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Sampling and reconstructing signals from a union
of linear subspaces

Thomas Blumensath

Abstract

In this note we study the problem of sampling and reconstructing signals which are assumed to lie on or close to one of
several subspaces of a Hilbert space. Importantly, we here consider a very general setting in which we allow infinitely many
subspaces in infinite dimensional Hilbert spaces. This general approach allows us to unify many results derived recently in areas
such as compressed sensing, affine rank minimisation and analog compressed sensing.

Our main contribution is to show that a conceptually simple iterative projection algorithms is able to recover signals from
a union of subspaces whenever the sampling operator satisfies a bi-Lipschitz embedding condition. Importantly, this result holds
for all Hilbert spaces and unions of subspaces, as long as the sampling procedure satisfies the condition for the set of subspaces
considered. In addition to recent results for finite unions of finite dimensional subspaces and infinite unions of subspaces in finite
dimensional spaces, we also show that this bi-Lipschitz property can hold in an analog compressed sensing setting in which we
have an infinite union of infinite dimensional subspaces living in infinite dimensional space.

I. INTRODUCTION

To motivate the general setting of this paper, we start with a review of the compressed sensing signal model in finite
dimensions. In compressed sensing, sparse signals are considered. A class of N -dimensional signals f in a Hilbert space is
said to be K-sparse, if there is an orthonormal basis {ψi}, such that the N -dimensional vector x = [〈f, ψi〉]i has at most K
non-zero elements. More generally, if xK is the best approximation to x with no more than K non-zero elements, then if
x− xK is small, x is said informally to be approximately K-sparse.

In compressed sensing, a sparse signal is sampled by taking M linear measurements ỹj = 〈f, φj〉. In matrix notation, this
can be written as

ỹ = Φx, (1)

where ỹ is the vector of measurements 〈f, φj〉 and where Φ is the matrix with entries [Φ]j,i = 〈ψi, φj〉. In practice, the
measurement process is never perfect and we have to account for measurement noise and inaccuracies. We thus assume that
the measurements (or samples) are of the form

y = Φx + e, (2)

where e is a measurement error.
Traditional sampling theory would predict that we require N samples to be able to reconstruct x form the measurements.

However, if x is K-sparse or approximately K-sparse, then we can often take less samples and still reconstruct x with near
optimal precision [1] [2]. Importantly, reconstructing x from y can often be done using fast polynomial time algorithms. One
of the conditions that has been shown to be sufficient for the reconstruction of x with many different fast algorithms is that
the measurement process satisfies what is known as the Restricted Isometry Condition of a given order, where the order of the
condition is related to the sparsity K.

The Restricted Isometry Constant of order K is generally defined as the smallest quantity δK that satisfies the condition

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22, (3)

for all K sparse vectors x.
The sparse compressed sensing model defines a set of subspaces associated with the set of K-sparse vectors. Fixing the

location of the K non-zero elements in a vector x defines a K-dimensional subspace of RN . There are
(
N
K

)
such K dimensional

subspaces, each for a different sparsity pattern. All K-sparse vectors, that is, all vectors with no more than K non-zero elements,
thus lie in the union of these

(
N
K

)
subspaces. This interpretation of the sparse model led to the consideration of more general

union of subspaces (UoS) as in [3], [4] and [5]. Such a generalization offers many advantages. For example, many types of
data are known to be sparse in some representation, but also exhibit additional structure. These are so called structured sparse
signals, an example of which are images, which are not only approximately sparse in the wavelet domain but also have wavelet
coefficients that exhibit tree structures [6], [7]. Apart from tree structured sparse models, structured sparse models include
block sparse signal models [8], [9], [10] and the simultaneous sparse approximation problem [11], [12], [13], [14], [15]. All
of these models can be readily seen as UoS models.

Applied Mathematics, School of Mathematics, University of Southampton, University Road, Southampton, SO17 1BJ, UK
c© This work might be submitted for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.



