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THE DEVELOPMENT OF ZERO-G CLASS UNDERWATER ROBOTS

by Blair Thornton

The ‘Zero-G’ is designated as a new class of underwater robot that is capable of unrestricted
attitude control. A novel control scheme based on internal actuation using Control Moment
Gyros (CMGs) is proposed to provide Zero-G Class Autonomous Underwater Vehicles (AUVs)
with this unique freedom in control.

The equations of motion for a CMG actuated underwater robot are derived and a non-
linear feedback control law formulated based on energy considerations of the system’s coupled
dynamics. Singularities, redundancy and null motion are discussed in the context of CMGs
and a mathematical escapability condition is developed based on the differential geometry
of null motion. A comprehensive geometric study of the singularities of a CMG pyramid is
performed and together with considerations of the inverse kinematics of attitude control form
the basis of a global steering law that exactly achieves the desired torques, whilst guaranteeing
real-time singularity avoidance within a constrained workspace.

The development of the CMG actuated Zero-G Class underwater robot IKURA is de-
scribed. This is the first Zero-G Class prototype and is the first application of CMGs to
underwater robots. A series of experiments to demonstrate the practical application of CMGs
and verify the associated theoretical developments is described. The open-loop dynamics of
the system and the exactness and real-time applicability of the CMG steering law are ver-
ified. Experiments are carried out to assess the performance of the proposed control law
by comparing the response of the robot to that using alternative control laws that neglect
the hydrodynamic interactions of the body and the coupled motion of the CMGs and body
respectively. The control law demonstrates a faster response with a smaller overshoot for
less overall control activity than the alternative methods. The ability to actively stabilise the
passively unstable translational dynamics of the robot are verified. Next, the unrestricted
attitude control capability is confirmed with the robot demonstrating the necessary range
of attitude control to adopt and maintain any attitude on the surface of a sphere. Finally,
the ability to stabilise any attitude while translating in surge is confirmed with the robot
performing vertically pitched diving and surfacing in surge.

This is the first time an underwater robot has performed such a manoeuvre. This research
demonstrates that CMGs are capable of actively stabilising the passively unstable dynamics
of an underwater robot with essentially zero-righting moment and are capable of provid-
ing it with unrestricted attitude control. The three-dimensional manoeuvring capabilities
allow Zero-G Class underwater robots to plan and optimise their missions in a fully three-
dimensional manner, in a way that has not been possible previously. This study concludes
that the application of CMGs for attitude control opens up a path to develop sophisticated
Zero-G Class underwater robots and their application to new fields of underwater research.
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Preface

The ocean provides vast but finite natural resources that are vital for, and exists in harmony
with, all life on earth. Exploration from its familiar shores to the unknown deep is essential
to understand the behaviour of the ocean, discover what resources it offers and establish to
what extent these can be exploited without destroying its fragile balance. However, under-
water expeditions are riddled with complications and pose great dangers to the submersibles
used. Therefore, unmanned underwater robots have attracted a great deal of attention from
engineers and scientists as they can access remote underwater territories with no threat to
human life. The future of ocean research points towards highly intelligent, untethered un-
derwater robots to operate autonomously in geometrically complicated, cluttered and even
enclosed environments. The increasingly ambitious requirements demand smaller and more
agile underwater robots, pushing the performance envelope beyond the boundary of that of-
fered by the traditional thrusters and fins used, and in particular calling for greater actuation
capabilities at low speeds. This has seen research into alternative actuation techniques gain

momentum.



Chapter 1

Introduction

1.1 Motivation and aims

The ocean is a vast three-dimensional environment and it follows that an ocean research tool,
such as the Autonomous Underwater Vehicle (AUV), should ideally be able to move freely in
any direction within its surroundings. The ability to adopt and maintain any attitude on the
surface of a sphere with a zero radius turning circle would allow an intelligent underwater
robot to approach its missions in a fully three-dimensional manner, optimising the use of its
thrusters, sensors and power supply in a way that has not been possible previously. It is
thought that, in addition to improving AUV performance, unrestricted attitude control will
open up new fields of research where AUVs can be applied. The aim of this research is to
develop a new class of ‘Zero-G’ AUV that is capable of unrestricted attitude control. This

unique freedom in control is achieved through the pursuit of two complementary goals:

e the introduction of Control Moment Gyros (CMGs) as a new type of underwater actu-

ator and

e the development of a novel unrestricted attitude control scheme, for a body with zero

righting moment, based on internal momentum exchange using CMGs.

An AUV is a fully automated untethered underwater robot that is piloted by an internal
computer. Onboard sensors assess its environment and this data is used to make intelligent
decisions regarding the behaviour of the robot and to generate control signals to manoeuvre
itself as required. An AUV carries its own power supply and forms a fully self-contained
ocean exploration system. Once deployed there is no human interaction until the mission has

been completed.

The last 25 years has seen AUVs evolve into two main classes. The most widely seen is
the ‘cruising’ class that performs various large area observations [1-6]. These robots have
lengths in the order of 4 to 10m and operate at a safe distance from their target, travelling

predominantly in surge using a main thruster supplemented by fins and rudders for directional
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control. The demand for robots to operate closer to their targets and carry out detailed
inspection, mapping and even manipulation tasks has seen the development of smaller and
more agile ‘hovering’ class AUVs [7-9]. These typically have lengths between 1.5 to 2m and
operate at low speeds using multiple thrusters for independent control over several degrees of
freedom so that they can cope with sudden changes in the geometry of the target. Underwater
robotics is a diverse field and the various applications demand a number of different types of
AUV in addition to the traditional main classes. Underwater gliders are extremely efficient
in terms of power consumption and are capable of travelling long distances by varying their
buoyancy, using foils to deflect fluid momentum and propel themselves through the open
ocean [10,11]. Other alternatives include biomimetic AUVs that draw inspiration from the
actuation techniques of marine creatures [12,13]. These often have articulated or flexible
bodies that undulate to generate hydrodynamic forces to propel themselves through the
water. More detailed discussions of underwater robots and their applications can be found in
the following references [14-16]. To date, however, untethered underwater robots have relied
on passive stability to maintain a useable orientation, applying limited or often no active
control about the roll and pitch axes. This confines their motion to that along a series of

two-dimensional planes through the water and thereby limits their applications.

The Zero-G is designated as a new class of underwater robot that is capable of approaching
its missions in a truly three-dimensional manner. Coincident centres of gravity and buoyancy
allow Zero-G Class underwater robots to adopt and maintain any attitude on the surface of a
sphere as if in a zero gravity environment. However, this freedom in control comes at the cost
of stability in roll and pitch. Therefore, the attitude control system must actively stabilise
the necessary fast angular rotations about these axes as well as achieve the desired orienta-
tion. This requires a closed-loop attitude control system that can manage any orientation to
provide independent control over all three rotational axes with a zero radius turning circle
and demands a speed and resolution of control that cannot be achieved using traditional

underwater actuation methods due to their slow response to control inputs.

Internal actuation devices present many advantages over traditional underwater actuators.
Since they are contained within the body of the robot, they preserve the hydrodynamic
integrity of its hull. Furthermore, they are protected from the harsh underwater environment
and do not exert any external forces, which is of practical benefit when operating in proximity
to loose surfaces or small creatures. In contrast to thrusters and fins that rely on relative
fluid motion, internal actuators generate their own momentum and apply their control to the
robot directly. Therefore, their performance is independent of external conditions and their
control authority is maintained over the entire operating envelope, including low speed and
even stationary conditions. This offers a speed and resolution of response that can surpass
traditional actuation techniques and even those of nature. Such devices present their greatest
advantage when used to complement traditional actuators, in particular the use of internal
torque generators for attitude control greatly reduces the required number of thrusters and
allows for simple and elegant design. It is contended that the control response offered by
internal actuation techniques, specifically CMGs, opens a path to develop sophisticated Zero-

G Class underwater robots and their application to new fields of underwater research.
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1.2 Research background

Internal actuation devices such as controlled movable masses are used to provide roll and pitch
control for buoyancy driven underwater gliders such as ALBAC [10] and SLOCUM [11]. In
the latter case buoyancy is controlled by an electrically powered ballast pump, which in
turn leads to propulsion. However, such devices cannot provide full control over all three
rotational axes. The use of internal momentum exchange devices to control the attitude of
underwater robots was suggested in 1998 by Leonard [17] and has been the subject of on-
going research [18-21] leading to the development of the underwater robot IAMBUS [22] in
2003 that uses reaction wheels to control its attitude. However, reaction wheels use a single
motor for both the accumulation of angular momentum and generation of torque. This limits
the magnitude of their output to that of the motor and also leads to saturation of the rotors

as they reach their maximum rate. This poses significant difficulties for attitude control.

A CMG is a torque generator that consists of a flywheel mounted on a system of gimbals.
Separate motors are used for the accumulation of momentum and generation of torque. The
gyroscopic torque amplification offered by the momentum stored in the flywheels suggests that
CMGs are capable of generating larger torques, with a faster response than equivalent reaction
wheels and so they have been the subject of much research since they were first developed
in 1966 [23]. Early research considered the application of CMGs for the attitude control of
space vehicles [24-26] and this continues to be the main emphasis of research to date. This
work considered theoretical issues such as the steering control of specific CMG configurations
and the efficiency of these different arrangements, as well as more practical issues such as the
physical assembly of the hardware and the implementation of software [27-34]. It was soon
realised that CMG systems suffered a problem with singular orientations that can lead to a
momentary loss of control. However, this problem could be overcome in double gimballed
systems [35-38]. This led to the successful application of a CMG system in the US satellite
Skylab, which consisted of three double gimbal CMG units [39,40].

Single gimballed CMG systems pose several significant advantages over double gimballed
devices. They are mechanically less complicated and are more efficient, generating larger
torques due to their gyroscopic torque amplification property. However, they also suffer a
serious problem with singular orientations that must be overcome if they are to be applied
practically. The singularity problem was first identified by NASA in 1972 [32]. Margulies [41]
formulated the geometric theory of singular surfaces in 1978 and was the first to identify null
motion and thus the possibility of singularity avoidance in redundant single gimbal systems.
In the same year Tokar described the shape and size of singular surfaces and considered the ef-
fects of gimbal limits [42-44]. One of Tokar’s most significant contributions was in 1979 when
he introduced the concept of locally escapable and inescapable singular surface regions [45].
He concluded that a system with six or more units contains no inescapable singular regions
and thus has enough redundancy to solve any singularity problem. This led to the construc-
tion of a six unit single gimbal system for the Russian space station MIR [46]. However,
due to the size and complexity of this system, efforts continued to assess the singularities of

various other CMG configurations and propose methods for singularity avoidance in systems
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of limited redundancy. In particular, singularity avoidance in the minimally redundant four
unit CMG pyramid was the focus of much attention due to its compact size and mechanical
simplicity [47-53]. Many of these works considered singularity avoidance as a local problem,
however, in 1987 Bauer [54] demonstrated that even though escapability is defined locally,
local singularity avoidance methods can encounter inescapable singularities that could have
been avoided in the first place, and so concluded that singularity avoidance should be treated
as a global problem. However, a solution to perform real-time singularity avoidance whilst

remaining exact to the commanded torque in systems of limited redundancy remained elusive.

It has been demonstrated that singularity avoidance can be achieved by relaxing some of
the constraints on the system. In Vadali’s method of preferred gimbal states [55] the real-time
constraint is relaxed to allow knowledge of future instructions to be used when generating the
steering command. Paradiso [56,57] extended this concept to select predetermined gimbal
paths based on extensive geometric studies. Bedrossian [58,59] and later Oh [60] applied the
singularity-robust (SR) method to relax the exactness constraint, allowing local output errors
in order to pass singular regions. This concept was developed further in the singular direction
avoidance (SDA) method of Ford [61] that reduces the permitted error. Kurokawa [62-64]
approached the problem from a different perspective. Instead of avoiding singularities by
relaxing the constraints on the system, additional constraints were imposed on gimbal motion
to eliminate some singular regions and achieve exact and real-time steering in a restricted
workspace. However, despite numerous applications for the three-axis attitude control of

space vehicles, CMGs have not previously been applied to underwater robots.

1.3 Objectives

It is thought that the control response offered by single gimbal CMGs can form the basis
for the development of Zero-G Class underwater robots and will lead to new fields of un-
derwater research. However, extending the application of CMGs to underwater robots gives
rise to complications associated with operating within a fluid environment. In particular, the
viscous environment greatly complicates the dynamics and control of the robot, as well as
demanding sustained torques that increase the likelihood of encountering problematic singu-
lar orientations. This research describes both theoretical and practical developments in order
to realise Zero-G Class underwater robots and the associated CMG based control system to
provide unrestricted attitude control. The theoretical steps are:
e derivation of a fully descriptive model for the dynamics of the system in any orientation,
e formulation of a three-axis attitude control law that is suitable for application to AUVs,
e analysis of the singularities and null motion of CMGs to develop a mathematical es-
capability condition and
e formulation of a steering law that exactly achieves the desired torques whilst guaran-
teeing real-time singularity avoidance.
Beyond the above problem formulation, the practical application of the control system is
assessed using the CMG actuated, Zero-G Class underwater robot IKURA. This is an ex-
perimental platform developed as part of this research to verify the theoretical developments

and to demonstrate unrestricted attitude control.
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1.4 Organisation of thesis

This thesis is organised into ten chapters including this introduction. These detail both the
theoretical and practical developments of this research. An additional four appendices are
included to add depth and support the main body of the report. In Chapter 2 the main
characteristics of CMG systems are discussed. A comparison of single and double gimbal
systems is made together with an overview of different configurations. Finally, the basic

structure of a CMG based attitude control system is described.

Chapter 3 derives the coupled equations of motion for a body, containing some system
of CMGs, that is free to translate and rotate in a fluid environment. The fully descriptive
dynamic equations are derived based on the energy of the complete system, accommodating
fluid interactions and viscous effects. Quaternions are used to describe motion in the inertial
frame of reference since their description is valid for all orientations. In Chapter 4 a three-axis
attitude control law is formulated based on energy considerations of the system’s dynamics.
A Lyapunov assessment is carried out to ensure global asymptotic stability to the desired
state. The non-linear control law developed takes into account the coupled dynamics of the
CMG, body and fluid system.

Chapter 5 discusses singularities, redundancy and null motion in the context of CMGs and
introduces the concept of steering law exactness. The differential geometry of singularities and
null motion are considered to develop a mathematical escapability condition. This determines
to what extent singularities can be avoided without generating any undesired torque effects.
In Chapter 6 the mathematical tools developed in the previous chapter are applied to perform
a comprehensive geometric study of the singularities of a minimally redundant CMG pyramid.
This, together with considerations of the inverse kinematics of attitude control, forms the
basis of a global steering law that rotates the gimbals to generate a torque exactly equal
to that commanded by the control law, whilst guaranteeing real-time singularity avoidance

within a constrained workspace.

Chapter 7 follows the development of the CMG actuated Zero-G Class underwater robot
IKURA that provides an experimental platform to verify the theoretical developments. This
is the first application of CMGs to underwater robots and so the practical considerations of
the mechanical and electrical design of the system are discussed. This chapter is supported
by Appendices A-C. Appendix A contains CAD drawings and some photos of IKURA and
its CMG system. Appendix B contains details of the electrical design. The hydrodynamic

and other modelling parameters used are presented in Appendix C.

Chapter 8 presents the results of a series of practical experiments performed to demon-
strate the application of CMGs and verify the theoretical developments. The first series of
experiments verifies the dynamic model of the system. Next, the exactness and real-time
applicability of the CMG steering law is demonstrated. For convenience of instrumentation
these experiments were performed on dry-land. This does not effect the validity of the results.
The third series of experiments assess the performance of the complete control system. To

allow for comparison tests were performed with two alternative control laws in addition to
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that developed in this work. The final experiment described in this chapter demonstrates the
active stabilisation of a passively unstable surge manoeuvre using CMGs. These experiments
were performed underwater using the experimental pool facilities of the URA laboratory
at the University of Tokyo. Real-time video footage of the experiments can be found in

Appendix D and is referred to in the text where relevant.

Chapter 9 focuses on the unrestricted attitude control and unique manoeuvring capabil-
ities of this new Zero-G Class of underwater robot. The necessary range of yaw and pitch
control to adopt and maintain any attitude on the surface of a sphere with a zero radius
turning circle is demonstrated. Next, the ability to stabilise any attitude while translating in
surge is verified practically in an experiment that involves vertically pitched diving and sur-
facing in surge. This is the first time an underwater robot has performed such a manoeuvre.
Real-time video footage of the experiment can be found in Appendix D and is referred to in
the text. The potential offered by the application of CMG technology to AUVs is reviewed
and the implications for the future of underwater research discussed. Chapter 10 concludes

this research and provides suggestions for future work.

Appendix D is a DVD that contains real-time video footage of the experiments carried
out in this research. Instructions for use and the content of the DVD can be found in the
text. Although all the relevant data is presented within the main body of this document,
the author recommends viewing the DVD to support these results. In addition, the DVD
also includes a poster and still images of IKURA and its components and a short trailer that

illustrates the Zero-G concept. This can be viewed on any standard DVD player.




Chapter 2
CMG systems and attitude control

A CMG system is composed of a number of identical CMG units arranged in a defined
configuration. Each unit consists of a flywheel mounted on an arrangement of actuated
gimbals. Rotations of the gimbals change the direction of the flywheel angular momentum
vector and this generates a gyroscopic torque that can be used to actuate the robot. There
are two principal types of CMG unit; single and double gimbal. In both cases the direction
of the torque generated changes with the gimbal angles and so typically a system composed
of several units is required to achieve the desired torques. Thus the design of a CMG system
involves not only the selection of a unit type, but also the selection of a system type, defined
by the number of units and their configuration. In addition to the physical hardware, it is

also necessary to develop a control system in order to realise three-axis attitude control.

2.1 CMG unit type

The two types of CMG unit, single and double gimbal, are illustrated in Fig. 2.1. In double
gimbal devices (Fig. 2.1(a)), a flywheel is suspended inside two gimbal frames and so its
momentum vector can be oriented in any direction. However, the multiple gimbal arrange-
ment implies that some component of the output torque inevitably acts in the direction of
at least one of the gimbals. This limits the speed and magnitude of the system’s response
as the gimbal actuators need to partially compensate for the gyroscopic torque produced.

Therefore, the output of the system is limited by the torque available in the gimbal motors.

A single gimbal device (Fig. 2.1(b)) is constructed of a flywheel mounted normal to its
spin axis on an actuated gimbal. These devices present a number of practical advantages
as they are significantly less complicated than double gimbal arrangements. Furthermore,
this type of unit is physically the most effective since the gyroscopic torque generated is
transmitted radially across the bearings of the system with no component acting against the
gimbal actuators. This combined with the gyroscopic torque amplification property means
that large output torques can be achieved for relatively small inputs. This offers a fast
and high resolution response. However, the flywheel momentum vector is restricted to a
circular plane normal to the gimbal axis and this limitation in its motion presents significant

difficulties for singularity avoidance. This problem is described later in Chapter 5.
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Figure 2.1: CMG unit types

The size and weight of a CMG system depends not only on the size of the flywheels used,
but also on the complexity of the gimbal mechanisms and the total number of units in the
system. Although double gimbal devices are considerably larger and more complicated than
single gimbal devices on a unit level, fewer units are required to achieve three-axis attitude
control and thus they may be smaller and less complicated on a system level. Furthermore,
singularity avoidance can be more easily achieved due to the freedom offered by the double
gimbal mechanism. However, the limitations in the output torque implies that double gimbal
units are more suitable for applications that require slow reorientations and attitude keeping
in the presence of small disturbances. Despite the difficulties with singularities, the torque
amplification property of single gimbal units makes them more suitable for achieving the fast

response and agile reorientations sought in this research.

2.2 CMG system type

The generation of three-axis torque requires a cluster of identical CMG units arranged in a
defined configuration. This allows the components of torque acting in the desired direction
to be superimposed, while all other components cancel. The number of units and their
configuration defines the size and shape of the operational momentum envelope, or workspace,
of the system. This section provides a brief overview of various types of single gimbal CMG

system.

The CMG system type is defined by the relative orientation of the principal axes of each
CMG unit. For single gimbal systems this is specified by the gimbal axes g;. Typically
these systems have a certain degree of symmetry in their arrangement. This simplifies the
mathematical calculations required to describe their motion and is also convenient for attitude
control. There are two principal types of symmetry that are convenient for multi-axis attitude

control; parallel and non-parallel symmetric.
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2.2.1 Parallel symmetric

Parallel symmetric systems (Fig. 2.2) are also known as ‘multiple’ systems since they have
more than one CMG unit on a single plane. An example of this type of system is the ‘roof’
type, illustrated in Fig. 2.2(a). This type of system has two rows of parallel CMG units and
has been studied in [33] and [48]. Another example of a parallel symmetric system is the
‘twin’ type, illustrated in Fig. 2.2(b). This type of system has two parallel CMG units that are
driven in opposite directions to produce torque about a single axis [27]. Three-axis attitude
control can be achieved by using three orthogonal pairs of CMG twins. However, since
the pairs works independently to generate torque about each axis the available momentum

workspace is relatively small compared to systems that coordinate and manage the steering

of all their units together.

(a) Roof type system (b) Twin type system

Figure 2.2: Examples of parallel symmetric CMG systems

2.2.2 Non-parallel symmetric

Non-parallel symmetric systems (Fig. 2.3) are also known as ‘independent’ systems since they
have no two CMG units with the same gimbal direction. These systems typically have their
gimbal axes arranged in a conical array about some centre point. The four unit ‘pyramid’
(Fig. 2.3(a)) is the most widely researched CMG system as it is simple and its configuration is
convenient for attitude control. However, this system is known to suffer significant problems
with inescapable singularities. The six unit system of Tokar (Fig. 2.3(b)) has enough redun-
dancy to completely solve the singularity problem [45] and has been applied in the Russian
space station MIR [46]. However, the redundancy comes at the cost of the size and complex-
ity of the system, which is not practical for underwater applications where strict dimensional,
mass and computational restrictions apply. In this research a method to guarantee singularity

avoidance in the minimally redundant CMG pyramid is sought.
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gsh

(a) Pyramid (b) Six unit system implemented in MIR

Figure 2.3: Examples of non-parallel symmetric CMG systems

2.3 Three-axis attitude control

The design of the CMG hardware determines the size of the momentum workspace. How-
ever, it is the control system implemented that governs how this workspace is used to achieve
three-axis attitude control. Since CMGs rely on internal momentum exchange and have sin-
gularities, the conventional control techniques used in underwater robots cannot be applied
directly. A general schematic for three-axis attitude control using any system of CMGs is pre-
sented in Fig. 2.4. The planned mission is executed by the navigation unit, which determines
the states required to complete the mission. These, together with real-time measurements
from the robot’s sensors, form the inputs to the robot control law that determines the torques
necessary to achieve the desired state. The main feature is that, in addition to the primary
control law, a separate steering law is required to overcome the singularity problem and de-
termine the gimbal motion necessary to generate the command torque. This forms a set of

inputs for the robot, which responds through its electronics and physical dynamics.

