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ABSTRACT 

 

The influence of non-linearities on wave-induced motions and loads has been the 

focus of many investigations in the past few years and continues to be an important 

issue. A number of two- and three-dimensional methodologies have been developed, 

by and large, partly accounting for various non-linearities. Non-linear radiation, and 

to an extent diffraction, is the main problem and its solution via a three-dimensional 

method using Eulerian-Lagrangian schemes is likely to be complex and time 

consuming for practical applications. On the other hand two-dimensional methods, in 

spite of issues associated with accounting for forward speed, offer more possibilities 

of making practical advances in dealing with non-linearities. 

 

A two-dimensional hydroelasticity analysis for symmetric (i.e. vertical motions, 

distortions and loads) dynamic behaviour in waves, including the influence of non-

linearities, is presented in this thesis using two methods. In the first method the total 

response is decomposed into linear and non-linear parts. The linear part is evaluated 

using the conventional two-dimensional linear hydroelasticity analysis. The non-

linear hydrodynamic forces are due to changes in added mass and damping 

coefficients, as well as restoring and incident wave forces, all evaluated over the 

instantaneous wetted surface. Non-linear forces due to slamming (bottom impact and 

flare) and green water (treated in a quasi-static manner) are also added. One aim of 

the thesis is to investigate the influence/importance of each of the non-linear 

hydrodynamic forces. Furthermore, the effects of assumptions made when using 

these hydrodynamic forces, e.g. frequency dependence of added mass, neglecting the 

damping coefficients in some components and evaluation of derivatives, are 

investigated. The solution in the time domain is obtained using direct integration and 

convolution integration, the latter based on the impulse response functions of the hull 

in its mean wetted surface. In the second method the response, including non-



     

linearities, is obtained from the solution of one system of equations of motion, where 

the added mass and damping coefficients and the restoring, incident wave and 

diffraction forces are evaluated at the instantaneous draft. Non-linear forces due to 

slamming (bottom impact and flare) and green water (treated in a quasi-static 

manner) are also added.  

 

Both methods are applied to the S-175 containership, for which experimental 

measurements of motions and loads in large amplitude regular head waves are 

available. Comparisons made between predictions and measurements (heave and 

pitch motions, vertical acceleration and vertical bending moment) indicate good 

overall agreement. The comparisons also show that the influence of flare slamming is 

important for the range of speeds and wave amplitudes investigated. 
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Ⅰ. Nomenclature 

 
a wave amplitude 

[ ]A  generalized hydrodynamic added mass matrix 

[ ]B  generalized fluid damping matrix 

[ ]C  generalized fluid stiffness matrix 

[ ]a  generalized structural mass matrix 

[ ]b   generalized structural damping matrix 

[ ]c  generalized stiffness matrix 

{ }lF  generalised linear wave force 

{ }nlF  generalised nonlinear force 

E  Young’s modulus 

G Shear modulus 

Iy moment of inertia about horizontal axis 

L ship length 

M bending moment 

V shear force 

pr rth principal coordinate 

pl linear principal coordinate 

pnl nonlinear principal coordinate 

pmax maximun slamming pressure 

r, s modal index 

U ship forward speed 

w vertical displacement 

wr modal vertical displacement 

k wave number 
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zrel vertical relative displacement ( relz w ζ= − ) 

ρ  water density 

g gravity acceleration 

t time 

F1 flare slammig force 

F2 nonlinear modification due to added mass variation 

F3 nonlinear modification due to fluid damping variation 

F4  nonlinear modification to hydrostatic restoring and Froude-Krylov force 

F5 green water effects 

F6  bottom impact slamming force 

H frequency response function 

h impulse response function 

m  added mass coefficient 

N fluid damping coefficient 

ζ  wave elevation 

κ  Smith correction factor 

χ  heading angle 

ω  wave frequency 

eω  encounter wave frequency 

λ  wave length 

θ  bending slope 

 also pitch in graphs 

φ  velocity potential 
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Chapter 1   

Introduction 

 

1.1 General background 

 

The dynamic responses of a ship advancing in a seaway are examined by evaluating 

the interaction between the ship and the waves. Considering the interactive process 

between the wave and the ship as a system, the input to the system is the irregular 

and randomly varying sea surface and the output of the system is the ship response, 

such as ship motion, hull pressure distribution, bending moment, etc. St. Denis and 

Pierson (1953) opened a new era in the study of ship motions and wave loads by 

hypothesizing that irregular sea waves can be represented as a linear superposition of 

a large number of regular waves of varying amplitude and frequency. The validation 

of the application of superposition to ship motions and wave loads is generally 

accepted, especially for vertical motions and loads. Naval architects and researchers 

calculate hull responses due to some regular (harmonic) waves and combine the 

sequences later. In order to represent irregular and random sea waves, statistical 

methods are applied (Price and Bishop 1974).  

 

In the wave-ship system, the mechanics and dynamics of fluid flow, ship motions and 

ship deformations can be described by equations governing the interaction between 

the waves and the ship. In the equations of motion for a wave-ship system, assuming 

that the water particles cannot penetrate the hull and there are no viscous effects (for 

rolling motion, viscous effects are important and empirical corrections may be 

introduced (Schmitke 1978)), the nonlinearities occur due to free surface conditions 

as well as the instantaneous position of the ship relative to the waves. No general 
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solutions exist and the fully three-dimensional problem in the time domain is, at 

present, too complex to be of practical use in concept and preliminary design stages. 

Thus, several partly nonlinear numerical methods are established, mainly using two-

dimensional methods. 

 

The linear theory of ship motion may sometimes be inadequate for the estimation of 

wave loads and ship structure design. However, the general theory regarding the 

response of linear systems is of great value and also has application to the vibratory 

response of the ship. In addition one should note that much of the terminology used 

in seakeeping is based on linear theory and the concept of a frequency response 

function or transfer function is widely used in design. In linear theory, some 

assumptions have to be made. By and large two different kinds of approximation 

have been introduced. The first assumes small waves and small motion of the ship, 

by which one can use a linearised free surface condition. Assuming the wave-ship 

system as a linear system, a three-dimensional linear problem is obtained and can be 

solved. However, the influence of waves generated by the ship advancing at forward 

speed, i.e. the steady flow case, makes the problem difficult. Another approximation 

is based on the assumption that the three-dimensional effects of wave loads are so 

small that the longitudinal components of velocity may be ignored. In this 

assumption, the effect of the local steady flow around the ship is neglected. 

Furthermore, the linear free surface condition with forward speed is simplified so 

that the unsteady waves generated by the body propagate in directions perpendicular 

to the longitudinal axis of the ship. Thus the problem is reduced to a two-dimensional 

one; the so called strip theory (Korvin-Kroukovsky and Jacobs 1957, Salvesen et al. 

1970). 
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Although the strip theory has useful applications, a three-dimensional method can 

account for interactions between strips, and the forward speed effect in the free 

surface boundary condition; thus, capable of producing three-dimensional pressure 

information for an arbitrary-shaped body for structural analysis. Three-dimensional 

panel methods have been developed using Green function methods or Rankine 

source methods in the frequency and in the time domain. Green function methods for 

the seakeeping problem which satisfy the mean body boundary condition and linear 

free surface boundary condition in the frequency domain were implemented by Inglis 

and Price (1982), Ohkusu and Iwashita (1989) and Du et al. (1999). Time domain 

linear solutions applying the Green function method are calculated from the 

frequency domain (Ballard et al. 2003). The three-dimensional linear methods have 

been developed using time domain Green function (Lin and Yue 1990) or Rankine 

source (Nakos and Sclavounos 1990). Fully three-dimensional nonlinear approach in 

potential flow problems was solved for mathematical hull forms using the Euler-

Lagrange method (Longuet-Higgins and Cokelet 1976, Beck et al. 1994). Driven by 

the complexity of the fully nonlinear approach, the approximate nonlinear methods 

were developed based on the time domain Green function method (Lin and Yue 

1993) or the Rankine source method (Nakos et al. 1993).  

