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Blind Separation of Maternal and Fetal ECG’s
using any Number of Channels
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Abstract— In this paper we report on the separation of
maternal and fetal heartbeats from electrocardiogram (ECG)
recordings based on a sparse generative signal model. The
proposed algorithm uses Bayesian learning strategies to both
learn the characteristic PQRST complexes and then infer their
time location. Reconstruction of the signal based on each of
the learned PQRST complexes leads to a separation of the
maternal and fetal heartbeats. The method is flexible and canbe
used for single and multiple channel recordings. The extracted
information is valuable for medical diagnostics, offeringthe fetal
and maternal heart rate as well as the PQRST complexes from
which diagnostic information such as pathological PQRST shapes
become evident.

Index Terms— Blind source separation, fetal ECG, sparse
approximation, medical data analysis, Bayesian modelling.

I. I NTRODUCTION

In prenatal diagnostics of fetal heart conditions the electro-
cardiogram (ECG) signal of the fetal heart is of immense value
[1]. Of particular interest are the fetal heart rate and the shape
of the PQRST complex, e.g. the T/QRS ratio [1] and possible
variations in the PQRST complex such as ectopic beats. The
PQRST complex is the wave-shape of an ECG recording
associated with a single heartbeat. Two PQRST wave-shapes,
which have been learned with the method proposed here, can
be seen on the right of figure 3. The first small excursion is
the P wave, whilst the first large positive excursion is the R
wave. If the R wave is preceded by a negative excursion, the
negative excursion is called the Q wave and a possible negative
excursion after the R wave is called the S wave. Finally, a small
excursion follows, the T wave. Not all of these excursions are
visible in all recordings of the ECG and the particular wave-
shape depends crucially on the relative position between the
heart and the recording electrodes. For more detail the reader
should consult standard textbooks on ECG diagnostics such
as [2] and for a description of pathological ECG data [3] and
[4].

Unfortunately, non-invasive techniques are currently not
available that are able to directly record the fetal ECG sig-
nal without substantial interference. The standard methodto
record fetal ECG signals is to place the electrodes on the
maternal abdomen. This practice leads to a contamination
of the recorded signals with noise and interference from
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the maternal heartbeat. What is more, the amplitude of the
maternal heartbeat is in general much stronger than the fetal
one. An example of one such recording is shown in the top
left plot of figure 3.

In [5] and [6] two early methods were proposed to blindly
separate the maternal and fetal ECG signals. These early
methods used Singular Value Decompositions and in effect
relied only on second order statistics of the signals. More re-
cently, very good results have been achieved using higher order
statistical methods such as independent component analysis
(ICA) and independent subspace analysis [7], [8], [9]. These
previous approaches use multiple simultaneous recordingsand
exploit the space diversity between different electrodes.The
observation at each electrode is assumed to be a different
projection of a three-dimensional current source dipole vector.
The problem is then to infer the maternal and fetal bioelectric
vector processes from the observations. (See [5] for details).

The aim of this paper is to show that non-linear methods
based on a sparse generative signal model can be used to
blindly separate maternal and fetal ECG signals, even if only
a single sensor is available. The main assumptions used are:

1) The fetal and maternal PQRST complexes can each be
modelled with a single unknown time-domain wave-
form.

2) The PQRST complexes can occur at arbitrary time
locations.

3) The locations of the PQRST complexes are sparsely
distributed.

4) The strength with which each PQRST complex con-
tributes to the observation is non-negative.

In this paper we use assumption two instead of the more
restrictive assumption of a periodic heart rate, i.e. we do
not explicitly assume heartbeats to be periodic. Such an
assumption could be included into the model described below
by the specification of prior probabilities to enforce this peri-
odicity. However, early experiments with such a more complex
formulation did not offer significant advantages. Furthermore,
for diagnostic purposes, deviations from the periodicity are of
interest and in order not to mask such effects, we do not use
such constraints here.

