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Blind Separation of Maternal and Fetal ECG’s
using any Number of Channels

Thomas Blumensathiviember, |IEEE, Mike E. Davies,Member, |EEE

Abstract—In this paper we report on the separation of the maternal heartbeat. What is more, the amplitude of the
maternal and fetal heartbeats from electrocardiogram (ECQ  maternal heartbeat is in general much stronger than the feta

recordings based on a sparse generative signal model. Theone. An example of one such recording is shown in the top
proposed algorithm uses Bayesian learning strategies to Ho left plot of figure 3

learn the characteristic PQRST complexes and then infer thie .
time location. Reconstruction of the signal based on each of [N [5] and [6] two early methods were proposed to blindly
the learned PQRST complexes leads to a separation of theseparate the maternal and fetal ECG signals. These early
maternal and fetal heartbeats. The method is flexible and cabe methods used Singular Value Decompositions and in effect
used for single and multiple channel recordings. The extraed rg|iad only on second order statistics of the signals. Mere r

information is valuable for medical diagnostics, offeringthe fetal centlv. verv aood results have been achieved using higlderor
and maternal heart rate as well as the PQRST complexes from Y, Very g u Vv ieved using hig

which diagnostic information such as pathological PQRST sipes  Statistical methods such as independent component asalysi

become evident. (ICA) and independent subspace analysis [7], [8], [9]. Bhes
Index Terms—BIlind source separation, fetal ECG, sparse previqus approache; usg multiple simu_ltaneous recordings
approximation, medical data analysis, Bayesian modelling exploit the space diversity between different electrodds

observation at each electrode is assumed to be a different
projection of a three-dimensional current source dipoktare
. INTRODUCTION The problem is then to infer the maternal and fetal bioelectr
In prenatal diagnostics of fetal heart conditions the etect vector processes from the observations. (See [5] for ditail
cardiogram (ECG) signal of the fetal heart is ofimmenseealu The aim of this paper is to show that non-linear methods
[1]. Of particular interest are the fetal heart rate and thepe based on a sparse generative signal model can be used to
of the PQRST complex, e.g. the T/QRS ratio [1] and possibidindly separate maternal and fetal ECG signals, even i onl
variations in the PQRST complex such as ectopic beats. Théingle sensor is available. The main assumptions used are:
PQRST complex is the wave-shape of an ECG recordingl) The fetal and maternal PQRST complexes can each be
associated with a single heartbeat. Two PQRST wave-shapes, modelled with a single unknown time-domain wave-
which have been learned with the method proposed here, can form.
be seen on the right of figure 3. The first small excursion is2) The PQRST complexes can occur at arbitrary time
the P wave, whilst the first large positive excursion is the R locations.
wave. If the R wave is preceded by a negative excursion, the3) The locations of the PQRST complexes are sparsely
negative excursion is called the Q wave and a possible wegati distributed.
excursion after the R wave is called the S wave. Finally, dlsma 4) The strength with which each PQRST complex con-
excursion follows, the T wave. Not all of these excursiores ar tributes to the observation is non-negative.
visible in all recordings of the ECG and the particular wavdn this paper we use assumption two instead of the more
shape depends crucially on the relative position between tlestrictive assumption of a periodic heart rate, i.e. we do
heart and the recording electrodes. For more detail theereadot explicitly assume heartbeats to be periodic. Such an
should consult standard textbooks on ECG diagnostics suasumption could be included into the model described below
as [2] and for a description of pathological ECG data [3] angly the specification of prior probabilities to enforce thexip
[4]. odicity. However, early experiments with such a more comple
Unfortunately, non-invasive techniques are currently néormulation did not offer significant advantages. Furtherep
available that are able to directly record the fetal ECG sidper diagnostic purposes, deviations from the periodicity af
nal without substantial interference. The standard metioodinterest and in order not to mask such effects, we do not use
record fetal ECG signals is to place the electrodes on thech constraints here.
maternal abdomen. This practice leads to a contaminationThe first assumption is the most restrictive assumption
of the recorded signals with noise and interference froon the model performance. Slight variations in the PQRST
complexes are common and a single feature cannot represent
The authors are with IDCOM & Joint Research Institute formdigand  these variations. Some pathological heart conditions tead
Image Processing, Edinburgh University, King's Buildingdayfield Road, . ..
Edinburgh EH9 3JL, UK (Tel.: +44(0)131 6505659, Fax.: +4a@1 6506554, variations between PQRST complexes. As these variatians ar
e-mail: thomas.blumensath@ed.ac.uk, mike.davies@e#)ac in general large, they will be detectable in the residuahter
This research was supported by EPSRC grant D000246/1. MEBoat- | general, a more complex model for the PQRST complexes
edges support of his position from the Scottish Funding €ibuand their . . . .
could be envisaged and incorporated into our formalism. As