 

Rigid body methods (two or three-dimensional) can provide, in addition to motions, 

information that can be used for estimating wave-induced loads, such as bending 

moments. However, they do not include the influence of the structure and structural 

dynamics when solving the fluid-structure interaction problem. Two-dimensional 

hydroelastic theory was originated by Bishop and Price (1979) using a strip-beam 

model. Fluid-structure interaction problems can be analyzed by defining rigid-body 

motions and elastic deflections of flexural bodies as motions in ‘generalized’ modes, 

introducing different sets of generalised modes. The generalised modes comprise the 

‘dry’ modes of ship structure in vacuo and the ‘wet’ modes including the effects of 
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fluid action. The evaluation of bending moment, shear force, torsional moment and 

stresses is affected by the distortions due to excitation by waves, machinery, etc. 

Two-dimensional hydroelasticity theories (the strip-beam model) were successfully 

applied to symmetric (Bishop et al. 1977) and antisymmetric behaviour (Bishop et al. 

1978a). Bishop et al. (1986) presented a general linear potential flow theory for 

flexible marine structures, based on the three-dimensional Green function method. 

This approach is unified, comprising rigid body motions and distortions, and is 

applicable for any type of floating structure. Two- and three-dimensional 

hydroelasticity theories were applied to structures such as frigates (Bishop et al. 

1984), a dry dock (Lundgen et al. 1989), a fast patrol boat (Aksu et al. 1993), 

SWATH (Price et al. 1994), and a trimaran (Miao et al. 2003). Bishop et al. (1978b) 

devised a linear method to estimate slamming excitation and response.  

 

It has been known that the sagging bending moment is considerably larger than the 

hogging bending moment, because of hydrodynamic differences between the entry 

and exit of a body through the free surface of a fluid and for non-sinusoidal waves. 

Ships advancing in rough seas experience nonlinear effects due to non-vertical flare 

and slamming loads and these nonlinear forces, associated with the continuous 

change of the submerged hull surface, can only be included using a time domain 

solution. The methods for treatment of nonlinear forces in seakeeping and wave 

loads were widely discussed by ISSC (1997, 2000). Several partly nonlinear 

computation methods, based on the strip theory, were established (Jensen and 

Pedersen 1979, Gu et al. 1989). The hydrostatic and Froude-Krylov forces, which are 

known to be the most dominant components when dealing with large motions, are 

calculated considering the instantaneous wetted surface, while radiation and 

diffraction forces are represented by frequency dependent coefficients, which are 

sometimes included (Domnisoru and Domnisoru 1997, Wu and Hermunstad 2002, 

Gu et al. 2003) or sometimes omitted (Xia and Wang 1997) in the formulation of the 
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equation. Bottom slamming impact loads or green water effects can also be 

additionally treated in a linear manner (Wang et al. 1998).  

 

The dynamic responses of structure due to fluid impact are decomposed into two 

parts: local and global hull behaviour. The local structure is rigid and its natural 

frequency is higher than wave excitation frequencies. Therefore, the response of 

local structure may be focussed on impact load prediction, the fluid-structure 

interaction problem and the large deformation of local structure. This local behaviour 

is not further examined as this research will only focus on examining the global 

responses associated with hydroelastic behaviour of hull girder due to steady state 

wave loads and impact loads (i.e. bottom slamming and green water). A ship is 

flexible and this property has important consequences in two main cases: (1) when 

the hull girder is relatively flexible such that the natural frequencies of hull girder 

vibration fall within the excitation frequency of wave loads, referred to as a 

springing; (2) when the ship undergoes impact loads and its behaviour is 

significantly affected by impact, i.e. whipping. Springing is a continuous resonant 

global vibration and may be induced by the high-frequency part of the wave 

spectrum and a high order wave excitation (Jensen and Dogliani 1995, Vidic-

Perunovic et al. 2004). The effect of springing may increase in faster, larger, lighter 

and wider ships, especially with low structural damping. Full-scale measurements for 

various types of ships indicate that springing reduces fatigue life considerably and 

high springing occurs even in low sea states and ballast condition (Storhaug et al. 

2003, Stiansen et al. 1978). Whipping is a transient hull vibration which is induced 

by bottom slamming, bow flare slamming and green water loads. It increases 

cumulative fatigue damage to and extreme stresses on the hull. Whipping effects on 

the bending moment are sensitive to ship speed and wave frequency. Full-scale 

measurements show that the magnitude of whipping stress can be of the same order 

as those of steady state wave loads (Aertssen and Sluys 1972, Meek et al. 1972). 
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With respect to the prediction of extreme loads and fatigue assessment, both the 

hydroelastic effect and nonlinear effects are important in hull response to waves. A 

prediction method of long term extremes using nonlinear time-domain simulations 

and relevant statistical approaches has been presented by Baarholm and Jensen 

(2004), Wu and Hermundstad (2002). It was found, for an S175 container vessel, that 

whipping increases the long term extreme values of vertical bending moment 

(especially hogging) and the correlation effects between whipping and wave-induced 

responses are significant (Baarholm and Jensen 2004).  

 

1.2 Objectives and scope of the work 

 

The objectives of the present thesis are the development of reliable and practical 

calculation methods for predicting ship motions and loads in large amplitude waves, 

considering hydroelastic effects. Time domain simulation of hydroelastic response 

due to large amplitude motion was carried out in regular waves. 

 

The theoretical background is presented in Chapter 2. The generalised hydroelastic 

equation of motion is set up for a Timoshenko beam model. The generalised 

hydrodynamic mass, damping and stiffness coefficients and fluid force are derived 

using the classical strip theory of Salvesen et al. (1970). The nonlinear effects in 

large amplitude waves are considered, by modifying the fluid forces according to the 

instantaneous draught at each time step. A hydrodynamic formula for calculating the 

green water load is used. Bottom slamming impact force is predicted, using an 

existing empirical formula. The transient loads are included in the nonlinear equation 

of motion.  
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Linear and nonlinear numerical calculations are presented in Chapters 3 and 4 for the 

S175 container ship, respectively. The linear solutions in Chapter 3 are carried out 

for both frequency and time domain in regular head waves. A sensitivity study on the 

influence of higher modes and structural damping on the hydroelastic effects is 

performed. Comparative studies of the numerical simulation methods are carried out, 

using the convolution integral method and the direct numerical integration method, 

in order to verify the time simulation scheme to be used in nonlinear analysis. 

 

The nonlinear forces are decomposed into six components (Method 1) and the 

influence of each component on the response is evaluated in Chapter 4. The 

nonlinear modification of the Froude-Krylov force and the hydrostatic restoring force 

as well as the modification of the hydrodynamic force are evaluated for response in 

regular waves. The green water load effects are also compared. Bottom impact 

induced loads and whipping responses are presented. The vertical bending moment 

due to the impact is amplified at the wet resonance frequency of the lower mode of 

the hull vibration. The nonlinear solutions are compared with the experiment results 

for the S175 container ship given by O’Dea et al. (1992), Watanabe et al. (1989) and 

Chen et al. (2001). The comparisons show that the nonlinear method provides 

consistent simulation for rigid body motions, bow accelerations and sagging/hogging 

bending moments. 

 

In Chapter 5, the alternative method (Method 2) is introduced, based on the direct 

numerical integral method (Newmark-beta method) to the nonlinear problem for 

ships in large amplitude of motions and wave loads. In this method, all 

hydrodynamic coefficients are varied with the instantaneous draught of hull sections. 

The bottom impact and green water are estimated in the same manner as in Chapter 2 

and included among the total hydrodynamic forces. The calculations were performed 
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for the S175 container ship and the predicted results are compared with those 

estimated by Method 1 in Chapter 4 and experiments. 

 

1.3 Literature review 

 

1.3.1 The strip method, including nonlinearities 

 

Korvin-Kroukovsky and Jacobs (1957) published very important papers on ship 

motion analysis, in which, based on the slender body hypothesis, the disturbance 

potential in the vicinity of a slender hull is assumed locally to be two-dimensional 

without interaction between the flow around each section along the body. Two forces, 

one due to the hull motion and one due to the diffraction of the incident wave, can be 

represented using relative motion descriptions. Gerritsma and Beukelman (1967) 

extended the method for series sixty vessel, by using the close-fit method in 

estimating two-dimensional hydrodynamic coefficients. The calculated results have a 

good agreement with experiments and results according to close-fit method differed 

slightly from those using the Lewis transformation. 