VERSION: DECEMBER 3, 2009 2

However, the idea of UoS is applicable beyond constrained sparse models. For example, signals sparse in an over-complete
dictionary [16], [10], the union of statistically independent subspaces as considered by Fletcher et. [17] or signals sparse in an
analysis frame [18] can all be understood from this general viewpoint. All of these examples were of finite unions of subspaces
in finite dimensional space. But there is nothing that stops us from considering infinite dimensional spaces and infinite unions.
In this case, the UoS model also incorporates signal models such as the finite rate of innovation model [19], the low rank
matrix approximation model [20] and the analog compressed sensing model [21].

We here consider this general setting where we allow infinite unions. In this setting, we derive a conceptually simple and
efficient computational strategy to solve linear inverse problems. To achieve this, we build on previous work of [3] and [4],
where theoretical properties of UoS models were studied. Of importance are also the computational strategies previously
suggested in [5] (where the authors studied block-sparse models) and in [8] (where structured sparse signals were considered).

We here make the following contribution. We show that, if the sampling strategy satisfies a certain bi-Lipschitz embedding
property (closely related to the Restricted Isometry Property known in compressed sensing), then, in a fixed number of iterations,
a relatively simple iterative projection algorithm can compute near optimal estimates of signals that lie on, or close to, a given
UoS model. These results are similar to those derived for K-sparse signals in [22] and for structured sparse models in [8].
Our contribution here is to show that these results extend to more general UoS models (whether finite or infinite) as long as
the bi-Lipschitz embedding property holds.

A. Sampling and the union of subspaces models

Union of subspaces models have been considered in [3], [4] and [5]. To formally define the UoS model in a general Hilbert
space H, consider a set of arbitrary subspaces Ai ⊂ H. We then define the UoS as the set

A =
⋃
Ai. (4)

In analogy with compressed sensing, sampling of an element x ∈ H is done using a linear operator Φ : H → L, where L
is some Hilbert space. We then write the observations as

y = Φx + e, (5)

where e ∈ L is again an error term.

B. The bi-Lipschitz condition

In order to guarantee stability, it is necessary to impose a bi-Lipschitz condition on Φ as a map from A to L.

Definition 1. We say that Φ is bi-Lipschitz on a set A, if there exist constants 0 < α ≤ β, such that for all x1,x2 ∈ A

α‖x1 + x2‖2 ≤ ‖Φ(x1 + x2)‖2 ≤ β‖x1 + x2‖2. (6)

The bi-Lipschitz constants of Φ on A are the largest α and smallest β for which the above inequalities hold for all x1,x2 ∈ A.

Whilst β is the square of the Lipschitz constant of the map Φ (as a map from A to L), 1/α is the square of the Lipschitz
constant of the inverse of Φ defined as a map from ΦA ⊂ L to A. Note that the requirement α > 0 is equivalent to the
requirement that Φ is one to one as a map from A to L. Therefore, the inverse of P is well defined as a function from ΦA
to the set A whenever α > 0.

C. Proximal sets and projections

When dealing with infinite dimensions and infinite unions, extra care has to be taken. In order to guarantee the existence of
(possibly non-unique) best approximations of elements in H with elements from A, additional assumptions on A are required.
In addition to the assumption that A is a closed set, we assume that the set A is proximal, that is, that for all x ∈ H the set

pA(x) = {x̃ : x̃ ∈ A, ‖x̃− x‖ = inf
x̂∈A
‖x̂− x‖} (7)

is non-empty. For proximal sets A we can therefore define a projection as any point xA that satisfies

‖x− xA‖ = inf
x̂∈A
‖x̂− x‖. (8)

Note that xA is the orthogonal projection of x onto one of the subspaces Ai. We write this projection as

PA(x) = S(pA(x)); (9)

where S is a set valued operator that returns a single element of the set pA(x̃). How this element is chosen in practice does
not influence the theoretical results derived here so that we do not specify any particular approach in this paper.
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II. THE OPTIMAL SOLUTION

In order to talk about optimal solutions, we require the existence of a projection of a point y ∈ L onto the set ΦL. Note
that we assume A to be closed which implies that ΦA is closed if Φ is be-Lipschitz. However, as stated above, closedness of
ΦA is not sufficient to show that the projection onto ΦA exists. In this section we therefore also assume that ΦA is proximal.

