API . 128

7.2 Modelling the Flash File System . 129

7.2.1 The Abstract Model . 129

7.2.2 The Final Event-B Refinement . 131

7.2.3 An OCB Specification for Writers 135

7.2.4 MonitorClasses for the Flash File System Implementation 139

7.3 The Event-B Model of the OCB Specification 141

7.4 The Java Implementation . 144

7.5 Issues Arising from the Case Study . 146

8 Extending OCB with Transactional Constructs 149

8.1 The Java Language Specification - Third Edition 149

8.2 Transactional Constructs . 151

8.2.1 Transactional-OCB syntax . 154

8.2.2 The Mapping to Event-B . 157

8.3 Examples Mapped to Event-B . 161

8.3.1 The Sequential Operator within a Transactional Clause 161

8.3.2 Branching in a Transactional Clause 163

8.3.3 Looping in a Transactional Clause 164

8.3.4 Procedure Bodies . 166

8.4 Mapping to Java . 167

8.4.1 Locking . 168

8.4.2 Translating Transactional Clauses to Java 172

8.4.3 Conditional Waiting . 175

8.4.4 An Alternative: Locking Based on STMs 178

8.5 Tooling . 182

8.6 Review of the Chapter . 183

9 Conclusions and Future Work 185

9.1 Review of Thesis . 186

9.2 Related Work . 189

9.3 Future Work . 192

A Syntax for OCB 194

B OCB Syntax Extension 197

C Case Study 1 - OCB and Event-B Models, and Code 200

CONTENTS v

C.1 OCB Channel Specification . 200

C.2 OCB ProcessClass Specification . 201

C.3 OCB MainClass Specification . 202

C.4 OCB Buffer Specification . 203

C.5 Channel Java Code . 203

C.6 The Proc Class Java Code . 205

C.7 The CommBuffer Java Code . 206

C.8 Event-B Model of Shared Channel . 207

D Case Study 2 - OCB and Event-B Models, and Code 228

D.1 MainClass Specification . 228

D.2 ProcessClass CreateFile Specification . 228

D.3 ProcessClass WriteFile Specification . 230

D.4 ProcessClass ReadFile Specification . 231

D.5 ProcessClass UserAppCreateFile Specification 232

D.6 ProcessClass UserAppWriteFile Specification 232

D.7 ProcessClass UserAppReadFile Specification 233

D.8 MonitorClass FileDirInfo Specification . 234

D.9 MonitorClass DataObject Specification . 234

D.10 MonitorClass OpenFileInfo Specification 235

D.11 MonitorClass DOStore Specification . 236

D.12 MonitorClass OpenFileStore Specification 237

D.13 MonitorClass UserBuffer Specification . 238

D.14 MonitorClass ErrorLog Specification . 239

D.15 The Flash File System Event-B Implementation Model 240

D.16 The MainClass Java Code . 302

D.17 CreateFile Java Code . 303

D.18 WriteFile Java Code . 305

D.19 ReadFile Java Code . 306

D.20 UserAppCreateFile Java Code . 308

D.21 UserAppWriteFile Java Code . 308

D.22 UserAppReadFile Java Code . 309

D.23 FileDirInfo Java Code . 309

D.24 DataObject Java Code . 310

D.25 OpenFileInfo Java Code . 311

D.26 DOStore Java Code . 313

D.27 OpenFileStore Java Code . 314

D.28 UserBuffer Java Code . 315

D.29 ErrorLog Java Code . 316

E Tooling 318

E.1 Pop up Menu - Translate Implementation 318

E.2 OCB to Event-B Translation: OCBSequence 319

Bibliography 320

List of Figures

1.1 Extending an Event-B Development with an OCB Specification to Pro-
vide an Implementation . 2

2.1 Example of Textual Event-B . 19

2.2 Class Diagram for UML-B . 20

2.3 Event-B Machine of a UML-B Model . 21

2.4 Package Diagram for UML-B . 22

2.5 Occurrence of Deadlock . 33

2.6 Nested Monitor Deadlock . 34

3.1 Processes Sharing a Monitor Object . 46

4.1 An Example OCB Specification . 70

5.1 Annotated Java for the ProcessClass Meta-model Element 92

5.2 Relationship between OCB Syntax and Meta-model 92

5.3 Meta-model - Class Diagram of the ProcessClass 93

5.4 Comparison between OCBText and Tree Editor 94

6.1 The Processes Sharing a Channel . 101

6.2 Decomposing the Write Event . 102

6.3 Decomposing the Read Event . 102

6.4 Decomposing the Write Event - at the Level of OCB Specification. 109

6.5 Decomposing the Read Event - at the Level of OCB Specification. 109

6.6 Decomposition of an Abstract Development 123

6.7 A Shared Event Refinement . 124

7.1 Flash File System Hierarchy . 126

7.2 Abstract Development of the Flash File System 132

7.3 OCB Classes for the Flash File System . 135

7.4 Diagram of the Refined FFS Write Event 137

7.5 The WriteFile OCB Specification . 138

7.6 The DataObject OCB Specification . 140

7.7 The WriteFile Java Code . 145

7.8 The DataObject Java Code . 146

8.1 OCB Locking Strategy . 152

8.2 A Transactional-OCB Specification . 167

8.3 The LockManagement Structure . 170

8.4 Part of the MutexLockManager Class . 171

vi

LIST OF FIGURES vii

8.5 A Transactional-OCB Specification with a Compound Identifier 172

8.6 The Locking of Nested Shared Classes . 173

8.7 Rule ltDef for Labelled Atomic Clauses 174

8.8 The MutexLockManager releaseLocksComplement Method 177

8.9 Implementation of Conditional Wait in the GuardManager Class 179

8.10 Guarding the CCR with a GuardManager Instance 179

8.11 Class Diagram of an STM Implementation 180

8.12 Exponential Back-off Java Implementation 183

List of Tables

2.1 Multiplicities of Associations . 21

2.2 Communication Styles of JR . 41

4.1 Variable Renaming with TV . 62

4.2 Rule tDef . 79

4.3 Rule sviDef . 79

4.4 Rule naDef . 80

4.5 Rule aDef . 80

4.6 Rule acDef . 81

4.7 Rule cDef . 82

4.8 Rule viDef . 83

4.9 Rule actDef . 86

4.10 Rule retDef . 86

6.1 Time to re-build a model . 121

7.1 File System Layer Abstraction and Refinement 131

8.1 Rule TV applied to v . 158

8.2 Rule TA . 160

8.3 Rule TA2 for a Process Constructor . 161

8.4 Rule TA2 for a Shared Class Constructor 162

8.5 Rule TA2 for a Procedure Call . 162

8.6 Rule naDef for Transactional Clauses . 175

8.7 Rule aDef for Atomic Actions . 176

8.8 Rule naDef for a Conditional Transactional Clause 176

8.9 STM API Methods . 180

viii

Acknowledgements

Thanks to all who have provided support and guidance during the past five years. In

particular, I am very much indebted to Michael Butler for his insight and advice during

this undertaking. Many thanks also go to Abdolbaghi Rezazadeh, and Divakar Singh

Yadav whose friendship and advice I value tremendously. Additionally I would like to

thank my children, who have assisted me greatly, especially in the final year of my work.

Thanks also to EPSRC for funding in the early years of my research, and latterly to the

HEALF whose assistance made a great difference to my family’s situation.

ix

To Alex, Nick and Steph.

x

Chapter 1

Introduction

The dependability requirements for software vary depending on the effects of its failure.

For the most safety critical, and business critical domains there is a need for a very high

level of dependability. One approach used to improve dependability is the use of formal

methods as part of the development process. Formal techniques have been maturing for

decades, and as computing technology advances problem domains create new challenges;

at the same time the technology available to address those challenges changes, and new

theories evolve to describe the problems formally. The work presented in this thesis

forms part of the ongoing research that aims to discover better ways of understanding

and specifying software systems, with the aim that they be reliable in use.

1.1 Our Contribution

Our work focusses on code generation for Event-B developments [6, 7, 8, 124]. We

bridge the abstraction gap between formal development, and implementation in a object-

oriented language with concurrent processes. There are some existing Event-B devel-

opments that may make use of concurrency such as the Mondex electronic purse [34],

distributed database transactions [161], and an ongoing extension of the work introduced

in [48], applied to a Flash File System. However, to date there has been no automated

code generation applicable to Event-B development, and we specifically wish to specify

developments incorporating concurrency. Code generation does exist for its predecessor

classical-B [5], via the implementation level notation B0 [43, 44]; but B0 is not aimed

at specifying developments with concurrent processing.

In our work we consider it useful to make use of a modern object-oriented language such

as Java [67, 68] as our target language. Java supports concurrency and is a widely used

platform. It is a strongly typed language with good support for structured data and

encapsulation in the form of classes. Whilst we have chosen Java as a target we would

1

Chapter 1 Introduction 2

Figure 1.1: Extending an Event-B Development with an OCB Specification to Provide
an Implementation

reasonably expect to be able to apply the principles of the approach to other similar

target languages.

To bridge the abstraction gap between Event-B and the target platform we introduce

a notation that we call Object-Oriented Concurrent-B (OCB), see Figure 1.1. OCB

was developed to enable the specification of some key features of a concurrent object-

oriented development that are not so readily expressible in Event-B. In OCB we make

use of the notion of classes for encapsulating data; and procedure calls for accessing the

protected data, and constructing new instances. Consider an Event-B development that

has proceeded to the point where an object-oriented implementation is desired. At this

level a developer will wish to consider details such as processes and their interleaving,

and the sharing of data. The OCB notation facilitates the specification of these aspects

as well as providing an object-oriented notation which eases the transition to object-

oriented implementation. One important aspect of the Event-B approach is that any

enabled event may occur, but only one of the enabled events may occur at any given

time. When considering a specification involving processes with interleaved executions

we seek to introduce the notion of interleaving operations. Event-B contains no facility

of this kind since events are atomic, and we additionally need to impose ordering on the

executions of an interleaving operation. It is with this in mind that we introduce non-

atomic operations, and a sequence operator to specify the points at which interleaving

may take place. An OCB specification also embodies some degree of abstraction since

synchronization details are hidden from the developer, this will simplify the developer’s

task of reasoning about the effects of the interactions between shared objects. The

approach incorporates aspects of UML-B [89, 110, 137, 138, 140, 142] and builds upon

them to facilitate the rigorous specification of concurrent systems. The translation of an

OCB specification results in source code and an Event-B model describing the execution

of the code. The target language that we choose for this thesis is Java; however the

Chapter 1 Introduction 3

approach is also applicable to other target languages such as Ada or C. The Event-B

model can be shown to refine an abstract model and therefore be considered part of the

formal development. The Java correspondence with the formal model is that the formal

model represents the implementation. We have not formulated a formal correspondence

between the two; but the simplicity of the mapping between the OCB constructs and

the formal model, and the simplicity of the mapping between the OCB constructs and

Java, leads us to have high confidence in the correspondence.

Event-B is based on the notion of discrete events that occur in systems; an event is

represented as an artefact in the formal model, which is also known as an event. In our

work when we refer to an event it is clear from the context whether we are referring

to the formal artefact rather than the more general meaning: observable events. When

addressing issues of concurrency we use the fact that an event is atomic and gives rise

to clearly bounded atomic regions in the implementation. We use the notion of labelled

atomic clauses; each atomic clause maps to an event. In the mapping to Java we can use

synchronized methods and blocks, together with the application of some simple rules,

to ensure a representative implementation of the model is produced. In an extension to

the approach based on synchronization, we extend the notion of labelled atomic clauses

to allow exclusive access to a number of shared objects. To do this we employ locking

constructs introduced in a later release of the Java platform. In addition to this we

move towards a more implementation oriented notation; for instance we replace parallel

constructs in actions with sequential constructs.

In the formalisation of the link between OCB and Event-B we use a textual version of

Event-B, similar to that used in [31], and a textual version of our OCB notation for

specification. We support the approach using a prototype tool with a translation to

Event-B models compatible with the RODIN tool [153], and Java source code. OCB

models will be constructed using a prototype GUI based editor rather than a text based

specification; so with regard to the tool support neither OCB nor Event-B is currently

text based. In the prototype tool we provide a translation to textual style OCB for

convenience.

1.2 An Overview of the Thesis

In this chapter we began with a brief introduction to the thesis and describe its contents.

In Chapter 2 we provide the context for our work by describing some important concepts

which lead to the state of the art in our field, and on which our current work is grounded.

The work presented in this thesis draws both on the world of formal methods, and that

of programming languages. Formal methods use mathematical notations to describe

systems and prove properties about them; and programming languages are translated to

instructions that computers use to perform tasks. To assist with our understanding of

Chapter 1 Introduction 4

current formal approaches we describe some relevant theories, and note their historical

significance, leading us to the state of the art in our field. We describe some of the

uses of formal methods, and how object-oriented technology has been used in formal

methods. We then discuss the technologies that underpin the main focus of our work; we

describe the Event-B method, and preliminary work on object-oriented modelling that

is part of the UML-B approach. We then briefly describe the implementation language

of classical B, B0. Chapter 2 continues with an exploration of the issues involved with

Java programming, paying particular attention to problems that arise when specifying

concurrent, shared memory implementations using the Java Language Specification 2.

We conclude our background with a detailed discussion about how formal, and semi-

formal, methods have been brought to bear on the problems faced by developers using

Java. Chapter 3 introduces the OCB language; we describe the underlying semantics

of interleaving process operations, and shared monitors with atomic procedures. We

define the semantics in terms of the Guarded Command Language, and then map the

constructs to Event-B. Chapter 4 continues the introduction of the OCB language by

introducing object-oriented constructs and their mapping to Event-B, then we present

the definition of the mapping of textual OCB to Java code. Chapter 5 gives details of

the implementation of the OCB modelling and translation tools, and the integration

with the Eclipse Platform and the RODIN tool. We also provide details of how the

translator code can be annotated to link the OCB mapping rules to the Java code that

implements the mapping rules. In Chapters 6 and 7 we present case studies which

describe how OCB may be used to specify object-oriented, concurrent implementations

that form part of an Event-B development. Chapter 6 describes the development of a

shared buffer with reading and writing processes. An abstract model is used to specify

coarse grained atomic events. In subsequent refinements the atomic events are split

into a number of atomic actions which refine a single atomic event. We use diagrams

based on Jackson Structure Diagrams to visualise the relationships between events of

the abstraction and the refinements. We then provide implementation details in an

OCB specification and translate the OCB model to Event-B and Java. In Chapter 7

we present a case study presenting a limited number of features of a Flash File System

development. We specify the top two layers (the User Application Layer and File System

API Layer) of a hierarchical system specification. This chapter serves to highlight some

of the shortcomings of the approach and leads into the next chapter, Chapter 8, where

we describe how to overcome a number of the restrictions. In Chapter 8 we describe

how we can translate to a later version of Java, that of JDK 1.5 and Java Language

Specification 3 which is, in turn, reflected in a revised OCB notation. The use of this

later Java version facilitates a more flexible mutual exclusion policy, and therefore allows

more complex specifications which we describe as transactional clauses. We revise the

OCB notation to accommodate the transactional style of specification, and describe the

new mapping to Event-B and Java code. Chapter 9 concludes the discussion with an

appraisal and suggestions for future work.

Chapter 2

Background

In order to provide a context for our main contributions we discuss some founding formal

theories that underpin the state of the art in our field of interest; and give details of vari-

ous approaches that are applied to system development. Primarily we aim to improve the

reliability of software systems using formal methods and, in particular, we are interested

in linking a formal development approach with object-oriented implementations incor-

porating concurrency. So we provide an overview of some fundamental object oriented

concepts, and follow this with a general discussion about the influence of object-oriented

technology on some formal methods. We follow this by an overview of some approaches

that are used to improve the dependability of Java, discussing some formal, semi-formal

and non-formal approaches. We then describe the Event-B method [6, 7, 8, 124], which

we use to formally model systems. Since we have chosen Java [67, 68] as a platform for

our implementations we introduce related programming issues; such as programming

constructs, synchronisation, and conditional waiting. Importantly we also highlight

some of the problems that may arise when using Java implementations that make use of

concurrency constructs. Some of the modelling techniques underlying our approach are

based on the UML-B approach [89, 110, 137, 138, 140, 142] - the graphical ‘front-end’ of

Event-B. We therefore give an overview of UML-B which includes details of how classes

are modelled and instantiated. There is then a brief overview of classical-B’s implemen-

tation level notation, B0 [43, 44]. The final section gives more details of the guarded

command language which we use in the definition of the OCB language. We then give

an overview of our contribution, and provide some general details about our approach.

2.1 The Basis for Formal Methods

Researchers in the field have presented many approaches to formal specification of soft-

ware systems over many years; many are traceable back to a few fundamental theories.

To begin our overview of the formal methods field we discuss some of the fundamental

5

Chapter 2 Background 6

theories that have formed the basis of research over the years; and due to the sheer

volume of work in this field we limit our discussion to what we consider to be the most

relevant to this thesis.

2.1.1 Hoare Logic

Hoare logic [76] was first presented in 1969. It provides axioms and inference rules for

proving properties of programs. A triple P {| S |} Q denotes a precondition P , program,

S and post-condition Q. The logic is used to verify that if P holds before an execution

of program S then Q will hold after the execution provided it terminates successfully.

The work goes on to present rules for program elements such as assignment, composition,

and iteration. An example of the rules is that of iteration,

P ∧B{S}P
P{while B do S}¬B ∧ P

This states if the assertion P is initially true and the triple is true (the body re-establishes

P when B holds) then the equivalent program with P initially true and a while loop with

condition B, will eventually establish ¬B∧P on termination. However the logic assumes

only partial correctness since it does not include the notion of program termination, and

simply makes it an assumption in the interpretation.

In [40] Hoare triples are used to verify correctness of programs using inference rules, for

instance, for a statement involving a sequential program statement, P {| S1 ; S2 |} Q,

the following rule is used,

P {| S1 |} Q P {| S2 |} Q
P {| S1 ; S2| } Q

and the rule for a simple assignment is written as follows,

P ⊆ Q[x := e]

P {|x := e|}Q

Hoare logic was very influential in its contribution to the state of the art and influences

can be seen in the preconditions and postconditions of Design by Contract approaches of

Eiffel [111, 112], SPARKAda [2], and JML [28, 102]. Another influence of Hoare logic was

in Dijkstra’s wp-calculus [51, 52] which later contributes to the semantic definition of the

B-method; which is a predecessor of our formal method of interest, Event-B [6, 7, 8, 124].

Chapter 2 Background 7

2.1.2 Guarded Commands

We now move on to look at the Guarded Command Language, which we use later in our

work to specify our approach. It was also an influential contribution and the concepts

were later extended in Back’s work on the refinement calculus [18, 19]. Dijkstra proposed

in the 1970’s [52, 51, 53] that a formal approach should be used as part of program

development, and developed the Guarded Command Language. In our work on OCB

we find it useful to describe the behaviour of OCB actions in terms of Dijkstra’s Guarded

Command Language. Guarded commands are introduced which have the form G→ S

where G is a boolean expression and S is a list of statements. If the guard part of the

guarded command is true then the statements in the statement list are applied, updating

the state as determined in the statements. The statement may consist of assignments,

repeating (looping), or alternative (branching) constructs.

We begin with the assignment statement, where x := y means that after the com-

putation x has the value y. Several statements in the list S can be connected using

the semi-colon operator, which is used to indicate sequential computation. In order to

describe branching behaviour the language provides the alternative construct, where

guarded statements are mutually separated by the � separator and contained between

the pair if fi. Any statement with a true guard may be non-deterministically selected

for evaluation, if no guards are true then the statement is equivalent to abort. The

syntax of the alternative construct follows,

if G0→ S0 � G1→ S1 � Gn→ Sn fi

The repeating construct is contained between the pair do od. While any of the guards are

true a statement with a true guard is selected and evaluated, it is typically interpreted

that the loop only terminates when all the guards are false. The terminating behaviour

of the loop do to the false guard is considered to represent normal termination of a

program. However if it is the case that all branches are false in the alternative construct

then this is considered to be abnormal termination, that is the program aborts.

do G0→ S0 � G1→ S1 � Gn→ Sn od

In this work Dijkstra also introduce the concept of weakest preconditions, using the

notation wp(S,R) where S is a list of statements and R is a condition on the state. The

weakest precondition is used to identify the set of all initial states such that when the

statements S are applied the program terminates and postcondition R holds. wp is a

predicate transformer that relates a precondition to any post-condition R.

Chapter 2 Background 8

2.1.3 The Z-notation

The Z-notation [143] was developed in the 1970’s. An early version of the Z notation

was described in a paper by Abrial, Schuman and Meyer [11].

Z is formally underpinned by set-theory and first-order predicate logic; the developer

describes the system being modelled using set-theoretic constructs and predicates. In

order to make the specification activity easier Z incorporates the notion of structuring,

using schemas. A schema can be used to specify the initial state of the system, and the

transformations to successor states are described using operation schemas. Operations

are atomic, and changes to state are described in terms of before and after states.

Invariant properties are used to describe constraints on the state of the system, i.e. the

values that the variables can take.

The format of a schema follows; with schema name n, declarations D and predicates P ,

n
D

P

the declaration part is used to introduce and type variables and import existing schemas.

The properties part applies some constraints to the variables introduced in the decla-

ration part. An example of its use, taken from Spivey’s tutorial [144], is the simple

property that follows,

Aleph

x, y : Z
x < y

which states that x and y are integers and that x < y must hold.

Schemas can be combined to form a new schema, and thus the predicate parts may

refer to variables imported from other schemas, as well as variables that are global (not

discussed here). The following operation declaration uses Aleph and the notation Ξ

indicates that the state may not change during the operation, alternatively ∆ could be

used to indicate that the variables of the imported schema may change.

GetV al
ΞAleph

out! : Z
out! = x

Chapter 2 Background 9

Refinement is used in the development process to proceed toward a concrete implemen-

tation. Abstract data types are data refined to concrete data types; and explicit control

variables can be added to control execution in operation refinement. In data refinement

a schema is produced, where the predicate part relates the variables of the abstract with

the variables of the refinement.

2.1.4 Refinement Calculus

The origins of the refinement calculus can be traced to works of preceding sections

involving Dijkstra [50] and the Z-notation of [143], and additionally Morgan’s work

on programming from specifications [118]. Back introduced the refinement calculus

in [18, 19], presenting a formal system which can used to show proof of refinement at

each stage of a step-wise refinement. Later work [21] introduced the notion of contracts.

Contracts are held between agents and regulate the behaviour of agents. A contract is

described using the notation σ{|S|}q which states that an agent can satisfy the contract

if from an initial state σ it can establish that contract S satisfies the postcondition q. It

can achieve this either by not breaching the contract; or it is released from the contract

by an assumption that is violated.

Contracts can be refined by other contracts, if a contract S1 is refined by a contract

S2 then we write S1 v S2. In this case, for any initial state σ and postcondition p,

if σ{|S1|}p holds then σ{|S2|}p also holds. Informally this means that any condition

established by the abstract specification can be established by the refinement.

2.1.5 Classical B

The B Method [5] developed by J.R Abrial is a set-theoretic modelling method, math-

ematical theory and notation. The theory associated with the method provides its

mathematical underpinning, the notation provides syntactic sugar to make the theory

more usable for developers. The B Method has much in common with the Z notation,

mentioned above, and Abrial was also a contributor to that approach.

The B Method is described as a structured, rigorous development process. The basic

structuring element of the B-Method is the B Machine which encapsulates state and

behaviour in a modular, re-usable fashion. Rigorous proof can be performed to ensure

that the specification is self-consistent, and consistent with other machines in the de-

velopment. The B-method’s Abstract Machine Notation (AMN) is used to describe the

state, which is a mapping from variables to values; and behaviour, where operations are

defined using the generalized substitution language. The notation provides features for

deterministic and non-deterministic state transitions, for example assignment or choice.

Non-determinism is useful at a high level of abstraction since it allows design deci-

sions to be deferred, but the non-determinism is replaced by deterministic constructs

Chapter 2 Background 10

as development proceeds by way of refinement; and must removed completely before

implementation. The invariant clause uses predicate logic to describe the properties of

the system that must hold at all times, it can contain typing information for variables

together with the desired properties relating to machine parameters, sets, constants and

variables. The abstract machine specification is type checked to identify syntax errors,

then proof obligations are generated. The proof obligations must be shown to hold

for the system description to be self-consistent; it is preferable to discharge as many

proof obligations as possible using an automatic prover, but in all but the simplest cases

there are a number of proof obligations that remain to be discharged by hand. The

user is able to guide the proof by suggesting strategies, and sub-goals in the form of

hypotheses, in the endeavour to complete the proof. The B-method supports refine-

ment, and an abstract machine can be refined several times leading to a hierarchical

structure. Refinements are related to their more abstract counterparts in such a way

that a valid refinement always satisfies a specification higher in the refinement hierarchy.

The B method uses a refinement approach to add detail to a development, and proof

techniques to establish that the a concrete refinement C refines an abstract specification

A, we say A v C. Informally we state that the concrete specification implies the ab-

stract specification. Refinement generally takes two forms, with behavioural refinement

operations are refined by weakening preconditions, strengthening guards and postcon-

ditions, and reducing non-determinism. In data refinement abstract data structures are

given more concrete representations when moving closer to the implementation level of

refinement. For example a development may use sets to represent data at a high level

of abstraction, but a more concrete representation could be an array or a sequence de-

pending on the implementation requirements. Tools supporting the B-method generate

proof obligations relating to refinement, which must be discharged in a similar manner

to those generated for proof of machine consistency. The tool with which we have the

most experience is B4Free and the Click ’n’ Prove interface described in [38].

The modelling activity makes use of mathematical concepts such as sets, constants and

variables, which are underpinned by the set-theoretic representation. These features are

used to describe the state of the system. Properties and invariants are based on first

order predicate calculus and describe the constraints that must hold on the state at all

times. Operations are substitutions that describe the changes of state, i.e. the variables

of the machine, using AMN. The AMN is designed to have constructs similar to those

used by programmers but it is, nevertheless, a modelling language. An example of a

non-deterministic specification construct is the ANY statement,

ANY x

WHERE Q

THEN S

END

Chapter 2 Background 11

Here x is a parameter, Q is a predicate that includes the type of x, and S is a substitution.

x is non-deterministically assigned a value satisfying Q. The statement is equivalent to

the GSL definition @x.Q⇒S. The simplest substitutions are SKIP which does nothing,

and the assignment substitution, x := E; which states that x is assigned the value of

the expression E.

Proof obligations are generated which must be discharged to show that the statements do

not violate the invariant. The Classical-B approach is to find the weakest precondition

required to satisfy some postcondition P . The proof obligation generated for the simple

assignment is based on the substitution, E/x, where free occurrences of a variable x

are substituted by the expression E. The rule for generating the weakest precondition

follows,

[x := E]P = P [E/x]

and, for the ANY statement we have,

ANY x

WHERE Q

THEN S

END

=

∀x·(Q⇒ [S]P)

2.1.6 The +CAL Algorithm Language

The +CAL algorithm language [96] is used to describe the behaviour of algorithms at

an abstract level, and it is then translated to the TLA+ [95] specification language for

analysis. TLA+ is a set-theoretic approach to system specification which is amenable

to model-checking. The TLA+ specification makes use of the TLC model checker to

explore the state space and check all possible execution paths specified by the algorithm.

Properties such as a non-terminating algorithm, or a deadlocking algorithm, are checked

automatically. The user can also define properties that can be checked, such as the

invariant or assert statements. The model checker ensures the invariant holds at all

times, and ensures that an assertion holds when it is encountered on the execution path.

A +CAL statement is a labelled atomic operation; and this is a concept that we make use

of in the work described in this thesis. In +CAL each statement must have a label, how-

ever the developer may omit it and allow the translator to add one automatically. The

syntax for a statement is LabelledS ::= [Label :] UnLabelledS, where UnLabelledS

is an unlabelled statement; where brackets indicate choice of zero or one. The unla-

belled statements contain a number of constructs, including assignment; looping and

Chapter 2 Background 12

conditional constructs such as While and If statements; and also property specification

statements such as Assert.

In +CAL there are two equivalent specification notations, the p-style and c-style nota-

tions, with p-style being more verbose. We present the following p-style statement as an

example specification showing the use of label annotations,

l1 : if a = 0 then a := a+ 1

else l2 : b := b+ 1 ;

end if ;

l3 : x := 0 ;

Notice that each label is associated with an atomic statement, and that the atomic state-

ments are composed using the sequence operator ‘;’. Composition of atomic statements

using the sequence operator is a feature of our work too.

2.2 Applying Formal Methods

2.2.1 State-based Methods and Process Algebras

We now consider the various approaches available to formal methods practitioners, in

particular we can identify that individual formal methods lend themselves to solving

particular types of problems. We can therefore categorize formal methods on the ba-

sis of the kinds of problems to which they may be appropriately applied (however the

definition is not strict). In general we can identify state-based and process algebraic

approaches. State-based approaches allow better descriptions of system state, whilst

process algebraic approaches better describe behaviour of processes. State-based ap-

proaches tend to be more amenable to specifying properties related to allowable states

and the transitions between them. Proving that a system satisfies the specified prop-

erties involves discharging proof obligations. Examples of state-based formal methods

include B [5, 17, 44] and its successor, Event-B [6, 7, 8, 124], Z [143], and VDM [90].

Process algebraic approaches tend to be more suited to specifying behavioural proper-

ties of concurrent, distributed systems. A developer may wish to describe properties

such as when transitions and communications can occur. Example of process algebras

are CSP [78], CCS [115] and Pi-Calculus [116]. Generally it is easier to check liveness

properties, such as livelock or deadlock, using a process algebra based model than a

state-based model. A model checker, such as FDR [63], can be used to check these

properties. Some approaches incorporate the notion of temporal logic, an extension of

modal logic, to check whether properties hold with respect to time. For example it may

be desirable to check if some property always, or eventually holds, or holds at a next

Chapter 2 Background 13

step and so on. Formal methods with these capabilities include TLA [95], Spin [79],

SMV [109] or ASM [69].

2.2.2 Combining Technologies

It is often the case that process and state-based approaches are combined to take advan-

tage of the benefits of both. An example is the combination of CSP and B found in [30],

and similarly the CSP ‖ B, approach described in [131, 133]. Circus [159] is a com-

bination of CSP and Z; and Alloy [85] bridges the gap between Z and object-oriented

technology. In some cases graphical modelling approaches are combined with formal

methods to aid the development process. The work on UML-B and the U2B transla-

tor [89, 110, 137, 138, 140, 142] established a basis for specifying B developments using a

UML modelling tool; an updated version is part of the latest Event-B tool [141]. Similar

work has been done to link XASM [15], an extension of ASM, to UML in [45]. One

combined approach that is particularly relevant in our sphere of work is the combined

approach using CSP and B [30, 35, 132]. We encountered the B Method in 2.1.5 so we

proceed by providing some details of Communicating Sequential Processes (CSP). CSP

was first introduced by Hoare in [78] and formalizes the behaviour of, and interaction

between, processes. A CSP specification consists of a number of processes P and an

alphabet of events related to the process, αP . The occurrence of events is described in

a process specification, using the notion of prefix. A simple specification is P = a→Q

where a is an event and P and Q are processes. This means that, assuming a is in the

alphabet of P , the process can engage in the event a and then behave as Q. The notion

of traces is introduced together with trace refinement. Properties of the system are

described in terms of the traces, and a model is interpreted in terms of the failures and

divergences of a system, based on traces. The failures of a system describe situations

where no progress is made i.e. deadlock situations. The divergences of the system de-

scribe livelock; such as the situation where the system is exhibiting continuously looping

behaviour, but is not communicating with the environment. It will therefore not make

any useful progress. The theory of CSP was revised in Roscoe’s book [128].

In a development that uses a combined CSP and B approach the specifications are com-

bined in such a way that synchronizes B operations and corresponding CSP events with

the same name. The combined approach addresses recognised shortcomings in each of

the approach. For instance CSP is a process algebra, its strength is in behavioural

specification and it is weaker when used to describe state. The B-method’s strength is

describing the state of a system, and is weaker when it comes to the behavioural speci-

fication since it contains no high level constructs to compose events. In combining CSP

and the B method the strengths of both approaches are harnessed. In the combined ap-

proach a CSP model is typically used to impose an ordering on occurrence of operations.

We present a simple example to clarify this: we can describe a machine with variables

Chapter 2 Background 14

v1 ∈ Z and v2 ∈ Z, and operations,

a , BEGIN v1 :∈ Z END;

b , BEGIN v2 :∈ Z END

where :∈ is the non-deterministic assignment operator. The operations a and b are

unguarded and we assume that the environment can non-deterministically select either

of the operations for execution if they are enabled. To impose ordering on the executions

using a combined CSP and B model, we introduce a CSP process P specified as follows,

P = a→ b→ P ′

In the combined model a and b may only occur when it is enabled in both CSP and the

B specification. In this case v1 will receive it assignment before v2 before moving on to

the next process P ′.

2.2.3 Tool Support

For formal methods to be used efficiently tool support is necessary to establish that the

model’s properties have been satisfied. The approaches can be categorized as theorem

proving or model checking. In approaches that use theorem proving rules are applied to

the specification which give rise to proof obligations that must be discharged. When all

proof obligations have been discharged the model has been shown to be consistent. Model

checkers establish correctness using state space searches. Model checkers will search the

state space to find states where properties are not satisfied; an exhaustive search which

does not find any property violations establishes that the model is consistent. In some

cases formal approaches are amenable to both model checking and theorem proving, and

may make use of tool support from one or more sources. Event-B can be model checked

using ProB [104] within the RODIN toolset [153], and third-party provers can be added

as plug-ins. ASM can be used with the PVS [122] and KIV [56] for theorem proving, or

can be model checked [39]. The Alloy [84] tool supports the Alloy language, and makes

use of the kodkod constraint solver [154]. CSP is used with the FDR [63] model checker,

Spin is a model checker with its own specification language called Promela; and Z/Eves

is a tool for developing and analysing Z specifications [129].

Each approach has its limitations, for instance model checking approaches can suffer from

state space explosion where the number of states to be checked increases exponentially

with the number of variables in the model. With general purpose proof tools such as

PVS it is typically the case that they require a high level of expertise to use, and since

they are not tailored to a specific formal approach they are not optimised for efficiency.

Tools are often not integrated in a way that provides a seamless approach. The Rodin

tool has been designed to provide much more specific support for Event-B than a tool

Chapter 2 Background 15

such as PVS; in this respect the Rodin tool’s aim is to simplify the proof activity, and

provide an integrated development tool to improve productivity.

As individual formal methods mature the proof tools that they make use of may change

and suites of tools may be developed to support the development effort. The Event-B ap-

proach is integrated with the RODIN tool. This is designed to be an extensible platform,

allowing for additional tool support, such as new proof tools, to be added by contributing

a plug-in to the platform. VDM has a suite of tools known as VDMTools[59].

2.3 Object Oriented Technology

Object-oriented software engineering is a well established technique for organising the

development and implementation of software systems. In its simplest form an object is

simply an area in memory that contains some data and/or some code to perform some

tasks. Usually, in a class based system, a class represents an abstract data type and is

used to specify what data an object should contain, and what behaviour it should exhibit;

instances of the class are objects that reside in memory. We use the terms instance and

object interchangeably in this work, since they refer to the same thing, but generally

we talk of instances when referring to objects of a particular class, and objects when

we are being more general. The uptake of object-oriented technology in safety critical

systems has been slower than in non-critical systems since the technology gives rise to

some difficult issues such as how to handle (or whether to prohibit) dynamic binding

and dynamic memory allocation; or how to manage inheritance, or complex control

flows through multiple classes. In the field of avionics, however, a handbook arising

from the OOTiA project [57], from the Federal Aviation Administration and National

Aeronautics and Space Administration, highlights key issues and possible approaches

for the use of Object-Oriented Technology in Aviation.

There are many object-oriented technologies including Java [67, 68], C++ [146], C# [119],

Python [155] and Eiffel [111, 112] to name but a few. For the most part they all use

similar concepts such as inheritance, polymorphism, and encapsulation. Inheritance

and polymorphism are mechanisms that allow specifications to be re-used and tailored

for specific uses. Encapsulation is the concept of limiting access to the data contained

within an object in order to ensure that the state of the object remains consistent. In

practice most object-oriented languages rely on the skill of the programmers and system

architects to achieve a well encapsulated system. Ensuring that a system behaves as

intended, in the light of concurrent executions for instance, is not a trivial task.

A simple Java class is specified as follows,

public class C {
private int a = 1;

Chapter 2 Background 16

public int inc(){ a=a+1; return a; }
}

In the class above we can see the features associated with encapsulation, the private

modifier indicates that the field a is only visible from within the class definition itself,

the public modifier indicates that the method inc and class C itself are visible from

anywhere. We also see the type of the field a is restricted to integer primitive values and

the method inc returns an integer primitive value. Inheritance would be used to make

available the data and behaviour in class C to some subclass D using the following class

declaration, public class D extends C In some cases the methods of a super class

can be re-defined in the subclass, in our example if inc may be defined to increment the

value by some other integer, this would be an example of polymorphism.

2.4 Formality and Object-Orientation

Object-oriented technology is commonly used in software development and its spread

has been aided by productivity tools such as the UML [121]. The domain of business

and safety critical systems has also been influenced by object-oriented technology, and

in this section we discuss this issue.

2.4.1 Object-Oriented Formal Specification

Object-oriented technology can influence formal methods, where the methods themselves

incorporate object-oriented features such as forms of inheritance. This is the case for

VDM++ [46], Alloy [84], and Object-Z [135]. In the case of Event-B it contains no

object-oriented features itself, it has however been tailored for use with object-oriented

technology using UML-B; a combination of UML style diagrams and Event-B. UML-B

provides a graphical modelling environment for Event-B, the ability to model classes and

instantiation; and additionally provides an action and constraint language for UML-B

called µB introduced in [139]. The current UML-B tool does not address issues such as

concurrent execution of processes, or the gap between the formal specification and target

implementation. In similar work a variant of the UML’s Object Constraint Language

(OCL) [120] is described by the Logic for Objects, Constraints and Associations (LOCA),

in [99], and allows constraints to be imposed locally within an class, across a number

of classes, or on associations between classes. The work focusses on the translation

of UML class diagrams to B models, but also discusses translations to Java [67, 68]

for implementation and SMV for model-checking. Another similarity between these

authors’ work and UML-B is the use of statechart diagrams, in [98], where they show

how to use statechart diagrams to specify the state transitions of reactive systems,

and a translation to B. Another approach to formalising object-oriented developments

Chapter 2 Background 17

uses the Model Driven Approach (in the sense of Model Driven Architecture [64]). The

approach presented in [49] uses an object-oriented development with the aim of deriving

an implementation in the C language [93] from a B implementation. This work does not

however address the issue of concurrent processing.

Re-use of artefacts using inheritance mechanisms is one of the main advantages of object-

oriented technology, but it does give rise to many challenges. Some of the issues arising

from the use of these techniques including subclassing and polymorphism are discussed

in [20, 113, 114]. Due to these complexities we consider re-use to be beyond the scope

of our current work, and is not strictly necessary for the approach that we propose here.

2.5 Modelling with Event-B

In previous sections we have given an overview of the field from its foundations and

discussed how formal methods and object-oriented technology have interacted. We now

provide background in more detail on approaches that we draw from more specifically

in our work. We begin with the Event-B method [6]. Event-B is a subset of the original

B-method [5, 10, 38, 41] developed by J.R. Abrial. It is a set theoretic approach to

software systems development. Event-B has a notation, methodology and tool support

for rigorous development of software systems. The basic structural features of Event-B

are contexts and machines. Contexts are used to describe the static features of a system

using sets, constants, and the relationships between them. Machines are used to describe

the variable features of a system in the form of state variables, and guarded events which

update state. Builders within the development tools generate proof obligations which

must be discharged in order to show that the development is consistent. The proof

obligations generated in classical-B are often very complex, the Event-B approach results

in simpler proof obligations as described in [72], since Event-B consists of a simplified

action syntax which gives rise to simpler proof obligations. A further simplification was

made by adopting an event-based approach, where each atomic event has a predicate

guard and an action consisting only of assignment statements. Events correspond to

operations in the B-method; operation specification was more complex and included

constructs for specifying preconditions and return parameters; these constructs are not

features of Event-B. Due to these simplifications (and more efficient proof tools) a large

number of the proof obligations may be discharged automatically by the automatic

provers. Where un-discharged proof obligations remain the user guides the interactive

prover by suggesting strategies, and sub-goals in the form of hypotheses, in the endeavour

to complete the proof.

Event-B supports refinement; a machine can be refined several times leading to a hier-

archical structure. Refinements are related to their more abstract counterparts in such

a way that a valid refinement always satisfies a specification higher in the refinement

Chapter 2 Background 18

hierarchy. Event-B tools generate proof obligations relating to refinement, which must

be discharged in a similar manner to those generated for proof of machine consistency.

In some cases we may model entities in an abstraction that are defined in the event pa-

rameters; and in the refinement these entities may be modelled using machine variables.

It is desirable to link the parameters of an abstract event (since they disappear in the

refinement) with their more concrete representation. To do this we provide a witness,

using the WITNESS construct a predicate is used to describe the relationship between

an event parameter of the abstraction and a corresponding variable in the refinement.

This is then used to assist with discharging proof obligations. It is often necessary to

specify a linking invariant to describe the relationship between the variables of the ab-

stract and refinement machines. Inspection of the proof obligations can assist in this

task since some of the un-discharged proof obligations provide information about this

link. Another feature of Event-B is the ability to refine one atomic event with a number

of events, thus breaking the atomicity, as described in [32].

Event-B development begins with the abstraction of the observable events that ‘may’

occur in a system, which leads to a specification describing the state and behaviour of

the system at a high level of abstraction. Event based modelling uses the notion of

guarded events to describe the observable events. An event is said to be enabled when

the guard is true, otherwise it is disabled. Typically when an enabled event fires some

state update occurs, which is described by the event’s action. The high level abstraction

can be refined, possibly a number of times. At each refinement step new events and state

information are added. The purpose of refinement in the Event-B method is to introduce

more detail into the model and at the same time maintain the model’s consistency.

Eventually the model should describe the behaviour of the system at such a level of

detail that an OCB model can be defined. The OCB model is subsequently transformed

to an Event-B model that can be shown to refine the abstract development, and the

target source code. An example of textual Event-B is shown in Figure 2.1. The context,

named exampleContext has a set, A. Machine exampleMachine sees exampleContext to

gain access to its contents. It has variables b and c which are typed in the invariant along

with any additional constraints on the state. In this example b is typed as a powerset

of A and c is an Integer. The example shows an event named inc which increments

the value of c. The event named new non-deterministically selects an element of set

A\b and adds it to b, using set union. Events consist of guards and actions, inc has

no non-deterministic parameters, so the guard is in the WHEN clause, and the actions

are in the THEN clause. Where the event has non-deterministic parameters, as in new,

the guard is contained in the WHERE clause. Guards are predicates which describe the

conditions under which the event is enabled, actions are substitutions which describe

the effects of the event. An event describes the transition from the ‘before’ state to the

‘after’ state which happens atomically; that is, there is no intermediate state visible.

In a consistent model the guards of an event ensure that its actions do not violate the

invariant. When developing a software system it can be useful to view the occurrence

Chapter 2 Background 19

CONTEXT exampleContext
SETS A

MACHINE exampleMachine
SEES exampleContext
VARIABLES b, c
INVARIANT

b ⊆ A ∧ c ∈ 0 .. 10
EVENTS

INITIALISATION =
b := ∅ ‖ c :∈ 0 .. 10

inc =
WHEN c+1 ∈ 0 .. 10
THEN c := c+1
END

new =
ANY x
WHERE x ∈ A \ b
THEN b := b ∪ {x}
END

Figure 2.1: Example of Textual Event-B

of state changes, in shared memory concurrent systems, as atomic events. We aim to

relate the atomic state changes of such an implementation to atomic events described

in an Event-B model, using OCB. This will simplify reasoning about the system under

development since our abstraction does not include details of locking, unlocking and the

implementation of conditional waiting. Event-B provides the formal semantics for the

OCB notation which is introduced in subsequent chapters.

One important aspect of the Event-B approach is that any enabled event may occur, but

only one of the enabled events may occur at any one moment. When modelling certain

aspects of a system we may wish to impose an ordering of events. However, there is no

sequence operator provided in the Event-B approach. It is therefore necessary to make

appropriate use of guards and and state variables to model this aspect of a system. For

example if we wish to impose an ordering on two events evt1 and evt2 so that evt1

occurs before evt2 we can use the following approach. Introduce an enumerated set

Grds = {one, two, stop} and a variable step ∈ Grds. Initially step := one; and we

make use of step in the event guards as follows,

evt1 = WHEN step = one THEN . . . ‖ step := two END

evt2 = WHEN step = two THEN . . . ‖ step := stop END

This ensures that initially evt1 is enabled and evt2 is disabled since step = one; only

Chapter 2 Background 20

Figure 2.2: Class Diagram for UML-B

after evt1 has updated the step variable to two is evt2 enabled. At this time evt1

is no longer enabled since its guard is now false. Finally no events are enabled since

step = stop and all guards are false.

2.6 Modelling with UML-B

The formal modelling techniques of the previous section may be enhanced by the use

of graphical modelling methods, [125, 126]. There has been much work on this topic

with UML-B and the U2B translator, [110, 137, 138, 139, 140, 141, 142]. UML-B links

the graphical modelling techniques and object-oriented features of the UML, to the B-

Method and Event-B. We discuss here its application to Event-B in particular. UML-B

uses UML-type visual modelling features such as package diagrams, class diagrams and

statechart diagrams. However it should be noted that UML-B is not a UML profile for

Event-B, it has its own meta-model. It does not use the UML specialisation features

such as stereotypes, so in this sense it is only UML-like, but better suited to Event-

B specification. One feature of systems that cannot be specified in UML-B, at the

time of writing, is that of concurrency - in our work we wish to address the issue of

concurrency (but not within UML-B itself). We find it useful to apply some UML-B

modelling techniques with respect to modelling object-oriented features. An example

UML-B class is shown in Figure 2.2 and its mapping to Event-B is shown in 2.3. In the

Event-B model the formal representation of a class C is a carrier set C SET representing

all potential instances of C. The instances of C are modelled as a subset of C SET. A

constructor event adds a non-deterministically selected object, newC from C SET \ C,

to the set of instances C (The class X constructor is omitted). Class C has an attribute

a of type Z, which maps, in the generated Event-B model, to a variable a which is typed

as a function a ∈ C → Z. Variable a relates the instances of class C to its attribute value,

so an instance s of type C has an attribute value represented by a(s). The variables

representing instances are initially empty, no instances exist until the constructor is

Chapter 2 Background 21

CONTEXT ctx
SETS C SET; X SET

MACHINE mch
SEES ctx
VARIABLES C, X, a, x
INVARIANT

C ⊆ C SET ∧ X ⊆ X SET ∧
a ∈ C → Z ∧ x ∈ C → X

EVENTS
INITIALISATION =

C := ∅ ‖ X := ∅ ‖ a := ∅ ‖ x:= ∅

newCObj =
ANY self, x
WHERE self ∈ C SET \ C ∧ x ∈ X
THEN C := C ∪ {self} ‖

x(self) := x ‖
a(self) := 0 ‖

END

run =
ANY self
WHERE self ∈ C
THEN a(self) := a(self)+1
END

Figure 2.3: Event-B Machine of a UML-B Model

called. The constructor models instantiation and initialisation of the objects. Events of

a class are translated to Event-B events with the same name. We have shown a class

diagram translated to Event-B; provision is also made for translating statechart diagrams

to Event-B, transitions between states are translated to events which are guarded by

control variables derived from the names given to the states. The association x enables

the multiplicities of the instances to be specified. The owner of the association (origin

of the arrow) has multiplicity a . . . b, and at the opposite c . . . d (in Figure 2.2 a = 0, b =

n, c = d = 1). Table 2.1 describes the relationships between association multiplicities,

and the domain and range properties of the generated variables.

a b c d

0 non-surjective - partial -

1 surjective injective total functional

n - non-injective - non-functional

Table 2.1: Multiplicities of Associations

Package diagrams are the top level diagram used, these describe the relationships be-

tween models and contexts, and the refinement relationships between contexts, and

Chapter 2 Background 22

Sees

RefinesExtends

ctx1

ctx2 Sees

mch1

ref1

Figure 2.4: Package Diagram for UML-B

between models. An example package diagram can be seen in Figure 2.4 where machine

mch1 sees ctx1, ref1 refines mch1, ctx2 extends ctx1, and ref1 sees ctx2. In order to

describe event actions, and actions associated with transitions of a state machine, µB

is used. µB is an action and constraint language for UML-B which is based on Event-B

action syntax. It differs from Event-B syntax in a number of ways, for instance it uses

the reserved word self which is a reference to the current object. It also allows an

object-oriented style dot-notation for accessing instances referred to by attributes, so i.v

is equivalent to self.i.v and refers to attribute v of the object associated with self.i .

2.7 The B0 implementation Language

The aim of formal specification of a system is usually to describe a system that will

eventually be implemented. The step from the formal model to the implementation level

is our area of interest. In previous work with Classical-B, B0 [43, 44] was developed which

provides the final link between model and implementation. It is an implementation level

language which can be translated to Ada [147], C and C++ source code for compilation

into executable form; as far as we are aware no such approach exists for Event-B.

In a B0 implementation machine the OPERATIONS clause contains deterministic, con-

crete substitutions; and state is described using concrete data types that are amenable

to implementation. The use of concrete substitutions at the implementation level means

that all non-deterministic substitutions of the abstract development have been removed

and can be implemented using a programming language. Therefore operations with pre-

conditions and any other form of underspecification are prohibited. The use of concrete

data refers to the fact that implementation level data structures must correspond to the

structures that can be implemented using a programming language. B0 supports the

following concrete data types: integers, booleans, arrays and records. The concrete sub-

stitutions are referred to as instructions, concrete predicates as conditions and concrete

expressions as terms - in order to distinguish them from their abstract counterparts. In-

structions include assignment, local variable declaration, operation call, branching and

looping constructs, and each instruction is atomic. We present a small example of the

Chapter 2 Background 23

syntax to give a flavour of the style; beginning with the assignment (the becomes equal

instruction)

Becomes equal to instruction ::=

id := Term

| id := Array expression

. . .

The variable named id is assigned the value of a Term or Array expression. Terms

are types such as an integer or boolean literal, arithmetic expression, or an identifier.

Array expressions can be one dimensional such as the following arr1 ∈ {0 ..5}→Z, or of

higher dimension such as the following two-dimensional array, arr2 ∈ {0..5}×BOOL→Z.

B0 allows atomic operation calls that return a value; the operation call instruction is

defined as,

Operation call instruction ::= idv ← idop

where idv is an identifier of a variable v and idop is the name of an operation. Here

the return value from operation idop is assigned to the variable named idv. In this case

both the operation call and the assignment of the return value to the variable occur in

one atomic step. B0 has a sequencing operator for instructions which permits sequential

composition within an atomic clause. It is defined as,

Sequence instruction ::= Instruction ; Instruction

The conditional instruction has optional elseif clauses and optional else clause. Con-

ditions are a subset of classical-B predicates which have corresponding constructs in an

implementation. Typical operators are =, 6=, ≤, ∧ and ¬, which are used with simple

terms such as identifiers, integer literals and boolean literals; or in the case of logical

operators, conditions. The conditional instruction is evaluated in a single atomic step.

If the first condition is true then the first atomic clause of the instruction is evaluated,

and the instruction completes. When a condition is false the next atomic sub-clause is

evaluated and the instruction completes, and so on. Branches are evaluates until either

the atomic else clause is evaluated, if one exists, or the instruction is completed with

no updates. If no else clause exists this is equivalent to the sub-clause ELSE skip. The

Chapter 2 Background 24

instruction is defined as,

Conditional instruction ::=

IF Condition THEN Instruction

[ELSIF Condition THEN Instruction]

[ELSE Instruction]

END

The while instruction is an atomic loop; that is, the whole loop completes in a single

atomic step. The loop has a variant which must be shown to be decreasing; the variant

is used to show that the loop eventually terminates. The invariant clause is used to type

the variable used in the variant.

While instruction ::=

WHILE Condition DO Instruction

INVARIANT Predicate

VARIANT Expression

END

It is intended that the OCB notation performs a similar role to B0, in that it links

the formal model with a target programming language in order that an implementation

be created. However, unlike B0, we support the specification of concurrently executing

processes, and the sharing of objects. We will also be targeting the Event-B approach

instead of classical-B. To support translation to an object-oriented languages, and to

make use of encapsulated data, we introduce concepts to OCB such as class definitions;

object instantiation; and atomic procedure calls.

2.8 The Java Language Specification - Second Edition

This section deals with the Java Language Specification - second edition (JLS 2) [37]

which serves to define the language up to version 1.4 of the Java SDK. Our initial inves-

tigations begin with this as the target platform, and we begin the section by describing

Java with this version in mind. The third edition (JLS 3) [68] is introduced towards the

end of this thesis in Chapter 8 when we investigate how we can leverage the more recent

additions to the Java language.

2.8.1 Programming with Java

The Java language is the object-oriented programming language of the Java Platform, it

is typically used to specify the behaviour of applications that will run on a Java Virtual

Chapter 2 Background 25

Machine (JVM). It is strongly typed, and incorporates mechanisms to allow concurrent

processing, using the Java notion of threads. A Java program is usually translated to

machine independent bytecode, and a platform specific JVM interprets the bytecode.

This machine independent approach is described as ‘write once run anywhere’. A Java

program may however be compiled to a native executable form - this is platform specific,

so it loses ‘write once run anywhere’ capability. Portability and cross platform support

is seen as one of the main benefits of Java over other programming languages like C [93]

and C++ [146]. Java also contains simplifications that help to reduce some of the errors

that can be introduced to C and C++ programs, such as the notion that developers do

not have access to pointers; but this is achieved at the expense of some flexibility.

Other benefits of using the Java platform are that it has multi-threading features built-

in, these features are extremely useful - a number of threads can be created, and these

threads are able to progress or wait depending on whether certain conditions are sat-

isfied. This can make for more efficient use of system resources, but does introduce a

number of problems which will be discussed further in this chapter. Java uses the notion

of synchronized monitors to achieve mutually exclusive access to shared data. When a

synchronized region is defined a lock will be obtained before the region is entered. The

use of these features is not enforced in Java however, so mutual exclusion is not guar-

anteed simply by the use of synchronized regions alone, extra effort must be expended

to ensure all accesses to a particular piece of data obtain the lock. Use of these locks

can cause threads to deadlock in certain situations and we discuss this further, later in

the chapter.

We have already mentioned that Java is a class-based, object-oriented language, the

simplest class definition, class ClName, resides in a file of the same name, ClName.java,

and the file resides in a package which is used to restrict the scope of visibility. A typical

class definition is,

public class ClName{< body >}

The body of the class can contain, field declarations, method declarations and other class

declarations. The public modifier indicates that the class is visible from any package. If

the modifier was not present then the class would only be visible from within a package.

Similar scoping rules apply to fields and methods. private is a modifier to restrict

visibility to within the declaring class; and protected is used to restrict visibility to the

declaring class and any subclasses. Inheritance is one of the main re-use mechanisms

of Java and classes are said to extend superclasses, indeed all classes defined in Java

extend the universal superclass java.lang.Object by default. We declare an extension

as follows where ClName inherits features of SuClass,

public class ClName extends SuClass{< classBody >}

Chapter 2 Background 26

Using this declaration SuClass’ public, and protected, fields and methods are in-

herited by ClName. Additional fields and methods can be declared in SuClass, and

overriding can be used, where new or additional behaviour can specified for an exist-

ing method. Within a redeclaration of an inherited method (including the constructor

method) super() can be used to invoke the superclass method of the same name.

Methods in Java can contain local variable declarations. The scope of these variables is

the lifetime of the method invocation and they are stored in stack memory rather than

in heap memory as fields are. Declaration of method parameters also gives rise to local

variables. A typical method declaration is as follows,

public synchronized void anOp(< paramList >){< methodBody >}

As before we use the public modifier to indicate that the method has public scope,

visible anywhere. The synchronized modifier is used to indicate that a monitor lock

must be acquired before method entry, locking is discussed in more detail in following

sections. The void modifier is used to declare that the method should not return a value.

A return type, either a primitive such as an int or a reference type, can be specified

here.

Threads are Java’s mechanism for the lightweight scheduling of executions. A class that

is required to run as a thread inherits from either java.lang.Thread or

java.lang.Runnable, Threads can be declared using the extension mechanism discussed

above, or by an alternative mechanism - interfaces. Threads can be declared by spec-

ifying that they should implement the Runnable interface. Interfaces are a flexible

mechanism used for multiple inheritance. They are used to declare class variables, and

method signatures that its subclasses must implement. In our work we will use the

Runnable interface, which we use in the following way when wishing to declare a class

P exhibiting thread behaviour,

public class P implements Runnable{< classBody >}

Class P implements the Runnable interface; this entails providing an implementation

for a run method in < classBody >.

public void run(){< methodBody >}

A thread can then be created and started using the following fragment based on the

above.

Runnable p = new P();

new Thread(p).start();

Chapter 2 Background 27

The new keyword is used to create new instances, in this case we create a new instance

of P assigned to p and pass it to the Thread constructor. The Thread class’ start

method is invoked which in turn calls P ’s run method.

2.8.2 Concurrency, Interference and Locking

We now discuss some of the pitfalls that developers should be aware of when program-

ming using JDK 1.4 (defined in JLS 2). The problems arise in part because of the

complexity that concurrency introduces to a development, and partly due to ambigu-

ities and shortcomings in the Java Language Specification itself. Lea notes, in [100],

that the concept of concurrency in difficult to pin down. In summary: Apparent and

real concurrency in Java [68] is provided by the Java Virtual Machine (JVM) and the

underlying Operating System. Java uses the notion of threads; a number of threads may

be in the running state at any one moment in time. The Java Memory Model allows for

a range of possible configurations, from one thread per processor on a multiprocessor, to

many threads per processor, and of course a single thread. The illusion of concurrency is

achieved by time-slicing when the number of threads exceeds the number of processors.

The JVM has a scheduler that allocates an amount of processor time to each thread

and decides when each should start and stop processing, each running thread uses pro-

cessor resources independently of other threads but may share main memory with other

threads. The scheduler selects threads for execution according to some arbitrary strat-

egy, and no fairness guarantees are provided about selection of individual threads for

execution.

The Java memory model defines the relationship between reads and writes of mem-

ory values and how to achieve consistency in the face of data races and optimisation.

One such problem occurs with the synchronisation of the CPU registers and cache (the

working memory), with main memory. According to the memory model each thread

can potentially run in its own CPU. Certain compiler optimisations can be performed

whereby data values may not be written to main memory but remain in the CPU cache.

These optimisations can lead to a thread having an inconsistent view of the state, and

therefore unintended behaviour may occur when applications access shared data in an

unrestricted manner; the main (shared) memory may not contain the latest updates. In

addition to these issues which can cause problems for the developer there are a number of

ambiguities related to the specification of the memory model itself. Some of these prob-

lems are highlighted by the authors of [71] where they describe the Java memory model

of the Java Language Specification [67] using ASM. They highlight the problematic na-

ture of interpreting the specification and the well known problems with suspending and

resuming threads. An additional problem with JLS2 is that of accessing volatile fields.

By declaring a field volatile, accesses to the field by different threads are mutually exclu-

sive, but do not require a synchronized block, or method. The intention was to ensure

Chapter 2 Background 28

that read accesses always provide the most up-to-date value. The JLS specified that

reads and writes of volatile fields should be made directly to main memory and that

caching should be prohibited. Additionally it specified that each thread’s actions on a

volatile field should be performed in the order that they were requested, and said nothing

about non-volatile fields. This was sufficient for ensuring consistency of single threaded

programs, but did not consider the potential problems with multi-threaded programs

sharing data. The problem arises since volatile and non-volatile reads and writes can be

re-ordered by the compiler. Therefore, although accesses between volatile fields remain

ordered, accesses between volatile and non-volatile fields may be interleaved. Therefore

between different threads the re-ordering is visible and can cause unintended behaviour.

To a large extent the Java Language specification - third edition [68] (JLS 3), which

coincides with the release of Java SDK 5, addresses many of these issues by redefining

the memory model. We use JLS2 in our initial approach since the technology was mature,

and its problems were well understood, at the time we began the work described in this

thesis. In our work initial work we make use of the simplistic synchronization mechanism,

which corresponds well with Event-B’s event-based approach. However, the use of the

synchronization mechanism turns out to quite restrictive, and we will also explore the

use of JLS3 to overcome these restrictions.

When developing sequential (single-threaded) Java programs where the result conforms

to the Java memory model, there is no possibility of data being observed in a state

that is not consistent with the intended semantics. This is because the state is not

observable externally, and any compiler optimisation that takes place will preserve the

internal consistency, i.e. consistent intra-thread semantics. Compiler optimizations may

include re-ordering of execution at bytecode level, or omission of writes to main memory.

The introduction of multiple threads to a development does not automatically introduce

interference problems, but there are certain conditions under which it may occur. Inter-

ference can be defined as data being observed in a state that is not consistent with the

intended semantics, the cause of which is an update by a concurrently running thread. If

threads do not share state, either directly or indirectly, then no interference is possible.

In that case threads can be thought of as independent, sequential programs obeying as-

if-serial semantics. Whenever state is shared between threads in an uncontrolled manner

the potential for interference is introduced and the program execution may depart from

its intended (as-if-serial) semantics.

Uncontrolled interleaving of Java threads may cause problems due to the relationship

between Java source code and bytecode. A simple assignment such as, x=x+1, in Java

may be compiled to a number of lines of byte code. The bytecode may read x, add the

value and write the new x value in a number of discrete steps. The bytecode is able

to interleave with another thread between the read, add or store instructions. Values

may then be read or updated which may not be consistent with as-if-serial semantics.

Chapter 2 Background 29

It is even the case, for long and double types, that higher and lower order bits may

be written at different times, so a read access may obtain a completely meaningless

value with updated low order bits and the previous value of the higher order bits. These

problems are compounded by the fact that the updated values of x may never be written

to main memory but may be retained in CPU cache due to optimisation.

To address the problem of visibility of inconsistent state Java provides a built-in syn-

chronization mechanism which has effects at both high and low levels of implementation.

The synchronized keyword is used in the method header to indicate to the compiler that

main memory must be synchronized with the CPU’s working memory. Working memory

refers to the caches and registers of a CPU. Synchronization takes place upon acquisi-

tion and release of the synchronization lock, at the beginning and end of a synchronized

method. Upon lock acquisition values are loaded from main memory to the CPU’s

working memory, upon lock release cached values are flushed from working memory

to the main (shared) memory. The built-in Java synchronization mechanism also pro-

vides mutual exclusion at a higher conceptual level, since only one calling thread can

be associated with a lock at any one time. Atomic behaviour can be achieved through

appropriate use of locking and encapsulation. However, the use of synchronized methods

and blocks is not enforced. This means that the development can contain errors which

are difficult to detect, an issue which is addressed by our approach.

The synchronized keyword is used to identify a method or block of code that needs to

access an object without interference from another thread. Java uses the synchronized

keyword to facilitate the use of monitors [77]. Each instantiated object has a monitor

with a lock. When a thread attempts to call a target object’s synchronized method

it must first obtain the monitor lock for the target object. If the lock is not available

the Java Virtual Machine (JVM) blocks the thread. It places the calling thread in

the target object’s lock wait set, with any other threads that have previously made

unsuccessful attempts to obtain the lock. These blocked threads will be made runnable

(removed from the lock wait set) by the JVM when a thread exits a synchronized block

or method. Threads in the runnable state are then available for execution, and may be

selected at some arbitrary time, by the JVM, for execution. In the case where the lock

is successfully obtained at the first attempt, execution of the method continues without

blocking. When returning from the synchronized method the lock is released and the

JVM makes threads in the lock wait set (if any have joined) runnable.

2.8.3 Conditional Waiting

In concurrently executing systems a particular thread may have to wait for some con-

dition to become true before being able to proceed. A typical example is of a producer

and consumer where producer threads and consumer threads share a buffer; if the buffer

is full the producer should wait until the buffer has space, if the buffer is empty then

Chapter 2 Background 30

the consumer must wait for data to arrive. If the threads were to continuously loop

and check for the arrival of data the processor would be continuously engaged in this

activity. A more efficient method is to cause the thread to wait until the associated

state changes. When the state changes, the thread is notified and can check to see if it

is able to proceed. While the thread is in the waiting state it is not consuming processor

resources. The term conditional waiting is used to describe this behaviour (introduced

in [77]), where a thread waits until some condition becomes true, at which time execu-

tion may proceed into a conditional critical region (CCR). Classes used in Java inherit

(directly or indirectly) from the Object class, this class makes available the basic fea-

tures required for conditional waiting. The operations wait, notify and notifyAll are

part of the interface inherited from the Object class. The following Java fragment shows

the structure required to implement conditional waiting, (however exception handling

is omitted for clarity). The operation is guarded by an entry condition enterCCR. The

operation causes the calling thread to wait if the entry condition, entryCond, is not true.

If the entry condition is true, execution may proceed into the CCR.

public synchronized void anOp(){
while(!enterCCR){

wait();

}
. . . /* Conditional Critical Region */

}

Consider a thread t and shared object o. A thread t may invoke o.anOp(). Thread

t must successfully acquire o’s monitor lock (prior to method entry). The wait call is

contained within the body of a while loop which continues to loop, and wait, until the

entry condition enterCCR is satisfied. The thread will remain in its waiting state until

notification is received from another thread using notify or notifyAll ; or it may wake

when a specified period of time has elapsed. When the entry condition is satisfied the

execution will exit the while loop and enter its CCR. The wait call causes the calling

thread, t, to be added to the conditional wait set of the object, and o’s monitor lock is

released. Thread t is now in the waiting state where it could remain indefinitely. To

avoid this a parameter may be supplied with the wait call, the parameter specifies a

time after which t is made runnable again. Thread t can also be removed from the

conditional wait set by another thread that invokes o’s notifyAll method. Thread t is

now runnable and may be selected for execution by the JVM. When execution resumes

it does so by returning from the wait method, so the loop condition will be tested again.

To simplify our approach we will ignore the timed wait; and we leave the discussion of

exception handling until we deal with the implementation specifics. For now we just

note the fact that the wait method may throw an InterruptedException, which must be

handled or propagated. This exception will occur if a waiting thread is interrupted, by a

Chapter 2 Background 31

call to its interrupt method. Notification is used when some state is updated for which

other threads may be waiting. A Java fragment showing the call follows,

public synchronized void update(){
. . . some update

notifyAll();

}

Consider a thread t and shared object o. When thread t invokes o.update(), notifyall

is called which causes all threads in o’s conditional wait set to become runnable. If

there are a number of threads waiting for notification then any one of them may win

the race for execution. An alternative approach is to use the notify method but this

can introduce problems and its use is not recommended in most situations. A notify

call will make runnable only a single, arbitrary, thread in an object’s conditional wait

set. In some situations using notify will fail to wake the thread that will allow execution

to proceed. In general the wait, notify and notifyAll methods must be placed inside

a synchronized method, failure to do so gives rise to an IllegalMonitorStateException

at run-time; the calling thread must own the monitor lock before calling wait. The

synchronization mechanism is used to provide mutually exclusive access to data and is

also used in conditional waiting. However, due to the fact that its use is not enforced,

inconsistent state may be visible. In the work presented in this thesis, we bring formal

methods to bear on the problem; we develop a new approach which hides the locking

and waiting implementation issues from a developer by relating atomic constructs in an

intermediate specification (model) to a formal, Event-B model. The atomic constructs

of the intermediate model are reflected in the Java implementation, but the insertion of

the Java constructs is handled by automatic translation from the intermediate model to

Java, thereby relieving the developer of this task.