support of the Joint Research Institute with the HeriottWiiversity as a Visa . ) ]
component part of the Edinburgh Research Partnership. such complications distract from the main theme of this



JANUARY 4, 2007: UNPUBLISHED MANUSCRIPT. 2

paper they are not discussed further here. Nevertheless, [D* jD*

should be noted that slow variations in the PQRST complex¢

can be tracked with the proposed method if the method | = =

implemented using an online implementation as used in [10 DD DD
The exact form of the signal model is described in mort ] O

detail in the next section in which the main model component D D

are introduced. In particular we specify a linear geneeativ|™| - — _— © =] e

= =

model for time-series in which features such as the PQRS

a11‘
a1 |

l

S1

ass |

complexes can occur at arbitrary locations. To facilitdte t

adaptation of the model to a particular set of observatior [D jD 4 i
we also specify a set of probability densities, which ther D = D o

allow us to develop Bayesian learning strategies. A praktic [ }D D

algorithm is introduced in section lll. This algorithm isdwal DD DD

on Monte Carlo approximations of the developed learning.rul —
The successful separation of maternal and fetal heartbsaats

. 1. Graphical representation of the mixture model inriratotation.
then demonstrated in section IV P P

Il. SIGNAL MODEL

In this paper we use the notatiom, ,, to refer to the
unknown PQRST complexes. Heide € {1,2} labels the
maternal and the fetal PQRST complexes respectivelyraad

the label for the recording electrode. We further introdivee Electrode 1

time-series of impulse traing;[¢t] (one for the maternal and
one for the fetal heartbeat) to model the strength and time-
location at which the heartbeats occur. These time-seres a
zero most of the time and each heartbeat is then encoded by Maternal
a single positive value. heartbeat
ECG recordings often contain contaminating noise. Further
more, PQRST complexes show slight variations from heattbea
to heartbeat. To model these two effects we introduce theenoi
terme,.[t].
With these assumptions we can write the observation se-
guence at electrode as:

DD anelt—Uskll] + erft]. Fetal
For notational convenience we will write the above model in ! : /.
matrix notation ax = As + e, wherex is a vector in which
the individual observation time-series have been conadgen Electrode r
ands is a similar vector for the unobserved sparse impulse

ke{1,2} 1 heartbeat
trains. The matrixA is then a concatenation of convolutiorrig. 2. Graphical model representation of the stochastinaimodel. On

matrices. The exact structure is best understood from twali the left are the stochastic impulse trains that model theemat and fetal
representation in figure 1. heartbeats. On the right are the models for each observeléatrode, where

each heartbeat is convolved with the associated PQRST esrapl noise is
In the above model, bothy , as well as the sequencesdded.

sk[t] are unknown and have to be estimated. To solve this

problem we exploit the fact that the time-serieg|t] are

known to be sparse, which means that most of the values Asfe modelled with the modified Rayleigh distribution [10].
exactly zero, i.e. heartbeats occur at isolated positidhis The exact mathematical expressions for the model parasneter
prior knowledge is incorporated into a probabilistic modéhtroduced here are summarised in appendix I.

formulation by assuming that the unknown time-serigg] The probabilistic formulation is best described using a
are sequences of independent variables that are zero viidyesian graphical model. This is done in figure 2. On the left
high probability. In order to describe, whether the timdese are the impulse trains, which encode the timing and strength
sk[t] are zero or not, we introduce indicator variables of the maternal and fetal heart. If at a particular time ins&a
The non-zero values are then assumed to be positive and tare indicator variableu[t] is zero, then so will bes;[t] at