More formally, consider
inf
x̃∈A
‖y −Φx̃‖. (10)

As ΦA is assumed to be proximal, we can define optimal solutions as those elements xopt ∈ A for which

‖y −Φxopt‖ = inf
x̃∈A
‖y −Φx̃‖. (11)

Alternatively, instead of considering proximal sets ΦA, we could define ε optimal points as those points xεopt ∈ A for which

‖y −Φxopt‖ ≤ inf
x̃∈A
‖y −Φx̃‖+ ε. (12)

The results derived below then still hold but will include additional ε terms. To avoid carrying around these additional terms,
we here assume that ΦA is a proximal subset of L.

The bi-Lipschitz condition guarantees that Φ is one to one as a function from A to L, that is, it maps distinct points form
A into distinct points in L. We are therefore able, at least in theory, to invert Φ on A. The condition also guarantees stability
in that, for any x ∈ A, if we are given an observation y = Φx + Φx̂ + e, where e ∈ L and x̂ ∈ H are general errors,
then we could, at least in theory, recover a good approximation of x as follows. We let ŷ be the projection of y onto the
closest element in ΦA. We then look for the unique x ∈ A for which ŷ = Φx̂. As will be shown more rigorous below, the
bi-Lipschitz property of Φ then guarantees that x̂ is close to x.

We now show that all xopt are basically optimal if the bi-Lipschitz property holds, that is, we can’t define an estimate that
performs substantially better.

Let us first derive an upper bound for the error. Note that by definition of xopt, ‖y − Φxopt‖ ≤ ‖y − ΦxA‖, where we
define xA = PA(x). Defining eopt = y −Φxopt and eA = y −ΦxA we thus have

‖x− xopt‖ ≤ ‖xA − xopt‖+ ‖x− xA‖

≤ 1√
α
‖Φ(xA − xopt)‖+ ‖x− xA‖

=
1√
α
‖eA − ê‖+ ‖x− xA‖

=
1√
α
‖eA‖+

1√
α
‖ê‖+ ‖x− xA‖

≤ 2√
α
‖eA‖+ ‖x− xA‖,

where the second inequality is due to the Lipschitz property and the last inequality due to the fact that ‖eopt‖ ≤ ‖eA‖.
We furthermore have the following ’worst case’ lower bound

Theorem 1. For each x there exists an e, such that

‖x− xopt‖ ≥
√

0.5
β
‖eA‖+ ‖x− xA‖

Proof: We have the lower bound

‖x− xopt‖2 = ‖xA − xopt‖2 + ‖x− xA‖2 − 2〈(xA − xopt), (x− xA)〉

≥ 1
β
‖Φ(xA − xopt)‖2 + ‖x− xA‖2 − 2〈(xA − xopt), (x− xA)〉,

where from now on we simplify the notation and write 〈·, ·〉 for the real part of the inner product Re〈·, ·〉.
Let Ci be the cone of elements y ∈ L for which xopt ∈ Ai. Because xA is the orthogonal projection of x onto the closest

subspace, if x ∈ Ai, then x− xA is orthogonal to Ai. Thus, if xA ∈ Ai and if y ∈ Ci, then

〈(xA − xopt), (x− xA)〉 = 0. (13)

Also, for all y ∈ Ci, because eopt = y −Φxopt is orthogonal to ΦxA −Φxopt,

1
β
‖Φ(xA − xopt)‖2 +

1
β
‖eopt‖2 =

1
β
‖eA‖2, (14)
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so that for all y ∈ Ci

‖x− xopt‖2 ≥ 1
β
‖eA‖2 −

1
β
‖eopt‖2 + ‖x− xA‖2.

We can now choose e = cΦxA, where c > 1 is chosen large enough for y to be in Ci. Because eopt is orthogonal to ΦAi,
‖eopt‖ is constant as a function of c, whilst ‖eA‖ increases for c > 1. We can thus choose c (and thus e) such that y ∈ Ci and

−‖eopt‖2 > −0.5‖eA‖2 +
√

2β‖eA‖‖x− xA‖, (15)

so that for all x there is an e such that

‖x− xopt‖2 ≥ 2
0.5
β
‖eA‖2 + ‖x− xA‖2 +

√
0.5
β
‖eA‖‖x− xA‖,

from which the theorem follows.