 

More rational approaches appeared. Ogilvie and Tuck (1969) derived strip theory, 

also based on slender body theory. Salvesen, Tuck and Faltinsen (1970; STF) derived 

a strip method, starting with the exact expressions of forces and moments for an 

irrotational, incompressible and inviscid fluid. Subsequently, introducing 

assumptions, such as slender body and high frequency, the fluid forces acting on the 

hull can be expressed as integrals along the ship length, expressed as a function of 

two dimensional velocity potential. The effect of the outgoing waves has also been 

included in the expression of momentum, with forward speed. The strip method 



 
Chapter 1 Introduction                                               9 
                                                                                   

  

gives excellent results in an engineering sense and the paper by Salvesen et al. (1970) 

became one of the most cited works in seakeeping. The difference between the above 

two methods [i.e. STF (1970) and Gerritsma and Beukelman (1967)] is mainly the 

influence of the damping coefficients. The STF method may be preferred from a 

theoretical point of view because the limitations of the method become clear in 

derivations of the method. Flokstra (1974) presented an example for a container ship, 

where the vertical bending moments calculated by the STF method are in closer 

agreement with the experimental data than those of Gerritsma and Beukelman (1967). 

The main assumptions used in the derivation of the equation motion by the STF strip 

method are recalled here: Firstly, the viscous effects are disregarded, so that only the 

potential flow damping is considered. Damping is due to the energy loss in creating 

free-surface waves. Secondly, in order to linearise the potential flow problem, it is 

assumed that the wave-resistance perturbation potential and its derivatives are small 

enough to be ignored, which is reasonable for slender hull forms. Finally, in order to 

reduce the three-dimensional problem to a summation of two-dimensional problems, 

the frequency is assumed to be high. However, in the case of the STF method, the 

hydrodynamic coefficients and the exciting force and moment were derived without 

use of any strip theory approximations, so that the strip theory approximations were 

introduced only in order to simplify the numerical computation. In the STF method, 

the perturbation due to steady force is ignored; instead the Doppler effects 

accounting for forward speed are included.  

 

Conformal transformation and mapping techniques in calculations of added mass and 

fluid damping for ship sections was derived by Lewis (1929) in fluid of infinite depth. 

Ursell (1949) analytically introduced frequency dependent hydrodynamic 

coefficients accounting for the effect of the free surface by the multipole expansion 

technique. A full derivation and description of Ursell's expression was given by de 

Jong (1973). By using the multi-parameter conformal mapping technique, Ursell's 
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work was extended to a ship-shaped section by Tasai (1960). Bishop et al. (1978c) 

calculated the hydrodynamic coefficients by using the multipole expansion and 

conformal mapping techniques for various types of sections, and showed the method 

can more effectively applied to arbitrary sections than Lewis form technique or 

Frank's close fit method (Faltinsen 1969). 

 

High speed strip theory was proposed by Faltinsen and Zhao (1991). The 

perturbation due to forward speed affects the body boundary condition and free 

surface boundary condition. The surface boundary condition includes high order 

terms which account for the forward speed effects. The method has improved results 

in comparison with experimental data. However, strip theory basically ignores the 

interaction effect between each section, so the forward speed effect can be 

considered better in the three-dimensional method, especially when using translating 

pulsating source (Inglis and Price, 1981) 

 

Jensen and Pedersen (1979) presented the second order strip theory hydroelastic code 

(SOST) in the frequency domain based on a perturbation method, in which the 

quadratic terms due to non-linearity of the exciting waves (Stokes waves), the non-

vertical sides of the ship, and the non-linear hydrodynamic forces are added to the 

linear strip theory coefficients. The frequency domain method is convenient in terms 

of computing and represents well the difference between sagging and hogging 

moments and probability information. The quadratic theory extends to a hydroelastic 

problem in order to predict springing response due to continuous excitation from 

waves (Jensen and Dogliani 1995). The results for the fast container vessel are that 

the non-linear contributions to the springing response are as important as the linear 

contribution. However long-term extreme peak responses of the springing vibrations 

become less important.  
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Time domain analysis has many advantages in dealing with nonlinearities in ship 

motions and wave loads. The fluid force can be estimated at the exact instantaneous 

hull surface for large amplitude motions and the transient impact loads may be 

obtained in the time domain. Nonlinear time domain strip methods have been 

developed, extending directly from frequency domain theory formulations (Guedes 

Soares 1989, Chui and Fujino 1991, Chan et al. 2003). Although such methods are 

relatively simple and have advantages in terms of computation, the hydrodynamic 

coefficients are simply derived for a specific frequency, so that the application of the 

method for irregular waves causes a problem in the choice of frequency dependent 

coefficients.  

 

Domnisoru and Domnisoru (1997) presented unified linear and nonlinear analytical 

models for ship dynamic response analysis, including springing and whipping, and 

compared this result with model test data. They used the Longuet-Higgins model for 

the waves and hydrodynamic force was calculated using the strip theory by 

Gerritsma and Beukelman (1967). They divided the total response into linear and 

nonlinear parts, the latter including the nonlinearities from the time variation in 

hydrodynamic coefficients and the impact slamming force component. For the linear 

part, the conventional linear modal analysis was adopted and the nonlinear system of 

equations was solved using a numerical integration method. The hydrodynamic 

coefficients were calculated such that: the hydrodynamic terms for rigid modes (r = 

0,1) were calculated using ship oscillation frequency for heave mode and the terms 

for flexural mode (r = 2,…,N) were calculated at the frequency of the first flexural 

mode (r = 2). The results showed high stress levels in the hull girder induced by 

springing and whipping phenomena. 
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Cummins (1962) resolved the time domain velocity potential into the instantaneous 

and memory parts of the impulse response function derived from the frequency 

dependent transfer function. Many efforts have been focussed on this partly nonlinear 

time domain method. Gu et al. (1989) presented a time domain formulation of 

hydrodynamic loading that considered the nonlinear effect of the symmetric motion 

of a ship as an elastic structure. The impulse response function calculation relies on 

the frequency domain coefficients at mean draught. The momentum slamming force, 

nonlinear hydrostatic force and bottom impact slamming force were included. The 

Hamiltonian method was applied with a predictor-corrector method to solve the 

equation of motion. The approach was extended to a three-dimensional time-domain 

free surface potential flow method, which had been simplified to the slender body 

theory for application to the vertical global response of ships in order to reduce 

computational burden (Xia and Wang 1997). The program (THEAS) includes 

nonlinearities of the instantaneous hydrostatic force and nonlinear hydrodynamic 

force according to the momentum slamming theory. A rational expression of the 

higher order ordinary differential equation for the hydrodynamic memory effect was 

presented by Xia et al (SHIPSTAR, 1998), based on Sőding’s (1982) proposal. In this 

method the nonlinear memory effect and the momentum slamming force are included 

and the hydrodynamic inertial and restoring forces are estimated over the 

instantaneous draught. They concluded, comparing numerical results for the S175 

container ship with the results by the program THEAS and experiments, that 

including only nonlinearities of the momentum slamming for and restoring force is 

not enough for accurate prediction of vertical ship motions and wave loads. 

 

Fonseca and Guedes Soares (1998) presented a non-linear time domain strip theory 

code (IST) employing convolution integral formulation for radiation related actions, 

related to the mean wetted surface. The diffraction excitation forces are assumed to 

be linear at the mean draught and calculated using the STF strip theory approach. 
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The non-linear hydrostatic restoring force and the Froude-Krylov force are calculated 

over the instantaneous wetted hull surface.  

 

Watanabe and Guedes Soares (1999) presented comparative calculations for the S175 

container ship with six different simplified nonlinear codes. In general, most of the 

results by each code agree with each other and with linear theory within 10% for low 

wave heights. At large amplitude waves, however, a significant variation is observed. 

They specified the main features of the methods, which make it easy to compare the 

assumptions in various codes: (1) elastic hull, (2) nonlinear motion, (3) nonlinear 

hydrostatic, (4) nonlinear Froude-Krylov force, (5) nonlinear added mass and 

damping, (6) relative motion concept, (7) Smith correction, (8) linear and nonlinear 

diffraction excitation forces, (10) free surface memory effect, (11) slamming loads by 

bottom slamming, (12) slamming loads by momentum slamming and (13) green 

water load. 