2.8.4 Looping and Branching Problems

Consider the following pseudocode fragment (which is slightly unrealistic but used to

demonstrate a point). Suppose a class accesses a public variable a. The public visibility

declaration means that a can be accessed from outside the class in which it is declared.

In our example a class, C is a sub-class of java.lang.Thread which runs as a thread,

and may be one of a number of threads that have access to a. In the following fragment

a is read, and then division is performed (which is undefined if the value is zero).

if(a>0){ result = n/a; }

In the following scenario we can see how interference occurs, where variable a is accessed

by thread t1 of class C, and thread t2 which is of some other class decrements the value

Chapter 2 Background 32

of a by one. In the following scenario variables a and a ′ are the before and after values

respectively, and the initial value of a is 1.

step t1 t2 a a′ effect

1 a>0 1 1 condition is true

2 t1.a=t1.a-1 1 0 decrement a

3 result =n/a 0 0 error

The error occurs because the attribute a is decremented by t2 after the condition evalu-

ation and causes a divide by zero error. More generally values that are inconsistent with

the intended semantics may be read when there is a dependency between the condition

and the body. The condition and body are not evaluated atomically and the read and

write are conflicting actions. In order to prevent this kind of problem it is necessary

to restrict access to fields by making them private, thus restricting visibility to within

the class only. Access is then permitted only through the use of synchronized methods,

which enforces mutually exclusive access.

2.8.5 Deadlock

Another issue that arises in the discussion about concurrency in Java is deadlock. The

Java environment provides the conditions for deadlock, i.e. a locking mechanism which

allows a thread to hold locks while waiting for others, and no pre-emption of resources

competing for the same lock. A circular wait occurs in the following scenario which leads

to a deadlock. t1 and t2 are threads that need to acquire both locks a and b.

1. t1 obtains lock a

2. t2 obtains lock b

3. t1 attempts to obtain lock b,

- but blocks waiting for b (also holding lock a)

4. t2 attempts to obtain lock a,

- but blocks waiting for a (also holding lock b)

The threads t1 and t2 are blocked, forever waiting for the other’s resource to be freed.

A solution to the problem is to provide a feature which allows a thread to give-up locks

that it holds in the event that it discovers one of the locks that it wishes to acquire is not

available. Since it can be very difficult to know in advance which combinations of ac-

quisitions will lead to deadlock a cautious approach would lead us to use a non-blocking

locking strategy whenever we need to obtain more than one resource within a synchro-

nized method or block. This approach may however lead to livelock; a situation where

the threads are continuously looping and finding that the resources are unavailable, even

though they are not unavailable all of the time.

Chapter 2 Background 33

2. t2 obtains1. t1 obtains

4. t2 blocks

3. t1 blocks

t2t1

Lock a Lock b

Figure 2.5: Occurrence of Deadlock

An alternative strategy, to overcome contention that gives rise to deadlock, is to impose

an ordering on lock acquisitions. An example of this is given in [25] where a type system

is specified that incorporates the specification of lock levels and specification of a partial

order between each lock level. Where a thread holds more than one lock they must be

acquired in descending order. The type checker checks that the implementation does

indeed preserve the ordering. A similar strategy, acquisition of locks in a pre-defined

order, could be used in our approach. Lea describes alternative locking strategies in [101]

which forms the basis of the java.util.concurrent.locks API. It is an implementation of

one of these strategies that we later use in Chapter 8 to implement the lock manager

for our transactional constructs.

2.8.6 Nested Monitor Problem

Another problem that affects the strategy employed in our approach is the nested mon-

itor problem, which can occur when a thread holds more than one monitor lock and a

wait is invoked. In the following scenario of Figure 2.6 a thread acquires two monitor

locks and is then caused to wait. Unfortunately the thread still holds one of the locks so

if this object is required to make the waiting threads runnable, deadlock will occur. Here

we have two threads, t1 and t2, that make calls through synchronized Admin methods.

These methods, in-turn, call synchronized methods of anObject. One method contains

a conditional wait and another contains notifyAll. The following scenario leads to t1

holding onto admin’s lock, when it is has been put into the waiting state.

1. t1 obtains the admin lock.

2. t1 obtains anObject’s lock - is caused to enter the waiting state,

releases anObject’s lock but retains admin lock.

3. t2 is the only thread that can wake t1 but it is blocked.

t1 is waiting in anObject ’s conditional wait set. If another thread were to invoke a

method that issues a notifyAll call then t1 would be made runnable and possibly re-

linquish all locks held. The problem arises if t2 is the only thread that can cause the

notification to be issued, and t2 has to go through the admin object which is held by t1.

Chapter 2 Background 34

t2
3. t2 blocks

1. t1 obtains admin
lockt1

then calls wait()
2. t1 locks anObject

anObject

Figure 2.6: Nested Monitor Deadlock

In this case t2 is blocked indefinitely waiting for the admin lock, t1 is waiting indefinitely

for notification that t2 would provide if it were not blocked.

2.8.7 Formal and Semi-Formal Approaches for Java Implementations

We have seen some of the problems arising from the use of Java implementations, in

particular when concurrent processing constructs are used. Much work has been done

to address these issues and we now provide an overview of some approaches seeking to

address these issues that are of interest to us. An approach addressing concurrency is-

sues is that of JCSP [157, 158], which establishes a link between CSP and Java. A fuller

account of JCSP is given in Section 2.9.1. JCSProB, described in [162], makes use of the

JCSP libraries. The ProB tool can be used to construct and model check a combined

CSP specification and B machine, which can then be translated to Java code. The work

extends the JCSP libraries to accommodate external choice and message passing that

includes data structures. The FSP notation and LTSA tool used in [108] focusses on the

modelling of Concurrent Java systems, and subsequent verification of the model using

the analyser. Several toy examples are presented but the tool falls short of automatic

translation to Java. The work of Jacobs et al. [87, 88] uses annotated Java source code

to make dependability claims about concurrent object-oriented programs, it describes

concepts such as packing and unpacking objects, and object-invariants. The resulting

formalisation is verified using a bespoke tool. Other work that attempts to clarify the

issues surrounding concurrency using a clear view of atomicity is Fondue [94]. It is a

notation that uses OCL (but is not specifically linked to Java) for the specification of

concurrent programs. Eiffel [111, 112] is an object-oriented programming language that

additionally contains formal specification constructs known as assertions, such as pre and

post-conditions, class invariants, loop variants and loop invariants. It is recommended

that updates to system state are performed by commands; and state interrogated by

queries. The separation of concerns, where commands do not return a value and func-

tions do not update state, is known as command-query separation. This approach is

however not enforced in Eiffel.

Some formal methods incorporate the Java Modelling Language (JML) [28, 102] or

OCL [120] into their specifications. The JML is a markup language used to annotate

Chapter 2 Background 35

Java source code. The markup uses constructs such as invariants, preconditions, postcon-

ditions, atomic regions and locks to specify required behaviour that enables verification

by model checking (but fails to verify all of the atomicity requirements as found in [127]).

JML also allows insertion of runtime assertion checks. The Key system [24] uses UML

diagrams annotated with OCL, or JML, to produce Java code. The underlying formal-

ism is based on a Dynamic Logic called Java Card DL, which underpins translation to

Java Card implementations. PerfectDeveloper [55], described in [47], is an approach that

uses its own notation, in a design-by-contract style, for specifying object-oriented devel-

opments without concurrent processing. The specification gives rise to proof obligations

which are discharged by an automatic theorem prover; there is no option to perform

interactive proof; the tool targets Java or C++ [146] code. Other work is aimed at

extending the existing Java language, such as the atomic type system presented in [62],

which proposes the addition of atomic, guarded by and requires keywords, to the Java

language. The type system is expressed formally, and maps to a Java application that

type checks the annotated code (checking for atomicity violations in the specification).

2.9 Java Correctness and Concurrency

The following section describes some of the approaches which can be used to improve

the dependability of Java implementations. Java will be the target platform for our im-

plementations, a decision influenced by its widespread use, and ability to accommodate

concurrent processing. Of the many methods available we have chosen to give details

of these in particular since they give a valuable insight to the alternative approaches to

achieving improved reliability.

2.9.1 JCSP

JCSP [157, 158] is a Java library arising from a combined CSP/Occam model, providing

a framework for implementing the Occam [134] approach to concurrency. It uses a

message passing, rendezvous style, as a basis for communication between concurrent

Java threads. [123] extends the theory to distributed networks of threads. The approach

is underpinned by CSP semantics and makes use of the notions of processes and channels

to provide a point-to-point communication style. A CSP specification of JCSP has been

verified using the FDR model checker. A monitor abstraction is used to describe the

behaviour of synchronized Java methods. Lock acquisition and release are described in

the following CSP processes STARTSY NC, and ENDSY NC. The claim and release

events represent lock acquisition and release respectively, and o is the object being locked

Chapter 2 Background 36

by thread t.

STARTSY NC(o.t) = claim.o.t→ SKIP

ENDSY NC(o.t) = release.o.t→ SKIP

The processes that model locking are used with the MLOCK and MLOCKED pro-

cesses which provide an ordering of events for modelling waiting, as follows,

MLOCK(o) = claim.o?.t→MLOCKED(o, t)

MLOCKED(o, t) = release.o.t→MLOCK(o)

� notify.o.t→MLOCKED(o, t)

� notifyAll.o.t→MLOCKED(o, t)

� waita.o.t→MLOCKED(o, t)

We can see that once the lock is claimed the MLOCKED process can choose to re-

lease the lock, perform notification, or wait. The CSP semantics of JCSP are described

in [157]. Processes are implemented using the CSProcess class which contains a run

method to initiate communication between threads. The process communicates with

other processes only through channels, or events. The JCSP One2OneChannel is used

to facilitate communication between two processes, other configurations for differing

numbers of readers and writers are provided by, Any2AnyChannel, Any2OneChannel

and so on. The channel classes typically have a field to store the transmitted value, a

boolean field indicating if the channel is empty, and two methods read and write. The

correspondence between the JCSP classes and the CSP model allows the behaviour to be

checked for issues such as deadlock using a tool such as FDR [63]. Various Occam fea-

tures are found in JCSP such as external choice, and parallel and sequential composition

of processes.

2.9.2 JCSProB

A recent development has been the combination of JCSP and ProB [104] called JC-

SProB [162]. The ProB model checker used in JCSProB supports a combined classical-

B/CSP model [35] albeit with some restrictions applied. Its translation utility creates

Java code based on the JCSP framework. The approach is restricted to a single CSP-

machine pair and does not feature refinement. In a combined B and CSP development

events of the CSP processes synchronize in the normal way, and when combined with

a B machine, synchronize with CSP events with the same name and parameter types.

The effect of this to facilitate an ordering on the operations of the B machine. A com-

bined operation/event with the same name and parameters is only enabled when CSP

events are enabled and the guards of the operation are true. The operation signature

o = o1, . . . , om ← op(i1, . . . , in) is related to the CSP statement ch!i1 . . .!in?o1 . . .?om.

Chapter 2 Background 37

We see that the CSP model sends its parameters to the B machine and receives the result

from the B machine return parameters. The following CSP process PROC restricts the

B machine of 2.1.5 to performing op1 followed by op2 and then op1 again.

PROC = op1!x1?y1→ op2!x2?y2→ PROC

JCSProB provides a specialized channel class PCChannel for the Java implementa-

tion. The class inherits from java.lang.Thread, so implementations override the run

method to describe state updates. Four other operations implement the behaviour

which includes the possibility of parameter passing between the CSP model and B

machine. The void ready() method is used where there are no parameters to pass,

void ready(V ector in) is used where the CSP process passes parameters to a B oper-

ation, V ector ready rtn() is used where a CSP process receives arguments from a B

operation, and V ector ready rtn(V ector in) where a CSP process passes parameters to

B operation, and receives return parameters back from a B operation. A precondition

check can be performed in the preConditionCheck() method, it blocks the calling thread

if the precondition is not satisfied. The combined model is amenable to model checking

with ProB and can be used to check safety and deadlock properties.

2.9.3 JML

The Java Modelling Language (JML) [28, 102] is a semi-formal method based on the

design-by-contract (DBC) [111] approach. In DBC a client of a service is expected to

satisfy the preconditions of a contract in order to use a service safely. In return, the

service provider’s activity is described by the postconditions of the contract; the provider

is expected to satisfy the postconditions. In a markup language such as JML the contract

is at a higher level of abstraction than an implementation, this allows the developer

flexibility to define more than one implementation satisfying a single contract. In this

way implementations can be changed without affecting the specification, for instance

to provide a more efficient implementation. JML allows a developer to annotate Java

programs with markup contained in comments /*@ markup @*/, or following //@ so

that traditional compilers ignore the additional information, expressions are similar in

style to Java expressions in order to make them understandable to those familiar with

Java; however JML assertions are not allowed to have side effects. As in Java, a JML

specification be inherited from a superclass, and similar scoping rules can be applied

to the JML specification itself. Properties specified using JML can, most often, be

checked mechanically. The keywords requires and ensures describe the precondition

and postcondition respectively and are the foundation of its DBC style. An example of

Chapter 2 Background 38

their use follows,

public class Div{

int val;

//@ invariant 0 <= val;

/ ∗@ requires divisor! = 0;

@ assignable val;

@ ensures val == \old(val)/divisor

@ && \result == val;

@ signals(DivideException) val/divisor < 0

@ ∗ /

int divide(int divisor){

if(val/divisor >= 0)

val = val/divisor;

else

throw new DivideException(“V alue to low′′);

return val;

}

}

In the above example we see the JML specification in comments which include an in-

variant. The invariant states that val must always be greater than or equal to zero, and

if the invariant is violated during the method call an exception should be signalled. It

is possible to specify two kinds of postcondition, normal and exceptional. The signals

keyword allows identification of exceptional postconditions, and the ensures clause al-

lows specification of normal postconditions. In the case of method specifications, they

are typically followed by the Java code that implements the method specification. The

requires clause defines the precondition, the client will have to check that divisor! = 0.

The implementer of the service must guarantee that val is changed and assigned the new

value, as described in the ensures and assignable clauses. The \result clause states

which value should be returned by the method. In some situations it is necessary to

distinguish between the pre−state, the state before entering a method; and post−state,
the state on method exit. This can be seen above where \old(val) is used to access the

old value of val. Another JML feature is the ability to use quantification when specifying

properties, \forall is used for universal quantification, and \exists is used for existential

quantification.

There are a number of tools available that can be used with JML [29]. The JML

specification can be compiled using the jmlc compiler, which converts pre-conditions into

Java assertions and adds them to the Java bytecode; these can then be used to perform

Chapter 2 Background 39

run-time assertion checks provided that assertion checking is enabled in the JVM. Static

checking and verification of assertions is possible using other tools. ESC/Java2 is a

static checker that has been extended to check JML annotations against Java code. The

tools create verification conditions from the annotations and code, as well as verification

conditions and makes use of a automatic theorem prover to find errors. The checker is

typically used to discover out-of-bounds array references, non-null references - and for

concurrent programs, deadlock and race conditions. ESC/Java2, however, is not used

to ‘prove’ absence of all errors, but simply that none have been found by the checker. A

more interactive approach, is to use the LOOP tool [26] to create a specification suitable

for use with the PVS theorem prover [122].

2.9.4 Java Pathfinder

Java PathFinder (JPF) [103, 156] is an approach where Java bytecode is model checked

directly using a modified Java Virtual Machine (JVM); it is particularly useful for check-

ing for concurrency issues such as deadlock and data races. The authors argue that model

checking at the bytecode level provides a number of benefits, including the fact that in-

structions in the bytecode are easy to handle in the analysis tool. It is also possible

that the application of formal methods at the design level does not prevent some errors

being introduced at the lower, implementation, level. Therefore model checking at this

lower level can eliminate these errors, however it is still the case that correct bytecode

does not imply that the Java is correct. As is common with model checking approaches

JPF suffers from state-space explosion as the complexity of the model increases; sev-

eral techniques are described to reduce this problem such as symmetry reduction and

static analysis. Symmetry reduction seeks to prevent areas with similar behaviour be-

ing re-checked, by deriving a canonical form and checking this just once; JPF uses this

technique in relation to class loading for instance. Static analysis uses slicing and partial

order evaluation techniques, among others, to reduce the state space. Slicing will typi-

cally reduce the state space by selection of a subset of the state space that is relevant

to a particular property under review. Partial order reduction (POR) techniques try to

identify interleaving/non-conflicting areas in the code which can be reduced to a single

execution path; thereby reducing the number of paths to analyse. In the current tool

POR can be carried out on-the-fly.

JPF checks the bytecode to find unhandled exceptions, data races and deadlocks in the

code. To find (but not prove absence of) potential data races it uses an algorithm based

on the Eraser algorithm of [130].

The main advantage of JPF is that it works on Java bytecode without the need for the

developer to learn a new language, but there is currently no support for many native code

libraries such as java.awt, and only limited support for java.io, Java’s I/O libraries. The

Chapter 2 Background 40

Model Java Interface (MJI) is a partial solution to this problem, it allows a developer

to replace a code library with an abstraction.

2.9.5 JR - extended Java

JR[92] is an approach to parallel distributed computing which can also be used to specify

executions in shared memory systems. This work is interesting since it describes an

approach to handling concurrency which uses an extension to the Java language, which

is then translated back to a standard Java program to provide an implementation. JR

introduces a version of Java which is extended with the SR [13] concurrency model

(Synchronizing Resources). Initially we say a few words about SR before moving on to

JR. The SR concurrency model allows specification of one or more Virtual Machines

(VM) in an environment with one or more physical machines; each VM resides on, at

most, one physical machine and a physical machine can contain more than one VM.

Processes can share objects within a single VM or across a number of VMs. Each

VM has global and resource objects, these have a two distinct partitions - a public

and a private segments. The publicly visible part of the specification contains only

type, constant and operation declarations; additionally globals may declare variables.

The ‘private’ part is the body, which contains private declarations and the operations’

behavioural specification. The variables declared in a body are visible only from within

the body in which they are declared. In SR the units of execution are processes and

procs. processes are created and run when the enclosing resource is created; whereas

procs are invoked explicitly by a caller. In SR processes communicate using operation

invocation and this can take one of several forms, we discuss this further when dealing

with some of the Java programming aspects.

JR introduces a number of communication styles at a high level of abstraction. In

traditional Java programming Remote Method Invocation (RMI) is the highest level

of abstraction used for communication in its distributed model. Indeed the JR imple-

mentation uses RMI in its implementation, but it is hidden from the developer. The

caller of the operation can use a synchronous or asynchronous communication style,

and the operation can be serviced using a procedural style, or alternatively using an

invocation queue. Synchronous style communication is invoked using an operation call,

asynchronous communication uses a send request. Operations are serviced as follows,

• Procedure Invocation Style - an operation is serviced by an object inheriting from

ProcOp, the operation is simply invoked by executing the method body.

• Invocation Queue Style - this is derived from the SR input statement (a generalisa-

tion of Ada’s select and accept [147]), and manifests itself as an invocation queue

in JR. Operation invocation requests are queued in the called object. Operations

Chapter 2 Background 41

wait in the invocation queue to be serviced by the inni statement, in this style the

server chooses when to invoke the operation.

When the different communication and servicing approaches are combined they give rise

to the following communication styles of Table 2.2. The first column of the table shows

the communication style from the caller, which is either a synchronous call (caller waits

for reply) or an asynchronous send request (caller does not wait for a reply). The second

columns describes the way in which a receiver can service the communication, which

is either in a procedural style (no queue) using ProcOp, or by queuing requests in an

invocation queue where the server imposes its scheduling a policy. The third column

is descriptive, but it is worth noting that an asynchronous procedure call is described

as dynamic process creation; by this we mean that a new process is created and run in

order to service the request.

Communication Service Style

Synchronous ProcOp Procedure Call

Synchronous InOp Rendezvous

Asynchronous ProcOp Dynamic Process Creation

Asynchronous InOp Message Passing

Table 2.2: Communication Styles of JR

In summary - JR introduces some useful extensions to Java which, at a high level of

abstraction, allow specification of distributed, concurrent systems. Features include

the creation of remote virtual machines, without the need for user configuration at

run-time; remote object/process creation; support for asynchronous and synchronous

communication styles; two methods of servicing - invocation queue and direct invocation.

JR extended-Java is translated back to a standard Java format for implementation.

2.10 Review of the Chapter

In this chapter we have provided an overview of the domain in which we make our con-

tributions. We began by introducing some formal theories that underpin the state of

the art in our field of interest; we continued with a general discussion about the various

development approaches that can be used to improve the reliability of systems. We

discussed how formal methods tend to be applied to particular kinds of problems, and

described several approaches that combine formal methods to provide broader solutions.

Next we introduce object-oriented technology and discuss how object-oriented technol-

ogy has influenced specification in the formal methods field. The next section introduces

the Event-B formal method which forms the basis for the work described in this thesis.

The UML-style graphical interface for Event-B specification, UML-B, was then intro-

duced. It is from UML-B that we take inspiration for some of our modelling techniques.

Chapter 2 Background 42

This was followed by a description of the B0 implementation language, which is the

implementation notation associated with classical-B development. We then discussed

some problems encountered in Java implementations related to the use of concurrent

executions, and sharing of memory. We concluded with a discussion of some approaches

aimed at improving the specification, and reliability of Java implementations.

Chapter 3

The OCB Language Part 1 -

Processes and Monitors

In this chapter we introduce OCB with a discussion of our motivation and the main

aspects that influence our approach. We introduce OCB in an incremental way, begin-

ning with non-atomic constructs, followed by monitors and procedure calls. Much of

this chapter, and indeed the chapter that follows it, is related to and expands upon our

paper [54].

3.1 Motivation

When modelling a software system, an Event-B model will be refined to a point where

we are ready to provide information about the implementation. Our motivation then is

to provide an approach to link Event-B with an implementation that takes advantage of

multi-threading by allowing executions to interleave at certain points. Consideration is

given to how tasks may be performed by executing processes (granularity of atomicity);

and how to specify where the processes may interleave, and the pitfalls of interleaved exe-

cutions in an environment using shared memory; how to create an approach to specifying

systems that contain features of the Event-B formal method and also of object-oriented

technology.

We shall use Java [68] as the target implementation language since it is often used to

implement concurrent systems; however our work is not limited to this target in principle.

We introduce an intermediate specification language, Object-oriented, Concurrent-B

(OCB), which we use to link Event-B models and object-oriented implementations (see

Figure 1.1). The new notation sits at the interface between the two technologies, and we

incorporate aspects of both. From OCB we define two separate translations; the first,

OCB to Event-B, gives rise to an Event-B model and thus embodies the semantics of

43

Chapter 3 The OCB Language Part 1 - Processes and Monitors 44

the OCB model. The second, OCB to Java, gives rise to Java code that implements the

OCB model. We would expect to show that the Event-B model refines an existing model

in order to show that it satisfies properties of some abstract model. We aim to have a

notation which abstracts away some of the implementation detail from the developer,

and provides a simple view of atomicity with which to reason about the system under

development. We use labels to identify atomic steps, similar to those in +CAL [97],

which we map to program counters.

When defining the mapping to Java we need to ensure freedom from interference by

restricting visibility of data, and enforce a mutual exclusion policy for access to shared

data. We also utilize conditional waiting, but incorporate restrictions to avoid the

nested monitor problem [105] (where a monitor incorrectly retains a lock when a thread

waits). In particular we are concerned with preventing interference between concurrently

executing processes. Concurrent execution of interleaving processes is a typical way of

scheduling activities in a system where, using time slicing, each process can periodically

undertake some of its processing. Interference can occur when processes share memory

and values observed by a process are changed unexpectedly by some other process. A

process running in isolation from other processes is said to have as-if-serial semantics.

When a process is subjected to interference it deviates from its as-if-serial semantics as

described in [100], and we need to prevent interference in our implementation.

3.2 An Introduction to OCB

We begin by discussing some of the key issues, and the overall strategy for our approach.

An Event-B model may consist of a number of events which are abstractions, that when

implemented, are able to run in an environment that supports concurrency. Each event

of the abstract development can contain a number of updates to the state, which occur

atomically. Using OCB we impose an ordering on the interleaving atomic steps, and

translate this to an Event-B model which refines the abstract development. The events of

the implementation refinement are restricted so that they occur in the order specified in

the OCB specification. To facilitate the interleaving behaviour we introduce a sequential

operator,‘;’, and the notion of non-atomic operations, running in parallel, which may

interleave at the point of the sequential operator. To accommodate concurrency within

our system we introduce processes. A process’ behaviour is described by a non-atomic

operation. A non-atomic operation consists of one or more labelled atomic clauses

where the labels map to program counter values in the Event-B model. The program

counters are used to guard the events, and impose an ordering on the execution of the

clauses of each process. In our system we wish to share data between the processes in

a controlled way, to do this we introduce monitors with atomic procedures. Access to

monitor variables is restricted in such a way that processes can only access the shared

variables through atomic procedure calls. We also add the restriction that monitors are

Chapter 3 The OCB Language Part 1 - Processes and Monitors 45

not able to call a process’, or another monitor’s, procedures; thus preventing the nested

monitor problem.

3.2.1 Java and Event-B

Naturally, when attempting to create an interface between two technologies such as Java

and Event-B we find that some desirable, and perhaps some undesirable characteristics

manifest themselves. We are attempting to create a specification notation at a higher

level of abstraction than Java and find that we can make use of Event-B’s notion of

atomicity. At the same time we find that we are constrained somewhat, in order to

avoid some of the problems discussed in Chapter 2.

Atomicity

Developers creating concurrent programs using a language such as Java bear the respon-

sibility of ensuring their code is thread-safe; that is, the concurrently executing threads

obey as-if-serial semantics. It is widely recognised that reasoning about these aspects of

concurrency is very difficult, mistakes are easily made and errors are hard to detect. We

simplify a developer’s task by allowing them to reason about concurrency at a higher

level of abstraction. Event-B facilitates this and leads us to a solution where the Java

developers use a simple notion of interleaving atomic clauses. The developer, using a

higher level approach, is therefore relieved of the burden of specifying the lower level

locking details. An intermediate specification notation arises, with high level atomic

constructs, which maps to atomic events in Event-B. The notation is used to describe

a formal model of an object-oriented program. The new OCB notation includes object-

oriented features to facilitate mapping to object-oriented languages. We further propose

a mapping to Java code, where the resulting program has the same atomicity as the

corresponding Event-B model.

Event-B has a very simple notion of atomic events. Unlike unprotected Java methods,

intermediate states in an event are not visible. There are discrete ‘before’ and ‘after’

states associated with a state transition. The state transition occurs when an event fires

and the actions of the event determine the new state. This simple concept of an event

is represented by an atomic clause in the OCB model; the Java program, that results

from the transformation, is made to reflect this granularity of atomicity. For shared

data, in the translation, we map an OCB procedure call (and its related event) to a

synchronized method. Unshared data does not require protecting in this way. In the

Java implementation the Java bytecode generator adds additional code - on entry to a

synchronized method; prior to method entry, the monitor lock is obtained, the critical

activity is performed, and the lock is relinquished upon method exit. This sequence

relates to the formal model when an event takes place. The synchronized method will

Chapter 3 The OCB Language Part 1 - Processes and Monitors 46

only be atomic if certain restrictions are observed, such as respecting encapsulation.

These restrictions must be enforced by development processes and tools to ensure code

conforms to the formal model.

Concurrency

In Event-B two events cannot take place simultaneously so there are no concurrency

operators involving events, although Event-B can be used to describe concurrently exe-

cuting systems. It also does not contain object-oriented features. It is, however, possible

to construct an Event-B model that represents an object-oriented system that is parti-

tioned (into threads/processes) and keeps track of states of multiple threads. In such a

model the finest granularity of the interleaving is determined by the Event-B semantics

for events, where an event is atomic. In Java unrestricted interleaving can cause un-

predictable results and is difficult to reason about. So the relationship between events

and suitably protected Java code will provide a clear definition of atomicity for the Java

implementation. It is our intention that the atomicity of the Java program will corre-

spond to the atomicity of the formal model, i.e. the interleaving of the Java threads

can be shown to be equivalent to the interleaving of the formal model with its atomic

events. The relationship between OCB specifications, the Event-B model, and the re-

sulting Java program will need to take into consideration interference and deadlock. Our

current work imposes restrictions on an attribute’s visibility to prevent interference, and

each atomic clause is restricted to interact with a single monitor object. This will ensure

freedom from unintended deadlock caused by contention for multiple resources.

3.2.2 Process and Monitor Classes

In order to simplify reasoning about the interactions between interleaving threads we

stipulate that only non-shared objects can map to threads in the implementation. In

OCB this gives rise to the non-shared thread-like objects that we call processes, which

are instances of ProcessClass; and shared objects which are instances of MonitorClass,

which we refer to as monitors, see Figure 3.1. The relationship between the processes and

shared objects is similar to the relationship between Ada tasks and protected objects.

Ada tasks access a protected object’s data using its procedures, functions and entry calls;

these features ensure tasks have mutually exclusive access to shared data. ProcessClass

instances correspond to ‘runnable’ threads and each ProcessClass has a run operation

p1: ProcessClass

p2: ProcessClass

m: MonitorClass

refers to

refers to

Figure 3.1: Processes Sharing a Monitor Object

Chapter 3 The OCB Language Part 1 - Processes and Monitors 47

which is non-atomic. The run operation consists of a non-atomic construct which is

able to interleave in a controlled manner with other run operations. The constructs

have precisely defined points at which threads may interleave. In the Java translation of

a ProcessClass the resulting process object is an instance of java.lang.Runnable (the

interface for Java threads), and has a run operation containing a translated non-atomic

construct. The non-atomic construct is defined recursively, so it may contain other non-

atomic constructs. Types of construct include branching (if−then−andthen−end), and

looping (while−do−andthen−end). It would be possible for ProcessClass definitions to

contain atomic procedure definitions providing they are non-blocking, however we refrain

from adding this feature at this moment in time in order to simplify the explanation -

we intend to add this feature as part of future work. Instances of MonitorClass are the

servants of processes and do not map to threads, they translate to monitor objects in

Java. Each MonitorClass contains only private data and atomic procedure definitions.

These procedure definitions may make use of the conditional waiting construct; however

recursive calls are prohibited in OCB due to the fact that correspondence with Event-B

would be difficult to achieve.

3.2.3 Restrictions Required for Mapping to Java

To ensure access to variables is free from interference in the implementation we impose

a number of restrictions. The operations of a ProcessClass may invoke MonitorClass

procedures; and a number of process objects may share a monitor object. As mentioned

earlier in the chapter we stipulate that access to shared variables be through atomic

procedure calls, and add the restriction that monitors are not able to call a process’, or

another monitor’s, procedures; thus avoiding the nested monitor problem.

In the translation to Java, our monitor classes should map to classes where mutually

exclusive access to data is enforced by encapsulation, together with the use of synchro-

nized method calls. The constructs that give rise to mutually exclusive access are added

automatically by the tools during the translation process. To simplify our strategy we

ensure that all of our methods are synchronized. While this is not very efficient, fur-

ther optimisations can be investigated as part of future work; for example operations

accessing attributes that are not updated after instantiation would not need to be syn-

chronized. In order to ensure that the classes arising from the translation are properly

encapsulated we require that all OCB attributes give rise to private fields. They are

therefore not directly accessible from outside of the declaring class, and we enforce the

use of synchronized methods to access data.

We now discuss the issue of integer wrap-around in Java. An integer’s value, in Java,

ranges from -2147483648 to 2147483647, and arithmetic operations on Java integers

are modular. In many cases wrap around will not cause a problem since the integer

values will be nowhere near the minimum or maximum value; or perhaps wrap-around

Chapter 3 The OCB Language Part 1 - Processes and Monitors 48

behaviour in some unusual circumstances is part of the specification. If we wish to

prevent it then it is possible to define a constant named JavaInteger in the context;

the range is defined in an axiom with the interval −2147483648 . . . 2147483647. Then

we can use JavaInteger when typing the integers instead of Z which will give rise to

additional proof obligations. Our default for this work is to use Z to define integers,

and note that wrap-around is ignored for now, but the issue will be addressed in future

work.

3.3 OCB Language Features

3.3.1 The Sequence Operator

In a system where concurrently executing processes are able to interleave it is necessary

to describe the points at which the interleaving may take place, since uncontrolled in-

terleaving may lead to inconsistent state being visible. In order to facilitate interleaving

we introduce non-atomic operations, in process classes, which allow interleaving to oc-

cur at pre-determined locations. The locations at which processes may interleave are

identified by a semi-colon character, which is a sequence operator indicating left to right

ordering of evaluation. This kind of feature could be realised by either a pre-emptive or

co-operative multi-tasking implementation; but since we are targeting Java we use its

pre-emptive multi-tasking approach. The sequence operator’s operands map to labelled

atomic events.

3.3.2 Labelled Atomic Constructs

The atomic sub-clauses of non-atomic operations are identified with a unique label - when

translated to Event-B each label corresponds to a state in which an event is allowed to

fire. The model has an abstract program counter which keeps track of the current state.

We also use the label to create a unique event name, this allows us to quickly relate

events to the labelled clauses when reading the Event-B model. The event is enabled

when the program counter is in the state identified by the label, providing of course

all other guards are true. A simple example OCB fragment follows, where the labelled

constructs have an assignment Action.

label1 : a := a+ 1;

label2 : b := b+ 1

Chapter 3 The OCB Language Part 1 - Processes and Monitors 49

3.3.3 A Looping Construct for Processes

Since looping is a frequently required behaviour, we wish to introduce a construct that

is easy to reason about; we also impose restrictions on the loop condition to ensure that

no other process can interfere with its value. We refer to the OCB looping construct as

the while construct. In the while construct the guard refers only to private attributes

of the current class. The processes are not shared so the attributes of this class will not

be modified by another process. The andthen clause of a loop can contain a further

non-atomic construct. The OCB while clause is written as follows, with the square

brackets indicating an optional clause,

while(Guard) do Action [andthen NonAtomic] endwhile

The loop is guarded by a predicate Guard. While the guard evaluates true then the

do clause is evaluated, and the andthen clause is evaluated if one exists. The looping

behaviour continues until the guard is false.

It is important to note that this construct allows interleaving (with other threads) to

take place within the loop body. The Guard and Action of the do clause are evaluated

atomically, and this is optionally followed by a non-atomic clause in which interleaving

may take place. We consider that breaking the atomicity of the loop will allow for easier

proof, and makes for a more flexible approach. It is often the case that, during the

execution of a while loop, a number of procedure calls may be required. In OCB we are

limited to only one procedure/create call per atomic clause due to the restrictions we

have imposed to prevent deadlock. Using the andthen clause we are able to overcome

this limitation and allow two or more calls in a loop body.

3.3.4 Conditional Branching for Processes

Process class operations may specify conditional branching using the if construct. We

have a similar restriction on attributes used in the guard as for the while loop, that is,

attributes are private and non-shared. The if construct follows,

if(Guard) then Action [andthen NonAtomic] endif

There are additional branch options with an elseif and else clauses, they be discussed

more fully later in the chapter.

Chapter 3 The OCB Language Part 1 - Processes and Monitors 50

3.3.5 Conditional Waiting for Monitors

In our initial work we use Java’s built-in facilities for conditional waiting, java.lang.Object’s

wait and notifyAll methods. We allow monitor objects to block until a guard is satis-

fied. The OCB when clause, located in a monitor’s procedure definition, will translate

to these Java constructs. The conditional waiting construct has the following form,

where < and > indicate syntactic elements,

when(< Guard >){ < Action > }

The atomic Conditional Critical Region (CCR), the Action, is executed when the guard

is true. When the guard is false the operation blocks. In the Java translation the block-

ing behaviour corresponds to either unsuccessful monitor lock acquisition, or successful

lock acquisition followed by failure to satisfy the entry condition. An unsatisfied entry

condition causes the calling thread to block and the monitor lock to be released. In our

approach waiting threads are woken by notifyAll calls, which causes them to resume

and compete once more for the monitor lock. This corresponding Java conditional wait-

ing construct is as follows and may require an optional notifyAll method call if other

waiting process need to be informed of a state update that has occurred in the action.

while(!<Guard>){wait();} <Action>; notifyAll();

3.3.6 The MainClass Construct

The MainClass is the analogue of a Java class with a main method. This provides

the point of entry for execution in the model and facilitates the mapping to the Java

class which contains the main method. The main operation of our MainClass contains

construction clauses for process and monitor objects. In the construction clause new

instances are created. Process objects may refer to monitor objects; the name of a

monitor object can be passed to the constructor operation as a parameter, the monitor

object name is then assigned to an instance attribute in the constructor for later use.

When a ProcessClass is instantiated it is immediately available for scheduling, but

may not run for some time. In the Java implementation, the scheduling of a thread

occurs some time after the constructor call, the translator inserts a call to the Thread

object’s start method immediately after the thread is constructed, when it actually runs

is decided by the scheduler.

3.4 Mapping Processes to Event-B

We begin our formal description of OCB by describing the non-atomic, and labelled

atomic, constructs of processes. These are used to specify the behaviour of a process,

Chapter 3 The OCB Language Part 1 - Processes and Monitors 51

we also give details of how the labels are used to describe the states used in program

counters. A system may have a number of processes definitions, each with a non-atomic

operation that is able to interleave with non-atomic operations of other processes. We

use a syntax based on the guarded command language [52], discussed in section 2.1.2;

and later we use syntactic sugar to provide a more object-oriented style specification.

Here we use ‘;’ as the sequence operator, [] for choice, and do od for repeating. We

also use the following BNF style annotation, where s is a symbol; [s] denotes zero or

one s is permissible; s+ denotes 1 or more s is permissible; and s∗ denotes 0 or more is

permissible.

NonAtomic ::=

NonAtomic ; NonAtomic

| NonAtomic [] NonAtomic

| do Atomic [; NonAtomic] od

| Atomic

The syntax of a non-atomic clause allows a sequence, choice, loop or atomic statement.

Atomic statements have a body, optionally guarded by a predicate. The body may be an

Action involving assignment, assignments are of the form x := E, where x is a variable

name and E is an expression. They may be composed using, ‖, the parallel operator. In

our definitions of the OCB syntax we use left and right brackets, ‘/’ and ‘.’, to delimit

atomic regions. The syntax of the Atomic construct follows,

Atomic ::= Label : / [Guard→] Body .

We present a simple example to illustrate the mapping of a sequential clause which gives

rise to two Event-B events, evt1 and evt2. WHEN G THEN S END is the guarded

event syntax of Event-B with guard G containing a predicate, and body S containing

assignment actions. The labels of the specification map to values assigned to the process’

program counter variable, Ppc. An example specification is,

l1 : / y := x . ; l2 : / x := x+ 1 .

which results in the following two events,

evt1 , WHEN Ppc = l1 THEN y := x ‖ Ppc := l2 END

evt2 , WHEN Ppc = l2 THEN x := x + 1 ‖ Ppc := terminated END

The event evt1 is enabled when the program counter is l1. The state updates are

contained in the event body, together with the program counter update where the value

is set to l2; the next label in the sequence. The next event evt2 is enabled when the

Chapter 3 The OCB Language Part 1 - Processes and Monitors 52

program counter value is l2, which has been set by the assignment in the action of evt1.

Once again state updates specified in OCB are translated to the event body. During

translation we supply the value of the next label, in this case we specify that the process

terminates and assign the label terminated. Each process in the system will have such

a terminating label, although there may be some situations where translation does not

give rise to its use, such as when specifying a process with a loop that is forever true. It

should be noted that the above Event-B fragments use the , operator in event definition.

In this thesis we will however simply use = in place of , in the event specification, where

, has already been used.

The processes of a system are defined as a function over class names (CNames) to

processes.

Definition 3.1. Processes = (CName→ Process)

A process is defined as a set of variables and a non-atomic clause,

Definition 3.2. Process = P(V ar)×NonAtomic

The variables of the resulting Event-B model will include all variables of the translated

process together with a separate program counter variable for each process.

We introduce a transformation function, TP , which maps a process’ non-atomic clause

to a set of Event-B events. TP is typed as follows,

Definition 3.3. TP ∈ Processes× CName→ P(Event)

In order to define TP we introduce a function TNA that maps a non-atomic clause to

a set of events. The label supplied to TNA is the last program counter value assigned

in the clause. TNA is typed as follows,

Definition 3.4. TNA ∈ NonAtomic× Label × CName→ P(Events)

We denote function application, where we apply function f to one element d, as < d >f

or to a number of elements < d1, . . . , dn > as < d1, . . . , dn >f . We now define the

application of TP to a process with variables var, body na and name P . TP maps to

a set of events, where tp is a constant label indicating a termination state for a process.

Definition 3.5. < var, na, P >TP , < na, tp, P >TNA

We see that the translation of the set of variable declarations var, associated with the

process, is not addressed here. We wish to focus on the translation of the non-atomic

clauses at this point in time. We simply state that each variable declaration map directly

to an Event-B variable and typing invariant. An example declaration a ∈ Z gives rise

to a variable a and an invariant a ∈ Z.

Chapter 3 The OCB Language Part 1 - Processes and Monitors 53

Non-atomic clauses can be nested within other non-atomic clauses forming a hierarchical

structure, the top-most level has no following clauses, so the label supplied to TNA at the

top level is the terminating state tp. In order to define the non-atomic syntactic elements

we specify some well-definedness constraints regarding labelling of the constructs. Non-

atomic clauses are well-defined if the start label of each operand differs; the exception to

this is the choice construct, where each label must be the same. To identify the first label

of a clause we introduce a function sLabel (for start label), which takes a non-atomic

construct as its input parameter and yields the first label of a non-atomic clause.

Definition 3.6. sLabel ∈ NonAtomic→ Label,

Applied to the non-atomic and labelled atomic clauses we have,

sLabel(l : / [g→] b .) = l

sLabel(na1;na2) = sLabel(na1)

sLabel(na1[]na2) = sLabel(na1) = sLabel(na2)

sLabel(do na od) = sLabel(na)

We now look at sequential composition of non-atomic clauses; na1 and na2 are sequen-

tially composed clauses. The label, l2, passed to the TNA function is the end label of

the sequence. It specifies the final program counter value for the non-atomic clause.

Definition 3.7. < na1 ; na2, l2, P >TNA

, < na1, l1, P >TNA

∪ < na2, l2, P >TNA

where l1 = sLabel(na2)

A branching clause is defined as follows with na1 and na2 being composed using the

choice construct. Note the mapping of different label parameters on the right hand side

of the equality, when comparing to the sequence clause definition 3.7.

Definition 3.8. < na1 [] na2, l2, P >TNA

, < na1, l2, P >TNA

∪ < na2, l2, P >TNA

In a well-defined branching clause the guards of each branch, and any sub-tree, are

disjoint. Labels play an important role in determining the execution order in the trans-

lated Event-B model. The branching clause maps to two TNA transformations, where

sLabel(na1) = sLabel(na2); and both Label parameters are the same. This contrasts

with the transformation of a sequence clause where sLabel(na1) 6= sLabel(na2). In a se-

quence clause, the Label parameter of the first clause equals the start label of the second

clause, that is l1 = sLabel(na2), in order to model the enabling conditions for ordered

Chapter 3 The OCB Language Part 1 - Processes and Monitors 54

execution. However, in a branching clause the start labels form one of the enabling

conditions used to define choice between branches.

Now we turn our attention to the looping clause, the body of the loop consists of a Body

clause, and optionally a non-atomic clause. The definition of the simpler case, without

the optional non-atomic clause, follows,

Definition 3.9. < do l1 : / g→ b . od, l2, P >TNA

, {< l1 : / g→ b . , l1, P >TLA}
∪ {< l1 : / ¬g→ Skip . , l2, P >TLA}

Clause l1 is guarded by g; if g is true then b occurs, the program counter is unchanged

and the loop body can be evaluated again. In the case where the guard is false the action

is Skip, and the program counter is set to the value supplied as the Label parameter.

We now present the mapping where the optional non-atomic clause, na, is present. In

the following definition the program counter is updated to allow evaluation of na using

the label identified by sLabel(na). The last event arising from the clauses of na resets

the program counter to the initial value, this models the behaviour where the loop can

begin again, or exit depending on the guard.

Definition 3.10. < do l1 : / g→ b . ;na od, l2, P >TNA

, {< l1 : / g→ b . , l3, P >TLA}
∪ {< l1 : / ¬g→ Skip . , l2, P >TNA}
∪ < na, l1, P >TNA

where l3 = sLabel(na)

Transformation of a labelled guarded atomic action is defined next. The transformation

TLA takes an atomic statement, the end label and owning process name as parameters,

and returns one or more events. If the guard is omitted from the specification then a

true guard is assumed.

Definition 3.11. TLA ∈ Atomic× Label × CName→ P(Event)

The label of the clause forms part of the event guard, and the end label supplied to

TLA is the updated value of the program counter used in the action. The name of the

event is derived from the label and caller, and if necessary the clause type, here l1P is

P ’s label l1. We define the transformation of an atomic clause with a body consisting

of action A, as follows.

Definition 3.12. < l1 : / g→A . , l2, P >TLA

,

l1P =

WHEN Ppc = l1 ∧ g

Chapter 3 The OCB Language Part 1 - Processes and Monitors 55

THEN A ‖ Ppc := l2

END

where Ppc is the program counter of the process P .

Note that assignment actions in A may be composed in parallel. In this case we apply

the restriction that a variable used in A may only appear on the LHS of an assignment

once.

3.5 Mapping Monitors and Procedure Calls to Event-B

We now introduce monitors and procedure calls to the system. Monitors are shared

resources which enforce mutually exclusive access to their variables through atomic pro-

cedures. Our system now has non-atomic process bodies, atomic procedure calls, and

atomic assignments. Procedures can have formal parameters, which we define as a se-

quence, LV ar, of parameter declarations. Within a monitor class the names of formal

parameters must be distinct from the attribute names, this is due to the substitutions

that take place during translation, a restriction that may be overcome if required in

the future. The sequence of formal parameters correspond with the sequence of actual

parameters in a call. Translation of a procedure call results in the in-line substitution of

the procedure body in the caller, in place of the call; and formal parameters are substi-

tuted by actual parameters. Substitution of formal parameters by actual parameters is

described in [117, 118]; we use substitution by value but limit use of formal parameters

to the right hand side (RHS) of assignment expressions, and to guards. The procedure

name is unique in a monitor, but the same name may exist in another monitor. We

therefore need a way to link the called procedure with the appropriate monitor; we

use dot notation to do this. This is similar to the dot notation that we use later for

object-oriented features; except that here, on the left hand side (LHS), we are identi-

fying a monitor name; and later the name of an instance appears on the LHS. To be

well defined the monitor must contain a procedure with the called name and with the

same number of parameters. For each of a call’s actual parameters, a1, . . . , ak, the type

must match those of the formal parameters, f1, . . . , fk. To enable the specification of a

return parameter we introduce a special variable with the reserved name, return, that

can be used in an action clause. The return variable can only be used on the LHS of an

assignment statement in the procedure body. When in-lining it will be substituted by

the variable assigned to on the LHS of the procedure call. The syntax for the body of

a labelled atomic clause is extended to allow a procedure call, in addition to an action,

Chapter 3 The OCB Language Part 1 - Processes and Monitors 56

where m is a monitor name, and pn is a procedure name.

Body ::=

Action

| [v :=]m.pn(a1, . . . , ak)

Monitors is a collection of monitors over monitor names,

Definition 3.13. Monitors = (CName→Monitor)

A monitor has a set of variables and some procedures,

Definition 3.14. Monitor = P(V ar)× Procedures

Procedures is a collection defined by a function over procedure names,

Definition 3.15. Procedures = (PdName→ Procedure)

A procedure consists of local variable definitions (the formal parameters) guards and

actions and may specify a return type.

Definition 3.16. Procedure = LV ar ×Guard×Action× T

We define a TLA mapping for the new clause. We ensure the type of the return variable

matches the assigned variable in a static check. We impose restrictions on A, so f1, . . . , fk

can only appear in guards and expressions; and return only appears on the LHS of an

assignment.

Definition 3.17. < l1 : / gc→ v := m.pn(a1 , . . . , ak) . , l2 , P >TLA

,

l1P =

WHEN Ppc= l1 ∧ gp[f1 , . . . , fk\a1 , . . . , ak] ∧ gc

THEN A[f1 , . . . , fk\a1 , . . . , ak][return\v] ‖ Ppc := l2

END

where procedure pn of monitor m is defined by m.pn(f1, . . . , fk) = gp→A

In the mapping we use substitution; formal parameters are substituted for actual pa-

rameters in the guard and action, and the return variable is substituted by the as-

signed variable on the LHS of the call. We show a small example of substitution

where a variable of the caller, v, is assigned the value returned by a procedure call,

pn. We assume the monitor has some variables, x and r. We define the procedure,

pn(Integer z){x := z ‖ return := r}, and call v := m.pn(y). Then substitution is as

follows, (x := z ‖ return := r)[z\y][return\v] = (x := y ‖ v := r). Substitution for

Chapter 3 The OCB Language Part 1 - Processes and Monitors 57

guards is similar to that for actions. It is also worth highlighting the point, at this junc-

ture, that the procedure definitions of a monitor m, m.pn(f1, . . . , fk) = gp→ A are not

translated directly into Event-B. Procedure definitions are used in the translation of pro-

cedure calls as described above, and the resulting event may contain additional guards

from the containing non-atomic clause (such as those derived from branch conditions),

or assignment of a return value.

3.6 Review of the Chapter

In this chapter we introduced the first aspects of our main contribution. We introduced

the notion of processes to OCB in order to model entities performing some tasks. Such a

notion does not exist in the Event-B language, but we can model processes in Event-B.

By relating OCB and Event-B we are able to define semantics for OCB using an Event-

B model. We introduced the notion of ordered, interleaving non-atomic operations for

processes. Event-B events can be used to model the activities performed by interleaving

processes, however the Event-B language itself does not provide a method of imposing

ordering of occurrence of events, however the order in which events can occur can be

dictated by appropriate choice of guards. We introduced the notion of operations which

are able to interleave and make use of sequences (using the semi-colon operator) of

labelled atomic clauses. The use of labelled atomic clauses simplifies the reasoning

process by using a simple notion of atomicity. During translation each labelled atomic

clause maps to an individual event. In the presentation we introduced the syntax of

atomic and non-atomic constructs in terms of the Guarded Command Language, and

we have shown how the constructs are related to Event-B; that is they are given Event-B

semantics.

We wish to alleviate the developer from the burden of defining the ordering guards ex-

plicitly, by using sequences of labelled atomic clauses to describe the ordered executions

of processes. The labels map to program counter values and the translator automatically

adds the appropriate program counters to event guards, and program counter updates

to actions. The sequences of labelled atomic clauses described above are facilitated by

non-atomic constructs; we have already mentioned the sequence clauses which make use

of the semi-colon sequence operator. In addition we add further expressivity to OCB

with non-atomic clauses to facilitate looping, and branching behaviour. Once again such

looping and branching behaviour is not part of Event-B language and we wish to provide

these higher level constructs as part of our OCB language.

We introduced monitors and atomic procedure calls to OCB in order to model enti-

ties sharing data between the processes; where monitors provide the mutual exclusion

mechanism. An advantage of using a monitor abstraction in OCB is that it alleviates

Chapter 3 The OCB Language Part 1 - Processes and Monitors 58

the developer from the burden of reasoning about locking and implementing conditional

waiting.

Chapter 4

The OCB Language Part 2 -

Object-Oriented Features

In this chapter we introduce OCB’s object-oriented features, and then describe the

syntactic sugar that is used in the textual notation. Following this we show an example

OCB specification with its Event-B representation, the implementation in Java, and

finally discuss the Java translation rules. This chapter is a continuation of the previous

chapter which expands upon our paper [54].

4.1 Mapping Object-Oriented Features to Event-B

In the previous chapter we introduced processes and monitors, and until now there has

only been one process or monitor associated with a given monitor or process name.

We wish to extend the system to allow the use of their definitions as templates for

instantiation of objects; we refer to the process and monitor definitions as class defini-

tions. In order to facilitate instantiation we introduce constructor procedures with the

reserved name, create; new instances are constructed by processes invoking the create

procedure. Each monitor and process class can have a constructor procedure where ini-

tialisation of variables takes place. Initialisation of a class’ Integer and Boolean typed

attributes in the constructor is mandatory, since we map OCB attributes of these types

to total functions. In Java the initialisation of primitive types is as follows, ints are

initialized to zero and boolean types are initialized to false. In our work we could have

adopted the same initial values, but we decided to ensure OCB attributes are initialized

in the constructor, and perform a static check at the time of translation to ensure that

this has been done. Therefore the initial value of an attribute has to be explicitly speci-

fied, which should be of benefit in future work, the default value may be different when

extending the approach to other target platforms. When declaring attributes that are

class types the initial value may be null, a new child object may be constructed at some

59

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 60

later time, but attribute declaration is always related to the parent instantiation. We

therefore map attributes that refer to an instance using a partial function, this means

their initialisation in the constructor is optional. Actual parameters, a, supplied to

constructors may be used to initialize attributes, by substitution of formal parameters,

f .

A system is modelled as a special class called MainClass, its non-atomic clause corre-

sponds to the Java main method - the entry point for execution in the implementation.

Since the main class is a kind of class we use a name from CName,

Definition 4.1. MainClass ::= CName

ProcessClass∗

MonitorClass∗

V ar∗

NonAtomic

The main class has a name, a non-atomic clause, an optional number of process class

and monitor class definitions, and some attribute declarations V ar. Our approach uses

techniques introduced in UML-B [140], to model object-oriented features. We adopt the

UML-B style of modelling classes and object instantiation; to which we add processes,

non-atomic operations, program counters, and monitors. As in UML-B, for each class C

we add a variable C inst ⊆ C to represent the current set of instances of C. Each attribute

declaration v ∈ T of class C maps to a variable with the same name in Event-B, which is

typed v ∈ C inst→ T . A process’ non-atomic operations contain labelled atomic clauses

which map to events, and for each process class P in the system we model the flow of

execution, from one labelled clause to the next, using a program counter variable P pc.

This is typed P pc ∈ P inst → PLabel. Program counter values in PLabel correspond to

the labels of the atomic clauses, plus the terminating state. To create an instance of a

class we invoke its constructor by calling its create procedure. We modify the syntax

of Body of Chapter 3 to accommodate a constructor call to instantiate a class C with

actual parameters a1, . . . , ak .

Body ::=

Action

| [v :=]m.pn(a1, . . . , ak) (procedure call)

| v := C.create(a1, . . . , ak) (constructor call)

We will also see later that special treatment is required when translating the attribute

references used in the bodies of atomic clauses. It is assumed that when we instanti-

ate a process its processing can begin immediately; that is, in the implementation the

threads are started immediately following creation. We now introduce definitions for

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 61

ProcessClass and MonitorClass,

ProcessClass ::= CName V ar+ NonAtomic Constructor

MonitorClass ::= CName V ar∗ Procedure+ Constructor

Each process class has a unique name from CName and one or more unique (within the

class) attributes V ar. Attributes of V ar can be Integer, Boolean, array, or class types.

Similarly each monitor class has a unique name CName and zero or more attributes.

Monitor class attributes can be Integer, Boolean or class types. But it should be noted

that monitors may not call procedures of other monitors directly, however monitor ob-

jects can be passed to a process as a return value of a procedure call, then the process

can invoke a procedure on the monitor. The syntax of a process non-atomic clause, and

monitor procedure is as previously described in Chapter 3; the constructor procedure

syntax is as follows,

Definition 4.2. Constructor ::= LV ar∗ Action Type

The constructor consists of zero or more formal parameter declarations LV ar, Action

which describes the initialisation actions, and the type Type being constructed - which

is implicitly the class in which the create procedure definition is contained. The TNA

mapping function for OCB’s object oriented non-atomic clauses remains the same, as

does the TLA mapping function.

When an attribute is used in an OCB clause its use is with respect to the class in which

it is declared, the specification is general in the sense that when we describe an action

in an OCB clause it can be applied to any instance. However, when we map to the

Event-B model we need to model the attribute with respect to a particular instance of

the class, which we represent in an event as a parameter. The instance represented by

the parameter may be the owner of the labelled clause; the target of a procedure call; or

a new instance, in the case of constructor initialisations. The mapping of an attribute

reference occurs in both actions and guards of the Event-B model. If an OCB class C

has a declaration introducing v, and a clause referencing attribute v, then the attribute

declaration maps to an Event-B variable v as in UML-B. To model the attribute reference

in the event we introduce an event parameter s to represent an instance of class C; then

in the event guard and action v(s) is the corresponding representation of the attribute

in Event-B. To map the use of an attribute in OCB to its variable representation in

Event-B we apply the function, TV . This function takes a guard, action or expression

as a parameter, and maps it to the corresponding Event-B representation. V arName

is the set of attribute names belonging to the class being referred to, and EventBLV ar

is the name of the Event-B parameter representing the instance. The type of TV is

defined as follows,

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 62

Definition 4.3. TV ∈ (Guard ∪ Action ∪ E)× P(V arName)× EventBLV ar
→ (Guard ∪ Action ∪ E)

The variable renaming function TV may need to be applied a number of times to a

clause; we apply it once for each class with attributes mapped to the event guard or

action. TV is applied to an action a, expression E, or guard g as shown in Table 4.1.

We use the notation gbOp to refer to the OCB binary operators relating to the guards,

guOp to refer to unary operators relating to guards. Operators abOp and auOp refer to

binary and unary arithmetic operators.

Action a < a, vn, s >TV

a1 ‖ a2 < a1, vn, s >
TV ‖ < a2, vn, s >

TV

v := E < v, vn, s >TV :=< E, vn, sTV

Guard g < g, vn, s >TV

g1 gbOp g2 < g1, vn, s >
TV

gbOp < g2, vn, s >
TV

guOp g guOp< g, vn, s >TV

BooleanLiteral BooleanLiteral

Expression E < E, vn, s >TV

IntegerLiteral IntegerLiteral
BooleanLiteral BooleanLiteral
v v(s) where v ∈ vn

v where v /∈ vn
e1 abOp e2 < e1, vn, s >

TV
abOp< e2, vn, s >

TV

auOp e auOp< e, vn, s >TV

Table 4.1: Variable Renaming with TV

We show an example mapping with a attribute v, used in a labelled assignment

l1 : v := v+1, with a calling instance s. The mapping using TV where vn = {v} follows,

< v := v + 1, vn, s >TV = v(s) := v(s) + 1

The effect of the application of TV is that wherever a variable name appears in the

clause and also in the set of names vn a function application is created with respect to

s. Other literals and variables not in vn, and operators, are unchanged.

In subsequent definitions we use the following Event-B syntax for a guarded action with

parameters, ANY L WHERE G THEN S END. L is a list of parameters, G is a

guarding predicate, and the body S contains some assignment actions. The following

notation is used for any process class P , P pc(s), is the program counter for process

instances of class P . P inst is the set of current instances of class P . P set is the set of

potential instances of class P . The new definition of TLA for a labelled atomic clause

follows where the clause is defined in class P ,

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 63

Definition 4.4. < l1 : / g→A . , l2, P >TLA

,

l1P =

ANY s

WHERE s ∈ P inst ∧ Ppc(s) = l1∧ < g , vn, s >TV

THEN < A, vn, s >TV ‖Ppc(s) := l2

END

where vn is the set of variable names of class P.

The definition of a labelled constructor clause follows, where P creates a new instance

of process class Q,

Definition 4.5. < l1 : / gc→ v := Q .create(a1 , . . . , ak) . , l2 , P >TLA

,

l1P =

ANY new , s

WHERE s ∈ P inst ∧ Ppc(s) = l1 ∧ new ∈ Q set \Q inst ∧
< gc, vq , s >TV

THEN < A′, vp, new >TV ‖Ppc(s) := l2 ‖
Q inst := Q inst ∪ {new} ‖ v(s) := new ‖Qpc(new) := sLabel(na)

END

For this definition we state that na is the non-atomic clause of class Q, and vq and

vp are sets of variable names, of the caller, and new instance respectively. We assume

the constructor procedure body A is defined in the following way,

Q.create(f1, . . . , fk) = A

A′ is the action A with occurrences of formal parameters substituted by actual param-

eters. The actual parameters may be values; or mapped attributes which are resolved

with respect to the calling instance. We define A′ as,

A′ , A[fn1, . . . , fnk\ < a1, vq, s >
TV , . . . , < ak, vq, s >

TV] (4.1)

here fn1, . . . , fnk are the names of the formal parameters.

A similar mapping exists for monitor class instantiation, but excludes setting of a pro-

gram counter; monitors do not have program counters since they play a passive role in

the system. The definition of a labelled constructor clause follows, where P creates a

new instance of monitor class M ,

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 64

Definition 4.6. < l1 : / gc→ v := M .create(a1 , . . . , ak) . , l2 , P >TLA

,

l1P =

ANY new , s

WHERE s ∈ P inst ∧ Ppc(s) = l1 ∧ new ∈ M set \M inst ∧
< gc, vq , s >TV

THEN < A′, vp, new >TV ‖Ppc(s) := l2 ‖
M inst := M inst ∪ {new} ‖ v(s) := new

END

For this definition we assume that vq and vp are sets of variable names, of the caller,

and new instance respectively. Assume that the constructor procedure is defined in the

following way, with body A

M.create(f1, . . . , fk) = A

A′ is the action A with occurrences of formal parameters substituted by actual param-

eters. The actual parameters may be values; or mapped attributes which are resolved

with respect to the calling instance. We define A′ in the following way,

A′ , A[fn1, . . . , fnk\ < a1, vq, s >
TV , . . . , < ak, vq, s >

TV]

here fn1, . . . , fnk are the names of the formal parameters.

We now look at the definition of TLA for monitor procedure calls. We define a trans-

lation for a procedure call m.pn(a1, . . . , an), where pn is the procedure name, and m

is the target instance which is a variable belonging to instance s. We assume that the

procedure call, pn, is defined in a monitor class m in the following way,

m.pn(a1, . . . , ak) = gp→A

and j = m(s) gives an event parameter referring to the monitor instance being called.

We will perform a static check to ensure the return type of the procedure matches the

variable being assigned to, and we prohibit use of the return variable in gp and expres-

sions (RHS of assignments) in A. There are two events resulting from this mapping, the

second handles the case where the target m does not exist for some reason in the caller

s. In the implementation an exception is thrown and the process terminates, we model

this by assigning the terminating label tp to the program counter.

Definition 4.7. < l1 : / gc→ v := m.pn(a1 , . . . , an) . , l2 , P >TLA

,

l1P =

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 65

ANY s, j

WHERE s ∈ P inst ∧ Ppc(s) = l1 ∧ s ∈ dom(m) ∧ j = m(s) ∧
< gp

′, vj , j >TV ∧ < gc >, vq , s >TV

THEN < A′, vj , j >TV ‖Ppc(s) := l2

END

l1 nullP =

ANY s

WHERE s ∈ P inst ∧ s ∈ dom(Ppc) ∧ Ppc(s) = l1 ∧ s /∈ dom(m) ∧
< gc, vq , s >TV

THEN Ppc(s) := tp

END

where vq and vj are sets of variable names of the caller, and monitor instance re-

spectively; and the procedure call m.pn is equivalent to the guarded action, In the

definition gp
′ is a procedure guard with some (but not all) substitutions applied. We

apply substitutions in two stages, the first stage shown below is used to substitute ac-

tual parameters for formal parameters in the guard; these actual parameters need to be

mapped to variables associated with the calling instance using TV before substitution.

The substitutions related to monitor class attributes are then performed by applying

TV to gp
′ (seen above). The first stage substitutions are follows,

gp
′ = gp[fn1 , . . . , fnk\ < a1 , vq , s >TV , . . . , < ak , vq , s >TV]

where fn1, . . . , fnk are the names of the formal parameters.

The action clause A′ is an action with some of the substitutions applied. Again there are

two stages, and in the first stage the formal parameters of the called class are substituted

for actual parameters with TV applied as follows, then TV is applied to A′ (seen above)

to map monitor class attributes. We define A′ in the following way,

A′ , A[fn1, . . . , fnk\ < a1, vq, s >
TV ,

. . . , < ak, vq, s >
TV][return\v]

where fn1, . . . , fnk are the names of the formal parameters.

4.1.1 OCB Arrays

Until now we have assumed that OCB attribute types are restricted to simple Integer,

Boolean and class types. We will however find it useful to have a representation of an

array of elements of these types. The array we define is similar to that of Java in that

it is zero-based and of fixed length. To facilitate array declarations we introduce OCB

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 66

notation of the form T [n] v, where T is either Integer, Boolean or a class name; n is the

array capacity; and v is an attribute name. Array accesses are performed using index

notation v[i], where i is typed as i ∈ 0 . . . n − 1. For any class in Cinst with attribute

named v we map to an Event-B variable with the same name. The type definition in the

invariant clause depends, however, on the element type; we define Tp as the primitive

types Integer and Boolean, and Tc as any class type denoted by class name.

v ∈ Cinst→ (0 .. n− 1)→ Tp

The definition associated with primitive types gives rise to a function where the range

is a total function from indices to values. We assume that Integer array elements are

initialized to zero at the time of construction (of the class), and Boolean array elements

are initialized to FALSE. These values correspond to the Java implementation where in-

teger elements are initialized to zero, and boolean elements to false. The type definition

for an array of objects follows,

v ∈ Cinst→ (0 .. n− 1) 7→ Tc

In the constructor event of the class which defines the array attribute, initialisation of

an Integer array is performed by the following action, v(new) := λ.i(i ∈ 0..n − 1|0);

where n is the capacity of the array, and new is the new object being initialized. A

similar initialisation is used for boolean attributes.

An array of objects initially contains no elements so the range is a partial function. An

array may be used to store both process and monitor objects; but we currently have

no need to store process objects in arrays, since we have no requirement to refer to

them after instantiation. The current OCB approach creates a process instance and its

run operation is executed. We never refer to it externally since process classes are not

shared. When accessing an array element that stores a monitor object it is possible to

call one of the object’s procedures. Given a MonitorClassM and an array attribute

M [n] v containing M type objects, we may reasonably expect to locate a monitor object

in the array and call a procedure. We use the notation v[i].op() to do this, where i is an

integer index, and op is a procedure of M . Now it may be the case that the call is not

possible because their is no monitor object at that index. In effect v[i] would be null

in the Java implementation, or in Event-B for an instance s ∈ Cinst, v(s)(i) would be

undefined. We can ensure that any such call in a clause labelled l1 is well-defined by

adding an invariant clause as follows.