III. THE ITERATIVE PROJECTION ALGORITHM

Calculating xopt is highly non-trivial for most Φ and A. We therefore propose an iterative algorithm and show that under
certain conditions on α and β we can efficiently calculate solutions whose error is of the same order as that achieved by xopt.
In order for our algorithm to be applicable, we require that we are able to efficiently calculate the projection of any x ∈ H
onto the closest Ai (which therefore has to be well defined).

The Iterative Projection Algorithm is a generalization of the Iterative Hard Thresholding algorithm of [23], [24] and [22] to
general UoS models.

Assume A is proximal. Given y and Φ, let x0 = 0. The Iterative Projection Algorithm is the iterative procedure defined by
the recursion

xn+1 = PA(xn + µΦT (y −Φxn)), (16)

where the non-linear operator PA(a) is defined in subsection I-C.
In many problems, calculation of PA(a) is much easier than a brute force search for xopt. For example, in the K-sparse

model, PA(a) simply keeps the largest (in magnitude) K elements of a and sets the other elements to zero, whilst in the low
rank matrix approximation problem, different efficient projections have been defined in [20]. Furthermore, the above algorithm
only requires the application of Φ and its adjoint, which can often be computed efficiently. Importantly, the next result shows
that under certain conditions, not only does the algorithm calculate near optimal solutions, it does so in a fixed number of
iterations (depending only on a form of signal to noise ratio)!

We have the following main result.

Theorem 2. Let A be a proximal subset of H. Given y = Φx + e where x is arbitrary. Assume Φ is bi-Lipschitz as a map
from A to L with constants α and β. If β ≤ 1

µ < 1.5α, then, after

n? =

2
ln(δ ‖eA‖‖xA‖ )

ln(2/(µα)− 2)

 (17)

iterations, the Iterative Projection Algorithm calculates a solution xn
?

satisfying

‖x− xn
?

‖ ≤ (c0.5 + δ)‖eA‖+ ‖xA − x‖, (18)

where c ≤ 4
3α−2µ and ẽ = Φ(x− xA) + e.

Note that this bound is of the same order as that derived for xopt.
The above theorem has been proved for the K-sparse model in [22] and for constraint sparse models in [8]. Our main

contribution is to show that it holds for general UoS constrained inverse problems1, as long as the bi-Lipschitz property holds
with appropriate constants.

To derive the result, we pursue a slightly different approach to that in [22] and [8] and instead follow the ideas of [25]. The
proof is based on the following lemma.

Lemma 3. If 1
µ ≥ β then, using xn+1 = PA(xn + µΦ∗(y −Φxn)), we have

‖y −Φxn+1‖2 − ‖y −Φxn‖2

≤ −〈(xA − xn),g〉+ 1
µ
‖xA − xn‖2, (19)

1It might also be worth noting that the proof of Theorem 2 is not only valid for union of subspaces, but holds for arbitrary subsets of A ⊂ H for which
Φ satisfies the bi-Lipschitz requirement. A more detailed discussion of this fact is left for an upcoming publication.
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where g = 2Φ∗(y −Φxn).

Proof: The left hand side in the equality of the lemma can be bounded by

‖y −Φxn+1‖2 − ‖y −Φxn‖2

= −〈(xn+1 − xn),g〉+ ‖Φ(xn+1 − xn)‖2

≤ −〈(xn+1 − xn),g〉+ 1
µ
‖(xn+1 − xn)‖2

We will now show that xn+1 = HA(xn + µ
2 g) minimizes −〈(x̃− xn),g〉+ 1

µ‖(x̃− xn)‖2 over all x̃ ∈ A so that xA ∈ A
implies that

−〈(xn+1 − xn),g〉+ 1
µ
‖(xn+1 − xn)‖2 ≤ −〈(xA − xn),g〉+ 1

µ
‖(xA − xn)‖2, (20)

from which the lemma will follow.
We write the infimum of −〈(x̃− xn),g〉+ 1

µ‖(x̃− xn)‖2 as

inf
x∈A

(−〈x,g〉+ 〈xn,g〉+ 1
µ
‖(x− xn)‖2)

∝ inf
x∈A

(−µ〈x,g〉+ 〈x,x〉+ ‖xn‖2 − 2〈x,xn〉)

∝ inf
x∈A

(−µ〈x,g〉+ 〈x,x〉 − 2〈x,xn〉)

∝ inf
x∈A
‖x− xn − µ

2
g‖2

= ‖xn+1 − xn − µΦ∗(y −Φxn)‖2,

where the last equality comes from the definition of xn+1 = PA(xn+µΦ∗(y−Φxn)). Thus, the infimum of −〈(x̃−xn),g〉+
1
µ‖(x̃− xn)‖2 is proportional to infx∈A ‖x− xn − µ

2 g‖2 so that xn+1 simultaneously minimises both quantities.