Disturbance
l Text
Navigationbgf Y Robot Tu [cMG ? [cMG Temg
Unit Control Law Steering Law System Robot
U,V
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Figure 2.4: Three-axis attitude control using CMGs
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Navigation unit: The missions of a Zero-G Class AUV should be planned and optimised in
a three-dimensional manner according to the limitations set by the specification of the robot.
The navigation unit determines the necessary attitudes and angular rates about all three
rotational axes to complete a mission. The algorithms used must generate their commands
whilst taking into consideration the momentum workspace of the CMG system. This does

not limit the applications of the system if the CMG workspace is sized appropriately.

Robot control law: The desired states generated by the navigation unit are compared to
those measured by the sensors of the robot in real-time. Their difference forms the inputs of
the robot control law. This uses some dynamic model to determine the torques necessary to
achieve the desired states. In this application it is essential that the model is valid for any
orientation. The description of motion should take into account the dynamics of the robot,
the CMGs and their coupled effects as well as the hydrodynamic interactions between the
robot and its fluid environment. In an uncertain and constantly changing environment such
as the ocean, it is important to ensure the control law is stable so that unforeseen disturbances

do not cause significant degradation in the subsequent control performance.

CMG steering law: The steering law is a feed-forward unit that computes the gimbal rates
necessary to produce the required torques calculated by the control law. It uses the gyroscopic
amplification property of the CMGs to generate the desired torques whilst managing the
redundancy of the system in real-time to avoid singular orientations. Its output is independent
of the rest of the control system and forms the input signal that is sent directly to the CMG
system. Therefore, it is essential that the output of the steering law remains exact to the

required torque as any error in actuation may endanger the safety of the robot.

Momentum management and sizing: A CMG system does not produce angular momen-
tum, but rather exchanges it with the robot. This can result in the accumulation of momen-
tum in the CMGs during the manoeuvre and renders the momentum workspace finite. The
design of the CMG system must take into account a number of different factors. Firstly, the
basic size and shape of the workspace depends on the momentum stored in each CMG unit,
the number of units and their configuration. At the same time however, a large percentage of
the mass of a CMG system is composed of the gimbal mechanisms and so systems with fewer
units are more efficient in terms of overall weight. Next, the steering law determines how the
workspace is used and defines what areas of that workspace are available for attitude control.
It is important that the system is designed to have a sufficient margin after the steering law
has been implemented to overcome any disturbances during normal operation. One approach
to manage the momentum is to use separate torque actuators to offload the momentum accu-
mulated in the CMGs. This process must be carefully monitored and requires a momentum
management unit to work in parallel with the control law. However, the use of additional
actuators increases the overall size and complexity of the system, contradicting the concept
of simplicity and minimal redundancy that is central to the design philosophy of Zero-G
Class AUVs. Alternatively, the application of simple protocols during mission planning can
avoid an excessive build up of momentum in the CMGs and greatly reduce the momentum
required. This would allow the navigation unit to provide sufficient momentum management

for the robot to successfully complete its missions without limiting its possible applications.
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Chapter 3
System dynamics

This chapter develops a fully descriptive dynamic model for a rigid body that contains an
arbitrary system of single gimbal CMGs and is immersed in a fluid. In contrast to previ-
ous CMG applications that consider a stationary body in space, this application considers
a body moving through a viscous fluid and so the effects of translational motion and any
hydrodynamic interactions must be accounted for. The discussion is restricted to a body
with coincident centres of gravity and buoyancy as this concept is central to the development
of underwater robots with unrestricted attitude control capabilities. The dynamic model is
developed using Kirchhoff’s equations of motion based on the dynamic energy of the complete
CMG, body and fluid system. This approach was chosen as opposed to a conventional New-
tonian approach [57,61,64] since the derivation is more concise and the concepts of energy
used naturally lead on to the Lyapunov analysis in Chapter 4. Amongst the assumptions
made by Kirchhoft’s equations is that the fluid is inviscid. The limitations of this conserva-
tive analysis can be misleading as in reality viscous forces can greatly affect the dynamics.
However, this is not restrictive as these equations can accommodate viscous effects, and any
other inputs, which can be included as external forces and moments. In order to allow the
body to adopt any orientation, quaternions are used to describe the attitude of the robot in

the inertial reference frame as they contain no singularities in their description of motion.

3.1 Equations of motion

3.1.1 CMG motion

A CMG system is composed of a number of identical CMG units (Fig. 3.1) arranged in a
defined configuration. For each unit the flywheel spins with an angular momentum vector
along its axis of rotation h;. For single gimbal units, the state of the system is defined by
the angle ¢; about the gimbal axis g;, which is orthogonal to the momentum axis. Rotations
of the gimbal generate a gyroscopic torque that acts about the mutually orthogonal axis ¢;
and has a magnitude equal to the vector rate of change of the angular momentum stored.
The unit vectors form a rotating coordinate system (Fig. 3.2) that tracks the nutation and
precession of each CMG to follow its orientation. The relationship of the vectors is described

by the following equation:
oh;

~ 0¢;

C; =h; X g; (3'1)
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"
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Figure 3.1: CMG unit vectors Figure 3.2: Rotating coordinate system

The gimbal axis g; is fixed and the momentum and torque axes h; and ¢; vary as functions

of the gimbal angle:

hi = hjocosd; — ciosin g;

ci = €jocos@; + hjpsing;

where h;g and c;o are the nominal states of the system, as illustrated in Fig. 3.2.

Consider now the case of N identical CMG units in some fixed configuration. The ori-
entation of each unit is defined by the vector of gimbal angles ¢ = [¢1, ¢2, ..., ox]T, which
defines the CMG state and specifies the gimbal, momentum and torque matrices h, g and é.

The time derivatives of h and € vary as functions of the gimbal rates:

h o= —adiag@
h diag(e) (3.2)

e
Il

The energy of the CMG system can be expressed in matrix form:
Lo
Tcmg = iﬂ Jcmgg2

where J 4 is the inertia of the CMGs. The inertia varies as the gimbals rotate and for single

gimbal systems can be expressed:
Jemg = &It +3g3,g" +hIuh" (3.3)
The motion of the CMG system can be described by the rotation matrix:
Q = Go + hi

where 1,1_1 is the angular velocity of each flywheel. The angular momentum of the CMG system

can be obtained by taking the derivative of the energy T, with respect to €2, as follows:
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oT
hcmg = 67Q = JcmgQ
= ng(Z + BJMZ (3.4)

The torque of the CMG system can be expressed as a function of the gimbal rates by taking

the time derivative of the angular momentum h,,, and substituting in (3.2):

Temg — l‘lcmg = g']gé —cC diag(']hqu)¢ (3'5)

The first term describes the torque inputs required to rotate the gimbals and the second term
describes the gyroscopic outputs generated. In most CMG applications the angular velocity
of the flywheels is kept constant. This is highly efficient since the only power required to
maintain the angular momentum is that to overcome friction. Furthermore, this implies that
the magnitude of the output depends solely on the rotations of the gimbals. A large flywheel
momentum ensures that the gyroscopic outputs are much greater than the torques required
to actuate the gimbals. No component of the gyroscopic torques act in the flywheel or gimbal

directions and so single gimbal CMGs are capable of a fast response to control inputs.

3.1.2 Coupled dynamics

Consider now a rigid body in which a system of N CMGs is placed. The total inertia of the
system can be expressed:
Jtot — JS + Jcmg (36)

where J; is the inertia of the rigid body. The inertia of the CMG system varies with respect
to the body-fixed reference frame, Fy,, with its axes (z,y, z) aligned with the principal axes
of the body. The body is free to translate and rotate with respect to the inertially-fixed

reference frame, F;, with the axes (i,j, k). The coordinate system is illustrated in Fig. 3.3.

Figure 3.3: Coordinate system
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The equations of motion of the system are derived based on Kirchhoff’s equations. These
provide a dynamic model of a neutrally buoyant rigid body translating and rotating in an
infinite volume of fluid. The fluid is assumed to be irrotational, incompressible, inviscid
and at rest at an infinitely distant boundary [65]. While these assumption initially seem
restrictive, the equations can accommodate viscous effects, and any other unaccounted inputs,
by appending them as external forces and moments. Kirchhoff’s equations relate the dynamic

energy of the system to the forces and moments that act on it:
dt \ Ou “ ou)
d (0T oT aT
% <aw> +w X <aw> + u X <au> = Text (37)

where u and w are the translational and rotational velocity components of the body (Fig. 3.3).
The kinetic energy of a submerged body consists of both solid and fluid components [66]. The
solid component is composed of the rigid body and CMG energy, and can be described:

T
U ml —mr 0 Uu
T, = § w mr  Jior Jcmg w
Q 0 Jemg Jemg Q

where m is the total mass of the rigid body and the CMGs. It is assumed that the CMGs are
balanced so that rotations of the gimbals do not change the location of the centre of gravity
7, which remains constant with respect to the body-fixed coordinate frame. The discussion
is restricted to a body with coincident centres of gravity and buoyancy where 7 = 0 as this
concept is central to the new class of underwater robot developed in this research. The
consequences of this assumption are discussed in Chapter 8. The fluid energy component can

be expressed as:

T
) U M4, Dy O U
Tl=§ w Dy, Jsqg O w
Q 0 0 0 Q

where M 4, J 4 and D 4 are the added mass, added inertia and added inertial coupling matrices
associated with the potential low. These terms depend on the external shape of the body
and the choice of coordinate frame. The CMGs themselves make no contribution to the fluid
energy since they are completely isolated from the external environment. The dynamics of
the system are greatly simplified by choosing a body with three planes of symmetry with the
body coordinate frame along its principal axes. This reduces M4, J4 to diagonal matrices
and D4 to zero and thus fluid energy becomes uncoupled between the different degrees of
freedom. This assumption is reasonable for the hull form chosen in this study, as discussed

in Appendix C. The energy of the complete CMG, body and fluid system becomes:

T
) U mI+ My 0 0 U
T=T:+T, = 5 w 0 Jiot +Ja Jcmg w (38)
0 0 Jomg  Jomg ) \ 0
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Chapter Three 3.1. Equations of motion

The linear and angular momentum of the system can be obtained by taking the partial

derivatives of the total energy with respect to u and w:

T
8— = (mI+My)u

P
ou

o1
Ow

11 = (Jtot + JA)W + JcmgQ (3.9)

The final term Jep4(2 is the angular momentum of the CMGs derived earlier in (3.4). The
fully descriptive equations for the translational and rotational dynamics of the system can

be obtained by substituting these expressions into Kirchhoff’s equations (3.7) to give:

d
$[(mI+MA)u]+w><P = Feu

[(JtOt +JA)W + hcmg] + w X 11 +u X P = Text (310)

dt

In the equation above the rigid body component of J;, (3.6) is constant and so the derivative

Jigr = J emg» Which can be obtained by taking the derivative of (3.3) to give:
Tomg = 63,87 + €3 oe" + hI,hT + hI,hT

where the gimbal axes are fixed in the body. Substituting in the expressions for h and &

derived in (3.2) gives:
Jomg = diag oh(I. — J,)e" + diag pe(T. — I;)RT

Multiplying out the individual elements of the matrices gives the following form:

N N
Jemg = Z(hi(Jci — Jni)bick) + Z(Ci(Jci — Jni) i)
=1 i=1

This can be expressed as a function of the gimbal rates:

Jemg = [(hicl +c1hf) . (hwek +enhi)](Te — In)o (3.11)
Applying this result in (3.10) gives the translational and rotational dynamics of the system:

(mI+MA)u = —wX P+Fext
Jiot +I0)w = —[(hich +eahDw ... (hyek + enhi)w](Te — T
—wxII—uxP— Temg T Teat (312)

The first term on the right of (3.12) describes the coupled effects of the change in inertia
due to CMG motion as the body rotates. The second term describes the effects of the
angular momentum as the body rotates. The third term describes the coupled effects of the
translational dynamics on rotation, which is zero for a body with three planes of symmetry
since the momentum P has no coupled terms. The fourth term, described in (3.5), accounts

for the gimbal input and gyroscopic output torques of the CMG system.
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Chapter Three 3.1. Equations of motion

The final term in (3.12) accounts for any externally applied forces and moments, thus
no dynamic terms have been omitted from the equation. For the body with zero righting
moment that is considered in this application, the final term includes the effects of other
actuators and hydrodynamic drag, as described in Appendix C. In this application the CMG
system actuates the rotational dynamics and so the external actuators can be arranged to
generate thrust only with no rotational effects. Therefore, the external forces and moments

are modelled as follows:
Feot = Ft+Fdrag

Text = Tdrag

These terms can be extended to accommodate non-coincident centres of gravity and buoyancy,

as detailed in Appendix C, and any other external effects in a similar manner.

3.1.3 Viscosity

Kirchhoff’s equations rely on the assumption that the fluid is inviscid and slips freely over
the surface of the body. In reality, viscosity has an appreciable effect on the flow regime.
This plays a significant role in the dynamics of the system, so much so that for bodies at
large depths the contribution of potential damping is negligible in comparison [67]. In a
viscous fluid, a layer of fluid adheres to the solid boundary and friction between the adjacent
layers of fluid forms a thin boundary layer over the surface [68]. The relative flow velocity
adjusts rapidly from zero at the surface of the body to the velocity of an effectively potential
flow just outside the boundary layer. The velocity gradient of the boundary layer gives rise
to viscous stresses that act on the surface of the body and retard its motion through skin
friction. The boundary layer grows in the streamwise direction as flow is deflected away from
the body to avoid accumulation. For non-planar surfaces, a pressure gradient exists along
the boundary layer due to the centrifugal effect of flow around a curved body. In the case of
an adverse pressure gradient the flow decelerates as the pressure increases along the body. In
a sufficiently adverse pressure gradient the fluid cannot diffuse fast enough into the boundary
layer and the flow separates from the body with the direction of flow over its surface reversed
beyond the separation point. This forms a low pressure wake that gives rise to a retardant

force on the body that is known as pressure drag.

The effects of viscus flow are highly dependant on the type of flow regime. Since boundary
layers are composed of both laminar and turbulent regions, it is first necessary to determine
the appropriate type of flow regime. Turbulent boundary layers generally exert more frictional
drag on a surface than laminar boundary layers, but nevertheless often results in a smaller
overall drag as they are less prone to separation [69]. An indicator of the dominant type of
flow regime is the Reynolds number R, = %l, where u is the velocity of the body, [ is its
characteristic length and v is the kinematic viscosity of the fluid. This yields a Reynolds
number of 2.2 x 10° for the robot developed in this research, which lies in the transition zone
between laminar and turbulent flow. However, the hull form in this application is broken up
by unavoidable protrusions and it is considered that these will trip the flow into a turbulent

regime. This is discussed further in Appendix C.
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Chapter Three 3.2. Conversion to the inertial frame

Whilst the technology exists to analytically solve the Navier-Stokes equations and deter-
mine the exact effects of the hydrodynamic interactions, such calculations require sophisti-
cated CFD packages and powerful computers and even then can take several days to solve.
Therefore, with current technology, these equations are not suitable for application on-board
AUVs since they must determine the effects of drag in real-time. Therefore, empirical models
must be relied upon. While these models cannot predict with great accuracy all the inter-
actions of an unsteady, three-dimensional flow regime over a self-propelled underwater body,
they can capture the essential elements of flow and provide an effective tool to approximate
the hydrodynamic forces that act on the body. The viscous drag can be expressed by the

following standard empirical model:

1
Firag = —ipACDu|u|
1
Tdrag — —ipAZCDﬂ‘?w‘w|

where p is the density of the surrounding fluid, A is the matrix of projected cross-sectional
areas of the body, Cp is the drag coeflicient of the body and r; is the mean distance to
the centre of rotation. A body with three planes of symmetry has a diagonal matrix of
drag coefficients Cp and so there is no coupling between the different degrees of freedom.
The assignment of appropriate values for Cp is essential to realistically model drag. The

hydrodynamic calculations for the hull form used in this research can be found in Appendix C.

3.2 Conversion to the inertial frame

3.2.1 General formulation

A vector in the body-fixed reference frame can be expressed in the inertial reference frame
using the general rotation equation:

r = Rr (3.13)

where the rotation matrix to map between any two frames of reference is given [67]:
R = cos ByI + (1 — cos By) AT — sin By \ (3.14)

In this expression 3, is the angle of simple rotation about the arbitrary single axis of rotation
A = [\, Aj, Ag]T that would bring the body frame back to the inertial frame. The skew-

symmetric operator ) is defined such that:

0 A N\
X=X 0 -\
S VI YR

For unrestricted attitude control the mathematical description of attitude must not possess
any numerical singularities. Therefore, a four-parameter quaternion method based on Euler

parameters is used to describe the orientation of the body in the inertial frame of reference.
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Chapter Three 3.2. Conversion to the inertial frame

3.2.2 Quaternion rotations

A quaternion is an extended form of complex number that is composed of four units [i, j, k, 1]
and is of unit magnitude. The imaginary part is made up of three orthogonal unit vectors

(i,j,k) and the real part is scalar. The quaternion vector is specified as:

q=&i+ &)+ &k+n

The quaternion components [§;, £;, &k, 1] are real values that are defined as follows:

g (g} [Asin
lloez e

The representation is valid for any angle of 8y. The parametrisation of a unit quaternion is

subject to the following constraint:

G+&+8+n" =1 (3.16)

This implies, since |gq| = 1, that the inverse of the quaternion is equal to its complex conjugate:

o ( )

The rotation of any vector in space can be described by expressing the rotation matrix in

terms of quaternions. It is first useful to observe the following trigonometric identities:

cos B\ = QCOSQ%—l =2 -1
(1—cos B)MT = 2sin? 22T = 2¢e”
sin By\ = 2sin%cos %5\ = 2775

The rotation matrix (3.14) can be written in terms of quaternions:

R = (2% — DI+ 2667 — 2né

Substituting in the unitary constraint (3.16) gives the relation:

R=(n+(1—-& & &) - DI+2ee" —2¢
to give the following quaternion form of the rotation matrix:
R = (i — ¢TI+ 266" — 2n¢
This can be expressed in component form as follows:

" - —& 288 — k) 2(&i&k + né;)
R=| 2(&&+n&) n° =&+ & 258 —n&) (3.17)
2(&ikk — m&;s) 268+ &%) NP - -+
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Chapter Three 3.2. Conversion to the inertial frame

The mapping between two frames of reference can be described in terms of quaternions by
substituting the quaternion form of the rotation matrix (3.17) into the general expression for
the rotation of a vector (3.13). However, before the rotation of a rigid body can be described

it is first necessary to determine the values of the quaternion components [&;, §;, &, nT.

3.2.3 Quaternion kinematic equations

This section details a full derivation of the quaternion differential equations to allow the
quaternion components [&,fj,{k,n]T to be determined. In order to achieve this it is first
useful to introduce the general matrix-vector products Q(q) and Q(q) that describe the

multiplication of any two quaternions [70]:
: m+& €\ (¢ ,
qq’ = =Q(a)q
( " )\

! I- 3 ! A /
dq = (n_gf f;) (i,) = Q(a)q (3.18)

The quaternion rotation in (3.17) can be expressed in terms of the matrix-vector products:

R 0\ [(nI+& €\ (nI+& —¢\ _
(5 0= ("5 ) ("¢ ) -awan

By associating the three-dimensional vector r with the imaginary part of the quaternion

r = (r,0), the above expression can be substituted into (3.13) to yield:
r' = Q(q)Q(a)r
The transformation can be expressed in terms of the quaternions by substituting in (3.18):
/ _
r =qrq

Taking the derivative of the inverse relation gives:

r = qr'q
o= a'a+ar
= qqrqq + qqraq
= qqr+rgq (3.19)

where from (3.15) the following relationship for qq has been applied:
qq = (COS%\ — Asin %‘) <cosﬁ2’\ + Asin ﬁ;)
= cos’ % — A?sin? %

= cos® % ~+ sin

B
2

Similarly the products qq and qq can be expressed as purely imaginary values:
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Chapter Three 3.2. Conversion to the inertial frame

2 2 2

qQq = <Cosﬁ)‘—)\sinﬁ)‘> <—lsinﬂ)‘+)‘cosﬂ/\>:

aqq = <—1sinﬁ/\—/\cosm> (cosﬁ)‘—i-)\sinm) :—i
2 2 2 2

A

2 2 2772 T2 2 2

Therefore, qq = —qq. From (3.15) it can also be observed that the rotation by q represents
the same rotation as —q. Furthermore, it can be seen that both qq and r have only imaginary

parts and so their bottom rows are zero. Thus the following vector identities can be applied:

[abc]=abxc=—cxab=axbc=—bcxa

The derivation continues by using these results in (3.19) as follows:
i o= adr - raq
= qqXxXr—rxqq
= gqxr+qgxr
— 2 xr (3.20)

Equation (3.20) is of the form:

r=wXr

This is a general expression that describes the rotational kinematics of any system, where
w is the angular rate of the body expressed with respect to the body-fixed reference frame.
Therefore, it can be observed that the angular rate of the body in (3.12) relates to the

quaternions and their derivative as follows:

Observing that @' = q, the inverse of the above expression gives the differential equations

of the quaternion system:

Since the rotation w has zero real part the last column of Q(q) can be discarded. Thus the

following dynamic equation for the rate of change of the quaternions can be obtained:
q=Q(qw (3.21)

The component form of the transform matrix is:

n =& &
L& n =&
21-& &

=& =& &k




Chapter Three 3.3. Summary

3.2.4 Euler angle representation

Despite their many advantages, quaternion parameters do not carry any obvious physical
meaning and so it is convenient to plan and record missions using Euler angles. The Euler
angles [0, 0,, 0] directly correspond to the angles of roll, pitch and yaw respectively and this
provides a more intuitive representation of attitude information for human interpretation.
The quaternions calculated by the dynamic equations can be converted to Euler angles using

the following equations:

_ 2(&&k — n&i)
93: = tan ! <n2 _ g‘lzk_ 5;"‘&%)

0, = sin ™ (= 2(&& + né;))

- 2(&ij — 1€k)
0. =tan"" (n2+€§]—§gifz>

Conversely, the attitude and angular rate measurements made by the sensors typically used by
underwater robots are also provided in terms of Euler angles and so these must be converted

to quaternions. This can be achieved using the following equation:

a = 49,9,499.
Op . . ts Oy . . 0y 2 1ogin P2
= — —1sIn — — —Jsin — — — ksin —
COS D) S 5 COS B Js ) COS B S D)

This can be expressed in component form as:

& sin %ﬂ” cos %y cos %Z — cos %z sin %y sin %Z

_ &) _ cos%fsin%ycos%z—|—sin%ﬂ”cos%’sin%
1= & B cos%’”cos%‘sin%z—sin%ﬂ”sin%’cos%
n cos%” cos%cos % + sin%sin%sin%

3.3 Summary

The fully descriptive equations of motion have been derived for a rigid body that contains
an arbitrary system of single gimbal CMGs and is immersed in a fluid. In contrast to past
derivations, these are formulated based on Kirchhoff’s equations of motion to allow for a
more natural transition into the Lyapunov analysis in the next chapter. Unlike previous
CMG applications, this dynamic model takes into account the effects of translational motion
and the hydrodynamic interactions of the body as well as the actuating effects of external
thrusters. Quaternions are used to describe the attitude of the body in the inertial frame to
provide the numerical freedom for the body to adopt any attitude on the surface of a sphere.
In order that this can be physically achieved it is important for the body to have as near
coincident centres of gravity and buoyancy as possible. However, this dynamic freedom in
the orientation of the body raises questions concerning the stability of the system that can

only be answered by the control system used.
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Chapter 4

Control law

In an uncertain and constantly changing environment such as the ocean it is important to
ensure that unforeseen disturbances do not cause significant degradations in the subsequent
control performance. Furthermore, a body with zero righting moment is inherently unstable
and particularly sensitive to disturbances and so must be actively stabilised by its control
system. The area of control engineering links theory with physical reality and so for complex
situations there often exist several ways in which to approach a particular problem. This
chapter develops an attitude control law based on energy considerations of the complete
CMG, body and fluid system described by the equations of motion developed in the previous
chapter. Lyapunov’s direct method is applied to assess the stability of the non-linear system
taking into account the effects of viscous damping. This is used to design an asymptotically

stable attitude control law that allows the robot to adopt any attitude in roll, pitch and yaw.