∀s·s ∈ Cinst ∧ Cpc(s) = l1⇒ s ∈ dom(v) ∧ i ∈ dom(v(s))

To translate calls of this type we simply use the TLA translation function 4.7 with

m = v[i], then the event that handles a null target also accommodates a null array

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 67

element. So we have,

< l1 : / gc→ v := v [i].pn(a1 , . . . , an) . , l2 , P >TLA

=

< l1 : / gc→ v := m.pn(a1 , . . . , an) ., l2 , P >TLA

We now consider the issue of array bound checking. The indices that we use for arrays

of size n should be in the range 0 .. n− 1. We do not explicitly check the array index is

in range; instead an array access or assignment gives rise to a proof obligation which we

are required to discharge. Discharging this proof obligation will ensure that the index

is in range. In the following example we show an attempt to assign to an out of range

index, which gives rise to a proof obligation that cannot be discharged. Assume that

the array variable Integer[5] arr is declared in a class P . An index value of 5 is out of

range since 5 /∈ 0 .. 4. The erroneous labelled atomic clause is,

l1 : arr[5] := 99

The labelled atomic clause maps to the following event action,

arr(self) := arr(self)C− {5 7→ 99}

The RODIN tool produces the following proof obligation, which we will be unable to

discharge; since clearly 5 /∈ 0 .. 4,

arr C− {self 7→ arr(self)C− {5 7→ 99}} ∈ P → (0 .. 4→ Z)

Next we come to the issue of referring to array elements on the RHS of assignment

expressions and in predicates. A simple array reference v[i] such as that used in the

assignment x := v[i] is translated using the previously introduced TV function. We

apply TV to resolve any attribute names in an expression, this may include the array

index i. The application of TV to an array reference rewrites the array name with

respect to the class it is in, and will also rewrite the array index if it is an attribute

name. So where vc is a set of variables of the owning process/monitor class, and s is

the owning process, we rewrite the array expression as follows,

< v[i], vc, s >TV = v(s)(< i, vc, s >TV)

In OCB we may have an assignment x := v[i], which assigns a value v[i] to an array

element x. In this case we need to apply TV to both left and right hand sides of the

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 68

assignment as follows,

< x := v[i], vc, s >TV

=

< x, vc, s >TV := v(s)(< i, vc, s >TV)

=

x(s) := v(s)(< i, vc, s >TV)

At first sight we may consider simplifying the right hand side further to match the left

hand side, but we do not do this since < i, vc, s >TV may result in an integer literal

index.

We now discuss OCB atomic actions involving array updates, that is where an array

value appears on the left hand side of an assignment expression. In OCB we can write

v[i] := x, for some integer array v we can assign an integer value x to some element

indexed by i. Applying TV to the expression we obtain,

< v[i] := x, vc, s >TV

,

v(s) := v(s)C− {< i, vc, s >TV 7→< x, vc, s >TV }

where C− is function override operator. An action can involve a number of terms with v

on the LHS of an assignment, such as v[i] := x ‖ . . . ‖ v[j] := y. We can generalize this

approach as long as the indices of the array are unique. In any action, we collect each

assignment expression with an array reference v appearing on the LHS, and apply TV

to create a single update which uses relational override as follows,

< v[i] := x ‖ . . . ‖ v[j] := y, vc, s >TV

,

v(s) := v(s)C− {< i, vc, s >TV 7→< x, vc s >TV ,

. . . , < j, vc, s >TV 7→ (, < y, vc, s >TV }

It then remains to prove that the indices are indeed unique, and in bounds. Bound

checking is performed by proof, the access shown above will give rise to a proof obligation

of the form i ∈ dom(v(self)) which should be discharged.

4.2 Syntactic Sugar for Specification

The guarded command language has served as a useful notation for defining the map-

ping to Event-B. We can however define syntactic sugar to provide a notation which

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 69

is more familiar to implementers of object-oriented systems. We provide the following

programmatic style notation. Firstly we introduce an if style choice construct.

Definition 4.8. l1 : if(g1) then b1 andthen na1 endif

elseif(g2) then b2 andthen na2 endelseif . . .

else bn andthen nan endelse

,

l1 : / g1→ b1 . ;na1

[]l1 : / ¬g1 ∧ g2→ b2 . ;na2 . . .

[]l1 : / ¬g1 ∧ ¬g2 ∧ . . . ∧ ¬gn→ bn . ;nan

The looping construct is presented in the form of a while loop,

Definition 4.9. l1 : while(g) then b andthen na endwhile

,

do l1 : / g→ b . ;na od

We use a when clause to guard monitor procedures,

Definition 4.10. when(gp){A}
,

/ gp→A .

The mapping to Event-B is intended to be fully automated, and we give details of the

tool support in Chapter 5. The sugared form of specification also provides for a simpler

mapping and automatic translation to Java. This is described later in Section 4.4.

4.3 An Example Mapping to Event-B

In this section we will show how a simple OCB specification gives rise to an Event-B

model. Figure 4.1 shows an OCB specification with two ProcessClass, a MonitorClass,

and MainClass, definitions. The MonitorClass called Shared has two attributes, In-

teger v and Integer tally. The shared MonitorClass stores a value in v. The constructor

procedure initialises these attributes. The MonitorClass has procedures to set and get

the value of v, setV al and getV al, and keeps a tally of read attempts in tally. The

MonitorClass is shared between two process instances, Get and Put. The Get process

stores a reference to the Shared instance in its shared attribute; the Shared instance is

passed to the process, and the shared attribute is initialised, in its constructor procedure.

The run operation’s l1 clause specifies looping behaviour. The loop calls the Shared

instance’s getV al procedure to obtain the value of v and assigns the value to i. The

clause l2 then updates the Get class’ counter attribute which is used to guard the loop.

The Put process instance provides new values for the shared class’ v attribute. It does

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 70

ProcessClass Get{
Shared shared , Integer i, Integer count
Procedure create(Shared shd){ shared := shd ‖

i := 0 ‖ count := 0 }
Operation run(){

l1: while(count < 100) do i := shared.getVal()
andthen l2: count := count + 1 endwhile

}
}

ProcessClass Put{
Shared shared, Integer val, Integer count
Procedure create(Shared shd){ shared := shd ‖

val := 0 ‖ count := 0 }
Operation run(){

k1: while(count < 100) do val := count mod 5
andthen k2: shared.setVal(val) ;

k3: count := count + 1 endwhile
}
}

MonitorClass Shared{
Integer v, Integer tally
Procedure create(){ v := 1 ‖ tally := 0 }
Procedure getVal(){

when(v > 0){ tally := tally + 1 ‖ return := v}}:Integer
Procedure setVal(Integer vl){ v := vl }
}

MainClass Main{
Put pu, Get ge, Shared sh
Operation main(){

m1: sh := Shared.create();
m2: pu := Put.create(sh) ;
m3: ge := Get.create(sh)

}
}

Figure 4.1: An Example OCB Specification

this by calling the Shared instance’s setV al procedure in clause k2 which resides within

the loop guarded by the condition of clause k1. The MainClass provides the entry

point for execution. The attributes are used to keep track of the instances; the Shared

instance is created in clause m1 and passed to the process constructors in clauses m2

and m3. The getV al procedure demonstrates the use of a conditional waiting clause; a

value is only returned by the procedure if it is greater than zero and is caused to wait

otherwise.

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 71

In the examples that follow we use a sanitized mapping for clarity. This is mainly

achieved by shortening names, for example, the frequently used parameter self appears

as s; at a later stage we will present actual translations. Where a variable name is used

in more than one class we have added a subscript to identify which class they belong

to. The attributes of the OCB classes give rise to variables in the Event-B model, and

these are typed in the invariant as follows. We make use of Mainset and Putset which

are carrier sets defined in the associated context.

Maininst ∈ P(Mainset)

Mainpc ∈Maininst 7→Mainctr

Putinst ∈ P(Putset)

Putpc ∈ Putinst 7→ Putctr

Getinst ∈ P(Getset)

Getpc ∈ Getinst 7→Getctr

sharedput ∈ Putinst 7→ Sharedinst

sharedget ∈ Getinst 7→ Sharedinst

sh ∈Maininst 7→ Sharedinst

val ∈ Putinst→ Z

countput ∈ Putinst→ Z

countget ∈ Getinst→ Z

pu ∈Maininst 7→ Putinst

ge ∈Maininst 7→Getinst

i ∈ Getinst→ Z

A process’ program counter can take values mapped from its labels, plus the terminating

label maint. The labels map to constant names which form an enumerated set of

available values. The MainClass program counter Mainpc is a mapping from instances

of main to an enumerated set of program counters defined in Mainctr; similarly the

program counters for the instances of the Get class are defined in Getctr, and for the

instances of Put we have Putctr. The enumerated sets of program counters are axioms,

constructed by the translator, in the context as follows,

Mainctr = {m1 ,m2 ,m3 ,maint}

Getctr = {l1 , l2 , gett}

Putctr = {k1 , k2 , k3 , putt}

In the following example we show the mapping of a create call in the clause labelled

m2 of MainClass Main. This maps to an event m2Main in which a new Put process

instance is created and initialized, and the program counter is updated with the next

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 72

label in the sequence.

m2Main =

ANY new , s

WHERE s ∈ Maininst ∧ s ∈ dom(Mainpc) ∧Mainpc(s) = m2∧

new ∈ Putset \ Putinst ∧ s ∈ dom(sh)

THEN sharedput(new) := sh(s) ‖ val(new) := 0 ‖ countput(new) := 0‖

Mainpc(s) := m3 ‖ Putinst := Putinst ∪ {new} ‖ pu(s) := new‖

Putpc(new) := k1

END

The event action is simply constructed as per definition 4.5. We discuss the substitution

of formal parameters and variable renaming since it is one of the more complex aspects

of the mapping. We have a formal parameter shd replaced by sh of Main (but renaming

of the actual parameter sh takes place first). So using equation 4.1 and vq = {pu, ge, sh}
we have,

A′ =(sharedput := shd ‖ val := 0 ‖ countput := 0)[shd\ < sh, vq , s >TV]

= “substitution, < sh, vq, s >TV = sh(s)”

(sharedput := sh(s) ‖ val := 0 ‖ countput := 0)

Then the variables vp = {sharedput, val , countput} associated with the newly constructed

object are renamed.

< sharedput := sh(s) ‖ val := 0 ‖ countput := 0 , vp, new >TV

= < A′, vp, new >TV

sharedput(new) := sh(s) ‖ val(new) := 0 ‖ countput(new) := 0

Similar events model the construction of the Get process class and the Shared monitor

class instances. We now consider the translation of the run operation of ProcessClass Put.

This gives rise to five events relating to: k1 with a true guard; k1 with a false guard; k2

with a procedure call, k2 null handler (the target does not exist) and k3 counter update.

We now show the event k1Put, the true branch that arises from the clause labelled k1

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 73

containing a loop condition.

k1 whilePut =

ANY s

WHERE s ∈ Putinst ∧ s ∈ dom(Putpc) ∧ Putpc(s) = k1∧

count(s) < 100

THEN val(s) := count mod 5 ‖ Putpc(s) := k2

END

The WHERE predicate ensure that s is in the set of instances, and that the program

counter is k1. s ∈ dom(Putpc) simply ensures the succeeding predicate element is well

defined. count(s) < 100 arises directly from the loop condition. The event k1 falsePut

that arises due to the false guard follows,

k1 falsePut =

ANY s

WHERE s ∈ Putinst ∧ s ∈ dom(Putpc) ∧ Putpc(s) = k1∧

¬(count(s) < 100)

THEN Putpc(s) := putt

END

This event contains the negated loop condition and sets the program counter to the

value of the terminating state, since there is no other successor state following loop

termination. The third event, k2Put, arises from the second clause, labelled k2, with a

procedure call,

k2Put =

ANY s,m

WHERE s ∈ Putinst ∧ s ∈ dom(Putpc) ∧ Putpc(s) = k2∧

s ∈ dom(sharedput) ∧m = sharedput(s)

THEN v(m) := val(s) ‖ Putpc(s) := k3

END

The procedure call of k2 is expanded in-line, where the update of the procedure body

can be seen with the actual parameter substituted for the formal parameter. For cases

where the call is to a null target we provide the following event which terminates the

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 74

calling process.

k2 isNullPut =

ANY s

WHERE s ∈ Putinst ∧ s ∈ dom(Putpc) ∧ Putpc(s) = k2∧

s /∈ dom(sharedput)

THEN Putpc(s) := putt

END

The fifth event, k3Put, arising from the third clause labelled k3 updates count which is

used in the loop condition,

k3Put =

ANY s

WHERE s ∈ Putinst ∧ s ∈ dom(Putpc) ∧ Putpc(s) = k3

THEN count(s) := count(s) + 1 ‖ Putpc(s) := k1

END

4.4 An Example Mapping to Java

The mapping of OCB to Java is mostly self-evident, and lends itself to automatic transla-

tion, since we have intentionally made OCB object-oriented. We now present an example

mapping followed by a discussion of the translation rules.

The top-level OCB MainClass construct maps to a Java class containing a main method

which is used as the entry point for execution. More specifically the MainClass’ non-

atomic clause is mapped to the body of the main method. Each ProcessClass in an

OCB development maps to a Java class implementing the java.lang.Runnable interface;

and the non-atomic (na) clause maps to the run method body. Each MonitorClass

maps to a Java class, but in this case the resulting classes should not implement the

Runnable interface (since they do not behave as threads). Each of a monitor class’ proce-

dures map to a synchronized Java method, and these can then be called in ProcessClass

operation definitions. We now show the Main class with its main method that arises

from the translation of the MainClass,

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 75

public class Main{
private static Put pu; private static Get ge;

private static Shared sh;

public static void main(String[] args){
sh = new Shared();

pu = new Put(sh);

new Thread(pu).start();

ge = new Get(sh);

new Thread(ge).start();

}
}
where vq = {v}

Attributes declared in the MainClass are mapped to static fields since they are referred

to in the static main method. They could however be variables local to the main

method but the choice appears to be arbitrary at this stage. They are restricted to

private visibility to prevent their direct use externally; and this is true also of fields

arising from MonitorClass and ProcessClass definitions. External access to monitor

class fields is only through Java synchronized methods, which ensures their accesses are

free from interference. We are able to see the synchronized methods of a monitor class

in the following,

public class Shared{
private int v; private int tally;

public Shared(){ v = 0 ; tally = 0 ;}
public synchronized int getVal(){

try{while(!(v > 0))wait();}catch(InterruptedException e){. . . }
tally = tally + 1 ; return v ;

}
public synchronized void setVal(int vl){ v = vl ;}
}

The class has a constructor where the fields are initialized; and two synchronized meth-

ods, one of which (getV al) contains conditional waiting. This arises from the mapping of

an OCB when clause which is a blocking construct. Here the built-in Java wait method

is used to block entry to the conditional critical region for as long as the condition for

entry is not met. When the condition is met the conditional critical region is entered

and processing proceeds. Some other thread will unblock the waiting thread using Java’s

built-in notifyAll method when an update is made to data held in the monitor.

We now look at the classes arising from the ProcessClass definitions,

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 76

public class Get implements java.lang.Runnable {
private Shared shared; private int i; private int count;

public Get(Shared shd){
shared = shd; i=0; count=0;

}
public void run(){

while(count<100){
i=shared.getVal(); count=count+1;

}
}
}

public class Put implements java.lang.Runnable {
private Shared shared; private int val; private int count;

public Put(Shared shd){
shared = shd; val=0; count=0;

}
public void run(){

while(count<100){
val=count % 5; shared.setVal(val); count=count+1;

}
}
}

The above classes declare private fields which are then initialized in the constructor

method. Notice that the process classes implement the java.lang.Runnable interface,

which requires us to provide an implementation for the run method.

4.5 Rules for Mapping OCB to Java

4.5.1 Overview

We now give an overview of some of the issues we consider when we map OCB to Java,

before giving a more thorough description. In an OCB specification the actions of non-

atomic clauses and procedure calls make use of the assignment operator ‘:=’, when we

maps to Java we substitute this operator for ‘=’. When we do this we must accommodate

the difference in the semantics of parallel composition of the action, and sequential

composition of the Java statement. To do this we introduce temporary variables in

Java that store the initial values upon method entry, and substitute these in certain

places. When we implement the when clause, for conditional waiting, we must also

consider the case where a waiting thread may be interrupted. In this situation a Java

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 77

InterruptedException is thrown, which must be caught by the waiting process. Another

issue is that of implementing OCB guards, with respect to conditional operators, since

their are several options one can choose from. In most cases operators of OCB guards

are mapped to Java operators, for example the OCB equality operator ‘=’ maps to ‘==’

in Java and the negation ¬(g) maps to !(g), ‘/ =’ maps to ‘! =’. We do however have

a choice to make with the logical operators, ‘&’ maps to Java’s conditional-AND ‘&&’;

we choose the conditional-AND option rather than the simple AND in order to make

use of the optimisation, where the right-hand branch is not evaluated if it has already

been found that the left-hand branch is false. In implementations the conditional-AND

construct is often used to perform a well-definedness check using the left-hand branch,

before evaluating the right branch. A typical example would be to check non-nullity of

some target before making a call that is used in the evaluation of the right hand branch.

In the presentation of our translation from OCB to Java we apply the translation rules

to the OCB model (a textual version of the OCB meta-model) to generate Java code.

We begin at the top level with an OCB system, and apply a succession of transformation

rules which act on the model elements, or collections of such elements. This effectively

gives rise to textual substitutions that result in Java code. The OCB System S is

comprised of a MainClass named N and a main operation mo; a set of process and

monitor classes, p1 .. pn and m1 .. mn respectively; and a set of attribute declarations

sv1 .. svn. Elements of the OCB model contained in angle brackets, <>, correspond

to elements in the OCB meta-model (discussed further in chapter 5). Translation rules

are defined over the meta-model elements, or sets of elements, and serves to clarify the

link between the specification and implementation. We indicate that a rule ruleName

should be applied to an element < el > using the notation < el >ruleName. We define

the following ∗ iterator that applies the rule to each element of a set or sequence. For a

set with n elements we have < el1 .. eln >
ruleName∗=< el1 >

ruleName .. < eln >
ruleName.

We define booleanLiteral as {TRUE,FALSE}, integerLiteral which corresponds to

the set of integers, and stringLiteral for attribute and class names. The sysDef rule

applies appropriate rules to the constituent parts of S. In the following definitions we use

italic font for meta-variables and translation functions, and standard font for concrete

syntax.

< S >sysDef

,

< MainClass N{ sv1 .. svn mo } >mainDef

< p1 .. pn >
procSet∗

< m1 .. mn >
monSet∗

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 78

4.5.2 Mapping the MainClass to Java

The class that is the starting point for execution, i.e. with a main method, is generated

from the attribute declarations sv1 .. svn and main operation mo as follows,

< MainClass N{ sv1 .. svn mo } >mainDef

,

public class N {

< sv1 .. svn >
svSet∗ < mo >moDef

}

where mo , Operation Main(){ na } and na is a non-atomic clause. The translation

of the main class’ variable list gives rise to static fields; one for each attribute svi in the

set of attributes sv1 .. svn, of type sv. Each OCB attribute declaration may have an

optional initial value init. An attribute sv is defined using OCB notation as follows,

sv , type identifier [:= init]

where type is Integer, Boolean, or a class name (of type stringLiteral). The attribute

identifier also is a literal string. An initial value must be supplied for Integer and

Boolean types, although monitor and process class types have no initial value since they

are to be instantiated in the non-atomic operation. In the case of array declarations

no initial value is required since array initialisation is as per Java defaults, i.e. zero for

ints, false for boolean, and null for class identifiers. We apply the rule svSet to each

attribute svi in the set of attributes sv1 .. svn; we define svSet in the following way,

< sv >svSet

,

private static < type >tDef identifier < init >sviDef ;

The translation from OCB types to Java types is shown in Table 4.2; defined types can

be either simple types or array types. In our tables we use italic font for the variables

of our translation, therefore in Table 4.2 stringLiteral is a place-holder for a string; in

the translation < type >tDef the string is simply written, as text, in the Java source.

However boolean is a string not a variable and that is written in the Java source as

“boolean”. Later in our work we will use tDef to translate the type of a returning

procedure, in the case where there is no value to return we translate to void.

The translation of the initialisation depends on the type of the attribute involved; literals

are unchanged, arrays use a constructor for initialisation, and any identifier is initialized

to null. Integer and Boolean types take the value in the init clause. Initialisation is

shown in Table 4.3

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 79

type < type >tDef

Integer int
Boolean boolean
stringLiteral stringLiteral

void
Integer[integerLiteral] int[]
Boolean[integerLiteral] boolean[]
stringLiteral[integerLiteral] stringLiteral[]

Table 4.2: Rule tDef

type init < init >sviDef

Integer integerLiteral = integerLiteral
Boolean TRUE = true
Boolean FALSE = false
stringLiteral = null
Integer[integerLiteral] = new int[integerLiteral]
Boolean[integerLiteral] = new boolean[integerLiteral]
stringLiteral[integerLiteral] = new stringLiteral[integerLiteral]

Table 4.3: Rule sviDef

The discussion of OCB MainClass attribute declarations is now complete and we turn

our attention to the main operation. The main operation consists of a non-atomic clause

na,

< Operation Main(){< na >} >moDef

,

public static void main(String[] args){< na >naDef ; }

This leaves just the non-atomic clause to be expanded now, and we deal with this in the

next section.

4.5.3 Mapping Non-Atomic Clauses to Java

The translation of the non-atomic clause in the main class using naDef is shown in of

Table 4.4. naDef takes a non-atomic clause parameter and returns a JavaStatement.

The translation for the main class na clause is the same as that of process class na

clauses, so we can refer to this for processes also. The non-atomic clause na can be

either a sequence, branching, looping or a labelled atomic clause a. Square brackets

indicate features that are optional in OCB, during translation optional elements do not

generate any Java code if they do not exist.

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 80

na < na >naDef

na1 ; na2 < na1 >
naDef ; < na2 >

naDef

if(c) then a andthen if(< c >cDef){ < a >aDef ;
na endif < na >naDef }

[elseif(c) then a andthen [else if(< c >cDef){ < a >aDef ;
na endelseif] < na >naDef}]

[else a andthen na endelse] [else{ < a >aDef ; < na >naDef }]

while(c) then a andthen while(< c >cDef){ < a >aDef ;
na endwhile < na >naDef }

a < a >aDef ;

Table 4.4: Rule naDef

The atomic clause a of Table 4.4 is a labelled atomic clause of which there are three

main types; action, procedure call or create call. A procedure call, or a create call, may

have a sequence of actual parameters ap which must match those of the target procedure

definition in type and number. Procedure calls optionally have an assignment involving

the return value, Table 4.5 shows the translation of the atomic clause types, where M ,

Q, m and x are stringLiterals. M and Q represent a monitor class name and process

class name respectively. m is an attribute name, pn is a procedure name, and x is an

attribute name. aDef takes an action as a parameter and returns a JavaStatement.

a < a >aDef

m.pn(ap) m.pn(ap)
x := m.pn(ap) x = m.pn(ap)
x := M.create(ap) x = new M(ap)
x := Q.create(ap) x = new Q(ap);

new Thread(x).start()
action (< action >acDef)iniSub

Table 4.5: Rule aDef

Actions are either a single assignment or a parallel composition of assignments and

are translated using the acDef rule shown in Table 4.6. The syntax of expression E,

appearing on the RHS, is shown in appendix A. In expressions most OCB operators map

directly to Java, the exceptions are the mod operator which maps to the % operator,

and an exponent x∧y must be mapped to a Java statement (int) Math.pow(x,y), this

returns a double value which we cast to an int.

Now there is a problem with mapping parallel composition to Java, consider the action

where x is initially zero and then we perform the update x := 1‖y := x. This cannot be

simply mapped to x = 1 ; y = x since in this case the semantics of parallel composition

result in the post state x = 1 ∧ y = 0, but the incorrect Java mapping results in the

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 81

action < action >acDef

action1 ‖ action2 < action1 >
acDef ;< action2 >

acDef

x := E x=E

Table 4.6: Rule acDef

post state x = 1 ∧ y = 1. To rectify this we introduce local temporary variables which

we declare and initialize on method entry. We then use these stored initial values in

the execution of the remainder of the method body. In this way we are able to map

OCB actions with parallel composition to sequential Java statements. To achieve this we

introduce rule iniSub to apply to Java statements involving translations from actions,

which is typed as,

iniSub ∈ JavaStatement→ JavaStatement

The translation of an OCB clause involving parallel composition takes place in two steps

as follows. First we translate the OCB action into a partially complete Java statement

which looks like the incorrect Java statement previously mentioned. We then collect all

the variables v in statement s that appear on the LHS of an assignment and on the RHS

of some other assignment; or on the LHS of an assignment and in a return statement.

For each v; we declare and initialize a local variable init v with the value of the variable

before the update, and insert this at the beginning of the statement. The variables v are

then substituted by init v where they appear on the RHS of the other assignments or in

the return statement. Note that if x := x+1 appears without x on the RHS of another

assignment no initial value substitution is required. The OCB semantics, based on Event-

B actions are equivalent to Java in this case, so < x := x + 1 >acDef , x = x + 1.

Returning to the example, using initial value substitution we introduce the rule iniSub

and apply it after applying acDef ,

(< x := 1 ‖ y := x >acDef)iniSub , init x = x ; x = 1 ; y = init x

We now describe the rules for translating parallel composition to sequential Java. We

apply a rule called iniSub to a partially translated Java statement s. This rule inserts

the initial variables and replaces the appropriate variables on the RHS of assignments.

Assume we have a number of variables v in a statement s to rewrite. We introduce

local variables lv1 .. lvn, one for each variable v that we need to rewrite. We declare and

initialize each lvi of lv1 .. lvn to the initial value of vi. Here n is the number of variables

v appearing on the LHS of the assignment statement and also on the RHS of some other

assignment in s, or on the LHS of an assignment and also the return statement. Each

local variable lvi then replaces vi where it appears on the RHS of an assignment. More

formally lv1 .. lvn maps to a sequence of semi-colon separated declaration/initialisation

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 82

statements,

< lv1 .. lvn >
lvSet , t1 lv1 = v1 ; . . . ; tn lvn = vn (4.2)

where: for each variable vi, ti refers to the Java type of vi.

We use < lv1 .. lvn >
lvSet to insert the initialisations at the beginning of statement s as

follows,

< s >iniSub ,

< lv1 .. lvn >
lvSet ; s[v1 . . . vn\lv1 . . . lvn]RHS

(4.3)

where: v1 . . . vn are the variables appearing on the LHS of an assignment and the RHS

of another assignment. The substitution [. . .]RHS is substitution restricted to the RHS

of assignment statements.

Conditional statements are used in OCB’s branching, looping and conditional waiting

clauses. The translation of each OCB condition to a JavaStatement is presented in

Table 4.7. Conditional statements may involve expressions E and guards Guard, as

shown in appendix A. The mapping here is relatively straightforward.

c < c >cDef

E = E E == E
E 6= E E ! = E
E < E E < E
E > E E > E
E ≤ E E <= E
E ≥ E E >= E
Guard ∧Guard Guard && Guard
Guard ∨Guard Guard || Guard
¬Guard !(Guard)

Table 4.7: Rule cDef

4.5.4 Mapping a ProcessClass to Java

We apply procSet∗ to generate a Java class for each OCB process class declaration pi,

named Pname, in the set p1 .. pn of process classes. Using OCB notation a process class

p is defined as follows,

p , ProcessClass Pname{ v1 .. vn c r }

and where v1 .. vn is a set of n attribute declarations, c is the create procedure, and r

is the run operation. Then the mapping to Java follows where procSet takes a process

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 83

class definition as a parameter and returns a Java class definition,

< p >procSet

,

public class Pname implements java.lang.Runnable{

< v1 .. vn >
vSet∗ < c >crDef < r >prDef

}

We first look at the mapping of the attribute declarations which give rise to variable

declarations in Java. These are similar to, but slightly simpler than, the equivalent

MainClass attribute declarations since we have no OCB initialisation to consider. All

explicit OCB initialisation is done in the create method, however certain Java fields need

to be initialized as detailed in Table 4.8 below. Assume each attribute declaration vi,

of type v, in the set of variables v1 .. vn consists of a type and name identifier defined

using OCB notation as follows, where type identifier is sugar for identifier ∈ type,

v , type identifier

The type can be Integer, Boolean, or a class name (of type CName). In the case of

array declarations, and class names we need to perform initialisation in the Java even

though none is explicitly specified in OCB. We apply the following rule to map each

attribute vi in the set of attributes v1 .. vn,

< v >vSet

,

private < type >tDef identifier < init >viDef ;

(4.4)

The translation from OCB types to Java types using tDef is shown in Table 4.2, and

we show the initialisation part in Table 4.8 where types can be either simple types or

array types. In the case of array initialisation, a new array is constructed using an array

constructor which is invoked using the new keyword.

type < init >viDef

Integer
Boolean
CName = null
Integer[integerLiteral] = new int[integerLiteral]
Boolean[integerLiteral] = new boolean[integerLiteral]
CName[integerLiteral] = new CName[integerLiteral]

Table 4.8: Rule viDef

We now consider the create procedure c of a process class named Pname, the create

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 84

method consists of an action a containing assignments used for attribute initialisation,

and a sequence of formal parameters fp1 .. fpn. Using OCB notation the create clause

c is defined as follows,

c , Procedure create(< fp1 .. fpn >){ < action > }

Translation crDef takes a create procedure as a parameter and returns a Java construc-

tor method, applying crDef to the create clause c gives rise to the following,

< c >crDef , public Pname(< fp1 .. fpn >
fpSeq∗){ < action >acDef ; } (4.5)

Here the translation of action using acDef is shown in Table 4.6. acDef takes an

action parameter and returns a JavaStatement. The type information associated with

each formal parameter needs to be mapped to a Java type. We apply fpSeq to each of

the n formal parameters fpi, of type fp, in fp1 .. fpn. In OCB each formal parameter

fp defined as a type and an identifier ,

fp , type identifier

applying fpSeq to each fp we obtain,

< fp >fpSeq , < type >tDef identifier (4.6)

The identifier is written to Java source with its type derived from rule tDef of Table 4.2.

The concluding part of the discussion about process classes involves mapping of the run

operation r. We define the run operation r using OCB notation as follows,

r , Operation run(){< na >}

prDef takes the run operation as a parameter and returns a Java method, so applying

prDef to r we have,

< r >prDef , public void run{< na >naDef ; }

and naDef was described in Table 4.4.

4.5.5 Mapping a MonitorClass to Java

To translate each OCB monitor class mi, of type m, in m1 .. mn with name Mname, we

apply the rule monSet to each mi. This maps each mi to a Java class. Using OCB

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 85

notation the monitor class definition m is defined as follows,

m , MonitorClass Mname { < v1 .. vn > < c > < pr1 .. prn > }

where v1 .. vn is a set of attribute declarations, c is the create procedure and pr1 .. prn is

the set of procedures. We have the translation function monSet which takes a monitor

class definition as a parameter and returns a Java class definition, applying monSet to

m we have,

< m >monSet

,

public class Mname {

< v1 .. vn >
vSet∗ < c >crDef < pr1 .. prn >

mprSet∗

}

We apply vSet to each of the attributes in v1 .. vn as shown in equation 4.4, and crDef

to the create clause as shown in equation 4.5. It just remains then to discuss the

transformation mprSet which is applied to each procedure pri of type pr in the set of

procedures pr1 .. prn. We define the procedure pr as follows,

pr , Procedure Prname(< fp1 .. fpn >){ < mpb > } : type

A procedure pr has a name Prname, a sequence of formal parameters fp1 .. fpn, and

a monitor procedure body mpb. The monitor procedure may contain a conditional

wait construct, and may also return a value. mprSet takes a monitor procedure as a

parameter and returns a Java method. So for each procedure pri, of type pr, in pr1 ..prn

we apply mprSet as follows,

< pr >mprSet ,

public synchronized < type >tDef Prname(< fp1 .. fpn >
fpSeq∗){

(< mpb >mpbDef)iniSub

}

Once again we can refer to previously defined rules for tDef in Table 4.2, fpSeq∗ in

equation 4.6, and iniSub in equation 4.3; it then only remains to define the rule mpbDef

where we need to accommodate conditional waiting, and assignment to the reserved

attribute return. The monitor procedure body mpb is defined using OCB notation as

follows, the square brackets indicate the optional when clause,

mpb , [when(c){] < action > [}]

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 86

We first look at the translation for an mpb clause that does not a when clause, mpbDef

takes a conditional waiting clause as a parameter and returns a Java statement.

< mpb >mpbDef

,

<

< action >actDef ;

notifyAll();

< action >retDef ;

>iniSub

The body of the action may take the forms shown in Tables 4.9 and 4.10, note the return

statement is removed from the Java in actDef since retDef is used to extract this, and

insert it as the last Java statement. The return assignment, if one exists, can appear

anywhere in the action since it is not composed sequentially. The final step is to gather

the initial values and make appropriate substitutions on the RHS of assignments, where

applicable, by applying iniSub.

action < action >actDef

< action > ‖ < action > < action >actDef ;< action >actDef

x := E x=E
return := E

Table 4.9: Rule actDef

action < action >retDef

return := E return E

Table 4.10: Rule retDef

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 87

Now we apply mpbDef to a monitor procedure body mpb that does have a when clause,

< mpb >mpbDef

,

<

try{

while(! < c >cDef){

wait(); < lv1 .. lvn >
lvSet ;

}

}

catch(InterruptedException e){

e.printStackTrace();

}

< action >actDef ;

notifyAll();

< action >retDef ;

>iniSub

In the translation of the when clause to Java we use the previously defined rules, lvSet

of equation 4.2, and cDef of Table 4.7. lvSet is applied after the return from the wait

clause. We reset the initial values when a thread resumes in case any of the variables have

changed by some other process while waiting. The final step is to gather the initial field

values and make appropriate substitutions on the RHS of assignments where applicable

by applying iniSub to the remainder of the statement.

4.6 Review of the Chapter

In this chapter we finalized our main contribution. We showed how, using an intermedi-

ate specification notation, we could link an Event-B development with a contemporary

object-oriented, concurrent programming language. The main focus of the contribution

is the ability to specify concurrently executing processes in the target implementation.

Although we link to an object-oriented programming language, and OCB has an object-

oriented look and feel, we have not explored the use of other object-oriented features

such as inheritance. The Event-B language does not contain object-oriented constructs

or low-level programming constructs; nor does it handle interleaving operations, so using

OCB we have been able to link these notions with Event-B and produce a mapping to

Java code. We introduced the following features to OCB to facilitate the link between

Event-B and concurrent, object-oriented implementations; ProcessClass - as templates

Chapter 4 The OCB Language Part 2 - Object-Oriented Features 88

for process objects, MonitorClass - as templates for monitor objects, constructor pro-

cedures - to instantiate the objects, and OCB- arrays.

OCB provides constructs for defining process classes that can be instantiated and im-

plemented as Java threads, and monitor classes that use the Java synchronization mech-

anism to ensure mutually exclusive access to shared data. The limitations of the Java

Language specification JLS 2 have been taken into consideration and the approach has

been tailored to accommodate this particular version. A feature of the OCB notation

is that a useful abstraction is made which alleviates the developer from the burden of

reasoning about locking and implementing conditional waiting, and simplifies the rea-

soning process due to the nature of the labelled atomic clauses. One of the key features

is that of OCB’s ability to specify interleaving operations; using non-atomic clauses com-

prised of labelled atomic constructs. The Event-B language does not provide constructs

to enable specification of interleaving in the same way. The non-atomic clauses facili-

tate sequential composition, looping, and branching behaviour. These are also features

which are absent from the Event-B language. In the presentation of these non-atomic

constructs we initially use the Guarded Command Language to describe the semantics.

However, the guarded command language is not used for the specification notation it-

self, instead we introduce syntactic sugar which is more affine to modern object-oriented

notations. In this way we introduce the specification style of constructs such as while

and if. We then proceed to use this syntax to define the mapping to Java code, and

handle the issues of parallel semantics for sequential Java statements, using initial value

substitution. An alternative approach here would be to introduce a sequential operator

for use in Event-B actions; since one does not exist at present. This would facilitate a

more straightforward mapping from Event-B to Java, but would require a change to the

Event-B language to incorporate a sequence operator.

In this chapter we introduce the OCB when construct, of a procedure call. This con-

struct is a simple representation of a guarded event in Event-B, and maps to a Java style

conditional waiting loop in the implementation. The negated when-clause condition is

used as the condition for entry to the while loop invoking the wait method. Notifica-

tion statements are added to all procedures that update a monitor, in this way waiting

processes are informed of potential enabling conditions. The restrictions noted in earlier

chapters are eased somewhat in the extension presented in Chapter 8, in which we intro-

duce transactional constructs, which allow access to multiple, shared objects. Formally

verifying that the Java code is correctly synchronized and correctly corresponds to the

formal model is the subject of future work.

Chapter 5

Tool Support for OCB

In this chapter we describe the tool support provided for the approach. We provide

an overview of the Eclipse Platform, and some Eclipse projects that we make use of.

We describe the OCB meta-model which we use to create OCB models in Eclipse; the

RODIN platform and Event-B meta-model that is the target for formal analysis; and

the Java Development Toolkit, which has a Java meta-model that we use to create a

Java implementation.

In previous chapters we presented a textual version of Event-B. Our translators however

integrate with the RODIN tool, and to-date the tool has no text based editor. The

RODIN tool is a GUI based modelling environment [9], for Event-B, based on the Eclipse

platform [148]. It is designed to be an open, extensible platform for rigorous development

of complex systems. We extend the functionality of the platform with plug-ins that

facilitate specification, and translation, of OCB models. We translate to the target Java

implementation; where the Java files reside in the Eclipse workspace in a Java Project.

We also translate to an Event-B project file, where the Event-B model elements reside

in a RODIN database (this is an Eclipse Project with some additional information

attached). The formal model will be amenable to analysis with the Event-B tools and

the Java project will run as an application in Eclipse.

5.1 An Overview of Eclipse

Eclipse is an open source project that provides an extensible tool platform that functions

as a customizable Integrated Development Environment (IDE). A key feature of the

Eclipse platform is the support for extensibility through the use of plug-ins, and this

was one of the main justifications for the use of Eclipse as the basis for the RODIN tool.

We aim to develop plug-in extensions for an OCB meta-model, this will allow creation

and editing of OCB models in the Eclipse environment. We also develop a plug-in to

89

Chapter 5 Tool Support for OCB 90

facilitate translation of an OCB model into an Event-B model which resides in a RODIN

database, and to Java source code. In order to provide a plug-in we make use of the

Eclipse Software Development Kit (SDK).

5.1.1 The Eclipse Software Development Kit

The Eclipse platform provides the tools to discover and utilize plug-ins, and also provides

mechanisms for viewing and manipulating resources. We will develop a plug-in using

the facilities provided by the Plug-in Development Environment (PDE) which is part

of the SDK. By making use of the PDE we significantly reduce the amount of coding

effort required, since the PDE contains wizards for assisting with creation of plug-ins.

An example of another productivity enhancement is the use of an extension mechanism,

called extension points, which allow the re-use of previously written code. We use

extension points to add pop-up menus and menu-bar items to the user interface. When

implementing a pop-up menu extension, for instance, most of the code is created by the

wizard and it remains for us to specify the desired behaviour in the run method of a class

that implements IObjectActionDelegate. Appendix E.1 shows the run implementation

for our translator plug-in.

At run time, a user can build a model using Eclipse tree editor; and when they wish

to translate to Event-B and/or Java they can select the Translate pop-up menu option

which is enabled when right-clicking over an OCB model. At this point some diagnostics

are invoked, to check the integrity of the model. The information about which elements

are allowed, and which elements must be present, are specified in the meta-model itself.

So for example we stipulate that a system must have exactly one MainClass element,

and the MainClass must have a name and a non-atomic clause. Following successful

diagnostic checks the Event-B translator and then Java translator are invoked.

5.1.2 The Eclipse Modelling Framework

In our work we have defined the OCB syntax, and we wish to carry out some modelling

activity, creating OCB models in accordance with the syntax we have described. The

Eclipse Modelling Framework (EMF) [150, 27] is equipped to provide exactly this facility.

In essence the OCB syntax that we have described will be embodied in a meta-model,

and we can use the EMF to create an editing environment that will enable a user to

construct OCB models using the meta-model.

Before we proceed we will clarify the terms that we are using in the discussion of EMF,

we frequently use the terms model and meta-model. A model is a structured description

of some artefact, and the meta-model describes the elements that will be used to build

that model, (a meta-model is also a model). Therefore a meta-model describes the

Chapter 5 Tool Support for OCB 91

structure of a whole range of models. The EMF and its associated tools allows us to

build an OCB meta-model; and the OCB meta-model is then used to create an OCB

model. We then use this model to translate to Event-B and Java.

In Eclipse, using the EMF meta-model creation wizard, there are a number of ways of

generating a meta-model; the source for generation can be an existing UML model, anno-

tated Java source code, or an XMI (XML Meta-data Interchange) document. We chose

to use annotated Java due to its familiarity and, with regard to the UML approach,

to reduce the reliance on other technologies. The meta-model is generated with two

additional plug-ins. The first is the edit plug-in which contains item providers for the

meta-model elements, this is used by EMF to create model elements when constructing

an OCB model using the GUI. The second is the editor plug-in, which is used to con-

tribute to the User Interface (UI). The editor plug-in contains an EMF model creation

wizard for creating new modelling projects, and it also contains classes that contribute

to the toolbar and pop-up menu.

5.2 The OCB Meta-model

We now discuss the creation of the OCB meta-model, as discussed previously, we chose

to use annotated Java as the basis for meta-model construction. When using annotated

Java as the basis for meta-model creation we define Java interfaces for the meta-model

elements we wish to create, and provide getter methods for the child elements. The EMF

meta-model creation wizard then uses this information to create an ecore and EMF

model. During the development of the OCB meta-model we found that the syntax

mapped easily to the annotated Java. Figure 5.1 shows the annotated Java specification

the we use to construct the ProcessClass element of the OCB meta-model. Figure 5.2

shows the relationship between the OCB syntax and elements in the annotated Java.

Some explanation of the annotation follows: The @model annotation is used to identify

the meta-model elements of the ProcessClass Interface (including the interface itself)

that should be included in the meta-model; parts of the interface without annotation

will not be processed. The @model annotation associated with the ProcessClass Interface

will give rise to an ProcessClass meta-model element that can be instantiated within

the Eclipse environment as a model element. The required = true annotation is an

instruction to the model validator to check that an element of this type is present in

the model, and raise an error if it is not present. The containment annotation is an

instruction to the generator of the editor. containment = true gives rise to an element

which can be added to the model tree in the tree editor view; if it is false, or not specified,

the element appears in the properties view editor and not in the model tree.

The ProcessClass defined in Figure 5.1, gives rise to the implementation classes shown

in the class diagram in Figure 5.3. We see that the implementation classes have been

Chapter 5 Tool Support for OCB 92

/**
* @model
*/

public interface ProcessClass {
/**
* @model required=“true”
*/

String getName();

/**
* @model type=“Variable” containment=“true”
*/

EList<Variable> getVariable();

/**
* @model required = “true” containment=“true”
*/

NonAtomicClause getRunOperation();

/**
* @model containment=“true”
*/

CreateProcedure getCreateProcedure();
}

Figure 5.1: Annotated Java for the ProcessClass Meta-model Element

OCB Syntax Annotated Java

ProcessClass Interface ProcessClass
CName String getName()
Var+ EList<Variable> getVariable()
Constructor CreateProcedure: getCreateProcedure()
NonAtomic NonAtomicClause: getRunOperation()

Figure 5.2: Relationship between OCB Syntax and Meta-model

populated with various attributes and operations by the meta-model generator. These

are used by the tree editor when creating and managing the model elements.

We present an illustration of the use of the OCB meta-model, an OCB model, in Fig-

ure 5.4. The screen-shot shows the tree editor view of a model described later, in

chapter 6.1. In the tree view the details of the specification are distributed throughout

the nodes of the tree - many of which are likely to be hidden at any one time in anything

other than the most simple development. In addition part of the specification appears

in a totally separate view to the tree editor - the properties view. So, as we see, the

tree editor view may not be so easy to understand, especially when trying to convey

information about the development to others. So in addition to the tree-editor view we

Chapter 5 Tool Support for OCB 93

Figure 5.3: Meta-model - Class Diagram of the ProcessClass

have provided a utility to produce a text based view of the development, also shown in

the same figure. The textual view makes use of the syntactic sugar described in sec-

tion 4.2 and provide a pop-up menu item to translate the tree-based model to a text

file. In future work we would like to develop a text-based editor for OCB with syntax

highlighting and context sensitive code assists using a framework such as the Textual

Editing Framework (TEF) [106].

When a user wishes to create a new OCB model a new, empty model is created using the

model creation wizard built by the framework. Once created new model elements can

be added to the model using the tree editor view. The underlying framework ensures

that model elements can only be added to the appropriate tree node. To complete the

description of the OCB development, information is entered in the properties editor

view, which is visible in the properties tab at the bottom of Figure 5.4. When the model

is ready for translation it can be validated using the validate menu option by right-

clicking on the MainClass, although the translator enforces validation of the model

programatically before any actual translation takes place.

Chapter 5 Tool Support for OCB 94

Figure 5.4: Comparison between OCBText and Tree Editor

5.3 Implementing the OCB to Event-B Translator

When translating from OCB to Event-B we use a number of the published APIs from

the RODIN tools project, which we use to create and populate a RODIN database. The

model that results from running the Event-B translator on an OCB model, resides in

an Event-B project (the so-called database) which is created programatically by the

translator. The RODIN tool is comprised of a number of plug-ins, and we frequently

use the API defined in the Event-B core plug-in. The core plug-in defines elements for

use in an Event-B development, that is, the elements that are used to build Event-B

models such as events, guards and proof obligations.

In order to automatically translate an OCB model to an Event-B model it is necessary

to programatically create a RODIN project, populate an Event-B model with its repre-

sentation of the OCB model, and make the result persist. A reference to the RODIN

database manager is obtained, and this is used to create a new RODIN project which

appears in the Eclipse GUI as a folder. An attempt is made to retrieve the new RODIN

Chapter 5 Tool Support for OCB 95

project’s Eclipse platform project (if it does not already exist it is created) and this is

used to open the project for reading and updating. Once open we check that a RODIN

project nature is associated with it. This is used by the Eclipse platform to recognise a

RODIN project, and the platform then invokes the RODIN builders when changes are

detected. The open project is then ready to be populated with RODIN elements such

as machines, contexts, variables and events etc. Following translation the files in the

RODIN project are saved using RODIN API calls.

The translation process is initiated by right clicking on the OCB model in the Eclipse

tree editor and selecting the OCB Utilities/Translate option from the pop-up menu.

When the Translate menu option is selected a listener causes the TranslatorAction’s run

method to execute see Appendix E.1 for details. A diagnostic test is performed to ensure

required elements are present, and if successful we create two translation managers; the

EventBManager that manages the OCB to Event-B translation; and the JavaManager

that manages the translation from OCB to Java.

The Event-B translation manager sets up the Event-B project files and a translator

instance is created to traverse the model tree, and create the appropriate Event-B ele-

ments. The translation steps are summarized as follows,

1. Create the project, machine, and context files.

2. Prepare the project environment, add a machine file and context file.

3. Create the translator instance.

4. Invoke the translator’s translate method to add elements to the Event-B compo-

nents.

5. Save the project and components.

During translation from OCB to Event-B we add a machine and context, and traverse

the OCB model, adding sets and related axioms, variables and their typing invariants,

and events as appropriate using RODIN API methods. The formal presentation of the

translation rules of Chapters 3 and 4 elides the exact details of these additions in-order

to clarify the fundamentals of the approach. In future work we would wish to fully

define these translation details and explicitly link each translation rule to the code that

implements the rule, using code comments, for traceability.

As the translator traverses through the OCB model, OCB model elements are identified

that contribute to the Event-B model; after processing the monitor classes the translator

then processes the process classes. (Monitor classes are used by process classes so its

easier to process these first). The processing of non-atomic clauses depends on the type

of clause involved, so we find the instance type and process the specific type accordingly.

Chapter 5 Tool Support for OCB 96

For instance, if the clause is an OCB sequence we recursively process the left and right

branch non-atomic clauses. See Appendix E.2 for the Java method for processing the

sequence clause.

5.4 Implementing the OCB to Java Translator

In the translation to Java we use the Eclipse Java Development Toolkit (JDT) API [149]

to create and populate a Java project with Java source code. The JDT contains a meta-

model of Java elements such as packages, classes, fields, and so on, which can be instan-

tiated to programatically build Java developments. Using our translator we traverse the

underlying OCB model and extract the information required to create the appropriate

Java elements using the JDT API. The first step is to create a Java project within the

Eclipse environment. The project is then populated with a number of compilation units

created using the JDT org.eclipse.jdt.core class factory methods. The Java elements cre-

ated by these factory methods are the programming elements that we wish to add, such

as class declarations, field declarations, method declarations and method calls, imports

statements, and looping and branching constructs.

The translation to a Java project is initiated by calling the JavaManager’s translate

method. As previously mentioned we traverse the OCB model building and populating

a Java project, and instantiate the meta-model elements exposed by the JDT API. The

mapping from our object-oriented OCB constructs to their counterparts in Java is rela-

tively straightforward, accommodating parallel semantics is one of the few complexities.

Creation of a Java program that is executable in the Eclipse environment involves a

number of tasks in addition to the translation task. The following steps are carried out

programatically,

1. Create an Eclipse project and apply the JDT nature.

2. Use the Eclipse project to create a Java Project.

3. Add the Java Runtime’s location to the Java project class path.

4. Create a Package to contain the source code.

5. Prepare the environment.

6. Traverse the OCB model, adding elements to the compilation unit. Each Process-

Class, MonitorClass and the MainClass gives rise to a Java File containing a Java

class. The Java classes are populated programatically with Java Fields, methods

and supporting elements.

Chapter 5 Tool Support for OCB 97

When programatically adding elements to the Java project using the JDT API behind

the scenes the AST Parser is syntax checking on the fly as we build a model. For

this reason it is possible to get Java syntax errors mid-way through the programmatic

construction of a development. The current tool sometimes terminates the translation

with a cryptic error message. In future work it will be necessary to improve the handling

of these errors, although we should be able to avoid the majority (if not all) of them

through improved static checking of the OCB model prior to translation.

The JavaCore API provides various utilities for creating Java elements from which we

obtain a JavaProject which appears in the Eclipse GUI as a folder. A Java package

is then added to the JavaProject which is where the source files that we create will

reside. A translator instance is created by the translation manager to populate the

model with Java elements. The translator instance creates files and classes (from the

org.eclipse.jdt.core package) that correspond to ProcessClass, MonitorClass, and the

MainClass.

The compilation unit is the in-memory representation of a Java .java file, and has a

method to create a class (known as a type in the JDT) by invoking the createType

method. Typically when creating elements using the JDT API a parent is responsible

for creating its child elements, to populate a class with fields we use a similar approach

using IType.createField, and so on for other JDT meta-model elements. The process

of building JDT models is slightly different to that of building Event-B models. When

creating Event-B elements, factory methods provide a handle to the new object, a create

method is then used to instantiate the element, then element properties are set explicitly

using setter methods. However, when creating JDT elements we provide the API create

method with a string parameter containing the Java source code. The new Java element

is then added to the compilation unit, and source code is parsed using the AST parser.

When the translation is complete the Java files are compiled by the JDT builder into

“.class” files. These are suitable for execution in the Eclipse environment. The Java

program can then be run in the Eclipse environment by identifying the class which con-

tains the main method, derived from the MainClass main operation, and then selecting

Run As/Eclipse application.

5.5 Review of the Chapter

In this chapter we have shown how tool support is provided for the OCB approach. We

begin with an overview of the Eclipse platform, and the Eclipse Modelling Framework,

upon which our tool is based. We then discuss the construction and use of the OCB

meta-model, which provides the abstract syntax for our implementation level models.

The OCB model is traversed by the OCB Event-B translator, it makes calls into the

RODIN API to create an Event-B model that is compatible with the RODIN toolset. A

Chapter 5 Tool Support for OCB 98

similar translator traverses the OCB model and uses the JDT API to create and populate

a Java project. This can then be run in a JVM, or in the Eclipse environment. During

initial investigations we found construction of OCB models relatively straightforward;

and translations of the OCB models produced Java code that was executable. The

resulting Event-B models were amenable to syntax checking and proof.

The current version of tools does not provide seamless integration when refining an

existing development. The Event-B model arising from a translation is manually copied

to an existing project after which work on the refinement activity continues. In future

work we would aim to provide a more integrated approach to providing implementation

refinements of an existing development. There is no plan to achieve tighter integration

using round-trip engineering, due to the difficulty of mapping from an Event-B model to

OCB. For instance when a guard is added to an Event-B model it would unclear where

this would be added in the OCB; a single event may have guards derived from several

locations in the OCB. A closer integration with UML-B could be beneficial, due to the

potential link between UML-B classes, and ProcessClass andMonitorClass constructs,

in class diagrams for instance. There are links between an abstract development and

implementation refinement which can be brought into the foreground (of the developer’s

attention), perhaps using a GUI wizard to link the two. One example of where this

would be of use is when defining the REFINES link between events of the abstract

development and those of the OCB model; another would be the definition of witnesses

using a WITH clause of some of the refined events of the OCB model. Witnesses link

the parameters of the abstract development with the implementation refinement, and

can assist with discharging proof obligations.

In our current tool we have made use of the default Eclipse tree based editor which

provides the most basic editing functionality, such as addition and removal of nodes

representing model elements, and a properties editor which allows editing of the proper-

ties associated with model elements. To assist with understanding a model we provide

a textual OCB viewer, and in the future it would be useful to produce an OCB text

editor, such as one based on the Textual Editing Framework (TEF) [106], to compli-

ment the tools. A further enhancement would be to use the Eclipse Graphical Editor

Framework (GEF) [14] to construct a GUI which will allow the user to construct models

in an environment that uses entities similar to class diagrams.

We found that so far, in the development of the prototype tooling, that the OCB ap-

proach was not adversely affected by the use of EMF as a method of constructing a

meta-model; in fact the Eclipse tools appear to be a good facilitator for the approach,

with most of the OCB syntax embodied in the OCB meta-model. The translators,

similarly, are facilitators of the approach and there was no significant impact on the

approach due to the nature of the translator implementation, although integration with

abstract developments was not attempted. It is certainly likely that with closer in-

tegration between abstract developments and OCB modelling then the use of a more

Chapter 5 Tool Support for OCB 99

advanced features will feed back into the approach. This may be through the use of

patterns, or other productivity enhancements to improve the link between the abstract

development and OCB model.

Chapter 6

Case Study 1

In this chapter we present a case study of a channel buffering system. We use the

case study to introduce a systematic approach to linking an Event-B model to an OCB

specification. A diagrammatic view of the system is presented which follows the proposal

in [32] of Event Refinement Diagrams. Event Refinement Diagrams are in turn based

on Jackson Structure Diagrams [86]. These act as an aid to visualising the relationship

between the events of the abstract development and the OCB specification. We partition

the system into processes that perform tasks, and shared data structures. In our case

study we specify a shared channel which is able to hold a block of data. Processes read

data into a local buffer from the shared channel, or write data to the shared channel

from a local buffer. We begin with an abstract model which models transfer of one block

of data at a time, before refining the model based on the transfer of the packets that

make up a block. Then we link the refined model (of the abstract development) with

an OCB specification, which facilitates translation to an Event-B implementation model

and Java code.

6.1 Development of a Concurrent Read/Write Channel

The channel that we specify will have at most one reader reading, and at most one

writer writing at any one time; however a number of processes may be waiting to read

from, or write to, the channel. An important feature of our system is that at the highest

level of abstraction data is transferred as a block in a single atomic step. A write event

constitutes moving a block from a writing process to a channel buffer; and a read event

constitutes moving a block from a channel buffer to a reader. The atomicity of the

read and write activity is altered in the refinement - we introduce blocks that are made

up of packets, and each packet is written to the channel individually. This allows the

reader to begin reading as soon as there is data in the channel - without the writer

having to complete the data transfer. We also add an additional constraint that the

100

Chapter 6 Case Study 1 101

reader finishes reading a writer’s data before another writer can begin writing. In effect,

we require a block of data to be moved from one writer, to one reader, via a shared

channel buffer. Figure 6.1 shows a configuration with one reader, one writer and a

number of processes waiting. In order to describe the activities that occur we make

Process (reading)Process (writing)

Process (waiting to write)

Process (waiting to read)

Process (waiting to read)

Process (waiting to write) Channel

Figure 6.1: The Processes Sharing a Channel

use of a graphical representation of our system, based on Jackson Structure Diagrams.

The diagrams are an informal representation of the relationship between abstract events

and events of refinements; and are used as an aid to understanding the correspondence,

in particular where an event refinement relationship is not one-one. Such relationships

may need to take into account event ordering and iteration. The diagrams consist of a

tree where nodes correspond to events; each level of the tree corresponds to a level of

refinement, and concreteness increases with tree depth. The events of each refinement

are read from left to right, at each level, and indicate the sequence in which the events

are required to occur. The solid lines connecting events represent event refinement, and

dashed lines represent events that refine skip, and add behaviour related to the abstract

event. We indicate the parameter names of each event in the form of an event signature.

We can see from the diagrams of Figure 6.2 and 6.3 the top-level Read and Write events

which are parameterized by a process p, channel c and block b. In the refinement we

decompose the atomicity of the Read and Write events; the Write event is decomposed

to the three events, StartWrite, WritePacket and EndWrite, of which the last refines

Write. Similarly the Read event is decomposed in to StartRead, ReadPacket and

EndRead events. The refined events are parameterized by a process p, channel c, packet

k, and data d.

In all Jackson Structure type Diagrams the ‘*’ denotes possible iteration, where k∗
indicates that the number of iterations is determined by a guard involving parameter

k. In diagram 6.2 k∗ indicates iteration for all packets k, where p is a process in proc

and c is a channel in chan; k is a packet in the buffer of p, buff(p); and the packet

is not already written to the channel c, k /∈ dom(data2(c)). In our model all packets

are eventually transferred to the channel buffer data2(c) and iteration ceases. A similar

scenario occurs in the read process.

Chapter 6 Case Study 1 102

k*

StartWrite(p,c) EndWrite(p,c,b)WritePacket(p,c,k,d)

k,p,c

k dom(buff(p)) ^
k dom(data2(c))

Write(p,c,b)

p proc ^ c chan ^
where k* =

Figure 6.2: Decomposing the Write Event

Read(p,c,b)

k*

StartRead(p,c) EndRead(p,c,b)ReadPacket(p,c,k)

k,p,c

k dom(buff2(p)) ^
k dom(data2(c))

where k* =
p proc ^ c chan ^

Figure 6.3: Decomposing the Read Event

6.1.1 The Initial Event-B Model

At the highest level of abstraction we model processes, channels and data. We define

carrier sets for the set of processes Process, the set of channels Channel, and set of

data blocks represented by Block. A block of data is a function of packet identifiers

to data, Block = PKTID 7→ DATA. Process objects are represented by a variable

proc, and channels are represented by a variable chan. Each process has a local buffer

called buff , and channels hold data in a buffer called data. Initially we model data

transmission (reading from channel to process and writing from process to channel) as

movement of an entire block of data. The intention is to model a system where one

Chapter 6 Case Study 1 103

block of data is copied to the channel, and a single reader copies the whole block to its

local buffer; we are not modelling a system with multiple readers.

We define the variable types in the invariant as follows and initialize the variables as

empty sets in the Initialisation clause,

INVARIANTS

proc ⊆ PROCESS

chan ⊆ CHANNEL

data ∈ chan→Block

buff ∈ proc→Block

The event models the write of a block of data b to a channel. The event parameters

model the writing process p, and the target channel c. In addition to these parameters

an additional local parameter b is introduced to keep track of the block of data to be

written from the local buffer; this is defined as b = buff(p). The event is guarded to

ensure that the write only takes place if the buffer contains some data, i.e. b 6= ∅, and

the channel buffer data(c) is empty, i.e. data(c) = ∅.

Write ,

ANY p, c, b

WHERE p ∈ proc ∧ c ∈ chan ∧ b = buff(p) ∧

buff(p) 6= ∅ ∧ data(c) = ∅

THEN data(c) := b ‖ buff(p) := ∅

END

The block b is copied to the data buffer data(c) and the local buffer buff(p) is emptied.

The event to read a block from the channel is parameterized by a reading process p, a

channel c. In addition to these parameters we introduce the local parameter b to keep

track of the block of data to be read from the channel buffer data(c), it is defined as

b = data(c). The read event takes place only when the local buffer buff(p) is empty,

i.e. buff(p) = ∅; and the channel buffer has a block of data b to be read, i.e. b 6= ∅.

Read ,

ANY p, c, b

WHERE p ∈ proc ∧ c ∈ chan ∧ b = data(c)

buff(p) = ∅ ∧ data(c) 6= ∅

THEN data(c) := ∅ ‖ buff(p) := b

END

Chapter 6 Case Study 1 104

The block in the channel buffer b is copied to the local buffer buff(p) and the channel

buffer data(c) is emptied.

The event NewProc adds processes from PROCESS \ proc to the set proc, which is

similar to the modelling of instantiation.

NewProc ,

ANY p, b

WHERE p ∈ PROCESS \ proc ∧ b ∈ Block

THEN proc = proc ∪ {p} ‖ buff(p) = b

END

The event NewChan adds channels from CHANNEL \ chan to the set chan,

NewChan ,

ANY c

WHERE c ∈ CHANNEL \ chan

THEN chan = chan ∪ {c} ‖ data(c) = ∅

END

6.1.2 Refinement with Data Packets

In the first refinement of the abstract machine we introduce writing behaviour which

is performed in three steps, relating to the StartWrite, WritePacket, and EndWrite

events. Similarly StartRead, ReadPacket and EndRead perform reading. We record

which activity (either reading or writing) a process may be engaged in using the variables

reading and writing. We also introduce buff2 which is a local buffer where data can

be added or removed one packet at a time; and data2 which is a channel buffer where

data can be added or removed one packet at a time. We type the additional variables

of the machine as follows,

Invariants

writing ∈ proc 7� chan

reading ∈ proc 7� chan

buff2 ∈ proc→Block

data2 ∈ chan→Block

The typing invariant for writing ensures that any process in the domain of writing is

linked to at most one channel in chan; and that the channel is related to, at most, one

process. So only one process can write to a channel. Similarly, reading ensures that

Chapter 6 Case Study 1 105

any process in the domain of reading is linked to at most one channel in chan; and that

the channel is related to, at most, one process. So only one process can read from a

channel. Each reading or writing process has a single local buffer buff2; any process in

the domain of buff2 is related to a block of data of type Block. Each channel also has

a single local buffer, data2, in which to store data; each channel in the domain of data2

is related to a block of data of type Block.

We ensure processes cannot be reading and writing at the same time with the invariant,

dom(writing) ∩ dom(reading) = ∅

However we allow channels to be in the range of both reading and writing simultane-

ously.

We now look at the added events, firstly StartWrite which refines skip. The event can

occur when process p and channel c are not involved with writing and p is not reading.

Additionally the local buffer buff2(p) must have some data to transfer, i.e. buff2(p) 6=
∅; and the receiving channel buffer data2(c) must be empty, i.e. data2(c) = ∅.

StartWrite ,

ANY p, c

WHERE p ∈ proc ∧ c ∈ chan ∧ p /∈ dom(writing) ∧

c /∈ ran(writing) ∧ buff2(p) 6= ∅ ∧ data2(c) = ∅∧

p /∈ dom(reading)

THEN writing := writing ∪ {p 7→ c}

END

The process and channel p 7→ c are added to the set of writing pairs.

Once a process-channel pair are added to the set of writing pairs we can transfer in-

dividual packets of data, represented by the maplet k 7→ d, from one to the other.

Here k represents the packet identifier and d represents the data. We introduce the

WritePacket event which refines skip to do this. The event will occur only when there

is data to transfer out of the local buffer that is not already in the channel buffer, so it

is guarded by,

k ∈ dom(buff2(p)) ∧ d = buff2(p)(k) ∧ k /∈ dom(data2(c))

Chapter 6 Case Study 1 106

The channel buffer may or may not be empty. The WritePacket event is defined in the

following way,

WritePacket ,

ANY p, c, k, d

WHERE p 7→ c ∈ writing ∧ k ∈ dom(buff2(p)) ∧

d = buff2(p)(k) ∧ k /∈ dom(data2(c))

THEN data2(c) := data2(c) ∪ {k 7→ d}

END

In the WritePacket event a packet k 7→ d is added to the channel buffer data2(c).

The EndWrite event refines Write. The write activity ends when the channel buffer is

equal to the local buffer, data2(c) = buff2(p). We introduce a witness using the WITH

clause to link the abstract block of data in the buffer b, to the refined buffer buff2.

EndWrite ,

REFINES Write

ANY p, c

WHERE p 7→ c ∈ writing ∧ c ∈ chan ∧ data2(c) = buff2(p)

WITH b = buff2(p)

THEN writing := {p}C− writing ‖ buff2(p) := ∅

END

The process p is removed from the set of writers writing := {p}C−writing and the local

buffer is cleared, buff2(p) := ∅.

The read activity begins with a StartRead which refines skip. It can occur when process

p and channel c are not involved with reading, p /∈ dom(reading) ∧ c /∈ ran(reading) ;

and p is not writing, p /∈ dom(writing).

StartRead ,

ANY p, c

WHERE p ∈ proc ∧ c ∈ chan ∧ p /∈ dom(reading) ∧

c /∈ ran(reading) ∧ p /∈ dom(writing) ∧ data2(c) 6= ∅ ∧ buff2(p) = ∅

THEN reading ∪ {p 7→ c}

END

The process and channel pair p 7→ c are added to the set of reading pairs.

The reading of individual packets, represented by the maplet k 7→ data2(c)(k), can occur

as soon as a packet appears in the channel buffer, k ∈ dom(data2(c)). Here k is a packet

Chapter 6 Case Study 1 107

identifier and data2(c)(k) relates to the data. The event can transfer data as long as

it is not already in the local buffer; it is guarded by k /∈ dom(buff2(p)). The event

ReadPacket refines skip, and has a process p and channel c. A process can only read

from a channel when it is in the set of reading pairs denoted by p 7→ c ∈ reading.

ReadPacket ,

ANY p, c, k

WHERE p 7→ c ∈ reading ∧ k ∈ dom(data2(c)) ∧ k /∈ dom(buff2(p))

THEN buff2(p) := buff2(p) ∪ {k 7→ data2(c)(k)}

END

A packet from the channel buffer, represented by k 7→ data2(c)(k), is added to the local

buffer buff2(p).

Reading of packets ends when the channel buffer is equal to the local buffer, buff2(p) =

data2(c); and the channel is no longer being written to, represented by the guard c /∈
ran(writing). We introduce a witness using the WITH clause to link the block of data

b in the abstract event to the channel buffer data2(c). The EndRead event refines Read

and is defined as follows,

EndRead ,

REFINES Read

ANY p, c

WHERE p ∈ proc ∧ c ∈ chan ∧ p 7→ c ∈ reading ∧

c /∈ ran(writing) ∧ buff2(p) = data2(c)

WITH b = data2(c)

THEN data2(c) := ∅ ‖ reading := reading \ {p 7→ c}

END

The channel buffer is emptied in the event action, data2(c) := ∅, the data is considered

to have been consumed by the reading process. The process-channel pair is removed

from the set of reading pairs, reading := reading \ {p 7→ c}.

During the refinement process a number of gluing invariants were added. In order to

show that the channel data block data is equal to the packetized data data2, except

when the process is writing, we have the following invariant,

∀c·c ∈ chan ∧ c /∈ ran(writing)⇒ data(c) = data2(c)

Chapter 6 Case Study 1 108

We have a similar invariant to show that the process block buffer buff must be the

same as the packetized buffer buff2, except when the process is reading.