Proof of Theorem 2: Let xA = PA(x), so that the triangle inequality implies that.

‖x− xn+1‖ ≤ ‖xA − xn+1‖+ ‖xA − x‖. (21)

The square of the first term on the right is bounded using the bi-Lipschitz property of Φ

‖xA − xn+1‖2 ≤ 1
α
‖Φ(xA − xn+1)‖2. (22)

We expand this, so that

‖Φ(xA − xn+1)‖2 = ‖y −Φxn+1 − eA‖2

≤ ‖y −Φxn+1‖2 + ‖eA‖2 − 2〈eA, (y −Φxn+1)〉
≤ ‖y −Φxn+1‖2 + ‖eA‖2 + ‖eA‖2 + ‖y −Φxn+1‖2

= 2‖y −Φxn+1‖2 + 2‖eA‖2, (23)

where the last inequality follows from −2〈eA, (y −Φxn+1)〉 ≤ ‖eA‖‖(y −Φxn+1)‖ ≤ 0.5(‖eA‖2 + ‖(y −Φxn+1)‖2).
We will now show that under the Lipschitz assumption of the theorem, the first term on the right is bounded by

‖y −Φxn+1‖2 ≤ (µ− α)‖(xA − xn)‖2 + ‖eA‖2. (24)

To show this, we write

‖y −Φxn+1‖2 − ‖y −Φxn‖2

≤ −2〈(xA − xn),Φ∗(y −Φxn)〉+ 1
µ
‖xA − xn‖2

= −2〈(xA − xn),Φ∗(y −Φxn)〉+ α‖xA − xn‖2 + (
1
µ
− α)‖xA − xn‖2

≤ −2〈(xA − xn),Φ∗(y −Φxn)〉+ ‖Φ(xA − xn)‖2 + (
1
µ
− α)‖xA − xn‖2

= ‖y −ΦxA‖2 − ‖y −Φxn‖2 + (
1
µ
− α)‖xA − xn‖2

= ‖eA‖2 − ‖y −Φxn‖2 + (
1
µ
− α)‖(xA − xn)‖2 (25)

where the first inequality is due to Lemma 3.
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We have thus shown that
‖xA − xn+1‖2 ≤ 2

(
1
µα
− 1
)
‖(xA − xn)‖2 +

4
α
‖eA‖2. (26)

Under the condition of the Theorem, 2( 1
µα − 1) < 1, so that we can iterate the above expression

‖xA − xk‖2 ≤
(

2
(

1
µα
− 1
))k

‖xA‖2 + c‖eA‖2, (27)

where c ≤ 4
3α−2 1

µ

.
In conclusion, we have

‖x− xk‖ ≤

√(
2

1
µα
− 2
)k
‖xA‖2 + c‖eA‖2 + ‖xA − x‖

≤
(

2
1
µα
− 2
)k/2

‖xA‖+ c0.5‖eA‖+ ‖xA − x‖, (28)

which means that after k? =
⌈
2

ln(δ
‖eA‖
‖xA‖

)

ln(2/(µα)−2)

⌉
iterations we have

‖x− xk
?

‖ ≤ (c0.5 + δ)‖eA‖+ ‖xA − x‖. (29)

A. A remark on eA
For readers familiar with the literature on compressed sensing a remark is in order. In our general result, we have written

the bound on the result in terms of ‖eA‖ = ‖Φ(x − xA)e‖. This is the most general statement in which we do not assume
additional structure on x − xA and Φ. This differs from results in sparse inverse problems, where, under the bi-Lipschitz
property, eA is proportional to ‖x − xK‖ + ‖x−xK‖1

K . Here xK is the best K-term approximation to x. It also differs from
results derived in [8] where A satisfies certain nesting properties and where a Restricted Amplification property is used to
bound ‖eA‖ by a function of x−xA. Unfortunately, in the general setting of this paper, such a bound is not possible without
additional assumptions and the best one could hope for would be to bound ‖eA‖ by ‖Φ‖‖x− xA‖+ ‖e‖.