4.1 Lyapunov’s direct method

Lyapunov’s direct method assesses the stability of non-linear, autonomous systems by con-
sidering the time variation of a scalar energy-like function. A system can be described as
autonomous if its closed-loop dynamics do not explicitly depend on time. In reality this
concept is an idealised notion since the properties of any system change with time. However,
in the case of an underwater robot these changes are slow and so can be neglected with-
out causing any significant error, thus the dynamics of the robot can be described as both
non-linear and autonomous. If engineering insight and physical properties are exploited, a
Lyapunov analysis can allow for elegant and powerful control solutions to even the most

complex problems:

Theorem 4.1 (Lyapunov’s direct method [71]) Assume that there exists a scalar

function V' of the state x with continuous first order derivatives such that:
o V(x)>0 forx#0
o V(x) — o0 as |x| — o0
e V(x) <0 forx#0

Satisfying these conditions ensures global asymptotic stability to the origin.
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Chapter Four 4.1. Lyapunov’s direct method

Lyapunov’s direct method can demonstrate the global asymptotic stability of a system by
finding a radially unbounded function of the system’s dynamics that is positive definite and
has a negative definite time derivative. An obvious challenge in applying this method is
the formulation of an appropriate Lyapunov function V. There is no formal procedure for
constructing this function although, for physical systems such as underwater robots, energy

is often a good candidate [71].

The role of the CMGs is analogous to a system of springs and dampers that bring the
body smoothly to the desired state. This analogy is formalised by defining the Lyapunov
function based on appropriate potential and kinetic energy-like terms with respect to the
desired state. The function chosen is similar to that chosen in Oh [60], but is extended to

take into account the effects of added fluid inertia:

1 1
Vieq,ew) = iequqeq + geZ(Jm +Ja)e, (4.1)

The states eq = q — qq and e, = w — wy are the attitude and angular velocity errors with
respect to the desired state. The effect of the first term on the right hand side of the equation
is analogous to a ‘spring’, describing the potential energy-like contribution with respect to
the desired quaternion attitude. The effect of the second term is analogous to a ‘damper’,
describing the kinetic energy-like contribution with respect to the desired angular velocity.
Since k, is a diagonal matrix of positive gains and the inertia of the system is always positive,

the Lyapunov function is positive definite and the following conditions are satisfied:

Vieq,ew) >0 for [eq,eu] # [0,0]

V(eq,€u) — 00 as |eq, e, — 00

The time derivative of the Lyapunov function can be obtained by differentiating (4.1) to give

the following expression:

. S .
Vieq,ew) = equ:qeq + Engmtew + eZJmtew

Using the relationship in (3.21) to express €, and recalling that J tot = J emg gives:

Viegew) = egkqQ(q)ew + lef.']cmgew + el e,

2

Since the product in the first term equates to a scalar value:

equqQ(q)ew = [egQT(Cﬁqueq]T = [egQT(q)kqeq]
Therefore, the derivative can be written in the following form:

V(eqv ey) = eg[QT(q)kqeq + %jcmgew + (Jior +Ja)é0]

The Lyapunov derivative can only be guaranteed negative by choosing the relationship:

koe, = —[QT(q)kzqeq + %ijgew + (Jiot +Ja)é0] (4.2)
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Chapter Four 4.2. Global asymptotic stability

where k,, is a diagonal matrix of positive gains. Thus the Lyapunov derivative becomes:
V(eq,ew) = —elkye, <0 for leq; €] # [0,0] (4.3)

This describes the energy dissipated by the system. It can be seen that the system would
be in equilibrium (i.e. V = 0) at anywhere along e, = 0 even if eq # 0 and thus the
Lyapunov derivative is only negative semi-definite. Although this ensures the stability of the
system, this does not guarantee asymptotic stability to the desired state. A simple geometric
interpretation of this condition is given in Fig. 4.1 that illustrates how the system can become
stuck at any point along the e, = 0 axis as the Lyapunov energy V reduces to zero. Further

analysis is required to show that the system will in fact, converge to the desired state.

Figure 4.1: Lyapunov function with a negative semi-definite derivative

4.2 Global asymptotic stability

In control systems where the Lyapunov derivative V is only negative semi-definite, it is still
possible to draw conclusions on asymptotic stability by extending Lyapunov’s direct method

and applying the invariance principle of La Salle:

Theorem 4.2 (La Salle’s invariance principle [71]) Consider a system where the

scalar function V' of the state x has continuous first order derivatives such that:
o V(x)>0 forx#0
o V(x) — o0 as |x| — o0
o V(x) <0 over the whole state space

Let R be the set of all points where V(X) =0, and M be the largest invariant set in R. Then

all solutions globally asymptotically converge to M as t — oo.
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Chapter Four 4.2. Global asymptotic stability

Asymptotic stability can be guaranteed by making sure that the origin [e,, eq] = [0,0]
is the largest invariant set in V(x) = 0. This can be achieved by developing a control law
that ensures the conditions wy = w and g4 = g are equivalent. In order to formulate such a

control law, the expression for k, in (4.2) is expanded as follows:

1. 1. . .
koe, = _QT(Q)kqeq - §Jcmgwd + §Jcmgw - (Jtot + JA)wd + (Jtot + JA)W

This can be rearranged to express the angular acceleration of the body in terms of the gains

kq and k,, in the following form:

. 1. )
(Jtot + JA)W = kwew + QT(q)kqeq + §Jcmg(wd - w) + (Jtot + JA)CUd

Substituting this expression into the equations for the rotational dynamics derived in (3.12)

gives the condition:

1
QT(q)kqeq + ke, — iJcmg(w +wq) — (Jrot +Ja)wg —w XTI —u X P — T + Tarag = 0

This can be expanded by substituting in the expressions for 7em, in (3.5) and Jepm, in (3.11)

to form a condition for all terms explicitly dependant on gimbal motion:

93,0 — ¢ diag(Tn1))é + %[(hlc{ +ethT) (W + wg) . (hnek + enh)(w + wa)](Je — Tn)od

= QY (q@)kgeq + kwew — (Jrot + TA)wg —w X I —u X P+ Tgpay  (4.4)

It can be observed from (3.9) and (3.4) that II contains the term ngquﬁ + FLJhTZ and thus
varies with gimbal angles. However, in this application the momentum stored in the flywheels
must be much larger than the gimbal momentum to achieve significant gyroscopic gains in
torque, i.e: hJ hzz >> gJ 95, and thus it is not unreasonable to assume that the momentum
contribution due to rotations of the gimbals has a negligible effect on the dynamics of the

system. The expression in (4.4) is of the form:
Go—Co=r1, (4.5)

where C fully describes the non-linear first order dynamics of a CMG cluster in a rigid body
and G accounts for the inertia of the CMGs about the gimbal axes. The magnitude of 7,
varies with the robot’s attitude and angular rate errors, and represents the torque required
from the CMGs to guarantee the stability of the system. Since the structure of the control
system in Fig. 2.4 only requires the control law to compute the required torque, a candidate

for the control law can be formulated based directly on the expressions in (4.4) and (4.5):
Tu=Q" (a)kgeq+[kwew — (Jiot — Ja)ig — wXIT — uxP + 7409 (4.6)

From the initial analogy it is known that a control law of the form, 7, = 75 4+ 74 is sought.
The candidate control law satisfies this structure where the first term constitutes 75, which
acts like a spring to bring the robot to the desired state, and the remaining bracketed terms

constitute 74, which is a dissipative term to achieve smooth and continuous motion.
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Chapter Four 4.2. Global asymptotic stability

The closed-loop stability of the system’s dynamics with this control law can be assessed by

letting 7, = Temg in the dynamic equation (3.12), which gives the following condition:

(Jtot + JA)éw + kye, + QT(q)kqeq
(el + ethDw ... (hyek + enhB)w](Je — Tp)o =0 (4.7)

This indicates that for the system to remain in stable equilibrium where e, = ¢, = 0, it is
possible to guarantee e, = 0 by ensuring that gz_b = 0; i.e. the CMGs do not produce any
torque. This is in fact a trivial condition since any actuating effect at this point would drive
the system away from its desired state. It can be shown that this condition is satisfied by the
candidate control law since when the system is in equilibrium at the origin [e4, e,,] = [0, 0]
the torque computed by the control law is zero and so the gimbals are stationary; i.e. (;_5 = 0.
The conditions satisfied by the control law can be expressed in terms of La Salle’s invariance
principle where it is known from (4.3) that R — [e4, 0] and from (4.7) that M — [0,0] is the

largest invariant set in [e4, 0], thus:

(La Salle’s invariance principle) [e,,0] is the set of all points where V(ey,e,) = 0,
and [0,0] is the largest invariant set in [eq,0]. Therefore, all solutions globally asymptotically

converge to [0,0] as t — oo.

The above analysis shows that the control law (4.6), illustrated in Fig. 4.2, satisfies the
conditions of La Salle’s invariance principle to guarantee the global asymptotic stability of
the system to the desired state. This control law computes the torques required to achieve
the desired robot state, where the sensitivity is tuned by the attitude and angular rate gains
kq and k.. In contrast to all previous applications the control law developed in this research
takes into account the effects of translation and the hydrodynamic interactions of the body

as well as the coupled dynamics of the CMG and body system.
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Figure 4.2: Attitude control law for a CMG actuated underwater robot
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Chapter 5
Singularities and null motion

The greatest challenge in the application of single gimbal CMG systems is the inherent and
serious problem of singular orientations. This chapter first defines the singularity problem
and introduces the concept of null motion in redundant systems. This can be used to avoid
singularities to some extent dependent of the degree of redundancy. The implications of
singularities that are escapable and inescapable through null motion are discussed. A mathe-
matical description of singularities and the corresponding singular angular momentum vectors
is formulated. These form a smooth surface of singular vectors that can be visualised in the
system’s momentum workspace. Escapability is defined in terms of the differential geometry
of the singular surface and its null motion. Finally, a method to distinguish between escapable

and inescapable singularities is developed based on the Gaussian curvature of null motion.

5.1 Singularity problem

The singularity problem for single gimbal systems was first identified by NASA in 1972 [32]. A
singularity occurs when the all the momentum vectors of the CMG system become coplanar.
The system becomes unable to generate torque about the axis along this plane and this can
results in a momentary loss of control authority. These singularities must be avoided in order
to achieve smooth and continuous attitude control. The most basic CMG steering law makes
the reasonable assumption that the momentum stored in the flywheels is large; i.e. C >> G
in (4.5). Thus the second order term in (4.4) becomes negligible and a particular solution for
the desired torque can be computed by taking the pseudo-inverse of the [N x 3] Jacobian C,
to map the [N x 1] gimbal rate vector onto the [3 x 1] vector of desired torque:

¢, = -CT(cch s, (5.1)

This inverse steering solution uses the gyroscopic torque component of the CMGs to achieve
the desired torque. However, the pseudo-inverse produces a minimum norm vector. This
implies that once in its vicinity, a CMG unit will oscillate at an unreasonably high gimbal
rate about the norm and become stuck in this direction. Although this has little effect on the

torque generated, this behaviour encourages the formation of coplanar singular orientations.
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Chapter Five 5.2. Redundancy and null motion

5.2 Redundancy and null motion

The solution to the singularity problem lies in the system’s null motion. Margulies [41] was
the first to identify null motion and the possibility of singularity avoidance in redundant sys-
tems. Systems with more CMG units than controlled degrees of freedom have a dimensional
redundancy that allows for motion of the gimbals by which all the momentum vectors exactly
cancel and so no resultant torque is produced. This null motion can be used to avoid singular
orientations to some extent. Whether complete singularity avoidance is possible depends on
the degree of redundancy and how it is used. The linear combination of the inverse steer-
ing solution and null motion forms the general relationship that describes all possible CMG

motions to exactly achieve a specific command torque.

Q;ﬁd = 57‘ + knull(zZ (52)

This forms the basis of all singularity avoidance steering laws. However, difficulties arise from
attempting to manipulate a cluster of single degree of freedom actuators to control motion
about multiple axes. This limits the dimensions of null motion, which for three-axis control
has an order of N — 3. It was first recognised by Tokar [45] that not all singularities can be

avoided through null motion alone, and thus singularities can be classified as either:

e Escapable or

e Inescapable

Escapable singularities can be avoided through null motion without causing any undesired
torque effects. However, inescapable singularities cannot be avoided through null motion
alone and thus cannot be physically avoided without generating an error in torque. After the
initial work of Margulies and Tokar, geometric studies by Paradiso [56] and Kurokawa [64]
have formed a deeper understanding of the singularity problem and provide a useful tool for

the analysis of potential solutions.

5.3 Geometric analysis of singularities

5.3.1 Singular surface

In a singular orientation the CMG angular momentum vectors are coplanar, thus the output
torque has no component in the normal direction and no longer spans three-dimensional
space. This implies that the transverse matrix ¢ is not of full rank, and thus the following
condition is satisfied:

det(ce’) =0 (5.3)

The degeneration of rank does not in general reduce to unity since this is only possible when
all the gimbal axes lie on the same plane. Thus at a singularity the unit vector u in the

singular direction, illustrated in Fig. 5.1, can be defined as follows:

u=c¢; Xxc; where i#j

30
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c

i

Figure 5.1: Singular direction vector
A singularity can be defined as any orientation that satisfies the following condition:
csiu=0  where 1 =1,2,....N (5.4)

For any given u there exist two possible singular angular momentum vectors hg; and —hg;,
illustrated in Fig. 5.2, for each unit. The two cases can be distinguished by the following sign

variable that represents the orientation of each unit with respect to the singular direction:

uhgi

€ =

]uh5i|

Thus each singular direction has a total of 2V singular angular momentum vectors. These

can be expressed in terms of the singular vector in the following manner [64]:

a I

N
Z gl X u X g’L (5 5)
i1 ‘gz x ul '

This equation represents a mapping from the singular orientations to a smooth and continuous
surface of singular momentum vectors. The singular surface S can be classified by the set
of signs in €, e.g. (+ + —...4), into regions that correspond to different relative orientations
of the units. If the direction of the units and the singular direction vector are reversed, i.e.
¢ — —e and u — —u, the angular momentum hg remains the same and thus the surface
regions S, and S_, are identical. Therefore, the system has a total of 2V~1 different singular

regions that can be visualised in the momentum workspace of the system.

Figure 5.2: Singular angular momentums
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Chapter Five 5.3. Geometric analysis of singularities

5.3.2 Differential geometry and escapability

The discussion so far has demonstrated a method to plot the singular surface of a CMG
system. However, this alone is not enough to determine the implications for CMG steering,
which can only be achieved by distinguishing singularities that are escapable from those
that are inescapable. This can be achieved by studying the effects of gimbal steering on the

momentum of the singular system and examining the shape of its differential geometry [64].

The effects of infinitesimal changes in gimbal angle on the singular angular momentum
vector can be determined by taking a second order Taylor series expansion in the immediate

neighbourhood of the singular orientation ¢g:

N

h(ps + do) = h(ds) + Z d@ ZZ P66, dm + f(de})

=1

The change in angular momentum can be obtained:

Ah = h(ds+dd) — (<Z5s)
N N N 82B
= d i dz j

where terms of third order and greater have been omitted. The first partial derivative is ¢;

by definition (3.1). At a singularity the following conditions are also satisfied:

d*h

Gog, = hoiti=y (5.6)
9%h e
Dond; = 0 ifi#y (5.7)

Therefore, the change in angular momentum can be expressed by the following quadratic:

N 1 N
Ah =Y cidg; — 3 > hi(dgs)?

By definition the first order term is orthogonal to u and so it follows that:
| X
Ahu = —§uz hi(dg;)?
(2

1 (de)?
= 52, (58)

(2

The characteristics of the singularity can be examined by decomposing the quadratic into
elements of its singular tangent bases. The singular element d¢g can be defined as the gimbal

steering that maintains the singularity condition (5.4), and thus its derivative gives:
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From (5.6) it can be seen that g;?_ = —hg;, thus the equation can be rearranged in the form:
du
. — hou
Csi dbsi Si
Since p; = Flu the following expression for the singular element is obtained:
dps; = picgidu (5.9)

The null element d¢z can be defined as the gimbal steering that does not result in any change
of the angular momentum vector. By rearranging the definition in (3.1), where the overall
change in the angular momentum of the system dh is zero, the following expression for the

null element is obtained:
édpz =0 (5.10)

This expression forms the general definition of null motion. The change in gimbal angles
can only be decomposed into components of d¢pz; and de¢g; if these elements are always

orthogonal. This can be demonstrated using the definition in (5.9) as follows:

N N
Zd¢Zid¢Si = Zd¢2i(p1'65idu)

= d¢LPéldu
= (éddy)T Pdu
=0 (5.11)

where in the final stage the condition in (5.10) has been used. In this derivation P is a
[N x N] diagonal matrix with elements p;. This result demonstrates that the elements d¢z;
and d¢g; are orthogonal.

The change in gimbal angle can be decomposed into the singular and null elements of its

tangent subspace:
doi = dozi + dosi

Based on this the angular momentum quadratic in (5.8) can be separated into components of
its singular and null elements. The derivation continues, making use of the result in (5.11),

as follows:

N
Py — 1 (dpzi + dosi)?
Ahu = 5 ZZ: P

1 o (do; + do?,)
52. Di

1

1 - - 1 - -
= —5ddy P déy — Sdp§ P dés
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The two components of the quadratic are orthogonal and can be treated independently [64]:

1 - _
Qs = —5désP " dos
Qz = _%dg{)gp—ld(jsz (5.12)

The second order term Qg represents the local curvature of the singular surface. Similarly,
the second order term @z represents the shape of the system’s null motion that steers the
gimbals away from the singular orientation. Since P~! can be either positive or negative,
but cannot be zero, the signature of )z can only be either indefinite or definite. If Q) is
of indefinite form, this implies that null motion is open ended, existing on both sides of the
singularity as well as on the singularity itself. This means that the singularity is escapable
through null motion alone since the gimbals can be steered away from the singularity without
generating any undesired torque effects. If in contrast ()7 is definite, this implies that null
motion is closed, existing only on one side of the singularity. Furthermore, the system’s
null motion collapses into the singular point with no null motion at the singularity itself.
Therefore, once in the vicinity of this kind of inescapable singularity, it cannot be crossed
or avoided without generating undesired torque effects. Thus the signature of (7 defines
whether the singularity can or cannot be avoided through null motion alone. This can be

used to form the following condition that distinguishes the different types of singularity:

e ()7 is indefinite - Escapable, or

e ()7 is definite - Inescapable.

The quadratic and its derivative are continuous with respect to the gimbal angles and thus
its signature is also continuous. This implies that the singularities form continuous escapable

and inescapable areas over the singular surface.

5.3.3 Gaussian curvature and classification

Escapability has been defined based on the signature of Q7. However, it still remains to
determine the signature to classify the escapable and inescapable singularities. This sec-
tion develops a method to determine escapability that is more concise and direct than that
presented in previous work [64]. The Gaussian curvature is an intrinsic property of any
two-dimensional surface that provides useful insights into the shape of the surface in three-
dimensional space. Its implications can be understood by considering the curve formed at
the intersection of the surface with a flat plane that has an axis normal to the surface. As
the plane rotates about the normal axis, the shape of the curve formed at the intersection
with the surface changes and after a full rotation will have maximal and minimal extremes
of curvature. These are known as the principal curvatures [k1, k2| and their orientations are
known as the principal planes. These are visualised in Fig. 5.3. Adopting the convention that
outward curvature is positive, planes 1 and 2 contain the maximum and minimum principal
curvatures respectively. The Gaussian curvature of the surface can be calculated by taking

the product of the principal curvatures:

K = KR1K2
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(a) Elliptic (b) Hyperbolic

Figure 5.3: CMG unit types

When applied to the null motion of a CMG system, the sign of the Gaussian curvature K
indicates the shape of null motion and thus the signature of @)z can be determined. If K is
positive the principal curvatures have the same sign and so the shape of null motion must be
elliptic (Fig. 5.3(a)), terminating at the singular point. This form of null motion indicates
that the signature of Q7 is definite. If K is negative the principal curvatures have different
signs and so the shape of null motion must be hyperbolic (Fig. 5.3(b)), bifurcating at the

singular point. This form of null motion indicates that the signature of )z is indefinite.