The left sum is adding the maternal and fetal ECG signals,
which are in turn modelled as a convolution of the charasteri
tic PQRST complexesy, . and the associated time-serigs$t].
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that time instance. If, howeveuy[t] is one, thers,[t] will be  PQRST complex. Once the maternal PQRST complex had
a modified Rayleigh random variable. On the right we shobeen learned, the method was not able to also learn the fetal
how each of the observations is modelled. Each of the spamse. This problem was solved by weighting the gradient ugpdat
time series is convolved with the associated PQRST complex a term proportional to the sum of each of the time-series
for that observation electrode and the results added tegetls [¢]. This ensured that both PQRST complexes were updated
In addition, random noise contaminates the observatiohs. Tat a comparable rate.
PQRST complexes themselves are assumed to be unknowTihe problem of estimating the time seriggt] can also be
random quantities. solved based on the sampksdrawn fromp(s, u|A, x) once
All one is normally given are the individual observationshe PQRST complexes have been found. We here estimated the
z.[t] and the problem is then to infer the other randomime-seriess,[t] using the sample mean éf. Further details
quantities in the model. A method to do this inference isf this Gibbs sampling based approach for a similar problem
derived in the next section. Once estimates have been fa@undan be found in [10].
is possible to reconstruct the maternal and fetal ECG signal
using any one of the PQRST complexes and the associated
time-series: V. EXPERIMENTAL EVALUATION
x;w[t] = Z a;w[t — l]Sk[l]. ]
. To evaluate the method we used the data-set from [7]. This
ta-set contains five signals recorded simultaneousli wit
ive electrodes from the abdomen of a pregnant woman. The
three thoracic signals of the data-set were discarded for ou
periments?

It is important to note that the model introduced here h
two ambiguities. Firstly, multiplication oy, by any scale
factor for all » and division ofs[l] by the same scale factor
leads to the same reconstructions. This problem can bedsol¥&
by keeping the variance of the non-zesg[t] fixed or by
normalising a; ; and az ;. Secondly, there is an ordering ! ] ]
ambiguity. Exchangingy . anda, . for all r as well ass; [{] A. Single Channel Blind Source Separation

ands|t] again does not change the reconstruction oftil.  |n the first experiment we only used the data from a single
Once estimates ok, have been calculated, we thereforghannel. We fixed the length of the two PQRST complexes
need to identify which one belongs to the fetal heart ang 100 samples each and learned the PQRST complexes from
which belongs to the maternal heart. This is relativelyight the sequence with the algorithm outlined above.

forward and has been done in this paper using the assumptiofy e resylts obtained from channel (1) are shown in figure
that the fetal heart rate is faster than the maternal onetatd t3 |, the top left corner we show the original signal used
the fetal PQRST complex is shorter than the maternal oneqq 4 training sequence. It is clear that the maternal hesirtbe

is much stronger in this signal than the fetal one. In the

I1l. L EARNING ALGORITHM second row on the left we show the reconstructed heartbeat
In order to estimate the PQRST complexes we treat tbé the maternal heart. The third row on the left shows the
unknowns[t] anduy[t] as nuisance parameters. We therefoigequences[t] associated with the maternal heartbeat. From

calculate the maximum of the marginalised posterior the occurrence of the non-zero values, the heart rate i/ easi
calculated. In the next two rows we show the fetal heartbeat
p(Alx) = /P(A, s[x) ds. and the associated sequengé]. Finally, in the last row we

) o ) ) show the residual signal.
This maximisation is done using a gr_adlent des_cent approacky, ihe fight we show the two PQRST complexes learned
that m|n|m|ses—lnp(A|x), the gradient of which can beé g, the data. The top panel shows the PQRST complex of the
written as: maternal heart and the bottom panel shows the fetal PQRST
dlnp(x[s, A) complex. For both PQRST complexes many of the important
Aay, = | —————p(s|A,x) ds, 1 ) : ) o
e, / Oay,, P(s|A, x) ds @ diagnostic features can be determined. Similar resultildme

where we assume that the dengity) is uninformative and obtained from the other channels with the exception of cehnn
flat four. The recording from this sensor is challenging as tia fe