IV. EXAMPLES OF BI-LIPSCHITZ EMBEDDINGS

The bi-Lipschitz property depends on both, Φ and A. In this section we will study three particular cases from the literature.
For the first two cases, bi-Lipschitz maps have already been studied and we here review the main results before deriving a
new result that demonstrates how such properties can be proved even in an infinite dimensional setting.

A. Finite Unions of Finite dimensional Subspaces

We start with the finite dimensional setting and with unions of finite dimensional subspaces. In particular, let A be the union
of L <∞ subspaces each of dimension no more than K and let ΦA ⊂ RM . This is an important special case of UoS models
which covers many of the problems studied in practice, such as the K-sparse models used in compressed sensing [1], [2],
block sparse signal models [8], [9], [10], the simultaneous sparse approximation problem [11], [12], [13], [14], [15], signals
sparse in an over-complete dictionary [16], [10], the union of statistically independent subspaces as considered by Fletcher et.
[17] and signals sparse in an analysis frame [18]. Finite unions of finite dimensional subspaces have therefore been studied
in, for example, [4] where the following result was derived (Note that [4] contained a small error. We here give the correct
result).

Theorem 4. For any t > 0, let

M ≥ 1
c(δA/6)

(
2 ln(L) + 2K ln

(
36
δA

)
+ t

)
, (30)

then there exist a Φ and a function c(δ) > 0 such that

(1− δA)‖y1 − y2‖22 ≤ ‖Φ(y1 − y2)‖22 ≤ (1 + δA)‖y1 − y2‖22 (31)

holds for all y1,y2 from the union of L arbitrary K dimensional subspaces A. What is more, if Φ is an M × N matrix
generated by randomly drawing i.i.d. entries from an appropriately scaled subgaussian distribution2, then this matrix satisfies
equation (31) with probability at least

1− e−t. (32)

2Examples of these distributions include the Gaussian distribution and random variables that are ± 1√
N

with equal probability [26] [16].
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The function c(δ) then only depends on the distribution of the entries in Φ and is c(δ) = δ2/4− δ3/6 if the entries of Φ are
i.i.d. normal or if the entries are either 1/

√
N or −1/

√
N with equal probability.

B. Infinite Unions of Finite dimensional Subspaces in RN

Recently, similar results could also be derived for a union of infinitely many subspaces. In [20] minimum rank constrained
linear matrix valued inverse problems are studied. These problems are another instance of the linear inverse problem studied
in this paper and can be stated as follows: Find a matrix X ∈ Rm×n with rank no more than K, such that y = P (X), where
P (·) is a linear function that maps Rm×n into RM . Vectorising X as an element x ∈ RN and by writing P in matrix form,
we have the linear inverse problem where A is the set of vectorised matrices with rank at most K. This problem was solved
with the Iterative Projection Algorithm in [27]. In [20] it was also shown that

Theorem 5. If P is a random nearly isometrically distributed linear map3, then with probability 1− e−c1N ,

(1− δ)‖X1 −X2‖F ≤ ‖P (X1 −X2)‖ ≤ (1 + δ)‖X1 −X2‖F (33)

for all rank K matrices X1 ∈ Rm×n and X2 ∈ Rm×n, whenever N ≥ c0K(m+n)log(mn), where c1 and c0 are constants
depending on δ only.