∀p·p ∈ proc ∧ p /∈ dom(reading)⇒ buff(p) = buff2(p)

The refinement of the abstract development is now complete, and we have been able

to discharge all proof obligations that have arisen. We are now ready to begin the

implementation stage of development.

6.1.3 The OCB Specification

When we are making design decisions about the implementation of the reading and

writing processes we made use of the diagrams of Figures 6.2 and 6.3 to help visualise

the required implementation. For example, from the diagrams we can see that the

write behaviour needs to be implemented as a sequence of atomic steps, and one of the

steps, writePacket, is iterative so the use of the looping construct will be required. In

the implementation level diagram we use the OCB clause labels to describe the atomic

events, which can be seen in Figures 6.4 and 6.5. In the implementation level diagram

we indicate iteration of a group of clauses by attaching the loop condition annotation

to an enclosing box. In our OCB specification we implement the events of the abstract

development with one or more OCB labelled atomic clauses, one of which explicitly

refines an abstract event (the others refine SKIP).

In the OCB refinement of the abstract development, design decisions need to be taken to

define the relationship between the OCB process class specification and the abstraction

needs to be defined. We know that the read and write behaviours are mutually exclusive,

that is a process will either read or write, but not both. We could implement the

processes as two separate classes embodying the separate behaviours. Alternatively we

can implement one process class specification that can do either task, and we differentiate

between readers and writers by supplying a parameter at the time of invocation. It is

the latter approach that we choose for our implementation. The only construct that is

shared between processes is the channel, we specify the channel as a monitor class, but is

not apparent from the Jackson Structure type Diagrams since they describe behavioural

aspects of the system and monitor classes play a passive role in the system. Figures 6.4

and 6.5 show the relationship between the events of the abstract development to the

corresponding clauses of the OCB specification; clause labels are used instead of event

names, in the diagram to describe the implementation level constructs. Iteration of

clauses, at the implementation level, are grouped by an enclosing box and the labelled

annotation show the loop condition.

We can see that the StartWrite event is implemented by clauses labelled p1 and p2 which

make preparations for writing by obtaining the size of the local buffer and obtaining

Chapter 6 Case Study 1 109

k*

k,p,c

k dom(buff(p)) ^
k dom(data2(c))

p proc ^ c chan ^
where k* =

p3 p4 p5 p6

StartWrite(p,c) EndWrite(p,c,b)WritePacket(p,c,k,d)

Write(p,c,b)

p2p1

p3*

p3* = loop condition: tmpBuffSz > 0

Figure 6.4: Decomposing the Write Event - at the Level of OCB Specification.

k*

k,p,c

k dom(buff2(p)) ^
k dom(data2(c))

where k* =
p proc ^ c chan ^

Read(p,c)

StartRead(p,c) EndRead(p,c)

p1_else p11

ReadPacket(p,c,)

p10p9p8

p8*

p8* = loop condition: tmpBuffSz > 0

Figure 6.5: Decomposing the Read Event - at the Level of OCB Specification.

Chapter 6 Case Study 1 110

the write channel if it is free (and blocking otherwise). In the abstraction a channel

is restricted to being written to by one process. This is embodied in the guard c /∈
ran(writing) of the StartWrite event. However in the implementation we do not have

access to set constructs so we introduce an attribute wPID to the shared channel class.

Each process will have a unique identifier and it is assigned to wPID when the process

is writing to the channel, or otherwise has the value -1 if no process is writing to it. In

this way only a single process/channel pair are linked for the purposes of writing, and

since the getWChan procedure is guarded by the when clause when(wPID = −1 . . .,

only a single writing process can be associated with the channel at any one time. In

the generated Event-B model a guard causes the event to block if ¬wPID = −1. So

the blocking behaviour described by OCB’s when construct will cause a process to wait

when attempting to obtain a channel which is not available. We also use this approach

when a reader tries to request data from a channel but there is none in the buffer, yet

the write is not complete. The freeWChan procedure then resets the wPID attribute

to the value of -1 when the write has finished.

Now we return to the discussion about processes and refer again to Figure 6.4 - The clause

p2 obtains mutually exclusive access to the channel by calling the getWChan procedure,

which directly refines the StartWrite event. In the abstraction the WritePacket event

then iterates over the packets of data in the buffer. We implement this as a while loop

with labelled clauses p3 . . . p5. Following this clause p6 releases the channel by calling

the freeWChan, so it directly refines the EndWrite event. A description of the write

process behaviour is summarized in the following table, which also includes the reading

process description.

Chapter 6 Case Study 1 111

Label Description

p1 If the process is a writer then get the size of the local buffer.

p2 Obtain the write channel if it is free else block.

The process ID and number of packets to send are parameters

p3 While there is a packet to send from the local buffer

remove the packet assigning to the temporary attribute.

p4 Add the data to the channel buffer.

p5 Decrement the count of packets.

p6 Release the channel for other writers.

p1 else If the process is a reader obtain a read channel

if it is free, else block.

p7 Obtain the number of packets to read from the channel.

p8 While there are packets remove a packet from the channel

buffer and assign to the temporary attribute.

p9 Add the packet to the local buffer.

p10 Decrement the buffer counter.

p11 Free the read channel for another reader.

We can see in the diagram that the labelled atomic clauses p2 . . . p6 ultimately imple-

ment the most abstract Write event, and we can also see that clauses p3 . . . p5 refine the

WritePacket event. Each of the events StartWrite, WritePacket and EndWrite are

refined by exactly one labelled OCB clause, along with a number of associated labelled

clauses. The additional associated clauses contain loop control information, and manip-

ulate the data. For example the loop p3 . . . p5 relies on keeping track of the number of

packets of data to write. The number of elements to write is initially obtained in clause

p1 by calling buff ’s getSize procedure - only clause p4 refines WritePacket explicitly

which involves the write of a packet of data to the channel. This can be seen in the

following Proc process class specification.

In our implementation we specify reading and writing processes in the same class, the

behaviour of the process is determined by the boolean parameter isWriter supplied at

instantiation. The process class Proc specification follows,

ProcessClass Proc{
Buffer buff, Boolean isWriter, Channel c, Integer id,

Integer tmpBuffSz, Integer tmpDat

// The constructor procedure

Procedure create(Integer pid, Buffer bff,

Boolean isWritr, Channel ch){
id:=pid || buff:=bff || isWriter:=isWritr || c:= ch ||

tmpBuffSz:=-1 || tmpDat:=-1

Chapter 6 Case Study 1 112

}
// The process behaviour

Operation run(){
p1: if(isWriter=TRUE) then

tmpBuffSz:=buff.getSize() andthen

p2: c.getWChan(id, tmpBuffSz); // refines StartWrite

p3: while(tmpBuffSz>0) do tmpDat:=buff.remove() andthen

p4: c.add(tmpDat); // refines WritePacket

p5: tmpBuffSz:=tmpBuffSz-1 endwhile ;

p6: c.freeWChan() endif // refines EndWrite

else c.getRChan(id) andthen // refines StartRead

p7: tmpBuffSz:=c.getWriteSize();

p8: while(tmpBuffSz>0) do tmpDat:=c.remove() andthen

p9: buff.add(tmpDat); // refines ReadPacket

p10: tmpBuffSz:=tmpBuffSz-1 endwhile ;

p11: c.freeRChan() endelse // refines EndRead

}
}

The process class constructor parameters include a process identifier pid, an internal

buffer bff , and the shared channel ch. There are additional attributes for temporary

storage of values used during processing. We have now specified the Proc process class

and Channel monitor class that we need to implement the system. There is however

another class, the local Buffer class, used within the process class. It is very similar

to that of the channel class, with add and remove procedures for which we provide no

further details here (see Appendix C.4 for details)

We next discuss some more aspects of the monitor class specification of the Channel.

The OCB Channel specification has an array buffer buff of, capacity 50; integer data

elements are added to the write location wLoc and read from the read location rLoc

of the buffer. The add procedure limits bursts of data to 5 items using the guard

wLoc− rLoc ≤ 5 in the when clause, but can only transmit up to 50 elements in total

due to the array size. The attributes rPID, wPID and writeSize record the identifier of

the reading process, writing process, and size of block to be written respectively. rPID

and wPID are initially assigned a value of −1 which we will not use for a process iden-

tifier. There are seven monitor procedures for which we summarize in the following table,

Chapter 6 Case Study 1 113

add Add a packet to the buffer at the write location.

Block if the write limit is reached

remove Remove and return a packet from the buffer at the read.

Block the caller if there is nothing to remove.

getWChannel Obtain a channel for writing if it is available

and there is no reader, else block the caller.

freeWChan Release a write channel by removing the process ID.

getRChannel Obtain a channel for reading if it is available

and there is data to read, else block the caller.

freeRChan Release a read channel by removing the process ID.

getWriteSize Returns the size of the data block.

We reproduce the Channel specification here for reference,

MonitorClass Channel{
// Attributes

Integer[50] buff, Integer rLoc, Integer wLoc,

Integer rPID, Integer wPID, Integer writeSize

// The Constructor

Procedure create(){
rLoc:= 0 || wLoc:= 0 || rPID:= -1 ||

wPID:= -1 || writeSize:= -1

}

// ‘Refines’ WritePacket - in a call from clause p4

Procedure add(Integer val){
when(wLoc - rLoc <= 5){

buff[wLoc]:= val || wLoc:= wLoc + 1}
}

// The value is stored in a temporary buffer in a

// call from clause p8 - implementing ReadPacket

//as part of the reading activity.

Procedure remove(){
when(wLoc - rLoc > 0){

return:= buff[rLoc] || rLoc := rLoc+1 }
}: Integer

// Called in p1 else clause - refines StartRead.

// Set the channel for reading, by the process

// with identifier pid.

Chapter 6 Case Study 1 114

// Block if it is already owned or has nothing to read.

Procedure getRChan(Integer pid){
when(rPID=-1 & writeSize>0){rPID:= pid}
}

// Called in p11 clause - refines EndRead.

// Free the channel for reading.

Procedure freeRChan(){
rPID:= -1 || writeSize:= -1

}

// Called in p1 clause - implementing StartWrite.

// Set the channel for writing writesze bytes, by

// the process pid.

// Block if the channel is already owned for writing or

// has bytes still to write.

Procedure getWChan(Integer pid,Integer writeSze){
when(wPID=-1 & writeSize<=0){

wPID:= pid || writeSize:= writeSze}
}

// Called in p6 clause - refines EndWrite.

// Free the channel for writing.

Procedure freeWChan(){ wPID:= -1 }

// Return the number of bytes to write.

Procedure getWriteSize(){ return:= writeSize }: Integer

}

A MainClass is specified in Appendix C.3, with a main operation, which is used as

the entry point for execution. In clauses labelled m1 . . .m4 local buffers are constructed

for use by four processes. Two of these processes will be reader processes and two

will be writer processes, which is determined by supplying the appropriate constructor

parameter. In m5 a channel is created. In m6 . . .m8 the buffers used for writing are

filled with some arbitrary data. Clauses m9 . . .m12 are used to create the four processes.

6.2 The Event-B Model of the OCB Specification

The Event-B model arising from the OCB specification is too large to discuss in detail

in its entirety; we focus on the Proc class’ write activity specified in clauses p1 . . . p6 to

Chapter 6 Case Study 1 115

provide an overview, more details are available in Appendix C.8. Proc p1 is the event

that arises from the clause labelled p1,

Proc p1 ,

ANY self, target

WHERE self ∈ Proc ∧ self ∈ dom(Proc state) ∧

Proc state(self) = p1 ∧ Proc isWriter(self) = TRUE ∧

self ∈ dom(Proc buff) ∧ target = Proc buff(self)

THEN Proc tmpBuffSz(self) :=

Buffer wLoc(target)−Buffer rLoc(target) ‖

Proc state(self) := p2

END

Proc state(self) = p1 is the guard relating to the program counter, the guard relating to

the when clause is Proc isWriter(self) = TRUE, and identification of the target of the

procedure call is target = Proc buff(self). In the event action Proc state(self) := p2

the program counter is advanced. The getSize procedure call is expanded to create the

assignment,

Proc tmpBuffSz(self) := Buffer wLoc(target)−Buffer rLoc(target)

The event arising from the clause p2 obtains the channel’s buffer for writing, or else

blocks. This is embodied in the guard Channel wPID(target) = −1. The process also

blocks if data in the channel buffer is still being read, which is associated with the guard

Channel writeSize(target) ≤ 0. The value of

Channel writeSize(target) is reset when a reader frees the channel using freeRChan,

and similarly the value of Channel wPID(target) is reset when a writer frees a channel

using freeWChan.

Proc p2 refines StartWrite of the first refinement. The StartWrite process p is related

to self of Proc p2 using a predicate p = self in the event’s WITH clause. Relating

the OCB specification to the abstract development, and how it can best incorporated

into the approach, is the subject of future work; for now we just state the relationships.

Chapter 6 Case Study 1 116

The StartWrite channel c is related to target of Proc p2 with c = target.

Proc p2 ,

REFINES StartWrite

ANY self, target

WHERE self ∈ Proc ∧ self ∈ dom(Proc state) ∧

Proc state(self) = p2 ∧ self ∈ dom(Proc c) ∧

target = Proc c(self) ∧ Channel wPID(target) = −1 ∧

Channel writeSize(target) ≤ 0

THEN Channel wPID(target) := Proc id(self) ∧

Channel writeSize(target) := Proc tmpBuffSz(self)

Proc state(self) := p3

END

In the event action the process identifier is supplied to the channel as the writer identifier,

Channel wPID(target) := Proc id(self). The number of packets to write is set in the

channel’s writeSize attribute using,

Channel writeSize(target) := Proc tmpBuffSz(self)

and the program counter is updated to the next value.

In the event Proc p3 repeating behaviour begins, a packet of data is removed from the

local buffer and stored for insertion into the channel buffer in the next clause. The

condition of the OCB while clause gives rise to the guard Proc tmpBuffSz(self) > 0;

other guards arise from the conditional waiting clause relating to the remove procedure

call - this is the same as channel’s remove procedure (since the buffers are the same size).

The process is required to wait if there is no data to remove from the channel, progress is

enabled therefore by the guard Buffer wLoc(target)Buffer rLoc(target) > 0. Other

Chapter 6 Case Study 1 117

guards are added to assist with discharging the well-definedness proof obligations asso-

ciated with partial functions, such as self ∈ dom(Proc buff).

Proc while p3 ,

ANY self, target

WHERE self ∈ Proc ∧ self ∈ dom(Proc state) ∧

Proc state(self) = p3 ∧ Proc tmpBuffSz(self) > 0 ∧

self ∈ dom(Proc buff) ∧ target = Proc buff(self) ∧

Buffer wLoc(target)−Buffer rLoc(target) > 0

THEN Proc tmpDat(self) :=

Buffer buff(target)(Buffer rLoc(target)) ‖

Buffer rLoc(target) := Buffer rLoc(target) + 1 ‖

Proc state(self) := p4

END

In the following fragment the value at the read location rLoc of the buffer is assigned to

an attribute,

Proc tmpDat(self) := Buffer buff(target)(Buffer rLoc(target))

the buffer read location is then incremented,

Buffer rLoc(target) := Buffer rLoc(target) + 1

The details shown here have given an overview of how the OCB specification maps to

Event-B. We discuss briefly the refinement of the WritePacket and EndWrite events,

but with less detail. WritePacket is refined by Proc p4, which models the addition of

packets to the channel buffer using Channel’s add procedure. The greatest complexity

with this part of the mapping is the relational override associated with an array update.

The add procedure contains the clause buff [wLoc] := val which specifies the addition

of the packet val to the channel buffer at the wLoc index.

Channel buff(target) :=

Channel buff(target)C− {Channel wLoc(target) 7→ Proc tmpDat(self)}

In the mapping the OCB formal parameter val, is substituted with the actual parameter,

Proc tmpDat(self). Channel wLoc(target) corresponds to the index value wLoc. The

guard Channel wLoc(target) − Channel rLoc(target) ≤ 5 causes the writing process

to block if the channel buffer has 5 elements and allows the reading to commence. In

the action of the event Proc p5 the count of packets in the buffer is decremented.

Chapter 6 Case Study 1 118

Proc tmpBuffSz(self) := Proc tmpBuffSz(self)− 1

EndWrite is refined by Proc p6, we indicate that the process is no longer in the writing

set by setting the channel’s wPID to −1 in the freeWChan procedure; no process will

have this identifier. The event action for the mapping is Channel wPID(target) := −1.

When proving the refinement of the implementation model we use gluing invariants to

relate the abstraction with the implementation. An example of such an invariant follows,

∀self ·self ∈ Proc ∧ self ∈ dom(Proc id) => Proc id(self) ≥ 0

We include the invariant above because we wish to ensure that no processes have the

identifier -1, which is reserved for indicating that the channel has no reader/writer. We

then have an invariant that states that if a channel does not have a writing process

identifier value as its wPID attribute (since Channel wPID(Proc c(self)) = -1) then

this implies that the process is not in the domain of the writing set in the abstraction.

∀self ·self ∈ Proc∧

self ∈ dom(Proc c)∧

Channel wPID(Proc c(self)) = −1

⇒ self /∈ dom(writing)

We also relate the channel to the abstract writing set,

∀self ·self ∈ Proc∧

self ∈ dom(Proc c)∧

Channel wPID(Proc c(self)) = −1

⇒ Proc c(self) /∈ ran(writing)

Similar invariants exists for the readers.

We state that all process identifiers should be unique in the following invariant:

∀p, q ·p ∈ Proc ∧ q ∈ Proc∧

p 6= q

⇒ Proc id(p) 6= Proc id(q)

Chapter 6 Case Study 1 119

We ensure that the write location wLoc remains in the bounds of the array with the

invariant:

∀self ·self ∈ Proc∧

self ∈ dom(Proc buff)

⇒Buffer rLoc(Proc buff(self)) ∈ 0 .. 49

To assist with the proof we added the following theorem. It is a form of re-use strat-

egy; the predicate was frequently added to the hypothesis and used to discharge proof

obligations. By adding it as a theorem it becomes available to the automatic proof tools.

(λi·i ∈ 0 .. 49) ∈ (0 .. 49→ Z)

6.3 The Java Implementation

The mapping to Java is mostly self evident since it is very similar to the OCB spec-

ification. We present the source code for the Channels Class, Proc and CommBuffer

respectively in Appendices C.5,C.6,C.7. The remove method of the channel class C.5

shows the conditional waiting mapping, and the temporary initial variables required to

provide parallel semantics. We also see that all methods in the Channel are synchronized

and those that may update state also call notifyAll to wake waiting threads. The main

method of the CommBuffer class shows the creation and starting of the new threads.

6.4 Issues Arising from the Case Study

The motivation for the case study was to provide an implementation of a channel buffer-

ing system. We initially described the development using an abstract model which mod-

els transfer of one block of data at a time. We then refined the model using the transfer

of the packets that make up a block. Then we presented a systematic approach to link-

ing the refined model with an OCB specification which resulted in a translation to an

Event-B model and Java code. We found the Jackson Structure type Diagrams were

a useful aid to visualising the relationships between the abstract events and the events

of the refinement. The Jackson Structure type Diagrams embody both sequencing and

iteration, and we see how this links to sequence and looping in the OCB specification.

The OCB specification consists of a MainClass, one process class, and two monitor

classes. There are 23 labelled clauses in total. These give rise to 41 events and 36 typing

invariants in the Event-B model. The number of proof obligations generated from just

these (before proving refinement) totalled 330, 300 of which were discharged immedi-

ately by the auto-prover, and the remainder were discharged relatively quickly in the

Chapter 6 Case Study 1 120

interactive proof environment. The proof of OCB refinement has not yet been com-

pleted, but all the proof obligations of the abstract development have been discharged.

With regard to the refinement of an abstract development using OCB, we recognised

some opportunities to incorporate productivity enhancements - such as adding refines

and witness clauses to OCB operations. This will enable developers to indicate, dur-

ing the specification stage, the relationship between OCB operations and the abstract

events that they refine. Let us take a brief look at witnesses, which are useful when

discharging proof obligations since they relate parameters of the abstract event to the

refined event. Parameters of an abstract event do not have to appear in an event that

refines it, but if they do not appear they can be linked to some variable, or param-

eter, in the refinement using a witness clause. In our example the StartWrite event

is refined by Proc p2 event. In the abstraction we have local variables p and c where

p ∈ proc ∧ c ∈ chan. We link these to concrete objects in the OCB refinement using

witnesses p = self ∧ c = Proc c(self). A refines clause could be associated with a

labelled OCB clause to indicate which abstract event it refines. The translation from

the OCB specification to Java code worked as expected, and we were able to run the

program in the JVM.

6.4.1 Tooling Issues

In this section I describe how progress was hampered by some tooling issues which

prevented proof of refinement. We then describe one possible solution to overcome some

of the problems. The implementation level model contains over 600 proof obligations, 60

Invariants and 40 events. The majority of these proof obligations have been discharged

with the addition of new gluing invariants; over 250 automatically and over 250 using the

interactive prover. There remain 40 or so (non-trivial) proof obligations to discharge.

However as modelling progressed it became clear that the tool was having difficulty with

the relatively large model. Throughout our investigations we have found that the size of

Event-B models, associated with OCB models, is large and complex when compared to

more abstract models. This results in extremely slow interaction with the proof tools.

The tool’s responsiveness to changes made by the user has made it difficult to finish

proof of refinement in a reasonable period of time; and also various technical problems

have hampered progress. In the remainder of this text we describe some of the problems

encountered when working with larger, more complex models and give details of the

responsiveness of the system. We then propose a solution which involves decomposition

of the models into smaller parts. The solution that we propose will also serve to reduce

the abstraction gap between the abstract Event-B development and implementation.

The use of implementation level models exposes several Rodin tool problems. For in-

stance when the model is rebuilding Java out-of-memory errors are quite often encoun-

tered. To overcome this we can invoke the prover manually, on a smaller number of

Chapter 6 Case Study 1 121

proofs, but this slows the proof activity again and train of thought can be broken. Oc-

casionally the database does not remain synchronized with the user interface; this gives

rise to the proof appearing to be discharged in one pane, but not in another. Sometimes

the prover enters a loop and does not exit; this leaves the database in an inconsistent

state, and the model must be cleaned to restore the integrity. This gives rise to a loss

of the recent proof activity, a loss of time, and disruption in the process of reasoning.

On occasions, when trying to access a proof obligation by clicking on it, an exception

is thrown stating that a proof attempt already exists. This again seems to be revealing

inconsistent state in the Rodin database when compared to the user interface. These

problems seem to manifest themselves more often in larger models; experience indicates

that smaller models give rise to fewer problems. This is one of the reasons (but by

no means the only reason) for proposing an approach involving decomposition of an

implementation level model into smaller parts.

Partitioning of the models will improve responsiveness of the tool, i.e. the time taken

to react to changes made by the user. We have measured the response time of the

system by measuring the time taken to re-build the model, and attempt to automatically

discharge the proof obligations, as a result of adding an invariant. In table 6.1 we can

see a comparison between the time taken for versions 0.9.2 and 1.1 of the Rodin tool.

The OCB Event-B translator is compatible with Version 0.9.2; The translation tool is

not compatible with version 1.1, but we are able to import a model for comparison

of performance. During the test we invoke an external prover known an the Mono-

Lemma (ML) prover, a legacy component, and compare the time taken without the ML

prover in both versions of the Rodin tool. There is a trade off in using the ML prover

since it automatically discharges a large number of proofs, but it is slow. The data in

Rodin version with ML time (mins)

0.9.2 no 2.5

0.9.2 yes 2.75

1.1 no 1.5

1.1 yes 4

Table 6.1: Time to re-build a model

Table 6.1 indicates that there have been improvements in the performance of the proof

tool, between versions 0.9.2 and 1.1, when used without the legacy ML component. So

although a wait of 1.5 minutes is still quite a long time for a response to an update, it is

an improvement on the older version of the tool. The data also suggests that the use of

the ML prover is much less appropriate in the newer version of the tool. This increase

may be due to an internal timeout having a different value in the two tool versions,

rather than being a performance issue. The ML tool will eventually be replaced by a

rule based prover of [107], which we expect to be more efficient. In summary we expect

further performance gains to be made as tool development proceeds, so larger models

will be more tractable. However we still propose that partitioning of the system will

Chapter 6 Case Study 1 122

bring other benefits, such as modular reasoning, and we continue with a description of

out proposal. Our experience of OCB tool development, use of the tool and proof, and

an overview of our proposed solution will be presented in [12].

6.4.2 Decomposition in Event-B with a View to Automatic Code Gen-

eration

We now propose our modular approach for using shared event decomposition to over-

come the problems of models described in the previous section. Event-B modelling of

concurrent systems sharing data, near the implementation level, can give rise to a model

with considerable complexity. By splitting the specification we should be able to deal

with more tractable partitions of the system. Our proposal is to make OCB an extension

of the Event-B approach (with Event-B semantics). An abstract development can be

decomposed using refinement into ProcessMachines and SharedMachines. By using a

decomposition approach we allow for a number of refinement levels; instead of the single

level of an OCB specification. In doing so we reduce the abstraction gaps between the

abstract development and implementation. The proposed Event-B extension performs

a similar role to OCB and many of the OCB elements, such as sequence, looping, pro-

cedures, procedure calls, and so, on are used. In this work we will therefore retain the

name OCB to describe the extension. Following the decomposition of an abstract devel-

opment into a number of machines (which may be independently refined further) we can

use the features of OCB to map the decomposed machines to the target implementa-

tion. We will have maintained the refinement link using the Event-B extension using its

Event-B semantics; there will also be an underlying Event-B model which may be the

result of a translation, or may be synchronized with the OCB model using Eclipse tools.

The final translation to Java would be done using the approach described in the main

body of the thesis. In our extension ProcessMachines are implemented by threads,

and SharedMachines are implemented as monitors. A SharedMachine specification

is simply an Event-B machine, as in the current Rodin tool; this machine can the be

further refined independently. A ProcessMachine can refer to SharedMachines and

call their procedures. The procedure call will be modelled using the shared event de-

composition approach of [33]. So a procedure call is modelled as a shared event where

the events synchronize using their guards; guards also define the values of the input and

output parameters. Figure 6.6 shows how the abstract development can be linked to the

implementation through the decomposed machines.

We now provide details of the proposed new Event-B constructs, and the shared event

approach. To accommodate decomposition into process machines and shared machines

in Event-B we extend Event-B to allow a process to call a SharedMachine’s procedure,

and denote such a call using the call keyword. A process machine T may call shared

Chapter 6 Case Study 1 123

machine M ’s event Evt2 using a call clause as follows:

Process Machine T

Variables v, x, y,

. . .

Events

process Evt2 ,

x :| G1;

y ← call M.Evt2(x);

A

. . .

The extended Event-B annotation permits the restricted use of sequence clauses in an

event. One of the problems with the approach as it exists is that there are more atomic

clauses than are strictly necessary. These give rise to more events (and therefore more

complexity) than are strictly necessary. We have identified a frequently used pattern

that can be used to reduce the number of events generated. In the above clause a non-

deterministic assignment x : |G1 provides a value for x satisfying guard G1. Note that

x is local to the process machine T , but is shared via a parameter in the call clause.

The clause call M.Evt2(x) calls a shared machine’s event, and the result is assigned to

the variable y atomically. Some remaining local processing may be undertaken in clause

A, each variable’s value may only be assigned once in each event. This is because we

Figure 6.6: Decomposition of an Abstract Development

Chapter 6 Case Study 1 124

Figure 6.7: A Shared Event Refinement

wish to simplify the proof effort and do not wish to introduce a sequence operator to

the underlying Event-B syntax for this solution.

The extended Event-B model has a representation of a ProcessMachine in the under-

lying Event-B model. That is, the implementation level model will be different to its

underlying representation, as is the case for the approach described in the main body

of the thesis. However a SharedMachine will appear as a normal machine in the im-

plementation level specification; and this will include an extension to the decomposition

approach. The extended decomposition approach will make use of annotations defining

input and output parameters for events. We denote an input parameter x using the

annotation x?, and an output parameter y as y! . The input and output values of the

variables are shown in Figure 6.7.

Using this approach we hope to decompose the model into tractable partitions, and

provide a more intuitive link between Event-B and the implementation. The extended

Event-B will have subsumed OCB and will be used to specify instantiation, and ordering

of events. It will also allow us to specify points for interleaving, as before, in non-atomic

constructs. The partitioning into smaller models should give rise to fewer problems

when using the tools. In addition to this smaller models are easier to reason about, and

machines can be refined independently.

Due to constraints applied to our approach we are limited in the form of implementation;

and we will investigate further, in an extension to this work, a transactional approach.

We propose an approach to facilitate access to a number of objects directly. Currently

the user interface is in need of some improvement, and much could be done to smooth

the development process on this front.

Chapter 7

Case Study 2

In this chapter we present a case study arising from investigations into the modelling

of the Intel Flash File System Core Reference Guide [82], which used as a reference

document for the Verification Grand Challenge [66]. We show how OCB can be used

to implement part of the Flash File System API layer of the Flash File System Core

Reference. A formal presentation of a tree structured file system is presented in [48],

but our focus is at a higher level in the hierarchical specification, closer to the user

interface. We present a systematic approach to linking the refined model with an OCB

specification which results in a translation to an Event-B model and Java code. This case

study highlights a significant limitation of the approach that we have advocated thus

far, and incentivises further work introduced in Chapter 8. We begin with an overview

of the Flash File System in question, giving details of the parts that we will model and

implement.

7.1 The Flash File System Core

During this work we will refer to the Intel Flash File System Core Reference Guide as the

FFS guide. In our investigation we do not attempt to provide a complete implementation

for all of the API layers described in the FFS guide. We focus instead on a small subset

of features that will allow creation and opening of file; as well as writing to, and reading

from, files. To do this we restrict our attention to the File System Layer API, and a

layer above this which represents the user of API, the application layer (see Figure 7.1).

In our investigation the layers below the File System Layer are simulated, and in future

work we could incorporate more detail of the lower layers based on the extension of our

work presented in Chapter 8. The reason that we limit ourselves here to implementing

just one layer of the API is due to the restrictions we place on OCB. The file system

specification is hierarchical, each API layer may make calls into the API layer below it;

in order to reflect this in our OCB specification instances defined in an API layer must

125

Chapter 7 Case Study 2 126

Application Layer

Hardware

File System Layer

DataObject Layer

Basic Allocation Layer

‘other layers’

FFS Core

Flash Array

Model and
Implement

Simulate

Low Level Layer (Device Driver)

Figure 7.1: Flash File System Hierarchy

make calls to instances in the API layer beneath. In OCB the restriction that monitor

objects cannot refer to other monitors (to prevent the nested monitor call problem and

potential deadlocks) prevents easy access to lower API layers.

It is also worth noting at this point that the target implementation of the FFS guide

is C [93]. In order to provide a Java implementation we create an Event-B abstraction

of the implementation details that have been described using the C language, and then

provide our Java implementation via translation of OCB specification.

7.1.1 The Flash File System API

The File System layer API specifies a number of features and we will look at just a

few which are related to opening, reading from, and writing to, files. In the case study

we model the capability to create and open a file, write to the file and read from the

file. To do this we will first model in Event-B, and then OCB, the FFS API functions

that we describe in this section. We are then able to translate the OCB to a Java

implementation. In the description that follows we omit much of the detail in the FFS

specification [82], since it is not relevant to our discussion here. For instance when we

describe the functions of the FFS API we omit some of the parameters to aid clarity.

The types used in the FFS guide include character strings, and types defined in the

FFS guide itself. However, when modelling the system we use abstraction, and choose

Chapter 7 Case Study 2 127

to convert these more complex types, such as a files name, or access mode, to simple

integer representations. These abstractions are also then carried into the simulated

implementation. The C code used in the specification uses pointers, and we wish to

abstract away from this also. Generally when we encounter a pointer indirection in the

C specification we model the structure that the pointer refers to. As we move toward

implementation using OCB, the pointer indirection in C relates to an attribute; and in

Java, a field name.

We now show the first function header from the FFS specification, FS WriteF ile, that

we wish to implement.

FFS Status FS WriteF ile(FS FileHandle han,

V OID PTR dat,

UINT32 PTR sze, . . .)

FS WriteF ile writes sze bytes from the buffer dat to the file specified by the handle

han. Writing to han starts at the current offset, which is advanced as each byte is

written.

Next we look at the function, FS ReadFileDir which reads data from a file or directory.

FFS Status FS ReadFileDir(V OID PTR buf,

FS FileHandle han,

UINT32 PTR sze, . . .)

FS ReadFileDir reads sze bytes from an open file identified by han into a buffer

identified by buf , starting at the current file offset. The file offset is advanced as each

byte is read.

In order to read or write to a file it must first have been created. The last function that

we will present here is the FS OpenFileDir function which we use to create and open

a new file. The function may also be used to open an existing file, or create a directory,

but we do not use it in this way here.

FFS Status FS OpenFileDir(mOS char pth,

FS FileHandleP tr han, . . . ,

FS OpenMode omd,

FS ShareMode smd, . . .)

The pth parameter is the full path (including file name) of the file to open. han is a

pointer to the open file; omd is the open mode of the file, which dictates if a new file is

always created, if an existing file can be overwritten to create a new file, and if it is to

be open for read only, write only or read/write access. The smd parameter is used to

specify whether the file is allowed to be shared, i.e. do not care about share, do not share

Chapter 7 Case Study 2 128

at all, only share among readers (fail on open for write), or only share among writers

(fail on open for read). The return parameter of this function is of type FFS Status

which is used to report the success, or otherwise, of the request.

7.1.2 The Data Object Layer API

The File System Layer makes calls into the Data Object Layer using the Data Object

Layer API. We have discussed the limitation of OCB to model nested objects, so we

will be simulating this, and lower layers of the specification using an abstraction of the

following API functions. DO AllocateDataObject is called by the File System Layer to

allocate space for data objects. This function call is used to allocate space for files, and

directory objects, as well as data objects used for file system management. It is used

when creating new data, and may be used to overwrite existing data.

FFS Status DO AllocateDataObject(BA UnitLocationPtr dst,

BA UnitLocationPtr src,

BA UnitType type)

The dst parameter is a pointer to the newly allocated data object. src is a pointer to

an existing data object that is to be modified (or NULL if a new allocation is required),

and typ is the type required. The type, of a new file/directory object is defined as

BA UnitTypeF ileDir in the BA UnitType definition.

To read a data object the Data Object Layer exposes the following function called

DO ReadDataObject. The DO ReadDataObject function is typically called by func-

tions of the layer immediately above, the File System Layer, in response to some request

from the User Application Layer.

FFS Status DO ReadDataObject(V OID PTR buf,

BA UnitLocation obj,

UINT32 PTR sze,

UINT32 off, . . .)

The DO ReadDataObject function transfers sze bytes of data from the data object

identified by obj into the buffer identified by buf . The read begins at the offset specified

by off .

FFS Status DO WriteDataObject(. . . , BA UnitLocationPtr obj,

V OID PTR dat,

UINT32 sze,

UINT32 off, . . .)

Chapter 7 Case Study 2 129

DO WriteDataObject is called by the File System Layer to write sze bytes from the

buffer dat to the data object obj from the offset off .

7.2 Modelling the Flash File System

We present a model describing the behaviour at a high level of abstraction, and then a

further refinement that we will implement. We introduce three events in our first model:

create to perform file creation; write to perform writes to the flash memory; and read

to perform reads from flash memory.

7.2.1 The Abstract Model

We begin by defining the context where we introduce some of the sets and constants of

the development.

SETS

DataObject Set

CONSTANTS

Data

AXIOMS

axm1 : Data ⊆ Z

The set DataObject Set represents the potential data objects of the development. Data

represents the data that can be stored in data objects, we use integer data as a convenient

abstraction; the integer representing an index into the dataset where the data resides.

We now look at the variables of the abstract machine and their typing invariants,

VARIABLES

DataObject, data, usr R Buff

INVARIANT

DataObject ∈ DataObject Set∧

data ∈ DataObject 7→ P(Data)∧

usr R Buff ∈ DataObject 7→ P(Data)

DataObject represents the set of instantiated data objects, data represents the data

associated with a particular data object. The locations that have been written form the

Chapter 7 Case Study 2 130

set data, we assume the range of locations from P(Data) are available. usr R Buff

represents a buffer in the application layer and relates a data object to its data. The

Initialisation event initializes the variables of the machine,

INITIALISATION =

DataObject := ∅‖

data := ∅‖

usr R Buff := ∅

The create event models the behaviour of the FS OpenFileDir function with the pa-

rameter omd set to FS CreateNew, which is the flag indicating that a new file is

required. The read and write events relate to, FS ReadFileDir, and FS WriteF ile

respectively.

create = // create a new file

ANYfile

WHERE

file ∈ DataObject Set \DataObject

THEN

DataObject := DataObject ∪ {file}‖

data(file) := ∅

END

The create event models creation of a file data object. We model instantiation of

a data object represented by the file parameter, where the file data object is non-

deterministically selected from the set of uninstantiated data objects, DataObject Set\
DataObject. We add the file to the set of DataObject instances with DataObject :=

DataObject ∪ {file} .

Next we look at modelling the write function,

write = // write a chunk of bytes from UserBuffer (to disk)

ANY bytes, file

WHERE

bytes ⊆ Data∧

file ∈ DataObject∧

file ∈ dom(data)

THEN

data(file) := data(file) ∪ bytes

END

Chapter 7 Case Study 2 131

File System Layer Abstract Events Refined Events

FS OpenFileDir create create
FS WriteFile write w start, w step, w end
FS ReadFile read r start, r step, r end

Table 7.1: File System Layer Abstraction and Refinement

The write event models writing a chunk of byte data represented by the parameter

bytes, to a file data object, represented by the parameter file. The write is modelled

using the action data(file) := data(file) ∪ bytes where bytes is added to the set of data

of file.

We model the read behaviour in a similar way as follows,

read = // read a chunk of bytes (from disk) to a buffer

ANY file, bytes

WHERE

file ∈ DataObject∧

file ∈ dom(data)

bytes ⊆ data(file)

THEN

usr R Buff(file) := bytes

END

The read event models the transfer of a non-deterministically selected chunk of a file’s

data, represented by bytes, into the user’s read buffer that is associated with file; the

transfer is expressed by the action, usr R Buff(file) := bytes.

7.2.2 The Final Event-B Refinement

We now describe the last refinement step of the abstract development, just prior to

the use of OCB to specify the implementation details. We introduce, to the model,

processes initiated by the user in the User Application Layer that are used to write

to, and read from, files. To model the set of user writing processes we add a set to

the context, UserAppWriteF ile Set. Table 7.1 shows the relationship between the File

System Layer functions, the abstraction, and subsequent refinement, of interest to us in

the case study.

As in the case study of Chapter 6 we use Jackson Structure type Diagrams, of [32, 86],

to describe the refinement, and we remind the reader that the diagrams are an informal

representation of the relationship between abstract events and events of refinements.

They are used as an aid to understanding the correspondence between the events of

Chapter 7 Case Study 2 132

r_stepcreate r_start

create

makeUWBuff open_rw w_start w_step

readwrite

r_endw_end

where br* = br, fwhere bw* = bw, f
f writing ^ f reading ^

br data2(f)
br usr_R_Buff2(f)

bw usr_W_Buff(fileWriter(f)) ^
bw data2(f)

bw* br*

Figure 7.2: Abstract Development of the Flash File System

the abstraction and those of the refinements. Figure. 7.2 shows that the read and

write steps have been split into a number of events with the solid line representing

explicit event refinement. Iteration, where each byte is written from a user’s buffer

to a file, is represented by bw∗; and where each byte is read from a file to a user’s

buffer is shown as br∗. There are also additional events to create the user’s write

buffer, makeUWBuff ; and an event which models opening a file for reading or writing,

open rw. This corresponds to setting the file’s access mode to FS AccessReadWrite.

When a file is to be used for reading or writing, it has to be opened first. It is at

this point that the access permissions are checked, for instance, to see if a file has been

previously opened by a user requiring exclusive access. It is at this point also that the

current user requests exclusive access to the file. Due to this activity we do not consider

the open rw event to be part of the refinement of the write event.

The open rw event is as follows,

open rw = // open file for read/write

REFINES open rw

ANY file

WHERE

file ∈ DataObject

THEN

rwAccess := rwAccess ∪ {file}

END

Chapter 7 Case Study 2 133

rwAccess represents a set of files that have been given read/write access on opening.

The event describes a file data object that is non-deterministically selected and added to

the set of files with read/write access using the action, rwAccess := rwAccess ∪ {file}.

It can also be seen in Figure 7.2 that the write activity itself has been broken into three

steps - w start, w step and w end. w end refines write of the most abstract model.

The next event we present is the first writing step w start, which initiates the process

of writing to a file by adding it to the set of writing files.

w start = // initiate writing to disk(file.data)

from user write buffer

REFINES w start

ANY file, writer

WHERE

file ∈ rwAccess∧

file /∈ writing∧

file /∈ reading∧

writer ∈ UserAppWriteF ile Set∧

writer /∈ ran(fileWriter)

THEN

writing := writing ∪ {file}‖

fileWriter(file) := writer

END

The event guard file ∈ rwAccess ensures that the file has read/write access, and file /∈
writing ensures that the file is not already writing where writing represents the set

of files that are writing. A similar guard exists to ensure the file is not reading. The

fileWriter is a function, fileWriter ∈ DataObject 7→ UserAppWriteF ile Set, which

links a file instance to a writer process instance. In the next event we see that the

writer contains a buffer with the data to be written, it has the type usr W Buff ∈
UserAppWriteF ile Set 7→ P(Data). The w step event repeatedly copies a byte from

Chapter 7 Case Study 2 134

the user’s write buffer to the file as follows,

w step = // step writing bytes to disk

REFINES w step

ANY file, byte

WHERE

file ∈ writing ∧

file ∈ dom(fileWriter) ∧

fileWriter(file) ∈ dom(usr W Buff) ∧

byte ∈ usr W Buff(fileWriter(file)) ∧

file ∈ dom(data2) ∧

byte /∈ data2(file)

THEN

data2(file) := data2(file) ∪ {byte}

END

The file data is represented by data2, which relates files to data, data2 ∈ DataObject→
P(Data). w step non-deterministically selects a byte in the user’s buffer that has not

already been copied. This is guarded by

byte ∈ usr W Buff(fileWriter(file)) ∧ byte /∈ data2(file)

The other guards constrain the event so that only the file linked to the writing process

write buffer can write to the file on the disk. The action,

data2(file) := data2(file) ∪ {byte}

copies the byte from the buffer associated with the file usr W Buff(fileWriter(file))

to the disk represented by data2(file). The file is removed from the set of file being

Chapter 7 Case Study 2 135

written when all the bytes have been transferred, in the EndWrite event.

endWrite = // finish writing from buffer

REFINES w end

ANY file

WHERE

file ∈ writing ∧

file ∈ dom(data2) ∧

∀b(b ∈ usr W Buff(fileWriter(file))⇒ b ∈ data2(file))

THEN

writing ∈ writing \ {file}

END

The file is guarded so that the endWrite event is enabled when each byte in the user

buffer is also on the disk, ∀b(b ∈ usr W Buff(fileWriter(file))⇒ b ∈ data2(file)). A

similar approach was used to break the read event of the abstraction into three events,

where the r end event refines read but we do not show the specification here to avoid

repetition.

7.2.3 An OCB Specification for Writers

After specifying an abstract development of the FFS we can provide implementation

details which will allow translation to a Java implementation using OCB. Using our

knowledge of the abstract development we identify a number of elements that can be

implemented, for example we can see that some elements lend themselves to implemen-

tation as active process objects, such as readers and writers, that carry out tasks. We

can also identify some elements that are shared between the process objects that do not

play an active role, such as the data objects; we can implement these as shared monitor

objects. Table 7.3 shows the main OCB classes that we introduce to implement the File

System, for the full specification see Appendix D. The classes of the User Application

API Layer Class Type Description

User Application UserAppCreateFile Process User Invokes CreateFile
User Application UserAppWriteFile Process User Invokes WriteFile
User Application UserAppReadFile Process User Invokes ReadFile
User Application UserBuffer Monitor Container for data
FFS CreateFile Process Implements create
FFS WriteFile Process Implements write
FFS ReadFile Process Implements read
DataObject DataObject Monitor Represents a data object

Figure 7.3: OCB Classes for the Flash File System

Chapter 7 Case Study 2 136

Layer specify processes which are created and run by users which, in turn, create files,

and read or write to them by calling into the Flash File System Layer below it. We

effectively have two processes associated with each create, read and write activity. This

is a result of respecting the hierarchical nature of the development i.e. splitting into the

User API and FFS API, and DataObject API; combined with the fact that procedure

calls cannot be nested. We were forced to create another process to access the data in the

DataObject API, which was referred to in an object of the FFS API. The CreateF ile

process class implements the abstract create event, the WriteF ile process class imple-

ments the abstract write event, and the ReadFile process class implements the abstract

read event. The File System Layer processes call into the Data Object Layer below;

but, since we are unable to make calls into the layers below the Data Object Layer, we

simulate the activity of the Data Object Layer, where we allow a data object instance

to store data in a buffer until it is full. To facilitate a realistic implementation we would

have to accommodate acquisition of fresh data objects, to continue the write across a

number of data objects when the current data object becomes full. The Data Object

layer needs to invoke methods of the Basic Allocation Layer, directly below it in the

API structure, to facilitate these activities. This layered structuring is not achievable in

the current version of OCB due to the restriction on nested monitor classes.

Figure 7.4 shows the Jackson Structure type Diagram for the OCB implementation

of the write event. The diagram is interpreted in the following way. Refinement of

the abstract development is shown as in earlier diagrams. At the implementation level

however, when no further refinement takes place, we interpret the diagram in a slightly

different way. Sequences of OCB clauses identified by their labels are read from left

to right. But branching gives rise to columns indicating a sequence within a branch.

Iteration of a group of clauses is indicated by attaching the loop condition annotation

to an enclosing box. It may be useful to make this notation more expressive in future,

and we may wish to add additional features. For instance, in the case of clauses labelled

wf8 .. 10, the branches lead to process termination, and this could be defined on the

diagram. A clause on the diagram may be associated with a false conditional branch, or

false loop branch, which is not explicitly specified in textual OCB. This may occur, for

instance, with while loop termination such as wf12 false. We wish to include this on

the diagram since wf12 false refines w end. As a shortcut we group a sequence, m.. n,

of clauses with label name l, as lm..n.

We now take a look at the OCB specification of the WriteF ile process class, which de-

scribes the process responsible for writing to a file. The process’ behaviour is described

in its run operation, shown in Figure 7.5. There is a close correspondence between the

specification shown here and the diagram of Figure 7.4. The run operation’s labelled

clauses are shown in the diagram, as are the concepts of sequence, iteration and branch-

ing. Prior to creating a WriteF ile process the user application layer will have access to,

or will have created, a store of open files - OpenFileStore discussed in 7.2.4. The caller

Chapter 7 Case Study 2 137

wf11

bw*

wf10

wf17

wf9wf8

where bw* = bw, f
f writing ^
bw usr_W_Buff(fileWriter(f)) ^
bw data2(f)

wf2* − loop condition: index<countFile ^
fileFound == FALSE

wf2*

wf1

w_step
Implements

wf12..13 wf14 wf15..16

Implements
w_end

wf12_false

wf12* w_step

write

wf10_elsewf9_elsewf8_else

Implements w_start

w_start w_end

wf12* − loop condition: index < bytes

wf2..7

Figure 7.4: Diagram of the Refined FFS Write Event

of the WriteF ile class create procedure, in the application layer, provides the neces-

sary parameters to allow the WriteF ile process to locate the file in the OpenFileStore

object.

The clauses labelled wf2 to wf7 perform a search of the store of open files, up to

openFileCnt which is obtained in clause wf1. If the file is found then the access mode

is checked in wf9, otherwise an error is logged and the process terminates. The errors

logged are; code 1 - id not found, code 4 - invalid access mode, and code 7 - data

object full. The access modes are mode 0 - read only, mode 1 - write only, and mode

2 = read/write, and correspond with those defined in the FFS guide. If the access

check fails then an error is logged in clause wf9 else, otherwise the clause wf9 attempts

to reserve space for the bytes to be written. Clause wf10 checks that this has been

successful, and logs and terminates if not; otherwise all the checks have succeeded and

we reset the file offset and write the bytes from the beginning of the file. It is intended

that wf14 refines the w step event; the event that models the write of a byte of data.

We do not currently provide a refines clause in OCB to link the OCB specification and

the abstraction, but it could easily be added in future work. In the meantime we add

the refines clause manually as we also do for the witness clause.

Chapter 7 Case Study 2 138

ProcessClass WriteFile{
// Attributes.

OpenFileStore openFileStore, UserBuffer buffer, Integer id,

Integer tmpName, OpenFileInfo file, Integer bytes, Integer index,

Integer openFileCnt, Boolean fileFound, FileDirInfo fileDirInfo,

Integer data, DataObject dataObject, Integer offset, Integer aMode,

ErrorLog errorLog, Integer freeSpace

// Constructor procedure.

Procedure create(OpenFileStore openFileStor,Integer fName,

UserBuffer buffr,Integer byts,ErrorLog errorLg){
openFileStore:=openFileStor||id:=fName||buffer:=buffr||bytes:=byts||

index:=0||openFileCnt:=0||fileFound:=FALSE||tmpName:=-1||data:=-1||

offset:=0||aMode:=-1||errorLog:=errorLg||freeSpace:=0

}

// Description of the process’ behaviour.

Operation run(){
wf1: openFileCnt:=openFileStore.getSize();

wf2: while(index<openFileCnt & fileFound=FALSE) do

file:=openFileStore.getAtIndex(index) andthen

wf3: dataObject:=file.getDataObject();

wf4: fileDirInfo:=dataObject.getFileDirInfo();

wf5: tmpName:=fileDirInfo.getID();

wf6: if(tmpName=id) then fileFound:=TRUE endif ;

wf7: index:=index+1 endwhile ;

wf8: if(fileFound=TRUE) then aMode:=file.getAccessMode() andthen

wf9: if(aMode=1 or aMode=2) then

freeSpace:=dataObject.reserveSpace() andthen

// Clause wf10 refines w start

wf10: if(freeSpace>0) then index:=0 andthen

wf11: file.resetOffset();

// Clause wf12 false, where ¬(index < bytes), refines w end

wf12: while(index<bytes) do data:=buffer.get(index) andthen

wf13: offset:=file.getOffset();

// Clause wf14 refines w step

wf14: dataObject.write(data, offset);

wf15: index:=index+1;

wf16: file.incOffset() endwhile endif

else dataObject.unReserve() andthen

wf17: errorLog.add(7) endelse endif

else errorLog.add(4) endelse endif

else errorLog.add(1) endelse

}
}

Figure 7.5: The WriteFile OCB Specification

Chapter 7 Case Study 2 139

7.2.4 MonitorClasses for the Flash File System Implementation

The repositories and structures of the FFS guide can be shared between processes and

are implemented in OCB using the MonitorClass construct. We have defined the fol-

lowing monitor classes - DataObject, DOStore, OpenFileInfo, OpenFileStore, and

FileDirInfo. See Appendix D for details. We continue with a brief overview of these

classes, but note that we simulate the DataObject implementation since we are un-

able to nest calls to lower API levels. The DOStore is a repository of DataObjects.

OpenFileInfo is an implementation corresponding to FS OpenFileInfo, which stores

information about the open files in the system including the access mode, current file

offset and a reference to the DataObject itself. OpenFileStore is the repository in which

the OpenFileInfo objects are stored.

We now look at the specification of the DataObject monitor class in more detail. In

the OCB model we specify the DataObject MonitorClass which provides an imple-

mentation corresponding to FFS data objects. Each DataObject has a type attribute.

The value of the type attribute is an integer value defined in the FFS specification

(BA UnitTypeF ileDir has integer value 128). The DataObject monitor class uses an

integer array data to hold the data and has an attribute reference to FileDirInfo.

FileDirInfo is the implementation corresponding to the structure FS FileDirInfo

of the FFS guide. FileDirInfo holds information about the file such as name (or its

integer simulation in our case), create time, and file attributes. We need to retrieve

the file name from this structure during execution of WriteF ile’s run operation. The

DataObject with its attributes and procedure headers can be seen in Figure 7.6.

Most of the procedures require no explanation here, but note that the file offset is

not held in the data object. Incrementing the file offset, after a read or write, is the

responsibility of the File System Layer. An OpenFileInfo object, associated with the

opened data object, keeps track of the file offset. In the File System Layer the ReadFile,

or WriteF ile, run operation invokes the incOffset procedure to increment the value

of the offset. At this point we should discuss an issue that is not yet fully resolved in

our work. In the procedure body of getF ileDirInfo we have included a when clause to

block the process when the fileDirInfo attribute does not refer to an object. This is not

a completely satisfactory solution, since we should either provide some error message

or prevent the occurrence of this kind of error. To produce an error message would

require a branching statement in the procedure (which is not currently part of OCB).

The other alternative is to show that fileDirInfo is not null when it is accessed. In

Event-B we need to show that DataObject fileDirInfo(WriteF ile dataObject(self))

is not undefined for a writing process, represented by the self parameter. So we require

that WriteF ile dataObject(self) ∈ dom(DataObject fileDirInfo) at the time of the

call. We can do this by adding this property as an invariant clause in the machine and

Chapter 7 Case Study 2 140

MonitorClass DataObject{
Integer type, FileDirInfo fileDirInfo,

Integer[10] data, Integer freeSpace

// The constructor procedure

Procedure create(Integer typ,FileDirInfo fileDirInf){
type:=typ || fileDirInfo:=fileDirInf ||

freeSpace:=10

}

// Obtain this object’s FileDirInfo object

Procedure getFileDirInfo(){
when(fileDirInfo /= null){

return := fileDirInfo

}
}: FileDirInfo

// Read the byte at the supplied offset

Procedure read(Integer offset){... }: Integer

// Write the supplied byte at the supplied offset

Procedure write(Integer val,Integer offset){... }

// Obtain the type of this data object

Procedure getType(){... }: Integer

// Reserve space for writing a byte

Procedure reserveSpace(){... }: Integer

// Unreserve space for reserved for writing

Procedure unReserve(){... }
}

Figure 7.6: The DataObject OCB Specification

relating it to the program counter l of the caller as follows,

∀s ∈WriteF ile ∧WriteF ile state(s) = l⇒

WriteF ile dataObject(s) ∈ dom(DataObject fileDirInfo)

This gives rise to proof obligations which must be discharged to show the property holds,

and we can also apply this approach to other OCB attributes, where it is necessary to

prove non-nullity.

Chapter 7 Case Study 2 141

7.3 The Event-B Model of the OCB Specification

The OCB model of the Flash File System Layer contains many labelled clauses and we

choose the clause labelled wf14 and show WriteF ile wf14 as a typical event arising

from the translation of a labelled clause. As a brief reminder, the clause wf14 is defined

in the WriteF ile process class as follows,

wf14: dataObject.write(data, offset);

The dataObject.write procedure call will be expanded in line. The call is defined as

follows,

Procedure write(Integer val,Integer offset){
when(offset>=0 & offset < 10){

data[offset]:=val}
}

The write procedure takes val and offset as parameters and will write the value at the

appropriate index in the array. In this implementation the procedure is guarded to ensure

the offset is in the bounds of the array. However, a more appropriate implementation is

to guard this (in a conditional clause) in the caller and set an error flag if the condition

is not satisfied. However the example is sufficient for our purposes. We now show the

Chapter 7 Case Study 2 142

result of the translation of clause wf14 to Event-B.

WriteF ile wf14 =

REFINES w step

ANY self, target

WHERE

self ∈WriteF ile ∧

self ∈ dom(WriteF ile state) ∧

WriteF ile state(self) = wf14 ∧

self ∈ dom(WriteF ile dataObject) ∧

target = WriteF ile dataObject(self) ∧

WriteF ile offset(self) = 0 ∧

WriteF ile offset(self) < 10

WITH

file = WriteF ile dataObject(self) ∧ byte = WriteF ile data(self)

THEN

DataObject data(target) :=

DataObject data(target)C−

{WriteF ile offset(self) 7→WriteF ile data(self)} ‖

WriteF ile state(self) := wf15

END

The translated event refines the w step event since its action is to write the byte to the

file data object. In the final refinement of the abstract development the byte is added

to the data object data2 as follows,

data2(file) := data2(file) ∪ {byte}

In the implementation model we relate the abstraction to the implementation model

using two witnesses. The first witness represents the file being written to, file =

WriteF ile dataObject(self), and therefore from the guard file = target. The sec-

ond witness represents the byte being written to the file, byte = WriteF ile data(self).

In the implementation the data to write is held in the buffer of the WriteF ile instance,

represented by WriteF ile data(self).

DataObject data(target) :=

DataObject data(target)C−

{WriteF ile offset(self) 7→WriteF ile data(self)}

Chapter 7 Case Study 2 143

Additionally we have self which parametrises the writing process where self ∈WriteF ile,

and an offset value WriteF ile offset(self) for the data.

We add the following invariant relating the written data of data object f , data2(f)

of the abstraction, with ran(DataObject data(WriteF ile dataObject(s))) the written

data of the implementation. We are interested in ensuring that the written data is the

same in the abstraction, and in the implementation refinement after writing is com-

plete. Writing is complete when WriteF ile state(s) = wf14∧¬(WriteF ile index(s) <

WriteF ile bytes(s)), and is described in the events w end and the refined event,

WriteF ile while wf12 false.

∀f, s· f ∈ DataObject ∧ s ∈WriteF ile ∧

WriteF ile state(s) = wf12 ∧

¬(WriteF ile index(s) < WriteF ile bytes(s))

⇒

data2(f) = ran(DataObject data(WriteF ile dataObject(s)))

During the writing steps when there are bytes left to write, WriteF ile index(s) <

WriteF ile bytes(s), we equate the data, data2(f), of the abstraction, with

ran(DataObject data(WriteF ile dataObject(s))) in the following invariant. This en-

sures that the implementation writes satisfy the writes specified in the abstraction, the

write steps are described in the event w step and the refined event, WriteF ile wf14.

∀f, s· f ∈ DataObject ∧ s ∈WriteF ile ∧

WriteF ile state(s) = wf14

⇒

data2(f) = ran(DataObject data(WriteF ile dataObject(s)))

Similar invariants ensure the data reads of the implementation satisfy the abstraction.

At run time the program can accommodate the fact that a call may be made to an object

that does not exist. We provide a default handler for a monitor procedure call where

the target is a null reference - the process simply terminates. In the implementation

this corresponds to throwing an exception and terminating. We can optionally specify

some activity performed before the process terminates, such as logging the error. Mon-

itor class procedures may also contain null references, these are not currently handled

satisfactorily; the process simply blocks. A mechanism could be introduced in future

Chapter 7 Case Study 2 144

work to ensure non-nullity as discussed previously in 7.2.4

WriteF ile wf14 isNull =

ANY self

WHERE

self ∈WriteF ile ∧

self ∈ dom(WriteF ile state) ∧

WriteF ile state(self) = wf14 ∧

¬(self ∈ dom(WriteF ile dataObject))

THEN

WriteF ile state(self) := terminatedWriteF ile

END

In this section we have shown the events arising from the translation of the labelled OCB

clause wf14 which refines the w step event. The translation of other process clauses

give rise to events modelling creation of files, and reading from, and writing to them.

The top layer OCB specification consists of a MainClass which is the entry point for

execution. The user’s Application Layer operations are called from the MainClass. The

File System Layer operations, described above, are then called from within the user’s

Application Layer.

7.4 The Java Implementation

We now discuss the Java code that arises from the translation from OCB. We will con-

tinue with our discussion of the writing process with the WriteF ile Java class shown

in Figure 7.7, and the DataObject class as an example of a monitor class, shown in

Figure 7.8. The WriteF ile process class defined in OCB gives rise to the WriteF ile

Java class that implements java’s Runnable interface for defining the thread behaviour.

The OCB attributes of the WriteF ile process class are translated to private Java fields

which are initialized in the constructor method. The run method consists of the trans-

lations arising from the process class’s run clause, with its labelled atomic clauses; the

Java code closely resembles the OCB specification in this section. The Java code for the

DataObject class closely resembles the OCB specification, and we have not reproduced

it in its entirety. We just point out that OCB attributes map to private Java Fields,

and that synchronized methods are used to implement procedures.

Chapter 7 Case Study 2 145

public class WriteFile implements Runnable{
private OpenFileStore openFileStore = null;

private UserBuffer buffer = null; private int id;

private int tmpName; private OpenFileInfo file = null;

private int bytes; private int index; private int openFileCnt;
private boolean fileFound; private FileDirInfo fileDirInfo = null;
private int data; private DataObject dataObject = null;
private int offset; private int aMode;

private ErrorLog errorLog = null; private int freeSpace;

public WriteFile(OpenFileStore openFileStor, int fName,

UserBuffer buffr, id = fName; int byts, ErrorLog errorLg){
openFileStore = openFileStor; buffer = buffr; bytes = byts;

index = 0; openFileCnt = 0; fileFound = false; tmpName = -1;

data = -1; offset = 0; aMode = -1; errorLog = errorLg;

freeSpace = 0;}

public void run(){
openFileCnt = openFileStore.getSize(); // wf1

while(index < openFileCnt && fileFound == false){
file = openFileStore.getAtIndex(index); // wf2

dataObject = file.getDataObject(); // wf3

fileDirInfo = dataObject.getFileDirInfo(); // wf4

tmpName = fileDirInfo.getID(); // wf5

if (tmpName == id) {
fileFound = true; /*wf6*/ }

index = index + 1; /*wf7*/ }
if(fileFound == true){

aMode = file.getAccessMode(); // wf8

if(aMode == 1 || aMode == 2) {
freeSpace = dataObject.reserveSpace(); // wf9

if(freeSpace > 0){
index = 0; // wf10

file.resetOffset(); // wf11

while(index < bytes){
data = buffer.get(index); / wf12

offset = file.getOffset(); // wf13

dataObject.write(data, offset); // wf14

index = index + 1; // wf15

file.incOffset(); /*wf16*/}}}
else{ dataObject.unReserve();

errorLog.add(7); /*wf17*/}}
else{errorLog.add(4);}}}

else{errorLog.add(1);}}
}

Figure 7.7: The WriteFile Java Code

Chapter 7 Case Study 2 146

public class DataObject {

private int type; private FileDirInfo fileDirInfo = null;
private int[] data = new int[10]; private int freeSpace;

public DataObject(int typ, FileDirInfo fileDirInf){
type = typ; fileDirInfo = fileDirInf; freeSpace = 10; }

public synchronized FileDirInfo getFileDirInfo(){... }

public synchronized int read(int offset){. . . }

public synchronized void write(int val, int offset){...}

public synchronized int getType(){... }

public synchronized int reserveSpace(){... }

public synchronized void unReserve(){...}
}

Figure 7.8: The DataObject Java Code

7.5 Issues Arising from the Case Study

The motivation for the case study was to attempt to provide an implementation of part of

the flash file system specified in the Intel Flash File System Core Reference Guide (FFS

Guide) [82]. In particular we wanted to see how an OCB implementation could be used

to implement part of an existing system, and the problems that would be encountered.

In related work, modelling of the flash memory has been undertaken using Z [36] but

deals with lower level parts of the ONFI specification [83]; our interest in this case study

is specification at higher level. VDM++ has also been used to create a model [58] based

on the FFS guide, the paper presents the activity of deleting a file from the file system.

The resulting model was translated to, and analysed with, Alloy [85] and HOL [3]. A key

feature of the VDM++ work was the integration of the tools and techniques, our main

focus is the integration of the Event-B method and an object-oriented implementation

that makes use of concurrency. The Event-B approach and Rodin toolset have been

designed, from the outset, to simplify the process of specifying and discharging proofs.

In some respects the expressiveness of the tools have been limited, in order to support

a simpler approach to proof. In other respects Event-B can be seen as much more

general since it is not limited to modelling software systems. Approaches such as Z and

classical-B support a design by contract approach using preconditions and postconditions

and are therefore much more tailored to modelling software systems. In this way one

could view Z and classical-B as more expressive than Event-B in that they provide

more language structures; but the simplicity of Event-B can be seen as providing a

Chapter 7 Case Study 2 147

much clearer view of a system as development proceeds. The Rodin tool and Event-B

approach were developed to be used together which gives rise to an integrated approach.

This approach of VDM++ work above differs since the VDM++ model of the file system

was translated to Alloy and HOL. In the Z model of flash memory the proof was not

discussed, but typically the Eves prover [129] would be used since it has been tailored

for use with Z.

The FFS Guide describes a complex system and a number of APIs, layered in a hierar-

chical fashion, are used to partition the specification. It quickly became apparent that

our OCB implementation would not be able to follow the hierarchical structure, and

attention was restricted to an implementation of the User’s Application Layer, and the

File System API only. With the Data Object layer and those below being simulated.

The problem occurs mainly because we prevent monitor class procedures from invoking

procedure calls of other monitor classes, a restriction imposed in order to prevent dead-

lock and the nested monitor problem. This demonstrates the need for an extension to

existing work that has a more flexible approach. In an implementation that does not

block the process on a failed lock acquisition attempt, we would be able to accumulate

a number of object locks without fear of deadlock. If we encountered a lock that was

held by some other object we could simply release the accumulated locks. If we are able

to accumulate locks then we may then be able to entertain the notion of nested monitor

objects and allow procedure calls on them. In the next chapter we discuss our extension

of the OCB approach which should allow a transactional approach, which will allow us

to access multiple objects from within a labelled clause. However, the OCB notation

seemed to be most suitable for the specification of the User Application Layer and the

Flash File System Layer, which is where the processes of the system are invoked.

We initially described the part of development we are interested in using an abstract

model where readers and writers copy a chunk of bytes to disk atomically. We then

refined the model to model the transfer of the bytes individually, that make up a chunk

of data. We then presented a systematic approach to linking the refined model with an

OCB specification which resulted in a translation to an Event-B model and Java code.

We found that the Jackson Structure type Diagrams were a useful aid to visualising

the relationships between the abstract events and the events of the refinement at the

implementation level. The Jackson Structure type Diagrams can embody sequencing,

iteration and branching; and we see how this links to sequence, looping, and branching

in the OCB specification.

In the OCB approach a single monitor procedure call can be invoked in a labelled atomic

clause. However, it is not always possible to know in advance when a target refers to

an object or is undefined. There are approaches that attempt to ensure this within

certain constraints, such as Spec# [23]; but this is not a general solution since it does

not cater for non-null types in arrays. We have handled this approach by modelling

process termination, where in the Java implementation the thread throws an exception

Chapter 7 Case Study 2 148

and terminates. We showed an additional associated problem, where an attribute inside

a procedure body may be undefined. We showed that we could add an invariant and, in

this case, use proof to show non-nullity, and we think that this approach could also be

used to prove non-nullity in most other circumstances.

The OCB specification consists of a MainClass, 6 process classes, and 7 monitor classes.

There are 62 labelled clauses in total. These give rise to 127 events and 113 typing in-

variants in the Event-B model. The number of proof obligations generated from just

these (before proving refinement) totalled 827, 777 of which were discharged immedi-

ately by the auto-prover. A further 77 were discharged relatively easily and 18 remain

to be discharged. The size of the translated Event-B model caused some problems, with

the automatic prover taking a very long period of time to run through the proof obli-

gations. The problem that this caused indicates that we should consider some form of

modularity, or decomposition of the model into more tractable partitions. The proof of

refinement has not yet been completed, but there is room for including some productiv-

ity enhancements such as adding witnesses and refines clauses to OCB operations, thus

indicating their relationship with the abstract events. The translation from the OCB

specification to Java code worked as expected, and we were able to run the program in

the JVM.