The first assumption is the most restrictive assumption
on the model performance. Slight variations in the PQRST
complexes are common and a single feature cannot represent
these variations. Some pathological heart conditions leadto
variations between PQRST complexes. As these variations are
in general large, they will be detectable in the residual term.
In general, a more complex model for the PQRST complexes
could be envisaged and incorporated into our formalism. As
such complications distract from the main theme of this
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paper they are not discussed further here. Nevertheless, it
should be noted that slow variations in the PQRST complexes
can be tracked with the proposed method if the method is
implemented using an online implementation as used in [10].

The exact form of the signal model is described in more
detail in the next section in which the main model components
are introduced. In particular we specify a linear generative
model for time-series in which features such as the PQRST
complexes can occur at arbitrary locations. To facilitate the
adaptation of the model to a particular set of observations
we also specify a set of probability densities, which then
allow us to develop Bayesian learning strategies. A practical
algorithm is introduced in section III. This algorithm is based
on Monte Carlo approximations of the developed learning rule.
The successful separation of maternal and fetal heartbeatsis
then demonstrated in section IV

II. SIGNAL MODEL

In this paper we use the notationak,r to refer to the
unknown PQRST complexes. Herek ∈ {1, 2} labels the
maternal and the fetal PQRST complexes respectively andr is
the label for the recording electrode. We further introducetwo
time-series of impulse trainssk[t] (one for the maternal and
one for the fetal heartbeat) to model the strength and time-
location at which the heartbeats occur. These time-series are
zero most of the time and each heartbeat is then encoded by
a single positive value.

ECG recordings often contain contaminating noise. Further-
more, PQRST complexes show slight variations from heartbeat
to heartbeat. To model these two effects we introduce the noise
term er[t].

With these assumptions we can write the observation se-
quence at electroder as:

xr [t] =
∑

k∈{1,2}

∑
l

ak,r[t − l]sk[l] + er[t].

The left sum is adding the maternal and fetal ECG signals,
which are in turn modelled as a convolution of the characteris-
tic PQRST complexesak,r and the associated time-seriessk[t].
For notational convenience we will write the above model in
matrix notation asx = As + e, wherex is a vector in which
the individual observation time-series have been concatenated
and s is a similar vector for the unobserved sparse impulse
trains. The matrixA is then a concatenation of convolution
matrices. The exact structure is best understood from the visual
representation in figure 1.

In the above model, bothak,r as well as the sequences
sk[t] are unknown and have to be estimated. To solve this
problem we exploit the fact that the time-seriessk[t] are
known to be sparse, which means that most of the values are
exactly zero, i.e. heartbeats occur at isolated positions.This
prior knowledge is incorporated into a probabilistic model
formulation by assuming that the unknown time-seriessk[t]
are sequences of independent variables that are zero with
high probability. In order to describe, whether the time-series
sk[t] are zero or not, we introduce indicator variablesu.
The non-zero values are then assumed to be positive and are

Fig. 1. Graphical representation of the mixture model in matrix notation.
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Fig. 2. Graphical model representation of the stochastic signal model. On
the left are the stochastic impulse trains that model the maternal and fetal
heartbeats. On the right are the models for each observationelectrode, where
each heartbeat is convolved with the associated PQRST complex and noise is
added.

here modelled with the modified Rayleigh distribution [10].
The exact mathematical expressions for the model parameters
introduced here are summarised in appendix I.

The probabilistic formulation is best described using a
bayesian graphical model. This is done in figure 2. On the left
are the impulse trains, which encode the timing and strength
of the maternal and fetal heart. If at a particular time instance
the indicator variableuk[t] is zero, then so will besk[t] at
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that time instance. If, however,uk[t] is one, thensk[t] will be
a modified Rayleigh random variable. On the right we show
how each of the observations is modelled. Each of the sparse
time series is convolved with the associated PQRST complex
for that observation electrode and the results added together.
In addition, random noise contaminates the observations. The
PQRST complexes themselves are assumed to be unknown
random quantities.