The Gaussian curvature of null motion can be determined by first defining the null element
d¢z of the tangent subspace in terms of any two independent torque vectors, for example
cs1 and cgs, of the singular system. In order to derive the basis of the null subspace, the

following general expression for four arbitrary vectors in three-dimensional space is noted:
abcd]—=blcdal+cdabl—dabec]=0
It is also useful to observe the following vector relations for triple scalar products:
[abcl=[bca]l=[cabl=[acb]=[bac]=[cbal
Substituting the vectors of the singular system cg1,cg2,cg:,u into the first relation gives:

csiles2 csi u] — cg2[es; u cs1] + csi[u es1 csa] —ufesy cs2 csi]l =0 where i =3,...,N
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Since the vectors cg1, cgo and cg; lie on the same plane the final term becomes zero. Using

this result, together with the second vector relation, gives the following condition:
cs1les2 csi u] + cs2fesi cs1u] + csifes1 cs2 u] =0
Defining the notation n; ; = [cg; ¢g; u] this condition can be expressed as:
N2,iCs1 + nj1cs2 +ni2cs; =0

This forms a candidate for the basis of the null subspace that satisfies the condition for null
motion (5.10). For a system of N units, the null subspace has an order of N — 2 and the null

elements can be expressed in terms of the candidate basis:

dQSZ = z1€z1 + 22€z2 + ... T Z(N-2)€ZN-2

= FEzz

where Z is a [(N — 2) x 1] vector and Eyz is the [N x (N — 2)] null subspace matrix. This can

be expressed in component form as:

€Z1 n2.3 n3,1 n1,2 0 ce. 0
B €72 n2.4 14,1 0 ni2 0
Z —_ =
ez(N-2) N N-2) nN-21 0 0 - map

Substituting the basis into the expression for Q7 in (5.12) gives:
Qz = —%ETEEP*1E22
The signature of @z is independent of the variable Z and so is defined by the matrix:
Ay = ELP'E,

where Az is a [N x N]| matrix with maximum and minimum eigenvalues that represent the
principal curvatures [k1, k2]. Thus the Gaussian curvature of null motion can be determined

for all singular orientations as follows:
K = k1Ko = max[Eig(Az)|min[Eig(Az)] (5.13)

This term does not vanish as P! cannot be zero. Therefore, every singular orientation can

be classified based on the following condition:

e if K < 0 the singularity is escapable, else
e if K > 0 the singularity is inescapable.

This chapter has clarified the singularity problem and presented a method to geometrically
represent the singular surface in the momentum space. A method to determine the Gaussian
curvature of null motion has been developed to provide the geometric tools necessary to

distinguish the escapable and inescapable singularities of any CMG system.
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Chapter 6

Steering of a CMG pyramid

It is widely recognised that only systems with six or more CMG units have enough redundancy
to solve the singularity problem. However, increased redundancy comes at the cost of the
size and complexity of the system and so is impractical for underwater applications where
strict dimensional, mass and computational restrictions apply. Conversely, a system of three-
units has no redundancy and so its singular orientations cannot be avoided. Therefore, a
method to guarantee singularity avoidance in a system of minimal redundancy, specifically
the CMG pyramid, is sought. This chapter formulates a mathematical description for the
dynamics of a CMG pyramid and its null motion. The mathematical tools developed in the
previous chapter are applied to perform a comprehensive geometric study of the singularities
of a CMG pyramid and assess their implications for attitude control. Different approaches
to singularity avoidance are reviewed in the context of this application. The results of this
analysis and global considerations of the inverse kinematics of attitude control form the basis

of an exact and real-time steering law that is suitable for application to AUVs.

6.1 System definition

The CMG pyramid (Fig. 6.1) is a non-parallel type CMG system that consists of four units
arranged symmetrically about its centre. The gimbal axis of each unit lies normal to the

surface of a pyramid with a skew angle of 3.

|
~8s
: C N\ h
2
g | hy Z\ N
Ll e O Seo w2
Q g
Roll ¢1
X
v Yaw y

Figure 6.1: Four unit CMG pyramid
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Chapter Six 6.2. Singularities of a CMG pyramid

Adopting the convention that the gimbal angles are positive clockwise about the outward
facing gimbal axes, the orientation of each unit can be defined by the gimbal angle matrix
¢ = [¢1, P2, @3, d4]T. Using the notation s* = sin 8 and ¢* = cos 3, the column vectors of the

gimbal, momentum and torque matrices g, h and ¢ can be defined:

[ [0 [—c [0
g1 = 0 y 92 = c* y 93 = 0 y 94 = —c*
—s* —s* —s* —s*
[—c* sin ¢ [ — cos ¢ [ ¢* sin ¢5 [ cos ¢y
hi = Cos 1 , ha = | —c*singo |, ha= | —cos¢s |, ha= | c*singy
| —s™sin ¢ | —5™ sin ¢ | —s™ sin ¢3 | —5™sin ¢y
—c* cos @1 sin ¢o c* cos @3 [ —singy
c1=| —singy |, ca=|—-c*cosgo|, c3= sin @3 , 4= | c*cosqy (6.1)
—s* cos ¢1 — 5™ cos ¢o —5* cos ¢3 | —5™ cos ¢4

The system’s null motion is defined by (5.10), which implies that the null motion d; 7z 18
orthogonal to the torque matrix ¢. Since the non-singular columns of ¢ span three-dimensional
space, the null motion of the four unit system is only one-dimensional. This can be computed

for each unit by taking the scalar triple product of the remaining torque vectors [41]:

(ZZ = HCQ C3 04], —[Cg Cq4 01], [64 C1 02], —[Cl C2 CgHT (6.2)

6.2 Singularities of a CMG pyramid

6.2.1 Geometric analysis

A detailed geometric analysis of the singularities of a CMG pyramid is carried out using
the mathematical tools developed in the previous chapter. Figs. 6.2-6.8 are generated by
mapping a polar lattice of singular orientations to their corresponding angular momentum
vectors using (5.5). The escapable and inescapable areas are distinguished using (5.13). The
transformation is highly non-linear and results in complex shapes that are far from spherical,
this can be seen in the exploded view of the complete singular surface in Fig. 6.8. Since
the lattice of singular orientations used in the calculation is finite, it was not possible to
create a continuous sheet of singularities and so these figures must be mentally interpolated
to imagine their true structure. Despite the limitations in their representation the figures
provide an accurate description of the singular surface, allowing for a deeper understanding

of their implications for attitude control.

The singular surface is plotted for a skew angle of 3 = cos™!1/4/3, which has a near
spherical momentum envelope and so equal control authority about all three rotational de-
grees. The escapable and inescapable areas are plotted in red and black respectively. For
clarity of presentation the inescapable areas are plotted alongside the complete singular sur-
face regions where appropriate. The system has a total of eight singular regions that are

classified according to the number of reversed units [56].
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&4 &3

Figure 6.2: Isometric view of Sy 44
No reversed units

The surface region S; 444, shown in Fig. 6.2, is formed when the momentum vectors of each
unit project positively onto the singular direction and so represents a relatively straight-
forward mapping that forms a spherical envelope. This external singular region is trivially
inescapable as it represents the maximum amplitude of the momentum stored in the system,
forming the boundary of the momentum workspace. As the momentum vectors rotate about
each gimbal axis, the singular vectors form a unit circle about u = +g;. These form a total of
eight unit circles that appear as holes in the singular surface region. This is a general charac-
teristic of all singular regions, each having 2V edges that form holes in their surface. These
indicate where each region reaches the boundary of its definition as the signature ¢; of one of
the unit’s momentum vectors flips and changes direction. This is most easily recognised in

this external region because of its simple structure.
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One reversed unit

Regions with one negative ¢; form the outer singular zone. This zone is composed of the four
regions S_y 4+, Sy, Sy4_4 and Sy that can be mapped onto each other by a series

of 90° rotations about the z-axis. Fig. 6.3 shows a xz-plane view of the region S_, ..

~&;

Figure 6.3: xz-plane view of S_ | with inescapable singularities duplicated on right

As the singular direction approaches one of the gimbal axes, the momentum vector of the
corresponding parallel unit is almost orthogonal to the singular direction. Therefore, it has a
small contribution that reduces to zero when the singular direction is aligned with the gimbal
axis. As this happens the opposing unit, which has its gimbal axis normal to the singular
direction, must compensate for the near normal momentum vector and this reduces the overall
momentum capacity of the system. Therefore, the singular region obtained is relatively small
in size and is far from spherical. The characteristics of this region are somewhat difficult to
discern due to its highly complex shape. However, close inspection reveals that each region
forms a petal aligned with the reversed gimbal axis. The base of each petal develops into
three thin strips that twist along the gimbal axes to form a symmetrical petal at the opposing
end. These petals fill the holes in Sy 14+ (Fig. 6.2) and form part of the external envelope.
It can be seen that the inescapable areas penetrate some way into the momentum workspace.
Fig. 6.4 shows an xz-plane view of S_; , and S;_. The strips of these regions and those
of Sy_41 and S;444_ intersect at six regularly spaced nodes about the momentum origin,
four of which are on the vertices of a square in the xy-plane and the other two are located

symmetrically along the z-axis to form the corners of a regular octahedron.

Figure 6.4: xz-plane view of S_y,, and Sy
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Two reversed units

Regions with two negative ¢; form the inner singular zone. At these singular regions, com-
ponents of the momentum vectors of all four units cancel and this greatly limits the overall
momentum capacity. The regions obtained form the smallest part of the singular surface that
fits within the outer singular zone and has no part in contact with the external envelope.
These regions have complex shapes that have several inflections, however, their overall form

is closer to a sphere than the outer singular zone.

There are two types of region in this zone. Fig. 6.5 shows the regions S__, and S4__
that are formed when adjacent units are reversed. These regions form a complex ridged
shape. The ridges join the strips of the outer singular zone (Fig. 6.4). It can be seen that this

shape has considerable inescapable areas that are heavily concentrated along the xy-plane.

/

-

Figure 6.5: xz-plane view of S__, and S,y __

The region S_,_ formed by reversing opposite units is shown in Fig. 6.6. Again this shape
has several ridges that join the strips of the outer singular zone (Fig. 6.4). This region has
the smallest momentum capacity in the z-direction as the components of all units cancel.

However, this region is mostly escapable, only becoming inescapable towards its extremities.

Figure 6.6: Isometric view of S_
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Continuous Surface

Each singular region has eight holes that form the boundary of its definition where the sign
¢; of one of the units changes and the surfaces becomes part of a different region. Each
boundary is shared by two regions and this implies that all the regions must fit together
to form a smooth and continuous singular surface of closed form. The manner in which the
different regions join together is illustrated in Fig. 6.7 that shows an xz-section of the singular
surface as different regions are added. It can be seen that the outer zone fills in the holes
in the external envelope and that the inner zone patches the void spaces left by the strips of
the outer zone. This figure reveals that the central inescapable parts visible in the xz-plane
of S_144 and S;4_4 in Fig. 6.4 are located in the extreme +y directions of the momentum
envelope as they are not visible in the zz-section in Fig 6.7(b). This also indicates that the
octahedron formed by the intersecting singular regions described previously is oriented in the

same manner as the pyramid in (Fig. 6.1) mirrored about its base.

(a) Envelope S444++ (b) Outer regions S_44+4+ and S+

(c) Inner region S_4_ 1 (d) Complete surface

Figure 6.7: xz-sections of the continuous singular surface
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Figure 6.8: Exploded view of the complete singular surface

6.2.2 Implications for attitude control

The analysis has shown that the minimally redundant system contains inescapable singular-
ities through which no steering law can remain exact. Fig. 6.8 is an exploded view of the
complete singular surface of a minimally redundant CMG pyramid. Various cross sections of
this surface are projected in the x and z directions. This illustrates how the singular regions
join to form a smooth and continuous surface of singular momentum vectors. Although there
exists large volumes with no singularities, the system contains locally inescapable singular
areas. These are distributed in a complex manner and cannot be easily overcome by real-time
steering and momentum management algorithms. The inescapable areas of the outer singular
zone and those of S_;_ are located near the envelope of the system and so do not have a
significant detrimental effect on attitude control. However, the inescapable areas of S__,
and Sy__. enclose the origin with a significant concentration on the zy-plane. This has
serious implications for attitude control, in particular degrading control about the roll and

pitch axes.
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6.3 Singularity avoidance

The pyramid configuration is convenient for attitude control as its symmetrical nature allows
for independent actuation about all three rotational axes. Furthermore, its compact size and
mechanical simplicity make it suitable for underwater applications. However, the minimal re-
dundancy of the system poses significant challenges for singularity avoidance. The likelihood
of encountering singularities is magnified as sustained torques are required to overcome the
viscous resistance of the fluid. This section discusses specific singularity avoidance algorithms

while the next section considers their suitability for underwater applications.

Escapable singularities can be avoided using a steering law of the form (5.2), where the
assignment of null motion is regulated using the gain variable k,,,;;. This is typically achieved
using the gradient method, which maximises an objective function W of the gimbal angles
that is zero at a singularity and otherwise positive. This can be achieved by selecting the

variables of k,,;; to keep the derivative of the function positive:

Enun = f <?:;/>

The following candidate function was proposed in [36] and successfully applied to double

W = y/det(CCT)

Various other gradient functions have also been proposed [46,49, 50]:

1
W = min< )
|d,|

W = min(s;)

N N
T ) ST
i i

gimbal systems:

where d; is a row vector of the pseudo-inverse function in (5.1) and s; is the singular value of
the Jacobian C. However, whilst gradient methods can effectively assign null motion to pass
escapable singularities, they cannot avoid inescapable singularities where no null motion exists

and so encounter considerable difficulties in single gimbal systems of limited redundancy [45].

The singularity problem applies to any system with limited redundancy that aims to
perform exact and real-time steering. In this context, exactness implies that the steering law
generates an output that is equal to the commanded torque. A strictly real-time steering
law does not rely on knowledge of future instructions when generating its steering command.

There are three methods to overcome this problem:

e relax the exactness condition,
e relax the real-time condition or

e restrict the workspace.
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6.3.1 Relaxed exactness

One approach towards singularity avoidance is to relax the exactness constraint and permit
local errors in order to pass singular areas. This can be achieved by modifying the steering
law (5.1) to enable calculation of the inverse Jacobian even at a singular point. A general

solution to restrict the output torque error to singular areas can be obtained [41]:

¢y = —CT(CCT + ku"u) "7,

This maintains an exact solution when the command 7, is normal to the singular direction u
and minimises the error elsewhere as its output is equal to the projection of the commanded

torque onto the plane normal to the singular direction.

An extension of this concept is the SR method, originally developed for robot manipulators
[72], and applied to CMGs in [59] and later in [60]:

¢, = —CT(CCT 4 al)"'7,

—det(CCT)

where a = age Therefore, the output error increases rapidly as a singularity is

approached and is negligible elsewhere. This allows any singular orientation to be avoided.

The SDA method of Ford [61] is an extension of the SR method that uses singular value
decomposition to further minimise the output torque errors. The Jacobian C is decomposed

into a diagonal matrix of its singular values S by the unitary matrices U and V:

s1 0 0 O ... O
S=UCV=|0 s, 0 0 ... 0 where 81 > s9 > s3
0 0 S3 0o ... 0

These singular values represent the maximum input to output ratios of C, which forms
an ellipse in three-dimensional space. At a singularity, the outputs no longer span three-
dimensional space with the rank of C reducing to two as s3 becomes zero. Therefore, sin-
gularities can be avoided by preventing s3 = 0. However, the SR method modifies all three

singular values:

0 0 0 0
Ssp=1|0 2 0 0 ..0
0 0 ;2.0 0

whereas the SDA method modifies only the critical singular value:

ss 0 0 0 ... 0
Sspa=10 s, 0 0 ... 0
0 0 2.0 0

where a = aoe*kaf’g and o3 is a normalised function of s3. This results in less modification
of the Jacobian C and thus smaller errors in the output torque. However, these methods do
not explicitly distinguish escapable and inescapable singularities and so produce an error in

the output even where an exact solution is possible.
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6.3.2 Relaxed time constraint

The null motion in the vicinity of an escapable singularity is hyperbolic and so bifurcates
into two seperate paths at the singular point. In some cases one of these path leads to
an inescapable singularity during the remainder of the manoeuvre, whereas the other does
not [64]. Therefore, even though escapability is defined locally, local singularity avoidance
algorithms can encounter inescapable singularities that could have been avoided in the first
place had some global approach been used [54]. However, unless future commands are known,
there is no method of knowing which of the paths to select. One solution is to relax the real-
time constraint and allow knowledge of future instructions to be used when generating the

steering command.

In Vadali [55], a set of preferred gimbal angles are prepared based on the direction of
the manoeuvre to be performed. Before each manoeuvre, the gimbals are adjusted from the
origin to the preferred gimbal angles in order to maximise the momentum available before the
system encounters an inescapable singularity. However, this method relies on the assumption
that at the end of each manoeuvre the CMG angular momentum vector returns to the origin.

This implies that this approach is not general and is not robust when subject to disturbance.

In Paradiso [56], a stronger assumption is made and this concept is extended to select
predetermined gimbal paths. These paths to avoid inescapable singularities are computed off-
line before the mission. This approach assumes that a particular steering command will result
in a unique attitude response and so relies on the assumption that there are no disturbances
present. Furthermore, this approach requires all the manoeuvres that will be performed

during the mission to be foreseen and planned in advance.

6.3.3 Restricted workspace

This approach allows for both exact and real-time steering by excluding inescapable singu-
larities from the momentum workspace. However, any reduction in the workspace reduces
the torque available for control and so it is necessary to determine the largest continuous
workspace that contains no inescapable singularities. It can be seen from Fig. 6.8 that simply
excluding all inescapable singularities from the workspace would only leave a small fraction
of the momentum available for use. This would result in an unacceptably inefficient use of

the system and is too severe a restriction.

Kurokawa [62,64] developed a method to avoid problems with singularities by globally re-
stricting the momentum workspace. Instead of allowing the CMGs to steer freely, some rules
of steering were developed to eliminate as many inescapable singularities as possible whilst
keeping the largest viable volume of the workspace intact. After an extensive geometric anal-
ysis, it was concluded that a suitable workspace could be achieved by algebraically restricting
gimbal steering by one degree of freedom. This method guarantees that the inversion from
the system’s momentum h to its gimbal angles ¢ is unique and continuous within some range

of the constrained system, which determines the size and shape of the restricted workspace.
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Chapter Six 6.4. Exact and real-time steering

6.4 Exact and real-time steering

The behaviour of an AUV cannot be foreseen since they operate in an unknown environment
using sensors to react to their surroundings. A steering law for application to AUVs must be
strictly real-time and remain exact to the command, as any error in actuation may endanger
the safety of the robot. Therefore, a method to exclude all inescapable singularities from the
momentum workspace is sought. An appropriate restriction on gimbal steering is developed

based on global considerations of the inverse kinematics of attitude control.

6.4.1 Inverse kinematics and workspace restriction

The gyroscopic torque of the CMGs corresponds to the velocity of the angular momentum
vector in the three-dimensional momentum space and is generated about the path taken.
If the nominal state is defined at the momentum origin, where all gimbal angles are zero,
attitude control can be achieved by moving the momentum vector along a path parallel to

its principal axes using the following steering commands:

o «

_ 0 _ vy |«
7= —0 7= 0 = «
0 —y «

where the corresponding motion of the momentum vector is illustrated in Fig. 6.9. The

steering parameters o, v, and « independently govern roll, pitch and yaw.

N

_g3

Figure 6.9: Inverse kinematics of attitude control from the nominal state
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Chapter Six 6.4. Exact and real-time steering

These three steering parameters can be used to couple the motion of the four independent
CMG units:
gZ;:[a—i—a,a—l—’y,a—a,a—’y]T (63)

This algebraically constrains gimbal motion by one degree of freedom and imposes the re-

straining condition:

P1— P2+ ¢3— s =0 (6.4)

This eliminates many of the singular regions discussed previously, greatly simplifying the
kinematics of the system and globally restricting the workspace in a manner that is ideal
for attitude control. Substituting (6.3) into the expression for h defined in (6.1) gives the
constrained angular momentum vector h*. Taking the sum of each component gives the

following analytical solution for the normalised momentum of the constrained workspace:

[ —c*sin(a + o) — cos(a 4 ) + ¢* sin(a — ) 4 cos(a — )
H=xNpr = cos(a+ o) — c*sin(a + v) — cos(aw — o) + ¢* sin(a — )
| —s*sin(a + o) — s*sin(a + v) — s*sin(a — o) — s*sin(a — )

—c* cosasino + sinasiny

= 2 |—sinasino — ¢* cosasiny (6.5)

—s*sin a(cos o + cos )

Fig. 6.10 shows zy-sections of the restricted workspace at various points along the z-axis.

=
S

X

2(1+¢*) \
(a) H. =0 (b) H. = 0.1Hzmax (c) H. = 0.2H.max
(d) H. = 0.3H.max () H. = 0.4H.max (f) H. = 0.6Homaz

Figure 6.10: zy-sections of the constrained (shaded) and unconstrained (outlined) workspace
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Chapter Six 6.4. Exact and real-time steering

The constrained workspace is shown in relation to the envelope of the unrestricted system that
is outlined in each cross section. The momentum envelope maintains its original dimension
in the z-direction and has at least one third the dimensions in the z and y directions. If
the system operates near its envelope it is necessary to account for the irregular shape of its
boundary. However, these curved branches correspond to specific manoeuvring patterns that
are neither practical nor realistic in this application. Furthermore, these branches are thin
and contribute little to the overall momentum capacity of the system. These can therefore
be eliminated without any significant degradation in performance. This can be achieved by

using the following model of the momentum in the z-direction:
H,=-2s"sina for |H,| <0.5H max

The resulting constrained workspace is illustrated in Fig. 6.11. The dimensions are limited to
+2¢* in the pure x and y directions when H, = 0 and to £4s* in the z-direction. The relative
dimensions of the workspace can be adjusted to suit the requirements of the application by
changing the skew angle, where 3 = tan~! 1/2 provides almost equal control authority about
the z,y and z axes. The most important feature of this workspace is that the only inescapable
singularities are those that form its external boundary. Therefore, it is possible to guarantee

exact and real-time steering while operating within this constrained workspace.