The user interface, in its current state, is suitable only to for use in investigating, and

experimenting with, the approach. We make use of the Eclipse tree editor which is not

well tailored to our needs. It would seem natural to use a UML-like diagram editor with

class diagrams, such as that used in the UML-B tool, to specify our process and monitor

classes. This would then provide a natural progression from Event-B modelling, using

UML-B, to OCB specification.

Chapter 8

Extending OCB with

Transactional Constructs

In this chapter we propose a transactional version of OCB constructs which makes use of

a later Java platform version that has greater control over locking and conditional wait-

ing. The transactional version of OCB introduces a number of features which overcome

the limitations of the OCB described in previous chapters. We first discuss the newer

features of Java, introduce the new syntax, and then describe mappings to Event-B and

Java.

8.1 The Java Language Specification - Third Edition

There were many concerns about the Java Language Specification - Second Edition

(JLS 2)[37], which was shown to contain many ambiguities and omissions. Problems

most typically manifested themselves in systems where concurrent execution of threads

was employed; to the extent that sharing of data that could modified was eliminated by

design if at all possible, as suggested in [100]. Much has been written on the subject of

overcoming concurrency problems in Java, some by proposing extensions to the language,

or adding annotations to Java [22, 25, 62, 81, 88, 92], or some by suggesting how to work

with this, and the previous, Java edition with careful checking [16, 61, 80].

The memory model has been redefined in the Java Language Specification - third edition

(JLS 3)[68] which serves to define the language up to version 1.5 of the Java SDK. The

specification has a more detailed description of the read and write actions of threads

to overcome the ambiguities in the previous version; and there are new features to

assist with programming for concurrency. There is an atomic Compare and Set (CAS)

operation associated with objects that have atomic updates that makes use of atomic

149

Chapter 8 Extending OCB with Transactional Constructs 150

primitives recently introduced in the latest processor technology. It has the form,

boolean compareAndSet(expected, newV al)

where the newV al is assigned to the object, and returns true, if the value of the object

equals expected; else returns false and makes no change. JLS3 makes use of this new

feature to provide the AtomicInteger, AtomicBoolean and AtomicReference types,

among others, which are part of the java.util.concurrent.atomic API. The java.util.concurrent

API provides a Semaphore class which allows threads to acquire permits, and block if no

permit is available. A semaphore can make a number of permits available in order that

each object of a pool of resources can be acquired; each acquisition is atomic. Permits

are released when no longer required by a thread and other threads are notified and may

compete for the resource. A semaphore with a single permit can function as a mutex

lock. The semaphore makes use of the new atomic constructs such as AtomicInteger

and compareAndSet in its implementation.

Another feature of JLS3, that is an improvement over JLS2, is in the area of locking

objects and conditional waiting. JLS3 introduces the java.util.concurrent.locks API

which provides features that allow explicit control over object locking. It is intended that

the new locking constructs should not be used in conjunction with the synchronization

mechanism of JLS2 since the two mechanisms are independent of each other. One

useful feature that we can make use of is non-blocking lock acquisition. In JLS2 if an

object’s monitor lock is held by a thread, if a second thread attempts to acquire the lock

then it is blocked. The developer has no control over this behaviour, JLS3 enables the

creation of Lock objects with a tryLock method. The tryLock method will simply return

false if the lock is already held by some other thread, thus facilitating non-blocking lock

acquisition. A lock can also be released using the unlock method. The API also provides

a ReadLock that can be shared among readers and a WriteLock that allows mutually

exclusive access, but waits until all readers have finished reading.

Conditional waiting has been enhanced by the use of explicit Condition objects upon

which a thread may wait. A new Condition object is obtained from an existing Lock

object by the use of the newCondition method. The Condition object’s await, signal

and signalAll methods perform the same function as the wait, notify and notifyAll

methods. The advantage of explicit Condition objects is that a number of such objects

can be associated with a single lock. Each can have its own condition attached, and is

therefore more flexible than the old method. Of the Lock types that are specific to read

and write activities, it is possible to associate a Condition object with a WriteLock,

but not a ReadLock - an exception is thrown if this is attempted.

Chapter 8 Extending OCB with Transactional Constructs 151

8.2 Transactional Constructs

We are able to use the new language features of JLS3 to implement a more flexible OCB

approach, and introduce access to a number of objects in an atomic clause - rather than

restrict access to one object as is the case of out initial OCB approach. Since we are

able to access more than one object in a labelled atomic clause we refer to the extension

of our approach as Transactional-OCB. When we compare the original approach we will

refer to it as Synchronized-OCB, due to its reliance on this method of locking objects.

Figure 8.1 is an aid to visualising the difference between monitor locks and the use of a

lock manager. The reader should note at this point are discussion of object locking is an

implementation issue - the locking scheme should remain largely transparent to the user

of OCB. The only exception may be any restrictions that we introduce to ensure that

the approach is transactional. So, with respect to the implementation of Synchronized-

OCB, a process can only obtain a single lock for an object; this is facilitated by the use

of Java’s synchronized method calls. In contrast, the lock manager of the Transactional-

OCB approach is able to gather a number of object’s locks; and furthermore, it is able

to release the held locks if the manager is unable to acquire any particular lock of a set

of required locks. In Transactional-OCB each labelled clause is associated with a set of

locks that it requires; and the set of locks is to be acquired before entry into the critical

region of the clause. It is for this reason that all the locks should be known prior to

the clause body being executed. If we cannot decide which locks are required before

entry to the critical region then it may be the case that one of those is not available

and the transaction could not proceed. This would be problematic in the middle of

a transaction since we have no roll-back facility, any state updates that we have made

would be permanent. To ensure that procedure calls are decidable in advance we impose

the restriction that if multiple procedure calls are made in a labelled atomic clause then

the procedures that are called are getter methods only, that is, when determining which

locks are required to effect the procedure call, they will not update state before entry

to the critical region. This restriction can be checked statically prior to the automatic

translation begins. So the calls may be nested, but they must in turn only be to getter

methods. In this way we avoid having computations involving state updates at the lock

acquisition stage.

We now present some examples of Transactional-OCB clauses in which we make use of

two procedure definitions, add and sub specified as follows,

Procedure add(Integer a){ x := x+ a }

The sub procedure subtracts an amount from x and returns the new balance,

Procedure sub(Integer a){ x := x− a ; return := x } : Integer

Chapter 8 Extending OCB with Transactional Constructs 152

Lock Manager

SharedClass SharedClass SharedClass.......

Labelled Clause Labelled Clause

ProcessClassProcessClass

MonitorClass

Objects in Synchronized OCB Objects in Transactional OCB

Figure 8.1: OCB Locking Strategy

The following labelled atomic clause involves a sequence of updates to different objects

using the procedure calls defined above, note that we now allow more than one procedure

call in a labelled clause.

l1 : / m1.sub(amt) ; m2.add(amt) .

The brackets enclosing atomic regions, / and ., are introduced to the specification here.

We use these to make it clear which areas are contained within an atomic region. The

sequence operator, used in labelled atomic clauses, does not permit interleaving so in this

sense the operator differs from the sequence operator used in non-atomic clauses. It is

simply used to sequence updates within an atomic region. The sequence operator makes

the use of the parallel operator redundant in the actions of labelled atomic clauses. In

the preceding clause the object referred to by attribute m1 has its sub procedure called

and is passed the parameter amt, then the object referred to by m2 has its add procedure

invoked with the parameter amt being passed.

Using the above clause we can atomically update two distinct objects without inter-

ference by some other process, or threat of deadlock. The type of deadlock situation

that may arise here is caused by resource contention conflicts. We discussed interference

and deadlocks earlier in Section 2.8.2. Deadlock prevention is achieved using explicit

lock objects, and the tryLock method, where an unsuccessful lock acquisition attempt

releases any held locks. We are also able to accommodate OCB when clauses in these

objects since we can wait on a condition after releasing the locks already held.

We also introduce direct access to owned object attributes which can be seen in the

following clause. In Synchronized-OCB a labelled clause may only update the attributes

of a shared object through a procedure call, in Transactional-OCB we can make use

of direct access to objects referred to by attributes. This can however be viewed as

Chapter 8 Extending OCB with Transactional Constructs 153

syntactic sugar; an alternative to the use of procedure calls.

l1 : / t2 := m2.x ; m2.x := m1.x ; m1.x := t2 .

We are now able to make the actions of labelled atomic clauses more expressive, and

would like to add some other features that correspond to implementation level constructs.

We introduce a branching clause for use in our labelled atomic clauses which is used as

follows,

l1 : / if(m1.getx()− amt ≥ 0) then

m1.sub(amt) ; m2.add(amt) endif .

In this clause the whole branch is enclosed in atomic brackets. This branching clause

differs from the non-atomic version since the non-atomic version allows interleaving

between the atomic part and the ‘andthen’ clause. The branching construct works in

the usual way with a conditional part, and an action that is evaluated if the condition

is true. The clause may also have a number of else branches to describe alternative

branches. We also extend the notation to allow invocation of a procedure call in the

condition, providing the call just retrieves a data value from an object and is free of side-

effects. We will discuss restrictions on procedure invocation in detail when we discuss

lock management later. In this branching clause, then, conditional evaluation and any

subsequent updates occur atomically. The branching clause may also co-exist with other

clauses which will also form part of the same atomic update.

The following atomic while construct will also be useful for performing loops in labelled

atomic clauses. It once again differs from the non-atomic looping construct introduced

earlier, since it does not provide a mechanism for interleaving at the end of each loop

iteration.

l1 : / while(i > 3) do

t1 := m1.getx()− 1 ; t2 := m2.getx() + 1 ;

m1.setx(t1) ; m2.setx(t2) ; i := i− 1 endwhile .

The looping construct consists of a condition which is evaluated and an action that is

performed if the condition is true, else the loop terminates if false. It may be desirable

to prove that a loop can always reach its termination condition, in which case a natural

number loop variant can be specified. The clause’s action must always decrease the

variant; in the example above a suitable loop variant is i− 3, which is decreased by the

action i := i− 1.

Chapter 8 Extending OCB with Transactional Constructs 154

8.2.1 Transactional-OCB syntax

In our approach using transactional constructs we re-use the non-atomic syntax of earlier

chapters. In the Java implementation we can protect critical regions using either a lock-

based management scheme, for which we have a prototype; or we could implement

a solution based on Software Transactional Memory (STM) as discussed in [73, 74,

75]. STM provides a transaction-based solution that maps well to the transactional

constructs of OCB. STM constructs provide the usual commit and abort utilities. One

drawback with an STM implementation is the overhead associated with keeping track

of the changes data; all changes by transactions are recorded temporarily, regardless of

whether a transaction succeeds in committing. This may be an inefficient use of memory

space in a system where contention is high. There is also a time overhead associated with

committing resources. A more memory efficient implementation may prevent changes to

the data being made by locking the data objects, reducing the amount of modified data

in memory, but increasing the time processes spend waiting (a reduction of the amount

of concurrent processing being done). We give more details of the STM approach and our

lock-based implementation later in the chapter. We choose a lock-based implementation

over an STM style implementation for our work for simplicity. In this extension to our

work we retain the concepts of process classes and introduce the notion of shared classes

which we use instead of monitor classes. Re-capping, the syntax for a process class is

defined as,

ProcessClass ::= CName V ar+ NonAtomic Constructor

and for shared classes we have,

SharedClass ::= CName V ar∗ Procedure+ Constructor

Process classes have a name CName, a set of instance variables V ar, a non-atomic clause

declaration NonAtomic, and a constructor procedure Constructor. Shared classes are

similar to process classes but have a set of procedures Procedure instead of a non-atomic

clause. The definition of NonAtomic remains the same.

NonAtomic ::=

NonAtomic ; NonAtomic

| NonAtomic [] NonAtomic

| do Atomic [; NonAtomic] od

| Atomic

Chapter 8 Extending OCB with Transactional Constructs 155

We modify the previous definition of a labelled atomic clause, replacing Body with

Action, since Action now contains all the clauses we require,

Atomic ::= StartLabel : / [Guard→] Action .

The guard that follows the start label is related to the wait condition when construct.

In Transactional-OCB we move conditional waiting out of procedure definitions - up to

the level of the Atomic clause. An example of the textual definition follows where a

labelled clause with a when construct contains an action,

l1 : / when(c){a} .

where c ∈ Guard and a ∈ Action

If condition c is false then the process will block. In the implementation the thread is

blocked by invoking the await method, and waits for a signal from some other thread,

we will describe this more fully later in the chapter. Another difference between syn-

chronized and Transactional-OCB is that we allow procedure calls in the conditions of

looping and branching constructs, but only where the procedure is free of side-effects,

and returns an appropriate value (which can be checked statically). We require freedom

from side-effects since a condition should contain only a predicate guard.

An Action in Transactional-OCB differs from Synchronized-OCB since actions can

be composed using a sequence operator, the parallel operator is no longer used in

Transactional-OCB. This introduces the requirement for a sequence operator in the

Event-B language which does not exist at the time of writing; we do not discuss the

ramifications of introducing this to Event-B, at this stage, and simply assume that it

is possible to do so. We know that the sequence operator existed in classical-B below

the abstract machine level; in refinements and implementation machines. We therefore

have some confidence that it is feasible, and we know that one of the reasons that it

was not included in Event-B was to reduce complexity. We argue that it will be useful

(and indeed necessary) to be able to describe this kind of sequential behaviour when

working at the implementation level. We now discuss the justification for not having

the sequence operator in Event-B, presented in [72]. We know that an invariant I in-

volving variables x and y can be written as I(x, y). We wish the invariant to hold for

the following program,

x := E(x, y) ; y := F (x, y)

Chapter 8 Extending OCB with Transactional Constructs 156

To show that the invariant holds we have the following proof obligation which we must

discharge,

I(x, y)

`

I(E(x, y), F (E(x, y), y))

We can see that expressions on the right-hand side of assignments are carried forward,

and become nested in the proof of subsequent assignments. The complexity does increase

as the number of clauses in the composition increase. However, in our work at the im-

plementation level, we will not use non-deterministic constructs. This therefore reduces

some of the complexity alluded to in the justification for not including the sequence op-

erator. We also introduce branching and looping constructs to actions without in-depth

discussion; this will of course involve the introduction of the corresponding constructs in

Event-B. Branching constructs were included at all levels of classical-B modelling, from

abstract machines down; and looping was included at the implementation level. The

assignment clause used in Transactional-OCB is the same as that of the Synchronized-

OCB syntax. Another difference from the previous Action syntax is the ability to make a

number of procedure calls in an action - in Synchronized-OCB we were restricted to just

one call per labelled atomic clause; in addition we now allow direct access to another

class’s attributes whereas in Synchronized-OCB all such accesses were via procedure

calls. This leads us to redefine our syntax where once we used a simple attribute v in

our definition, we now expand the syntax to include the notion of an attribute v which

can either be a name; a composition of attribute names using the dot-notation; or an

array access. The syntax for v follows,

v ::=

identifier

| identifier‘[’ IntegerLiteral ‘]’

| identifier ‘ . ’ identifier

Procedure calls, of Synchronized-OCB’s Body clause, are subject to some rigid con-

straints. Procedures are only allowed to be called by process classes and the target must

be a shared class. In Transactional-OCB we define procedure calls as part of an Action

and relax some of the constraints. We allow calls to locally defined procedures (calling

of procedures defined within the same process or shared class as the caller), shared class

procedures (as before but multiple calls in an action), and constructors. We still, how-

ever, wish to prevent recursive procedure calls - Event-B proof rules would need to be

developed to handle recursion. So we need to ensure the absence of recursion statically,

or prohibit calls to procedures that have calls themselves. In Transactional-OCB we do

not permit the use of the when clause (for conditional waiting) in procedures. Since

Chapter 8 Extending OCB with Transactional Constructs 157

an atomic clause can now contain a number of procedure calls the conditional waiting

construct is defined at a higher level in the hierarchy of clauses, then evaluation of the

conditions will occur before entry to the atomic clause containing the procedure calls.

Action ::=

Action ; Action

| if(Guard) then Action endif

(elseif(Guard) then Action endelseif)∗

[else Action endelse]

| while(Guard) then Action endwhile

| v := E

| [v :=] m.pn(a1, . . . , ak)

| v := C.create(a1, . . . , ak)

The sequence operator used in Action is different to that of NonAtomic since it does

not indicate a location for interleaving. Rather, the atomic sequence operator is used

for updates within a transactional clause and is not visible externally.

8.2.2 The Mapping to Event-B

The definition of the mapping once again uses the Guarded Command Language of[52],

as used in Chapter 3; atomic regions are bracketed thus, / ., as before and the TNA

translations are as defined in Chapter 4

The TLA mapping for Synchronized-OCB is shown in Definition 3.11, where the TLA

mapping gives rise to an event, but the OCB actions require further ‘treatment’ when

compared to Synchronized-OCB. At this point in the discussion we see the introduction

of more features that differentiate Synchronized-OCB and Transactional-OCB. At the

level of the Action clause we introduce some new concepts: Firstly we introduce direct

access to attributes, which means there will be a change to the renaming function TV

of section 4.1. Recall that attribute names used in the OCB actions are renamed with

respect to the caller using the TV mapping function of Table 4.1. Actions now need to

accommodate attributes of the form id1.id2 where id1 is an attribute of type MName,

representing a SharedClass instance known to the class, and id2 is an attribute name

belonging to that instance. The mappings defined in Table 4.1 are similar but we now

accommodate a compound identifier which uses dot-notation in v. Table 8.1 supersedes

the TV translation for the variable v, as shown in Table 4.1. The set of attributes vp

are all of the attributes visible from the instance s. Currently all attributes have public

scope by default, that is, they are navigable from any class; however we may wish to

restrict this in future work by introducing a private scope, so vp will contain only the

set of attributes navigable from a particular class.

Chapter 8 Extending OCB with Transactional Constructs 158

identifier v < v, vp, s >TV

id1. · · · .idn in(in−1 .. (i1(s))) where id1. · · · .idn ∈ vp
id1. · · · .idn where id1. · · · .idn /∈ vp

∀s·s ∈ P ∧ where P is the calling process
s ∈ dom(id1) ∧ add well-definedness invariant
id1(s) ∈ dom(id2) ∧
id2(id1(s)) ∈ dom(id3) ∧ ..∧
idn−1(idn−2 . . . (id1(s)) ∈ dom(idn)

idi[v] = idi(s)(< v, vp, s >TV) where idi is an array access
indexed by v

Table 8.1: Rule TV applied to v

In OCB, when accessing an attribute, we wish to ensure that the object exists but any

of the attributes of the compound identifier are potentially undefined. In the imple-

mentation if an attempt is made to access an object that does not exist, a null pointer

exception would be thrown; and we can avoid this by proving, in advance, that the

partial function is well-defined. To facilitate this we add a well-definedness invariant to

the Event-B machine which is defined in Table 8.1. In Synchronized-OCB we simply

add an event to handle the case where a call is made to a null target. We however think

the proof approach used here is an improvement on the approach used in Synchronized-

OCB, and could indeed be used there too. We now show an example of the mapping of a

compound identifier to Event-B, where w, y and z are attributes used in the compound

identifier, and vp is the set of attributes visible to the instance s.

< w.y.z, vp, s >TV

=

z(y(w(s)))

Table 8.1 also defines the mapping of an array reference. We previously discussed map-

ping array accesses in 4.1.1, and to recap, we defined the mapping as follows,

< v[i], vp, s >TV = v(s)(< i, vp, s >TV)

In the application of TV to the OCB fragment the variable part and the index part of

an array access is split into two parts. In the resulting Event-B fragment we have a

function application v parameterised by instance s, this is then composed functionally

with the translated index i. In Transactional-OCB’s mapping of array accesses we split

the variable and index parts in the same way, We can also see that if y was an array

access y[i], indexed by attribute i, and we had a compound identifier involving an array

Chapter 8 Extending OCB with Transactional Constructs 159

access w.y[i].z, then < w.y[i] >TV would yield the following,

< w.y[i] >TV = y(w(s))(< i, vp, s >TV)

and so for the complete identifier, we have,

< w.y[i].z >TV = z(y(w(s))(< i, vp, s >TV))

and thus we accommodate array accesses in compound identifiers.

The next feature of Transactional-OCB to consider is that of procedure calls in OCB

actions. In the Synchronized-OCB definition actions were simply copied to event actions

with the variables renamed. In Transactional-OCB actions we allow multiple procedure

calls and create calls, these are expanded in-line where they occur in an action, and the

variables are renamed. The easiest way to define the mapping is to modify the mapping

of the labelled guarded action as defined in 4.4, we use P to denote the class in which

the labelled clause is defined,

So the labelled guarded action is,

Definition 8.1. < l1 : / g→ a . , l2, P >TLA

,

l1P =

ANY s

WHERE s ∈ P inst ∧ Ppc(s) = l1∧ < g , vp, s >TV

THEN < a, vp, s, P , l1 >TA ; Ppc(s) := l2

END

where vp is the set of variable names visible to class P.

We now have two translation functions, TA defined in Table 8.2, and TA2 defined in

Table 8.3. TA maps a simple action to an Event-B action. TA delegates the more

complex task of procedure calls and constructor calls to TA2. In a constructor call, for

instance, we add an additional parameter to represent the new instance. We also need to

add a guard to type the new variable and initialize them using a mapping of the create

procedure. Procedure calls also result in a similar in-line expansion of the procedure

action. Each variable involved in a procedure call must be renamed with respect to the

appropriate object, i.e. parameters are substituted and renamed with respect to the

caller. Other variables accessed in the procedure body belong to the target, and are

renamed with respect to the target instance. We define TA as follows,

Definition 8.2. TA ∈ Action× P(V arName)× EventBLV ar × CName× Label
→ EventBAction

Chapter 8 Extending OCB with Transactional Constructs 160

Action is the action to be mapped, P(V arName) is a set of variable names of the

process class being mapped, CName is the process class name, label is the next label

in the sequence of labelled clauses, or the terminating label if there is none. Table 8.2

contains the mapping of simple actions using TA, they map directly to the new Event-B

constructs after variable renaming,

Action < Action, vp, s, P, l1 >TA

Action1 ; Action2 < Action1, vp, s, P, l1 >
TA ;

< Action2, vp, s, P, l1 >
TA

if(Guard) then if(< Guard, vp, s >TV) then
Action endif < Action, vp, s >TV endif

...
...

elseif(Guard) then elseif(< Guard, vp, s >TV) then
Action endelseif < Action, vp, s >TV endelseif

...
...

else Action endelse else < Action, vp, s >TV endelse

while(Guard) then while(< Guard, vp, s >TV) then
Action endwhile < Action, vp, s >TV endwhile

identifier := E < identifier, vp, s >TV :=
< E, vp, s >TV

identifier := < identifier :=
Q.create(a1, . . . , ak) Q.create(a1, . . . , ak), vq, vp,

s, newq, P, l1 >
TA2

identifier := < identifier :=
M.create(a1, . . . , ak) M.create(a1, . . . , ak), vm, vp,

s, newm, P, l1 >
TA2

identifier := < identifier :=
id.pn(a1, . . . , an) id.pn(a1, . . . , an), vq, vp,

s, j, P, l1 >TA2

where: s represents the calling instance.
P represents the class that contains the clause l1.
newq represents a new process instance.
vq is the set of variable names of Q.
vp is the set of variable names of P .
newm represents a new passiveClass instance.
vm is the set of variable names of M .
j represents the target instance.

Table 8.2: Rule TA

It now remains to define the mapping function for procedure and create calls, TA2.

Chapter 8 Extending OCB with Transactional Constructs 161

The definition is similar to TA except for the addition of a parameter EventBLvar

representing the new instance or target, and a set of variable names P(V arNames) of

the new instance; or target in the case of a procedure call.

Definition 8.3. TA2 ∈ Action× P(V arNames)× P(V arNames)× EventBLV ar
× EventBLV ar × CName× Label→ EventBAction

For mappings associated with TA2 see Tables 8.3, 8.4, and 8.5. We separate the map-

ping of the procedure call and constructor constructs into separate tables since each

contributes to the parameters, guard and action of the event. For each action involving

a process create call we add a unique parameter newq to the set of parameters of the

event. The mapping of constructors for processes and shared classes are slightly different

so we consider each in turn beginning with the process constructor, The shared class

Add < v := Q.create(a1, . . . , ak), vq, vp,
s, newq, P, l1 >

TA2

Event parameter newq

Event Guard newq ∈ Qset \Q inst

Event Action < a′, vq, newq >
TV ; Qinst := Q inst ∪ {newq} ;

v(s) := newq ; Qpc(newq) := sLabel(na)

where: s represents the calling instance, and newq represents the new instance.
vq is the set of variable names of Q, and vp is the set of variable names of P .
Q.create(f1, . . . , fk) = a
a′ = a[fn1, . . . , fnk\ < a1, vp, s >

TV , . . . , < ak, vp, s >
TV]

na is the non-atomic clause of process Q, and sLabel is defined in definition 3.6

Table 8.3: Rule TA2 for a Process Constructor

constructor is identical except there will be no program counter set for the new instance,

and is shown in 8.4. The last action we consider is the procedure call, and is shown

in 8.5

8.3 Examples Mapped to Event-B

8.3.1 The Sequential Operator within a Transactional Clause

In the following examples we make use of a shared class M with two instances m1 and

m2, and a ProcessClass P containing the labelled clauses which refer to the shared

classes. We describe how various OCB features map to Event-B, and we conclude the

section by drawing together the examples to show the complete OCB specification. In

the first example we illustrate the ability to update multiple objects in a single clause.

We swap the values of attributes m1.x and m2.x atomically, using direct access. We

Chapter 8 Extending OCB with Transactional Constructs 162

Add < v := M .create(a1 , . . . , ak), vm, vp,
s, newm, P, l1 >

TA2

Event parameter newm

Event Guard newm ∈M set \M inst

Event Action < a′, vm, newm >TV ; M inst := M inst ∪ {newm} ;
v(s) := newm

where: s represents the calling instance, newm represents the new instance.
vp is the set of variable names of P , vm is the set of variable names of M .
M.create(f1, . . . , fk) = a
a′ = a[fn1, . . . , fnk\ < a1, vp, s >

TV , . . . , < ak, vp, s >
TV]

Table 8.4: Rule TA2 for a Shared Class Constructor

Add < v := id.pn(a1, . . . , an), vq, vp,
s, j, P, l1 >TA2

Event Action < a′, vj, j >TV

Invariant Clause ∀s·s ∈ P ∧ s ∈ dom(Ppc)
Ppc = l1⇒
s ∈ dom(id)

where: id refers to an instance, and may be a compound identifier,
s represents the calling instance, and j represents the target instance,
id.pn(a1, . . . , ak) = a
vp is the set of variable names visible to class P .
vj is the set of variable names visible to the target instance, id,
a′ = a[fn1, . . . , fnk\ < a1, vp, s >

TV , . . . ,
< ak, vp, s >

TV][return\v]

Table 8.5: Rule TA2 for a Procedure Call

use an attribute t2 of P to temporarily store the value of m2.x. Note that the Event-

B action makes use of a sequentially composed clause, facilitated by our proposal to

introduce the sequence operator into the Event-B syntax,

< l1 : / t2 := m2.x ; m2.x := m1.x ; m1.x := t2 . , l2, P >TLA

Chapter 8 Extending OCB with Transactional Constructs 163

This maps to the event,

l1Q ,

ANY s

WHERE s ∈ Pinst ∧ Ppc(s) = l1

THEN t2(s) := x(m2(s)) ; x(m2(s)) := x(m1(s)) ;

x(m1(s)) := t2(s) ; Ppc(s) := l2

END

Together with the invariant to ensure that the references are well defined,

∀s·s ∈ Pinst ∧ s ∈ dom(Ppc) ∧ Ppc(s) = l1

⇒

s ∈ dom(m2) ∧ m2(s) ∈ dom(x) ∧

s ∈ dom(m1) ∧ m1(s) ∈ dom(x)

8.3.2 Branching in a Transactional Clause

In Transactional-OCB we retain the non-atomic if statement of Synchronized-OCB

which is defined as choice between branching clauses; this may contain further branches

using additional else clauses. In each branch the atomic part of the clause may be

followed by another non-atomic construct permitting interleaving with other processes.

In Transactional-OCB we introduce a branch construct which consists of a single atomic

clause; with no opportunity to interleave between the if and else branches. This atomic

branching clause gets mapped directly to the proposed Event-B, atomic branching clause.

In the following example we show a clause labelled l2 which transfers an amount, amt,

from m1.x to m2.x if m1.x − amt ≥ 0, else makes no changes. We specify the clause

using two procedure calls which gives rise to an event with the procedure bodies in-lined,

formal parameters will be replaced with actual parameters and variables are renamed.

The add procedure adds an amount a to a value x,

Procedure add(Integer a){ x := x+ a }

The sub procedure subtracts an amount from x and returns the new balance,

Procedure sub(Integer a){ x := x− a ; return := x } : Integer

In the current example the return value of sub can be ignored since there is no assignment

involved, but we will use this in a later example. The following procedure getx has no

side-effects, so we are able to use it in an expression and simply substitute in-line, and

Chapter 8 Extending OCB with Transactional Constructs 164

rename using TV , the RHS of the return statement.

Procedure getx(){ return := x } : Integer

The OCB specification to make an atomic transfer of an amount amt follows,

< l2 : / if(m1.getx()− amt ≥ 0) then

m1.sub(amt) ; m2.add(amt) endif . , l3, P >TLA

This maps to the following,

ANY s

WHERE s ∈ Pinst ∧ Ppc(s) = l2

THEN if(x(m1(s))− amt(s) ≥ 0) then

x(m1(s)) := x(m1(s))− amt(s) ;

x(m2(s)) := x(m2(s)) + amt(s) endif ;

Ppc := l3

END

and we add the following invariant to ensure that the references are well defined,

∀s·s ∈ Pinst ∧ s ∈ dom(Ppc) ∧ Ppc(s) = l2

⇒

s ∈ dom(m2) ∧ m2(s) ∈ dom(x) ∧

s ∈ dom(m1) ∧ m1(s) ∈ dom(x) ∧

s ∈ dom(amt)

The branching clause will give rise to a proof obligation, based on that of the classical-

B [5] branching construct. We ensure that a post condition P is established after the

branch; so for a branch if g then a1 else a2 endif ; we show that the following holds,

(g ∧ [a1]P) ∨ (¬g ∧ [a2]P)

8.3.3 Looping in a Transactional Clause

The following loop accesses variables using a procedure call to set the value of an at-

tribute x. We decrement x of m1, and increment x of m2, i times, using a procedure

setx (defined as follows) to set the value of x,

Procedure setx(Integer v){ x := v }

Chapter 8 Extending OCB with Transactional Constructs 165

We assign the value of m1’s x attribute to t1 after decrementing it, and then we assign

the value of m2’s x attribute to t2 after incrementing it. These are passed as parameters

to the setx procedure calls,

< l3 : / while(i > 3) do

t1 := m1.getx()− 1 ; t2 := m2.getx() + 1 ;

m1.setx(t1) ; m2.setx(t2) ; i := i− 1 endwhile . , l4, P >TLA

We show the mapping to Event-B now where l4 is supplied as the next label parameter,

ANY s

WHERE s ∈ Pinst ∧ Ppc(s) = l3

THEN while(i(s) > 3) do

t1(s) := x(m1(s))− 1 ; t2(s) := x(m2(s)) + 1 ;

x(m1(s)) := t1(s) ; x(m2(s)) := t2(s) ;

i(s) := i(s)− 1 endwhile ;

Ppc := l4

END

and we add the following invariant to ensure well-definedness of attributes,

∀s·s ∈ Pinst ∧ s ∈ dom(Ppc) ∧ Ppc(s) = l3

⇒

s ∈ dom(t1) ∧ s ∈ dom(t2) ∧

s ∈ dom(m1) ∧ m1(s) ∈ dom(x)

s ∈ dom(m2) ∧ m2(s) ∈ dom(x) ∧

s ∈ dom(i)

Treatment of proof obligations for loops in OCB is based on that of the classical-B

looping construct. It may be necessary to prove loop that a loop terminates - that is, it

does not continue looping forever. To do this we add a natural number loop variant and

show that the loop always decrements the variant. We add a loop variant to a clause in

the following manner,

while g do a

variant V endwhile

A proof obligation is then generated which must be discharged to show that the variant

decreases during each iteration. So for any variant V , and its updated value V ′, we

must show that V ′ < V . Now, the variant V is a natural number, and it must be the

Chapter 8 Extending OCB with Transactional Constructs 166

case that the loop eventually terminates since a natural number cannot be decremented

forever. In addition it is also necessary to show that, after each loop iteration, that

the loop invariant I holds, which is shown by I ∧ g⇒ [a]I. We therefore show that if

the loop invariant I and the loop condition g holds initially then the action a should

re-establish the invariant. Finally, if the loop condition no longer holds, that is ¬g, then

some postcondition P is shown to hold. The complete proof obligation follows, where x

is the list of state variables that can be changed in the loop body.

I ∧

∀x·(I ∧ g⇒ [a]I) ∧

∀x·(I ⇒ V ∈ N) ∧

∀x·(I ∧ g ∧ V = V ′⇒ [a](V ′ < V)) ∧

∀x·(I ∧ ¬g⇒ P)

8.3.4 Procedure Bodies

We extend the use of the new constructs to procedures. A procedure body can make

use of the new sequential, branching and looping constructs. We present an example

that uses a while loop in the procedure body, and show its mapping to Event-B. The

procedure call iter is defined in a class M which contains a loop,

Procedure iter(){ while(c > 0) do x := x+ 1 ; c := c− 1 endwhile }

In the following labelled clause m1, an attribute of type M , is used to call M ’s iter

procedure,

< l4 : / m1.iter() . , terminated, P >TLA

This maps to,

ANY s

WHERE s ∈ Pinst ∧ Ppc(s) = l4

THEN while(c(m1(s)) > 0) do

x(m1(s)) := x(m1(s)) + 1 ;

c(m1(s)) := c(m1(s))− 1 endwhile ;

Ppc(s) := terminated

END

Chapter 8 Extending OCB with Transactional Constructs 167

and we add a well-definedness invariant,

∀s·s ∈ Pinst ∧ s ∈ dom(Ppc) ∧ Ppc(s) = l4

⇒

s ∈ dom(m1) ∧ m1(s) ∈ dom(x) ∧ m1(s) ∈ dom(c)

We show the complete specification in Figure 8.2, notice the use of brackets < . . . > to

enclose atomic clauses in the textual specification, this corresponds to out use of /

in the rule definitions.

ProcessClass P{
M m1, M m2, Integer i, Integer t1, Integer t2, Integer amt

Procedure create(M ma, M mb, int amount){
m1:=ma; m2:=mb; i:=6; t1:=0; t2:=0; amt:=amount}

Operation run(){
l1: <t2 := m2.x ; m2.x := m1.x ; m1.x := t2> ;

l2: <if(m1.getx()-amt >= 0) then m1.sub(amt) ; m2.add(amt) endif> ;

l3: <while(i>3) do t1:=m1.getx()-1 ; t2:=m2.getx()+1 ;

m1.setx(t1) ; m2.setx(t2) ; i := i-1 endwhile> ;

l4: <m1.iter(i)>

}
}

SharedClass M{
Integer x, Integer c

Procedure create(){x := 0 ; c := 3}
Procedure getx(){return := x}:Integer
Procedure setx(Integer v){x := v}
Procedure add(Integer a){x := x+a}
Procedure sub(Integer a){x := x-a;return := x}:Integer
Procedure iter(){ while(c>0) do x:=x+1 ; c:=c-1 endwhile}
}

Figure 8.2: A Transactional-OCB Specification

8.4 Mapping to Java

In OCB specifications, and the corresponding Event-B actions, we use sequential com-

position. Therefore the mapping to Java is straightforward, and most OCB actions can

be mapped directly to Java statements. Both the OCB atomic and non-atomic semi-

colon operators map directly to the Java semi-colon delimiter; the complexity lies in

making the action transactional. That is, we require a method of isolating the actions

of one process from the actions of other processes in order to prevent interference. If a

Chapter 8 Extending OCB with Transactional Constructs 168

transaction cannot progress (perhaps a lock cannot be acquired) then no changes should

be visible to other processes - no partial updates must be seen by other processes.

We previously mentioned the STM approach to implementing transactions, and we may

investigate STM as an alternative to a lock-based scheme in the future. We give an

overview of an STM implementation in Section 8.4.4, but continue our discourse using

our own lock-based implementation using some of Java 1.5’s new concurrency features.

8.4.1 Locking

Before elaborating on the mapping to Java we need to discuss locking of objects in some

detail. We describe a locking scheme so that the objects accessed in an OCB clause

will be locked in the corresponding Java implementation to allow mutually exclusive

updates. We also have a similar conditional locking feature to Synchronized-OCB, but a

when clause guards a whole labelled transactional clause. The conditional critical region

may therefore contain a sequence of assignments and procedure calls which are executed

atomically, i.e. the contents of a labelled transactional clause. This is in contrast to

the conditional critical region of Synchronized-OCB, which is specified wholly within

the procedure body of an atomic procedure call. In an OCB specification there is

no explicit notation added to wake blocked processes, rather the translator adds the

appropriate calls to wake waiting processes. In Java 1.5 threads are caused to wait

by calling a Condition object’s await method. They are woken by calling a condition

object’s signalAll or signal method. To wake threads we insert a signalAll call near to

the end (prior to lock release) of methods which make updates to shared class variables.

The blocking and signalling of threads is hidden from the developer in order to simplify

reasoning about the behaviour of the system. We now summarize the steps for ensuring

mutually exclusive access to shared objects accessed in labelled atomic clauses,

• A process locks each shared object accessed in the clause.

• If the clause is guarded - check the entry conditions

– If an entry condition is not satisfied for some shared class, then block waiting

for its data to be updated after releasing appropriate locks ; return to the

first step upon waking.

– Continue to critical region if entry conditions are satisfied.

• Perform updates in the critical region.

• Release locks

Each transactional clause can refer to one or more instances, these instances are identified

by attributes, declared in the class in which the clause is used. To prevent interference

Chapter 8 Extending OCB with Transactional Constructs 169

by other processes a process must own the locks of the instances it accesses before

reading or updating variables. We use a non-blocking approach to lock acquisition

where each labelled clause is associated with a number of locks. Since shared classes

may contain other shared classes (a parent-child relationship) it is not possible to know,

before obtaining a parent class’ lock, which instance (the child) a particular attribute

refers to. This is because if a process does not hold a parent’s lock, some other process

is free to change the object that the attribute refers to. It is for this reason that it is

necessary to obtain each parent’s lock before ascertaining which instance its attributes

(children) refer to; and therefore which instances needs locking. In the event of failure

to acquire a lock, previously acquired locks are released and the thread remains active.

The locking activity takes place within a loop that only terminates when all locks have

been acquired. Releasing previously acquired locks, in the event of a failure to acquire

a lock, alleviates the problem of deadlock due to resource retention.

We demonstrate the locking policy using an example. Given an OCB clause containing

access to an attribute a.b where b is an instance of some class, we say that b is nested

in a; and later we refer to the top-level with a as level 1, and the second level with b

as level 2, and so on. When we want to acquire the top-level lock a we already know

which instance a refers to - the process class is not shared so it cannot be changed by

any other process - so we try to obtain the lock. If successful we then attempt to obtain

the lock of the next level, b. Now since a is a shared object b can be changed by another

process; but the calling process owns a’s lock, so no other process will be able to access

b and interfere with it. Lock acquisition proceeds in this way, traversing the lock levels,

until all locks are successfully acquired. It may be the case that instead of using direct

access a procedure call may be used to access b, such as a.getB() instead of a.b. In

such circumstances, as long as the call has no side-effects (to be checked statically), we

proceed in the same way as with direct access; until we encounter a procedure call. We

would then invoke the getter method to obtain the object, and continue as before by

attempting to obtain that object’s lock.

A ProcessClass maps to a Java class implementing the java.lang.Runnable interface.

The run method is populated by method calls derived from the OCB labelled transac-

tional clauses of the OCB run operation. Each of the run operation’s clauses is linked

to a method call, and a corresponding method declaration implementing the required

behaviour.

public void run() {
// Sequence of atomic clause calls

l1();

l2();...

}

Chapter 8 Extending OCB with Transactional Constructs 170

public boolean tryLocks(

claimedLocks: Collection

List<ReentrantLock> requestedLocks){......}
public void releaseLocks(){......}
public void releaseLocksComplement(

ReentrantLock lock){......}

MutexLockManager

lockManager: MutexLockManager
s: SharedClass

public void run(){l1();......;ln()}

private void l1(){......}
....

private void ln(){......}

private List<ReentrantLock>
getLvl1Locks_l1(){......}

....
private List<ReentrantLock>

getLvlnLocks_ln(){......}

ProcessClass

public ReentrantLock getLock()

reentrantLock: ReentrantLock

SharedClass

Figure 8.3: The LockManagement Structure

// Implementations of atomic clauses

public void l1() { ... }
public void l2() { ... }...
}

To implement the mutual exclusion policy each SharedClass instance has a lock provided

by java.util.concurrent.locks.ReentrantLock. We use its trylock and unlock methods to

lock and unlock the object. Each labelled transactional clause is related to one or more

helper methods that returns a collection of locks. These methods acquire the locks of a

given nesting level for each clause, so getLvl1Locks l1 is a getter method for the level

1 locks of the clause labelled l1. All of a clause’s required locks, at each level, must

have been claimed before entry to the critical region is possible. We show a diagram

of the classes involved in Figure 8.3. The collections returned by the helper methods

are used by a lock manager (an instance of MutexLockManager) to co-ordinate lock

acquisition and release. There is one lock manager instance per labelled transactional

clause. The MutexLockManager class has a method tryLocks to obtain locks, this calls

the ReentrantLock’s tryLock method for each lock in the collection; and releases the

locks contained in the claimedLocks collection in the event of failure to acquire any lock.

The MutexLockManager class also has a releaseLocks method to release all of the locks

in the claimedLocks collection. The MutexLockManager class is shown in Figure 8.4.

Successfully claimed locks are stored in a collection, claimedLocks. We now extend the

OCB model of Figure 8.2, to demonstrate our approach to locking objects referred to

by a compound identifier. To the existing model we add the following shared class with

an integer attribute w,

public class N{public int w = 0; }

Chapter 8 Extending OCB with Transactional Constructs 171

public class MutexLockManager {
private List<ReentrantLock> claimedLocks =

new ArrayList<ReentrantLock>();

public boolean tryLocks(List<ReentrantLock> requestedLocks){
for(int i = 0; i<requestedLocks.size();i++){
ReentrantLock lock = requestedLocks.get(i);

if(lock.isHeldByCurrentThread()) claimedLocks.add(lock);

else{
if(lock.tryLock())claimedLocks.add(lock);
else{

if(claimedLocks.size()>0) releaseLocks();

return false;
}
}
}
return true;
}

public void releaseLocks(){
while(claimedLocks.size()>0){
ReentrantLock lock = claimedLocks.get(0);

lock.unlock();

claimedLocks.remove(lock);

}
}
...

Figure 8.4: Part of the MutexLockManager Class

We add a clause l5 to the process class run method, see Figure 8.5. The clause simply

increments the attribute w of shared class n, but has to first acquire the lock of m1 and

then n.

l5 : m1.n.w := m1.n.w + 1

In any implementation we must first acquire the top-level lock, in this case that of m1

- and then acquire n’s lock. To do this we use helper the methods, getLevel1Locks l5

and getLevel2Locks l5 (shown in Figure 8.6) to return required locks for each level, and

pass the resulting collection to the tryLocks method. The helper methods are created

as part of the translation process.

We now explore the use of procedure calls to specify the equivalent clause. In the

following we can envisage getter procedures to obtain the values of n and w used in the

following way,

l5 : m1.getN().getW () := m1.getN().getW () + 1

Here, m1.getN() obtains the object associated with attribute n belonging to m1; in

turn the getW procedure obtains the value of attribute w associated with the object

Chapter 8 Extending OCB with Transactional Constructs 172

ProcessClass P{
M m1, M m2, Integer i, Integer t1, Integer t2, Integer amt

Procedure create(M ma, M mb, int amount){
m1:=ma; m2:=mb; i:=6; t1:=0; t2:=0; amt:=amount}

Operation run(){
...

l5: <m1.n.w := m1.n.w + 1>

}
}

// This class is nested in M

public class N{
public int w = 0 ;

}

// This class contains class N

SharedClass M{
Integer x, Integer c, N n

Procedure create(N ne){x := 0 ; c := 3; n:= ne}
...

}

Figure 8.5: A Transactional-OCB Specification with a Compound Identifier

referenced by n. In this situation we must ensure that the getter procedures are side-

effect free. So the getter procedures for n and w would simply access an attribute and

return its value. However, if side-effects were allowed then the lock manager would have

to perform the processing prior to obtaining the lock (at the lock acquisition stage) and

therefore it may cause updates to state before entry into the critical region which is not

allowed. One could also envisage the situation where updates, caused by a call to a

procedure causing side-effects, would have to be rolled back if a subsequent lock is not

available. Rollback behaviour in these circumstances is beyond the scope of this thesis.

The mapping of the OCB procedure calls to Java code is a straightforward copy with

the becomesequal operator substituted for assignment.

In order to implement the locking strategy we place tryLocks and releaseLocks calls

in appropriate positions in the resulting code. An example of this can be seen in our

extension of process P , in Figure 8.6, where we acquire the locks of nested objects related

to the clause labelled l5.

8.4.2 Translating Transactional Clauses to Java

We can say that much of the translation from an OCB specification to Java proceeds as

for the Synchronized-OCB translation; until we consider the translation of non-atomic

constructs and labelled atomic clauses. The translation is similar to the translation

Chapter 8 Extending OCB with Transactional Constructs 173

public class P implements Runnable{
protected MutexLockManager lockManager= new MutexLockManager();

// variables belonging to the process

private M1 m1; ...
...

private List<ReentrantLock> getLevel1Locks_l5(){
List<ReentrantLock> level1Locks_l5= new ArrayList<ReentrantLock>();

level1Locks_l5.add(m1.getLock());

return level1Locks_l5;

}

private List<ReentrantLock> getLevel2Locks_l5(){
List<ReentrantLock> level2Locks_l5= new ArrayList<ReentrantLock>();

level2Locks_l5.add(m1.n.getLock());

return level2Locks_l5;

}

// the process calls the method related to the labelled transaction

public void run(){ ... l5(); }
// compound id example, m1.n.w := m1.n.w + 1

private void l5(){
// acquire locks

boolean hasLvl1Locks = false;
boolean hasLvl2Locks = false;
// any failure will reset level 1 locks

// no failure allows progress

while (!hasLvl1Locks){
// get level1 locks

hasLvl1Locks = lockManager.tryLocks(getLevel1Locks_l5());

// if successful get level 2 locks

if (hasLvl1Locks){
while (!hasLvl2Locks){
hasLvl2Locks = lockManager.tryLocks(getLevel2Locks_l5());

}
// if level2 (or deeper) cannot be obtained, any claimed locks

// will have been released, so reset the level1 lock flag too

if (!hasLvl2Locks) hasLvl1Locks = false;
}
}
//ENTER CCR

m1.n.w = m1.n.w + 1;

//EXIT CCR

lockManager.releaseLocks();

hasLvl1Locks=false;
hasLvl2Locks=false;
}
}

Figure 8.6: The Locking of Nested Shared Classes

Chapter 8 Extending OCB with Transactional Constructs 174

defined in Table 4.4, except now a non-atomic construct may give rise to one or more

method declarations, and statements that invoke those methods placed in appropriate

locations in the code. The labelled transactional clauses are translated to Java by

applying the translation function ltDef of Figure 8.7. The modified translation naDef is

shown in Table 8.6, and for now we ignore conditional waiting. We will try to simplify the

explanation of the translation as much as possible. In order to simplify the description

of the transactional constructs we provide a pseudo methods, . . . acquire, . . . release to

describe the location of locking acquisition and release code.

The first step in translation of a non-atomic construct to Java code is to apply the trans-

lation function naDef , with the non-atomic passed as a clause parameter. This gives

rise to, for each labelled clause in the non-atomic construct, one or more Java method

declarations in the class body, and one or more method calls invoking these methods,

to perform the behaviour specified in the labelled clause. The looping construct, for in-

stance, gives rise to an atomic method, implementing the condition check and associated

action - followed by other atomic methods that implement the any other atomic clauses

on the ‘true’ branch. If the condition is false the loop quits without performing updates.

The branching construct atomically evaluates the condition and performs any updates

for the appropriate branch; a variable, local to the specifying class, records which branch

was executed and later uses this to invoke the appropriate branch when executing the

non-atomic part of the construct.

Now we discuss the translation of labelled transactional clauses li, which are composed

using the non-atomic construct of na. The translation to Java gives rise to two state-

ments; a method call li(), and a method declaration. The method declaration arises

from the application of the translation function ltDef to the labelled transactional

clause. During the translation ltDef adds method calls to the method body, to obtain

and release the locks. The added method calls are to the tryLocks and releaseLocks

methods described earlier in Section 8.4.1. The translation of Transactional-OCB atomic

actions is shown in Definition 8.7. where a is an Action.

< l1 : a >ltDef

=

public void l1(){
. . . acquire ;

< a >aDef ; /*Critical Region*/

. . . release ;

}

Figure 8.7: Rule ltDef for Labelled Atomic Clauses

The atomic actions map quite easily to Java and use the definition of cDef of 4.7,

Chapter 8 Extending OCB with Transactional Constructs 175

na call < na >naDef

na1 ; na2 < na1 >
naDef ; < na2 >

naDef

li : if(c1) then a andthen li() li(){
na1 endif ...acquire

[elseif(ci) then a andthen li aux(b) if(< c1 >
cDef){ < a >aDef ;

nai endelseif] b = 1; }
[else a andthen nan endelse] [else if(< ci >

cDef){ < a >aDef ;
b = i; }]

[else{< a >aDef ; b = n; }]
...release

}
li aux(b){

switch(b){
case 1: < na1 >

naDef ; break;
[case i: < nai >

naDef ; break;]
[case n: < nan >

naDef ; break;]
}}

li : while(c) then a andthen li while(li s()) li s(){
na endwhile li f(); ...acquire

if(< c >cDef){
< a >aDef ;
...release;

return true;}
else{

...release;

return false;}
}
li f(){
< na >naDef

}

a < a >aDef ;
li : a li() < li : a >ltDef

Table 8.6: Rule naDef for Transactional Clauses

8.4.3 Conditional Waiting

It may be the case that we require some condition to be satisfied before processing of

a transaction continues. It is therefore appropriate to check the condition, immediately

after the locks have been acquired, and before entry into the critical region. Assume

that we have specified two buffers belonging to channel c which are accessed using dot

notation as follows, c.buff1 and c.buff2, and that the size is held in an attribute size

of the buffer; we may wish to ensure that both buffers are empty before executing action

Chapter 8 Extending OCB with Transactional Constructs 176

a < a >aDef

a ; a < a >aDef ; < a >aDef

if(c) then a endif if(< c >cDef){< a >aDef ; }
[elseif(c) then a endelseif] [else{if(< c >cDef){< a >aDef ; }}]
[else a endelse] [else{< a >aDef ; }]

while(c) then a endwhile while(< c >cDef){< a >aDef}

identifier := E identifier = E;

identifier.pn(a1, . . . , ak) identifier.pn(a1, . . . , ak)

identifier := identifier.pn(a1, . . . , ak) identifier = identifier.pn(a1, . . . , ak)

identifier := Q.create(a1, . . . , ak) identifier = new Q(a1, . . . , ak);
new Thread(identifier).start()

identifier := M.create(a1, . . . , ak) identifier = new M(a1, . . . , ak);

Table 8.7: Rule aDef for Atomic Actions

a, or blocking otherwise, by writing a conditional statement as follows,

l1 : / when(c.buff1.size = 0 ∧ c.buff2.size = 0){ a } .

This can be represented as a guarded action of the type l1 : / g→a ., so for the above

example the guarded action is,

l1 : / (c.buff1.size = 0 ∧ c.buff2.size = 0)→ a .

Any labelled clause may contain a when clause, with a condition that guards entry

to a critical region. The condition consists of a number of guards, but we stipulate

that each guard is must be associated with only one shared class. In this way we

are able to associate a failed condition with a particular shared class and block the

thread until that particular shared class is updated. We discuss this issue in more detail

later in the section, but for now we show the updated naDef translation function,

where we add guarded actions to the allowable na clauses of Table 8.8, We update the

na < na >naDef

l1 : / g→ a . l1()
< l1 : / g→ a . >ltDef

Table 8.8: Rule naDef for a Conditional Transactional Clause

ltDef translation function to accommodate the guarded clause, we use a pseudo-method

Chapter 8 Extending OCB with Transactional Constructs 177

public void releaseLocksComplement(ReentrantLock lock){
claimedLocks.remove(lock);

while(claimedLocks.size()>0){
ReentrantLock l = claimedLocks.get(0);

l.unlock();

claimedLocks.remove(l);

}
}

Figure 8.8: The MutexLockManager releaseLocksComplement Method

acquireConditionally for simplicity, to show placement of the conditional evaluation

code, and explain in more detail in the text that follows. The translation ltDef of a

guarded action follows,

< l1 : g→ a >ltDef

=

public void l1(){

. . . acquireConditionally ;

< a >aDef ; /*Critical Region*/

. . . release ;

}

where a is an Action. To implement this conditional waiting approach we make use

of the java.util.concurrent.locks.Condition API; each shared class in a guarded clause’s

condition has a Condition object associated with it. We use the await and signalAll

methods associated with the condition object to block and wake threads respectively.

We provide an X GuardManager class for each labelled clause with label X that has

a guard associated with it; the guard manager contains methods which evaluate the

guards, and in the case of a false guard releases locks and blocks the calling thread. A

lockManager may have acquired a number of locks, and if a condition is not satisfied all

the locks should be released, that is except for the one associated with the condition we

wish to wait for (we wait for the shared class associated with the failed entry condition,

and the await method contains an implicit lock release). To unlock the locks (with

the single exception noted) and remove all locks from the list of claimed locks we use

the releaseLocksComplement method. The method releaseLocksComplement is shown in

Figure 8.8, where we pass the lock that we do not want to unlock as a parameter, and

remove this from the list of claimed locks. We then unlock and remove the remainder of

the locks from the list of claimed locks. Any shared class with a condition object needs

to invoke the condition object’s signalAll method after making state updates. This

will wake any threads waiting on the shared class’s condition object, allowing threads

to attempt to acquire the lock and re-check the entry condition. Assignment to an

Chapter 8 Extending OCB with Transactional Constructs 178

attribute of a calling process is possible for procedures returning a value; this aspect is

not affected by the new style conditional waiting construct.

We now return to the subject of the guards in the conditional waiting clause. We specify

a Transactional-OCB clause using conditional waiting as follows, l1 : / when(g){a} ..
Here g is a conjunction of guards defined as, g = c1 ∧ . . . ∧ ck. In the specification if

g is true then a occurs, or blocks otherwise. In the implementation a method is used

to evaluate each guard, ci, in turn - and the method returns true if all the guards are

true, or returns false otherwise. If one of the guards is not satisfied then the condition’s

await method is called, after calling releaseLocksComplement.

One restriction, which we discuss but do not attempt to resolve at this time, is where

a condition refers to more than one shared class and the guard fails - which shared

class should we wait for? In a condition such as a.x < b.x two shared classes a and b

are involved, each with an attribute x. Changes to either shared class by some other

process could make the condition true, so we really need to wait for changes to either

shared class. Implementing this behaviour will require additional coding effort; and we

save this for future work. In the mean time we simply restrict association of each guard

with a single shared class. One work-around for the moment is to perform a static

check, and issue a warning when two shared classes are referred to in a conjunct; the

implementation will however block on the first shared class encountered in the guard.

The guarded clause, defined above, maps to a method l1Guard in the L1GuardManager

class, shown in Figure 8.9. The shared classes m1 . . .mn referred to in the guards are

passed as parameters, this shared class instance is the one which will send the signal to

wake the process, and the caller of l1Guard determines which shared class to wait for.

If all guards are satisfied the calling process can proceed to the Conditional Critical

Region (CCR). Figure 8.10 shows the method l1Guard guarding the CCR. The CCR will

not be entered until the guard returns true which enables termination of the containing

loop. The getlock method returns the ReentrantLock object associated with a shared

class, and getCondition returns its Condition object. The definition of rule aDef for

Transactional-OCB actions is shown in Table 8.7.

8.4.4 An Alternative: Locking Based on STMs

An alternative approach to implementing our Transactional-OCB constructs could be

based on the STM implementation described in [74] which uses Java SDK 1.2. tech-

nology. The advantage of STM over a more traditional locking strategy is that the

approach allows more concurrency for the non-conflicting operations, and there is a sim-

plified approach to specifying conditional waiting. The STM approach requires a number

of memory consistency rules be adhered to ensure that the integrity of the transactions

Chapter 8 Extending OCB with Transactional Constructs 179

public boolean l1Guard(MutexLockManager l1 lockManager,M m1, . . . ,M mk){
if(!g1){
l1 lockManager.releaseLocksComplement(m1.getLock());
try {m1.getCondition().await(); }
catch(InterruptedException e){. . .}
return false;
}else . . .
else if(!gk){
l1 lockManager.releaseLocksComplement(mk.getLock());
try{mk.getCondition().await(); }
catch(InterruptedException e){. . .}
return false;
}else return true; }

where mi is the shared class associated with guard gi, for each i ∈ 1 . . . k

Figure 8.9: Implementation of Conditional Wait in the GuardManager Class

Manager gm = new L1GuardManager();
. . .
private void l1(){
boolean success = false;
while(!success){
. . . acquire ;
success = gm.l1Guard(l1 lockManager,m1, . . . ,mn);
}
//enter CCR
< a >aDef ;
//exit CCR
. . . release ;
}

Figure 8.10: Guarding the CCR with a GuardManager Instance

within the system are not violated. For instance, native code cannot be used in STM

transactions apart from some very limited cases, such as cloning objects for local use.

In the STM approach the specification of an atomic region with conditional waiting is

as follows,

atomic(condition){

// enter CCR

statements;

// exit CCR

}

If conditional waiting is not required then the conditional part is just omitted. The

atomic region is bounded by braces and condition is evaluated before entry into to the

critical region; if false the process blocks by putting the transaction into a sleeping state.

Chapter 8 Extending OCB with Transactional Constructs 180

Ownership RecordField

11..n version: Integername: String

value: T

Status: {COMMITTED, ACTIVE,1..n 0..1

preVer: Integer
newVal: T
newVer: Integer

Entry

preVal: T

entries0..n

Transaction Descriptor

ABORTED, SLEEPING}
version

OR

field

Figure 8.11: Class Diagram of an STM Implementation

The various transaction states can be seen in the Transaction Descriptor’s status field

in Figure 8.11. When a transaction is sleeping it is waiting to be woken when some

other transaction may have updated state that the transaction refers to,that is when the

ownership record associated with that state has been updated.

This STM implementation uses ownership records and transaction descriptors. The

transaction descriptors keep track of the old and new values of fields accessed by a

transaction, together with a versioning scheme which keeps track of the changes to indi-

vidual fields. The ownership records (orecs) keep track of which variables are accessed by

which transaction descriptors. There are a number of STM API methods which are used

to implement the approach described in Table 8.9, which correspond to usual operations

involving transactions. We now give more details of the descriptors, orecs and their

Method Description

STMStart() Allocates a Descriptor, Status = ACTIVE
STMAbort() Status = ABORTED
STMCommit() Acquire orecs, Status=COMMITTED

update field values, release orecs
STMValidate() Version checking of fields
STMWait() Conditional wait, Status = SLEEPING
STMRead() Read from existing descriptor if it exists

else determine logical state
STMWrite() Write new descriptor entry

Table 8.9: STM API Methods

relationship with fields. Figure 8.11 describes the relationships in an implementation.

The fields that the transaction can refer to have a name, a value of its declared type T ,

and an ownership record. The ownership record stores either a version number (if no

transaction has acquired the field’s orec since it was last committed) or a transaction

descriptor that has been acquired to commit changes to the field. When a transaction

reads or writes to a field it will create an entry in the transaction descriptor that stores

the initial value and version number in its preV al and preV er fields, and stores the

Chapter 8 Extending OCB with Transactional Constructs 181

updated value and version number in the newV al and newV er fields. The new version

number is obtained from an existing entry in the same transaction descriptor if one

exists, or from the orec itself otherwise. The initial values of a field are described as

its logicalstate, and this is derived from the information held by the system including;

which field is being accessed, its associated orec, the status of any transaction descrip-

tors that have acquired the orec of the field, and the various descriptor entries of those

transaction descriptor. A decision procedure is applied to determine the logical state,

which depends on whether the field has been accessed by another transaction since it

was last committed; whether the current transaction has previously accessed the field;

and also whether some other transaction involving the fields has been committed, but

the field has not yet been updated in memory.

The key to the atomic update of this STM implementation resides in the status of the

transaction descriptors that have accessed a particular field’s orec. If a transaction de-

scriptor changes its status to commit, it is considered to have completed the transaction

even though the changes may not have been applied to the field value. This means that

any other transaction, trying to commit with a field contained in an already committed

transaction, must fail. The unsuccessful transaction commit will fail when it checks to

see if it has the latest version of field value and finds that some other transaction has

made a more recent update - that is, it has a higher version number. The check is

implemented in the following acquire method, called by the STMCommit operation.

It which accepts a descriptor parameter, and an entry, i. During an attempted commit

phase each entry i in the list of entries is checked using acquire. Returning TRUE

indicates that the orec for a particular field was acquired, FALSE indicates failure to

acquire the orec since the version has changed, and BUSY indicates that some other

transaction is already active with the orec. The following operation refers to attributes

shown in Figure 8.11,

acquire(Descriptor descriptor, int i) {
Entry e = descriptor.entries[i];

Object seen ; // Holds an Integer or Transaction Descriptor

seen = CAS(e.field.orec.version, e.preVer, descriptor);

// Existing descriptor held or successful installed

if(seen == e.preVer || seen == descriptor) return TRUE;

// orec holds some other version - changed by another transcation

else if(seen instanceof Integer)) return FALSE;

// seen must be a transaction descriptor - so its busy

else return BUSY;

}

The code of the preceding fragment attempts to install the descriptor d in the owner-

ship record associated with the transaction entry. It makes use of the getOrec(e.field)

Chapter 8 Extending OCB with Transactional Constructs 182

method which obtains the orec associated with the field in the entry e. This is then used

in a CAS method (an atomic compare and swap method used to update a field atom-

ically). The CAS method has three input parameters currentV al, expectedV al, and

newV al; and returns currentV al. The method compares a current value, currentV al,

with an expected value expectedV al. If the current value is equal to the expected value

then a new value newV al is set. In the fragment above e.oldV ersion refers to the orec

initially seen by the entry; then if the orec known to the field is the same as the orec

initially seen by the entry then no change has been made, and the new descriptor is

installed in the orec. In either case the orec obtained by getOrec(e.field) is returned. If

the CAS is successful then acquire returns TRUE and continues until orecs for all en-

tries have been acquired, or else the transaction is aborted. If all orecs are acquired then

the commit can proceed. The failure cases for the acquire method are that the method

call, holds version number(seen), returns true - which is the case if an orec has only

a version number and does not refer to a descriptor. This indicates that the field has

been changed and there is a different version number seen than expected. This causes

the acquire method to return FALSE and the transaction is aborted. The remaining

failure case is when the orec is being accessed by another transaction, and BUSY is

returned; again the transaction will be aborted.

There are a number of STM implementations such as that of the XSTM [4] project, which

includes a Java version, JSTM; and another Java STM implementation, Multiverse [1].

8.5 Tooling

During our investigation of the transactional version of OCB we have translated code to

Java manually, focussing on the practicalities of the approach rather than the tooling,

so we have no Eclipse plug-ins for a Transactional-OCB meta-model, and we have no

automatic translation tools. This is in part due to the fact that our proposed extensions

to the RODIN tool, e.g. the sequential operator, would have to be introduced to make

such a translation useful. The extension of the RODIN tool to accommodate this is

beyond the scope of current work. To investigate and verify the lock management

approach we used manual translation to Java code, and used specifications that had

actions with parallel composition (instead of sequential). It would be possible to develop

further a meta-model and translator plug-ins to automate this version but we leave that

decision for the future.

There is some scope for optimisation of the lock acquisition process, even at this early

stage of investigation. For example a simple exponential back-off approach can be used,

where the thread goes to sleep for a successively longer duration after each failed at-

tempt - before reattempting lock acquisition. An implementation of this can be seen in

Chapter 8 Extending OCB with Transactional Constructs 183

Figure 8.12. An upper limit for waiting is supplied as a parameter, preliminary inves-

tigations indicate that a value of 5 provides a useful maximum sleep time (e5ms = 148

ms). However the topic of optimising a system in such a way is beyond the scope of this

piece of work, we merely wish to highlight that we are aware of the limitations of the

approach.

protected void exponentialBackoff(int limit){
if(backoff<limit){
backoff++;

}
try {
Thread.sleep((long) Math.exp(backoff));

} catch (InterruptedException e) {
e.printStackTrace();

}
}

Figure 8.12: Exponential Back-off Java Implementation

8.6 Review of the Chapter

In this chapter we presented an extension to the approach where atomic actions are able

to access more than one object. We note that for the target implementation a Software

Transactional Memory approach may provide an efficient implementation. However we

adopted a lock based approach in order to investigate its feasibility, and investigate

the limitations that such an approach may give rise to. In this extension to original

work we are able to remove some restrictions, the most significant of which is to enable

more than one shared object to be referenced in an atomic action. We also introduce

an atomic sequential construct which provides sequencing within an atomic statement.

However the introduction of the atomic sequential construct does rely on an update

to the existing Event-B approach to permit the use of a sequential operator in event

actions. This would also give rise to a change in the proof obligation generator, which

have to generate different proof obligations to accommodate the sequential construct.

However we (as designers of the methodology) still need to be wary of the nested monitor

problem, since this can still arise when using JLS3. The difference between JLS2 and

JLS3 is that with JLS3 the programmer has the ‘tools’ to ensure the nested monitor

problem does not occur; this is done by releasing all held locks when a condition causes

a thread to wait. The benefit to Transactional-OCB users is that this should be taken

care of by the tools.

We began the chapter with an overview of the Java Language Specification 3 locking

and blocking features. The use of JLS3 allows us to remove many of the restrictions

Chapter 8 Extending OCB with Transactional Constructs 184

when compared to Synchronized-OCB. The limitations imposed because of JLS2 were

mainly due to the lack of control of monitor locking. We developed a new syntax, and

introduce features such as direct access to objects using dot notation. We also introduced

invariants that ensure well-definedness of each of the reference attributes. This ensures

that null references are not accessed during either direct access or a procedure call. In

Transactional-OCB we may have more than one method call per action; we change the

conditional waiting approach so that conditions are declared (using the when clause) on

entry to the labelled atomic clause, rather than in individual procedure definitions. This

is because we may have more than one procedure call in an action. In this way it is easy to

identify the entry conditions for the labelled action. We defined the translation of actions

into Event-B, noting that the mapping at a higher level is the same as Synchronized-

OCB; and we showed some simple examples to illustrate use of the new constructs.