C. Infinite Unions of Infinite dimensional Subspaces

We now show that non-trivial bi-Lipschitz embeddings also exist between infinite dimensional spaces H and L, where A is
an infinite union of infinite dimensional subspaces in H. We here consider the example from [29]. A continuous real valued
time series x(t) is assumed to be band-limited, that is, its Fourier transform X (f) is assumed to be zero apart from the set
S ⊂ [−BN BN ]. Furthermore, the support of X (f) is assumed to be ’sparse’ in the sense that we can write S as the union
of K intervals of ’small’ bandwidth BK , i.e. S ⊂

⋃K
k=1[dk dk + BK ], where the dk are arbitrary scalars from the interval

[0 BN −BK ]. Note, due to symmetry, we only consider the support in the positive interval [0 BN ]. Crucially, we assume that
KBK < BN , so that X (f) is zero for most (in terms of Lebesgue measure) f in [0 BN ]. Fixing the support S, X (f) and
therefore x(t) lie on a subspace of the space of all square integrable functions with bandwidth BN . If KBK < BN , then there
are infinitely many distinct sets S satisfying this definition, so that x(t) lies in the union of infinitely many infinite dimensional
subspaces.

Classical sampling theory tells us that there exists sampling operators that map band-limited functions into `2. What is more,
these sampling operator are not only one to one, but also isometric, that is, bi-Lipschitz embeddings with α = 1 and β = 1.
These sampling operators are given by the Nyquist sampling theorem, which only takes account of the bandwidth BN , but
does not consider additional structure in A. To improve on the classical theory, we are thus interested in sampling schemes
with a sampling rate that is less than the Shannon rate.

To this end, we show that there exist bi-Lipschitz embeddings of functions from A into the space of band-limited signals
with bandwidth BM , where BM < BN . Combining this embedding with the standard (isometric) Nyquist sampling kernel
for functions with bandwidth BM , gives a stable sampling scheme where the sampling rate is 2BM instead of 2BN . The
iterative projection algorithm will therefore also be applicable to this sampling problem. It is worth noting that the bi-Lipschitz
embedding property shown here not only guarantees invertability of the sampling process, which was demonstrated for the
problem under consideration in [29], but also guarantees stability of this inverse.

Our treatment here is theoretical in nature and is meant as an example to show how bi-Lipschitz embeddings can be
constructed in the infinite dimensional setting, it is not meant as a fully fledged practical sampling method and many practical
issues remain to be addressed.

Compressed Sensing theory has shown that there is a constant c such that there are matrices Φ ∈ RM×N with M ≤
cKln(N/k) which are bi-Lipschitz embeddings from the set of all K sparse vectors in RN to RM [28]. Therefore, assume Φ
satisfies

α‖x‖2 ≤ ‖Φx‖2 ≤ β‖x‖2 (34)

for all vectors x ∈ CN with no-more than 2K non-zero elements.
The following sampling approach is basically that proposed in [21] and is based on mixing of the spectrum of x(t). It uses

a matrix Φ ∈ RM×N to define this mixing procedure. Our contribution is to show that if the matrix Φ has the bi-Lipschitz
property with constants α and β, then so will this sampling operator.

Let A ⊂ L2
C([0 BN ]) be the subset of the set of square integrable real valued functions whose Fourier transform has positive

support S ⊂ [0 BN ], where S is the union of no more than K intervals of width no more than BK . Let M = dBN/BKe
and let BM = MBK . We then split the interval [0 BN ] into M blocks of length BK as follows. Let Sj be the interval
[(j − 1)BK jBK) for integers 1 ≤ j ≤ N − 1 and SN = [(j − 1)BK BN ]. Similarly, let S̃i be the interval [(i− 1)BK iBK)

3See [20] for an exact definition of nearly isometrically distributed linear maps. An example would again be if the matrix Φ has appropriately scaled i.i.d.
Gaussian entries.
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for integers 1 ≤ i ≤M − 1 and SM = [(i− 1)BK iBK ]. We can then define a linear map from x(t) to y(t) by mapping the
Fourier transform of x(t) into the Fourier transform of y(t) as follows

Y(Si) =
N∑
j=1

[Φ]i,jX (Sj), (35)

where we use the convention that X (f) = 0 for f > BN . In words, the new function has the Fourier transform Y (defined
by symmetry also for f < 0) which is constructed by concatenating M functions of length BK . Each of these blocks is a
weighted sum of the N blocks of X , where the weights are the entries of the matrix Φ.