Figure 6.11: Isometric view of the constrained workspace
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Chapter Six 6.4. Exact and real-time steering

6.4.2 Global steering law

A global steering solution for exact and real-time singularity avoidance can be obtained by
constraining the system to operate within the restricted workspace of Fig. 6.11. This can be
implemented by applying relationship (6.3) to equation (4.5) and formulating a steering law
based on the parameters o, v and «. This algebraically constrains gimbal steering by one
degree of freedom and imposes the restraining condition in equation (6.4). The solution for

the desired torque becomes:

P =—(CHln, (6.6)

The steering parameter ¢* = [o,v,a]? and its derivative have the same dimensions as the
vector of desired torque and so the constrained Jacobian C* is a [3 x 3] square matrix with

an inverse that can be computed directly. The following condition must be satisfied:
C*o* = Co
The expression for C can be decomposed into its direct and coupled parts as follows:
(C;+CL)9" = (Cot Cx)o

The first term can be expanded by using (4.4) and substituting in (6.1) and (6.3) to give:

Cid* = —c diag(Inih)o

_ a+o

—c* cos(a + o) sin(a + ) c* cos(a — o) —sin(a — %) o

y . . &+

= Jpp | —sin(a+o0) —c*cos(a+7) sin(a — o) c* cos(a — ) o
a—o

—s*cos(a+o0) —s*cos(a+7y) —s*cos(a—o) —s*cos(a—7)| |. .

L & — 4

—2c* cosacos 00 + 2sinacos vy + 2(¢* sin asin o + cos asiny) &
= Jup | —2sinacosod — 2¢* cos avcos ¥y + 2(¢* sinasiny — cosasin o)

| 25" sinasinog 4 2s* sinasinyy — 2(s* cosacos o + s* cosacos'y)a

[ c*cosacoso  —sinacosy —(c*sinasino + cos asiny)

= —2JpY | ¢*cosacosy  sinacoso (cosasino — ¢*sinasin?y)

—s*sinasino —s*sinasiny (s* cosacoso + s* cosacos7y)

Similarly the second term can be expanded to give:

CLé = %[(hlc{ +erhTYw + wa) o (hyek + enhE) (W + wa)] (T — Tn)d =

This expression is zero for CMG systems that are symmetrical about the principal axes of

the body, since (h;cl + c;hl’) becomes zero. Thus the constrained steering law (6.6) becomes:

—1
) c*cosacoso —sinacosy —(c*sinasino + cosasiny)
= ——= | ¢*cosacosy  sinacoso (cosasino — ¢*sinasin?y) To  (6.7)

2Jpy

—s*sinasino —s*sinasiny (s* cosacoso + s* cosacos?y)
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Chapter Six 6.4. Exact and real-time steering

Once the steering parameter rates have been computed the gimbal rate commands can be
obtained as follows:

p=la+oa+79d—0a—4"
Similarly the steering parameters in (6.7) can be determined from the measured gimbal angles

using the following equations:

_ O1t+ P2+ @3+ Pa 1 — @3 P2 — ¢4
a = o N==

4 ’ 2 ’ 2

In practical applications it is possible that condition (6.4) is violated as the frequency of the
control system is finite. In these situations null motion can be used to bring the system back

to this condition using the following null gain:

knuit = —K(d1 — d2 + ¢3 — Pa)

where the sensitivity is tuned by adjusting x. A schematic of the steering law is illustrated
in Fig. 6.12.

This steering law guarantees exact and real-time steering within a restricted workspace.
This is a simple solution to the complex problem of singularity avoidance that eliminates the
problem of internal singularities by applying algebraic constraints on gimbal motion. The
uniqueness of its response is guaranteed by limiting the domain of the three steering param-
eters o, v, and « to within +7/2, ensuring the repeatability of the system’s performance and
limiting the gimbal angles to within +90°. This is of significant practical importance as it
prevents multiple rotations of the gimbals, which is often overlooked in simulations and would
require complicated mechanisms for actuation of the flywheels and serve no useful purpose.
The steering law not only simplifies the design of the hardware, but also simplifies the imple-
mentation in software as the matrix inversion does not require the real-time computation of
a complicated pseudo-inverse Jacobian and thus reduces the burden on the processors used
in the AUV.

Robot Tu P B P ¢  CMG
Control m C »e=f(0.7.9) & " System
Law

—p QEZ

Cef(o.7.0)
[3x%3]
18 [(nuﬂ
¢
(0,7.00)=F (%) I <

CMG Steering Law

Figure 6.12: Global steering law
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Chapter 7

Development of a Zero-G Class

underwater robot

This chapter follows the design and construction of the CMG actuated Zero-G Class underwa-
ter robot IKURA. IKURA is an experimental platform developed as part of this research to
verify the associated theoretical developments, assess the practical application of the control
system and to demonstrate unrestricted attitude control and three-dimensional manoeuvering
capabilities. This is the first application of CMGs to underwater robots and so the practical
considerations of the mechanical and electrical design of the system are discussed. This chap-
ter is supported by Appendices A -C. Appendix A contains CAD drawings and photographs
of IKURA and its CMG system. Appendix B contains details of the electronic design, signals
and circuitry. The hydrodynamic parameters are presented together with other modelling

parameters in Appendix C.
7.1 Zero-G classification

A Zero-G Class underwater robot is defined as any underwater robot that can:

e adopt and maintain any attitude on the surface of a sphere with a zero radius turning

circle and
e actively stabilise any attitude while translating in surge.

It should be noted that these points are not intended to specify the entire design of a complete
AUV system, but simply outline the primary requirements for the attitude control capabilities
of this new class of underwater robot. To satisfy the first point, the robot should ideally have
coincident centres of gravity and buoyancy and thus zero righting moment. Unrestricted
attitude control can be provided by the proposed CMG based method. The robot should
be capable of fast, on the spot reorientations to offer sufficiently agile manoeuvrability to
meet its specification. An example of the specification used in this research is detailed in
the next section. The second point can be satisfied by equipping the robot with a single
thruster to actuate surge. This is not restrictive as missions can be approached in a fully

three-dimensional manner by making use of the attitude control capabilities.
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Chapter Seven 7.2. IKURA

Beyond the above specification, Zero-G Class underwater robots should be considerably
smaller than most existing AUVs. The primary reason for this is to allow missions to be
carried out in geometrically complicated, cluttered and even enclosed environments. A small
size not only allows for greater agility, but also allows the robot to manoeuvre in confined
spaces. Furthermore, compactness allows the robot to be handled manually. This is of great
practical advantage since although the missions of an AUV are autonomous, the preparation
for their deployment is, for the most part, far from it. Typically AUVs weigh in excess of
150kg and can weigh several tonnes, therefore their deployment requires large crewed support
vessels equipped with cranes and other machinery. This involves a large number of people
and is not only expensive, but requires a great deal of time and effort spent organising the

missions. A discussion concerning possible Zero-G applications can be found in Chapter 9.

7.2 IKURA

The Internal Kinematic Underwater Robot Actuation system, or IKURA, shown in Fig. 7.1,
was constructed in June 2005 and is the first Zero-G Class underwater robot. This is also, to
the knowledge of the author, the first application of CMGs to underwater robots. It should be
noted that IKURA is a prototype, designed to provide an experimental platform to verify the
theoretical developments presented and demonstrate the unique freedom in attitude control
offered by CMGs. At this stage IKURA is not intended to be a complete AUV system and
thus its specification primarily relates to control about the rotational axes. The CMG system

must provide sufficient control authority from the nominal state so that the robot can:

e rotate +180° in yaw, starting and finishing at rest in 6,
e rotate +90° in pitch, starting and finishing at rest in 3s and

e stabilise any roll angle.

Figure 7.1: Photo of the Zero-G Class underwater robot IKURA
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Chapter Seven 7.2. IKURA

IKURA is made up of a cylindrical body with hemispherical ends. Its hull is compact with
a length of 0.5m, a diameter of 0.22m and a total mass of 17.0kg. This includes 3.5kg of
ballast that can be used to adjust the centre of gravity of the robot. The locations of the
centres of gravity and buoyancy, calculated in Appendix C, are coincident, indicating that the
robot theoretically has zero righting moment. The robot is equipped with a single thruster
to actuate surge and thus satisfies the conditions for Zero-G classification. Since the CMGs
are completely contained within the hull they preserve its hydrodynamic integrity and main-
tain symmetry about its major axes. Therefore, the robots motion is essentially uncoupled
between different degrees of freedom. Furthermore, the CMGs have no fluid interactions of

their own, which greatly simplifies the hydrodynamic behaviour of the robot.

7.2.1 Pressure hull

IKURA has a single pressure hull that is illustrated in Fig. 7.2. The hull consists of an acrylic
pipe of length 280 mm and external diameter 220 mm with acrylic domes at either end. The
three parts of the pressure hull are sealed using AS(APR)568-173 rubber O-rings and fastened
using YMV12745-T-230 V-band couplings. The cylindrical part of the hull has three Fisher
DEE-1031A010 connectors, which can be used for thrusters, external sensors and a tether
cable. A cradle mechanism rotates freely about the pitch axis of the hull. If a tether is used,
the cable can be fixed to the cradle arm and so any pull from the cable will act through the
centre of the robot and thus eliminate any rotational pitch effects that would act on it. The
pressure hull is designed to comply with a depth rating of 20m using Japan International
Shipping standards as this is the depth rating of the connectors used. Considerable margins
have been added to allow for the large internal forces generated by the CMG system. The
minimum wall thickness is 8.5 mm with reinforced mountings to rigidly fix the CMG system

inside the cylindrical section of the hull.

O-ring Cradle arm
C \ / Cradle mount

W o &
ﬁ ,‘" f/ z"!
- |\ \'
CMG pyramid mount Acrylic pipe | /
(3 connectors) Acrylic dome

Figure 7.2: Construction of the pressure hull

54



Chapter Seven 7.2. IKURA

7.2.2 CMG system

IKURA contains a cluster of four CMG units that are arranged in a pyramid configuration,
as shown in Fig. 7.3. This provides independent roll, pitch and yaw actuation. A skew angle
of 3 = cos™! \/1/_3 was chosen to provide greater control authority in yaw than in pitch when
using the proposed steering law. The shape of the pyramid is stretched to fit the pressure hull,
however, angular symmetry is maintained about its centre and so there are no detrimental

effects on its performance as an actuator.

Figure 7.3: Photo of the CMG pyramid

The CMGs are sized based on the predictions of numerical simulations that used an optimised
bang-bang control law, as detailed in Appendix C. The minimum angular momentum required
to meet the specification within the constrained workspace was computed to be 3.8 Nms with
a maximum required torque of 0.47 Nm. Although it is desirable to have the flywheel rates as
fast as possible, high speeds introduce practical problems such as vibration and wear in the
bearings. To ensure reliability the system is designed to meet its specification at under 30%
of its maximum rotational speed. A fast mechanical response and high resolution of control
are achieved by using high torque servos to steer the gimbals. The parameters of the CMG
system are specified in Table 7.2.

CMG Parameters Value
Skew angle 54.7°
Gimbal torque 0.58 Nm (Futaba S9550)
Flywheel diameter 68 mm
Flywheel mass 825 g (Brass)
Flywheel inertia 6.38 x 10~4kgm?
Flywheel max. rate 50,000 rpm (Maxon EC22-169007)
Output torque [roll, pitch, yaw] ~ [1,1,3] Nm
Maximum momentum stored 13.4 Nms
Maximum energy stored 35kJ

Table 7.1: Physical parameters of the CMG pyramid
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The construction of each CMG unit is illustrated in Fig. 7.4. Since the physical dimensions of
the CMG system are limited by the space restrictions of the pressure hull, it is desirable for
the flywheels to be made out of as dense a material as possible. However, the material must
also be non-magnetic and strong enough to withstand the large gyroscopic torques produced.
Brass, with a density of 8450 kgm ™3, was chosen as a suitable material. The flywheels rotate
at speeds of up to 50,000 rpm and so care was taken to ensure the safety of their design. Each
flywheel is supported at both ends to evenly transmit the gyroscopic torque to an aluminium
gimbal frame. The gimbal frame is a cylindrical drum that encloses the flywheel and isolates
it from the rest of the system. The flywheel is mounted on the shaft of a high speed motor
that is fixed to the active lid of the gimbal frame. A bearing in the passive lid supports the
opposite end of the flywheel shaft. The skew angle is set by a wedge at either end of each
CMG unit. A servo fixed to the active wedge is used to rotate the gimbal. A bearing in the
passive wedge supports a shaft on the gimbal frame to evenly transmit the torques generated.

Active wedge

Servo Gimbal frame

Active lid

v

’ =
i . ’I. \

/" Gimbal shaft

Passwe wedge

Passive lid Flywheel

Bearlng

Figure 7.4: Construction of a CMG unit

The pyramid is formed by fixing the CMG units to two plates as shown in Fig. 7.3. However,
the system is only held together by the bearings of each gimbal and so relies on being fixed to
the pressure hull for rigidity (Fig. 7.5). Appendix A contains CAD drawings of the CMGs.

Figure 7.5: CMG pyramid fixed inside the pressure hull
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7.2.3 Thruster

A simple thruster unit (Fig. 7.6) was constructed to provide actuation in surge. The thruster
is designed to be long and slender to reduce resistance. Also it is desirable to have the
propeller as far from the main body of the robot as possible to allow a smoother flow into the
propeller when advancing in surge. This also reduces the effects of the wake acting against
the body when the robot reverses. The thruster is driven by a 10 W DC motor that is placed
in a pressure vessel with a mechanically sealed drive shaft to rotate the propeller. A magnetic
coupling system was considered to be unnecessary since the depth rating of the mechanical
seal is greater than the 20 m depth limit of the electrical connectors used in the hull of the
robot. The thruster can generate a maximum thrust of 4.5 N in the forward and 3.5 N in the
reverse direction at a rotational speed of 900 rpm in bollard-pull conditions. Details of the

thruster model used in this study can be found in Appendix C.

Mechanically Pressure DC motor
sealed shaft vessel /
\ O-I’ing
\ Sealed cable
Propeller connector

Figure 7.6: Construction of the thruster unit

The thruster is mounted on the main body of the hull using a steel tripod arrangement as
shown in Fig. 7.7. Since the robot has no righting moment the reaction to the roll moment
generated by the thruster is of great concern. Therefore, the thruster mount was designed
with a large surface area in the roll direction to provide some resistance to limit this effect.
For post-prototype designs the use of a contra-rotating propeller is recommended. Further

details of the design can be found in CAD drawings in Appendix A.

Figure 7.7: Thruster unit mounted on the pressure hull
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Chapter Seven 7.3. Electronics and control

7.3 Electronics and control

The control system is realised using a single chip micro-controller. This generates the appro-
priate signals for the CMG flywheel, servo and thruster drivers based on the measurements
of a three-axis attitude and rate sensor. The arrangement of these components is shown in

Fig. 7.8. Details of the electrical hardware and circuitry can be found in Appendix B.

Micro-controller, Sensor
drivers and \ /

DC convertors

4x Flywheel
drivers

Figure 7.8: Arrangement of electronics

7.3.1 Sensors

The robot’s triaxial attitudes and angular rates are measured at a sampling frequency of
50 Hz using an Attitude and Heading Rate Sensor (AHRS). This sensor has a larger range
in roll than in pitch and so is fixed normal to its standard orientation in the hull. Thus the
AHRS roll, pitch and yaw measurements correspond to the pitch, roll and yaw dynamics of
the robot. Table 7.2 shows the sensing capabilities in the body frame. These are output
as 12 bit analogue signals between +4.096 V. The signals are converted to the appropriate

measurements using the following equations:

A Lout
= 1. _—
0 Range x 1.5 x 5 % 4.006
Lout
f = R _rout
ange x 2 x 4.096

These signal are converted so that they can be read by the 10bit 0-5V A/D convertors on

the micro-controller. The circuitry for this conversion is illustrated in Appendix B.

Measurement Range || Accuracy
roll (°) £90 < £0.75
pitch (©) +180 || < £0.75
yaw (°) +180 < +1.5
roll, pitch, yaw rate (°/s) || 100 < %1.0

Table 7.2: Sensing capabilities of IKURA
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7.3.2 Drivers

Flywheel motor: The angular velocity of each flywheel is individually monitored by a
closed-loop digital driver that uses three Hall sensors in the motor to regulate its speed.
These have a 28V power supply. The motor speed is controlled by an 8bit 0-5V analogue
signal that is generated by the micro-controller. The speed of the flywheels can be determined

as follows:

k,j,XVinXVD/A
5

where l% is the speed constant of the motor. This was experimentally determined to be
2150rpm/V. Vj;, is the supply voltage and V4 is the signal from the micro-controller. A
separate 1/O signal is used to apply an electronic brake to stop the flywheels from rotat-
ing. Details of the experiment and circuitry used to control the flywheels can be found in

Appendix B.

Gimbal servo: The servos used to rotate the gimbals define the resolution of the attitude
control system. The servos have a 5V power supply and are controlled using four 16 bit
PWM signals generated by the micro-controller. The servo angle is controlled by the width

of a pulse that is sent every 22 ms. The angle can be determined as follows:

PWM — PWM,
PWMpg

T
¢—§X

where PWM is the length of each pulse. PWMj is the pulse length for a zero excursion angle,
which was practically determined to be 1480 us. The pulse range was found to be +700 us
and thus PWMpg = 1400 us. Further details of the PWM signal are given in Appendix B.

Thruster: The direction and rate of the thruster’s rotation are controlled by an I/O signal
and an 8 bit PWM signal respectively. The thruster has a 10 V power supply. The rotational

rate of the thruster can be calculated as follows:

kn, X Vi x PWM
PWM;

n = dX

where d is +1 when the I/O is 1 and —1 when I/O is 0 and k,, is the motor speed constant
when loaded. This was experimentally determined to be 93.4rpm/V. PWM is the width of
the pulse sent and PWM; is the period of the pulse. Further details of the experiment and

the control signals can be found in Appendix B.

7.3.3 Micro-controller
The robot is controlled by a 16 bit Hitachi H8/3067 single-chip micro-controller. This is

programmed in C+4 and compiled using a host computer. The compiled program is down-
loaded to the micro-controller through a serial cable. This has a H8/300H CPU core unit
that uses a real-time operating system with a clock rate of 20 MHz. A watchdog timer is used
to control the system at a frequency of 10 Hz. Information can be transmitted via a RS232

serial communication port to a user interface on a host PC to be monitored in real-time.
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7.3.4 Power

The various different supply voltages are distributed via a number of DC-DC convertors.
These ensure that each of the electrical devices receives the correct voltage supply. The
voltage and power requirements of each of the components is presented in Appendix B.
The overall power requirement of the robot is shown in Table 7.3. The operational power
consumption of 20 W is for a constant flywheel rate of 1) = 10, 000 rpm with steady propulsion
at a thruster rate of 450 rpm. The peak power consumption for the maximum acceleration of
the flywheels and the thruster is about 100 W. What may seem like a drawback of the system
is the energy required initially to accelerate the flywheels. However, this can be carried out
prior to each deployment using an external power source. Furthermore, since this energy is
stored in the rotation of the flywheels it can in theory be used to power the robot during
its missions. This idea of using flywheels as a mechanical battery was suggested for use on-
board spacecraft by Roes [73] in 1961. With this approach it may be possible to perform short
missions with no chemical battery at all. Unlike conventional batteries the energy stored is
not sensitive to temperature change and has no memory effect. Another practical advantage
is that the remaining energy can be accurately calculated by measuring the angular velocity
of the flywheels. However, this is beyond the scope of this research and in the experiments

described power is supplied to the robot through a tether cable using an external source.

Component Operational power || Peak power
Sensors and CPU 4W 4W
CMG system 14 W 82W
Thruster 2W 10W
Total 20 W ~ 100 W

Table 7.3: Operational and peak power consumption of IKURA

7.4 Specification

The underwater robot IKURA is the first prototype of the Zero-G Class and is the first
application of CMGs to underwater robots. This forms a unique platform with which to
demonstrate unrestricted attitude control and three-dimensional manoeuvring. The structure
of the control system is presented in Fig. 7.9. The complete construction of IKURA is
illustrated in Fig. 7.10 and the overall specification is given in Table 7.4.

Fhywheel Flywhesl Flywheel Flywheel
Host PC { Micro- controller (Dra -+ /0] (DA + 170 (DA + 170} (VA + 1H0) Thruster
(pentiurm ) (H8/2067) Gimbal servo | | Gimbal servo Gimbal servo Gimbal servo (P + 110
(P (P [Py} [Py

Direct signal

i N

RS232C

AHRS

Zrrzza Connector B AT

— ain hull

Figure 7.9: Structure of the control system

60



Chapter Seven 7.4. Specification

Figure 7.10: Construction diagram of IKURA

Classification Zero-G
Objective Investigation of CMG and Zero-G applications
Capabilities Unrestricted attitude control and 3D missions
Hull length 500 mm
Hull diameter 220 mm
Mass 17.0kg
Max. depth 20m
Max. speed 0.5m/s
Max. slew rate 45°/s
CPU H8/3067
Sensor Cross-Bow AHRS-400CA
Translation Thruster (surge)
Rotation CMG pyramid (roll, pitch, yaw)
Max. energy stored in CMGs 35kJ
Power consumption 20W (~ 100 W for accel.)

Table 7.4: Specification of IKURA
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Chapter 8

Experimental verification

This chapter verifies the theoretical developments of this research and demonstrates the
practical application of CMGs to Zero-G Class underwater robots. A series of experiments

is performed to assess the:

e actuation capabilities of the CMG system,
e dynamics and control of the CMG and body system and
e dynamics, control and stabilisation of the complete CMG, body and fluid system.

To clarify the first point the torque developed by the CMG system is assessed. Next, the
exactness and real-time applicability of the steering law are investigated to demonstrate the
practical aspects of using CMGs for actuation. In both cases the torque generated by the
CMG system was measured using an array of cantilevered strain gauges. For convenience of

instrumentation both experiments were performed on land.

To elucidate the second point a series of experiments was performed to assess the open-
loop dynamics and the closed-loop control of the CMG and body system in the presence of
a disturbance. These experiments were performed on land with the CMG pyramid mounted
on a thrust bearing so that it was free to rotate in yaw. The robustness of the control law to

the disturbance of the bearing is verified.

Finally, the performance of the CMG, body and fluid system is verified to demonstrate
the practical applicability of the complete control system to Zero-G Class underwater robots.
These experiments were performed with the underwater robot IKURA in the experimental
pool facilities of the URA laboratory at the University of Tokyo. The experiments assess the
open-loop attitude response to a series of gimbal rate inputs and the closed-loop control per-
formance of the underwater robot using the proposed control law. During the experimental
work, as confidence in reliability grew the flywheel speeds were steadily increased up to the
recommended operational rate for this system of 10,000 rpm. The results are presented in a
different sequence to the work so this steady increase is not apparent. However, the speed of
the flywheels is not a critical parameter in the verification of the theory presented. Details
of the hydrodynamic model used are presented in Appendix C. To allow for comparison the
second series of experiments was performed with two alternative control laws in addition to
that developed in this research. Finally, the ability to stabilise the passively unstable, un-
steady self-propelled translational dynamics of a Zero-G Class underwater robot are assessed.