Then we discussed the issue of lock acquisition in the Java implementation, followed

by the translation of the OCB notation to Java. We showed how conditional waiting is

implemented in Java, illustrating its use in an example. We also discussed an alternative

approach to locking using Software Transactional Memory. Finally we discussed tooling

issues and implementation issues, noting that our locking strategy could be optimised.

Chapter 9

Conclusions and Future Work

In this thesis we have shown how to link an Event-B model to an object-oriented imple-

mentation by means of an intermediate specification using the OCB notation. The main

contribution of the work is the introduction of means of specifying concurrent aspects

of a development, rather than an attempt to incorporate object-oriented aspects into an

Event-B development. An OCB specification incorporates the concurrent aspects of an

implementation, allowing specification of process classes with interleaving, non-atomic

operations. The non-atomic operations are comprised of a number of labelled atomic

clauses. An atomic clause can be an atomic action, or an atomic procedure call. Data

can be shared between processes using monitor classes with atomic procedure definitions.

The transition between the Event-B development and OCB specification is greatly as-

sisted by the use of diagrammatic representations of the link between abstract events

and the implementation level constructs that implement and refine them. Since the di-

agrammatic representation describes sequences of atomic clauses in the abstraction and

atomic clauses at the implementation level, it provides a relatively intuitive way to group

related activities. These related activities, in the abstraction, can be implemented as

related activities in the implementation; typically in the body of a single process. This

is of course at the discretion of the developer who will be making implementation level

design decisions.

An extension of the work allows access to multiple objects within a transactional, la-

belled clause. We call this approach Transactional-OCB to differentiate it from the

simpler form, Synchronized-OCB. We believe that specification using OCB can ease the

transition between formal modelling at an abstract level, and provision of a concurrent

implementation. Reasoning about concurrency is simplified by providing a clear view

of atomicity, which is achieved by abstracting away the locking details. We do not aim

to provide formal verification of the link between the formal development and imple-

mentation, however we are confident that the semantic gap between the OCB and the

implementation is sufficiently small for the relationship to be justified by inspection.

185

Chapter 9 Conclusions and Future Work 186

9.1 Review of Thesis

We began the thesis with an overview of our contribution and the structure of this

thesis. We continued in Chapter 2 with an introduction to formal methods and discussed

how object-oriented techniques and formal methods have influenced each other, and

how they have been applied in the software development process. We went on to give

details of the main issues that have influenced our work, including descriptions of the

Event-B approach, UML-B, and B0. We followed this by discussing some programming

problems associated with implementing concurrent Java programs, and then discussed

some approaches for improving the dependability of Java programs.

Chapters 3 and 4 present the most significant contribution, it is here that we define the

Synchronized-OCB syntax, present the rules for mapping Synchronized-OCB to Event-B

and show an example translation to an Event-B model. We then look at producing a Java

implementation from an OCB specification and define the translation rules for mapping

OCB to Java. Initially the syntax and mapping from OCB to Event-B are defined using

the Guarded Command Language where we introduce the notion of processes with non-

atomic operations. These consist of labelled atomic clauses; the labels of the clauses map

to program counter values, and these are used in guards to model the order of executions.

A clause’s action maps to an event action and a guard maps to an event guard. We

introduced the notion of shared monitors; processes share monitors and access their data

using atomic procedure calls. Mapping of procedure calls to Event-B results in in-line

expansion of procedure bodies in the calling process. Input and return parameters were

added, which involves substitution of formal parameters for actual parameters.

The modelling of object-oriented features is based on the approach that underlies the

modelling of objects in UML-B [140]. Mapping of variables was discussed; each variable

belongs to an OCB class and can be referred to in OCB clauses (in guards and actions).

Due to the fact that we map an OCB specification to a model with instances, we require

a translation function to map each occurrence of a variable in an OCB clause, to a

variable associated with a specific instance in the corresponding Event-B clause. Finally

we discuss the definition of OCB arrays, and their mapping to Event-B.

Following the presentation of the Event-B semantics underlying Synchronized-OCB we

introduce syntactic sugar that provides a simple mapping to Java - for the branching,

looping and guarding (conditional waiting) constructs. The syntactic sugar is a textual

notation for use in specifications that is object-oriented in style, and is more appropri-

ate for the specification of implementation related details than the guarded command

syntax. We then presented an example translation from OCB to Event-B. The resulting

Event-B model is intended to fit within the refinement approach to system development,

since we can show that it refines some abstract model. However, the Event-B model of

the implementation seems to be somewhat verbose when compared to the related Java

Chapter 9 Conclusions and Future Work 187

source code. This is due to the assumptions and hidden dependencies within a Java de-

velopment, and in practice may lead to difficulty in establishing proof of refinement. We

will therefore seek to rationalize the approach, which could be achieved by the develop-

ment of some patterns and guidelines, and maybe a calculus. This will aid construction

of OCB specifications from Event-B models. We have seen how the intricacies of the

Java implementation can influence the design of the specification language, so mappings

to other target implementations may further influence the OCB language. For instance,

in future it will be interesting to investigate a mapping to the RavenSpark [2] subset

of SPARKAda.

An example mapping to Java code was presented and the translation rules for the map-

ping from Synchronized-OCB to Java code was then defined. The OCB specification

makes use of clearly defined atomic regions, which map to Java code with corresponding

atomic regions. We are confident that the mapping will give rise to interference free

execution, due to the restrictions we impose. We are also confident in the correctness

of the correspondence between formal model and the implementation; however proof of

this will be the subject of future work. In Chapter 5 we briefly outline the tooling issues

associated with implementing our prototype OCB modelling and translation tools.

In the case study of Chapter 6 we showed how to specify and implement an object-

oriented, concurrent system involving processes that read and write to shared buffers.

We began with an abstract development and used diagrams, similar to Jackson Structure

Diagrams of [86], to visualise the refinement and the OCB specification. We noted

that behaviour such as looping and branching is more readily apparent in the Jackson

Structure Diagram and is therefore an aid to visualising the development at the OCB

specification level. We also noted that the size of the Event-B implementation refinement

is large with respect to the size of the development, which leads us to conclude that

models may need to be decomposed in future developments to make them manageable.

At the OCB specification level we implemented a process class that could either read or

write, depending on the parameter supplied, to a shared buffer; and the shared buffer

was implemented as a monitor class. A main class can instantiate readers, writers

and shared buffers, and in our implementation we created a single channel that was

shared between two pairs of reading/writing processes. The translation resulted in a

Java implementation that was executable and an Event-B model that was amenable to

proof although the model itself was somewhat large and unwieldy. We note some of the

difficulties experienced while trying to prove refinement of the abstract development;

we propose a method of decomposing models to make them more manageable. The

decomposition approach would also provide a way of reasoning about the model in a

modular fashion, as well as providing the opportunity to reduce the abstraction gap

between the abstract development and code.

The second case study of Chapter 7 describes the implementation of the User Application

Layer API, and File System Layer API, of a flash file system based on the Intel Flash

Chapter 9 Conclusions and Future Work 188

File System Core Specification [82]. The API layers were implemented using an OCB

specification, but the system described by the lower layer APIs were simulated due to

the restriction to one procedure call per labelled atomic clause. The implementation of

the case study using OCB specification made use of Jackson Structure type Diagrams

which were again a useful aid to visualising the development. As in the previous case

study the translator gave rise to Java code that was executable and an Event-B model

that was amenable to proof. However in this case the lower level API layers of the

Flash File System specification involve simulation. We believe that the Transactional-

OCB extension will be of use here, to allow access to the lower layers of the hierarchical

specification using dot-notation and getter methods. In Transactional-OCB extension

objects may be nested, and procedure calls to those objects are permitted provided no

state updates take place during the call. The approach is therefore to have procedure

calls which are getter methods to be used in expressions; or updates can be made

directly to nested objects using dot-notation after having acquired an object using a

getter method.

We have developed prototype tool support for our approach, integrating with the RODIN

Event-B tool. Details are presented in Chapter 5. The tool consists of several plug-ins

which integrate with the Eclipse Platform [148]. The plug-ins contribute the OCB

meta-model, and factory classes for instantiation of the meta-model; a tree-editor for

construction of OCB specifications; an OCB text viewer to view the OCB specification

as a text file; and the translators.

In our extension of the OCB approach of Chapter 8 we present Transactional-OCB. The

transactional constructs allow direct access to multiple shared objects in an atomic re-

gion, as well as multiple procedure calls in an atomic region. Many of the restrictions that

were imposed on Synchronized-OCB have been removed. We used the java.utils.concurrent

packages for greater efficiency and flexibility, for instance techniques we overcome the

nested monitor problem by controlling lock acquisition and release. The extended ap-

proach retains the concept of process classes of Synchronized-OCB, but instead of the

MonitorClass we have the SharedClass construct. The procedures of the SharedClass

do not have waiting constructs, but the waiting construct now appears as the first clause

of a labelled atomic action. In the extension the locks are acquired and released by lock

managers that are created during the translation process.

The initial approach was to give synchronized-OCB similar an object-oriented look and

feel in order to simplify the mapping to the Java target language. However an OCB

specification is at a higher level of abstraction than a programming language such as

Java and C. We abstract away details such as synchronization, or lock acquisition,

and conditional waiting. In OCB, processes perform activities; monitors are shared

between the processes, but are not active unless called by a process. OCB monitors

provide an encapsulation mechanism giving the processes mutually exclusive access to

the data. In our Java implementation processes are implemented using threads; and

Chapter 9 Conclusions and Future Work 189

the mutual exclusion mechanism is provided by appropriate use of data encapsulation,

and the enforced use of synchronized methods. It is also the case that alternative target

implementations should map to the OCB constructs relatively easily. For example, we

can compare the process abstraction to Ada tasks [147], and the monitor abstraction

to Ada protected objects. OCB procedures map easily Ada procedures and functions

(functions may be used if no state updates are performed). Conditional waiting can be

implemented using Ada entry barriers. The correspondence with C [93] is not quite so

simple, but still feasible. Class data may be implemented using structs and the struct

can be passed as an argument to functions performing updates to the class’ data. This

is similar in nature to Ada’s idiom for implementation of Abstract Data Types. Thread

implementation, and synchronization, can be done using the the features of a library

such as POSIX [151]. The POSIX library for C provides a set of features including

pthreads, mutex locks and conditional waiting.

9.2 Related Work

The motivation for this work was to explore the link between Event-B and object-

oriented implementations; with the specific aim of discovering an approach facilitat-

ing concurrent implementations for formal developments undertaken using the Event-B

method. To our knowledge no other work has been undertaken to facilitate this, so

the foundations for our work are drawn from a number of areas. In this respect the

nearest comparable work is that involving implementations for Classical-B [5] using the

B0 implementation notation described in [43]. B0 is similar to a programming language,

and consists only of concrete programming constructs that map to programming con-

structs in programming languages. B0 forms part of the Classical-B refinement chain,

so the implementation level specification is shown to refine an abstract development.

Translators are available to translate the implementation level specification to various

target programming languages, which are described in [42] to executable code. Our

OCB implementation notation exists at a similar level to B0 in the refinement chain,

between the formal model and implementation; and similarly the constructs we chose

for OCB have convenient mapping to constructs in our target domain - that of object-

oriented programs. It should be noted though whilst B0 can be translated to the C++

programming language [146] there is no support for concurrent processing of threads;

and the main factor for choosing Java in our work was its good support in this respect.

Other target languages of the B0 translators are C [93], and High Integrity Ada (based

on SPARKAda [2]). SPARKAda is a target programming language that we could

consider translating to in future work since it incorporates proof of program consistency

using a Design-by-Contract approach.

In the early stages of our investigations we considered using a combined CSP and B

approach to specify the order in which the atomic actions may occur, and to specify

Chapter 9 Conclusions and Future Work 190

points at which the actions of processes may interleave. In such a development the

specifications are combined so that the B operations synchronize with the corresponding

CSP events with the same name. We considered this approach to be more complex than

the approach we ultimately adopted, and introduced the sequence operator and labels

for atomic clauses, to OCB. The sequence operator, together with the labels (mapped

to program counters in Event-B), perform the same role as the CSP specification by

imposing an ordering on the events. Additional considerations in making this choice, at

the time, were the lack of tool support for combined Event-B and CSP, and the potential

overlap with the work on JCSProB [162] that we discuss later. The combined CSP and

B approach, CSP ‖B, [131, 133] continues to be of interest to researchers.

Other work with CSP, related to our approach, is JCSP [157, 123] and JCSProB [162].

JCSP links the OCCAM [134] subset of the CSP process algebra and the Java pro-

gramming language. The result is the ability to specify process behaviour in CSP, and

translate to Java. The resulting Java is a message passing style implementation of com-

munication between processes. This differs from the shared memory approach described

in our work. JCSProB combines the CSP and classical-B formal methods, the ProB

tool can be used to provide a unified approach for specification and model checking.

The most obvious difference between the JCSProB approach and OCB, once again, is

that our work is aimed at the more recent Event-B approach. JCSProB uses the CSP

prefix operator to provide an ordering on the events that occur, with the operations of

the B machine synchronizing with the CSP events. A CSP process may specify events

that are not shared with other processes, this allows processes events to interleave -

restricted only by the ordering imposed by the sequence operator (since the processes

do not synchronize on common events). In OCB we can specify when interleaving may

occur at certain points in non-atomic constructs, such as at the end of each while loop

iteration. We also order the executions of labelled atomic clauses, using a sequential

operator. The sequence operator is used in a process class’ run operation to define an

ordering of executions and to define points where other processes may interleave. In

both JCSProB and OCB the specifications are translated to threads which can run

concurrently, and perform state updates.

Other work involving CSP is that of Circus [159], which is a combined approach using

CSP and Z − notation [144]. In a Circus specification the Z and CSP constructs are

used to build a specification that is amenable to model checking using [160]. In this

respect Circus has more in common with JCSProB than OCB since it is a combined

approach using model-checking technology, OCB is not a combined approach. Circus

can be translated to Java as described in [65], making use of the JCSP library code.

The OCB approach we advocate has a strong object-oriented bias, which is in part due

to our choice of target implementation. In addition though, the use of an object-oriented

specification style in OCB has many benefits; such as the use of classes as templates for

instantiating multiple objects and encapsulating data. The benefits of object-oriented

Chapter 9 Conclusions and Future Work 191

techniques have been applied to a number of formal approaches, one such approach in-

volving object-oriented technology and Event-B, is that of UML-B. UML-B is a graphical

front-end for Classical-B and Event-B and provides facilities to model a wide range of

developments diagrammatically using class and statechart diagrams. We gained insight

into the modelling of classes, objects, and ordering of events from UML-B; however there

is no facility to translate the model to an implementation. The additional information

contained in the ProcessClass and MonitorClass specifications of OCB, provide the

necessary information to facilitate the translation to an object-oriented implementation.

Due to the similarity of approaches it therefore possible that some UML-B develop-

ments will be intuitively refined by OCB specifications; in particular this would be quite

apparent if a graphical front-end, similar to UML-B, were created for OCB.

There have been other approaches involving formal methods and object oriented technol-

ogy. VDM++ is an object-oriented extension to VDM-SL formal specification language.

Models can be described textually; or using a graphical interface using UML diagrams,

in much the same way as UML-B does for B and Event-B. VDM++ can be used with the

VDM++ Toolbox to generate C++ and Java code. VDM++ can be used to model and

implement developments with concurrently executing processes, using threads. Condi-

tional waiting can be specified using permission predicates, in a similar way to the OCB

when construct. Another approach that is derived from VDM and additionally CSP is

the RAISE Method [152]. The RAISE Method describes how formal development may

be undertaken in a number of different ways. There are guidelines for applicative (func-

tional) and imperative specification styles, for both sequential and concurrent systems.

The approach covers the development activity from requirements specification through

to translation, which is most relevant for this discussion. The RAISE method uses

a specification notation called the RAISE Specification Language (RSL). A developer

may initially make use of the language’s high level specification constructs, that involve

non-determinism, and may use a step-wise refinement approach to move towards imple-

mentation. RSL also contains the low level implementation constructs used at this level

- unlike OCB in which we distinguish Event-B from OCB. The implementation level

specification can then be translated into a traditional programming language, due to

the similarity of the low level RSL constructs and traditional programming constructs.

Following this the resulting code is compiled into executable, or interpreted code, in a

similar way to the OCB approach. As with OCB the RAISE approach recognises the

difficulty of formally linking the executable code and the related abstract specifications.

Object − Z [136] is an object-oriented approach to development using Z. Unlike the

work presented in the thesis, the Object-Z approach allows the use of inheritance and

polymorphism in specifications. In Object-Z operations are blocked if the pre-condition

is not true, which is similar to the OCB conditional waiting construct. A route to

implementation is described using a translation to PerfectDeveloper [55] in [145].

PerfectDeveloper’s approach is to use verified-Design By Contract, where verification

Chapter 9 Conclusions and Future Work 192

conditions are generated from a specification using constructs such as pre and postcon-

ditions, class and loop invariants, and assertions. The verification conditions must be

shown to hold in order to show the specified contracts are satisfied by the implementa-

tion. They are generated for each method entry to show that the precondition holds, for

each method exit to show that the postcondition holds, and wherever an assertion ap-

pears. PerfectDeveloper provides automatic, and semi-automatic, translations to Java

and C++ but appears not to support concurrent processing. In future work we will con-

sider linking OCB to a verifiable implementation language such as SPARKAda, here

concurrency may be facilitated using the RavenSPARK version. Another approach

would be to investigate the use of JML [102] annotations to specify a contract which we

should ensure is satisfied.

9.3 Future Work

The work described in the thesis leaves open many opportunities for improvement, to

both the existing approach and tool support, and for extensions to the approach with

corresponding tool support. We now provide brief details of some of the work required

to make the tool more usable, and implementations more efficient.

• Introduce the decomposition approach to provide smaller models at the implemen-

tation level.

• Improve the static checks that the tool performs.

• Improve integration with the RODIN tool, add the option to inject the Event-B

output into an existing RODIN Project. Also improve the means of relating the

abstract development to the OCB specification - at the moment relating the two is

difficult, investigate patterns and tooling aids to enhance developer’s productivity.

• Add a text-based editor (TEF based) with syntax checking and context highlight-

ing and a graphical interface (GEF based).

• There are some smaller issues to be addressed, e.g. allow the use of guard predi-

cates in a conditional statement, so ¬(c) could contain a guard predicate c instead

of restricting c to be an attribute of boolean type.

• In the Synchronized-OCB translators we need to replace approach for handling null

references at the time of a procedure call with proof of its absence using suitable

invariants.

• Model the Java integer range by adding a constant of interval type -2147483648

. . . 2147483647 and use this to type OCB integer attributes.

Chapter 9 Conclusions and Future Work 193

• Optimise locking strategies, and investigate alternative approaches such as that

based on Software Transactional Memory.

Other work can extend the functionality of OCB and Event-B,

• Extend to other target platforms, such as SPARKAda or C + +.

• Investigate the link between UML-B and OCB to make best use of features common

to both.

• Investigate Re-use of OCB specifications using modularity and inheritance.

• Extend Event-B actions with the necessary operators, sequence, loop and branch.

Other issues are,

• Add non-blocking atomic procedure definitions to ProcessClass definitions,

• The Transactional-OCB conditional waiting construct requires further work. A

particular thread may be blocked when a guard fails, if the guard refers to more

than one object the thread has to wait for changes to either shared object. An

await/signal scheme needs to be implemented to facilitate this behaviour.

During our work we also identified the need for another kind of class. This is a class that

performs a similar role to a MonitorClass but is not shared. The class is simply part of

the representation of some other object, so it does not need the same disciplined locking

approach required by a shared class. The concept of such representation objects has

been investigated in [127, 87].

Appendix A

Syntax for OCB

In the following, s is a symbol, [s] denotes zero or one s is permissible, s+ denotes 1 or

more s is permissible, and s∗ denotes 0 or more is permissible.

MainClass ::=

CName

ProcessClass∗

MonitorClass∗

V ar∗

NonAtomic

ProcessClass ::= CName V ar+ NonAtomic Constructor

MonitorClass ::= CName V ar∗ Procedure+ Constructor

NonAtomic ::=

NonAtomic ; NonAtomic

| NonAtomic [] NonAtomic

| do Atomic [; NonAtomic] od

| Atomic

Atomic ::= startLabel :< [Guard→]Body >

Body ::=

Action

| [v :=] m.pn(a1, . . . , ak)

| v := C.create(a1, . . . , ak)

v ::=

identifier

| identifier‘[’ IntegerLiteral ‘]’

194

Appendix A Syntax for OCB 195

Action ::=

Action ‖Action
| v := E

V ar ::=

v ∈ Type
[v := E]

Type ::=

CName

| Integer
| Boolean
| CName‘[’ IntegerLiteral ‘]’

| Integer‘[’ IntegerLiteral ‘]’

| Boolean‘[’ IntegerLiteral ‘]’

E ::=

ArithmeticExpression

| BooleanLiteral

ArithmeticExpression ::=

IntegerLiteral

| v
| ArithmeticExpression ArithBinOp ArithmeticExpression
| ArithUnOp ArithmeticExpression

ArithBinOp ::=

+ | − | ∗ | / | mod | ∧

ArithUnOp ::=

−

Guard ::=

ArithmeticExpression GuardBinOp (ArithmeticExpression | BooleanLiteral)
| Guard GuardBinOp Guard
| GuardUnOp Guard

GuardBinOp ::=

= | 6= | < | > | ≤ | ≥ | ∧ | ∨

GuardUnOp ::=

¬

APar ::= E

Appendix A Syntax for OCB 196

Procedure ::= pdName LV ar∗ [Guard] Action

LV ar ::= v ∈ Type

Constructor ::= LV ar∗ Action Type

Appendix B

OCB Syntax Extension

In the following, s is a symbol, [s] denotes zero or one s is permissible, s+ denotes 1 or

more s is permissible, and s∗ denotes 0 or more is permissible. Symbols beginning with

an upper case character are non-terminals and are terminals otherwise.

MainClass ::=

CName

ProcessClass∗

PassiveClass∗

V ar∗

NonAtomic

ProcessClass ::= CName V ar+ NonAtomic Constructor

PassiveClass ::= CName V ar∗ Procedure+ Constructor

NonAtomic ::=

NonAtomic ; NonAtomic

| NonAtomic [] NonAtomic

| do Atomic [; NonAtomic] od

| Atomic

Atomic ::= startLabel :< [Guard→] Action >

Action ::=

Action ; Action

| if(Guard) then Action endif

[else if(Guard) then Action endelseif]

[else Action endelse]

| while(Guard) then Action endwhile

| identifier := E

197

Appendix B OCB Syntax Extension 198

| [identifier :=] identifier.pn(a1, . . . , ak)

| identifier := C.create(a1, . . . , ak)

identifier ::=

identifier

| identifier‘[’ IntegerLiteral ‘]’

| identifier ‘ . ’ identifier

V ar ::=

identifier ∈ Type
[identifier := E]

Type ::=

CName

| Integer
| Boolean
| CName‘[’ IntegerLiteral ‘]’

| Integer‘[’ IntegerLiteral ‘]’

| Boolean‘[’ IntegerLiteral ‘]’

E ::=

ArithmeticExpression

| BooleanLiteral

ArithmeticExpression ::=

IntegerLiteral

| identifier
| identifier.pn(a1, . . . , ak)

| ArithmeticExpression ArithBinOp ArithmeticExpression
| ArithUnOp ArithmeticExpression

ArithBinOp ::=

+ | − | ∗ | / | mod | ∧

ArithUnOp ::=

−

Guard ::=

ArithmeticExpression GuardBinOp (ArithmeticExpression | BooleanLiteral)
| Guard GuardBinOp Guard
| GuardUnOp Guard

GuardBinOp ::=

= | 6= | < | > | ≤ | ≥ | ∧ | ∨

Appendix B OCB Syntax Extension 199

GuardUnOp ::=

¬

APar ::= E

Procedure ::= pdName LV ar∗ [Guard] ProcAction

LV ar ::= identifier ∈ Type

Constructor ::= LV ar∗ Action Type

ProcAction ::=

ProcAction ; ProcAction

| if(Guard) then ProcAction endif

| while(Guard) do ProcAction endwhile

| identifier := E

| [identifier :=] InternalProcCall

InternalProcCall ::= pdName APar∗

Appendix C

Case Study 1 - OCB and Event-B

Models, and Code

C.1 OCB Channel Specification

MonitorClass Channel{
// Attributes

Integer[50] buff, Integer rLoc, Integer wLoc,

Integer rPID, Integer wPID, Integer writeSize

// The Constructor

Procedure create(){
rLoc:= 0 || wLoc:= 0 || rPID:= -1 ||

wPID:= -1 || writeSize:= -1

}

// ‘Refines’ WritePacket - in a call from clause p4

Procedure add(Integer val){
when(wLoc - rLoc <= 5){

buff[wLoc]:= val || wLoc:= wLoc + 1}
}

// The value is stored in a temporary buffer in a

// call from clause p8 - implementing ReadPacket

//as part of the reading activity.

Procedure remove(){
when(wLoc - rLoc > 0){

return:= buff[rLoc] || rLoc := rLoc+1 }

200

Appendix C Case Study 1 - OCB and Event-B Models, and Code 201

}: Integer

// Called in p1 else clause - refines StartRead.

// Set the channel for reading, by the process

// with identifier pid.

// Block if it is already owned or has nothing to read.

Procedure getRChan(Integer pid){
when(rPID=-1 & writeSize>0){rPID:= pid}
}

// Called in p11 clause - refines EndRead.

// Free the channel for reading.

Procedure freeRChan(){
rPID:= -1 || writeSize:= -1

}

// Called in p1 clause - implementing StartWrite.

// Set the channel for writing writesze bytes, by

// the process pid.

// Block if the channel is already owned for writing or

// has bytes still to write.

Procedure getWChan(Integer pid,Integer writeSze){
when(wPID=-1 & writeSize<=0){

wPID:= pid || writeSize:= writeSze}
}

// Called in p6 clause - refines EndWrite.

// Free the channel for writing.

Procedure freeWChan(){ wPID:= -1 }

// Return the number of bytes to write.

Procedure getWriteSize(){ return:= writeSize }: Integer

}

C.2 OCB ProcessClass Specification

ProcessClass Proc{
// Attributes

Buffer buff, Boolean isWriter, Channel c, Integer id,

Appendix C Case Study 1 - OCB and Event-B Models, and Code 202

Integer tmpBuffSz, Integer tmpDat

// The constructor procedure

Procedure create(Integer pid, Buffer bff,

Boolean isWritr, Channel ch){
id:=pid || buff:=bff || isWriter:=isWritr || c:= ch ||

tmpBuffSz:=-1 || tmpDat:=-1

}
// The process behaviour

Operation run(){
p1: if(isWriter=TRUE) then

tmpBuffSz:=buff.getSize() andthen

p2: c.getWChan(id, tmpBuffSz); // Clause p2 refines StartWrite

p3: while(tmpBuffSz>0) do tmpDat:=buff.remove() andthen

p4: c.add(tmpDat); // Clause p4 refines WritePacket

p5: tmpBuffSz:=tmpBuffSz-1 endwhile ;

p6: c.freeWChan() endif // Clause p6 refines EndWrite

else c.getRChan(id) andthen // Clause p1 else refines StartRead

p7: tmpBuffSz:=c.getWriteSize();

p8: while(tmpBuffSz>0) do tmpDat:=c.remove() andthen

p9: buff.add(tmpDat); // Clause p9 refines ReadPacket

p10: tmpBuffSz:=tmpBuffSz-1 endwhile ;

p11: c.freeRChan() endelse // Clause p11 refines EndRead

}
}

C.3 OCB MainClass Specification

MainClass CommBuffer{
// Attributes

Buffer rBuff1, Buffer rBuff2, Buffer wBuff1, Buffer wBuff2,

Channel chan, Proc wProc1, Proc wProc2, Proc rProc1,

Proc rProc2, Integer v:=5

// Program entry point.

Operation main(){
m1: rBuff1:=Buffer.create();

m2: rBuff2:=Buffer.create();

m3: wBuff1:=Buffer.create();

m4: wBuff2:=Buffer.create();

m5: chan:=Channel.create();

Appendix C Case Study 1 - OCB and Event-B Models, and Code 203

m6: while(v<8) do wBuff1.add(v) andthen

m7: wBuff2.add(v);

m8: v:=v+1 endwhile ;

m9: wProc1:=Proc.create(1,wBuff1,TRUE,chan);

m10: wProc2:=Proc.create(2,wBuff2,TRUE,chan);

m11: rProc1:=Proc.create(3,rBuff1,FALSE,chan);

m12: rProc2:=Proc.create(4,rBuff2,FALSE,chan)

}
}

C.4 OCB Buffer Specification

MonitorClass Buffer{
// Attributes

Integer[50] buff, Integer rLoc, Integer wLoc,

Procedure create(){
rLoc:=0 || wLoc:=0

}

// Add val to the channel buffer wLoc

Procedure add(Integer val){
when(wLoc - rLoc <= 5){

buff[wLoc]:= val || wLoc:= wLoc + 1}
}

// remove, and return, the value at the rLoc of the channel buffer

Procedure remove(){
when(wLoc - rLoc > 0){

return:= buff[rLoc] || rLoc := rLoc+1 }
}: Integer

}

C.5 Channel Java Code

public class Channel {
private int[] buff = new int[50];

private int wLoc;private int rLoc;

private int rPID;private int wPID;private int writeSize;

Appendix C Case Study 1 - OCB and Event-B Models, and Code 204

public Channel() {
wLoc = 0; rLoc = 0; rPID = -1;

wPID = -1; writeSize = -1;

}

public synchronized void add(int val) {
try {

while (!(wLoc - rLoc <= 5)) {
wait();

}} catch (InterruptedException e) { e.printStackTrace(); }
buff[wLoc] = val;

wLoc = wLoc + 1;

notifyAll();

}

public synchronized int remove() {
int initial_rLoc = rLoc;

try {
while (!(wLoc - rLoc > 0)) {
wait();

initial rLoc = rLoc;

} catch (InterruptedException e) { e.printStackTrace();}
rLoc = rLoc + 1;

notifyAll();

return buff[initial rLoc];

}

public synchronized void getRChan(int pid) {
try {
while (!(rPID == -1 && writeSize > 0)) {
wait();

}} catch (InterruptedException e) { e.printStackTrace(); }
rPID = pid;

notifyAll();

}

public synchronized void freeRChan() {
rPID = -1;

writeSize = -1;

notifyAll();

}

Appendix C Case Study 1 - OCB and Event-B Models, and Code 205

public synchronized void getWChan(int pid, int writeSze) {
try {

while (!(wPID == -1 && writeSize <= 0)) {
wait();

}} catch (InterruptedException e) { e.printStackTrace(); }
wPID = pid;

writeSize = writeSze;

notifyAll();

}

public synchronized void freeWChan() {
wPID = -1;

notifyAll();

}

public synchronized int getWriteSize() {
return writeSize;

}
}

C.6 The Proc Class Java Code

public class Proc implements Runnable {

private Buffer buff = null; private boolean isWriter;

private Channel c = null; private int id;

private int tmpBuffSz; private int tmpDat;

public Proc(int pid, Buffer bff, boolean isWritr, Channel ch) {
id = pid; buff = bff; isWriter = isWritr; c = ch;

tmpBuffSz = -1; tmpDat = -1;

}

public void run() {
if (isWriter == true) {
tmpBuffSz = buff.getSize(); // p1

c.getWChan(id, tmpBuffSz); // p2

while (tmpBuffSz > 0) {
tmpDat = buff.remove(); // p3

Appendix C Case Study 1 - OCB and Event-B Models, and Code 206

c.add(tmpDat); // p4

tmpBuffSz = tmpBuffSz - 1; // p5

}
c.freeWChan(); // p6

}else {
c.getRChan(id);

tmpBuffSz = c.getWriteSize(); // p7

while (tmpBuffSz > 0) {
tmpDat = c.remove(); // p8

buff.add(tmpDat); // p9

tmpBuffSz = tmpBuffSz - 1; // p10

}
c.freeRChan(); // p11

}
}
}

C.7 The CommBuffer Java Code

public class CommBuffer {
private static Buffer rBuff1 = null;

private static Buffer rBuff2 = null;

private static Buffer wBuff1 = null;

private static Buffer wBuff2 = null;

private static Channel chan = null;

private static Proc wProc1 = null;

private static Proc wProc2 = null;

private static Proc rProc1 = null;

private static Proc rProc2 = null;

private static int v = 5;

public static void main(String[] args) {
rBuff1 = new Buffer(); // m1

rBuff2 = new Buffer(); // m2

wBuff1 = new Buffer(); // m3

wBuff2 = new Buffer(); // m4

chan = new Channel(); // m5

while (v < 8) {
wBuff1.add(v); // m6

wBuff2.add(v); // m7

Appendix C Case Study 1 - OCB and Event-B Models, and Code 207

v = v + 1; // m8

}
wProc1 = new Proc(1, wBuff1, true, chan);

new Thread(wProc1).start(); /* m9 */

wProc2 = new Proc(2, wBuff2, true, chan);

new Thread(wProc2).start(); /* m10 */

rProc1 = new Proc(3, rBuff1, false, chan);

new Thread(rProc1).start(); /* m11 */

rProc2 = new Proc(4, rBuff2, false, chan);

new Thread(rProc2).start(); /* m12 */

}
}

C.8 Event-B Model of Shared Channel

MACHINE CommBufferSimple

REFINES m4

SEES CommBufferSimple CTX

VARIABLES

Buffer, Buffer buff, Buffer wLoc, Buffer rLoc, Channel, Channel buff,

Channel wLoc, Channel rLoc,Channel rPID, Channel wPID,

Channel writeSize, Proc, Proc state, Proc buff, Proc isWriter,

Proc c, Proc id, Proc tmpBuffSz, Proc tmpDat, CommBufferSimple,

CommBufferSimple rBuff1, CommBufferSimple rBuff2,

CommBufferSimple wBuff1, CommBufferSimple wBuff2, CommBufferSimple chan,

CommBufferSimple wProc1, CommBufferSimple wProc2, CommBufferSimple rProc1,

CommBufferSimple rProc2, CommBufferSimple v, CommBufferSimple state

INVARIANTS

Buffer∈ P (Buffer Set)

Buffer buff∈Buffer → (0 .. 49 → Z)

Buffer wLoc∈Buffer → Z
Buffer rLoc∈Buffer → Z
Channel∈ P (Channel Set)

Channel buff∈Channel → (0 .. 49 → Z)

Channel wLoc∈Channel → Z
Channel rLoc∈Channel → Z

Appendix C Case Study 1 - OCB and Event-B Models, and Code 208

Channel rPID∈Channel → Z
Channel wPID∈Channel → Z
Channel writeSize∈Channel → Z
Proc∈ P (Proc Set)

Proc state ∈ Proc 7→ Proc states

Proc buff∈Proc 7→ Buffer

Proc isWriter∈Proc → BOOL

Proc c∈Proc 7→ Channel

Proc id∈Proc → Z
Proc tmpBuffSz∈Proc → Z
Proc tmpDat∈Proc → Z
CommBufferSimple∈CommBufferSimple Set

CommBufferSimple∈ P(CommBufferSimple Set)

CommBufferSimple rBuff1∈CommBufferSimple 7→ Buffer

CommBufferSimple rBuff2∈CommBufferSimple 7→ Buffer

CommBufferSimple wBuff1∈CommBufferSimple 7→ Buffer

CommBufferSimple wBuff2∈CommBufferSimple 7→ Buffer

CommBufferSimple chan∈CommBufferSimple 7→ Channel

CommBufferSimple wProc1∈CommBufferSimple 7→ Proc

CommBufferSimple wProc2∈CommBufferSimple 7→ Proc

CommBufferSimple rProc1∈CommBufferSimple 7→ Proc

CommBufferSimple rProc2∈CommBufferSimple 7→ Proc

CommBufferSimple v∈CommBufferSimple → Z
CommBufferSimple state ∈ CommBufferSimple 7→ CommBufferSimple states

Channel = chan

Proc = proc

∀ p,q · p∈Proc ∧
q∈Proc ∧
p 6= q

⇒
Proc id(p) 6= Proc id(q) // all Proc ids must be different

∀ self · self ∈ Proc ∧
self ∈ dom(Proc id) ⇒
Proc id(self) ≥ 0 // Process IDs are Natural numbers

∀ self · self ∈ Proc ∧
self ∈ dom(Proc buff) ⇒
Buffer rLoc(Proc buff(self)) ∈ 0 .. 49 // Bound on Buffer rLoc

∀ self · self ∈ Proc ∧
self ∈ dom(Proc buff) ⇒
Buffer wLoc(Proc buff(self)) ∈ 0 .. 49 // Bound on Buffer wLoc

∀ self · self ∈ Proc ∧

Appendix C Case Study 1 - OCB and Event-B Models, and Code 209

self ∈ dom(Proc c) ⇒
Channel wLoc(Proc c(self)) ∈ 0 .. 49 // Bound on Channel wLoc

∀ self · self ∈ Proc ∧
self ∈ dom(Proc c) ⇒
Channel rLoc(Proc c(self))∈0 .. 49 // Bound on Channel rLoc

∀ self · self∈ CommBufferSimple ∧
self∈dom(CommBufferSimple wBuff1)

⇒
Buffer rLoc(CommBufferSimple wBuff1(self)) ∈ 0 .. 49

∀ self · self∈ CommBufferSimple ∧
self∈dom(CommBufferSimple wBuff1)

⇒
Buffer wLoc(CommBufferSimple wBuff1(self)) ∈ 0 .. 49

∀ self · self∈ CommBufferSimple ∧
self∈dom(CommBufferSimple wBuff2)

⇒
Buffer rLoc(CommBufferSimple wBuff2(self)) ∈ 0 .. 49

∀ self · self∈ CommBufferSimple ∧
self∈dom(CommBufferSimple wBuff2)

⇒
Buffer wLoc(CommBufferSimple wBuff2(self)) ∈ 0 .. 49

∀ self · self∈ CommBufferSimple ∧
self∈dom(CommBufferSimple chan)

⇒
Channel wLoc(CommBufferSimple chan(self)) ∈ 0 .. 49

∀ self · self∈ CommBufferSimple ∧
self∈dom(CommBufferSimple chan)

⇒
Channel rLoc(CommBufferSimple chan(self)) ∈ 0 .. 49

∀ self · self∈ CommBufferSimple ∧
self∈dom(CommBufferSimple rBuff1)

⇒
Buffer rLoc(CommBufferSimple rBuff1(self)) ∈ 0 .. 49

∀ self · self∈ CommBufferSimple ∧
self∈dom(CommBufferSimple rBuff1)

⇒
Buffer wLoc(CommBufferSimple rBuff1(self)) ∈ 0 .. 49

∀ self · self∈ CommBufferSimple ∧
self∈dom(CommBufferSimple rBuff2)

⇒
Buffer rLoc(CommBufferSimple rBuff2(self)) ∈ 0 .. 49

Appendix C Case Study 1 - OCB and Event-B Models, and Code 210

∀ self · self∈ CommBufferSimple ∧
self∈dom(CommBufferSimple rBuff2)

⇒
Buffer wLoc(CommBufferSimple rBuff2(self)) ∈ 0 .. 49

∀ self · self ∈ Proc ∧
self ∈ dom(Proc c) ∧
Channel wPID(Proc c(self)) = -1

⇒
self /∈ dom(writing) // Channel wPID is unset means that

//the process is not in the writing set

∀ self · self ∈ Proc ∧
self ∈ dom(Proc c) ∧
Channel wPID(Proc c(self)) = -1

⇒
Proc c(self) /∈ ran(writing) // Channel wPID is unset means that

//the Channel is not in the writing set Channel

∀ self · self ∈ Proc ∧
self ∈ dom(Proc c) ∧
Channel rPID(Proc c(self)) = -1

⇒
Proc c(self) /∈ ran(reading) // Channel rPID unset means that

// the Channel is not in the reading set

∀ self · self ∈ Proc ∧
self ∈ dom(Proc c) ∧
Channel rPID(Proc c(self)) = -1

⇒
self /∈ dom(reading) // Channel rPID is unset means

// that the process is not in the reading set

∀ self · self ∈ Proc ∧
self ∈ dom(Proc state) ∧
Proc state(self) = p2

⇒
self /∈ dom(reading) // the process counter is at p2 means

// that the process is not reading

∀ self · self ∈ Proc ∧
self ∈ dom(Proc state) ∧
Proc state(self) = p1

⇒
self /∈ dom(reading)

// If Counter = p1 then the process is not reading

∀ self · self ∈ Proc ∧

Appendix C Case Study 1 - OCB and Event-B Models, and Code 211

self ∈ dom(Proc c)

⇒
dom(data2(Proc c(self))) = 0 .. 49

∀ self · self ∈ CommBufferSimple ∧
self ∈ dom(CommBufferSimple chan) ∧
CommBufferSimple chan(self) ∈ dom(data2)

⇒
dom(data2(CommBufferSimple chan(self))) = 0 .. 49

∀ self · self ∈ Proc ∧
self ∈ dom(Proc state) ∧
Proc state(self) = p1 ∧
self∈dom(Proc buff) ∧
self∈dom(buff2) ∧
Buffer rLoc(Proc buff(self)) > 0

⇒
buff2(self) 6= ∅ // If a buffer’s read location > 0

// when pc = p1 then the buff2 is not empty

∀ self · self ∈ Proc ∧
self ∈ dom(Proc state) ∧
Proc state(self) = p2 ∧
self∈dom(Proc buff) ∧
self∈dom(buff2) ∧
Buffer rLoc(Proc buff(self)) > 0

⇒
buff2(self) 6= ∅ // the tmpBuffSz > 0 implies that

//buff2 is non-empty when pc =p2

THEOREM

(λ i · i∈0 .. 49 0) ∈ (0 .. 49 → Z)

EVENTS

INITIALISATION ,

THEN

Buffer Buffer := ∅
Buffer buff Buffer buff := ∅
Buffer wLoc Buffer wLoc := ∅
Buffer rLoc Buffer rLoc := ∅
Channel Channel := ∅
Channel buff Channel buff := ∅
Channel wLoc Channel wLoc := ∅
Channel rLoc Channel rLoc := ∅
Channel rPID Channel rPID := ∅

Appendix C Case Study 1 - OCB and Event-B Models, and Code 212

Channel wPID Channel wPID := ∅
Channel writeSize Channel writeSize := ∅
Proc Proc := ∅
Proc state Proc state := ∅
Proc buff Proc buff := ∅
Proc isWriter Proc isWriter := ∅
Proc c Proc c := ∅
Proc id Proc id := ∅
Proc tmpBuffSz Proc tmpBuffSz := ∅
Proc tmpDat Proc tmpDat := ∅
CommBufferSimple CommBufferSimple := ∅
CommBufferSimple rBuff1 := ∅
CommBufferSimple rBuff2 := ∅
CommBufferSimple wBuff1 := ∅
CommBufferSimple wBuff2 := ∅
CommBufferSimple chan := ∅
CommBufferSimple wProc1 := ∅
CommBufferSimple wProc2 := ∅
CommBufferSimple rProc1 := ∅
CommBufferSimple rProc2 := ∅
CommBufferSimple v := ∅
CommBufferSimple state := ∅

END

Proc p1 ,

ANY self, target

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p1

Proc isWriter(self) = TRUE

self ∈ dom(Proc buff)

target = Proc buff(self)

THEN

Proc tmpBuffSz (self) :=

Buffer wLoc (target) - Buffer rLoc (target)

Proc state(self) := p2

END

Proc p1 isNull ,

ANY self

Appendix C Case Study 1 - OCB and Event-B Models, and Code 213

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p1

Proc isWriter(self) = TRUE

¬ (self ∈ dom(Proc buff))

THEN

Proc state(self) := terminatedProc

END

Proc p2 ,

REFINES StartWrite

ANY self, target

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p2

self ∈ dom(Proc c)

target = Proc c(self)

Channel wPID (target) = - 1

Channel writeSize (target) ≤ 0

Proc tmpBuffSz (self) ≥ 0

WITH

p = self

c = Proc c(self)

THEN

Channel wPID (target) := Proc id (self)

Channel writeSize (target) := Proc tmpBuffSz (self)

Proc state(self) := p3

END

Proc p2 isNull ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p2

¬ (self ∈ dom(Proc c))

THEN

Proc state(self) := terminatedProc

END

Appendix C Case Study 1 - OCB and Event-B Models, and Code 214

Proc while p3 ,

ANY self, target

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p3

Proc tmpBuffSz(self) > 0

self ∈ dom(Proc buff)

target = Proc buff(self)

Buffer wLoc (target) - Buffer rLoc (target) > 0

THEN

Proc tmpDat (self) :=

Buffer buff (target) (Buffer rLoc (target))

Buffer rLoc (target) := Buffer rLoc (target) + 1

Proc state(self) := p4

END

Proc while p3 isNull ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p3

Proc tmpBuffSz(self) > 0

¬ (self ∈ dom(Proc buff))

THEN

Proc state(self) := terminatedProc

END

Proc p4 ,

REFINES WritePacket

ANY self, target

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p4

self ∈ dom(Proc c)

target = Proc c(self)

Channel wLoc (target) - Channel rLoc (target) ≤ 5

Channel wLoc (target) < 49

Appendix C Case Study 1 - OCB and Event-B Models, and Code 215

WITH

p = self

c = target

k = Channel wLoc(target)

d = Proc tmpDat(self)

THEN

Channel buff (target) :=

Channel buff (target) C−
{Channel wLoc (target) 7→ Proc tmpDat (self)}

Channel wLoc (target) := Channel wLoc (target) + 1

Proc state(self) := p5

END

Proc p4 isNull ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p4

¬ (self ∈ dom(Proc c))

THEN

Proc state(self) := terminatedProc

END

Proc p5 ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p5

THEN

Proc tmpBuffSz (self) := Proc tmpBuffSz (self) - 1

Proc state(self) := p3

END

Proc while p3 false ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p3

Appendix C Case Study 1 - OCB and Event-B Models, and Code 216

¬ (Proc tmpBuffSz(self) > 0)

THEN

Proc state(self) := p6

END

Proc p6 ,

REFINES EndWrite

ANY self, target

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p6

self ∈ dom(Proc c)

target = Proc c(self)

WITH

p = self

c = Proc c(self)

THEN

Channel wPID (target) := - 1

Proc state(self) := terminatedProc

END

Proc p6 isNull ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p6

¬ (self ∈ dom(Proc c))

THEN

Proc state(self) := terminatedProc

END

Proc p1 else ,

REFINES StartRead

ANY self, target

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p1

¬ (Proc isWriter(self) = TRUE)

Appendix C Case Study 1 - OCB and Event-B Models, and Code 217

self ∈ dom(Proc c)

target = Proc c(self)

Channel rPID (target) = - 1

Channel writeSize (target) > 0

WITH

p = self

c = target

THEN

Channel rPID (target) := Proc id (self)

Proc state(self) := p7

END

Proc p1 else isNull ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p1

¬ (Proc isWriter(self) = TRUE)

¬ (self ∈ dom(Proc c))

THEN

Proc state(self) := terminatedProc

END

Proc p7 ,

ANY self, target

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p7

self ∈ dom(Proc c)

target = Proc c(self)

THEN

Proc tmpBuffSz (self) := Channel writeSize (target)

Proc state(self) := p8

END

Proc p7 isNull ,

ANY self

WHERE

self ∈ Proc

Appendix C Case Study 1 - OCB and Event-B Models, and Code 218

self ∈ dom(Proc state)

Proc state(self) = p7

¬ (self ∈ dom(Proc c))

THEN

Proc state(self) := terminatedProc

END

Proc while p8 ,

ANY self, target

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p8

Proc tmpBuffSz(self) > 0

self ∈ dom(Proc c)

target = Proc c(self)

Channel wLoc (target) - Channel rLoc (target) > 0

Channel rLoc (target) < 50

THEN

Proc tmpDat (self) :=

Channel buff (target) (Channel rLoc (target))

Channel rLoc (target) := Channel rLoc (target) + 1

Proc state(self) := p9

END

Proc while p8 isNull ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p8

Proc tmpBuffSz(self) > 0

¬ (self ∈ dom(Proc c))

THEN

Proc state(self) := terminatedProc

END

Proc p9 ,

REFINES ReadPacket

ANY self, target

WHERE

Appendix C Case Study 1 - OCB and Event-B Models, and Code 219

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p9

self ∈ dom(Proc buff)

target = Proc buff(self)

Buffer wLoc (target) < 49

self ∈ dom(Proc c)

WITH

p = self

c = Proc c(self)

k = Buffer wLoc(target)

THEN

Buffer buff (target) :=

Buffer buff (target) C−
{Buffer wLoc (target) 7→ Proc tmpDat (self)}

Buffer wLoc (target) := Buffer wLoc (target) + 1

Proc state(self) := p10

END

Proc p9 isNull ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p9

¬ (self ∈ dom(Proc buff))

THEN

Proc state(self) := terminatedProc

END

Proc p10 ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p10

THEN

Proc tmpBuffSz (self) := Proc tmpBuffSz (self) - 1

Proc state(self) := p8

END

Appendix C Case Study 1 - OCB and Event-B Models, and Code 220

Proc while p8 false ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p8

¬ (Proc tmpBuffSz(self) > 0)

THEN

Proc state(self) := p11

END

Proc p11 ,

REFINES EndRead

ANY self, target

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p11

self ∈ dom(Proc c)

target = Proc c(self)

WITH

p = self

c = target

THEN

Channel rPID (target) := - 1

Channel writeSize (target) := - 1

Channel wLoc (target) := 0

Channel rLoc (target) := 0

Proc state(self) := terminatedProc

END

Proc p11 isNull ,

ANY self

WHERE

self ∈ Proc

self ∈ dom(Proc state)

Proc state(self) = p11

¬ (self ∈ dom(Proc c))

THEN

Proc state(self) := terminatedProc

END

Appendix C Case Study 1 - OCB and Event-B Models, and Code 221

loadCommBufferSimple ,

ANY self

WHERE

self self ∈ CommBufferSimple Set \ CommBufferSimple

THEN

CommBufferSimple := CommBufferSimple ∪ {self}
CommBufferSimple state(self) := m1

CommBufferSimple v(self) := 5

END

CommBufferSimple m1 ,

ANY self, new

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

new ∈ Buffer Set \ Buffer

CommBufferSimple state(self) = m1

THEN

Buffer buff(new) := λ i · i∈0 .. 490

Buffer wLoc (new) := 0

Buffer rLoc (new) := 0

Buffer := Buffer ∪ {new}
CommBufferSimple rBuff1(self) := new

CommBufferSimple state(self) := m2

END

CommBufferSimple m2 ,

ANY self, new

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

new ∈ Buffer Set \ Buffer

CommBufferSimple state(self) = m2

THEN

Buffer buff(new) := λ i · i∈0 .. 490

Buffer wLoc (new) := 0

Buffer rLoc (new) := 0

Buffer := Buffer ∪ {new}
CommBufferSimple rBuff2(self) := new

CommBufferSimple state(self) := m3

Appendix C Case Study 1 - OCB and Event-B Models, and Code 222

END

CommBufferSimple m3 ,

ANY self, new

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

new ∈ Buffer Set \ Buffer

CommBufferSimple state(self) = m3

THEN

Buffer buff(new) := λ i · i∈0 .. 490

Buffer wLoc (new) := 0

Buffer rLoc (new) := 0

Buffer := Buffer ∪ {new}
CommBufferSimple wBuff1(self) := new

CommBufferSimple state(self) := m4

END

CommBufferSimple m4 ,

ANY self, new

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

new ∈ Buffer Set \ Buffer

CommBufferSimple state(self) = m4

THEN

Buffer buff(new) := λ i · i∈0 .. 490

Buffer wLoc (new) := 0

Buffer rLoc (new) := 0

Buffer := Buffer ∪ {new}
CommBufferSimple wBuff2(self) := new

CommBufferSimple state(self) := m5

END

CommBufferSimple m5 ,

REFINES newChan

ANY self, new

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

new ∈ Channel Set \ Channel

Appendix C Case Study 1 - OCB and Event-B Models, and Code 223

CommBufferSimple state(self) = m5

THEN

Channel buff(new) := λ i · i∈0 .. 490

Channel wLoc (new) := 0

Channel rLoc (new) := 0

Channel rPID (new) := - 1

Channel wPID (new) := - 1

Channel writeSize (new) := - 1

Channel := Channel ∪ {new}
CommBufferSimple chan(self) := new

CommBufferSimple state(self) := m6

END

CommBufferSimple while m6 ,

ANY self, target

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

CommBufferSimple state(self) = m6

CommBufferSimple v(self) < 16

self ∈ dom(CommBufferSimple wBuff1)

target = CommBufferSimple wBuff1(self)

Buffer wLoc (target) < 49

Buffer wLoc (target) ≥ 0

THEN

Buffer buff (target) :=

Buffer buff (target) C−
{Buffer wLoc (target) 7→ CommBufferSimple v (self)}

Buffer wLoc (target) := Buffer wLoc (target) + 1

CommBufferSimple state(self) := m7

END

CommBufferSimple while m6 isNull ,

ANY self

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

CommBufferSimple state(self) = m6

CommBufferSimple v(self) < 16

¬ (self ∈ dom(CommBufferSimple wBuff1))

THEN

Appendix C Case Study 1 - OCB and Event-B Models, and Code 224

CommBufferSimple state(self) := terminatedCommBufferSimple

END

CommBufferSimple m7 ,

ANY self, target

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

CommBufferSimple state(self) = m7

self ∈ dom(CommBufferSimple wBuff2)

target = CommBufferSimple wBuff2(self)

Buffer wLoc (target) < 49

Buffer wLoc (target) ≥ 0

THEN

Buffer buff (target) :=

Buffer buff (target) C−
{Buffer wLoc (target) 7→CommBufferSimple v (self) ∗ 2}

Buffer wLoc (target) := Buffer wLoc (target) + 1

CommBufferSimple state(self) := m8

END

CommBufferSimple m7 isNull ,

ANY self

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

CommBufferSimple state(self) = m7

¬ (self ∈ dom(CommBufferSimple wBuff2))

THEN

CommBufferSimple state(self) := terminatedCommBufferSimple

END

CommBufferSimple m8 ,

ANY self

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

CommBufferSimple state(self) = m8

THEN

CommBufferSimple v (self) := CommBufferSimple v (self) + 1

CommBufferSimple state(self) := m6

Appendix C Case Study 1 - OCB and Event-B Models, and Code 225

END

CommBufferSimple while m6 false ,

ANY self

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

CommBufferSimple state(self) = m6

¬ (CommBufferSimple v(self) < 16)

THEN

CommBufferSimple state(self) := m9

END

CommBufferSimple m9 ,

REFINES newProc

ANY self, new

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

new ∈ Proc Set \ Proc

CommBufferSimple state(self) = m9

self ∈ dom(CommBufferSimple wBuff1)

self ∈ dom(CommBufferSimple chan)

1 /∈ ran(Proc id)

WITH

p = new

b = Buffer buff(CommBufferSimple wBuff1 (self))

THEN

Proc id (new) := 1

Proc buff (new) := CommBufferSimple wBuff1 (self)

Proc isWriter (new) := TRUE

Proc c (new) := CommBufferSimple chan (self)

Proc tmpBuffSz (new) := - 1

Proc tmpDat (new) := - 1

Proc state(new) := p1

Proc := Proc ∪ {new}
CommBufferSimple wProc1(self) := new

CommBufferSimple state(self) := m10

END

CommBufferSimple m10 ,

Appendix C Case Study 1 - OCB and Event-B Models, and Code 226

REFINES newProc

ANY self, new

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

new ∈ Proc Set \ Proc

CommBufferSimple state(self) = m10

self ∈ dom(CommBufferSimple wBuff2)

self ∈ dom(CommBufferSimple chan)

2 /∈ ran(Proc id)

WITH

p = new

b = Buffer buff(CommBufferSimple wBuff2 (self))

THEN

Proc id (new) := 2

Proc buff (new) := CommBufferSimple wBuff2 (self)

Proc isWriter (new) := TRUE

Proc c (new) := CommBufferSimple chan (self)

Proc tmpBuffSz (new) := - 1

Proc tmpDat (new) := - 1

Proc state(new) := p1

Proc := Proc ∪ {new}
CommBufferSimple wProc2(self) := new

CommBufferSimple state(self) := m11

END

CommBufferSimple m11 ,

REFINES newProc

ANY self, new

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

new ∈ Proc Set \ Proc

CommBufferSimple state(self) = m11

self ∈ dom(CommBufferSimple rBuff1)

self ∈ dom(CommBufferSimple chan)

3 /∈ ran(Proc id)

WITH

p = new

b = Buffer buff(CommBufferSimple rBuff1 (self))

THEN

Appendix C Case Study 1 - OCB and Event-B Models, and Code 227

Proc id (new) := 3

Proc buff (new) := CommBufferSimple rBuff1 (self)

Proc isWriter (new) := FALSE

Proc c (new) := CommBufferSimple chan (self)

Proc tmpBuffSz (new) := - 1

Proc tmpDat (new) := - 1

Proc state(new) := p1

Proc := Proc ∪ {new}
CommBufferSimple rProc1(self) := new

CommBufferSimple state(self) := m12

END

CommBufferSimple m12 ,

REFINES newProc

ANY self, new

WHERE

self ∈ CommBufferSimple

self ∈ dom(CommBufferSimple state)

new ∈ Proc Set \ Proc

CommBufferSimple state(self) = m12

self ∈ dom(CommBufferSimple rBuff2)

self ∈ dom(CommBufferSimple chan)

4 /∈ ran(Proc id)

WITH

p = new

b = Buffer buff(CommBufferSimple rBuff2 (self))

THEN

Proc id (new) := 4

Proc buff (new) := CommBufferSimple rBuff2 (self)

Proc isWriter (new) := FALSE

Proc c (new) := CommBufferSimple chan (self)

Proc tmpBuffSz (new) := - 1

Proc tmpDat (new) := - 1

Proc state(new) := p1

Proc := Proc ∪ {new}
CommBufferSimple rProc2(self) := new

CommBufferSimple state(self) := terminatedCommBufferSimple

END

END

Appendix D

Case Study 2 - OCB and Event-B

Models, and Code

D.1 MainClass Specification

MainClass FFS2{
// Attributes.

DOStore doStore, OpenFileStore openFileStore,

UserAppCreateFile userAppCreateFile, UserAppWriteFile userAppWriteFile,

UserAppReadFile userAppReadFile, ErrorLog errorLog

// Program entry point.

Operation main(){
s1: doStore:=DOStore.create();

s2: openFileStore:=OpenFileStore.create();

s3: errorLog:=ErrorLog.create();

s4: userAppCreateFile:=UserAppCreateFile.create(doStore,openFileStore,

errorLog);

s5: userAppWriteFile:=UserAppWriteFile.create(openFileStore,errorLog);

s6: userAppReadFile:=UserAppReadFile.create(openFileStore,errorLog)

}
}

D.2 ProcessClass CreateFile Specification

ProcessClass CreateFile{
// Attributes.

228

Appendix D Case Study 2 - OCB and Event-B Models, and Code 229

DataObject newFile, DOStore doStore, Integer doSpace,

Integer openflSpace, OpenFileInfo openFileInfo,

OpenFileStore openFileStore, Integer id, FileDirInfo fileDirInfo,

Integer oMode, Integer sMode, Integer aMode, DataObject tmpObj,

Integer tmpName, Boolean idFound, Integer index, ErrorLog errorLog

// Constructor procedure.

Procedure create(DOStore doStor,OpenFileStore openFileStor,

Integer nameID, Integer oMde,Integer sMde,

ErrorLog errorLg){
doSpace:=-1||openflSpace:=-1||doStore:=doStor||

openFileStore:=openFileStor|| id:=nameID||oMode:=oMde||sMode:=sMde||

aMode:=-1||tmpName:=-1||idFound:=FALSE||index:=0||errorLog:=errorLg

}

// Description of the process’ behaviour.

Operation run(){
cf1: doSpace:=doStore.getSize();

cf2: while(index<doSpace & idFound=FALSE) do

tmpObj:=doStore.getAtIndex(index) andthen

cf3: fileDirInfo:=tmpObj.getFileDirInfo();

cf4: tmpName:=fileDirInfo.getID();

cf5: if(tmpName=id) then idFound:=TRUE endif ;

cf6: index:=index+1 endwhile ;

cf7: if(oMode=1 & idFound=FALSE) then aMode:=2 andthen

cf8: openflSpace:=openFileStore.reserveSpace();

cf9: if(openflSpace>0) then doSpace:=doStore.reserveSpace() andthen

cf10: if(doSpace>0) then fileDirInfo:=FileDirInfo.create(id) andthen

// Clause cf11 refines create

cf11: newFile:=DataObject.create(128,fileDirInfo);

// Clause cf12 refines open rw

cf12: openFileInfo:=OpenFileInfo.create(aMode,sMode,newFile);

cf13: doStore.add(newFile);

cf14: openFileStore.add(openFileInfo) endif

else openFileStore.unReserve() andthen

cf15: doStore.unReserve();

cf16: errorLog.add(6) endelse endif

else openFileStore.unReserve() andthen

cf17: errorLog.add(5) endelse endif

elseif(oMode/=1) then errorLog.add(3) endelseif

elseif(idFound=TRUE) then errorLog.add(2) endelseif

Appendix D Case Study 2 - OCB and Event-B Models, and Code 230

}
}

D.3 ProcessClass WriteFile Specification

ProcessClass WriteFile{
// Attributes.

OpenFileStore openFileStore, UserBuffer buffer, Integer id,

Integer tmpName, OpenFileInfo file, Integer bytes, Integer index,

Integer openFileCnt, Boolean fileFound, FileDirInfo fileDirInfo,

Integer data, DataObject dataObject, Integer offset, Integer aMode,

ErrorLog errorLog, Integer freeSpace

// Constructor procedure.

Procedure create(OpenFileStore openFileStor,Integer fName,

UserBuffer buffr,Integer byts,ErrorLog errorLg){
openFileStore:=openFileStor||id:=fName||buffer:=buffr||bytes:=byts||

index:=0||openFileCnt:=0||fileFound:=FALSE||tmpName:=-1||data:=-1||

offset:=0||aMode:=-1||errorLog:=errorLg||freeSpace:=0

}

// Description of the process’ behaviour.

Operation run(){
wf1: openFileCnt:=openFileStore.getSize();

wf2: while(index<openFileCnt & fileFound=FALSE) do

file:=openFileStore.getAtIndex(index) andthen

wf3: dataObject:=file.getDataObject();

wf4: fileDirInfo:=dataObject.getFileDirInfo();

wf5: tmpName:=fileDirInfo.getID();

wf6: if(tmpName=id) then fileFound:=TRUE endif ;

wf7: index:=index+1 endwhile ;

wf8: if(fileFound=TRUE) then aMode:=file.getAccessMode() andthen

wf9: if(aMode=1 or aMode=2) then

freeSpace:=dataObject.reserveSpace() andthen

// Clause wf10 refines w start

wf10: if(freeSpace>0) then index:=0 andthen

wf11: file.resetOffset();

// Clause wf12 false, where ¬(index < bytes), refines w end

wf12: while(index<bytes) do data:=buffer.get(index) andthen

wf13: offset:=file.getOffset();

Appendix D Case Study 2 - OCB and Event-B Models, and Code 231

// Clause wf14 refines w step

wf14: dataObject.write(data, offset);

wf15: index:=index+1;

wf16: file.incOffset() endwhile endif

else dataObject.unReserve() andthen

wf17: errorLog.add(7) endelse endif

else errorLog.add(4) endelse endif

else errorLog.add(1) endelse

}
}

D.4 ProcessClass ReadFile Specification

ProcessClass ReadFile{
// Attributes.

OpenFileStore openFileStore, UserBuffer buffer, Integer id,

Integer tmpName, OpenFileInfo file, Integer bytes, Integer index,

Integer openFileCnt, Boolean fileFound, FileDirInfo fileDirInfo,

Integer data, DataObject dataObject, Integer offset, Integer aMode,

ErrorLog errorLog

// Constructor procedure.

Procedure create(OpenFileStore openFileStor, Integer fName,

UserBuffer buffr, Integer byts, ErrorLog errorLg){
openFileStore:=openFileStor||id:=fName||buffer:=buffr||

bytes:=byts||index:=0||openFileCnt:=0||fileFound:=FALSE||

tmpName:=-1||data:=-1||offset:=0||aMode:=-1||errorLog:=errorLg

}

// Description of the process’ behaviour.

Operation run(){
rf1: openFileCnt:=openFileStore.getSize();

rf2: while(index<openFileCnt & fileFound=FALSE) do

file:=openFileStore.getAtIndex(index) andthen

rf3: dataObject:=file.getDataObject();

rf4: fileDirInfo:=dataObject.getFileDirInfo();

rf5: tmpName:=fileDirInfo.getID();

rf6: if(tmpName=id) then fileFound:=TRUE endif ;

rf7: index:=index+1 endwhile ;

rf8: if(fileFound=TRUE) then aMode:=file.getAccessMode() andthen

Appendix D Case Study 2 - OCB and Event-B Models, and Code 232

// Clause rf9 refines r start

rf9: if(aMode=0 or aMode=2) then index:=0 andthen

rf10: file.resetOffset();

// Clause rf11 false, where ¬(index < bytes), refines r end

rf11: while(index<bytes) do offset:=file.getOffset() andthen

rf12: data:=dataObject.read(offset);

// Clause rf13 refines r step

rf13: buffer.add(data);

rf14: index:=index+1;

rf15: file.incOffset() endwhile endif

else errorLog.add(4) endelse endif

else errorLog.add(1) endelse

}
}

D.5 ProcessClass UserAppCreateFile Specification

ProcessClass UserAppCreateFile{
// Attributes.

CreateFile createFile, DOStore doStore,

OpenFileStore openFileStore, ErrorLog errorLog

// Constructor procedure.

Procedure create(DOStore doStor,OpenFileStore openFileStor,

ErrorLog errorLg){
doStore:=doStor||openFileStore:=openFileStor||errorLog:=errorLg

}

// Description of the process’ behaviour.

Operation run(){
ua1: createFile:=

CreateFile.create(doStore,openFileStore,0,1,0,errorLog)

}
}

D.6 ProcessClass UserAppWriteFile Specification

ProcessClass UserAppWriteFile{
// Attributes.

Appendix D Case Study 2 - OCB and Event-B Models, and Code 233

OpenFileStore openFileStore, UserBuffer buff1, WriteFile writeFile1,

Integer data, ErrorLog errorLog

// Constructor procedure.

Procedure create(OpenFileStore openFileStor,ErrorLog errorLg){
openFileStore:=openFileStor|| data:=65||errorLog:=errorLg

}

// Description of process’ behaviour.

Operation run(){
// Clause uaw1 refines makeUWBuff

uaw1: buff1:=UserBuffer.create();

uaw2: while(data<70) do buff1.add(data) andthen

uaw3: data:=data+1 endwhile ;

uaw4: writeFile1:=WriteFile.create(openFileStore,0,buff1,5,errorLog)

}
}

D.7 ProcessClass UserAppReadFile Specification

ProcessClass UserAppReadFile{
// Attributes.

OpenFileStore openFileStore, UserBuffer buff1, ReadFile readFile1,

ErrorLog errorLog

// Constructor procedure.

Procedure create(OpenFileStore openFileStor,ErrorLog errorLg){
openFileStore:=openFileStor||errorLog:=errorLg

}

// Description of process’ behaviour.