The integral in equation (1) cannot be evaluated analyyicaIECG contribution is very weak. This can be seen in figure 5
We therefore approximate the gradient using Monte Camshere the fetal ECG signal cannot be detected by eye. For the
integration. This is done by drawingsamples? anda’ from other channels we found that occasionally a fetal hearthast

»(s, u|A, x) using a Gibbs sampler [11]. The approximation Orfuot detected and that on other occasions a maternal heartbea

the integral is then the average of the gradieringf(x|s7, A) was also detected as a fetal one. (See for example the results
evaluated at these sample points ’ in figure 6 below, where the maternal heartbeat at sample 2300

For the problem addressed here we found that a direct i}ﬁé‘ds to a small fetal contribution.)
plementation of the above gradient method often did not find

both, maternal and fetal, PQRST complexes. This was due t(l)Note that in [7] the sample frequency for these signals isifipd as
500Hz, however, as noted in [9], this would lead to a very higdternal and

the iterative leaming strategy and t_he much stronger materfetal heart rate. We therefore label all graphs using samheber instead of
PQRST complex. The method quickly extracts the materniate.



JANUARY 4, 2007: UNPUBLISHED MANUSCRIPT. 4

Maternal PQRST complex
Mixture '

amplitude

500 1000 1500 2000 2500

samples

o

Maternal heartbeat

amplitude

amplitude

500 1000 1500 2000 2500
sample number

Maternal heart rate ps

0 500 1000 1500 2000 2500
sample number

o

amplitude

’ ‘ 0 50 100
sample number

Fetal heartbeat

A

500 1000 1500 2000 2500
sample number
Fetal heart rate g

Fetal PQRST complex

amplitude

o

amplitude

I I A O A
0 500 1000 1500 2000 2500
sample number

amplitude

Residual

500 1000 1500 2000 2500

sample number 0 50 100
sample number

amplitude

o

Fig. 3. Separation of fetal and maternal heartbeat. On tihevie show the original single channel recording, in whick fetal heartbeat is much weaker
than the maternal one and in which the SNR is low (top), thersepd maternal heartbeat signal (second panel), the taar({third panel), the separated
fetal heartbeat (fourth panel), the fetal heart rate (fifimgd) and the residual noise (last panel). On the right wevghe maternal PQRST complex (top)
and the fetal PQRST complex (bottom).

B. Using Multiple Channels model by dropping the independence assumption and using

an auto regressive (AR) Gaussian noise model. However, this
The signal recorded with electrode 4 has a low frequen€ytension has not been investigated yet.

contamination. A direct application of our method to mu#ip  Using the high-pass filter pre-processing and all available

channels, which include channel four, led to a modulatiatata, the algorithm introduced here is able to separatevall fi

of the strength of the fetal coefficient time-serigg[t]. channels. The ten PQRST complexes learned in this case are

This problem is easily avoided by high-pass filtering of thehown in figure 4. Figure 6 shows the separated fetal ECG

recorded signals before analysis similar to the method signals for all five sensors. Even the fetal PQRST complex

[12]. Alternatively, it might be possible to improve the sei and ECG signal for sensor 4 could be found with this method.
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Fig. 4. The five maternal PQRST complexes (top) and the fived RQRST complexes (bottom), for each of the five sensors.

In figure 6 some weak spurious false detections can be sedgorithm [14]). As seen in figure 7, the results are comparab
in the fetal heartbeat. These are however much weaker teantih our results. We have here plotted the separated fetalsign
actual fetal heartbeats. This problem was observed in agevdor both, the ICA method (upper plot) and our method (lower
of our experiments. For the single channel separation in thkt). The results computed with our approach are in general
previous section we also observed that occasionally someleds noisy. This is due to the fact that our model explicitly
the fetal heartbeats were not detected, this did not hapgrenihcludes a noise term. The main difference between thetsesul

the multi channel experiments.

are for channel four. It appears at a first glance, that the ICA

For comparison, we separated the same five channels udigfhod offers better results. However, this is deceptive as
an ICA method as described in [9] (here we used the fastidirther analysis shows that the larger amplitude of thel feta

amplitude

Al

0 500 1000 1500 2000
sample number

2500

Fig. 5. The signal recorded with sensor four. The fetal leatt is buried

in noise and low frequency baseline wander is evident.