 

The work was continued by the ISSC 2000 special task committee (ISSC 2000). The 

conclusion of the comparative results between measured and calculated wave 

bending moments is that the various nonlinear strip theory formulations in general 

are able to predict the magnitude and trend (hogging and sagging ratios) with 

reasonable accuracy in the engineering sense. However, the responses for higher 

order harmonics have a large scatter. This is largely because of the different 

approximations used to treat the non-linearities. It was, therefore, suggested to 

estimate carefully the different hydrodynamic coefficients and integration procedure 

as well as to check for possible input error. Some details of the various nonlinear 

strip theory methods used shown in Table 1.1.. 
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Table 1.1  Nonlinear strip methods 

Method 

SOST 

Jensen and 
Pedersen 

1979  

THEAS 

Xia and 
Wang 1997 

SHIPSTAR 

Xia et al. 
1998 

IST 

Fonseca and 
Guedes 

Soares 1998 

Nonlinear restoring force 
and Froude-Krylov force 

Yes Yes Yes Yes 

Relative motion concept Yes Yes Yes No 

Nonlinear hydrodynamic 
coefficients 

Yes No Yes No 

Momentum slamming Yes Yes Yes No 

Green water No No Yes Yes 

Steady state forward speed 
potential 

No No No No 

Degree of freedom 
Vertical, 
elastic 

Vertical, 
elastic 

Vertical, 
elastic 

Vertical, rigid

 

Wu and Moan (1996) presented a practical nonlinear hydroelastic time-domain 

simulation method, in which the total response is divided into linear and nonlinear 

components. The linear part is evaluated using linear potential flow theory (high 

speed strip theory based on Faltinsen and Zhao’s (1991) study and the nonlinear part 

comes from the convolution of the impulse response functions of the linear ship-fluid 

system and the nonlinear hydrodynamic forces based on a momentum force 

expression (Faltinsen 1990). They divided the nonlinear force into the momentum 

slamming force, nonlinear modifications of added mass/damping, and the Froude-

Krylov and hydrostatic restoring force related to the current draught. Bottom impact 

slamming was not included. They performed a parametric study for four high speed 

ships of different length, in irregular waves, but similar body plan with respect to the 

extreme values of midship bending moment. They concluded that the nonlinear 

influence in high speed vessels is more remarkable at large Froude numbers, 
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important even in moderate sea state, and that hydrodynamic damping come from 

forward speed plays a leading role in higher modes of hull vibration. The nonlinear 

time domain simulation method was applied to the S175 container ship (Wu and 

Hermunstad 2002). The parametric study of the nonlinear force terms showed that 

the modification to the added mass/damping terms gave worse results for motions 

but better results for sagging/hogging bending moments in comparison with 

experiments. A time history depicted that a slamming impact produces a large 

sagging peak and high frequency whipping responses. They also calculated long-

term vertical sagging moments and hogging moments amidships in a 20-hour time-

domain simulation, and the results were comparable to those obtained from 

Classification Society rules. 

 

1.3.2 Three-dimensional method 

 

Though the strip theory has so far been successful in predicting wave-induced 

motions and loads for conventional ships, it has its limitations. In order to overcome 

the shortcoming of the strip theory, three-dimensional methods have been developed. 

The three-dimensional solution is mainly based on the boundary integral equation 

method and the velocity potentials (or source strengths) can be solved either in the 

frequency domain or the time domain. Generally there are two ways to solve the 

three-dimensional potential flow problem: the Green function method and the 

Rankine source method. 

 

In the Green function method, the singularities are located on the discretized wetted 

hull surface, which satisfies the mean free surface condition, the Laplace equation 

and the radiation condition. Various methods for determining a velocity potential are 

developed in order to improve accuracy and increase computational power. Inglis 
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and Price (1980, 1981) used the Green function for the pulsating and translating-

pulsating source to predict rigid body motion at forward speed in regular waves. 

They presented comparisons with experiments and strip theory for a Series 60 model 

(Inglis and Price 1982). The pulsating source distribution method gives mixed 

improvement over strip theory predictions. The translating-pulsating source 

distribution method gives improved result; however it causes computational 

complexity and large computing time which require efficient numerical scheme. In 

this respect, one of the best numerical schemes is the proposal by Du et al. (1999).  

 

In order to examine the fluid-structure interaction behaviour of non-beam like 

floating bodies, Bishop et al. (1986) present a linear three-dimensional hydroelastic 

theory using the three-dimensional Green function and a finite element approach. 

Hirdaris et al. (2003) applied the two- and three-dimensional hydroelasticity theories 

(finite element idealisations combined potential flow analysis based on pulsating 

source distribution over the mean wetted surface) to a bulk carrier. They showed that 

the predicted symmetric dynamic responses obtained from two- and three-

dimensional modes were in good agreement, however, differences were observed for 

anit-symmetric dynamic characteristics. 

 

The time domain Green function is solved at each time step using convolution of the 

solution for the previous time. The LAMP software (Lin et al. 1993) is an example of 

this method. LAMP-4 is a nonlinear three-dimensional time domain method 

accounting for the exact wetted surface of the hull body when calculating 

hydrodynamic data at each time step.  The nonlinear hydrostatic restoring and 

Froude-Krylov wave forces are calculated. LAMP-2 is a partly nonlinear three 

dimensional time domain method satisfying the free surface boundary condition on 

the mean wave surface. LAMP-2 is the same as LAMP-1, except that it calculates the 
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linear hydrostatic restoring and Froude-Krylov wave force. Actually, the LAMP 

software implements a hybrid numerical approach, which is a combination of the 

transient Green function in the outer domain and the Rankine source in the inner 

domain (Weems et al. 1998). Application results using the LAMP system for the 

S175 container ship are presented by Shin et al (1997). As the results, LAMP-2 

predicted larger heave responses than the LAMP-4 results, while for the pitch 

responses there is good agreement between LAMP-2 and LAMP-4. The nonlinear 

effect of amidships bending moment (hogging/sagging) predicted by LAMP-2 is 

smaller than those by LAMP-4 and the trend was very much same.  

 

The alternative method is the Rankine source method. The Rankine source method, 

in theory, is applicable whether linear or nonlinear free-surface boundary conditions 

are applied, and uses a simple Green function. As the Rankine source method does 

not satisfy the radiation condition, stability in both space and time may cause a 

problem. The SWAN system is an example of the application of the method 

(Sclavounos et al. 1997). SWAN-1 (Nakos and Sclavounos, 1990) is a frequency 

domain formulation, while SWAN-2 (Nakos et al. 1993, Huang and Sclavounos 

1998) is solved in the time domain. Huang and Sclavounos (1998) developed 

nonlinear method based on the Weak-scatter hypothesis, which systematically 

accounted for hydrostatic and hydrodynamic nonlinearities. Comparing the 

calculation results by quasi-nonlinear method (Nakos et al. 1993) for a Series 60 hull 

and a S175 hull, they concluded that the hydrodynamic nonlinearities were to be as 

important as, if not more than, the hydrostatic and Froude-Krylov nonlinearities. 
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1.3.3 Transient loads 

 

Transient response analysis concerning the bottom slamming and green water effect 

has to be calculated in the time domain. In the linear system, the calculation result in 

the frequency domain can easily be transferred to time sequences using a relevant 

method, such as Fourier transform. Determination of the transient response required 

suitable models for excitation due to slamming and green water. Bottom impact 

slamming is a three-dimensional phenomenon and occurs over a very short time. 

When a body enters the water, there is an air-gap between the body and water surface, 

which reduces the slamming impact force. It is well known that the slamming force 

is proportional to velocity squared and a function of body geometry. The distribution 

of slamming force in space and time is complicated to evaluate, which makes the 

problem difficult. Therefore, some empirical formulae for the slamming were 

suggested and applied. 

 

Ochi and Motter (1971) suggested the empirical non-dimensional slamming pressure 

factor for Wagner’s (1932) model depending on the section shape, using a seakeeping 

test and a drop test. The sectional coefficients are determined using the conformal 

mapping technique and the sectional distribution of the local pressure is assumed to 

be linear from maximum value at bottom to zero at the effective area level (i.e. one 

tenth of draught). Stavovy and Chuang (1976) suggested an empirical slamming 

pressure by regression analysis of measured data from drop tests as a function of 

deadrise angle. They also assumed the local pressure distribution as linear. .  