Operation run(){
uar1: buff1:=UserBuffer.create();

uar2: readFile1:=ReadFile.create(openFileStore,0,buff1,5,errorLog)

}
}

Appendix D Case Study 2 - OCB and Event-B Models, and Code 234

D.8 MonitorClass FileDirInfo Specification

MonitorClass FileDirInfo{
// Attributes.

Integer fileOffset, Integer id

// Constructor procedure.

Procedure create(Integer nameID){
fileOffset:=0 || id:=nameID

}

// Return file ID associated with this FileDirInfo.

Procedure getID(){
return:=id

}: Integer

}

D.9 MonitorClass DataObject Specification

MonitorClass DataObject{
// Attributes.

Integer type, FileDirInfo fileDirInfo, Integer[10] data,

Integer freeSpace

// Constructor procedure.

Procedure create(Integer typ,FileDirInfo fileDirInf){
type:=typ || fileDirInfo:=fileDirInf||freeSpace:=10

}

// Return FileDirInfo associated with this data object.

Procedure getFileDirInfo(){
when(fileDirInfo /= null){

return:=fileDirInfo }
}: FileDirInfo

// Return the byte at the specified offset.

Procedure read(Integer offset){
when(offset>=0 & offset < 10){

return:=data[offset] }
}: Integer

Appendix D Case Study 2 - OCB and Event-B Models, and Code 235

// Procedure called in clause wf14 - refines w step

// Write the value ‘val’ at the specified offset.

Procedure write(Integer val, Integer offset){
when(offset>=0 & offset < 10){
data[offset]:=val }

}

// Return this data object’s type.

Procedure getType(){
return:=type

}: Integer

// Reserve space to write a byte in this data object.

Procedure reserveSpace(){
return :=freeSpace||freeSpace:=freeSpace-1

}: Integer

// Free a previously reserved space in this data object.

Procedure unReserve(){
freeSpace:=freeSpace+1

}
}

D.10 MonitorClass OpenFileInfo Specification

MonitorClass OpenFileInfo{
// Attributes.

Integer accessMode, Integer shareMode, Integer fileOffset,

DataObject dataObject

// Constructor procedure.

Procedure create(Integer aMode, Integer sMode,

DataObject dataObj){
shareMode:=sMode || accessMode:=aMode || fileOffset:=0 ||

dataObject:=dataObj

}

// Return the current offset of the file associated with OpenFileInfo.

Appendix D Case Study 2 - OCB and Event-B Models, and Code 236

Procedure getOffset(){
return:=fileOffset

}: Integer

// Return the data object associated with OpenFileInfo.

Procedure getDataObject(){
when(dataObject /=null){

return:=dataObject }
}: DataObject

// Reset the offset of the file associated with OpenFileInfo.

Procedure resetOffset(){
fileOffset:=0

}

// Increment the current offset of the file associated with OpenFileInfo.

Procedure incOffset(){
fileOffset:=fileOffset+1

}

// Return the access mode of the file associated with OpenFileInfo.

Procedure getAccessMode(){
return:=accessMode

}: Integer

// Return the share mode of the file associated with OpenFileInfo.

Procedure getShareMode(){
return:=shareMode

}: Integer

}

D.11 MonitorClass DOStore Specification

MonitorClass DOStore{
// Attributes.

DataObject[5] doArray, Integer size, Integer capacity,

Integer freeSpace

// Constructor procedure.

Procedure create(){

Appendix D Case Study 2 - OCB and Event-B Models, and Code 237

size:=0 || capacity:=5 || freeSpace:=5

}

Procedure add(DataObject f){
when(size>=0 & size<capacity & capacity=5){
doArray[size]:=f || size:=size+1 }

}

Procedure getAtIndex(Integer indx){
when(indx>=0 & indx<size & doArray[indx] /= null){

return:=doArray[indx] }
}: DataObject

Procedure reserveSpace(){
return:=freeSpace || freeSpace:=freeSpace-1

}: Integer

Procedure unReserve(){
freeSpace:=freeSpace+1

}

Procedure getSize(){
return:=size

}: Integer

}

D.12 MonitorClass OpenFileStore Specification

MonitorClass OpenFileStore{
// Attributes.

OpenFileInfo[5] openArray, Integer size, Integer capacity,

Integer freeSpace

// Constructor procedure.

Procedure create(){
size:=0 || capacity:=5 || freeSpace:=5

}
// add the OpenFileInfo object to the OpenFileStore array.

Procedure add(OpenFileInfo f){

Appendix D Case Study 2 - OCB and Event-B Models, and Code 238

when(size>=0 & size<capacity & capacity = 5){
openArray[size]:=f || size:=size+1 }

}

// Return the OpenFileInfo object at the given array index.

Procedure getAtIndex(Integer indx){
when(indx>=0 & indx<size & openArray[indx] /= null){

return:=openArray[indx] }
}: OpenFileInfo

// Reserve space in the OpenFileStore for an OpenFileInfo Object.

Procedure reserveSpace(){
return:=freeSpace || freeSpace:=freeSpace-1

}: Integer

// Free up previously reserved space in the OpenFileStore.

Procedure unReserve(){
freeSpace:=freeSpace+1

}

// Return the number of OpenFileInfo objects in the OpenFileStore.

Procedure getSize(){
return:=size

}: Integer

}

D.13 MonitorClass UserBuffer Specification

MonitorClass UserBuffer{
// Attributes.

Integer[10] buffer, Integer capacity, Integer size

// Constructor Procedure.

Procedure create(){
capacity:=10 || size:=0

}

// Procedure called in clause rf13 - refines r step

// Add a value ‘val’ to the UserBuffer array.

Procedure add(Integer val){

Appendix D Case Study 2 - OCB and Event-B Models, and Code 239

when(size>=0 & size<capacity & capacity=10){
buffer[size]:=val ||size:=size+1 }

}

// Return the value at the given index.

Procedure get(Integer indx){
when(indx>=0 & indx<capacity & capacity=10){

return:=buffer[indx] }
}: Integer

}

D.14 MonitorClass ErrorLog Specification

MonitorClass ErrorLog{
// Attributes.

Integer[5] error, Integer size, Integer lastIndex

// Constructor Procedure.

Procedure create(){
size:=0 || lastIndex:=-1

}

// Add an error code to the ErrorLog.

Procedure add(Integer errorCode){
when(size>=0 & size<5){
error[size]:=errorCode || size:=size+1 || lastIndex:=size }

}

// Get the last error recorded.

Procedure getLast(){
return:=error[lastIndex]

}: Integer

// Remove the last error from the log.

Procedure removeLast(){
when(size>0 & size<=5){
error[lastIndex]:=0||size:=size-1||lastIndex:=lastIndex-1 }

}
}

Appendix D Case Study 2 - OCB and Event-B Models, and Code 240

D.15 The Flash File System Event-B Implementation Model

MACHINE

FFS2

SEES

FFS2_CTX

VARIABLES

FileDirInfo, FileDirInfo_fileOffset, FileDirInfo_id, DataObject,

DataObject_type, DataObject_fileDirInfo, DataObject_data,

DataObject_freeSpace, OpenFileInfo, OpenFileInfo_accessMode,

OpenFileInfo_shareMode, OpenFileInfo_fileOffset,

OpenFileInfo_dataObject, DOStore, DOStore_doArray, DOStore_size,

DOStore_capacity, DOStore_freeSpace, OpenFileStore,

OpenFileStore_openArray, OpenFileStore_size,

OpenFileStore_capacity, OpenFileStore_freeSpace, UserBuffer,

UserBuffer_buffer, UserBuffer_capacity, UserBuffer_size,

ErrorLog, ErrorLog_error, ErrorLog_size, ErrorLog_lastIndex,

CreateFile, CreateFile_state, CreateFile_newFile, CreateFile_doStore,

CreateFile_doSpace, CreateFile_openflSpace, CreateFile_openFileInfo,

CreateFile_openFileStore, CreateFile_id, CreateFile_fileDirInfo,

CreateFile_oMode, CreateFile_sMode, CreateFile_aMode, CreateFile_tmpObj,

CreateFile_tmpName, CreateFile_idFound, CreateFile_index,

CreateFile_errorLog, WriteFile, WriteFile_state, WriteFile_openFileStore,

WriteFile_buffer, WriteFile_id, WriteFile_tmpName, WriteFile_file

WriteFile_bytes, WriteFile_index, WriteFile_openFileCnt,

WriteFile_fileFound, WriteFile_fileDirInfo, WriteFile_data,

WriteFile_dataObject, WriteFile_offset, WriteFile_aMode,

WriteFile_errorLog, WriteFile_freeSpace, ReadFile, ReadFile_state

ReadFile_openFileStore, ReadFile_buffer, ReadFile_id,

ReadFile_tmpName, ReadFile_file, ReadFile_bytes, ReadFile_index,

ReadFile_openFileCnt, ReadFile_fileFound, ReadFile_fileDirInfo,

ReadFile_data, ReadFile_dataObject, ReadFile_offset,

ReadFile_aMode, ReadFile_errorLog, UserAppCreateFile,

UserAppCreateFile_state, UserAppCreateFile_createFile,

UserAppCreateFile_doStore, UserAppCreateFile_openFileStore,

UserAppCreateFile_errorLog, UserAppWriteFile,

UserAppWriteFile_state, UserAppWriteFile_openFileStore,

UserAppWriteFile_buff1, UserAppWriteFile_writeFile1,

UserAppWriteFile_data, UserAppWriteFile_errorLog,

Appendix D Case Study 2 - OCB and Event-B Models, and Code 241

UserAppReadFile, UserAppReadFile_state, UserAppReadFile_openFileStore,

UserAppReadFile_buff1, UserAppReadFile_readFile1,

UserAppReadFile_errorLog, FFS2, FFS2_doStore, FFS2_openFileStore,

FFS2_userAppCreateFile, FFS2_userAppWriteFile, FFS2_userAppReadFile

FFS2_errorLog, FFS2_state

INVARIANTS

FileDirInfo: FileDirInfo ∈ P(FileDirInfo_Set)
FileDirInfo_fileOffset: FileDirInfo_fileOffset ∈ FileDirInfo → Z
FileDirInfo_id: FileDirInfo_id ∈ FileDirInfo → Z
DataObject: DataObject ∈ P(DataObject_Set)
DataObject_type: DataObject_type ∈ DataObject → Z
DataObject_fileDirInfo: DataObject_fileDirInfo ∈

DataObject 7→ FileDirInfo

DataObject_data: DataObject_data ∈ DataObject → (0 .. 9 → Z)

DataObject_freeSpace: DataObject_freeSpace ∈ DataObject → Z
OpenFileInfo: OpenFileInfo ∈ P(OpenFileInfo_Set)
OpenFileInfo_accessMode: OpenFileInfo_accessMode ∈ OpenFileInfo → Z
OpenFileInfo_shareMode: OpenFileInfo_shareMode ∈ OpenFileInfo → Z
OpenFileInfo_fileOffset: OpenFileInfo_fileOffset ∈ OpenFileInfo → Z
OpenFileInfo_dataObject: OpenFileInfo_dataObject ∈

OpenFileInfo 7→ DataObject

DOStore: DOStore ∈ P(DOStore_Set)
DOStore_doArray: DOStore_doArray ∈ DOStore → (0 .. 4 7→ DataObject)

DOStore_size: DOStore_size ∈DOStore → Z
DOStore_capacity: DOStore_capacity ∈ DOStore → Z
DOStore_freeSpace: DOStore_freeSpace ∈ DOStore DOStore → Z
OpenFileStore: OpenFileStore ∈ P(OpenFileStore_Set)
OpenFileStore_openArray: OpenFileStore_openArray ∈

DOStore OpenFileStore → (0 .. 4 7→ OpenFileInfo)

OpenFileStore_size: OpenFileStore_size ∈ OpenFileStore → Z
OpenFileStore_capacity: OpenFileStore_capacity ∈ OpenFileStore → Z
OpenFileStore_freeSpace: OpenFileStore_freeSpace ∈ OpenFileStore → Z
UserBuffer: UserBuffer ∈ P(UserBuffer_Set)
UserBuffer_buffer: UserBuffer_buffer ∈ UserBuffer → (0 .. 9 → Z)
UserBuffer_capacity: UserBuffer_capacity ∈ UserBuffer → Z
UserBuffer_size: UserBuffer_size ∈ UserBuffer → Z
ErrorLog: ErrorLog ∈ P(ErrorLog_Set)
ErrorLog_error: ErrorLog_error ∈ ErrorLog → (0 .. 4 → Z)
ErrorLog_size: ErrorLog_size ∈ ErrorLog → Z
ErrorLog_lastIndex: ErrorLog_lastIndex ∈ ErrorLog → Z

Appendix D Case Study 2 - OCB and Event-B Models, and Code 242

CreateFile: CreateFile ∈ P(CreateFile_Set)
CreateFile_state: CreateFile_state ∈ CreateFile 7→ CreateFile_states

CreateFile_newFile: CreateFile_newFile ∈ CreateFile 7→ DataObject

CreateFile_doStore: CreateFile_doStore ∈ CreateFile 7→ DOStore

CreateFile_doSpace: CreateFile_doSpace ∈ CreateFile → Z
CreateFile_openflSpace: CreateFile_openflSpace ∈ CreateFile → Z
CreateFile_openFileInfo: CreateFile_openFileInfo ∈

CreateFile 7→ OpenFileInfo

CreateFile_openFileStore: CreateFile_openFileStore ∈
CreateFile 7→ OpenFileStore

CreateFile_id: CreateFile_id ∈ CreateFile → Z
CreateFile_fileDirInfo: CreateFile_fileDirInfo ∈

CreateFile 7→ FileDirInfo

CreateFile_oMode: CreateFile_oMode ∈ CreateFile → Z
CreateFile_sMode: CreateFile_sMode ∈ CreateFile → Z
CreateFile_aMode: CreateFile_aMode ∈ CreateFile → Z
CreateFile_tmpObj: CreateFile_tmpObj ∈ CreateFile 7→ DataObject

CreateFile_tmpName: CreateFile_tmpName ∈ CreateFile → Z
CreateFile_idFound: CreateFile_idFound ∈ CreateFile → BOOL

CreateFile_index: CreateFile_index ∈ CreateFile → Z
CreateFile_errorLog: CreateFile_errorLog ∈ CreateFile 7→ ErrorLog

WriteFile: WriteFile ∈ P(WriteFile_Set)
WriteFile_state: WriteFile_state ∈ WriteFile 7→ WriteFile_states

WriteFile_openFileStore: WriteFile_openFileStore ∈
WriteFile 7→ OpenFileStore

WriteFile_buffer: WriteFile_buffer ∈ WriteFile 7→ UserBuffer

WriteFile_id: WriteFile_id ∈ WriteFile → Z
WriteFile_tmpName: WriteFile_tmpName ∈ WriteFile → Z
WriteFile_file: WriteFile_file ∈ WriteFile 7→ OpenFileInfo

WriteFile_bytes: WriteFile_bytes ∈ WriteFile → Z
WriteFile_index: WriteFile_index ∈ WriteFile → Z
WriteFile_openFileCnt: WriteFile_openFileCnt ∈ WriteFile → Z
WriteFile_fileFound: WriteFile_fileFound ∈ WriteFile → BOOL

WriteFile_fileDirInfo: WriteFile_fileDirInfo ∈ WriteFile 7→ FileDirInfo

WriteFile_data: WriteFile_data ∈ WriteFile → Z
WriteFile_dataObject: WriteFile_dataObject ∈ WriteFile 7→ DataObject

WriteFile_offset: WriteFile_offset ∈ WriteFile → Z
WriteFile_aMode: WriteFile_aMode ∈ WriteFile → Z
WriteFile_errorLog: WriteFile_errorLog ∈ WriteFile 7→ ErrorLog

WriteFile_freeSpace: WriteFile_freeSpace ∈ WriteFile → Z
ReadFile: ReadFile ∈ P(ReadFile_Set)

Appendix D Case Study 2 - OCB and Event-B Models, and Code 243

ReadFile_state: ReadFile_state ∈ ReadFile 7→ ReadFile_states

ReadFile_openFileStore: ReadFile_openFileStore ∈
ReadFile 7→ OpenFileStore

ReadFile_buffer: ReadFile_buffer ∈ ReadFile 7→ UserBuffer

ReadFile_id: ReadFile_id ∈ ReadFile → Z
ReadFile_tmpName: ReadFile_tmpName ∈ ReadFile → Z
ReadFile_file: ReadFile_file ∈ ReadFile 7→ OpenFileInfo

ReadFile_bytes: ReadFile_bytes ∈ ReadFile → Z
ReadFile_index: ReadFile_index ∈ ReadFile → Z
ReadFile_openFileCnt: ReadFile_openFileCnt ∈ ReadFile → Z
ReadFile_fileFound: ReadFile_fileFound ∈ ReadFile → BOOL

ReadFile_fileDirInfo: ReadFile_fileDirInfo ∈ ReadFile 7→ FileDirInfo

ReadFile_data: ReadFile_data ∈ ReadFile → Z
ReadFile_dataObject: ReadFile_dataObject ∈ ReadFile 7→ DataObject

ReadFile_offset: ReadFile_offset ∈ ReadFile → Z
ReadFile_aMode: ReadFile_aMode ∈ ReadFile → Z
ReadFile_errorLog: ReadFile_errorLog ∈ ReadFile 7→ ErrorLog

UserAppCreateFile: UserAppCreateFile ∈ P(UserAppCreateFile_Set)
UserAppCreateFile_state: UserAppCreateFile_state ∈

UserAppCreateFile 7→ UserAppCreateFile_states

UserAppCreateFile_createFile: UserAppCreateFile_createFile ∈
UserAppCreateFile 7→ CreateFile

UserAppCreateFile_doStore: UserAppCreateFile_doStore ∈
UserAppCreateFile 7→ DOStore

UserAppCreateFile_openFileStore: UserAppCreateFile_openFileStore ∈
UserAppCreateFile 7→ OpenFileStore

UserAppCreateFile_errorLog: UserAppCreateFile_errorLog ∈
UserAppCreateFile 7→ ErrorLog

UserAppWriteFile: UserAppWriteFile ∈ P(UserAppWriteFile_Set)
UserAppWriteFile_state: UserAppWriteFile_state ∈

UserAppWriteFile 7→ UserAppWriteFile_states

UserAppWriteFile_openFileStore: UserAppWriteFile_openFileStore ∈
UserAppWriteFile 7→ OpenFileStore

UserAppWriteFile_buff1: UserAppWriteFile_buff1 ∈
UserAppWriteFile 7→ UserBuffer

UserAppWriteFile_writeFile1: UserAppWriteFile_writeFile1 ∈
UserAppWriteFile 7→ WriteFile

UserAppWriteFile_data: UserAppWriteFile_data ∈
UserAppWriteFile → Z

UserAppWriteFile_errorLog: UserAppWriteFile_errorLog ∈
UserAppWriteFile 7→ ErrorLog

Appendix D Case Study 2 - OCB and Event-B Models, and Code 244

UserAppReadFile: UserAppReadFile ∈ P(UserAppReadFile_Set)
UserAppReadFile_state: UserAppReadFile_state ∈

UserAppReadFile 7→ UserAppReadFile_states

UserAppReadFile_openFileStore: UserAppReadFile_openFileStore ∈
UserAppReadFile 7→ OpenFileStore

UserAppReadFile_buff1: UserAppReadFile_buff1 ∈
UserAppReadFile 7→ UserBuffer

UserAppReadFile_readFile1: UserAppReadFile_readFile1 ∈
UserAppReadFile 7→ ReadFile

UserAppReadFile_errorLog: UserAppReadFile_errorLog ∈
UserAppReadFile 7→ ErrorLog

fFS2: fFS2 ∈ FFS2_Set

FFS2: FFS2 ∈ P(FFS2_Set)

FFS2_doStore: FFS2_doStore ∈ FFS2 7→ DOStore

FFS2_openFileStore: FFS2_openFileStore ∈ FFS2 7→ OpenFileStore

FFS2_userAppCreateFile: FFS2_userAppCreateFile ∈
FFS2 7→ UserAppCreateFile

FFS2_userAppWriteFile: FFS2_userAppWriteFile ∈
FFS2 7→ UserAppWriteFile

FFS2_userAppReadFile: FFS2_userAppReadFile ∈
FFS2 7→ UserAppReadFile

FFS2_errorLog: FFS2_errorLog ∈ FFS2 7→ ErrorLog

FFS2_state: FFS2_state ∈ FFS2 7→ FFS2_states

EVENTS

INITIALISATION ,

WHICH IS

ordinary

BEGIN

FileDirInfo: FileDirInfo := ∅
FileDirInfo_fileOffset: FileDirInfo_fileOffset := ∅
FileDirInfo_id: FileDirInfo_id := ∅
DataObject: DataObject := ∅
DataObject_type: DataObject_type := ∅
DataObject_fileDirInfo: DataObject_fileDirInfo := ∅
DataObject_data: DataObject_data := ∅
DataObject_freeSpace: DataObject_freeSpace := ∅
OpenFileInfo: OpenFileInfo := ∅

Appendix D Case Study 2 - OCB and Event-B Models, and Code 245

OpenFileInfo_accessMode: OpenFileInfo_accessMode := ∅
OpenFileInfo_shareMode: OpenFileInfo_shareMode := ∅
OpenFileInfo_fileOffset: OpenFileInfo_fileOffset := ∅
OpenFileInfo_dataObject: OpenFileInfo_dataObject := ∅
DOStore: DOStore := ∅
DOStore_doArray: DOStore_doArray := ∅
DOStore_size: DOStore_size := ∅
DOStore_capacity: DOStore_capacity := ∅
DOStore_freeSpace: DOStore_freeSpace := ∅
OpenFileStore: OpenFileStore := ∅
OpenFileStore_openArray: OpenFileStore_openArray := ∅
OpenFileStore_size: OpenFileStore_size := ∅
OpenFileStore_capacity: OpenFileStore_capacity := ∅
OpenFileStore_freeSpace: OpenFileStore_freeSpace := ∅
UserBuffer: UserBuffer := ∅
UserBuffer_buffer: UserBuffer_buffer := ∅
UserBuffer_capacity: UserBuffer_capacity := ∅
UserBuffer_size: UserBuffer_size := ∅
ErrorLog: ErrorLog := ∅
ErrorLog_error: ErrorLog_error := ∅
ErrorLog_size: ErrorLog_size := ∅
ErrorLog_lastIndex: ErrorLog_lastIndex := ∅
CreateFile: CreateFile := ∅
CreateFile_state: CreateFile_state := ∅
CreateFile_newFile: CreateFile_newFile := ∅
CreateFile_doStore: CreateFile_doStore := ∅
CreateFile_doSpace: CreateFile_doSpace := ∅
CreateFile_openflSpace: CreateFile_openflSpace := ∅
CreateFile_openFileInfo: CreateFile_openFileInfo := ∅
CreateFile_openFileStore: CreateFile_openFileStore := ∅
CreateFile_id: CreateFile_id := ∅
CreateFile_fileDirInfo: CreateFile_fileDirInfo := ∅
CreateFile_oMode: CreateFile_oMode := ∅
CreateFile_sMode: CreateFile_sMode := ∅
CreateFile_aMode: CreateFile_aMode := ∅
CreateFile_tmpObj: CreateFile_tmpObj := ∅
CreateFile_tmpName: CreateFile_tmpName := ∅
CreateFile_idFound: CreateFile_idFound := ∅
CreateFile_index: CreateFile_index := ∅
CreateFile_errorLog: CreateFile_errorLog := ∅
WriteFile: WriteFile := ∅

Appendix D Case Study 2 - OCB and Event-B Models, and Code 246

WriteFile_state: WriteFile_state := ∅
WriteFile_openFileStore: WriteFile_openFileStore := ∅
WriteFile_buffer: WriteFile_buffer := ∅
WriteFile_id: WriteFile_id := ∅
WriteFile_tmpName: WriteFile_tmpName := ∅
WriteFile_file: WriteFile_file := ∅
WriteFile_bytes: WriteFile_bytes := ∅
WriteFile_index: WriteFile_index := ∅
WriteFile_openFileCnt: WriteFile_openFileCnt := ∅
WriteFile_fileFound: WriteFile_fileFound := ∅
WriteFile_fileDirInfo: WriteFile_fileDirInfo := ∅
WriteFile_data: WriteFile_data := ∅
WriteFile_dataObject: WriteFile_dataObject := ∅
WriteFile_offset: WriteFile_offset := ∅
WriteFile_aMode: WriteFile_aMode := ∅
WriteFile_errorLog: WriteFile_errorLog := ∅
WriteFile_freeSpace: WriteFile_freeSpace := ∅
ReadFile: ReadFile := ∅
ReadFile_state: ReadFile_state := ∅
ReadFile_openFileStore: ReadFile_openFileStore := ∅
ReadFile_buffer: ReadFile_buffer := ∅
ReadFile_id: ReadFile_id := ∅
ReadFile_tmpName: ReadFile_tmpName := ∅
ReadFile_file: ReadFile_file := ∅
ReadFile_bytes: ReadFile_bytes := ∅
ReadFile_index: ReadFile_index := ∅
ReadFile_openFileCnt: ReadFile_openFileCnt := ∅
ReadFile_fileFound: ReadFile_fileFound := ∅
ReadFile_fileDirInfo: ReadFile_fileDirInfo := ∅
ReadFile_data: ReadFile_data := ∅
ReadFile_dataObject: ReadFile_dataObject := ∅
ReadFile_offset: ReadFile_offset := ∅
ReadFile_aMode: ReadFile_aMode := ∅
ReadFile_errorLog: ReadFile_errorLog := ∅
UserAppCreateFile: UserAppCreateFile := ∅
UserAppCreateFile_state: UserAppCreateFile_state := ∅
UserAppCreateFile_createFile: UserAppCreateFile_createFile := ∅
UserAppCreateFile_doStore: UserAppCreateFile_doStore := ∅
UserAppCreateFile_openFileStore: UserAppCreateFile_openFileStore := ∅
UserAppCreateFile_errorLog: UserAppCreateFile_errorLog := ∅
UserAppWriteFile: UserAppWriteFile := ∅

Appendix D Case Study 2 - OCB and Event-B Models, and Code 247

UserAppWriteFile_state: UserAppWriteFile_state := ∅
UserAppWriteFile_openFileStore: UserAppWriteFile_openFileStore := ∅
UserAppWriteFile_buff1: UserAppWriteFile_buff1 := ∅
UserAppWriteFile_writeFile1: UserAppWriteFile_writeFile1 := ∅
UserAppWriteFile_data: UserAppWriteFile_data := ∅
UserAppWriteFile_errorLog: UserAppWriteFile_errorLog := ∅
UserAppReadFile: UserAppReadFile := ∅
UserAppReadFile_state: UserAppReadFile_state := ∅
UserAppReadFile_openFileStore: UserAppReadFile_openFileStore := ∅
UserAppReadFile_buff1: UserAppReadFile_buff1 := ∅
UserAppReadFile_readFile1: UserAppReadFile_readFile1 := ∅
UserAppReadFile_errorLog: UserAppReadFile_errorLog := ∅
FFS2: FFS2 := ∅
FFS2_doStore: FFS2_doStore := ∅
FFS2_openFileStore: FFS2_openFileStore := ∅
FFS2_userAppCreateFile: FFS2_userAppCreateFile := ∅
FFS2_userAppWriteFile: FFS2_userAppWriteFile := ∅
FFS2_userAppReadFile: FFS2_userAppReadFile := ∅
FFS2_errorLog: FFS2_errorLog := ∅
FFS2_state: FFS2_state := ∅

END

CreateFile_cf1 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label1: self ∈ CreateFile

label2: self ∈ dom(CreateFile_state)

label3: CreateFile_state(self) = cf1

label4: self ∈ dom(CreateFile_doStore)

label10: target = CreateFile_doStore(self)

THEN

label11: CreateFile_doSpace (self) := DOStore_size (target)

label12: CreateFile_state(self) := cf2

END

Appendix D Case Study 2 - OCB and Event-B Models, and Code 248

CreateFile_cf1_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label5: self ∈ CreateFile

label6: self ∈ dom(CreateFile_state)

label7: CreateFile_state(self) = cf1

label8: ¬(self ∈ dom(CreateFile_doStore))

THEN

label9: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_while_cf2 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label13: self ∈ CreateFile

label14: self ∈ dom(CreateFile_state)

label15: CreateFile_state(self) = cf2

label16: CreateFile_index(self) < CreateFile_doSpace(self) ∧
CreateFile_idFound(self) = FALSE

label17: self ∈ dom(CreateFile_doStore)

label24: target = CreateFile_doStore(self)

label26: target ∈dom(DOStore_doArray)

label27: CreateFile_index (self) ≥ 0

label28: CreateFile_index (self) < DOStore_size (target)

label29: CreateFile_index (self) ∈ dom(DOStore_doArray (target))

THEN

label25: CreateFile_tmpObj (self) :=

DOStore_doArray (target) (CreateFile_index (self))

label30: CreateFile_state(self) := cf3

END

CreateFile_while_cf2_isNull ,

WHICH IS

ordinary

Appendix D Case Study 2 - OCB and Event-B Models, and Code 249

ANY

self

WHERE

label18: self ∈ CreateFile

label19: self ∈ dom(CreateFile_state)

label20: CreateFile_state(self) = cf2

label21: CreateFile_index(self) < CreateFile_doSpace(self) ∧
CreateFile_idFound(self) = FALSE

label22: ¬(self ∈ dom(CreateFile_doStore))

THEN

label23: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf3 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label31: self ∈ CreateFile

label32: self ∈ dom(CreateFile_state)

label33: CreateFile_state(self) = cf3

label34: self ∈ dom(CreateFile_tmpObj)

label40: target = CreateFile_tmpObj(self)

label42: target ∈ dom(DataObject_fileDirInfo)

THEN

label41: CreateFile_fileDirInfo (self) :=

DataObject_fileDirInfo (target)

label43: CreateFile_state(self) := cf4

END

CreateFile_cf3_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label35: self ∈ CreateFile

label36: self ∈ dom(CreateFile_state)

label37: CreateFile_state(self) = cf3

Appendix D Case Study 2 - OCB and Event-B Models, and Code 250

label38: ¬(self ∈ dom(CreateFile_tmpObj))

THEN

label39: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf4 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label44: self ∈ CreateFile

label45: self ∈ dom(CreateFile_state)

label46: CreateFile_state(self) = cf4

label47: self ∈ dom(CreateFile_fileDirInfo)

label53: target = CreateFile_fileDirInfo(self)

THEN

label54: CreateFile_tmpName (self) := FileDirInfo_id (target)

label55: CreateFile_state(self) := cf5

END

CreateFile_cf4_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label48: self ∈ CreateFile

label49: self ∈ dom(CreateFile_state)

label50: CreateFile_state(self) = cf4

label51: ¬(self ∈ dom(CreateFile_fileDirInfo))

THEN

label52: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf5 ,

WHICH IS

ordinary

ANY

Appendix D Case Study 2 - OCB and Event-B Models, and Code 251

self

WHERE

label56: self ∈ CreateFile

label57: self ∈ dom(CreateFile_state)

label58: CreateFile_state(self) = cf5

label61: CreateFile_tmpName(self) = CreateFile_id(self)

THEN

label59: CreateFile_idFound (self) := TRUE

label60: CreateFile_state(self) := cf6

END

CreateFile_defaultElse_cf5 ,

WHICH IS

ordinary

ANY

self

WHERE

label62: self ∈ CreateFile

label63: self ∈ dom(CreateFile_state)

label64: CreateFile_state(self) = cf5

label65: ¬(CreateFile_tmpName(self) = CreateFile_id(self))

THEN

label66: CreateFile_state(self) := cf6

END

CreateFile_cf6 ,

WHICH IS

ordinary

ANY

self

WHERE

label67: self ∈ CreateFile

label68: self ∈ dom(CreateFile_state)

label69: CreateFile_state(self) = cf6

THEN

label70: CreateFile_index (self) := CreateFile_index (self) + 1

label71: CreateFile_state(self) := cf2

END

CreateFile_while_cf2_false ,

WHICH IS

Appendix D Case Study 2 - OCB and Event-B Models, and Code 252

ordinary

ANY

self

WHERE

label72: self ∈ CreateFile

label73: self ∈ dom(CreateFile_state)

label74: CreateFile_state(self) = cf2

label75: ¬(CreateFile_index(self) < CreateFile_doSpace(self) ∧
CreateFile_idFound(self) = FALSE)

THEN

label76: CreateFile_state(self) := cf7

END

CreateFile_cf7 ,

WHICH IS

ordinary

ANY

self

WHERE

label77: self ∈ CreateFile

label78: self ∈ dom(CreateFile_state)

label79: CreateFile_state(self) = cf7

label82: CreateFile_oMode(self) = 1

label83: CreateFile_idFound(self) = FALSE

THEN

label80: CreateFile_aMode (self) := 2

label81: CreateFile_state(self) := cf8

END

CreateFile_cf8 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label84: self ∈ CreateFile

label85: self ∈ dom(CreateFile_state)

label86: CreateFile_state(self) = cf8

label87: self ∈ dom(CreateFile_openFileStore)

Appendix D Case Study 2 - OCB and Event-B Models, and Code 253

label93: target = CreateFile_openFileStore(self)

THEN

label94: CreateFile_openflSpace (self) :=

OpenFileStore_freeSpace (target)

label95: OpenFileStore_freeSpace (target) :=

OpenFileStore_freeSpace (target) - 1

label96: CreateFile_state(self) := cf9

END

CreateFile_cf8_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label88: self ∈ CreateFile

label89: self ∈ dom(CreateFile_state)

label90: CreateFile_state(self) = cf8

label91: ¬(self ∈ dom(CreateFile_openFileStore))

THEN

label92: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf9 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label97: self ∈ CreateFile

label98: self ∈ dom(CreateFile_state)

label99: CreateFile_state(self) = cf9

label100: CreateFile_openflSpace(self) > 0

label101: self ∈ dom(CreateFile_doStore)

label108: target = CreateFile_doStore(self)

THEN

label109: CreateFile_doSpace (self) := DOStore_freeSpace (target)

label110: DOStore_freeSpace (target) :=

DOStore_freeSpace (target) - 1

Appendix D Case Study 2 - OCB and Event-B Models, and Code 254

label111: CreateFile_state(self) := cf10

END

CreateFile_cf9_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label102: self ∈ CreateFile

label103: self ∈ dom(CreateFile_state)

label104: CreateFile_state(self) = cf9

label105: CreateFile_openflSpace(self) > 0

label106: ¬(self ∈ dom(CreateFile_doStore))

THEN

label107: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf10 ,

WHICH IS

ordinary

ANY

self

new

WHERE

label112: self ∈ CreateFile

label113: self ∈ dom(CreateFile_state)

label114: new ∈ FileDirInfo_Set \ FileDirInfo

label115: CreateFile_state(self) = cf10

label121: CreateFile_doSpace(self) > 0

THEN

label116: FileDirInfo_fileOffset (new) := 0

label117: FileDirInfo_id (new) := CreateFile_id (self)

label118: FileDirInfo := FileDirInfo ∪ {new}
label119: CreateFile_fileDirInfo(self) := new

label120: CreateFile_state(self) := cf11

END

CreateFile_cf11 ,

WHICH IS

ordinary

Appendix D Case Study 2 - OCB and Event-B Models, and Code 255

ANY

self

new

WHERE

label122: self ∈ CreateFile

label123: self ∈ dom(CreateFile_state)

label124: new ∈ DataObject_Set \ DataObject

label125: CreateFile_state(self) = cf11

label127: self ∈ dom(CreateFile_fileDirInfo)

THEN

label126: DataObject_data(new):= λ i· i ∈ 0 .. 9|0

label128: DataObject_type (new) := 128

label129: DataObject_fileDirInfo (new) :=

CreateFile_fileDirInfo (self)

label130: DataObject_freeSpace (new) := 10

label131: DataObject := DataObject ∪ {new}
label132: CreateFile_newFile(self) := new

label133: CreateFile_state(self) := cf12

END

CreateFile_cf12 ,

WHICH IS

ordinary

ANY

self

new

WHERE

label134: self ∈ CreateFile

label135: self ∈ dom(CreateFile_state)

label136: new ∈ OpenFileInfo_Set \ OpenFileInfo

label137: CreateFile_state(self) = cf12

label138: self ∈ dom(CreateFile_newFile)

THEN

label139: OpenFileInfo_shareMode (new) := CreateFile_sMode (self)

label140: OpenFileInfo_accessMode (new) := CreateFile_aMode (self)

label141: OpenFileInfo_fileOffset (new) := 0

label142: OpenFileInfo_dataObject (new) := CreateFile_newFile (self)

label143: OpenFileInfo := OpenFileInfo ∪ {new}
label144: CreateFile_openFileInfo(self) := new

label145: CreateFile_state(self) := cf13

END

Appendix D Case Study 2 - OCB and Event-B Models, and Code 256

CreateFile_cf13 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label146: self ∈ CreateFile

label147: self ∈ dom(CreateFile_state)

label148: CreateFile_state(self) = cf13

label149: self ∈ dom(CreateFile_doStore)

label155: target = CreateFile_doStore(self)

label156: self ∈ dom(CreateFile_newFile)

label159: DOStore_size (target) ≥ 0

label160: DOStore_size (target) < DOStore_capacity (target)

label161: DOStore_capacity (target) = 5

THEN

label157: DOStore_doArray (target) :=

DOStore_doArray (target) C−
{ DOStore_size (target) 7→ CreateFile_newFile (self) }

label158: DOStore_size (target) := DOStore_size (target) + 1

label162: CreateFile_state(self) := cf14

END

CreateFile_cf13_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label150: self ∈ CreateFile

label151: self ∈ dom(CreateFile_state)

label152: CreateFile_state(self) = cf13

label153: ¬(self ∈ dom(CreateFile_doStore))

THEN

label154: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf14 ,

WHICH IS

Appendix D Case Study 2 - OCB and Event-B Models, and Code 257

ordinary

ANY

self

target

WHERE

label163: self ∈ CreateFile

label164: self ∈ dom(CreateFile_state)

label165: CreateFile_state(self) = cf14

label166: self ∈ dom(CreateFile_openFileStore)

label172: target = CreateFile_openFileStore(self)

label173: self ∈ dom(CreateFile_openFileInfo)

label176: OpenFileStore_size (target) ≥ 0

label177: OpenFileStore_size (target) <

OpenFileStore_capacity (target)

label178: OpenFileStore_capacity (target) = 5

THEN

label174: OpenFileStore_openArray (target) :=

OpenFileStore_openArray (target) C−
{ OpenFileStore_size (target) 7→ CreateFile_openFileInfo (self) }

label175: OpenFileStore_size (target) :=

OpenFileStore_size (target) + 1

label179: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf14_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label167: self ∈ CreateFile

label168: self ∈ dom(CreateFile_state)

label169: CreateFile_state(self) = cf14

label170: ¬(self ∈ dom(CreateFile_openFileStore))

THEN

label171: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf10_else ,

WHICH IS

ordinary

Appendix D Case Study 2 - OCB and Event-B Models, and Code 258

ANY

self

target

WHERE

label180: self ∈ CreateFile

label181: self ∈ dom(CreateFile_state)

label182: CreateFile_state(self) = cf10

label183: ¬(CreateFile_doSpace(self) > 0)

label184: self ∈ dom(CreateFile_openFileStore)

label191: target = CreateFile_openFileStore(self)

THEN

label192: OpenFileStore_freeSpace (target) :=

OpenFileStore_freeSpace (target) + 1

label193: CreateFile_state(self) := cf15

END

CreateFile_cf10_else_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label185: self ∈ CreateFile

label186: self ∈ dom(CreateFile_state)

label187: CreateFile_state(self) = cf10

label188: ¬(CreateFile_doSpace(self) > 0)

label189: ¬(self ∈ dom(CreateFile_openFileStore))

THEN

label190: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf15 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label194: self ∈ CreateFile

label195: self ∈ dom(CreateFile_state)

label196: CreateFile_state(self) = cf15

Appendix D Case Study 2 - OCB and Event-B Models, and Code 259

label197: self ∈ dom(CreateFile_doStore)

label203: target = CreateFile_doStore(self)

THEN

label204: DOStore_freeSpace (target) :=

DOStore_freeSpace (target) + 1

label205: CreateFile_state(self) := cf16

END

CreateFile_cf15_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label198: self ∈ CreateFile

label199: self ∈ dom(CreateFile_state)

label200: CreateFile_state(self) = cf15

label201: ¬(self ∈ dom(CreateFile_doStore))

THEN

label202: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf16 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label206: self ∈ CreateFile

label207: self ∈ dom(CreateFile_state)

label208: CreateFile_state(self) = cf16

label209: self ∈ dom(CreateFile_errorLog)

label215: target = CreateFile_errorLog(self)

label219: ErrorLog_size (target) ≥ 0

label220: ErrorLog_size (target) < 5

THEN

label216: ErrorLog_error (target) :=

ErrorLog_error (target) C−
{ ErrorLog_size (target) 7→ 6 }

label217: ErrorLog_size (target) := ErrorLog_size (target) + 1

Appendix D Case Study 2 - OCB and Event-B Models, and Code 260

label218: ErrorLog_lastIndex (target) := ErrorLog_size (target)

label221: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf16_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label210: self ∈ CreateFile

label211: self ∈ dom(CreateFile_state)

label212: CreateFile_state(self) = cf16

label213: ¬(self ∈ dom(CreateFile_errorLog))

THEN

label214: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf9_else ,

WHICH IS

ordinary

ANY

self

target

WHERE

label222: self ∈ CreateFile

label223: self ∈ dom(CreateFile_state)

label224: CreateFile_state(self) = cf9

label225: ¬(CreateFile_openflSpace(self) > 0)

label226: self ∈ dom(CreateFile_openFileStore)

label233: target = CreateFile_openFileStore(self)

THEN

label234: OpenFileStore_freeSpace (target) :=

OpenFileStore_freeSpace (target) + 1

label235: CreateFile_state(self) := cf17

END

CreateFile_cf9_else_isNull ,

WHICH IS

ordinary

ANY

Appendix D Case Study 2 - OCB and Event-B Models, and Code 261

self

WHERE

label227: self ∈ CreateFile

label228: self ∈ dom(CreateFile_state)

label229: CreateFile_state(self) = cf9

label230: ¬(CreateFile_openflSpace(self) > 0)

label231: ¬(self ∈ dom(CreateFile_openFileStore))

THEN

label232: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf17 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label236: self ∈ CreateFile

label237: self ∈ dom(CreateFile_state)

label238: CreateFile_state(self) = cf17

label239: self ∈ dom(CreateFile_errorLog)

label245: target = CreateFile_errorLog(self)

label249: ErrorLog_size (target) ≥ 0

label250: ErrorLog_size (target) < 5

THEN

label246: ErrorLog_error (target) :=

ErrorLog_error (target) C−
{ ErrorLog_size (target) 7→ 5 }

label247: ErrorLog_size (target) := ErrorLog_size (target) + 1

label248: ErrorLog_lastIndex (target) := ErrorLog_size (target)

label251: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf17_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label240: self ∈ CreateFile

Appendix D Case Study 2 - OCB and Event-B Models, and Code 262

label241: self ∈ dom(CreateFile_state)

label242: CreateFile_state(self) = cf17

label243: ¬(self ∈ dom(CreateFile_errorLog))

THEN

label244: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf7_elseif_0 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label252: self ∈ CreateFile

label253: self ∈ dom(CreateFile_state)

label254: CreateFile_state(self) = cf7

label255: ¬(CreateFile_oMode(self) = 1 ∧
CreateFile_idFound(self) = FALSE)

label256: CreateFile_oMode(self) 6= 1

label257: self ∈ dom(CreateFile_errorLog)

label265: target = CreateFile_errorLog(self)

label269: ErrorLog_size (target) ≥ 0

label270: ErrorLog_size (target) < 5

THEN

label266: ErrorLog_error (target) :=

ErrorLog_error (target) C−
{ ErrorLog_size (target) 7→ 3 }

label267: ErrorLog_size (target) := ErrorLog_size (target) + 1

label268: ErrorLog_lastIndex (target) := ErrorLog_size (target)

label271: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf7_elseif_0_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label258: self ∈ CreateFile

label259: self ∈ dom(CreateFile_state)

Appendix D Case Study 2 - OCB and Event-B Models, and Code 263

label260: CreateFile_state(self) = cf7

label261: ¬(CreateFile_oMode(self) = 1 ∧
CreateFile_idFound(self) = FALSE)

label262: CreateFile_oMode(self) 6= 1

label263: ¬(self ∈ dom(CreateFile_errorLog))

THEN

label264: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf7_elseif_1 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label272: self ∈ CreateFile

label273: self ∈ dom(CreateFile_state)

label274: CreateFile_state(self) = cf7

label275: ¬(CreateFile_oMode(self) = 1 ∧
CreateFile_idFound(self) = FALSE ∧
CreateFile_oMode(self) 6= 1)

label276: CreateFile_idFound(self) = TRUE

label277: self ∈ dom(CreateFile_errorLog)

label285: target = CreateFile_errorLog(self)

label289: ErrorLog_size (target) ≥ 0

label290: ErrorLog_size (target) < 5

THEN

label286: ErrorLog_error (target) :=

ErrorLog_error (target) C−
{ ErrorLog_size (target) 7→ 2 }

label287: ErrorLog_size (target) := ErrorLog_size (target) + 1

label288: ErrorLog_lastIndex (target) := ErrorLog_size (target)

label291: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_cf7_elseif_1_isNull ,

WHICH IS

ordinary

ANY

self

Appendix D Case Study 2 - OCB and Event-B Models, and Code 264

WHERE

label278: self ∈ CreateFile

label279: self ∈ dom(CreateFile_state)

label280: CreateFile_state(self) = cf7

label281: ¬(CreateFile_oMode(self) = 1 ∧
CreateFile_idFound(self) = FALSE ∧
CreateFile_oMode(self) 6= 1)

label282: CreateFile_idFound(self) = TRUE

label283: ¬(self ∈ dom(CreateFile_errorLog))

THEN

label284: CreateFile_state(self) := terminatedCreateFile

END

CreateFile_defaultElse_cf7 ,

WHICH IS

ordinary

ANY

self

WHERE

label292: self ∈ CreateFile

label293: self ∈ dom(CreateFile_state)

label294: CreateFile_state(self) = cf7

label295: ¬(CreateFile_oMode(self) = 1 ∧
CreateFile_idFound(self) = FALSE)

THEN

label299: CreateFile_state(self) := terminatedCreateFile

END

WriteFile_wf1 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label300: self ∈ WriteFile

label301: self ∈ dom(WriteFile_state)

label302: WriteFile_state(self) = wf1

label303: self ∈ dom(WriteFile_openFileStore)

label309: target = WriteFile_openFileStore(self)

THEN

Appendix D Case Study 2 - OCB and Event-B Models, and Code 265

label310: WriteFile_openFileCnt (self) := OpenFileStore_size (target)

label311: WriteFile_state(self) := wf2

END

WriteFile_wf1_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label304: self ∈ WriteFile

label305: self ∈ dom(WriteFile_state)

label306: WriteFile_state(self) = wf1

label307: ¬(self ∈ dom(WriteFile_openFileStore))

THEN

label308: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_while_wf2 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label312: self ∈ WriteFile

label313: self ∈ dom(WriteFile_state)

label314: WriteFile_state(self) = wf2

label315: WriteFile_index(self) < WriteFile_openFileCnt(self) ∧
WriteFile_fileFound(self) = FALSE

label316: self ∈ dom(WriteFile_openFileStore)

label323: target = WriteFile_openFileStore(self)

label325: target ∈ dom(OpenFileStore_openArray)

label326: WriteFile_index (self) ≥ 0

label327: WriteFile_index (self) < OpenFileStore_size (target)

label328: WriteFile_index (self) ∈
(OpenFileStore_openArray (target))

THEN

label324: WriteFile_file (self) :=

OpenFileStore_openArray (target) (WriteFile_index (self))

label329: WriteFile_state(self) := wf3

Appendix D Case Study 2 - OCB and Event-B Models, and Code 266

END

WriteFile_while_wf2_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label317: self ∈ WriteFile

label318: self ∈ dom(WriteFile_state)

label319: WriteFile_state(self) = wf2

label320: WriteFile_index(self) < WriteFile_openFileCnt(self) ∧ WriteFile_fileFound(self) = FALSE

label321: ¬(self ∈ dom(WriteFile_openFileStore))

THEN

label322: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf3 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label330: self ∈ WriteFile

label331: self ∈ dom(WriteFile_state)

label332: WriteFile_state(self) = wf3

label333: self ∈ dom(WriteFile_file)

label339: target = WriteFile_file(self)

label341: target ∈ dom(OpenFileInfo_dataObject)

THEN

label340: WriteFile_dataObject (self) :=

OpenFileInfo_dataObject (target)

label342: WriteFile_state(self) := wf4

END

WriteFile_wf3_isNull ,

WHICH IS

ordinary

ANY

self

Appendix D Case Study 2 - OCB and Event-B Models, and Code 267

WHERE

label334: self ∈ WriteFile

label335: self ∈ dom(WriteFile_state)

label336: WriteFile_state(self) = wf3

label337: ¬(self ∈ dom(WriteFile_file))

THEN

label338: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf4 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label343: self ∈ WriteFile

label344: self ∈ dom(WriteFile_state)

label345: WriteFile_state(self) = wf4

label346: self ∈ dom(WriteFile_dataObject)

label352: target = WriteFile_dataObject(self)

label354: target ∈ dom(DataObject_fileDirInfo)

THEN

label353: WriteFile_fileDirInfo (self) :=

DataObject_fileDirInfo (target)

label355: WriteFile_state(self) := wf5

END

WriteFile_wf4_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label347: self ∈ WriteFile

label348: self ∈ dom(WriteFile_state)

label349: WriteFile_state(self) = wf4

label350: ¬(self ∈ dom(WriteFile_dataObject))

THEN

label351: WriteFile_state(self) := terminatedWriteFile

END

Appendix D Case Study 2 - OCB and Event-B Models, and Code 268

WriteFile_wf5 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label356: self ∈ WriteFile

label357: self ∈ dom(WriteFile_state)

label358: WriteFile_state(self) = wf5

label359: self ∈ dom(WriteFile_fileDirInfo)

label365: target = WriteFile_fileDirInfo(self)

THEN

label366: WriteFile_tmpName (self) := FileDirInfo_id (target)

label367: WriteFile_state(self) := wf6

END

WriteFile_wf5_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label360: self ∈ WriteFile

label361: self ∈ dom(WriteFile_state)

label362: WriteFile_state(self) = wf5

label363: ¬(self ∈ dom(WriteFile_fileDirInfo))

THEN

label364: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf6 ,

WHICH IS

ordinary

ANY

self

WHERE

label368: self ∈ WriteFile

label369: self ∈ dom(WriteFile_state)

label370: WriteFile_state(self) = wf6

Appendix D Case Study 2 - OCB and Event-B Models, and Code 269

label373: WriteFile_tmpName(self) = WriteFile_id(self)

THEN

label371: WriteFile_fileFound (self) := TRUE

label372: WriteFile_state(self) := wf7

END

WriteFile_defaultElse_wf6 ,

WHICH IS

ordinary

ANY

self

WHERE

label374: self ∈ WriteFile

label375: self ∈ dom(WriteFile_state)

label376: WriteFile_state(self) = wf6

label377: ¬(WriteFile_tmpName(self) = WriteFile_id(self))

THEN

label378: WriteFile_state(self) := wf7

END

WriteFile_wf7 ,

WHICH IS

ordinary

ANY

self

WHERE

label379: self ∈ WriteFile

label380: self ∈ dom(WriteFile_state)

label381: WriteFile_state(self) = wf7

THEN

label382: WriteFile_index (self) := WriteFile_index (self) + 1

label383: WriteFile_state(self) := wf2

END

WriteFile_while_wf2_false ,

WHICH IS

ordinary

ANY

self

WHERE

label384: self ∈ WriteFile

Appendix D Case Study 2 - OCB and Event-B Models, and Code 270

label385: self ∈ dom(WriteFile_state)

label386: WriteFile_state(self) = wf2

label387: ¬(WriteFile_index(self) < WriteFile_openFileCnt(self) ∧
WriteFile_fileFound(self) = FALSE)

THEN

label388: WriteFile_state(self) := wf8

END

WriteFile_wf8 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label389: self ∈ WriteFile

label390: self ∈ dom(WriteFile_state)

label391: WriteFile_state(self) = wf8

label392: WriteFile_fileFound(self) = TRUE

label393: self ∈ dom(WriteFile_file)

label400: target = WriteFile_file(self)

THEN

label401: WriteFile_aMode (self) := OpenFileInfo_accessMode (target)

label402: WriteFile_state(self) := wf9

END

WriteFile_wf8_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label394: self ∈ WriteFile

label395: self ∈ dom(WriteFile_state)

label396: WriteFile_state(self) = wf8

label397: WriteFile_fileFound(self) = TRUE

label398: ¬(self ∈ dom(WriteFile_file))

THEN

label399: WriteFile_state(self) := terminatedWriteFile

END

Appendix D Case Study 2 - OCB and Event-B Models, and Code 271

WriteFile_wf9 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label403: self ∈ WriteFile

label404: self ∈ dom(WriteFile_state)

label405: WriteFile_state(self) = wf9

label406: WriteFile_aMode(self) = 1 ∨ WriteFile_aMode(self) = 2

label407: self ∈ dom(WriteFile_dataObject)

label414: target = WriteFile_dataObject(self)

THEN

label415: WriteFile_freeSpace (self) :=

DataObject_freeSpace (target)

label416: DataObject_freeSpace (target) :=

DataObject_freeSpace (target) - 1

label417: WriteFile_state(self) := wf10

END

WriteFile_wf9_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label408: self ∈ WriteFile

label409: self ∈ dom(WriteFile_state)

label410: WriteFile_state(self) = wf9

label411: WriteFile_aMode(self) = 1 ∨ WriteFile_aMode(self) = 2

label412: ¬(self ∈ dom(WriteFile_dataObject))

THEN

label413: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf10 ,

WHICH IS

ordinary

ANY

self

Appendix D Case Study 2 - OCB and Event-B Models, and Code 272

WHERE

label418: self ∈ WriteFile

label419: self ∈ dom(WriteFile_state)

label420: WriteFile_state(self) = wf10

label423: WriteFile_freeSpace(self) > 0

THEN

label421: WriteFile_index (self) := 0

label422: WriteFile_state(self) := wf11

END

WriteFile_wf11 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label424: self ∈ WriteFile

label425: self ∈ dom(WriteFile_state)

label426: WriteFile_state(self) = wf11

label427: self ∈ dom(WriteFile_file)

label433: target = WriteFile_file(self)

THEN

label434: OpenFileInfo_fileOffset (target) := 0

label435: WriteFile_state(self) := wf12

END

WriteFile_wf11_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label428: self ∈ WriteFile

label429: self ∈ dom(WriteFile_state)

label430: WriteFile_state(self) = wf11

label431: ¬(self ∈ dom(WriteFile_file))

THEN

label432: WriteFile_state(self) := terminatedWriteFile

END

Appendix D Case Study 2 - OCB and Event-B Models, and Code 273

WriteFile_while_wf12 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label436: self ∈ WriteFile

label437: self ∈ dom(WriteFile_state)

label438: WriteFile_state(self) = wf12

label439: WriteFile_index(self) < WriteFile_bytes(self)

label440: self ∈ dom(WriteFile_buffer)

label447: target = WriteFile_buffer(self)

label449: WriteFile_index (self) ≥ 0

label450: WriteFile_index (self) < UserBuffer_capacity (target)

label451: UserBuffer_capacity (target) = 10

THEN

label448: WriteFile_data (self) :=

UserBuffer_buffer (target) (WriteFile_index (self))

label452: WriteFile_state(self) := wf13

END

WriteFile_while_wf12_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label441: self ∈ WriteFile

label442: self ∈ dom(WriteFile_state)

label443: WriteFile_state(self) = wf12

label444: WriteFile_index(self) < WriteFile_bytes(self)

label445: ¬(self ∈ dom(WriteFile_buffer))

THEN

label446: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf13 ,

WHICH IS

ordinary

ANY

Appendix D Case Study 2 - OCB and Event-B Models, and Code 274

self

target

WHERE

label453: self ∈ WriteFile

label454: self ∈ dom(WriteFile_state)

label455: WriteFile_state(self) = wf13

label456: self ∈ dom(WriteFile_file)

label462: target = WriteFile_file(self)

THEN

label463: WriteFile_offset (self) := OpenFileInfo_fileOffset (target)

label464: WriteFile_state(self) := wf14

END

WriteFile_wf13_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label457: self ∈ WriteFile

label458: self ∈ dom(WriteFile_state)

label459: WriteFile_state(self) = wf13

label460: ¬(self ∈ dom(WriteFile_file))

THEN

label461: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf14 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label465: self ∈ WriteFile

label466: self ∈ dom(WriteFile_state)

label467: WriteFile_state(self) = wf14

label468: self ∈ dom(WriteFile_dataObject)

label474: target = WriteFile_dataObject(self)

label476: WriteFile_offset (self) ≥ 0

label477: WriteFile_offset (self) < 10

Appendix D Case Study 2 - OCB and Event-B Models, and Code 275

THEN

label475: DataObject_data (target) :=

DataObject_data (target) C−
{ WriteFile_offset (self) 7→ WriteFile_data (self) }

label478: WriteFile_state(self) := wf15

END

WriteFile_wf14_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label469: self ∈ WriteFile

label470: self ∈ dom(WriteFile_state)

label471: WriteFile_state(self) = wf14

label472: ¬(self ∈ dom(WriteFile_dataObject))

THEN

label473: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf15 ,

WHICH IS

ordinary

ANY

self

WHERE

label479: self ∈ WriteFile

label480: self ∈ dom(WriteFile_state)

label481: WriteFile_state(self) = wf15

THEN

label482: WriteFile_index (self) := WriteFile_index (self) + 1

label483: WriteFile_state(self) := wf16

END

WriteFile_wf16 ,

WHICH IS

ordinary

ANY

self

target

Appendix D Case Study 2 - OCB and Event-B Models, and Code 276

WHERE

label484: self ∈ WriteFile

label485: self ∈ dom(WriteFile_state)

label486: WriteFile_state(self) = wf16

label487: self ∈ dom(WriteFile_file)

label493: target = WriteFile_file(self)

THEN

label494: OpenFileInfo_fileOffset (target) :=

OpenFileInfo_fileOffset (target) + 1

label495: WriteFile_state(self) := wf12

END

WriteFile_wf16_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label488: self ∈ WriteFile

label489: self ∈ dom(WriteFile_state)

label490: WriteFile_state(self) = wf16

label491: ¬(self ∈ dom(WriteFile_file))

THEN

label492: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_while_wf12_false ,

WHICH IS

ordinary

ANY

self

WHERE

label496: self ∈ WriteFile

label497: self ∈ dom(WriteFile_state)

label498: WriteFile_state(self) = wf12

label499: ¬(WriteFile_index(self) < WriteFile_bytes(self))

THEN

label500: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf10_else ,

Appendix D Case Study 2 - OCB and Event-B Models, and Code 277

WHICH IS

ordinary

ANY

self

target

WHERE

label501: self ∈ WriteFile

label502: self ∈ dom(WriteFile_state)

label503: WriteFile_state(self) = wf10

label504: ¬(WriteFile_freeSpace(self) > 0)

label505: self ∈ dom(WriteFile_dataObject)

label512: target = WriteFile_dataObject(self)

THEN

label513: DataObject_freeSpace (target) :=

DataObject_freeSpace (target) + 1

label514: WriteFile_state(self) := wf17

END

WriteFile_wf10_else_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label506: self ∈ WriteFile

label507: self ∈ dom(WriteFile_state)

label508: WriteFile_state(self) = wf10

label509: ¬(WriteFile_freeSpace(self) > 0)

label510: ¬(self ∈ dom(WriteFile_dataObject))

THEN

label511: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf17 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label515: self ∈ WriteFile

Appendix D Case Study 2 - OCB and Event-B Models, and Code 278

label516: self ∈ dom(WriteFile_state)

label517: WriteFile_state(self) = wf17

label518: self ∈ dom(WriteFile_errorLog)

label524: target = WriteFile_errorLog(self)

label528: ErrorLog_size (target) ≥ 0

label529: ErrorLog_size (target) < 5

THEN

label525: ErrorLog_error (target) :=

ErrorLog_error (target) C−
{ ErrorLog_size (target) 7→ 7 }

label526: ErrorLog_size (target) := ErrorLog_size (target) + 1

label527: ErrorLog_lastIndex (target) := ErrorLog_size (target)

label530: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf17_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label519: self ∈ WriteFile

label520: self ∈ dom(WriteFile_state)

label521: WriteFile_state(self) = wf17

label522: ¬(self ∈ dom(WriteFile_errorLog))

THEN

label523: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf9_else ,

WHICH IS

ordinary

ANY

self

target

WHERE

label531: self ∈ WriteFile

label532: self ∈ dom(WriteFile_state)

label533: WriteFile_state(self) = wf9

label534: ¬(WriteFile_aMode(self) = 1 ∨ WriteFile_aMode(self) = 2)

label535: self ∈ dom(WriteFile_errorLog)

Appendix D Case Study 2 - OCB and Event-B Models, and Code 279

label542: target = WriteFile_errorLog(self)

label546: ErrorLog_size (target) ≥ 0

label547: ErrorLog_size (target) < 5

THEN

label543: ErrorLog_error (target) :=

ErrorLog_error (target) C−
{ ErrorLog_size (target) 7→ 4 }

label544: ErrorLog_size (target) := ErrorLog_size (target) + 1

label545: ErrorLog_lastIndex (target) := ErrorLog_size (target)

label548: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf9_else_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label536: self ∈ WriteFile

label537: self ∈ dom(WriteFile_state)

label538: WriteFile_state(self) = wf9

label539: ¬(WriteFile_aMode(self) = 1 ∨ WriteFile_aMode(self) = 2)

label540: ¬(self ∈ dom(WriteFile_errorLog))

THEN

label541: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf8_else ,

WHICH IS

ordinary

ANY

self

target

WHERE

label549: self ∈ WriteFile

label550: self ∈ dom(WriteFile_state)

label551: WriteFile_state(self) = wf8

label552: ¬(WriteFile_fileFound(self) = TRUE)

label553: self ∈ dom(WriteFile_errorLog)

label560: target = WriteFile_errorLog(self)

label564: ErrorLog_size (target) ≥ 0

Appendix D Case Study 2 - OCB and Event-B Models, and Code 280

label565: ErrorLog_size (target) < 5

THEN

label561: ErrorLog_error (target) :=

ErrorLog_error (target) C−
{ ErrorLog_size (target) 7→ 1 }

label562: ErrorLog_size (target) := ErrorLog_size (target) + 1

label563: ErrorLog_lastIndex (target) := ErrorLog_size (target)

label566: WriteFile_state(self) := terminatedWriteFile

END

WriteFile_wf8_else_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label554: self ∈ WriteFile

label555: self ∈ dom(WriteFile_state)

label556: WriteFile_state(self) = wf8

label557: ¬(WriteFile_fileFound(self) = TRUE)

label558: ¬(self ∈ dom(WriteFile_errorLog))

THEN

label559: WriteFile_state(self) := terminatedWriteFile

END

ReadFile_rf1 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label567: self ∈ ReadFile

label568: self ∈ dom(ReadFile_state)

label569: ReadFile_state(self) = rf1

label570: self ∈ dom(ReadFile_openFileStore)

label576: target = ReadFile_openFileStore(self)

THEN

label577: ReadFile_openFileCnt (self) := OpenFileStore_size (target)

label578: ReadFile_state(self) := rf2

END

Appendix D Case Study 2 - OCB and Event-B Models, and Code 281

ReadFile_rf1_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label571: self ∈ ReadFile

label572: self ∈ dom(ReadFile_state)

label573: ReadFile_state(self) = rf1

label574: ¬(self ∈ dom(ReadFile_openFileStore))

THEN

label575: ReadFile_state(self) := terminatedReadFile

END

ReadFile_while_rf2 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label579: self ∈ ReadFile

label580: self ∈ dom(ReadFile_state)

label581: ReadFile_state(self) = rf2

label582: ReadFile_index(self) < ReadFile_openFileCnt(self) ∧
ReadFile_fileFound(self) = FALSE

label583: self ∈ dom(ReadFile_openFileStore)

label590: target = ReadFile_openFileStore(self)

label592: target ∈ dom(OpenFileStore_openArray)

label593: ReadFile_index (self) ≥ 0

label594: ReadFile_index (self) < OpenFileStore_size (target)

label595: ReadFile_index (self) ∈
(OpenFileStore_openArray (target))

THEN

label591: ReadFile_file (self) :=

OpenFileStore_openArray (target) (ReadFile_index (self))

label596: ReadFile_state(self) := rf3

END

ReadFile_while_rf2_isNull ,

Appendix D Case Study 2 - OCB and Event-B Models, and Code 282

WHICH IS

ordinary

ANY

self

WHERE

label584: self ∈ ReadFile

label585: self ∈ dom(ReadFile_state)

label586: ReadFile_state(self) = rf2

label587: ReadFile_index(self) < ReadFile_openFileCnt(self) ∧
ReadFile_fileFound(self) = FALSE

label588: ¬(self ∈ dom(ReadFile_openFileStore))

THEN

label589: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf3 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label597: self ∈ ReadFile

label598: self ∈ dom(ReadFile_state)

label599: ReadFile_state(self) = rf3

label600: self ∈ dom(ReadFile_file)

label606: target = ReadFile_file(self)

label608: target ∈ dom(OpenFileInfo_dataObject)

THEN

label607: ReadFile_dataObject (self) :=

OpenFileInfo_dataObject (target)

label609: ReadFile_state(self) := rf4

END

ReadFile_rf3_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label601: self ∈ ReadFile

Appendix D Case Study 2 - OCB and Event-B Models, and Code 283

label602: self ∈ dom(ReadFile_state)

label603: ReadFile_state(self) = rf3

label604: ¬(self ∈ dom(ReadFile_file))

THEN

label605: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf4 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label610: self ∈ ReadFile

label611: self ∈ dom(ReadFile_state)

label612: ReadFile_state(self) = rf4

label613: self ∈ dom(ReadFile_dataObject)

label619: target = ReadFile_dataObject(self)

label621: target ∈ dom(DataObject_fileDirInfo)

THEN

label620: ReadFile_fileDirInfo (self) :=

DataObject_fileDirInfo (target)

label622: ReadFile_state(self) := rf5

END

ReadFile_rf4_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label614: self ∈ ReadFile

label615: self ∈ dom(ReadFile_state)

label616: ReadFile_state(self) = rf4

label617: ¬(self ∈ dom(ReadFile_dataObject))

THEN

label618: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf5 ,

Appendix D Case Study 2 - OCB and Event-B Models, and Code 284

WHICH IS

ordinary

ANY

self

target

WHERE

label623: self ∈ ReadFile

label624: self ∈ dom(ReadFile_state)

label625: ReadFile_state(self) = rf5

label626: self ∈ dom(ReadFile_fileDirInfo)

label632: target = ReadFile_fileDirInfo(self)

THEN

label633: ReadFile_tmpName (self) := FileDirInfo_id (target)

label634: ReadFile_state(self) := rf6

END

ReadFile_rf5_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label627: self ∈ ReadFile

label628: self ∈ dom(ReadFile_state)

label629: ReadFile_state(self) = rf5

label630: ¬(self ∈ dom(ReadFile_fileDirInfo))