Video footage experimental work can be found in Appendix D.

62



Chapter Eight 8.1. CMG actuation

8.1 CMG actuation

The performance of CMGs as an actuator is assessed by measuring the torque developed by
the CMG system and investigating the exactness and real-time applicability of the steering
law. The torque generated was measured using an array of cantilevered strain gauges. These
were calibrated before each experiment by applying a known force at a measured distance
along the cantilever. A plan view of the experimental setup is illustrated in Fig. 8.1. For
convenience of instrumentation these experiments were performed on land with the CMG
pyramid mounted on a thrust bearing so that it was free to rotate in yaw. This does not
make the results of the experiments any less valid since the torque generated by the CMG

system is independent of its environment and is applied directly to the body of the robot.

7 Cantilever Thrust bearing

I

AN |

Strain gaugesi

™~ CMG pyramid

Figure 8.1: Setup for measurement of the torque generated by the CMG system

8.1.1 Gyroscopic torque output

In the first experiment the torque generated by the CMG system in response to an open-
loop gimbal rate command is measured and compared to the theoretical torque calculated
using (3.5). Fig. 8.2 shows the response of the system to a gimbal rate command of £8°/s
that covers the entire range of gimbal excursion angles between +90° where the flywheel
angular velocity w is set to 5000 rpm. The torque generated by the system has a cosinusoidal
relationship with the gimbal excursion angles and shows good agreement with the torque
computed on-line by the micro-controller in real-time. The 6.0% loss in magnitude is of an
acceptable order considering mechanical disturbances such as friction, vibrations and flywheel
imbalance. Recalling from (5.4) that a singularity occurs when det(éé’) = 0, the parameter
det(ee”) can be used to indicate how far the system is from a singular orientation. This is
described further in the next experiment. It can be seen that there is a singularity when all
the units have a 90° excursion angle. At this point the momentum vector in the z-direction
reaches its maximum normalised value of 4s* and so no torque can be generated in this

direction. These results confirm the dynamic equations derived for the CMG system.
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8.1.2 Steering law exactness

The exactness and real-time applicability of the steering law in (6.7) is assessed by measuring
the step response of the system to an open-loop torque command. Fig. 8.4 shows the response
of the system to a command torque of 0.07 Nm for a flywheel rate of 5000 rpm. The steering
law responds immediately to generate the command torque. The brief transient period is
due to the finite acceleration of the servos used to steer the gimbals. The measured torque is
maintained within 6.0% of that commanded until the system reaches the workspace envelope
where no further torque can be generated in the desired direction. As the momentum in z-
direction increases, the system becomes less singular with det(¢¢’) increasing as the distance
to the nearest singularity becomes further. This is illustrated graphically in Fig. 8.3, which
shows the position of the normalised momentum vector in the constrained workspace. Beyond
a certain point det(ée!) starts to decrease as the system approaches the singular momentum

envelope in the z-direction, eventually becoming singular where det(ée!) = 0.

The gimbal rates determined by the steering law increase exponentially with the ex-
cursions of the gimbals. A limit of 25°/s is imposed to prevent unreasonable gimbal rate
commands being executed near singular orientations. This can cause a drop off in the torque
generated near singularities, but is not restrictive as the only singularities in this workspace
are those that form the boundary of the momentum envelope. Operation of the system near
these regions does not pose any significant practical advantage since the system soon reaches
the boundary of its operational envelope. Some losses in torque are recorded beyond 50 °
excursion with rapid degeneration beyond 70°. These losses occur before the gimbal rate
limit is reached and are due to the sampling frequency of the control system, which at 10 Hz

becomes unable to keep up with rapidly changing gimbal rate commands.

The results of the experiment verify that the proposed steering law is both exact and
applicable in real-time. The errors described are due to the practical implementation of
the steering law in a finite system. These can be overcome by increasing the frequency
of the control system or by increasing the flywheel rate to avoid operation at large gimbal
excursions. However, these limitations are not restrictive since the system is designed to meet

its specification well within the boundary of its maximum momentum envelope.
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Figure 8.3: Geometric representation of the momentum vector in the constrained workspace
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8.2 Dry-land dynamics

A series of experiments was performed to assess the open and closed-loop dynamics of the
CMG and body system in the presence of a disturbance. The experiments were performed on
land with the CMG pyramid mounted on a bearing that was free to rotate in yaw. Attitude
and angular rate measurements were made using an AHRS unit (see Table 7.2) fixed within
the system where average readings were taken at 10 Hz to filter noise. The setup is illustrated

in Fig. 8.5 and experimental video footage can be found in Appendix D.

CMG pyramid

AHRS

Thrust bearing Fixed surface

Figure 8.5: Setup for assessment of dry-land dynamics and control

8.2.1 Open-loop dynamics

The first series of experiments assess the open-loop attitude response of the CMG and body
system to gimbal rate inputs. Fig. 8.6 shows the attitude response of the system in the
presence of a disturbance due to friction in the thrust bearing. A gimbal rate command of
+10°/s is sent to cover the range of excursion angles between +90° for two cycles. The
angular velocity of the flywheels is 1000 rpm and the torque generated is determined using
(3.5). The system’s attitude and angular rate response are highly non-linear. The results

indicate that friction in the bearing has a significant impact on the dynamics of the system.

The dynamics of the system simulated using (3.12) with the bearing modelled as described
in Appendix C shows a reasonable agreement with the measured response. The errors in
simulation are due to unmodelled vibrations in the CMG pyramid as the direction of the
gyroscopic torque changes. This can be seen in the video footage in Appendix D. This occurs
as the CMG pyramid relies on being fixed to the robot’s hull for rigidity. Although the
vibrations cause modelling difficulties in this experiment, the problem is overcome when the
system 1is rigidly fixed inside the body of the robot. The results of the experiment support
the validity of the attitude dynamics derived for the CMG and body system.
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Chapter Eight 8.2. Dry-land dynamics

8.2.2 Closed-loop control

The performance of the attitude control law (4.6) developed in Section 4.2 is analysed by
measuring the response of the system to an angular state command in the presence of a
known disturbance. The control law does not model the non-linear dynamic effects of the
bearing or the effects of vibrations of the system. These have been discussed in the previous
section and are treated as disturbances in this experiment. Appropriate control gains were

determined experimentally with the final values optimised at [k,,, k4] = [0.4, 1.0] for this setup.

Step response

This experiment investigates the response of the system to a step attitude command of 15°.
The navigation unit (Fig. 2.4) computes the desired angular rate as a function of the distance
to the desired angle. The attitude response of the system is plotted in Fig. 8.7. The system
takes 1.0s to first reach the target yaw angle with a small overshoot of 1° before finally con-
verging 2.4s after the initial command. The maximum torque generated by the CMG system
is 0.135 Nm. This is sustained for 0.3 s corresponding to a momentum impulse of 0.04 Nms.
The experiment demonstrates a rapid response that converges to the desired state and this

suggests that the system may be robust against the un-modelled disturbances.
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Figure 8.7: Dry-land step control response in the presence of a disturbance
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The response of the CMG system for a flywheel rate of 3000 rpm is plotted in Fig. 8.8. The
system respond rapidly to generate the required torque. The initial absolute error in the
torque generated reaches 1 x 1073 Nm, which is 0.7% of that commanded by the control law.
This is due to finite accelerations of the gimbals in practical implementations. Beyond this
initial transient the mean torque error remains exact to within 0.1 x 1073 Nm. The maximum
gimbal rate is 11.5°/s with a maximum excursion angle of 6°. The final excursion after the
manoeuvre is 3°. The angular momentum and det(¢é?) plots show that the system performs

this manoeuvre while operating well within the boundary of its operational envelope.
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Ramp response

For practical implementation the navigation unit computes a ramp signal to the target at-
titude in order to limit the response of the control law. This experiment investigates the
response of the system to an attitude command of 180° with a maximum yaw rate of 50°/s.
Fig. 8.9 shows the attitude response of the system and the torque generated by the CMGs.
The system first reaches its target attitude in 3.5s with an overshoot of 10° before converging
5s after the initial command. The desired rate is first reached in 0.3 s, overshooting the com-
mand by 15°/s before converging to the desired rate 1.4s after the command. The maximum
torque generated by the CMGs is 0.45 Nm to first accelerate the system to the desired rate
and to bring the system to a halt once the target attitude is reached. The motion of the
CMGs is plotted in Fig. 8.10. The maximum absolute error in torque is 7 x 1073 Nm, which
is 1.5% of that commanded by the control law. This is due to the finite gimbal accelerations
and is larger than in the previous experiment as greater accelerations are required to achieve
the maximum gimbal rates of 23.0°/s and —20.0°/s. The largest gimbal excursion during
the manoeuvre is 17° with a final excursion of 13° after the manoeuvre has been completed.
The angular momentum and det(ce? ) plots show that the system operates within 19% of the

momentum workspace for a flywheel rate of ¥ = 3000 rpm.
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Figure 8.10: Ramp response CMG steering with 1/1 = 3000 rpm

Discussion of results

The CMG system operates well within the momentum workspace to generate the command
torques determined by the control law to achieve a more than acceptable attitude response
with no offset error. The control law is robust to the non-linear dynamic disturbance of
the bearing and due to the vibrations of the system. These disturbances are functions of
the speed and acceleration of the system and so in this respect are somewhat similar to the
dynamic effects associated with operating within a viscous fluid. The results are promising,
indicating that the control law may also be robust to the types of unmodelled disturbances

that can be expected when using a simplified model of viscous flow in the control law.
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8.3 Underwater dynamics

A series of underwater experiments was carried out to verify the theoretical developments
and demonstrate the practical application of Zero-G Class underwater robots. These were
performed using the Zero-G prototype IKURA in the experimental pool facilities of the URA
laboratory at the University of Tokyo. During these experiments two tethers were attached as
pictured in Fig. 8.11. One of these is a safety line and the other is used to supply power and
to transmit information to a host PC. Experiments were first performed to verify the open-
loop dynamics of the complete CMG, body and fluid system. Next, the performance of the
proposed control law is assessed by comparing its closed-loop response with two alternative
control laws. Finally, an experiment was performed to assess the ability of the CMG system
to stabilise the passively unstable self-propelled translational dynamics of a Zero-G Class

underwater robot. Video footage of this experiment can be found in Appendix D.

Figure 8.11: IKURA in the 8 x 8 x 8 m test tank facility of the URA laboratory

8.3.1 Open-loop dynamics

The open-loop attitude response of the robot to a series of gimbal rate inputs was experimen-
tally assessed. The measured response is compared to that determined by the dynamic model

(3.12) where the added mass and drag coefficients of the robot are determined in Appendix C.

Yaw dynamics

Fig. 8.12 shows the open-loop response of the robot to two cycles of a cosinusoidal torque
input about the yaw axis. The simulated response has a reasonable correlation with that
measured, accurately modelling the phase dynamics. However, the simulation consistently
over-predicts the yaw rate with a maximum value of 37°/s compared to a maximum measured
value of 32°/s. This corresponds to a yaw rate error of 16% and this results in a growth in
the attitude error as the experiment progresses. Since the experiment was performed in a
controlled environment the only likely explanation is that these effects are due to the tether.
The two cables twist as the robot rotates and this retards yaw motion. Any initial twist in
the cables would have a tendency to unwind and this would explain the drift observed in the

measured yaw. However, a further investigation would be necessary to confirm this point.
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Pitch dynamics

Fig. 8.13 shows the open-loop response of the robot to two cycles of a cosinusoidal torque
input about the pitch axis. The measured response indicates that the robot does not have
absolutely coincident centres of gravity and buoyancy. A reasonable simulated response
can be achieved by modelling a righting lever of 0.4mm as discussed in Appendix C. The
simulated response initially shows good agreement with the actual attitude and angular rate
measurements. However, as the robot pitches in the positive direction with its nose down, the
thruster mount comes into contact with the cradle mechanism when the robot reaches 70°,
which occurs at t = 14s and t = 32s. This causes oscillations in the angular rate measured
and stops the robot from pitching further and this accounts for the significant deviation from
the simulated dynamics. However, when the robot pitches with its nose up, it reaches —90°
and shows a much closer agreement with the simulation. This indicates that the effects of
the tether on the pitch dynamics are negligible due to the cradle mechanism described in the

previous chapter.

The motion of the CMGs is plotted in Fig. 8.14. The CMG units on the y-axis steer
in opposite directions to move the angular momentum vector in the y-direction to generate
a pitching torque. The momentum vector has a maximum normalised value of 2¢* in this
direction that occurs when the two CMG units reach their maximum excursion. This is
illustrated in the det(cc?) plot and in the geometric representation of the momentum vector.

These imply that the system is more prone to becoming singular in pitch than in yaw.
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8.3.2 Closed-loop control

The closed-loop response of the complete CMG, body and fluid system is assessed in a series of
underwater experiments using the proposed control law (PC) (4.6). To allow for comparison

the experiments were repeated under identical conditions with two alternative control laws:

Tuy = QT<q)kqeq + kuew
Tup = QT(q)kqeq + [kpey — Jiopwg — w X IT — u x P|

The first of these, Control law A (CA), is a PD controller that generates its command based
only on the error in state. This control law is the feedback part of PC and neglects any
feedforward modelling of the dynamics. The second, Control law B (CB), also takes into
account the dynamics of the CMG and body but, in contrast to PC, does not account for
the hydrodynamic interactions of the body. An extensive parametric study determined the

appropriate control gains for the system in both pitch and yaw to be [ky, k] = [0.5,0.3].

Yaw control

Fig. 8.15 shows the response of the robot to a 30 ° step yaw command. The yaw rate command
plotted is that computed for the response of the robot using PC. By modelling the coupled
dynamics of the CMG and body, both PC and CB achieve a faster response than CA with
an initial peak in torque due to the sudden change in the body rate command in wy. The
slower response of CA results in oscillations in the attitude response and so the robot takes
longer to stabilise at the desired state. By modelling the hydrodynamic interactions of the

body, PC generates marginally larger torques than CB to achieve a faster dynamic response.
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Fig. 8.16 shows the response of the CMGs. The steps in the torque profiles for PC and
CB are due to the numerically imposed gimbal rate limit of 20°/s that was set to protect
the system. After the initial acceleration of the gimbals, the CMGs steer smoothly with a
negligible difference between the desired torque and that generated. The control behaviour
of PC results in the smallest gimbal excursions and gives the most efficient use of the system,
with 20% less motion of the momentum vector than CB. All three control laws fall marginally
short of the desired yaw attitude with an offset of 2° using PC. The momentum of the system
continues to change at the final state and a constant torque is exerted towards the command
state. This equilibrium can be explained by the previously discussed torque effect of the tether
twisting, which cancels the torque generated by the system. Unlike the dynamic disturbance

of the bearing and the viscous forces, the cable has a static effect that causes this offset.
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Pitch control

Fig. 8.17 shows the pitch response of the robot using the three different control laws. A
command is sent for the robot to first adopt a horizontal pitch angle and then a step command
to pitch 30° is sent with the command pitch rate calculated as a function of the attitude
error. The command pitch rate computed for the robot’s response using PC is shown. The
results show a similar trend to the previous yaw control experiment. The attitude dynamics
with CA are oscillatory due to the slower torque response of the control law compared to
PC and CB. Again the torques generated with PC and CB have an initial peak due to
the derivative of the body rate command wy. In this case however, CB struggles to reach
its final state. By modelling the hydrodynamic interactions of the robot, PC generates
larger torques than CB when the robot first accelerates and when it rotates at large rates
to achieve a superior response by overcoming the hydrodynamic added inertia and viscous
drag respectively. Fig. 8.18 shows that this behaviour results in significantly smaller gimbal
excursions than CA and CB, with 30% less motion of the momentum vector than CB. In
each case the robot’s attitude falls short of the command with an offset of 3° using PC. As
the robot maintains its attitude the CMG system continues to exert a constant torque. Since
the experiments were carried out in a controlled environment with no currents or waves, the
only explanation is that the robot has a small righting moment that works against the CMG
system. This confirms the findings of Section 8.3.1.

40
30 P _ _ i
— F—~-.@- e e e G m Sai
o 4
L 20 /
=
£
= < ] —Cmd
Q 10- ! .
2 10 *‘-‘:\ / + PC
A
o R I e e e et LY 1 CA
0 O CB |
-10
30
@ 20 i
(=] £
< {
= 10 £\
L {
5]
H A
0y s SRR O P e D = R F R B,
g N 7
]
o -107 -
-20
0.3
0.2 7 i
E o1 ; i
S 0.1
go’/\vmwa-—«-« o i oS
=
5 -0.1 i
= oaf
-0.2 |
Il Il L

1
0 5 10 15 20 25 30
Time [s]

Figure 8.17: Underwater robot step pitch control

79



Chapter Eight 8.3. Underwater dynamics

+ PC

al A cA |
<o CcB

3L i : ,

2l : i

i, VU\ )
ﬂ% Y A N W, NN 7 O P - ST

20

Torque error [Nm]

cMG1
---CMG2
- --CMG3 |-
" —CMG4

S, i P e
e \ﬁsaﬁﬂsu@»@wgﬁ;ﬁ.@g;g j_/ —83_4}

Gimbal rate [deg/s]
=]

Gimbal angles [deg]

y
“\\ H= T~ - -
— w_ N, o /,(3"
g 0-2r :D\_/-e\:_g\ T, _+. ‘ez B
] S e T 2 _~
T o4 o e N s
- = . z . o —
% X ' \\\’h ‘,' ‘r"\\ b -4
N -~ ¥ \ Z
E R N L T + Hx
0.6 o ~~ - i
- Y RS § Hy
X '
o~ O Hz
~
-0.8 ®
1.5
— St e =
S 1 . i
[
—
—
<L
=
0.5 : =
o i . ; |
o 5 10 20 25 30

15
Time [s]

Figure 8.18: Pitch control CMG steering with ¢ = 8000 rpm

Discussion of results

In the experiments the attitude using PC falls 2° short of the command in yaw and 3 ° short
of the command pitch due to the static disturbance of the tether and the righting moment
respectively. It is reasonable to assume that this will not pose a problem for yaw control in
untethered operation. The static attitude offset can be overcome by including an integral
error term in the control law. However, the system would still have to resist the righting
moment and the CMGs would eventually reach the boundary of their operating envelope.
A superior solution is to eliminate or at least reduce the righting moment that forms the
root of the problem. Despite these problems the analysis shows that the proposed method
takes advantage of the coupled behaviour of the CMG, body and fluid system to make more
efficient use of the system, achieving a superior control response with 20% less overall control

activity in yaw and 30% less in pitch than the alternative control laws.
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Chapter Eight 8.3. Underwater dynamics

8.3.3 Stabilision of unsteady self-propelled translational dynamics

The final experiment in this chapter verifies the ability of the control system to actively
stabilise the passively unstable, unsteady self-propelled translational dynamics of a Zero-G
Class underwater robot. This requires a fast response and a high resolution of attitude control
and is essential for the practical application of Zero-G Class underwater robots. Video footage

of this experiment can be found in Appendix D.

t=6.2s

Figure 8.19: Image sequence of the actively stabilised and passive surge response

Fig. 8.19 is an image sequence taken by an underwater camera that compares the actively
stabilised and passive response of the robot to identical thruster inputs as shown in Fig. 8.20.
The image shows how the cradle mechanism rotates to eliminate the torque effects of the
tether about the robot’s pitch axis. In the passive case the flywheels are stationary and so
the CMGs are inactive. In the active case the flywheels rotate at 10,000 rpm and the CMG

system responds to actively stabilise the robot’s attitude during the manoeuvre.
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Figure 8.20: Actively stabilised and passive translational dynamics
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Chapter Eight 8.3. Underwater dynamics

The position of the centre of buoyancy is computed in real-time using the dynamic model
(3.12) with actual attitude and angular rate measurements. The parameters for the transla-
tional dynamic model are developed in Appendix C. Inspection of Fig. 8.19 using the length of
the robot as a reference in the visual images shows that the translational dynamics computed
on-line are reasonable. The passive response is unstable and Fig. 8.21 shows that the robot
pitches to 70° and yaws to 45°. In the active case the CMG system responds to stabilise the
robot’s attitude during the manoeuvre, generating torques in the order of 0.1 Nm to stabilise
the attitude response of the robot to within +3°. The reaction to the torque exerted by the
thruster causes the robot to roll. Although this effect is relatively small it may be problematic
for real-life applications and must be either overcome through active stabilisation using the

CMGs, or eliminated by using a contra-rotating propeller to actuate surge.
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Figure 8.21: Actively stabilised and passive attitude response
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8.3. Underwater dynamics

Fig 8.22 shows that the system responds smoothly to generate the necessary torque. The total

absolute error in the torque generated about all three rotational axes is within 2 x 1073 Nm

of that determined by the control law. This error is 2% of the torque generated by the system

and is due to the finite accelerations of the gimbals. The maximum gimbal rate is 10°/s and

the system operates well within the limits of the constrained workspace.
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Figure 8.22: CMG steering for active stabilisation of surge with ¢ = 10,000 rpm

The results of this analysis verify that the CMG based attitude control system has a suf-

ficiently fast and high resolution of response to actively stabilise the passively unstable,

unsteady self-propelled translational dynamics of a Zero-G Class underwater robot.
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8.4 Summary

The experiments performed in this chapter verify the theoretical developments of this research
and demonstrate the practical application of Zero-G Class underwater robots. The actuation
capabilities of the CMG system have been assessed, with the results confirming the validity
of the CMG equations and demonstrating that the steering law developed is applicable in
real-time and remains exact to the desired torque. In practical applications errors of up to
8 x 1073 Nm can be expected due to the finite accelerations of the gimbals. This corresponds
to less than 2% of the torque generated in the experiments performed, which is more than
acceptable for this scale of application. This error is a function of the limits on gimbal
acceleration and so depends on the ratio of the torque available in the servos used to actuate
the gimbals and the inertia of the CMGs about the gimbal axes. However, it is possible to
reduce this error and by increasing the flywheel rates to directly reduce the required gimbal
accelerations. The dynamic equations for the CMG and body system have been assessed in
dry-land experiments. The control system demonstrates a fast response and high resolution
of attitude control and is robust to the dynamic disturbance due to non-linear bearing friction

and the vibrations of the system.