 

A time domain mathematical model with convolution integral formulation can 

consider fluid memory effects on ship response to arbitrary excitation such as 

transient slamming. Bishop et al. (1978b) devised a linear method to estimate 
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slamming responses. The slamming responses for sinusoidal waves were obtained by 

superimposing on the steady-state responses induced by the waves in the manner 

discussed by Bishop et al. (1978b). They identified two distinct ways of slamming. 

The first method, so-called ‘impact slamming’ (Ochi and Motter, 1971, Stavovy and 

Chuang, 1976), evaluates the forces at the instant when the hull strikes the free 

surface of the waves. The second method, so-called ‘momentum slamming’ 

(Leibowitz 1963), describes the effect of pressure variations around the hull surface 

as it penetrates the moving fluid after the initial entry. They discussed two distinct 

issues: One is that the hull vibrates due to slamming while the bow is deeply 

immersed or emerged above the mean water line; another is that the constants of 

hydrodynamic coefficients for added mass and damping (A, B) are, in general, 

frequency dependent, but treated as constant. Belik et al. (1987) considered the rate 

of change of fluid momentum (Leibowitz 1963) and additional flare buoyancy when 

bow sections plunge into/re-emerge from the water before the sea surface reaches the 

still water draught (flare slamming). The total transient excitation consists of impact 

(Ochi and Motter, 1971, Stavovy and Chuang, 1976) and momentum slamming. The 

results show that the flare slamming effect is important for large flared ships. Aksu et 

al. (1995) carried out probability analysis using time simulation results. Both 

hydroelasticity investigations are based on linear strip method, representation of 

irregular waves by a combination of a large number of regular waves. 

 

Kaplan (1987) presented the analytical/computational determination of the slamming 

forces arising from flat bottom impacts on the water surface of ships advancing in 

waves. In this work, the concepts of fluid momentum theory, with a three-

dimensional model rather than the conventional two-dimensional strip theory 

methods, are applied to the impact problems of a flat surface.  
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Zhao and Faltinsen (1993) presented a numerical method for studying water entry of 

a two-dimensional body of arbitrary cross-section using a nonlinear boundary 

element method with a jet flow approximation. This method was verified by 

comparison with similarity theoretical solution of water entry wedges derived by 

Dobrovol’skaya (1969) and Wagner’s (1932) model for small dead rise angle. 

 

Kvålsvold and Faltinsen (1995) presented a theoretical and numerical slamming 

model for the wet deck of a multi-hulled vessel. The disturbance of the wetted 

surface as well as the local hydroelastic effects in the slamming area were accounted 

for. The elastic deflections of the wet deck, modelled as a beam, are expressed in 

terms of ‘dry’ normal modes. The structural deformation of beam model accounts for 

the shear deformations and the rotary inertia effects. The results indicated that an 

important effect arises from the body boundary condition as an angle of attack effect. 

The maximum bending moment stress was proportional to curvature of the wave 

crest in the impact region. Both theory and drop test results did not predict the 

maximum pressure deterministically; however, the bending stresses and deflections 

agree with each other. 

 

Ramos et al. (2000) compared the empirical formulae for the slamming forces 

described above and proposed a simple formula for sectional distributions of the 

slam force. The study showed that Ochi and Motter’s (1971) formula gave a slightly 

smaller slamming force, whilst other empirical formulae showed good agreement. 

 

Storhaug et al. (2003) measured global vibrations in terms of whipping and springing 

of a large ocean-going ship, using the DNV structural monitoring system. From the 

measurements it became apparent that a possible cause of vibration may be stern 

slamming (bottom slams are rare); hence, small impacts and low damping may cause 
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the springing. The predicted wave frequency results are in fairly good agreement 

with measurement, while, for high frequency, the results do not capture the measured 

trend.  

 

Buchner (1995) presented the green water phenomena based on model tests with a 

frigate. He indicated that the rate of change of water height on the deck has an 

important effect on the maximum deck pressure as well as static load and an inertia 

load for vertical acceleration. The calculations showed good agreement with the 

measurements. Buchner’s approach is widely accepted for modelling the effects of 

green water on the global wave-induced vertical bending moment, as shown by 

Wang et al. (1998) and Jensen and Mansour (2003). 
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Chapter 2 

Theoretical Background 

 

2.1 Equations of motion 

 

The equilibrium coordinate system for a ship advancing at constant mean forward 

speed U is defined such that the origin is at the stern in the x-direction (positive to 

bow). The z-axis is upward positive and y is positive to port. The x-z plane coincides 

with the central plane of the ship and x-y plane is at the mean waterline. 

 

The beam model for the global vibration of the ship hull gives good accuracy for 

mono-hulled vessels. The hull is assumed to behave as a Timoshenko beam with the 

assumption that the angle between the neutral axis and the normal of the cross 

section is proportional to the shear force. It includes the effects of shear deflection 

and rotational inertia as can be seen in Equations 2.1 to 2.3. 

 

The equations of symmetric flexural motion of the Timoshenko beam are as follows 

(Bishop and Price 1979) : 

 ( ) ( , ) [ ( ){ ( , ) ( ) ( , )}] ( , )x w x t kAG x x t x x t F x tµ γ α γ ′− + =&&&   (2.1) 
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 ),(),(),( txtxtxw γθ +=′       (2.3) 

 where, ),( txF  is the vertical force due to hull weight and fluid action 

  )(xµ  is the mass per unit length 
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)(xα  and )(xβ  are the distributed shear and bending damping 

respectively 

  ),( txθ  is the angle due to bending 

),( txγ  is the shear strain 

  w(x,t)  is the vertical displacement 

Iy(x)  is the rotary inertia  

EI(x)  is the flexural rigidity 

kAG(x)  is the shear rigidity. 

 

The normal-coordinate transformation, which serves to change the set of N coupled 

equations of motion of the N-DOF (Degrees Of Freedom) system into a set of N 

uncoupled equations, is the basis of the mode-superposition method of dynamic 

analysis. This method can be used to evaluate the dynamic response of any linear 

structure for which the displacement has been expressed in terms of a set of N 

principal coordinates and where the structural damping can be expressed by modal 

damping ratios (see Equation 2.9) 

 

The modal superposition of the vertical displacement with respect to the rth principal 

coordinate )(tpr is written in the form 

 ∑
=

=
N

r
rr tpxwtxw

0
)()(),(       (2.4) 

where, rw  is the modal shape function comprising rigid (r = 0,1) and flexible (r = 2, 

… , N) mode shapes. The natural frequencies rω  and corresponding principal mode 

shapes are obtained from "dry" or in vacuo analysis carried out in the absence of 

structure damping and external force (see Section 3.1). 

 

The equation of motion for the ship hull can be written as: 
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where, rsrsrs candba , denote the generalised mass, damping and stiffness, 

respectively, given by (Bishop and Price 1979) 
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Structure damping, as expressed by Equation 2.7, is difficult to estimate. Bishop and 

Price (1979) adopted a more simplified and practical way for inclusion of structure 

damping, namely 

 2 , 2,3,... .rr r r rrb a r Nν ω= =      (2.9) 

The modal bending moment is expressed:  

 ( ) ( )r rM x EI x θ ′=       (2.10) 

and the modal shearing force is: 

 ( ) ( )r rV x kAG x γ= .      (2.11) 

 

The generalized force Fs in Equation 2.5 comprises the hull weight due to gravity, the 

hydrostatic force and the hydrodynamic force. The hydrostatic force in still water is 

not considered because this force is equal to the weight of the ship and acts in the 

opposite direction. In order to estimate the hydrodynamic forces, there are various 

methods and assumptions. This study focusses on the vertical forces based on the 

strip theory and the nonlinearities due to large amplitude motions.  

 

Having found the principal coordinates, the shear force V(x,t) and the bending 

moment M(x,t) can be obtained, using modal superposition, as: 

 
2
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2.2 Strip theory 
 

The present method mainly focusses on the loads which are important in the hull 

girder structural analysis for mono-hulled vessels so that strip theory formulation for 

vertical ship motion is applied. Conventionally the hydrodynamic force is divided 

into two terms. One is the Froude-Krylov force, which is based on integration of the 

undisturbed wave-induced pressure over the wetted hull surface. The second term is 

the interaction between the hull surface and the fluid, which is named the 

hydrodynamic force in the broad sense (i.e. diffraction and radiation force).  