ECG signal extracted from channel 4 with the ICA method
is an artefact. This is clear when looking at the residual of
channel four after subtracting the fetal signal. This neaid
has a stronger fetal contribution than the original signal,
while in the original signal (figure 5) the fetal heartbeat is
barely visible, after subtracting the fetal reconstructithe
residual has a noticeable fetal contribution. The spargsbade
did seem to extract only the actual fetal ECG contribution.

V. DISCUSSION AND CONCLUSION

Separation of maternal and fetal ECG signals from abdom-
inal recordings are of immense diagnostic benefit. Previous
methods such as [5], [6] and [9] have resorted to linear
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Fig. 6. The fetal ECG signals separated for each of the fivessn Fig. 7. Comparison between the results using an ICA methpgeugraph

in each panel) to the results with the method presented f@rer( plot in
each panel). Both methods used the same data with the excepét for our

. . . . . method, we used pre-processing to remove the baseline whnde channel
estimates and relied on multichannel recordings in order #g.

separate the individual signals. These methods model tii& EC
signals as three-dimensional vector processes that aariyn
projected onto one dimensional observations. A lineamegg strong prior assumptions. We here proposed the use of gparsi
of the two three-dimensional processes requires in geneaald non-negativity of the input sequences and did not use any
at least six observations, i.e. one would need at least sither prior information about the expected structure aragpsh
electrodes. As shown in [9] blind separation based on IC& typf the PQRST complexes. The found PQRST complexes and
methods can then be applied successfully. It was also shoexiracted heart rates are not biased towards the normag stiap
in [9], and confirmed in our experiments, that ICA is stilthese features and can therefore be used with more confidence
able to recover some information from the fetal heart, usirig diagnostic settings.
as few as three electrodes. However, as pointed out in [8], th The proposed estimation 6f;[t] can be seen as a Bayesian
results with three electrodes only identified a one dimeraio approach to QRS detection ([12] [13]). The problem ad-
subspace for the fetal heart and did therefore not recovVer dilessed by Pan and Tompkins in [12] and by Christov in
of the signal structure. [13] is the estimation of the occurrences of the QRS part
Here we have proposed a non-linear method able to extrattthe PQRST complexes in ECG recordings (however, not
PQRST complexes for the maternal and fetal heart. Basediommixtures of ECG signals as discussed in this paper). Our
this model a separation of even single channel recordings waethod encompasses this estimation of the occurrence of
possible. If more than one channel is available, this aolthti the PQRST complexes and could therefore also be used to
information can be used and we are able to separate sigredmate the QRS locations in standard ECG recordings. An
with a very weak fetal contribution. Our model did not inofud online implementation of our method could track changes in
an explicit model for the baseline wander, however, we fourtde PQRST complexes and would constantly adapt the QRS
that standard ECG pre-processing techniques such asifijteriletection to the signal.
could be used to remove this problem. The main drawback of the proposed method is that the
In the proposed mixture model two filters have to be learneatracted PQRST complexes are averages over the PQRST
from each of the observation sequences. In order to fiedmplexes found in the signal. They do therefore not show
possible and useful solutions to this problem we had to usee variability between different PQRST complexes of the
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visible in the residual. Nevertheless, many importantigg [7] L. De Lathauwer, B. De Moor, and J. Vandewalle, “Fetalctlecar-
tic properties of the heartbeat [3] [4] could be diagnosemfr diogram extraction by source subspace_ separation?rae. |[EEE SP /
ATHOS Workshop on HOS (Girona, Spain), pp. 134-138, June 1995.
the PQR_ST complexes extracted here. ~[8] V.Vigneron, A. Paraschiv-lonescu, A. Azancot, O. Sijpoand C. Jutten,
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APPENDIX |
PROBABILISTIC FORMULATION

The model uses the following probabilistic distributions:
P(u) = Z e 052w 4 € {0,1}
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