All one is normally given are the individual observations
xr[t] and the problem is then to infer the other random
quantities in the model. A method to do this inference is
derived in the next section. Once estimates have been found,it
is possible to reconstruct the maternal and fetal ECG signals
using any one of the PQRST complexes and the associated
time-series:

xk,r [t] =
∑

l

ak,r [t − l]sk[l].

It is important to note that the model introduced here has
two ambiguities. Firstly, multiplication ofak,r by any scale
factor for all r and division ofsk[l] by the same scale factor
leads to the same reconstructions. This problem can be solved
by keeping the variance of the non-zerosk[t] fixed or by
normalising a1,1 and a2,1. Secondly, there is an ordering
ambiguity. Exchanginga1,r anda2,r for all r as well ass1[t]
ands2[t] again does not change the reconstruction of thexr[t].
Once estimates ofak,r have been calculated, we therefore
need to identify which one belongs to the fetal heart and
which belongs to the maternal heart. This is relatively straight
forward and has been done in this paper using the assumption
that the fetal heart rate is faster than the maternal one and that
the fetal PQRST complex is shorter than the maternal one.

III. L EARNING ALGORITHM

In order to estimate the PQRST complexes we treat the
unknownsk[t] anduk[t] as nuisance parameters. We therefore
calculate the maximum of the marginalised posterior

p(A|x) =

∫
p(A, s|x) ds.

This maximisation is done using a gradient descent approach
that minimises− ln p(A|x), the gradient of which can be
written as:

∆ak,r =

∫
∂ ln p(x|s,A)

∂ak,r
p(s|A,x) ds, (1)

where we assume that the densityp(A) is uninformative and
flat.

The integral in equation (1) cannot be evaluated analytically.
We therefore approximate the gradient using Monte Carlo
integration. This is done by drawingJ sampleŝsj andû

j from
p(s,u|A,x) using a Gibbs sampler [11]. The approximation of
the integral is then the average of the gradient ofln p(x|ŝj ,A)
evaluated at these sample points.

For the problem addressed here we found that a direct im-
plementation of the above gradient method often did not find
both, maternal and fetal, PQRST complexes. This was due to
the iterative learning strategy and the much stronger maternal
PQRST complex. The method quickly extracts the maternal

PQRST complex. Once the maternal PQRST complex had
been learned, the method was not able to also learn the fetal
one. This problem was solved by weighting the gradient update
by a term proportional to the sum of each of the time-series
ŝ

j
k[t]. This ensured that both PQRST complexes were updated

at a comparable rate.
The problem of estimating the time seriessk[t] can also be

solved based on the samplesŝ
j drawn fromp(s,u|A,x) once

the PQRST complexes have been found. We here estimated the
time-seriessk[t] using the sample mean ofŝj . Further details
of this Gibbs sampling based approach for a similar problem
can be found in [10].

IV. EXPERIMENTAL EVALUATION

To evaluate the method we used the data-set from [7]. This
data-set contains five signals recorded simultaneously with
five electrodes from the abdomen of a pregnant woman. The
three thoracic signals of the data-set were discarded for our
experiments.1

A. Single Channel Blind Source Separation

In the first experiment we only used the data from a single
channel. We fixed the length of the two PQRST complexes
to 100 samples each and learned the PQRST complexes from
the sequence with the algorithm outlined above.

The results obtained from channel (1) are shown in figure
3. In the top left corner we show the original signal used
as a training sequence. It is clear that the maternal heartbeat
is much stronger in this signal than the fetal one. In the
second row on the left we show the reconstructed heartbeat
of the maternal heart. The third row on the left shows the
sequencesk[t] associated with the maternal heartbeat. From
the occurrence of the non-zero values, the heart rate is easily
calculated. In the next two rows we show the fetal heartbeat
and the associated sequencesk[t]. Finally, in the last row we
show the residual signal.

On the right we show the two PQRST complexes learned
from the data. The top panel shows the PQRST complex of the
maternal heart and the bottom panel shows the fetal PQRST
complex. For both PQRST complexes many of the important
diagnostic features can be determined. Similar results could be
obtained from the other channels with the exception of channel
four. The recording from this sensor is challenging as the fetal
ECG contribution is very weak. This can be seen in figure 5
where the fetal ECG signal cannot be detected by eye. For the
other channels we found that occasionally a fetal heartbeatwas
not detected and that on other occasions a maternal heartbeat
was also detected as a fetal one. (See for example the results
in figure 6 below, where the maternal heartbeat at sample 2300
leads to a small fetal contribution.)