The equations of motion for the CMG, body and fluid system have been verified in
underwater experiments. Difficulties in yaw and pitch control arise from the static disturbance
of the tether and the righting moment respectively. These cause a static offset in the closed-
loop step response of the robot’s attitude. It is suggested that this can be overcome by
including an integral error term in the control law in future applications. However, these
disturbances place a significant burden on the attitude control system and it is important
to eliminate or at least reduce these static effects. In the case of yaw it is reasonable to
assume that this will not pose a problem for control in untethered operation. In the case
of pitch control there are a number of practical difficulties encountered when attempting to
achieve coincident centres of gravity and buoyancy in a robot with moving internal parts. One
suggestion is to use electronically controlled moveable internal masses to calibrate the centre
of gravity of the robot once it is in the water. Despite these problems the analysis shows that
the proposed method takes advantage of the coupled behaviour of the CMG, body and fluid
system to make a more efficient use of the system, achieving a superior control response for
20-30% less overall control activity than the alternative control laws. Finally, the ability of
the system to actively stabilise the passively unstable, unsteady self-propelled translational

dynamics of a Zero-G Class underwater robot has been verified.

The experiments demonstrate that, in contrast to traditional underwater actuators, the
actuating effect of CMGs is independent of their environment as they generate torque using
only the momentum stored in their flywheels. The CMG system demonstrates a speed and
resolution of attitude control that is essential for the practical application of Zero-G Class
underwater robots and it is difficult to envisage how this could be otherwise achieved. The
experiments establish that CMGs form an ideal basis for the attitude control system of Zero-G
Class AUVs. The advantages of the new manoeuvring capabilities offered by the application

of CMGs in Zero-G Class underwater robots are demonstrated in the next chapter.
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Chapter 9

Zero-GG manoeuvring and

implications for underwater research

Typically underwater robots rely on passive stability to maintain a useable orientation. This
limits their attitude to a circle in yaw and confines their motion to that along a series of two-
dimensional planes. This chapter demonstrate the unrestricted attitude control and three-
dimensional manoeuvring capabilities of Zero-G Class underwater robots. First, a series of
on the spot attitude control manoeuvres are performed to demonstrate the necessary range
of control for a Zero-G to adopt any attitude on the surface of a sphere. Next, the robot
demonstrates a three-dimensional approach to mission planning by performing a vertically
pitched diving and surfacing manoeuvre in surge. The implications of the unique manoeuvring
capabilities for underwater research using AUVs and the potential offered by the application

of CMGs to Zero-G Class underwater robots are discussed.

9.1 Unrestricted attitude control

This section describes experiments to demonstrate the unrestricted attitude control capabili-
ties of Zero-G Class underwater robots, where unrestricted attitude control has been defined
earlier as the ability to adopt and maintain any attitude on the surface of a sphere with a
zero radius turning circle. This requires the robot to be capable of £180° yaw and +90°

pitch control. Video footage of the experiment can be found in Appendix D.

Yaw manoeuvre

In this experiment the robot performs a series of 45° rotations to cover the range of yaw
angles between £180° in order to demonstrates the necessary range of yaw for unrestricted
attitude control. The sequence of images in Fig. 9.1 shows a series of plan views of the
experiment taken by a camera mounted on a crane above the robot and images taken by an
underwater camera. The image sequence shows that the robot is capable of performing a
full rotation in yaw. It can be seen that the manoeuvre is performed with an effectively zero
radius turning circle. The attitude response of the robot and the torque generated by the
CMG system are plotted in Fig. 9.2.
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Chapter Nine 9.1. Unrestricted attitude control

t=60s t=85s

t=0s

Figure 9.1: Image sequence of £180° yaw manoeuvre with plan and side views

As each step of the yaw command is executed the robot responds smoothly, accelerating and
decelerating to adopt and maintain the desired attitude. The control system generates a peak
torque with a magnitude of 0.6 Nm each time a new command is sent. The performance of

the system is consistent despite the changing gimbal angles, as shown in Fig. 9.3.
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Figure 9.2: Control response for £180° yaw manoeuvre in steps of 45°
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Chapter Nine 9.1. Unrestricted attitude control

The system operates within the constrained workspace for a flywheel rate of ¢ = 8000 rpm
with a maximum gimbal excursion of 30°. The gimbal rates reach the 20°/s limit imposed
to protect the system. The steering law keeps the torque generated to within 8 x 1072 Nm,

1.3%, of the command torque. This error is due to the finite accelerations of the gimbals.
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Figure 9.3: Yaw manoeuvre CMG steering with ¢ = 8000 rpm

This experiment was performed in 45 © steps to demonstrate a reliable and repeatable control
response despite changes in the state of the CMG system. The robot is capable of performing
a full rotation in yaw with a zero radius turning circle while operating at 5.3% of its maximum

momentum capacity and so can adopt and maintain any attitude in yaw.
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Chapter Nine 9.1. Unrestricted attitude control

Pitch manoeuvre

In this experiment the robot adopts £90° vertical pitch angles to demonstrate the necessary
range of pitch for unrestricted attitude control. Since quaternions are used to describe the
robot’s attitude there are no singularities in the control law. Fig. 9.4 shows an image sequence

taken by an underwater camera. Complete video footage can be found in Appendix D.

t=12s t=16s t=29s t=33s

|

Figure 9.4: Image sequence of +90° pitch manoeuvre

The robot first adopts a horizontal attitude before pitching to 90° with its nose down. As
the robot pitches the thruster mount comes into contact with the cradle mechanism and
exerts a moment on the robot. However, the control system responds rapidly to stabilise any
oscillations in the robot’s attitude. The robot then pitches to —90° with its nose up, finally
righting itself to complete the manoeuvre. The attitude response of the robot and the torque

generated by the CMG system are plotted in Fig. 9.5.
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Figure 9.5: Control response for £90° pitch manoeuvre
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Chapter Nine 9.1. Unrestricted attitude control

The robot reaches a maximum pitch rate of 30°/s with the CMG system exerting torques
in the order of 0.2 Nm to adopt a vertical pitched angle in just over 3s. The attitude held
falls slightly short of 90° due to the righting moment discussed in the previous chapter.
When pitched the system exerts a constant torque of 0.07 Nm. This confirms the findings
of Section 8.3.1, indicating that the robot has a righting moment of 0.4 mm and this places
a significant strain on the CMG system. Although the system is capable of performing this
manoeuvre with a flywheel rate of 8000 rpm, Fig. 9.6 shows that det(c¢’ ) becomes small with

the CMG system closely approaching the boundary of the constrained workspace.
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Figure 9.6: Pitch manoeuvre CMG steering with ¢ = 8000 rpm
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Chapter Nine 9.2. Vertically pitched diving and surfacing in surge

Discussion of results

The experiments demonstrate the necessary range of attitude control in yaw and pitch for
the robot to adopt any attitude on the surface of a sphere with a zero radius turning circle.
This freedom in attitude control allows Zero-G Class underwater robots to plan and optimise
their missions in a three-dimensional manner in a way that has not been possible previously.
Furthermore, the fast on the spot attitude control capabilities demonstrated are essential if
Zero-G Class underwater robots are to be applied in geometrically complicated, cluttered

and even enclosed environments where reorientations must be performed in confined spaces.

The non-coincident centres of gravity and buoyancy cause an offset error in the static
attitude response of the robot. It has been suggested in the previous chapter that this can
be overcome by including an integral error term in the control law in future applications.
However, the non-zero righting moment places a significant burden on the attitude control
system. It is possible to sufficiently overcome this problem for practical applications by
operating the flywheels at a higher rate to increase the momentum envelope. However, in a
finite system the CMGs will eventually reach the boundary of their operating envelope when
holding non-horizontal attitudes and it is important to take realistic measures to balance the

internal moving parts and reduce the righting moment that forms the root of the problem.

9.2 Vertically pitched diving and surfacing in surge

This section demonstrates how a Zero-G Class underwater robot can plan and optimise its
missions in a three-dimensional manner. Fig 9.7 shows an image sequence of the experiment
taken by an underwater camera. This is the first time an underwater robot has performed

vertically pitched diving and surfacing in surge. Video footage can be found in Appendix D.

Figure 9.7: Image sequence of a vertically pitched diving and surfacing manoeuvre
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Chapter Nine 9.2. Vertically pitched diving and surfacing in surge

The robot first adopts a horizontal attitude before pitching to 90° with its nose down and
diving vertically in surge. It then holds a horizontal attitude before pitching to —90° with
its nose up to surface vertically. Finally, the robot rights itself to complete the manoeuvre.
The roll and yaw dynamics of the robot were not controlled during the experiment due to
the unreliability of the attitude sensor’s measurements about these axes at near vertical pitch
angles. Clearly the use of alternative sensors must be investigated. The CMG system exerts
the necessary torques to reorientate the robot and actively stabilise its attitude as it propels
itself through the water. The position data in Fig. 9.8 is computed in real-time by the robot
using the dynamic model (3.12) with actual attitude and angular rate measurements. Using
the length of the robot as a reference in the image sequence it can be seen that the simulated

translational dynamics are reasonable.

Fig. 9.9 shows the attitude response of the robot during the experiment. The CMG system
exerts a torque in the order of 0.2 Nm during the pitching manoeuvre to adopt a vertical pitch
angle. As the robot propels itself at a vertically pitched orientation, the reaction to the torque
exerted by the thruster causes the robot to roll. This can be seen in Fig. 9.7 and in the video
footage in Appendix D. It follows that when the robot rights itself after having rolled when
vertically pitched, its heading angle will have changed. This effect explains the large yaw
angles observed and also accounts for the large yaw rate recorded by the sensor each time the
robot rights itself. This can be overcome by actively stabilising roll motion using the CMGs

or by using a contra-rotating propeller to actuate surge as discussed in Section 8.3.3.
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Chapter Nine 9.2. Vertically pitched diving and surfacing in surge

Fig. 9.10 shows the steering response of the CMG system for a flywheel rate of ¢ = 10, 000 rpm.
The flywheels rotate 25% faster than in the vertical pitching manoeuvre described in the pre-
vious section and so the gimbal rates required to generate the same magnitude torque are
smaller. This results in smaller gimbal excursions during the manoeuvre and the system

operates further within the momentum envelope and has a larger value of det(ce!).
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Chapter Nine 9.2. Vertically pitched diving and surfacing in surge

Figure 9.11: Geometric representation of momentum vector during the diving manoeuvre

The geometric representation in Fig. 9.11 illustrates the motion of the normalised CMG
momentum vector to generate the required torques during the experiment. It can be seen

that the momentum vector stays within the boundaries of the constrained workspace.

Discussion of results

This is, to the knowledge of the author, the first time an underwater robot has performed
vertically pitched diving and surfacing in surge. The CMG system stores enough momentum
at a flywheel rate of 10,000rpm to adopt a vertically pitched attitude and overcome the
non-coincident centres of gravity and buoyancy of the robot used in this experiment. The
CMG system demonstrates a fast response and high resolution of control to actively stabilise
the robot’s attitude as it propels itself through the water in vertically pitched surge. This
clearly indicates that the CMG system is capable of stabilising any attitude on the surface

of a sphere as the robot translates in surge.

The unrestricted attitude control capabilities allow the robot to take full advantage of
its single thruster and perform three-dimensional manoeuvres that have not been possible
previously. This is efficient in terms of both speed and power since the robot travels only in
its principal mode of translation. The unrestricted attitude control and unique manoeuvring
capabilities demonstrated in this experiment allow the missions of a Zero-G Class underwater

robot to be planned and optimised in a fully three-dimensional manner.
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9.3 Implications for underwater robot research

The application of CMGs to Zero-G Class underwater robots has several important impli-
cations for underwater research using AUVs. The unrestricted attitude control and unique
manoeuvreing capabilities allow Zero-G Class underwater robots to approach their missions
in a truly three-dimensional manner, optimising the use of their thrusters, sensors and power
supply in a way that has not been possible previously. In addition to improving AUV effi-
ciency, this opens up new fields of research where AUVs can be applied. This section discusses
the implications of CMG technology on Zero-G design and provides suggestions for the types

of missions in which this new class of underwater robot could be applied.

9.3.1 Zero-G design

The freedom in attitude control offered by CMGs allows Zero-G Class underwater robots to
manoeuvre freely in any direction whilst travelling only in their principal mode of translation.
This is often seen in nature and is efficient both in terms of performance and design. Since
the robot can adopt and maintain any attitude it only requires a single thruster to actuate
surge. Having just a single mode of translation minimises the number of sensors required
for navigation and obstacle avoidance as in principal, the robot only requires perceptional
sensors in the direction of travel. Since the CMG system is contained within the body of
the robot, it is physically protected and does not exert any external forces that may agitate
loose surfaces or small creatures. This highly integrated form preserves the hydrodynamic

integrity of the hull and allows for simple and elegant design.

The idea of using the flywheels as a mechanical battery was introduced in Section 7.3.4.
As stated it may be possible to perform short missions with no chemical battery at all.
Specifically in the case of CMGs, this combines energy storage and attitude control in a
single device, known as an Integrated Power and Attitude Control System, or IPACS, as
suggested by Will [74] in 1974. This, together with the highly efficient three-dimensional
approach to missions, minimises the necessary number of components and indicates that

Zero-G Class underwater robots can be considerably smaller than conventional AUVs.

9.3.2 Zero-G missions

The concept of minimal redundancy is central to the design philosophy of Zero-G Class
underwater robots. This not only applies their physical design, but also extends to their
missions. It is envisaged that Zero-G Class AUVs will perform 20-30 minute inspections of
targets that have been located prior to deployment. The short mission time suggests that the
robot would not require any source of power other than the energy stored in their flywheels.
These can be accelerated to their operational speed in a matter of minutes and this can be
performed on board a support vessel using an external power source immediately prior to
each deployment. Since no gases are produced this can be performed without opening the
pressure hull. This combined with the ease of handling for deployment and recovery due
to the small size of the robot, allows for a rapid turnaround that would allow a number

deployments to be made in quick succession when inspecting large, or multiple targets.
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Chapter Nine 9.3. Implications for underwater robot research

The small size and highly integrated design combined with the high manoeuvrability
at low speeds allows for manoeuvring in confined spaces, making Zero-G Class AUVs ideal
for operation in geometrically complicated, cluttered and even enclosed environments. This
allows Zero-G Class AUVs to perform missions that have so far eluded AUVs. Potential
applications include tracking the dives of marine animals such as whales, turtles and even
penguins and ranges to visual surveys of man-made structures such as oil rigs, subsea oil
wells, submerged ruins and even the inside of sunken wrecks. It is hoped that the increased
agility and operational envelope will ultimately lead to an increase in the commercial and
scientific value of AUVs.
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Chapter 10

Conclusions and future work

The aim of this research has been the development of a new class of Zero-G underwater
robot that is capable of approaching its missions in a fully three-dimensional manner. This
requires the ability to perform on the spot rotations to adopt and maintain any attitude on
the surface of a sphere as if in a zero gravity environment and the ability to actively stabilise
any attitude while translating in surge. To achieve this CMGs have been introduced as a
new type of underwater actuator and a novel control scheme has been developed based on

internal momentum exchange.

10.1 Original contributions and summary

This is the first application of CMGs to underwater robots and so it has been necessary to
develop a dynamic model of a rigid body, containing an arbitrary system of single gimbal
CMGs, that is free to translate and rotate in a viscous fluid. This has been derived using
Kirchhoff’s equations of motion, which is more concise than the Newtonian derivations of
previous works. This is the first time that the translational dynamics of a CMG system
have been modelled and that the coupled effects of translation have been accounted for in the
rotational dynamics. Furthermore, the hydrodynamic interactions of the body have also been
included in the form of added mass, added inertia and viscous drag together with the effects
of other actuators. The equations have been restricted to a body with coincident centres of
gravity and buoyancy as this concept is central to this research. However, for completeness, a
method to incorporate gravity effects into the model has been presented. In order to describe
any orientation, the attitude of the body is converted to the inertial frame using quaternions

since they contain no singularities in their description of motion.

The freedom in attitude control offered by having coincident centres of gravity and buoy-
ancy raises questions concerning the stability of the system. This has been assessed based on
energy considerations of the complete CMG, body and fluid system using Lyapunov’s direct
method. The results of this analysis forms the basis of a globally asymptotically stable feed-
back attitude control law that determines the torques necessary for the robot to adopt and
maintain any attitude in roll, pitch and yaw. In contrast to all previous CMG applications,
the control law developed in this research takes into account the effects of translation, the
added inertia and the viscous hydrodynamic interactions of the body as well as the coupled

dynamics of the CMG and body system.
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The greatest challenge in the application of single gimbal CMG systems is the inherent
and serious problem of singular orientations that can result in a momentary loss of control
authority. This research has presented a method to geometrically represent the singularities
of a CMG system based on previous work by Kurokawa [64]. A new method has been
developed to classify escapable and inescapable singularities based on the Gaussian curvature
of null motion that is determined using the eigenvalues of a characteristic function. This is
more simple and direct than the method presented by Kurokawa that indirectly deduces
escapability using a number of different conditions. A comprehensive geometric study of
a minimally redundant CMG pyramid has been performed and the graphical assessment is
the first such study to explicitly distinguish between escapable and inescapable singularities
for the complete singular surface. The study has demonstrated why no exact, real-time
steering law can guarantee singularity avoidance over the entire workspace. The implications
of this on attitude control have been discussed and it was concluded that a steering law for
application to AUVs must be applicable in real-time and must remain exact, guaranteeing
that the torque developed by the CMG system is always equal to that demanded by the
control law. A global steering law that satisfies these conditions has been formulated based
on the method of workspace restriction developed by Kurokawa. This research has presented
a formal method to derive the appropriate algebraic constraining condition, filling in gaps
in the logic of the previously mentioned work that pioneered this technique, based on global

considerations of the inverse kinematics of attitude control.

The underwater robot IKURA, developed as part of this research, is the first prototype
of the Zero-G Class and is the first application of CMGs to underwater robots. Practical
considerations of its mechanical and electrical design have been discussed and a series of dry-
land and underwater experiments performed to verify the associated theoretical developments.
In particular, the actuation capabilities of the CMG system and the exactness and real-time
applicability of the steering law have been verified by physical measurements of the torque
generated. The dynamic equations for the complete CMG, body and fluid system have been
verified in a series of underwater experiments, though difficulties were encountered due to the
tether and the non-coincident centres of gravity and buoyancy of the robot used. The control
law developed has demonstrated robustness to certain types of unmodelled disturbances, such
as the effects of non-linear bearing friction and vibrations of the system. However, problems
were encountered due to the hydrostatic righting moment of the body and the presence of a
tether that caused a small, bounded offset in the robot’s closed-loop attitude response. It has
been suggested that this can be overcome by adding an integral error term in the control law,
though this remains to be verified experimentally. Despite these problems experiments have
demonstrated that the control law developed in this research takes advantage of the coupled
behaviour of the CMG, body and viscous fluid interactions to make a more efficient use of the
system, achieving a superior control response for 20% less overall control activity in yaw and
30% less activity in pitch than two alternative control laws that neglect the dynamics of the
system and the fluid interactions of the body respectively. Finally, the ability of the system
to actively stabilise the passively unstable, unsteady self-propelled translational dynamics of

a Zero-G Class underwater robot has been verified experimentally.
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The ability to perform on the spot rotations to adopt and maintain any attitude on
the surface of a sphere has been verified with the robot demonstrating the necessary range
of attitude control by performing +180° rotations in yaw and adopting £90° vertical pitch
angles with a zero radius turning circle. The ability to stabilise any attitude while translating
in surge has been practically verified with the CMG system demonstrating a fast response
and high resolution of control to actively stabilise the robot’s attitude as it propels itself
through the water when pitched vertically. This is the first time an underwater robot has

performed vertically pitched diving and surfacing in surge.

10.2 Conclusions

This research establishes CMGs as a new type of underwater actuator that offers a speed and
resolution of response that is independent of the fluid environment and cannot be achieved
using traditional actuation methods. A novel control scheme has been developed based on
internal momentum exchange using CMGs that provides the necessary range and resolution
of control about all three rotational degrees to allow Zero-G Class underwater robots to adopt
and maintain any attitude on the surface of a sphere with a zero radius turning circle and to

actively stabilise any attitude while translating in surge.

The unrestricted attitude control and unique manoeuvring capabilities demonstrated in
this research allow Zero-G Class underwater robots to plan and optimise their missions in a
fully three-dimensional manner, taking advantage of their thrusters, sensors and power supply
in a way that has not been possible previously. This allows Zero-G Class underwater robots
to manoeuvre in confined spaces and so operate in geometrically complicated, cluttered and
even enclosed environments to perform missions that have so far eluded AUVs. The prototype
Zero-G Class underwater robot IKURA forms a unique platform with which to investigate

potential applications and explore new fields of underwater research.

10.3 Future work

This work has formed the foundations for research into Zero-G Class AUVs and their appli-
cations. There remain a number of unresolved issues and potential areas for future research.
One area that should be investigated is the formal assessment of the robustness of the con-
trol law. During the experiments carried out in this work a static offset was observed in
the robot’s closed-loop attitude response, suggesting that the control law is not robust to
some types of disturbance. Twisting of the tether and non-coincident centres of gravity
and buoyancy have been identified as possible sources for these errors and, although future
applications should focus on untethered operation, investigations of both the tethered and
untethered dynamics should be performed for a variety of known righting levers to provide
valuable insights to confirm these points and investigate the sensitivity to these parameters.
It has been suggested that these disturbances may be overcome by incorporating an integral
error term in the control law, however, it still remains to assess the robustness of such a
control law. Furthermore, it is recommended that the dynamic response of the system using
alternative robust control techniques, such as sliding control, is also investigated to improve

the overall performance of the system.
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A number of recommendations can be made concerning post-prototype design. Firstly, the
use of a contra-rotating propeller is recommended to eliminate any roll effects when actuating
surge. Secondly, the use of angular rate based attitude sensors such as vibration, ring-laser or
fibre-optic gyros is recommended as magnetic heading measurements were found to encounter
difficulties when the robot adopted near vertical pitch angles. The accumulation of dead-
reckoning error is not expected to cause practical difficulties for this application due to the
short mission times. Finally, although investigations into robustness may elucidate the offset
errors in control, non-coincident centres of gravity and buoyancy place a significant burden
on the CMG system and will eventually cause it to reach the boundary of its operational
envelope when holding non-horizontal attitudes. As such it is essential that this issue is
formally addressed for post-prototype design and that realistic measures are taken to reduce
the righting moment that forms the root of this problem. It is recommended that a system of
moveable internal masses is used to automatically calibrate the centre of gravity of the robot
once it is in the water. Although it may not be possible to completely eliminate the righting
moment, it may be possible to sufficiently reduce it to overcome this problem for practical
applications. It follows that any increase in the actuating capabilities of the CMG system

would further improve the performance of the system in overcoming this difficulty.