THEN

label631: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf6 ,

WHICH IS

ordinary

ANY

self

WHERE

label635: self ∈ ReadFile

label636: self ∈ dom(ReadFile_state)

label637: ReadFile_state(self) = rf6

label640: ReadFile_tmpName(self) = ReadFile_id(self)

THEN

Appendix D Case Study 2 - OCB and Event-B Models, and Code 285

label638: ReadFile_fileFound (self) := TRUE

label639: ReadFile_state(self) := rf7

END

ReadFile_defaultElse_rf6 ,

WHICH IS

ordinary

ANY

self

WHERE

label641: self ∈ ReadFile

label642: self ∈ dom(ReadFile_state)

label643: ReadFile_state(self) = rf6

label644: ¬(ReadFile_tmpName(self) = ReadFile_id(self))

THEN

label645: ReadFile_state(self) := rf7

END

ReadFile_rf7 ,

WHICH IS

ordinary

ANY

self

WHERE

label646: self ∈ ReadFile

label647: self ∈ dom(ReadFile_state)

label648: ReadFile_state(self) = rf7

THEN

label649: ReadFile_index (self) := ReadFile_index (self) + 1

label650: ReadFile_state(self) := rf2

END

ReadFile_while_rf2_false ,

WHICH IS

ordinary

ANY

self

WHERE

label651: self ∈ ReadFile

label652: self ∈ dom(ReadFile_state)

label653: ReadFile_state(self) = rf2

Appendix D Case Study 2 - OCB and Event-B Models, and Code 286

label654: ¬(ReadFile_index(self) < ReadFile_openFileCnt(self) ∧
ReadFile_fileFound(self) = FALSE)

THEN

label655: ReadFile_state(self) := rf8

END

ReadFile_rf8 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label656: self ∈ ReadFile

label657: self ∈ dom(ReadFile_state)

label658: ReadFile_state(self) = rf8

label659: ReadFile_fileFound(self) = TRUE

label660: self ∈ dom(ReadFile_file)

label667: target = ReadFile_file(self)

THEN

label668: ReadFile_aMode (self) := OpenFileInfo_accessMode (target)

label669: ReadFile_state(self) := rf9

END

ReadFile_rf8_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label661: self ∈ ReadFile

label662: self ∈ dom(ReadFile_state)

label663: ReadFile_state(self) = rf8

label664: ReadFile_fileFound(self) = TRUE

label665: ¬(self ∈ dom(ReadFile_file))

THEN

label666: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf9 ,

WHICH IS

Appendix D Case Study 2 - OCB and Event-B Models, and Code 287

ordinary

ANY

self

WHERE

label670: self ∈ ReadFile

label671: self ∈ dom(ReadFile_state)

label672: ReadFile_state(self) = rf9

label675: ReadFile_aMode(self) = 0 ∨ ReadFile_aMode(self) = 2

THEN

label673: ReadFile_index (self) := 0

label674: ReadFile_state(self) := rf10

END

ReadFile_rf10 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label676: self ∈ ReadFile

label677: self ∈ dom(ReadFile_state)

label678: ReadFile_state(self) = rf10

label679: self ∈ dom(ReadFile_file)

label685: target = ReadFile_file(self)

THEN

label686: OpenFileInfo_fileOffset (target) := 0

label687: ReadFile_state(self) := rf11

END

ReadFile_rf10_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label680: self ∈ ReadFile

label681: self ∈ dom(ReadFile_state)

label682: ReadFile_state(self) = rf10

label683: ¬(self ∈ dom(ReadFile_file))

THEN

Appendix D Case Study 2 - OCB and Event-B Models, and Code 288

label684: ReadFile_state(self) := terminatedReadFile

END

ReadFile_while_rf11 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label688: self ∈ ReadFile

label689: self ∈ dom(ReadFile_state)

label690: ReadFile_state(self) = rf11

label691: ReadFile_index(self) < ReadFile_bytes(self)

label692: self ∈ dom(ReadFile_file)

label699: target = ReadFile_file(self)

THEN

label700: ReadFile_offset (self) := OpenFileInfo_fileOffset (target)

label701: ReadFile_state(self) := rf12

END

ReadFile_while_rf11_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label693: self ∈ ReadFile

label694: self ∈ dom(ReadFile_state)

label695: ReadFile_state(self) = rf11

label696: ReadFile_index(self) < ReadFile_bytes(self)

label697: ¬(self ∈ dom(ReadFile_file))

THEN

label698: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf12 ,

WHICH IS

ordinary

ANY

self

Appendix D Case Study 2 - OCB and Event-B Models, and Code 289

target

WHERE

label702: self ∈ ReadFile

label703: self ∈ dom(ReadFile_state)

label704: ReadFile_state(self) = rf12

label705: self ∈ dom(ReadFile_dataObject)

label711: target = ReadFile_dataObject(self)

label713: ReadFile_offset (self) ≥ 0

label714: ReadFile_offset (self) < 10

THEN

label712: ReadFile_data (self) :=

DataObject_data (target) (ReadFile_offset (self))

label715: ReadFile_state(self) := rf13

END

ReadFile_rf12_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label706: self ∈ ReadFile

label707: self ∈ dom(ReadFile_state)

label708: ReadFile_state(self) = rf12

label709: ¬(self ∈ dom(ReadFile_dataObject))

THEN

label710: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf13 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label716: self ∈ ReadFile

label717: self ∈ dom(ReadFile_state)

label718: ReadFile_state(self) = rf13

label719: self ∈ dom(ReadFile_buffer)

label725: target = ReadFile_buffer(self)

Appendix D Case Study 2 - OCB and Event-B Models, and Code 290

label728: UserBuffer_size (target) ≥ 0

label729: UserBuffer_size (target) < UserBuffer_capacity (target)

label730: UserBuffer_capacity (target) = 10

THEN

label726: UserBuffer_buffer (target) :=

UserBuffer_buffer (target) C−
{ UserBuffer_size (target) 7→ ReadFile_data (self) }

label727: UserBuffer_size (target) := UserBuffer_size (target) + 1

label731: ReadFile_state(self) := rf14

END

ReadFile_rf13_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label720: self ∈ ReadFile

label721: self ∈ dom(ReadFile_state)

label722: ReadFile_state(self) = rf13

label723: ¬(self ∈ dom(ReadFile_buffer))

THEN

label724: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf14 ,

WHICH IS

ordinary

ANY

self

WHERE

label732: self ∈ ReadFile

label733: self ∈ dom(ReadFile_state)

label734: ReadFile_state(self) = rf14

THEN

label735: ReadFile_index (self) := ReadFile_index (self) + 1

label736: ReadFile_state(self) := rf15

END

ReadFile_rf15 ,

WHICH IS

Appendix D Case Study 2 - OCB and Event-B Models, and Code 291

ordinary

ANY

self

target

WHERE

label737: self ∈ ReadFile

label738: self ∈ dom(ReadFile_state)

label739: ReadFile_state(self) = rf15

label740: self ∈ dom(ReadFile_file)

label746: target = ReadFile_file(self)

THEN

label747: OpenFileInfo_fileOffset (target) :=

OpenFileInfo_fileOffset (target) + 1

label748: ReadFile_state(self) := rf11

END

ReadFile_rf15_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label741: self ∈ ReadFile

label742: self ∈ dom(ReadFile_state)

label743: ReadFile_state(self) = rf15

label744: ¬(self ∈ dom(ReadFile_file))

THEN

label745: ReadFile_state(self) := terminatedReadFile

END

ReadFile_while_rf11_false ,

WHICH IS

ordinary

ANY

self

WHERE

label749: self ∈ ReadFile

label750: self ∈ dom(ReadFile_state)

label751: ReadFile_state(self) = rf11

label752: ¬(ReadFile_index(self) < ReadFile_bytes(self))

THEN

Appendix D Case Study 2 - OCB and Event-B Models, and Code 292

label753: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf9_else ,

WHICH IS

ordinary

ANY

self

target

WHERE

label754: self ∈ ReadFile

label755: self ∈ dom(ReadFile_state)

label756: ReadFile_state(self) = rf9

label757: ¬(ReadFile_aMode(self) = 0 ∨ ReadFile_aMode(self) = 2)

label758: self ∈ dom(ReadFile_errorLog)

label765: target = ReadFile_errorLog(self)

label769: ErrorLog_size (target) ≥ 0

label770: ErrorLog_size (target) < 5

THEN

label766: ErrorLog_error (target) :=

ErrorLog_error (target) C−
{ ErrorLog_size (target) 7→ 4 }

label767: ErrorLog_size (target) := ErrorLog_size (target) + 1

label768: ErrorLog_lastIndex (target) := ErrorLog_size (target)

label771: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf9_else_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label759: self ∈ ReadFile

label760: self ∈ dom(ReadFile_state)

label761: ReadFile_state(self) = rf9

label762: ¬(ReadFile_aMode(self) = 0 ∨ ReadFile_aMode(self) = 2)

label763: ¬(self ∈ dom(ReadFile_errorLog))

THEN

label764: ReadFile_state(self) := terminatedReadFile

END

Appendix D Case Study 2 - OCB and Event-B Models, and Code 293

ReadFile_rf8_else ,

WHICH IS

ordinary

ANY

self

target

WHERE

label772: self ∈ ReadFile

label773: self ∈ dom(ReadFile_state)

label774: ReadFile_state(self) = rf8

label775: ¬(ReadFile_fileFound(self) = TRUE)

label776: self ∈ dom(ReadFile_errorLog)

label783: target = ReadFile_errorLog(self)

label787: ErrorLog_size (target) ≥ 0

label788: ErrorLog_size (target) < 5

THEN

label784: ErrorLog_error (target) :=

ErrorLog_error (target) C−
{ ErrorLog_size (target) 7→ 1 }

label785: ErrorLog_size (target) := ErrorLog_size (target) + 1

label786: ErrorLog_lastIndex (target) := ErrorLog_size (target)

label789: ReadFile_state(self) := terminatedReadFile

END

ReadFile_rf8_else_isNull ,

WHICH IS

ordinary

ANY

self

WHERE

label777: self ∈ ReadFile

label778: self ∈ dom(ReadFile_state)

label779: ReadFile_state(self) = rf8

label780: ¬(ReadFile_fileFound(self) = TRUE)

label781: ¬(self ∈ dom(ReadFile_errorLog))

THEN

label782: ReadFile_state(self) := terminatedReadFile

END

UserAppCreateFile_ua1 ,

Appendix D Case Study 2 - OCB and Event-B Models, and Code 294

WHICH IS

ordinary

ANY

self

new

WHERE

label790: self ∈ UserAppCreateFile

label791: self ∈ dom(UserAppCreateFile_state)

label792: new ∈ CreateFile_Set \ CreateFile

label793: UserAppCreateFile_state(self) = ua1

label794: self ∈ dom(UserAppCreateFile_doStore)

label795: self ∈ dom(UserAppCreateFile_openFileStore)

label796: self ∈ dom(UserAppCreateFile_errorLog)

THEN

label797: CreateFile_doSpace (new) := - 1

label798: CreateFile_openflSpace (new) := - 1

label799: CreateFile_doStore (new) :=

UserAppCreateFile_doStore (self)

label800: CreateFile_openFileStore (new) :=

UserAppCreateFile_openFileStore (self)

label801: CreateFile_id (new) := 0

label802: CreateFile_oMode (new) := 1

label803: CreateFile_sMode (new) := 0

label804: CreateFile_aMode (new) := - 1

label805: CreateFile_tmpName (new) := - 1

label806: CreateFile_idFound (new) := FALSE

label807: CreateFile_index (new) := 0

label808: CreateFile_errorLog (new) :=

UserAppCreateFile_errorLog (self)

label809: CreateFile_state(new):=cf1

label810: CreateFile := CreateFile ∪ {new}
label811: UserAppCreateFile_createFile(self) := new

label812: UserAppCreateFile_state(self) := terminatedUserAppCreateFile

END

UserAppWriteFile_uaw1 ,

WHICH IS

ordinary

ANY

self

new

Appendix D Case Study 2 - OCB and Event-B Models, and Code 295

WHERE

label813: self ∈ UserAppWriteFile

label814: self ∈ dom(UserAppWriteFile_state)

label815: new ∈ UserBuffer_Set \ UserBuffer

label816: UserAppWriteFile_state(self) = uaw1

THEN

label817: UserBuffer_buffer(new):= λ i· i ∈ 0 .. 9|0

label818: UserBuffer_capacity (new) := 10

label819: UserBuffer_size (new) := 0

label820: UserBuffer := UserBuffer ∪ {new}
label821: UserAppWriteFile_buff1(self) := new

label822: UserAppWriteFile_state(self) := uaw2

END

UserAppWriteFile_while_uaw2 ,

WHICH IS

ordinary

ANY

self

target

WHERE

label823: self ∈ UserAppWriteFile

label824: self ∈ dom(UserAppWriteFile_state)

label825: UserAppWriteFile_state(self) = uaw2

label826: UserAppWriteFile_data(self) < 70

label827: self ∈ dom(UserAppWriteFile_buff1)

label834: target = UserAppWriteFile_buff1(self)

label837: UserBuffer_size (target) ≥ 0

label838: UserBuffer_size (target) < UserBuffer_capacity (target)

label839: UserBuffer_capacity (target) = 10

THEN

label835: UserBuffer_buffer (target) :=

UserBuffer_buffer (target) C−
{ UserBuffer_size (target) 7→ UserAppWriteFile_data (self) }

label836: UserBuffer_size (target) := UserBuffer_size (target) + 1

label840: UserAppWriteFile_state(self) := uaw3

END

UserAppWriteFile_while_uaw2_isNull ,

WHICH IS

ordinary

Appendix D Case Study 2 - OCB and Event-B Models, and Code 296

ANY

self

WHERE

label828: self ∈ UserAppWriteFile

label829: self ∈ dom(UserAppWriteFile_state)

label830: UserAppWriteFile_state(self) = uaw2

label831: UserAppWriteFile_data(self) < 70

label832: ¬(self ∈ dom(UserAppWriteFile_buff1))

THEN

label833: UserAppWriteFile_state(self) := terminatedUserAppWriteFile

END

UserAppWriteFile_uaw3 ,

WHICH IS

ordinary

ANY

self

WHERE

label841: self ∈ UserAppWriteFile

label842: self ∈ dom(UserAppWriteFile_state)

label843: UserAppWriteFile_state(self) = uaw3

THEN

label844: UserAppWriteFile_data (self) :=

UserAppWriteFile_data (self) + 1

label845: UserAppWriteFile_state(self) := uaw2

END

UserAppWriteFile_while_uaw2_false ,

WHICH IS

ordinary

ANY

self

WHERE

label846: self ∈ UserAppWriteFile

label847: self ∈ dom(UserAppWriteFile_state)

label848: UserAppWriteFile_state(self) = uaw2

label849: ¬(UserAppWriteFile_data(self) < 70)

THEN

label850: UserAppWriteFile_state(self) := uaw4

END

Appendix D Case Study 2 - OCB and Event-B Models, and Code 297

UserAppWriteFile_uaw4 ,

WHICH IS

ordinary

ANY

self

new

WHERE

label851: self ∈ UserAppWriteFile

label852: self ∈ dom(UserAppWriteFile_state)

label853: new ∈ WriteFile_Set \ WriteFile

label854: UserAppWriteFile_state(self) = uaw4

label855: self ∈ dom(UserAppWriteFile_openFileStore)

label856: self ∈ dom(UserAppWriteFile_buff1)

label857: self ∈ dom(UserAppWriteFile_errorLog)

THEN

label858: WriteFile_openFileStore (new) :=

UserAppWriteFile_openFileStore (self)

label859: WriteFile_id (new) := 0

label860: WriteFile_buffer (new) := UserAppWriteFile_buff1 (self)

label861: WriteFile_bytes (new) := 5

label862: WriteFile_index (new) := 0

label863: WriteFile_openFileCnt (new) := 0

label864: WriteFile_fileFound (new) := FALSE

label865: WriteFile_tmpName (new) := - 1

label866: WriteFile_data (new) := - 1

label867: WriteFile_offset (new) := 0

label868: WriteFile_aMode (new) := - 1

label869: WriteFile_errorLog (new) :=

UserAppWriteFile_errorLog (self)

label870: WriteFile_freeSpace (new) := 0

label871: WriteFile_state(new):=wf1

label872: WriteFile := WriteFile ∪ {new}
label873: UserAppWriteFile_writeFile1(self) := new

label874: UserAppWriteFile_state(self) := terminatedUserAppWriteFile

END

UserAppReadFile_uar1 ,

WHICH IS

ordinary

ANY

self

new

Appendix D Case Study 2 - OCB and Event-B Models, and Code 298

WHERE

label875: self ∈ UserAppReadFile

label876: self ∈ dom(UserAppReadFile_state)

label877: new ∈ UserBuffer_Set \ UserBuffer

label878: UserAppReadFile_state(self) = uar1

THEN

label879: UserBuffer_buffer(new):= λ i· i ∈ 0 .. 9|0

label880: UserBuffer_capacity (new) := 10

label881: UserBuffer_size (new) := 0

label882: UserBuffer := UserBuffer ∪ {new}
label883: UserAppReadFile_buff1(self) := new

label884: UserAppReadFile_state(self) := uar2

END

UserAppReadFile_uar2 ,

WHICH IS

ordinary

ANY

self

new

WHERE

label885: self ∈ UserAppReadFile

label886: self ∈ dom(UserAppReadFile_state)

label887: new ∈ ReadFile_Set \ ReadFile

label888: UserAppReadFile_state(self) = uar2

label889: self ∈ dom(UserAppReadFile_openFileStore)

label890: self ∈ dom(UserAppReadFile_buff1)

label891: self ∈ dom(UserAppReadFile_errorLog)

THEN

label892: ReadFile_openFileStore (new) :=

UserAppReadFile_openFileStore (self)

label893: ReadFile_id (new) := 0

label894: ReadFile_buffer (new) := UserAppReadFile_buff1 (self)

label895: ReadFile_bytes (new) := 5

label896: ReadFile_index (new) := 0

label897: ReadFile_openFileCnt (new) := 0

label898: ReadFile_fileFound (new) := FALSE

label899: ReadFile_tmpName (new) := - 1

label900: ReadFile_data (new) := - 1

label901: ReadFile_offset (new) := 0

label902: ReadFile_aMode (new) := - 1

Appendix D Case Study 2 - OCB and Event-B Models, and Code 299

label903: ReadFile_errorLog (new) := UserAppReadFile_errorLog (self)

label904: ReadFile_state(new):=rf1

label905: ReadFile := ReadFile ∪ {new}
label906: UserAppReadFile_readFile1(self) := new

label907: UserAppReadFile_state(self) := terminatedUserAppReadFile

END

loadFFS2 ,

WHICH IS

ordinary

ANY

self

WHERE

self: self ∈ FFS2_Set \ FFS2

THEN

label908: FFS2 := FFS2 ∪ {self}
label909: FFS2_state(self) := s1

END

FFS2_s1 ,

WHICH IS

ordinary

ANY

self

new

WHERE

label910: self ∈ FFS2

label911: self ∈ dom(FFS2_state)

label912: new ∈ DOStore_Set \ DOStore

label913: FFS2_state(self) = s1

THEN

label914: DOStore_doArray(new) := ∅
label915: DOStore_size (new) := 0

label916: DOStore_capacity (new) := 5

label917: DOStore_freeSpace (new) := 5

label918: DOStore := DOStore ∪ {new}
label919: FFS2_doStore(self) := new

label920: FFS2_state(self) := s2

END

FFS2_s2 ,

Appendix D Case Study 2 - OCB and Event-B Models, and Code 300

WHICH IS

ordinary

ANY

self

new

WHERE

label921: self ∈ FFS2

label922: self ∈ dom(FFS2_state)

label923: new ∈ OpenFileStore_Set \ OpenFileStore

label924: FFS2_state(self) = s2

THEN

label925: OpenFileStore_openArray(new) := ∅
label926: OpenFileStore_size (new) := 0

label927: OpenFileStore_capacity (new) := 5

label928: OpenFileStore_freeSpace (new) := 5

label929: OpenFileStore := OpenFileStore ∪ {new}
label930: FFS2_openFileStore(self) := new

label931: FFS2_state(self) := s3

END

FFS2_s3 ,

WHICH IS

ordinary

ANY

self

new

WHERE

label932: self ∈ FFS2

label933: self ∈ dom(FFS2_state)

label934: new ∈ ErrorLog_Set \ ErrorLog

label935: FFS2_state(self) = s3

THEN

label936: ErrorLog_error(new):= λ i· i ∈ 0 .. 4|0

label937: ErrorLog_size (new) := 0

label938: ErrorLog_lastIndex (new) := - 1

label939: ErrorLog := ErrorLog ∪ {new}
label940: FFS2_errorLog(self) := new

label941: FFS2_state(self) := s4

END

FFS2_s4 ,

Appendix D Case Study 2 - OCB and Event-B Models, and Code 301

WHICH IS

ordinary

ANY

self

new

WHERE

label942: self ∈ FFS2

label943: self ∈ dom(FFS2_state)

label944: new ∈ UserAppCreateFile_Set \ UserAppCreateFile

label945: FFS2_state(self) = s4

label946: self ∈ dom(FFS2_doStore)

label947: self ∈ dom(FFS2_openFileStore)

label948: self ∈ dom(FFS2_errorLog)

THEN

label949: UserAppCreateFile_doStore (new) := FFS2_doStore (self)

label950: UserAppCreateFile_openFileStore (new) :=

FFS2_openFileStore (self)

label951: UserAppCreateFile_errorLog (new) := FFS2_errorLog (self)

label952: UserAppCreateFile_state(new):=ua1

label953: UserAppCreateFile := UserAppCreateFile ∪ {new}
label954: FFS2_userAppCreateFile(self) := new

label955: FFS2_state(self) := s5

END

FFS2_s5 ,

WHICH IS

ordinary

ANY

self

new

WHERE

label956: self ∈ FFS2

label957: self ∈ dom(FFS2_state)

label958: new ∈ UserAppWriteFile_Set \ UserAppWriteFile

label959: FFS2_state(self) = s5

label960: self ∈ dom(FFS2_openFileStore)

label961: self ∈ dom(FFS2_errorLog)

THEN

label962: UserAppWriteFile_openFileStore (new) :=

FFS2_openFileStore (self)

label963: UserAppWriteFile_data (new) := 65

Appendix D Case Study 2 - OCB and Event-B Models, and Code 302

label964: UserAppWriteFile_errorLog (new) := FFS2_errorLog (self)

label965: UserAppWriteFile_state(new):=uaw1

label966: UserAppWriteFile := UserAppWriteFile ∪ {new}
label967: FFS2_userAppWriteFile(self) := new

label968: FFS2_state(self) := s6

END

FFS2_s6 ,

WHICH IS

ordinary

ANY

self

new

WHERE

label969: self ∈ FFS2

label970: self ∈ dom(FFS2_state)

label971: new ∈ UserAppReadFile_Set \ UserAppReadFile

label972: FFS2_state(self) = s6

label973: self ∈ dom(FFS2_openFileStore)

label974: self ∈ dom(FFS2_errorLog)

THEN

label975: UserAppReadFile_openFileStore (new) :=

FFS2_openFileStore (self)

label976: UserAppReadFile_errorLog (new) := FFS2_errorLog (self)

label977: UserAppReadFile_state(new):=uar1

label978: UserAppReadFile := UserAppReadFile ∪ {new}
label979: FFS2_userAppReadFile(self) := new

label980: FFS2_state(self) := terminatedFFS2

END

END

D.16 The MainClass Java Code

public class FFS2 {

private static DOStore doStore = null;

private static OpenFileStore openFileStore = null;

private static UserAppCreateFile userAppCreateFile = null;

private static UserAppWriteFile userAppWriteFile = null;

private static UserAppReadFile userAppReadFile = null;

Appendix D Case Study 2 - OCB and Event-B Models, and Code 303

private static ErrorLog errorLog = null;

public static void main(String[] args) {
doStore = new DOStore(); /* s1 */

openFileStore = new OpenFileStore(); /* s2 */

errorLog = new ErrorLog(); /* s3 */

userAppCreateFile =

new UserAppCreateFile(doStore, openFileStore, errorLog);

new Thread(userAppCreateFile).start(); /* s4 */

userAppWriteFile = new UserAppWriteFile(openFileStore, errorLog);

new Thread(userAppWriteFile).start(); /* s5 */

userAppReadFile = new UserAppReadFile(openFileStore, errorLog);

new Thread(userAppReadFile).start(); /* s6 */

}
}

D.17 CreateFile Java Code

public class CreateFile implements Runnable {

private DataObject newFile = null;

private DOStore doStore = null;

private int doSpace;

private int openflSpace;

private OpenFileInfo openFileInfo = null;

private OpenFileStore openFileStore = null;

private int id;

private FileDirInfo fileDirInfo = null;

private int oMode;

private int sMode;

private int aMode;

private DataObject tmpObj = null;

private int tmpName;

private boolean idFound;

private int index;

private ErrorLog errorLog = null;

public CreateFile(DOStore doStor, OpenFileStore openFileStor, int nameID,

int oMde, int sMde, ErrorLog errorLg) {
doSpace = -1; openflSpace = -1; doStore = doStor;

Appendix D Case Study 2 - OCB and Event-B Models, and Code 304

openFileStore = openFileStor; id = nameID; oMode = oMde;

sMode = sMde; aMode = -1; tmpName = -1; idFound = false;

index = 0; errorLog = errorLg;

}

public void run() {
doSpace = doStore.getSize(); /* cf1 */

while (index < doSpace && idFound == false) {
tmpObj = doStore.getAtIndex(index); /* cf2 */

fileDirInfo = tmpObj.getFileDirInfo(); /* cf3 */

tmpName = fileDirInfo.getID(); /* cf4 */

if (tmpName == id) {
idFound = true; /* cf5 */

}
index = index + 1; /* cf6 */

}
if (oMode == 1 && idFound == false) {
aMode = 2; /* cf7 */

openflSpace = openFileStore.reserveSpace(); /* cf8 */

if (openflSpace > 0) {
doSpace = doStore.reserveSpace(); /* cf9 */

if (doSpace > 0) {
fileDirInfo = new FileDirInfo(id); /* cf10 */

newFile = new DataObject(128, fileDirInfo); /* cf11 */

openFileInfo = new OpenFileInfo(aMode, sMode, newFile); /* cf12 */

doStore.add(newFile); /* cf13 */

openFileStore.add(openFileInfo); /* cf14 */

} else {
openFileStore.unReserve();

doStore.unReserve(); /* cf15 */

errorLog.add(6); /* cf16 */

}
} else {
openFileStore.unReserve();

errorLog.add(5); /* cf17 */

}
} else if (oMode != 1) {
errorLog.add(3);

} else if (idFound == true) {
errorLog.add(2);

}

Appendix D Case Study 2 - OCB and Event-B Models, and Code 305

}
}

D.18 WriteFile Java Code

public class WriteFile implements Runnable {

private OpenFileStore openFileStore = null;

private UserBuffer buffer = null;

private int id;

private int tmpName;

private OpenFileInfo file = null;

private int bytes;

private int index;

private int openFileCnt;

private boolean fileFound;

private FileDirInfo fileDirInfo = null;

private int data;

private DataObject dataObject = null;

private int offset;

private int aMode;

private ErrorLog errorLog = null;

private int freeSpace;

public WriteFile(OpenFileStore openFileStor, int fName,

UserBuffer buffr, int byts, ErrorLog errorLg) {
openFileStore = openFileStor; id = fName; buffer = buffr;

bytes = byts; index = 0; openFileCnt = 0; fileFound = false;

tmpName = -1; data = -1; offset = 0; aMode = -1; errorLog = errorLg;

freeSpace = 0;

}

public void run() {
openFileCnt = openFileStore.getSize(); /* wf1 */

while (index < openFileCnt && fileFound == false) {
file = openFileStore.getAtIndex(index); /* wf2 */

dataObject = file.getDataObject(); /* wf3 */

fileDirInfo = dataObject.getFileDirInfo(); /* wf4 */

tmpName = fileDirInfo.getID(); /* wf5 */

if (tmpName == id) {

Appendix D Case Study 2 - OCB and Event-B Models, and Code 306

fileFound = true; /* wf6 */

}
index = index + 1; /* wf7 */

}
if (fileFound == true) {
aMode = file.getAccessMode(); /* wf8 */

if (aMode == 1 || aMode == 2) {
freeSpace = dataObject.reserveSpace(); /* wf9 */

if (freeSpace > 0) {
index = 0; /* wf10 */

file.resetOffset(); /* wf11 */

while (index < bytes) {
data = buffer.get(index); /* wf12 */

offset = file.getOffset(); /* wf13 */

dataObject.write(data, offset); /* wf14 */

index = index + 1; /* wf15 */

file.incOffset(); /* wf16 */

}
} else {
dataObject.unReserve();

errorLog.add(7); /* wf17 */

}
} else {
errorLog.add(4);

}
} else {
errorLog.add(1);

}
}
}

D.19 ReadFile Java Code

public class ReadFile implements Runnable {

private OpenFileStore openFileStore = null;

private UserBuffer buffer = null;

private int id;

private int tmpName;

private OpenFileInfo file = null;

Appendix D Case Study 2 - OCB and Event-B Models, and Code 307

private int bytes;

private int index;

private int openFileCnt;

private boolean fileFound;

private FileDirInfo fileDirInfo = null;

private int data;

private DataObject dataObject = null;

private int offset;

private int aMode;

private ErrorLog errorLog = null;

public ReadFile(OpenFileStore openFileStor, int fName, UserBuffer buffr,

int byts, ErrorLog errorLg) {
openFileStore = openFileStor; id = fName; buffer = buffr; bytes = byts;

index = 0; openFileCnt = 0; fileFound = false; tmpName = -1; data = -1;

offset = 0; aMode = -1; errorLog = errorLg;

}

public void run() {
openFileCnt = openFileStore.getSize(); /* rf1 */

while (index < openFileCnt && fileFound == false) {
file = openFileStore.getAtIndex(index); /* rf2 */

dataObject = file.getDataObject(); /* rf3 */

fileDirInfo = dataObject.getFileDirInfo(); /* rf4 */

tmpName = fileDirInfo.getID(); /* rf5 */

if (tmpName == id) {
fileFound = true; /* rf6 */

}
index = index + 1; /* rf7 */

}
if (fileFound == true) {
aMode = file.getAccessMode(); /* rf8 */

if (aMode == 0 || aMode == 2) {
index = 0; /* rf9 */

file.resetOffset(); /* rf10 */

while (index < bytes) {
offset = file.getOffset(); /* rf11 */

data = dataObject.read(offset); /* rf12 */

buffer.add(data); /* rf13 */

index = index + 1; /* rf14 */

file.incOffset(); /* rf15 */

Appendix D Case Study 2 - OCB and Event-B Models, and Code 308

}
} else {
errorLog.add(4);

}
} else {
errorLog.add(1);

}
}
}

D.20 UserAppCreateFile Java Code

public class UserAppCreateFile implements Runnable {

private CreateFile createFile = null;

private DOStore doStore = null;

private OpenFileStore openFileStore = null;

private ErrorLog errorLog = null;

public UserAppCreateFile(DOStore doStor, OpenFileStore openFileStor,

ErrorLog errorLg) {
doStore = doStor; openFileStore = openFileStor; errorLog = errorLg;

}

public void run() {
createFile = new CreateFile(doStore, openFileStore, 0, 1, 0, errorLog);

new Thread(createFile).start(); /* ua1 */

}
}

D.21 UserAppWriteFile Java Code

public class UserAppWriteFile implements Runnable {

private OpenFileStore openFileStore = null;

private UserBuffer buff1 = null;

private WriteFile writeFile1 = null;

private int data;

private ErrorLog errorLog = null;

Appendix D Case Study 2 - OCB and Event-B Models, and Code 309

public UserAppWriteFile(OpenFileStore openFileStor, ErrorLog errorLg) {
openFileStore = openFileStor; data = 65; errorLog = errorLg;

}

public void run() {
buff1 = new UserBuffer(); /* uaw1 */

while (data < 70) {
buff1.add(data); /* uaw2 */

data = data + 1; /* uaw3 */

}
writeFile1 = new WriteFile(openFileStore, 0, buff1, 5, errorLog);

new Thread(writeFile1).start(); /* uaw4 */

}
}

D.22 UserAppReadFile Java Code

public class UserAppReadFile implements Runnable {

private OpenFileStore openFileStore = null;

private UserBuffer buff1 = null;

private ReadFile readFile1 = null;

private ErrorLog errorLog = null;

public UserAppReadFile(OpenFileStore openFileStor, ErrorLog errorLg) {
openFileStore = openFileStor; errorLog = errorLg;

}

public void run() {
buff1 = new UserBuffer(); /* uar1 */

readFile1 = new ReadFile(openFileStore, 0, buff1, 5, errorLog);

new Thread(readFile1).start(); /* uar2 */

}
}

D.23 FileDirInfo Java Code

public class FileDirInfo {

Appendix D Case Study 2 - OCB and Event-B Models, and Code 310

private int fileOffset;

private int id;

public FileDirInfo(int nameID) {
fileOffset = 0; id = nameID;

}

public synchronized int getID() {
return id;

}
}

D.24 DataObject Java Code

public class DataObject {

private int type;

private FileDirInfo fileDirInfo = null;

private int[] data = new int[10];

private int freeSpace;

public DataObject(int typ, FileDirInfo fileDirInf) {
type = typ; fileDirInfo = fileDirInf; freeSpace = 10;

}

public synchronized FileDirInfo getFileDirInfo() {
try {

while (!(fileDirInfo != null)) {
wait();

}
} catch (InterruptedException e) {
e.printStackTrace();

}
return fileDirInfo;

}

public synchronized int read(int offset) {
try {

while (!(offset >= 0 && offset < 10)) {

Appendix D Case Study 2 - OCB and Event-B Models, and Code 311

wait();

}
} catch (InterruptedException e) {
e.printStackTrace();

}
return data[offset];

}

public synchronized void write(int val, int offset) {
try {

while (!(offset >= 0 && offset < 10)) {
wait();

}
} catch (InterruptedException e) {
e.printStackTrace();

}
data[offset] = val;

notifyAll();

}

public synchronized int getType() {
return type;

}

public synchronized int reserveSpace() {
int initial_freeSpace = freeSpace;

freeSpace = initial_freeSpace - 1;

notifyAll();

return initial_freeSpace;

}

public synchronized void unReserve() {
freeSpace = freeSpace + 1;

notifyAll();

}
}

D.25 OpenFileInfo Java Code

public class OpenFileInfo {

Appendix D Case Study 2 - OCB and Event-B Models, and Code 312

private int accessMode;

private int shareMode;

private int fileOffset;

private DataObject dataObject = null;

public OpenFileInfo(int aMode, int sMode, DataObject dataObj) {
shareMode = sMode; accessMode = aMode; fileOffset = 0;

dataObject = dataObj;

}

public synchronized int getOffset() {
return fileOffset;

}

public synchronized DataObject getDataObject() {
try {

while (!(dataObject != null)) {
wait();

}
} catch (InterruptedException e) {
e.printStackTrace();

}
return dataObject;

}

public synchronized void resetOffset() {
fileOffset = 0;

notifyAll();

}

public synchronized void incOffset() {
fileOffset = fileOffset + 1;

notifyAll();

}

public synchronized int getAccessMode() {
return accessMode;

}

public synchronized int getShareMode() {

Appendix D Case Study 2 - OCB and Event-B Models, and Code 313

return shareMode;

}
}

D.26 DOStore Java Code

public class DOStore {

private DataObject[] doArray = new DataObject[5];

private int size;

private int capacity;

private int freeSpace;

public DOStore() {
size = 0; capacity = 5; freeSpace = 5;

}

public synchronized void add(DataObject f) {
try {

while (!(size >= 0 && size < capacity && capacity == 5)) {
wait();

}
} catch (InterruptedException e) {
e.printStackTrace();

}
doArray[size] = f;

size = size + 1;

notifyAll();

}

public synchronized DataObject getAtIndex(int indx) {
try {

while (!(indx >= 0 && indx < size && doArray[indx] != null)) {
wait();

}
} catch (InterruptedException e) {
e.printStackTrace();

}
return doArray[indx];

}

Appendix D Case Study 2 - OCB and Event-B Models, and Code 314

public synchronized int reserveSpace() {
int initial_freeSpace = freeSpace;

freeSpace = initial_freeSpace - 1;

notifyAll();

return initial_freeSpace;

}

public synchronized void unReserve() {
freeSpace = freeSpace + 1;

notifyAll();

}

public synchronized int getSize() {
return size;

}
}

D.27 OpenFileStore Java Code

public class OpenFileStore {

private OpenFileInfo[] openArray = new OpenFileInfo[5];

private int size;

private int capacity;

private int freeSpace;

public OpenFileStore() {
size = 0; capacity = 5; freeSpace = 5;

}

public synchronized void add(OpenFileInfo f) {
try {

while (!(size >= 0 && size < capacity && capacity == 5)) {
wait();

}
} catch (InterruptedException e) {
e.printStackTrace();

}
openArray[size] = f;

Appendix D Case Study 2 - OCB and Event-B Models, and Code 315

size = size + 1;

notifyAll();

}

public synchronized OpenFileInfo getAtIndex(int indx) {
try {

while (!(indx >= 0 && indx < size && openArray[indx] != null)) {
wait();

}
}catch (InterruptedException e) {
e.printStackTrace();

}
return openArray[indx];

}

public synchronized int reserveSpace() {
int initial_freeSpace = freeSpace;

freeSpace = initial_freeSpace - 1;

notifyAll();

return initial_freeSpace;

}

public synchronized void unReserve() {
freeSpace = freeSpace + 1;

notifyAll();

}

public synchronized int getSize() {
return size;

}
}

D.28 UserBuffer Java Code

public class UserBuffer {

private int[] buffer = new int[10];

private int capacity;

private int size;

Appendix D Case Study 2 - OCB and Event-B Models, and Code 316

public UserBuffer() {
capacity = 10; size = 0;

}

public synchronized void add(int val) {
try {

while (!(size >= 0 && size < capacity && capacity == 10)) {
wait();

}
} catch (InterruptedException e) {
e.printStackTrace();

}
buffer[size] = val;

size = size + 1;

notifyAll();

}

public synchronized int get(int indx) {
try {

while (!(indx >= 0 && indx < capacity && capacity == 10)) {
wait();

}
} catch (InterruptedException e) {
e.printStackTrace();

}
return buffer[indx];

}
}

D.29 ErrorLog Java Code

public class ErrorLog {

private int[] error = new int[5];

private int size;

private int lastIndex;

public ErrorLog() {
size = 0; lastIndex = -1;

}

Appendix D Case Study 2 - OCB and Event-B Models, and Code 317

public synchronized void add(int errorCode) {
int initial_size = size;

try {
while (!(size >= 0 && size < 5)) {
wait();

initial_size = size;

}
} catch (InterruptedException e) {

e.printStackTrace();

}
error[initial_size] = errorCode;

size = initial_size + 1;

lastIndex = initial_size;

notifyAll();

}

public synchronized int getLast() {
return error[lastIndex];

}

public synchronized void removeLast() {
try {

while (!(size > 0 && size <= 5)) {
wait();

}
} catch (InterruptedException e) {
e.printStackTrace();

}
error[lastIndex] = 0;

size = size - 1;

lastIndex = lastIndex - 1;

notifyAll();

}
}

Appendix E

Tooling

E.1 Pop up Menu - Translate Implementation

public class TranslatorAction implements IObjectActionDelegate {
IStructuredSelection selection;

....

public void run(IAction action) {
if(selection.getFirstElement() instanceof MainClassImpl){
MainClass main = (MainClass)selection.getFirstElement();

Display display = Display.getCurrent();

Shell shell = new Shell(display);

Diagnostic diagnostic = Diagnostician.INSTANCE.validate(main);

if(diagnostic.getSeverity()!=Diagnostic.OK){
for (Iterator<Diagnostic> i=diagnostic.getChildren().iterator();

i.hasNext();) {
Diagnostic childDiagnostic = (Diagnostic)i.next();

String msg=childDiagnostic.getMessage().replaceAll("of [^]*", "");

MessageDialog.openInformation(

shell,

"OCB Plug-in",

"Error in: "+ childDiagnostic.getData().get(0)+" "+ msg);

}
}else{
EventBManager e = new EventBManager(main, true);

e.translate();

JavaManager j = new JavaManager(main);

j.translate();

}}}...}

318

Appendix E Tooling 319

E.2 OCB to Event-B Translation: OCBSequence

// Rule 3.7 process an OCB sequence

public void processOCBSequence(OCBSequence sequence, String endLabel)

throws Exception {
processNonAtomicClause(sequence.getLeftBranch(),

sequence.getRightBranch().startLabel());

processNonAtomicClause(sequence.getRightBranch(), endLabel);

}

Bibliography

[1] Multiverse - A Java based STM Implementation. Available at

http://code.google.com/p/multiverse/.

[2] SPARKAda. Available at http://www.praxis-his.com/sparkada/index.asp.

[3] The HOL Website. available at http://hol.sourceforge.net/.

[4] XSTM - Software Transactional Memory. Available at

http://www.xstm.net/stm.html.

[5] J.R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University

Press, 1996.

[6] J.R. Abrial. Event Driven System Construction. Internal document, available at

http://www.atelierb.eu/php/documents-en.php, 1999.

[7] J.R. Abrial. Event Driven Sequential Program Construction. Internal document,

available at http://www.atelierb.eu/php/documents-en.php, 2001.

[8] J.R. Abrial. Discrete System Models. Internal document, available at

http://www.atelierb.eu/php/documents-en.php, 2004.

[9] J.R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An Open Extensible Tool

Environment for Event-B. In Z. Liu and J. He, editors, ICFEM, volume 4260 of

Lecture Notes in Computer Science, pages 588–605. Springer, 2006.

[10] J.R. Abrial and D. Cansell. Click’n Prove: Interactive Proofs within Set Theory.

In TPHOLs, 2003.

[11] J.R. Abrial, S.A. Schuman, and B. Meyer. Specification Language. In On the

Construction of Programs, pages 343–410. 1980.

[12] A.Edmunds and M.Butler. Tool Support for Event-B Code Generation (to be

presented at WS-TBFM2010).

[13] G. R. Andrews, R. A. Olsson, M. H. Coffin, I. Elshoff, K. D. Nilsen, T. D. M. Pur-

din, and G. M. Townsend. An Overview of the SR Language and Implementation.

ACM Trans. Program. Lang. Syst., 10(1):51–86, 1988.

320

http://code.google.com/p/multiverse/
http://www.praxis-his.com/sparkada/index.asp
http://hol.sourceforge.net/
http://www.xstm.net/stm.html
http://www.atelierb.eu/php/documents-en.php
http://www.atelierb.eu/php/documents-en.php
http://www.atelierb.eu/php/documents-en.php

BIBLIOGRAPHY 321

[14] C. Aniszczyk. Using GEF with EMF. Available at

http://www.eclipse.org/articles/Article-GEF-EMF/gef-emf.html.

[15] M. Anlauff. XASM - An Extensible, Component-Based ASM Language. In Gure-

vich et al. [70], pages 69–90.

[16] C. Artho, K. Havelund, and A. Biere. Using Block-Local Atomicity to Detect

Stale-Value Concurrency Errors. In Farn Wang, editor, ATVA, volume 3299 of

Lecture Notes in Computer Science, pages 150–164. Springer, 2004.

[17] B-Core(UK)Ltd. The B-Toolkit. Available at http://www.b-core.com.

[18] R.J. Back. On the Correctness of Refinement Steps in Program Development. PhD

thesis, Abo Akademi, Department of Computer Science, Helsinki, Finland, 1978.

Report A–1978–4.

[19] R.J. Back. Correctness Preserving Program Refinements: Proof Theory and Ap-

plications, volume 131 of Mathematical Center Tracts. Mathematical Centre, Am-

sterdam, The Netherlands, 1980.

[20] R.J. Back, A. Mikhajlova, and J. von Wright. Class Refinement as Semantics of

Correct Object Substitutability. Formal Aspects of Computing, 12(1), 2000.

[21] R.J. Back and J. von Wright. Contracts, Games and Refinement. Electr. Notes

Theor. Comput. Sci., 7, 1997.

[22] D.F. Bacon, R.E. Strom, and A. Tarafdar. Guava: A Dialect of Java Without Data

Races. In In Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA, pages 382–400, 2000.

[23] M. Barnett, K.R.M Leino, and W. Schulte. The Spec# Programming System: An

Overview, volume 3362/2005 of Lecture Notes in Computer Science, pages 49–69.

Springer, Berlin / Heidelberg, January 2005.

[24] B. Beckert, R. Hähnle, and P.H. Schmitt, editors. Verification of Object-Oriented

Software: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

[25] C. Boyapati, R. Lee, and M.C. Rinard. Ownership Types for Safe Programming:

Preventing Data Races and Deadlocks. In OOPSLA, pages 211–230, 2002.

[26] Cees-Bart Breunesse, Bart Jacobs, and Joachim van den Berg. Specifying and

Verifying a Decimal Representation in Java for Smart Cards. In Hélène Kirchner

and Christophe Ringeissen, editors, AMAST, volume 2422 of Lecture Notes in

Computer Science, pages 304–318. Springer, 2002.

[27] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.J. Grose. Eclipse Mod-

eling Framework. Addison-Wesley, 2003.

http://www.eclipse.org/articles/Article-GEF-EMF/gef-emf.html
http://www.b-core.com

BIBLIOGRAPHY 322

[28] L. Burdy, Y. Cheon, D.R. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino,

and E. Poll. An Overview of JML Tools and Applications. International Journal

on Software Tools for Technology Transfer, 7(3), 2005.

[29] L. Burdy, Y. Cheon, D.R. Cok, M.D. Ernst, J.R. Kiniry, G.T. Leavens, K.R.M.

Leino, and E. Poll. An Overview of JML Tools and Applications. STTT, 7(3):212–

232, 2005.

[30] M. Butler. csp2B: A Practical Approach To Combining CSP and B. Formal

Aspects of Computing, 12(3), 2000.

[31] M. Butler. A System-Based Approach to the Formal Development of Embedded

Controllers for a Railway. Design Automation For Embedded Systems, 6, 2002.

[32] M. Butler. Incremental Design of Distributed Systems with Event-B, November

2008.

[33] M. Butler. Decomposition Structures for Event-B. In Integrated Formal Methods

iFM2009, Springer, LNCS 5423, volume LNCS. Springer, February 2009.

[34] M. Butler and D. Yadav. An Incremental Development of the Mondex System in

Event-B. Formal Aspects of Computing, 20(1):61–77, January 2008.

[35] M.J. Butler and M. Leuschel. Combining CSP and B for Specification and Property

Verification. In Fitzgerald et al. [60], pages 221–236.

[36] A. Butterfield and J. Woodcock. Formalising Flash Memory: First Steps. In

ICECCS, pages 251–260. IEEE Computer Society, 2007.

[37] M. Campione, K. Walrath, P. Chan, R. Lee, J. Kanerva, J. Gosling, B. Joy,

G. Steele, G. Bracha, Technical Advisors - K. Arnold, T. Lindholm, and F. Yellin.

The Java Language Specification - Second Edition, 2000.

[38] D. Cansell. The Click n Prove interface. from http://www.loria.fr/ cansel-

l/cnp.html.

[39] G. Del Castillo and K. Winter. Model Checking Support for the ASM High-

level Language. Proc. of 6th Int. Conference for Tools and Algorithms for the

Construction and Analysis of Systems, TACAS, pages 331–346, 2000.

[40] O. Celiku and J. von Wright. Correctness and Refinement of Dually Nondeter-

ministic Programs. Technical Report 516, TUCS, Mar 2003.

[41] ClearSy. B4Free. from http://www.b4free.com.

[42] ClearSy System Engineering. Atelier B Translators, version 4.6 edition.

[43] ClearSy System Engineering. The B Language Reference Manual, version 4.6

edition.

http://www.loria.fr/~cansell/cnp.html
http://www.loria.fr/~cansell/cnp.html
http://www.b4free.com

BIBLIOGRAPHY 323

[44] ClearSy System Engineering. The B Language Reference Manual, version 1.8.5

edition.

[45] K. Compton, Y. Gurevich, J. Huggins, and W. Shen. An Automatic Verification

Tool for UML. Technical Report CSE-TR-423-00, CSE-TR-423-00, 2000.

[46] CSK Systems Corporation. The VDM++ Language Manual.

[47] D. Crocker. Safe Object-Oriented Software: The Verified Design-By-Contract

Paradigm. In Practical Elements of Safety: Proceedings of the Twelfth Safety-

Critical Systems Symposium, 2004.

[48] K. Damchoom, M. Butler, and J.R. Abrial. Modelling and Proof of a Tree-

structured File System. In ICFEM 2008, volume LNCS 5256, pages 25–44.

Springer, October 2008. Springer LNCS 5256.

[49] J. Davies, C. Crichton, E. Crichton, D. Neilson, and I.H. Sørensen. Formality,

Evolution, and Model-driven Software Engineering. Electr. Notes Theor. Comput.

Sci., 130:39–55, 2005.

[50] E.W. Dijkstra. Chapter I: Notes on Structured Programming. pages 1–82, 1972.

[51] E.W. Dijkstra. Guarded Commands, Non-determinacy and Formal Derivation of

Programs. Commun. ACM, 18(8):453–457, 1975.

[52] E.W. Dijkstra. Guarded Commands, Non-determinancy and a Calculus for the

Derivation of Programs. In F.L. Bauer and K. Samelson, editors, Language Hi-

erarchies and Interfaces, volume 46 of Lecture Notes in Computer Science, pages

111–124. Springer, 1975.

[53] E.W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1997.

[54] A. Edmunds and M. Butler. Linking Event-B and Concurrent Object-Oriented

Programs. In Refine 2008 - International Refinement Workshop, May 2008.

[55] Escher Technologies. PerfectDeveloper. Available at http://www.eschertech.com.

[56] W. Reif et al. Structured Specifications and Interactive Proofs with KIV. In

Wolfgang Bibel and Peter H. Schmidt, editors, Automated Deduction: A Basis for

Applications. Volume II, Systems and Implementation Techniques. Kluwer Aca-

demic Publishers, Dordrecht, 1998.

[57] FAA/NASA. OOTiA - Object Orientated Technology in Aviation Program. Avail-

able at http://www.faa.gov/aircraft/air cert/design approvals/air software/oot/.

[58] M.A. Ferreira, S.S. Silva, and J.N. Oliveira. Verifying Intel Flash File System Core

Specification. The Fourth Overture/VDM++ Workshop at FM2008, 2008.

http://www.eschertech.com
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/oot/

BIBLIOGRAPHY 324

[59] J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated

Designs For Object-oriented Systems. Springer-Verlag Telos, 2005.

[60] John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors. FM 2005: Formal

Methods, International Symposium of Formal Methods Europe, Newcastle, UK,

July 18-22, 2005, Proceedings, volume 3582 of Lecture Notes in Computer Science.

Springer, 2005.

[61] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata.

Extended Static Checking for Java. In PLDI, pages 234–245, 2002.

[62] C. Flanagan and S. Qadeer. A Type and Effect System for Atomicity. ACM

SIGPLAN Notices, 38(5):338–349, 2003.

[63] Formal Systems Europe Ltd. FDR Model Checker. Available from

http://www.fsel.com.

[64] D. Frankel. Model Driven Architecture : Applying MDA to Enterprise Computing.

Wiley, 2003.

[65] A. Freitas and A. Cavalcanti. Automatic Translation from Circus to Java. In

J. Misra, T. Nipkow, and E. Sekerinski, editors, FM, volume 4085 of Lecture Notes

in Computer Science, pages 115–130. Springer, 2006.

[66] L. Freitas, J. Woodcock, and A. Butterfield. POSIX and the Verification Grand

Challenge: A Roadmap. iceccs, 0:153–162, 2008.

[67] J. Gosling, B. Joy, and G. Steele. The Java (TM) Language Specification. Addison-

Wesley, 1996.

[68] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification - Third

Edition. Addison-Wesley, 2004.

[69] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In Egon Börger, editor,

Specification and Validation Methods, pages 9–37. Oxford University Press, 1994.

[70] Y. Gurevich, P.W. Kutter, M. Odersky, and L. Thiele, editors. Abstract State

Machines, Theory and Applications, International Workshop, ASM 2000, Monte

Verità, Switzerland, March 19-24, 2000, Proceedings, volume 1912 of Lecture Notes

in Computer Science. Springer, 2000.

[71] Y. Gurevich, W. Schulte, and C. Wallace. Investigating Java Concurrency Using

Abstract State Machines. In Gurevich et al. [70], pages 151–176.

[72] S. Hallerstede. Justifications for the Event-B Modelling Notation. In Julliand and

Kouchnarenko [91], pages 49–63.

[73] T. Harris. Exceptions and Side-effects in Atomic Blocks. Sci. Comput. Program.,

58(3):325–343, 2005.

http://www.fsel.com

BIBLIOGRAPHY 325

[74] T. Harris and K. Fraser. Language Support for Lightweight Transactions. SIG-

PLAN Not., 38(11):388–402, 2003.

[75] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable Memory

Transactions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium

on Principles and practice of parallel programming, pages 48–60, New York, NY,

USA, 2005. ACM.

[76] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun. ACM,

12(10):576–580, 1969.

[77] C. A. R. Hoare. Monitors: An Operating System Structuring Concept. Commun.

ACM, 17(10):549–557, 1974.

[78] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[79] G.J. Holzmann. The Model Checker SPIN. Software Engineering, IEEE Transac-

tions, 23(5), 1997.

[80] D. Hovemeyer and W. Pugh. Finding Concurrency Bugs in Java. In In Proceedings

of the PODC Workshop on Concurrency and Synchronization in Java Programs,

2004.

[81] D. Hovemeyer, W. Pugh, and J. Spacco. Atomic Instructions in Java. In In

Magnusson [14, pages 133–154.

[82] Intel Corporation. Intel Flash File System Core Reference Guide. Available at

http://sunsite.rediris.es/pub/mirror/intel/flcomp/manuals/30443601.pdf.

[83] Intel Corporation et al. Open NAND Flash Interface Specification. Available at

http://www.onfi.org/.

[84] D. Jackson. An Intermedicate Design Language and Its Analysis. In SIGSOFT

FSE, pages 121–130, 1998.

[85] D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Trans. Softw.

Eng. Methodol., 11(2):256–290, 2002.

[86] M. A Jackson. System development (Prentice-Hall International series in computer

science). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1983.

[87] B. Jacobs, K.R.M. Leino, and W. Schulte. Verification of Multithreaded Object-

oriented Programs with Invariants. In Proceedings of the workshop on Specification

and Verification of Component-Based Systems - SAVCBS2004, 2004.

[88] B. Jacobs, J. Smans, F. Piessens, and W. Schulte. A Statically Verifiable Program-

ming Model for Concurrent Object-Oriented Programs. In Eighth International

Conference on Formal Engineering Methods (ICFEM 2006), 2006.

http://sunsite.rediris.es/pub/mirror/intel/flcomp/manuals/30443601.pdf
http://www.onfi.org/

BIBLIOGRAPHY 326

[89] I. Johnson, C. Snook, A. Edmunds, and M. Butler. Rigorous Development of

Reusable, Domain-specific Components, for Complex Applications. Proceedings of

3rd International Workshop on Critical Systems Development with UML, pages

115–129, 2004.

[90] C.B. Jones. Systematic Software Development using VDM. Prentice-Hall, Upper

Saddle River, NJ 07458, USA, 1990.

[91] J. Julliand and O. Kouchnarenko, editors. B 2007: Formal Specification and

Development in B, 7th International Conference of B Users, Besançon, France,

January 17-19, 2007, Proceedings, volume 4355 of Lecture Notes in Computer

Science. Springer, 2006.

[92] A.W. Keen, T. Ge, J.T. Maris, and R.A. Olsson. JR: Flexible Distributed Pro-

gramming in an Extended Java. ACM Trans. Program. Lang. Syst., 26(3):578–608,

2004.

[93] B.W. Kernighan and D. Ritchie. The C Programming Language, Second Edition.

Prentice-Hall, 1988.

[94] J. Kienzle. On Atomicity and Software Development. Journal of Universal Com-

puter Science, 11(5), 2005.

[95] L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley, 2002.

[96] L. Lamport. The +CAL Algorithm Language. In E. Najm, J.F. Pradat-Peyre, and

V. Donzeau-Gouge, editors, FORTE, volume 4229 of Lecture Notes in Computer

Science, page 23. Springer, 2006.

[97] L. Lamport. Checking a Multithreaded Algorithm with +CAL. In S. Dolev,

editor, DISC, volume 4167 of Lecture Notes in Computer Science, pages 151–163.

Springer, 2006.

[98] K. Lano, K. Androutsopoulos, and D. Clark. Structuring and Design of Reactive

Systems Using RSDS and B. In T.S.E. Maibaum, editor, FASE, volume 1783 of

Lecture Notes in Computer Science, pages 97–111. Springer, 2000.

[99] K. Lano, D. Clark, and K. Androutsopoulos. UML to B: Formal Verification of

Object-Oriented Models. In IFM, pages 187–206, 2004.

[100] D. Lea. Concurrent Programming in Java (Second Edition): Design Principles

and Patterns. Addison-Wesley, 2004.

[101] D. Lea. The java.util.concurrent Synchronizer Framework. Science of Computer

Programming, 58(3), 2005.

BIBLIOGRAPHY 327

[102] G.T. Leavens and Y. Cheon. Design by Contract with JML. Draft Paper from

http://www.cs.iastate.edu/ leavens/JML.

[103] F. Lerda and W. Visser. Addressing Dynamic Issues of Program Model Checking.

In Matthew B. Dwyer, editor, SPIN, volume 2057 of Lecture Notes in Computer

Science, pages 80–102. Springer, 2001.

[104] M. Leuschel and M. Butler. ProB: A Model Checker for B. In Proceedings of

Formal Methods Europe 2003, 2003.

[105] A.M. Lister. The Problem of Nested Monitor Calls. Operating Systems Review,

11(3):5–7, 1977.

[106] M. Scheidgen. The Textual Editing Framework. Available at

http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/index.html.

[107] I. Maamria, M. Butler, A. Edmunds, and A. Rezazadeh. On an Extensible Rule-

based Prover for Event-B. In ABZ2010, February 2010.

[108] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley,

1999.

[109] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers Norwell,

MA, USA, 1993.

[110] J.P. Mermet, editor. UML-B Specification for Proven Embedded Systems Design.

Kluwer, 2004.

[111] B. Meyer. Eiffel : The Language. Prentice-Hall, 1992.

[112] B. Meyer. The Start of an Eiffel Standard. Journal of Object Technology, 1(2):95–

99, 2002.

[113] L. Mikhajlov. Software Reuse Mechanisms and Techniques: Safety Versus Flexi-

bility. Turku Centre for Computer Science, TUCS Dissertations, December 1999.

[114] A. Mikhajlova. Ensuring Correctness of Object and Component Systems. Turku

Centre for Computer Science, TUCS Dissertations, October 1999.

[115] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in

Computer Science. Springer, 1980.

[116] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I. Inf.

Comput., 100(1):1–40, 1992.

[117] C. Morgan. Procedures, Parameters, and Abstraction: Separate Concerns. Sci.

Comput. Program., 11(1):17–27, 1988.

http://www.cs.iastate.edu/~leavens/JML
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/index.html

BIBLIOGRAPHY 328

[118] C. Morgan. Programming from Specifications. Prentice Hall International Series

in Computer Science. Prentice Hall, June 1994.

[119] M.Williams. Microsoft Visual C# .NET (Core Reference) . Microsoft Press, 2002.

[120] Object Management Group (OMG). Object Constraint Language Specification.

Available at http://www.omg.org/technology/documents/formal/ocl.htm.

[121] Object Management Group (OMG). UML 2.0 Superstructure specification. Avail-

able at http://www.omg.org/technology/uml/index.htm.

[122] S. Owre, J.M. Rushby, and N. Shankar. PVS: A Prototype Verification System.

In CADE-11: Proceedings of the 11th International Conference on Automated

Deduction, pages 748–752, London, UK, 1992. Springer-Verlag.

[123] P.H.Welch, J.R. Aldous, and J. Foster. CSP Networking for Java (JCSP.net). In

Computational Science - ICCS 2002: International Conference, 2002.

[124] Project MATISSE: Methodologies and Technologies for Industrial Strength Sys-

tems Engineering. Event B Reference Manual. IST-1999-11435.

[125] R Razali, C. F. Snook, and M. R. Poppleton. Comprehensibility of UML-based

Formal Model ? A Series of Controlled Experiments. In 1st ACM International

Workshop on Empirical Assessment of Software Engineering Languages and Tech-

nologies (WEASELTech) 2007, pages 25–30, November 2007.

[126] R. Razali, C. F. Snook, M. R. Poppleton, P. W. Garratt, and R. J. Walters.

Experimental Comparison of the Comprehensibility of a UML-based Formal Spec-

ification versus a Textual One. In B. Kitchenham, P. Brereton, and M. Turner,

editors, 11th International Conference on Evaluation and Assessment in Software

Engineering (EASE’07), pages 1–11. British Computer Society (BCS), 2007.

[127] E. Rodŕıguez, M.B. Dwyer, C. Flanagan, J. Hatcliff, G.T. Leavens, and Robby.

Extending JML for Modular Specification and Verification of Multi-threaded Pro-

grams. In A.P. Black, editor, ECOOP, volume 3586 of Lecture Notes in Computer

Science, pages 551–576. Springer, 2005.

[128] A. W. Roscoe, C. A. R. Hoare, and R. Bird. The Theory and Practice of Concur-

rency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

[129] M. Saaltink. Z and Eves. In J. E. Nicholls, editor, Z User Workshop, Workshops

in Computing, pages 223–242. Springer, 1991.

[130] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.E. Anderson. Eraser:

A Dynamic Data Race Detector for Multi-Threaded Programs. In SOSP, pages

27–37, 1997.

http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/uml/index.htm

BIBLIOGRAPHY 329

[131] S. Schneider and H. Treharne. Communicating B Machines. In Didier Bert,

Jonathan P. Bowen, Martin C. Henson, and Ken Robinson, editors, ZB, volume

2272 of Lecture Notes in Computer Science, pages 416–435. Springer, 2002.

[132] S. Schneider and H. Treharne. Verifying Controlled Components. In Eerke A.

Boiten, John Derrick, and Graeme Smith, editors, IFM, volume 2999 of Lecture

Notes in Computer Science, pages 87–107. Springer, 2004.

[133] S. Schneider and H. Treharne. CSP Theorems for Communicating B Machines.

Formal Asp. Comput., 17(4):390–422, 2005.

[134] SGS-Thomson Microelectronics Ltd. Occam 2.1 Reference Manual, 1995.

[135] G. Smith. The Object-Z Specification Language (Advances in Formal Methods).

Springer, December 1999.

[136] G. Smith. The Object-Z specification language. Kluwer Academic Publishers,

Norwell, MA, USA, 2000.

[137] C. Snook and M. Butler. Deliverable D4.1.3 : Final Tool Extensions for Integration

of UML and B. from Project IST-2000-30103, PUSSEE - Paradigm Unifying

System Specification Environments for Proven Electronic design.

[138] C. Snook and M. Butler. U2B - A tool for translating UML-B models into B,

volume UML-B Specification for Proven Embedded Systems Design. Springer,

2004.

[139] C. Snook and M. Butler. UML-B: Formal modeling and Design Aided by UML.

ACM Trans. Softw. Eng. Methodol., 15(1):92–122, 2006.

[140] C. Snook and M. Butler. UML-B: Formal Modelling and Design Aided by UML.

ACM Transactions on Software Engineering and Methodology, 2006.

[141] C. Snook and M. Butler. UML-B and Event-B: An Integration of Languages

and Tools. In The IASTED International Conference on Software Engineering -

SE2008, February 2008.

[142] C. Snook, M. Butler, and I. Oliver. Towards a UML Profile for UML-B. Technical

report, Electronics and Computer Science, University of Southampton, 2003.

[143] J. M. Spivey. Understanding Z: A Specification Language and its Formal Seman-

tics. Cambridge Tracts in Theoretical Computer Science, 3, 1988.

[144] J. M. Spivey. The Z notation: A Reference Manual. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1989.

[145] B. Stevens. Implementing Object-Z with Perfect Developer. Journal of Object

Technology, 5(2):189–202, 2006.

BIBLIOGRAPHY 330

[146] B. Stroustrup. The C++ Programming Language. Addison-Wesley Professional,

third edition, February 2000.

[147] T.S. Taft, R.A. Tucker, R.L. Brukardt, and E. Ploedereder, editors. Consolidated

Ada reference manual: language and standard libraries. Springer-Verlag New York,

Inc., New York, NY, USA, 2002.

[148] The Eclipse Project. Eclipse - an Open Development Platform. Available at

http://www.eclipse.org/.

[149] The Eclipse Project Team. Eclipse Java Development Tools (JDT) Subproject.

Available at http://www.eclipse.org/jdt/.

[150] The Eclipse Project Team. Eclipse Modeling Project. Available at

http://www.eclipse.org/modeling/.

[151] The IEEE and The Open Group. The Open Group Base Spec-

ifications Issue 7 . IEEE Std 1003.1TM -2008. Available at

http://www.opengroup.org/onlinepubs/9699919799/.

[152] The RAISE Team. The RAISE Method. Prentice-Hall, 1999.

[153] The RODIN Project. Available at http://rodin.cs.ncl.ac.uk.

[154] E. Torlak and D. Jackson. Kodkod: A Relational Model Finder. In Orna Grumberg

and Michael Huth, editors, TACAS, volume 4424 of Lecture Notes in Computer

Science, pages 632–647. Springer, 2007.

[155] G. van Rossum and F.L. Drake Jr. The Python Language Reference Manual (ver-

sion 2.5). Network theory Ltd., 2006.

[156] W. Visser, K. Havelund, G.P. Brat, S. Park, and F. Lerda. Model Checking

Programs. Autom. Softw. Eng., 10(2):203–232, 2003.

[157] P.H. Welch and J.M.R. Martin. A CSP Model for Java Multithreading. In Software

Engineering for Parallel and Distributed Systems, 2000.

[158] P.H. Welch and J.M.R. Martin. Formal Analysis of Concurrent Java Systems. In

P.H. Welch and A.W.P. Bakkers, editors, Communicating Process Architectures

2000, pages 275–301, sep 2000.

[159] J. Woodcock and A. Cavalcanti. A Concurrent Language for Refinement. In

A. Butterfield, G. Strong, and C. Pahl, editors, IWFM, Workshops in Computing.

BCS, 2001.

[160] Jim Woodcock, Ana Cavalcanti, and Leonardo Freitas. Operational Semantics for

Model Checking Circus. In Fitzgerald et al. [60], pages 237–252.

http://www.eclipse.org/
http://www.eclipse.org/jdt/
http://www.eclipse.org/modeling/
http://www.opengroup.org/onlinepubs/9699919799/
http://rodin.cs.ncl.ac.uk

BIBLIOGRAPHY 331

[161] D. Yadav and M. Butler. Formal Development of Fault Tolerant Transactions for

a Replicated Database using Ordered Broadcasts. In Methods, Models and Tools

for Fault Tolerance (MeMoT 2007), pages 33–42, 2007.

[162] L. Yang and M. Poppleton. Automatic Translation from Combined B and CSP

Specification to Java Programs. In Julliand and Kouchnarenko [91], pages 64–78.