1Note that in [7] the sample frequency for these signals is specified as
500Hz, however, as noted in [9], this would lead to a very highmaternal and
fetal heart rate. We therefore label all graphs using samplenumber instead of
time.
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Fig. 3. Separation of fetal and maternal heartbeat. On the left we show the original single channel recording, in which the fetal heartbeat is much weaker
than the maternal one and in which the SNR is low (top), the separated maternal heartbeat signal (second panel), the heartrate (third panel), the separated
fetal heartbeat (fourth panel), the fetal heart rate (fifth panel) and the residual noise (last panel). On the right we show the maternal PQRST complex (top)
and the fetal PQRST complex (bottom).

B. Using Multiple Channels

The signal recorded with electrode 4 has a low frequency
contamination. A direct application of our method to multiple
channels, which include channel four, led to a modulation
of the strength of the fetal coefficient time-seriessk[t].
This problem is easily avoided by high-pass filtering of the
recorded signals before analysis similar to the method in
[12]. Alternatively, it might be possible to improve the noise

model by dropping the independence assumption and using
an auto regressive (AR) Gaussian noise model. However, this
extension has not been investigated yet.

Using the high-pass filter pre-processing and all available
data, the algorithm introduced here is able to separate all five
channels. The ten PQRST complexes learned in this case are
shown in figure 4. Figure 6 shows the separated fetal ECG
signals for all five sensors. Even the fetal PQRST complex
and ECG signal for sensor 4 could be found with this method.
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Fig. 4. The five maternal PQRST complexes (top) and the five fetal PQRST complexes (bottom), for each of the five sensors.

In figure 6 some weak spurious false detections can be seen
in the fetal heartbeat. These are however much weaker than the
actual fetal heartbeats. This problem was observed in several
of our experiments. For the single channel separation in the
previous section we also observed that occasionally some of
the fetal heartbeats were not detected, this did not happen for
the multi channel experiments.

For comparison, we separated the same five channels using
an ICA method as described in [9] (here we used the fastICA
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Fig. 5. The signal recorded with sensor four. The fetal heartbeat is buried
in noise and low frequency baseline wander is evident.

algorithm [14]). As seen in figure 7, the results are comparable
to our results. We have here plotted the separated fetal signal
for both, the ICA method (upper plot) and our method (lower
plot). The results computed with our approach are in general
less noisy. This is due to the fact that our model explicitly
includes a noise term. The main difference between the results
are for channel four. It appears at a first glance, that the ICA
method offers better results. However, this is deceptive as
further analysis shows that the larger amplitude of the fetal
ECG signal extracted from channel 4 with the ICA method
is an artefact. This is clear when looking at the residual of
channel four after subtracting the fetal signal. This residual
has a stronger fetal contribution than the original signal,i.e.
while in the original signal (figure 5) the fetal heartbeat is
barely visible, after subtracting the fetal reconstruction, the
residual has a noticeable fetal contribution. The sparse method
did seem to extract only the actual fetal ECG contribution.

V. D ISCUSSION AND CONCLUSION

Separation of maternal and fetal ECG signals from abdom-
inal recordings are of immense diagnostic benefit. Previous
methods such as [5], [6] and [9] have resorted to linear
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Fig. 6. The fetal ECG signals separated for each of the five sensors.

estimates and relied on multichannel recordings in order to
separate the individual signals. These methods model the ECG
signals as three-dimensional vector processes that are linearly
projected onto one dimensional observations. A linear estimate
of the two three-dimensional processes requires in general
at least six observations, i.e. one would need at least six
electrodes. As shown in [9] blind separation based on ICA type
methods can then be applied successfully. It was also shown
in [9], and confirmed in our experiments, that ICA is still
able to recover some information from the fetal heart, using
as few as three electrodes. However, as pointed out in [9], the
results with three electrodes only identified a one dimensional
subspace for the fetal heart and did therefore not recover all
of the signal structure.