We have the following result

Theorem 6. Let A ⊂ L2
C([0 BN ]) be the subset of the set of square integrable real valued functions whose Fourier transform

has positive support S ⊂ [0 BN ], where S is the union of no more than K intervals of width no more than BK . If the matrix
Φ ∈ RM×N is bi-Lipschitz as a map from the set of all K-sparse vectors in RN into RM , with bi-Lipschitz constants α and
β, then the map defined by equation 35 is a bi-Lipschitz map from A to L2

C([0 BM ]) such that

α‖X1 −X2‖2 ≤ ‖Y1 − Y2‖22 ≤ β‖X1 −X2‖22, (36)

for all X1,X2 ∈ A.

Proof: To see that this map is bi-Lipschitz from A to L2([0 BM ]), consider stacking up the blocks Y(S̃i) and X (Sj) in
two vectors. For f ∈ [0 BK) we use fi = (i− 1) ∗BK + f and f̃j = (j − 1) ∗BK + f and define the vectors

y(f) =


Y(f̃1)
Y(f̃2)
· · ·
Y(f̃M )

 = Φ


X (f1)
X (f2)
· · ·
X (fN )

 = Φx(f). (37)

This model is known as an infinite measurement vector model [21].
Using the norm of L2, we can write

‖Y1 − Y2‖2 =
∫ BM

0

(Y1(f)− Y2(f))2 df

=
∫ BK

0

∑
i

(Y1((i− 1)BK + f)− Y2((i− 1)BK + f))2 df

=
∫ BK

0

‖y1(f)− y2(f)‖22 df

=
∫ BK

0

‖Φx1(f)−Φx2(f)‖22 df. (38)

Noting that for fixed f , the vectors x1(f) and x2(f) are K-sparse, the bi-Lipschitz property of Φ leads to the inequalities∫ BK

0

α‖x1(f)− x2(f)‖22 df ≤
∫ BK

0

‖Φx1(f)−Φx2(f)‖22 df ≤
∫ BK

0

β‖x1(f)− x2(f)‖22 df, (39)

so that
α‖X1 −X2‖2 ≤ ‖Y1 − Y2‖22 ≤ β‖X1 −X2‖22, (40)

i.e the mapping defined above satisfies the bi-Lipschitz condition with constants α and β defined by the bi-Lipschitz constants
of the matrix Φ.

If we consider signals whose Fourier transform has support S and if we let |S| be the size of the support, then, if we
assume that the support is the union of finitely many intervals of length BK , then we have |S| = KBK for some K. If we
then use N = BN/BK and select M and BM such that BM = MBK , then the fact that there are bi-Lipschitz matrices with
M = cK lnN/K together with the above theorem implies the following corollary

Corollary 7. Let A ⊂ L2
C([0 BN ]) be the subset of the set of square integrable real valued functions whose Fourier transform

has positive support S ⊂ [0 BN ], where |S| is bounded and where S is the union of finitely many intervals of finite width.
There exist bi-Lipschitz embeddings from A to L2

C([0 BM ]) whenever

BM ≥ c|S| ln
(
BN
|S|

)
, (41)

where c is some constant.
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V. CONCLUSION

We have here presented a unified framework that allows us to sample and reconstruct signals that lie on or close to the
union of subspaces. The bi-Lipschitz property is necessary to guarantee stable reconstruction. We have shown that bounds on
the bi-Lipschitz constants α and β are sufficient for the near optimal reconstruction with the iterative projection algorithm.
Whilst we have here concentrated on the general theory for arbitrary union of subspaces models, we have highlighted several
more concrete examples from the literature. We could also show that bandlimited signals with ’sparse’ frequency support admit
sub-Nyquist sampling methods that are bi-Lipschitz.

We hope that this note offers the basis for the development of novel sampling approaches to several problems that fit into
the union of subspaces framework. On the one hand, we have shown on several examples, how bi-Lipschitz sampling operators
can be constructed. On the other hand, we have suggested an algorithmic framework which can reconstruct signals with near
optimal accuracy. Whilst our contribution was theoretical in nature, our results point the way toward practical strategies that
can be developed further in order to tackle a given sampling problem. To achieve this, four problems need to be addressed,
1) defining constraint sets A that capture relevant prior knowledge, 2) designing realisable sampling operators that satisfy the
bi-Lipschitz property, 3) implementing efficient ways to store and manipulate the signals on a computer and 4) developing
efficient algorithms to project onto the constraint set.

————————————————————————-
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