The next major target in the development of Zero-G Class technology is to investigate the
use of the energy mechanically stored in the flywheels to power the robot during its missions.
This would combine energy storage and attitude control in a single device, allowing Zero-G
Class AUVs to carry out their missions without the use of any other source of power. The im-
plementation of this system requires a number of practical and also theoretical developments.
Firstly, a generator must be attached to the flywheel axes to distributed the energy stored
to the electrical system. Furthermore, flywheel rate measurements must be used accurately
determine the remaining energy in the system as well as adapt the control and steering laws.
Experiments must be performed to systematically analyse the performance of the system as
the actuation capabilities of the CMGs diminish together with the energy stored and also
investigate the time taken to recharge the energy in the flywheels. This information should
be used to determine the time and energy available for safe continuous operation of the robot

and also determine the minimum turnaround time between successive deployments.

Zero-G Class AUVs have the potential to perform missions that have so far eluded existing
classes of AUV. However, to achieve this it is necessary to equip perceptional sensors for
navigation. Owing to restrictions on the mass, space and power available it is suggested
that a small, versatile, multipurpose sensor, such as a stereo-vision camera, should be used
for real-time navigation, target tracking, obstacle avoidance and data acquisition [7,9, 75].
Such a single sensor would allow Zero-G Class AUVs to perform detailed visual inspections
of targets located prior to deployment. Examples of such missions could include tracking the
dives of mobile marine creatures such as whales, turtles and penguins for scientific research or
for industrial and archeological applications operating in geometrically complicated, cluttered
and even enclosed environments to survey man-made structures such as oil rigs, subsea oil
wells, submerged ruins and even the inside of sunken wrecks. The prototype Zero-G IKURA

forms a unique platform with which to explore these new fields of underwater research.
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Appendix A

CAD drawings

This appendix contains CAD drawings and images to illustrate the design of IKURA and its

components:

Fig. A.1: General arrangement of IKURA
Fig. A.2: Design of the CMG pyramid

Fig. A.3: Design of a CMG unit

Fig. A.4: Photo of a CMG unit

Fig. A.5: Photo of flywheel in gimbal frame

Fig. A.6: Design of the thruster unit
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Figure A.4: Photo of a CMG unit

Figure A.5: Photo of flywheel in gimbal frame
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Appendix B

Electronics and control

This appendix details the electronics and control architecture of the underwater robot IKURA.
Fig. B.1 illustrates the overall arrangement of the electronics in the hull and an exploded view
of the CPU stack. Fig. B.2 shows the electrical signals of the sensors and actuators. Sec-
tion B.1 describes in further detail the signals of the AHRS, flywheel motors, gimbal servos
and thruster unit. Where appropriate the circuitry used to generate the signals and the
experiments to determine the input output relationships of the components are described.

Section B.2 gives the specification of each electrical component.

4x Flywheel drivers

Figure B.1: Arrangement of electronics inside the main pressure hull
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Appendix B B.1. Control signals

B.1 Control signals

AHRS measurements

The three-axis attitude and angular rate measurements of the AHRS are output as 12bit
analogue signals between +4.096 V. The circuit illustrated in Fig. B.3 is used to convert these
signals as shown in Fig. B.4 so that they can be read by the 10bit 0-5V A/D convertors
of the micro-controller. The average of five readings is taken at 10 Hz in order to filter out
noise. It has been verified that the rotation of the brass flywheels and steering of the gimbals

do not effect the measurements of the sensor.

30K 5V

24K

il

H8/3067
A/D input

‘\h

Figure B.3: Circuit to convert the output measurement signals of the AHRS
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Figure B.4: AHRS signals before and after conversion
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B.1. Control signals

Flywheel motor

The speed of the flywheels is controlled by an 8 bit 0- 5V analogue signal that is generated by
the micro-controller and an I/0O signal that engages an electronic brake. These are distributed
through the circuit in Fig. B.5 where each of the flywheels is individually monitored by a
closed-loop 1-Q-EC DEC 50/5 (230572) digital driver that uses three Hall sensors in the
motor to regulate its speed. The relationship between the speed of each flywheel and the input
signal plotted in Fig. B.6 was measured using a variable frequency strobe and a voltmeter.

Measurements could only be made up to 10,000 rpm as this was the maximum frequency of

the strobe used. This data has been extrapolated assuming a linear relationship.

H8/3067

IJ:-:JSE’&?JTJ to—1 116 HC:4> 2 n 1/6 HCO4 10

5V
13146 Heod ™y 12

13

52 1-Q-EC
10, DEC 50/5

L

22 1-Q-EC

10~ DEC 50/5

1/6 HCO4

1-Q-EC

DEC 50/5

l)saa (L
(ale’ O

13

1/6 HCO4

VAR

Voia

o 1.Q-
5o 1-QEC

D/A output

50000

40000

30000

[rpm]

*=>- 20000

10000

W

1w~ DEC 50/5

Figure B.5: Circuit to distribute the flywheel control signals
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Figure B.6: Measured flywheel speed and D/A input with a supply of 28 V
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Gimbal servo

Each of the gimbal servos are controlled by a 16 bit PWM signal generated by the micro-
controller. The servo angle is controlled by the width of a pulse that is sent every 22 ms as
illustrated in Fig. B.7. The relationship between the pulse width and the angle of the servos

was measured using an oscilloscope and this is plotted in Fig. B.8.

PWM

0.22ms

Figure B.7: Gimbal servo PWM control signal

o[deg]
90 -

45+

D

780 1130 1480 1830 2180 PWM
[1es]

45

-90-

Figure B.8: Measured relationship between angle of servo and input pulse width
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Thruster

The rotational rate and direction of the thruster are controlled by an 8 bit PWM signal and an
I/0 signal respectively. These are used to generate the appropriate pulse input to the thruster
through the circuit in Fig. B.9. The diodes are used to protect against back-electromagnetic
fields and the CR low pass filter is introduced to reduce noise. The relationship between the
rotational rate of the submerged thruster and the normalised input pulse width plotted in

Fig. B.10 was measured using a variable frequency strobe and an oscilloscope.

10y
H_8/3067 .
8bit Pulse Ci
3
HB/3067 _ |
I/0 ouput § %
Figure B.9: Circuit to generate thruster signal
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Figure B.10: Measured thruster rate and normalised input pulse width
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B.2 Electrical specification

Table B.1 details the specification of the electrical hardware used in IKURA. This shows the
peak power consumption for the maximum acceleration of the flywheels and the thruster,

and the operational power consumption for a constant flywheel rate of w = 10,000 rpm and

steady propulsion with the thruster rotating at 450 rpm.

Table B.1: Electrical specification of each component

Component Manufacturer serial no. | Voltage Current Power
Sensor Cross-Bow AHRS-400CA 12V 250 mA 3IW
CPU Hitachi H8/3067 5V 200 mA 1W
Gimbal servo Futaba S9550 5V 100 mA x4 0.5 W x4
110 mA x4 3W x4
Flywheel motor Maxon EC22-169007 28V
max.700mA x4 max.20W x4
200 mA 2W
Thruster motor Maxon RE025-055-34 10V
max.1 A max.10 W
20W
TOTAL
max.~100 W
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Appendix C

Numerical modelling

This appendix describes the various parameters of the dynamic model that are specific to
the underwater robot IKURA and its subsystems. These are used for design, simulation and
control purposes. First, mass and inertia calculations are carried out for the complete system
and the hydrodynamic added mass and viscous drag coefficients are derived theoretically.
Next, the sizing of the CMG momentum in order to meet the requirements of the specification
is discussed. Finally, the external forces and moments of the system are detailed, with the
development of thruster equations and modelling of the disturbances due to bearing friction

and the hydrostatic effects of the non-coincident centres of gravity and buoyancy.

C.1 Mass and inertia
Table C.1 shows the mass and rigid body inertia distribution of IKURA with the CMGs

locked at zero excursion angles. The origin is taken at the centre of the CMG pyramid.

Mass (kg) Centroid {mm) Moment {(Nm) Moment of inertia (kgqm? )

Com s m X [ ¥ [ z mx | my | mz Jx [ oy [ Jz
Pyramid frame 1.650 0.o 0.o -11.5 | -1.36E-04 |0.00E+00 |-1.86E-01 | 7.98E-03 | 2.38E-02 | 2.07E-02
Gimbal servao 1 0.054 187.7 108 46.0 9.36E-02 | 5.74E-03 | 2.44E-02 | 1.32E-04 | 1.46E-03 | 1.36E-03
Gimbal servo 2 0.054 -10.8 227 46.0 | -574E-03 | 1.20E-02 | 2.44E-02 | 1.48E-04 | 1.32E-04 | 4.48E-05
Gimbal servo 3 0.054 1577 -10.8 46.0 |-836E-02|-5.74E-03 | 2 44E-02 | 1.32E-04 | 1.46E-03 | 1.36E-03
Gimbal serva 4 0.054 10.8 227 46.0 4.74E-03 |-1.20E-02| 2.44E-02 | 1.48E-04 | 1.32E-04 | 4.45E-05
CMWG unit 1 1.145 190.3 0.o 0.o 2 14E+HI0 [0.00E+10 [0.00E+IO | 8.65E-04 | 4.25E-02 | 4.23E-02
ChG unit 2 1.145 0.0 55.3 0.0 0.00E+00 | 6.22E-01 [0.00E+HIO| 4.50E-03 | 8.65E-04 | 4.37E-03
ChG unit 3 1.145 -150.3 0.o 0.0 |-214E+00|0.00E+00 |0.00E+00 | 8.65E-04 | 4. 25E-02 | 4. 23E-02
ChG unit 4 1.145 0.o 553 0.o 0.00E+00 |-6.22E-01 [0.00E+10 | 4.50E-03 | 8.65E-04 | 4.37E-03
Flywheel drivers 0670 0.1 0.0 -1.1 4.82E-04 |0.00E+00|-7.35E-03 | 4.24E-03 | 6.63E-03 | 1.01E-02
CPU stack 0.200 G926 0.0 0.7 -1.82E-01 |0.00E+I0 | 1.43E-03 | 483E-04 | 2.02E-03 | 2.15E-03
AHRS 0.723 95.9 0.0 -1.3 5.80E-01 |0.00E+00|-1.30E-02 | 1.01E-03 | 7.6BE-03 | 7.35E-03
CMG pyramid subtotal 8.040 6.321844 0.0 -1.35989 | 4.99E.01 | 0.00E+00 | -1.07E01 | 2.50E02 | 1.30E01 | 1.37E01
Presure hull 4515 0.o 0.o 0.4 [0.00E+D0 [0.00E+0|-1.86E-02| 4 55E-02 | 1.02E-01 | 1.01E-O1
Cradle mechanism 0.166 0o 0.o 0.o 0.00E+00 |0.00E+0 | 0.00E+ID| 2.40E-03 | 5.85E-05 | 2.47E-03
Thruster mount 0.253 -215.0 0.0 0.0 -5.33E-01 |0.00E+10 [0.00E+HIO| 2.71E-03 | 1.45E-02 | 1.45E-02
Thruster 0517 -375.6 0.0 0.0 |-1.90E+00|0.00E+00 |0.00E+00 | 1.53E-04 | 7 47E-02 | 7 47E-02
Ballast 3.47 54.2 0.o 3.7 1.85E+00 |0.00E+D0 | 1.26E-01 | 4.73E-02 | 1.02E-02 | 1.02E-02
IKURA total 16.960 54.6 0.0 0.0 9.25E0Z | 0.00E+00 | 0.00E+00 | 1.23E01 | 3.31E01 | 3.39E-M1

Total buoyancy H 16.968 ‘ 54.6 | 0.0 | 0.0 | 9.27E02 ‘ 0.00E+DD | I].I]I]E+I]I]‘

Table C.1: Mass, buoyancy and rigid body inertia of IKURA
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Table C.2 shows the inertia components of the moving parts of each CMG unit about its

flywheel, gimbal and transverse axes.

Mass (kg) Moment of inertia (kym®)
Components M m 3, 1,
Flywheel 0.825 6.38E-04 [ 4. 32E-04 [ 4 32E-04
Flywheel motor 0.083 - 8.22E-05 [ B.22E05
Simbal frame 0.237 - 2.30E-04 | 2.30E-04
CMG unit total 1.145 6.36E04 | 744E04 | 7A4ED4

Table C.2: Inertia components of each CMG unit

C.2 Hydrodynamic effects

The hydrodynamic interactions of the body are modelled as added mass, added inertia and
viscous drag, all of which are dependant on the external shape of the body. The hydrodynamic
parameters computed for IKURA are presented in Table C.3.

C.2.1 Added mass and inertia

Added mass and added inertia describe the fluid motion induced by the acceleration of a
body through it. It is assumed that the robot operates at a large enough depth that these
coefficients can be considered constant and strictly positive. In order to model this, the hull

form is approximated to an ellipsoid of revolution, as illustrated in Fig. C.1.

Figure C.1: Ellipsoid of revolution with major and minor semi-axes a and b

The three-planes of symmetry of this shape means that the added mass and inertia matrices
are diagonal and so uncoupled between the different degrees. Imlay [76] gives the following

expressions to describe these terms:

(0%
Ma, = _2—0a0
My, = My, =—2foﬁom
Ja, = 0
Ja, = Ja S (b — &*)"(c0 — o)

Y

? 52(b% — a?) + (b2 + a?)(Bo — ap)
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where the m is the mass of the ellipsoid and the constants Gy and «q are obtained as:

201—¢2) /1. 1
aoz( €)<l +6_6>

e3 2n1—e
1 1—e? 1+e
Y (- L
bo e? (263 nl—e)

The eccentricity e is defined as e = 1 — (b/a)?.

C.2.2 Viscous drag

The viscous forces that act on the robot are highly dependent on the type of flow regime.
This can be predicted based on non-dimensional analysis using the Reynolds number R,, = “7[
where u is the flow velocity, [ is the characteristic length of the body and v is the fluid
kinematic viscosity, which for water at 15°C is 1.14 x 10~m?2/s. This gives the Reynolds
number of IKURA at a surge velocity of 0.5m/s as R, = 2.2 x 10, which for a smooth body
lies in the transition zone between laminar and turbulent flow. However, the hull profile
of IKURA is broken up by clamped couplings where the hemispherical ends join the main
cylinder, see Fig. A.1, and it is considered that these will trip the flow into a turbulent regime.
The drag coefficient of the robot is calculated based on the various three-dimensional shapes
that make up its hull [69,77]. The non-diagonal terms of the drag coefficient matrix are

assumed to be zero and so the drag experienced is uncoupled between different degrees.

The drag coefficient in surge is obtained by approximating the hull to a round nosed
cylinder. The coefficients of drag in sway and heave are determined by taking the drag
coefficient of individual parts of the robot. The main body is modelled as a circular cylinder
with two hemispherical ends and the thruster is modelled as a circular cylinder with the

thruster mounting modelled as a flat plate with its projected area normal to the flow.

The roll drag coefficient of the main hull is obtained by calculating the ITTC skin friction

for the flow over the surface of the robot:

0.075

Cr = (log Ry, — 2)?

The roll, pitch and yaw drag coefficients are obtained by separating the main body of the
hull into cylindrical and hemispherical components with the thruster and thruster mount

modelled as a cylinder and a flat plate as in the heave and sway models.

My Cp
Surge | 6.64kg 1.10
Sway | 21.14kg 1.06
Heave | 21.14kg 1.11

JA ZCD«;T?

Roll | 0.00kgm | 2.20 x 1073 m?
Pitch | 0.24kgm | 0.92 x 1072 m?
Yaw | 0.24kgm | 1.09 x 1072 m?

Table C.3: Hydrodynamic properties of IKURA
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C.3 Momentum sizing of the CMGs

The momentum required in each CMG to meet the specification was determined based on
the predictions of numerical simulations using the dynamic model (3.12). The response of

the system is simulated with an optimised bang-bang control law of the form:
Ty = LTk

where 71 is a constant torque. The most demanding specification in terms of the momentum
required is the pitch manoeuvre that states the CMG system must provide sufficient control
authority from the nominal state so that the robot can rotate £90° in pitch, starting and
finishing at rest in 3s. Fig. C.2 shows the simulated pitch response with 7, = 0.47 Nm, which

was determined to be the minimum torque required to meet the specification.

a0

Pitch [deq]

Pitch rate [deg/s]

10

0.25

Torque [Nm]
o

-0.25

-0.5

1.5
Time [s]

0.5

Figure C.2: Simulated pitch response with an optimised bang-bang control law

The minimum momentum change required in the CMG system to perform this manoeuvre is
Hymin = 1.10 Nms in the y-direction. From (3.4) and (6.5) the momentum required in each
CMG unit to achieve this manoeuvre whilst remaining within the boundary of the constrained
workspace illustrated in Fig. 6.11 can be computed as:

Hymin

Iny 2c%

This gives the minimum momentum required in each CMG unit to meet the design specifi-

cation as 0.95 Nms and thus the total momentum required in the CMG pyramid is 3.80 Nms.
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C.4 External forces and moments

Although not used directly in the attitude control law, it is necessary to model the external
actuating force of the thruster and any disturbances in order to quantify their effects on the

dynamics of the robot.

C.4.1 Thruster model

A single thruster is used to actuate the robot’s surge motion. Under bollard-pull conditions,

the steady state thrust generated can be modelled in the following manner:
F, = fin|n|

where f; is the thrust coefficient. The coefficients for the propeller used were determined

experimentally in Suto [78] and these values are given in Table C.4.

Je
Forwards | 5.33 x 10~% Ns? /rad?
Reverse | 4.13 x 1074 Ns? /rad?

Table C.4: Thrust coefficients
C.4.2 Bearing friction

The friction in the bearing is modelled using the following classical form [79]:

if |w| <ws and |7} < 7

if |w| <ws and || > 75

™w) if w>ws

The first condition describes friction below a threshold rotational rate wg that counteracts
the external torque 7. below a static breakaway value of 7). At this condition the bearing is
effectively stuck. A simple model for the dynamic friction 7*(w) is given as:

TS = Tc*ﬁ + (17 — T:)e*‘“’/“’s‘ + 7 w|w|

C.4.3 Hydrostatic restoring moments

For a neutrally buoyant submerged body the weight f; = mg is equal in magnitude to
the buoyancy f, = pgV. If the centre of gravity r, and the centre of buoyancy r, do not
coincide the downward pointing gravitational and the upward pointing buoyancy force create

a hydrostatic restoring moment:
Trighting = Tg X fg +7p X fp

Although it is difficult to achieve exactly coincident centres of gravity and buoyancy in any
real application, underwater robots are typically trimmed so that r, lies directly below ry.

In the case of IKURA this distance was experimentally determined to be 0.4 mm.
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Appendix D

IKURA DVD Video

This appendix provides a guide to the media DVD that can be found at the back of this
thesis. The DVD contains experimental video footage and also includes a cinematic trailer
that illustrates the Zero-G concept, a poster describing IKURA and still images of the robot

and its components. A complete list of the contents is included at the end of this appendix.

D.1 Viewing the DVD

Upon inserting the DVD into a media player, a brief trailer will start after which the DVD
jumps to the main menu. On each menu screen the user is presented with a number of
options that can be selected by moving the cursor over the desired choice. This will highlight
the option with a blue bar that will appear immediately next to each of the options. Once
highlighted the option can be selected by clicking the appropriate button on the mouse or

remote control.

D.2 Main menu

The DVD main menu is illustrated in Fig. D.1. There are three options available:
1. Play All
2. Video Menu
3. Picture Menu

In the figure ‘Play All’ is highlighted. Selecting this option will play all the video media
contained in the DVD. This consists of seven clips that can be accessed individually by
selecting ‘Video Menu’. There are also a number of still images contained in the DVD that

can be accessed by selecting ‘Picture Menu’.
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Appendix D D.3. Video menu

IKURA: Zero-G Class Underwater Robkot

to
Fig. D.3

Figure D.1: DVD main menu
D.3 Video menu

The video menu consists of two pages as shown in Fig. D.2. There are a total of seven clips
that can be viewed by selecting the appropriate media windows. These are briefly described
in the DVD contents at the end of this appendix. It is possible to navigate between the two
pages and back to the main menu by selecting the arrows highlighted in the figure.

Video Menu Video Menu

e
T TRURAME < s g
Rty

¢

A

Fig. D.1  top.2/2 Fig.D.1  top.1/2

Figure D.2: DVD video menu: Left p.1/2 and right p.2/2
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Appendix D D.4. Picture menu

D.4 Picture menu
The picture menu consists of two pages as shown in Fig. D.3. Selecting ‘Slideshow’ on the

first page will flick through a poster and five images of IKURA and its components. These

can be accessed individually by selecting ‘Pictures’ that will jump to the second page.

Pictures

Picture Menu

. ] SlideShow
= S

to/ to p.2/2

Fig. D.1

Figure D.3: DVD picture menu: Left p.1/2 and right p.2/2
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Appendix D D.4. Picture menu

Contents of DVD

This DVD is encoded in NTSC format and can be viewed on a computer monitor or television
screen using any standard DVD player. The quality of the image on a computer monitor is
typically superior to that of a television screen and it is possible that some televisions may

crop the edges of the media.

Video menu

1. Zero-G Class Underwater Robots and Unrestricted Attitude Control: A cinematic
trailer that illustrates the concept of this new class of underwater robot. This con-

tains computer animations and experimental video footage.

2. Land Experiment: Footage of a dry-land CMG experiment with the setup described in
Section 8.2.

3. IKURA Testing: Hardware check with IKURA fixed in its mount. The CMGs are set to
their initial angles, the gimbal servos steer to perform what would be a yaw command
and the thruster is tested.

4. Pitch Control: Footage of the vertical pitch experiment described in Section 9.1.

5. Surge Stabilisation: Footage of the horizontal surge stabilisation experiment described
in Section 8.3.3. The actively stabilised and passive response of the robot to a horizontal
surge manoeuvre are shown. This is repeated with the calculated position, measured

attitude and CMG momentum data shown clockwise from the top right window.

6. Vertically Pitched Diving & Surfacing: Footage of the vertically pitched diving and
surfacing manoeuvre described in Section 9.2. The small window shows a plan view of
the experiment. The raw footage is repeated with the position, attitude and momentum

data shown as described above.

7. Vertically Pitched Diving & Surfacing II: Same as above with raw footage only. In this

experiment IKURA surfaces too fast and breaches the surface of the water.

Picture menu

1. Poster of IKURA

2. Simplified computer generated image of IKURA
3. Flywheel inside an open CMG unit

4. CMG pyramid

5. Zero-G Class underwater robot IKURA

6. IKURA in test pool facility of the URA Laboratory at the University of Tokyo
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