 

The linear part of the present theory follows conventional linear strip theory 

(Salvesen, Tuck and Faltinsen, 1970) and the nonlinear effects are incorporated into 

the linear system in the time domain analysis, as described in Section 2.3. 

 

2.2.1 Velocity potential and wave theory 

 

For the ideal fluid, a velocity potential φ  is defined. Assuming the disturbance of 

the steady fluid field by the ship can be ignored and the incident wave and the 

resulting motions are small, the velocity potential can be decomposed in the form 

 ∑
=

++=
6

1j

ti
jDI

ee ωφφφφ       (2.14) 

where Iφ  is the incident wave potential, Dφ  is the diffraction potential and jφ  is 

the contribution to the velocity potential from the jth mode of ship motion. Each 

velocity potential satisfies Laplace’s equation and the radiation condition at infinity. 
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Assuming that the wave elevation is sufficiently small and ignoring the second order 

terms in the fluid velocity, the linearised free surface conditions for the velocity 

potential is written as: 

 0
2

2

=
∂
∂

+
∂
∂

z
g

t
φφ , on 0=z .     (2.15) 

 

The global coordinates XYZ are fixed so that Z is the vertical coordinate (positive 

out of water) and XY plane is in the mean waterline (X is positive to bow and Y is 

positive to port). Considering two-dimensional (long-crested) waves traveling in the 

X-direction in infinite water depth, the velocity potential becomes (Jensen 2001) 

 ( )( , , ) kZ i kX t
I

igaX Z t e e ωφ
ω

−= −       (2.16) 

and the corresponding wave elevation is 

 ( )( , , ) i kX tX Z t ae ωζ −=       (2.17) 

where a is the wave amplitude. 

The pressure is obtained using Bernoulli’s equation. Omitting the higher order terms 

in Bernoulli’s equation, the first order pressure is  

( )( , , ) kZ i kX tI
a ap X Z t p gZ p gZ gae e

t
ωφρ ρ ρ ρ −∂

= − − = − +
∂

.

( , , )kZ
ap gZ ge X Z tρ ρ ζ= − +     (2.18) 

 

2.2.2 Hydrostatic Froude-Krylov force  

 

When a ship moves ahead with a steady velocity U in the direction of the global 

coordinate axis X, the wave elevation of Equation 2.17 can be represented in the 

equilibrium coordinate system as (Bishop and Price 1979) 

 ( cos sin )ei kx ky tae χ χ ωζ + −= ,  for 180χ = ° , ( )( , ) ei kx tx t ae ωζ − +=  (2.19) 
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where χ  is heading angle, the wave number gk 2ω=  and the encounter 

frequency χωω coskUe −= . 

 

Ignoring the interaction between the hull surface and the waves, the hydrodynamic 

force on the ship can be obtained by integration of the undisturbed pressure p  in 

the incident waves over the instantaneous wetted surface S as 

 I
S

F pndS= −∫∫
r        (2.20) 

where the pressure p is defined by Equation 2.18 and nv  is the vector normal to the 

hull surface.  

 

The sectional force due to the dynamic pressure is obtained in the equilibrium 

coordinate system as (Jensen 2001, see Appendix 1 for the details) 

∫∫
−

−

+
−

−=
w

T

wzk
w

I dzzxBegkdzzxBgF
ζζ

ζρρ ),(),( )(

0

.   (2.21) 

Assuming that the wave elevation and hull displacement are small and the breadth 

does not vary near a mean draught, the linear sectional force can be approximated as: 

 
0

, ( )( ) ( , )kz
I lin o

T

F gB x w gk e B x z dzρ ζ ρ ζ
−

= − − ∫      

 
0 ( , )( ) ( ) 1

( )
kz

o o
oT

B x zgB x w gB x k e dz
B x

ρ ρ ζ
−

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
∫  

 ( ) ( )o ogB x w gB xρ ρ κζ= − + ,    (2.22) 

where Bo(x) is the breadth at the mean draught and κ  is the Smith correction factor 

defined as: 

 
0 ( , )1

( )
kz

oT

B x zk e dz
B x

κ
−

= − ∫ .      (2.23) 

Here the first term of Equation 2.22 is called the fluid restoring force, and the second 

term is the linear Froude-Krylov force. 
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It is convenient to express the linear Froude-Krylov force using the equivalent 

draught for Smith correction, simplifying the calculation without the integration of 

the exponential function (Bishop and Price 1979). That is  

 ( ) ( ) ( ) kT
FK o o oF gB x gB x gB x eρ κζ ρ ζ ρ ζ−= = =    (2.24) 

where ),( txζ  is the wave elevation with the Smith correction and the equivalent 

draught for Smith correction (T ) is defined as: 

 
01 1 ( , )ln( ) ln 1

( )
kz

oT

B x zT k e dz
k k B x

κ
−

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∫ .    (2.25) 

 

The nonlinear Froude-Krylov and fluid restoring force (F4) associated with the 

instantaneous wetted hull surface is defined by subtracting the linear Froude-Krylov 

force in Equation 2.22 from Equation 2.21 as: 

 linII FFF ,4 −=  

 ( )

0

( , ) ( , ) ( )( )
w w

k z w
o

T

g B x z dz gk e B x z dz gB x w
ζ ζ

ρ ρ ζ ρ ζ
− −

+

−

= − + −∫ ∫ . (2.26) 

 

2.2.3 Hydrodynamic force 

 

The relative motion between the ship and wave surface is used in strip theory and the 

relative displacement is expressed as: 

 ),(),(),( txtxwtxzrel ζ−=      (2.27) 

where w(x,t) is the upward displacement of the section of the hull and ζ  is the 

equivalent wave elevation including the Smith correction. 

As described in Equations 2.19 and 2.24, the wave elevation with the Smith 

correction is presented as  

 ( )( , ) ei kx tkTx t ae e ωζ − += .      (2.28) 
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When the relative motion concept with the Smith correction is introduced, the body 

boundary condition of the diffraction potential can be treated as that of a radiation 

potential, using the total derivatives of the equivalent wave elevation, DtDζ . 

Then the diffraction field can be solved together with the radiation field as a 

disturbance field with the velocity of the ship section (Wu 1994). 

 

The vertical hydrodynamic force per unit length using the linear strip theory 

(Salvesen et al. 1970) can be expressed in the form (Bishop and Price 1979) 
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⎥
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e
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ωω   (2.29) 

In this expression, ),( exm ω  is the sectional added mass, ),( exN ω  is the sectional 

fluid damping and the operator D/Dt is the total derivative with respect to time: that 

is 

 
x

U
tdt

dx
xtDt

D
∂
∂

−
∂
∂

=
∂
∂

+
∂
∂

= .     (2.30) 

 

2.3 Hydroelastic equation for large amplitude motion 
 

The Froude-Krylov force, the fluid restoring force and the hydrodynamic force (i.e. 

the radiation and diffraction force) were defined in Section 2.2. The Froude-Krylov 

force was derived at the instantaneous draught as shown in Equation 2.21. However, 

the radiation and diffraction force in Equation 2.29 were derived under the 

assumption of linear strip theory using the mean draught. In order to consider the 

nonlinearities, such as the effects of flared sections, bottom slamming, or green water 

on deck, a simplified two-dimensional method for the nonlinear hydroelastic 

response of a ship experiencing large amplitude motions is suggested with the 

following assumptions:  

 The nonlinearities arise from the large ship motions of heave and pitch. 
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 Structural deformation remains small; namely the structure behaviour is 

in the range of linear stress-strain relations, so that the linear 

hydroelastic theory, with Timoshenko beam model, is applicable. 

 Incident waves can be described sufficiently by linear wave theory 

 The memory effect of free surface is treated through a linear method. 

 

Figure 2.1 shows the relevant characteristics of travelling waves over a sea bottom. 