Here we have proposed a non-linear method able to extract
PQRST complexes for the maternal and fetal heart. Based on
this model a separation of even single channel recordings was
possible. If more than one channel is available, this additional
information can be used and we are able to separate signals
with a very weak fetal contribution. Our model did not include
an explicit model for the baseline wander, however, we found
that standard ECG pre-processing techniques such as filtering
could be used to remove this problem.

In the proposed mixture model two filters have to be learned
from each of the observation sequences. In order to find
possible and useful solutions to this problem we had to use
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Fig. 7. Comparison between the results using an ICA method (upper graph
in each panel) to the results with the method presented here (lower plot in
each panel). Both methods used the same data with the exception that for our
method, we used pre-processing to remove the baseline wander from channel
four.

strong prior assumptions. We here proposed the use of sparsity
and non-negativity of the input sequences and did not use any
other prior information about the expected structure and shape
of the PQRST complexes. The found PQRST complexes and
extracted heart rates are not biased towards the normal shape of
these features and can therefore be used with more confidence
in diagnostic settings.

The proposed estimation ofsk[t] can be seen as a Bayesian
approach to QRS detection ([12] [13]). The problem ad-
dressed by Pan and Tompkins in [12] and by Christov in
[13] is the estimation of the occurrences of the QRS part
of the PQRST complexes in ECG recordings (however, not
in mixtures of ECG signals as discussed in this paper). Our
method encompasses this estimation of the occurrence of
the PQRST complexes and could therefore also be used to
estimate the QRS locations in standard ECG recordings. An
online implementation of our method could track changes in
the PQRST complexes and would constantly adapt the QRS
detection to the signal.

The main drawback of the proposed method is that the
extracted PQRST complexes are averages over the PQRST
complexes found in the signal. They do therefore not show
the variability between different PQRST complexes of the
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same heart. For the experiments conducted here, this was not
found to be a problem. However, it is easy to replace the
simple model for the PQRST complex with more involved
models, which could capture such variability. Furthermore,
strong anomalies in single PQRST complexes will lead to a
large reconstruction error so that these anomalies would be
visible in the residual. Nevertheless, many important diagnos-
tic properties of the heartbeat [3] [4] could be diagnosed from
the PQRST complexes extracted here.

The aim of this paper was a proof of concept, showing
that a sparse generative signal model can be used successfully
to extract fetal ECG signals from recordings made from the
maternal abdomen. The challenge is now to refine the proposed
approach and to develop a practical algorithm usable in clinical
applications. Currently, the main drawback of the method is
its computational complexity. However, it might be possible
to replace the slow Gibbs sampling approach with much
faster methods, such as an integral approximation by a delta
function at the MAP estimate ofp(s|A,x) as used in [15].
A fast method could then hopefully be developed to find
this MAP estimate, possibly based on previous work on QRS
detection [13]. Such an approach could possibly lead to a real
time implementation in which the impulse responses could
be constantly updated, so that slow changes in the PQRST
complexes due to movement of the fetus or the electrode could
be tracked. However, much more research in this direction is
required.

APPENDIX I
PROBABILISTIC FORMULATION

The model uses the following probabilistic distributions:

P (u) = Z−1e−0.5λuu, u ∈ {0, 1}
and

p(s|u) = up(s; µ, σ2
R) + (1 − u)δ0(s),

where we use the notations to denote any one sample from
the two time-seriessk[t] andu to denote an indicator variable
that is either zero or one. We useδ0(s) to denote the delta
function. The non-zero samples follow the modified Rayleigh
distribution:

p(s; µ, σ2
R) =

1

ZR
se−(s−µ)2/2σ2

R

and the error term is modelled as independent and identically
distributed Gaussian:

p(er[t]) =
1

σe

√
2π

e
− 1

2σ2
e

e2

r
[t]

.
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