According to this figure, in deep sea, sinusoidal waves may be used only when the 

wave height-length ratio (H/λ) are less than 0.01. Linear wave theory is adopted to 

represent wave motion in this study, because the responses to irregular waves are 

expressed by superposition of many different components of sinusoidal waves of 

differing frequencies without interaction between them. However, a higher order 

wave model, such as Stokes’ waves, may be worth considering for application in 

motion and wave load analysis in one wave. 

 

 

Figure 2.1 Schematic indication of periodic waves travelling over a horizontal sea 
bottom; h is water depth; H is wave height; λ is wave length (Hooft, J.P, 1982) 

 

When a ship motion is of large amplitude, added mass and damping coefficients are 

dependent on the wetted hull surface and vary according to instantaneous draught. In 

the method presented in the thesis, hydrodynamic forces are calculated using the strip 
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theory, which includes nonlinearities considering the variation of the hydrodynamic 

coefficients in the time domain. The coordinate system is the same as in the linear 

analysis. 

 

Considering the time variation of the ship’s wetted surface, including that of 

hydrodynamic coefficients, total vertical fluid force acting on a strip can be written 

as in Equations 2.21 (non-linear Froude-Krylov and hydrostatic) and 2.29 (linear 

hydrodynamic) 

 0
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∫

∫
(2.31) 

where now the hydrodynamic coefficients have time dependence and the relative 

displacement zrel is defined in Equation 2.35. 

 

The hydrodynamic coefficients are decomposed into linear and nonlinear parts as: 

 ( , , ) ( , ) ( ; , , )e o e nl rel em x t m x m z x tω ω ω= +     (2.32) 

 ( , , ) ( , ) ( ; , , )e o e nl rel eN x t N x N z x tω ω ω= +     (2.33) 

where the index "o" denotes the coefficients at mean water line and the index "nl" the 

influence of nonlinearities. 

Decomposing the total vertical displacement )(tw  also into linear and non-linear 

parts, 

 )()()( twtwtw nll += ,      (2.34) 

then the relative vertical displacement of the ship becomes 

 ( , ) ( , ) ( , )rel ro nlz x t z x t w x t= + , ( , )ro lz x t w ζ= − .   (2.35) 

It can be seen that zro is the same expression as the linear relative displacement given 

by Equation 2.27. 
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Substituting Equations 2.32 to 2.35 into Equation 2.31, the vertical fluid force on the 

hull section is obtained as 

 ),(),(),(),( txFtxHtxFtxF nlnll ++=     (2.36) 

where 
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− +∫ ∫ .  (2.39) 

As can be seen the linear force, defined by Equation 2.44, is the same as the forces 

given in the previous section for linear Froude-Krylov and hydrostatic (Equation 

2.22) and linear hydrodynamic forces (Equation 2.29). 

 

In the same manner, decomposing the principal coordinates )(tp  into linear and 

non-linear parts 

 )()()( tptptp nll += .      (2.40) 

 

From Equations 2.5 and 2.36, the governing equation of nonlinear hydroelasticity is 

composed of linear and nonlinear parts in matrix form: 

 [ ]{ } [ ]{ } [ ]{ } { })()()()( tFtpctpbtpa llll =++ &&&     (2.41) 

[ ]{ } [ ]{ } [ ]{ } { } { })()()()()( tFtHtpctpbtpa nlnlnlnlnl +=++ &&& .  (2.42) 

Here, Equation 2.41 describes the equation of motion for linear analysis, while 

Equation 2.42 is the equation of motion for the nonlinear contributions. The 
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generalised force is obtained by multiplying the mode shapes and integrating along 

the ship length (Bishop and Price 1979). That is to say: 

 ∫=
L

r dxtxFxwtF ),()()(       (2.43) 

 

When the radiation force and fluid restoring force in Equations 2.41 and 2.42 are 

moved to the left hand side, the linear and nonlinear hydroelastic equations of motion 

can be expressed by: (see Appendix 2 for the details) 

 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( ) ( ) ( )e l e l l wa A p t b B p t c C p t F tω ω+ + + + + =&& &     (2.44) 

 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( ) ( ) ( )e nl e nl nl nla A p t b B p t c C p t F tω ω+ + + + + =&& &  (2.45) 

where [ ])( eA ω , [ ])( eB ω and [ ]C  represent the generalized linear fluid added mass, 

damping and restoring coefficients matrix. [ ]( )eA ω  and [ ]( )eB ω  are frequency 

dependent coefficients and represent the hydrodynamic pressure over the mean 

wetted surface of the hull section. 

 

The sectional nonlinear force discussed in Equation 2.39 is composed of four force 

components as: (see Appendix 3 for the details) 

 ),(),(),(),(),( 4321 txFtxFtxFtxFtxFnl +++=       (2.46) 

where 
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Here F1 is the so-called flare slamming force, which is the time rate of added mass 

and is widely used in nonlinear modifications (Belik et al 1980, Xia et al. 1998). F4 is 

the nonlinear modification in the Froude-Krylov force and hydrostatic restoring 

forces (Domnisoru and Domnisoru 1997), which is usually included (Wu et al. 2002), 

Gu et al. 2003) in the form of. 

 { }4 ( , ) ( , ) ( ) ( ) ( , )o o relF x t g A x t A x gB x z x tρ ρ= − +      (2.51) 

where A and Ao are the submerged areas at the instantaneous and mean draughts  

respectively. 

 

F2 and F3 are the nonlinear modifications in the radiation and diffraction forces 

corresponding to added mass and damping, respectively, which are not considered in 

many cases. For example, Domnisoru and Domnisoru (1997) included the damping 

terms, while Wu et al. (2002) consider only the added mass at infinite frequency. 

 

The flare slamming force (F1) in Equation 2.47 only acts during downward motion 

(i.e. when ( , ) / 0relDz x t Dt < ) and caters well for so-called bow flare slamming, 

which is dominant in ships with a large bow flare. In such cases, the fluid will be 

accelerated in a very short period (proportional to the square of the section’s relative 

velocity) and the added mass and its derivatives can be determined at ∞→eω . This 

mechanism can also be applied to the second term of Equation 2.47, the rate of 

damping coefficient. It can be determined at ∞→eω  but will be omitted (Gu et al, 

2003).  

 

The following equations are satisfied for the instantaneous draft T(x,t)  

 ( , ) ( ) ( , )o relT x t T x z x t= −  and 
t

txz
t

txT rel

∂
∂

−=
∂

∂ ),(),( ,  (2.52) 

where To(x) is mean draught of sections, and 
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 ( , ) ( , ) ( , ) ( , ) ( , )nl rel nl rel relm x t Dz x t m x t z x t Dz x t
t Dt T t Dt

∂ ∂ ∂
= −
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.  (2.53) 

Then, the flare slamming force of Equation 2.47 can be expressed as 

Dt
txDz

t
txz

T
xzm

txF relrelrnl ),(),(),;(
),(1 ∂

∂
∂

∞∂
= .   (2.54) 

The flare slamming force is suitable for the entire slamming process from the bottom 

to the weather deck of the ship. A differentiation method is used to calculate m T∂ ∂ . 

Bottom flatness with small deadrise angle make it difficult to accurately calculate the 

hydrodynamic coefficient and its variation with draught, m T∂ ∂ . Actually, when a 

hull section with a nearly flat bottom impinges the compressibility of fluid, 

consideration of the effects of air cushion and pile-up of water may be necessary. 

This is a very complicated problem. So, an empirical formula is widely used for 

bottom slamming (see Section 2.4.2). In the present study, the slamming forces are 

separated into bottom impact slamming and flare slamming. Bottom impact 

slamming is assumed to be dominant in the range between the hull bottom to 0.1 

draught while flare slamming works above 0.1 draught. 

 

The total derivatives in Equations 2.47 to 2.49 can be written in terms of the 

estimated responses (principal coordinate and its derivatives) as 
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On the other hand, assuming the hydrodynamic force is defined to be harmonic, i.e. 

( ) ei tp t pe ω−= , the expressions in Equations 2.56 and 2.57 can be written (Gu et al. 

2003) as: 

 2
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         (2.59) 

 

2.4 Transient loads 
 

2.4.1 Green water 

 

When the incident water surface exceeds the moving deck level at any section, green 

water related hydrodynamic forces may also contribute. When water surges on deck, 

fluid will flow from bow to amidships rapidly, like the dam breaking problem 

(Buchner 1995). At the next stage, most of the kinetic energy of the water jet has 

been expanded and a quasi-static load applies on the deck. The high velocity water 

shooting over the deck lasts for a very short period and acts on a comparatively small 

area. Although the instantaneous impact pressures on that area may be large, the 

resulting hydrodynamic force on the ship is comparatively small. In this investigation, 

the water jet event is omitted and the quasi-static load is added into Fnl of Equation 

2.46 in order to obtain global response due to green water. 

 

The green water load (F5) is obtained by simply including a term proportional to the 

change of the momentum of the water on deck. The hydrodynamic force of fluid on 

deck per unit length of the ship can be expressed as (Buchner 1995). 
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where 

)()(),( xhxBtxm gdeckg ρ=  is the mass of fluid above the deck level 

( ) ( , ) ( , ) ( )g deckh x x t w x t h xζ= − −  is instantaneous water height above the 

deck 

hdeck(x) and Bdeck(x) are the free board of the hull and breadth at deck level. 

 

Equation 2.60 can also be rewritten  
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 (2.61)  

 

In this equation, the first term is the weight of the fluid itself (F51) and the second 

(F52) and third terms (F53) are induced by the rate of change of water height on deck 

and the inertia of fluid due to the vertical absolute acceleration of the ship, 

respectively. The rate of water height on the deck has an important effect on the 

maximum deck pressure. If the water height increases rapidly in the time the deck 

has an upward velocity, large pressures are found.  

 

2.4.2 Bottom slamming 

 

The slam-induced impulsive force is experienced when the hull emerges above the 

wave surface and impinges on the water. Many methods for analyzing impact loads 

are based on semi-empirical methods. The impulse force per unit length due to the 

sudden increase of pressure around the bottom of the hull can be represented as a 

function of the maximum pressure at the keel and its distribution along the hull 
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section and time variation. It was represented by Ochi and Motter (1971) as: 

)()()(),( max6 tfxGxptxF =      (2.62) 

where pmax(x) is the maximum impact slamming pressure at the keel, G(x) is the 

integration shape factor which defines a linear distribution of the impact pressure 

around the bottom (see Appendix 3 for the details) and f(t) defines the time variation 

of the impact pressure. The maximum slamming pressure is given by the section 

geometry factor and the square of the body velocity as 

 2
max

1
2

p k vρ=        (2.63) 

where k is a non-dimensional factor depending on section geometry. Stavovy and 

Chuang (1976) proposed a method to obtain the k-factor by regression analysis of 

experimental data. That is  

{ } { }[ ]),(sin),(cos2)(
2
1)( 22

1
2

max txtxkxvxp ns ξρξρ +=   (2.64) 

where vns is the relative velocity and ),( txξ  is the effective impact angle as a 

function of the local hull effective impact angle. The effective impact angle is 

defined as a function of the deadrise angle, the effective impact angle in the 

horizontal longitudinal plane and vertical transverse plane. To simplify the problem, 

only deadrise angle at each section was estimated in the present study and used when 

calculating ),( txξ , for substituting for the pressure in Equation 2.62. 

 

The vertical distribution of slamming pressure is assumed to be linear with the 

maximum value at the bottom and zero value at 1/10 of the design draught (Ochi and 

Motter 1973). Kawakami et al. (1977) proposed a formula, based on their 

experimental work, to represent the bottom slamming force as a function of time as 

follows: 
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where To is the time when the maximum pressure is reached, which is suggested as: 

LTo 00088.0= , where L is the ship length. 

The bottom slamming force per unit length in Equation 2.62, thus, can be re-written 
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The total load at each section of the ship is the sum of the wave-frequency loads and 

the high frequency loads caused by impact. 

 

The use of Equation 2.63, with the time dependence as per Equation 2.65 and the 

maximum pressure as per Equation 2.64 will be hitherto referred to as the method by 

Stavovy and Chuang (1976). 
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Chapter 3  

Linear Solution 
 

The linear dynamic responses of beam-fluid model are calculated for the S175 

container ship. In the frequency domain analysis, the motions and wave loads for 

symmetry motions and distortions with regular head waves are calculated as a 

function of frequency. The hydrodynamic coefficients are estimated at mean draught. 

Heave and pitch transfer function and wave bending moment are obtained for three 

ship speeds. The transient responses for a unit impulse load are calculated in time 

domain simulations. Numerical methods (convolution integral and direct integration) 

are applied and discussed. Time domain simulation in a regular head wave shows the 

consistency of these numerical methods. 

 

3.1 Ship characteristics 

 

The calculations were performed for the S175 container ship, for which a number of 

good experimental and numerical results are available, thus providing guidance for 

investigating the reliability of the methods and the accuracy of the calculations (ISSC 

1997, 2000; Watanabe et al. 1989; Chen et al. 1999). The ship has a large flare angle 

so that the nonlinear effects due to large amplitude of motions can be easily 

identified (see Chapter 4).  

 

The principal particulars and the body lines of the ship used in the calculation are 

shown in Table 3.1 and Figure 3.1. 
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Table 3.1 Principal particulars of S175 

Description Value,unit 
Length between perpendiculars (L) 175.0 m 
Beam amidships 25.4 m 
Draught amidships 9.5 m 
Displacement 24742.0 tonnes 
Longitudinal centre of gravity aft of amidships 2.34 m 
Vertical centre of gravity above base line 9.52 m 

 

 

Fig. 3.1 The body plan of S175 (Wu and Hermundstad, 2002) 

 

The distributions of the sectional properties for the Timoshenko beam model, such as 

mass per unit length of the ship (µ ), flexural rigidity (EI), shear rigidity (kAG) and 

rotary inertia (Iy) are shown in Figures 3.2 to 3.4. The mass distribution of the model 

ship is obtained by referring the Wu and Hermundstad (2002).  
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3.2 Dry analysis 

 

The ship is modelled using 100 sections which is more than sufficient number of 

segments to represent the vibration characteristics of the dry hull up to the 3rd 

flexural mode. The sensitivity analysis for the number of sections is shown in Table 

3.2. It shows that the number of segments has negligible effect for the first three 

flexible modes. However in order to estimate the hydrodynamic force properly, a 

large number of sections (e.g. 100) may be better.  

 

Estimating the structural damping of a ship is one of the most difficult problems in 

hull vibration studies because damping factors in ships are complicated by the 

complexity of the structure itself, the various types of cargo, bunkering, amount of 

machinery, etc. Some effective methods have been developed and the concept of 

modal damping is easy to apply. Modal damping estimates are based on Kumai’s 

(1958) method in the present investigation. 

 

Table 3.2  Natural frequencies for the “dry” hull of S175 

Flexural 
mode 

Natural frequency (rad/s) 
using 100 sections 

Natural frequency using 
20 sections 

1st 10.005 10.038 
2nd 22.645 22.669 
3rd 37.287 37.008 

 

The ship is treated as a Timoshenko beam and the natural frequencies and mode 

shapes are calculated using Prohl-Myklestad’s finite difference method (Myklestad 

1944, Bishop and Price 1979). The mode shapes are scaled to 1 m deflection at the 

stern. Two rigid body modes (r=0,1) and the first three flexible modes (r=2,3,4) are 

considered when estimating the dynamic response of the hull. For the rigid body dry 
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modes, the mode shapes are defined by 
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These two modes correspond to the heave and pitch motions of the hull, where x  is 

the longitudinal position of the mass centre measured from the stern. The mode 

shapes wr of the hull girder vibration are shown in Figure 3.5. Whether N = 4 is 

adequate to ensure convergence in the modal superposition will be discussed later 

(see Section 3.4.1). The corresponding bending moment (Mr) and shear force (Vr) 

modal functions of these three dry modes are presented in Figures 3.6 and 3.7, 

respectively. Note that Mr=0=Vr for r=0 and 1. The calculation for ‘Dry mode’ was 

carried out following the analysis by Bishop et al. (1977). 
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 Figure 3.5 Mode shapes of vertical hull girder vibration in the ‘Dry mode’ for S175 
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 Figure 3.6 Modal functions of bending moment of S175 
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 Figure 3.7 Modal functions of shear force of S175 

 

3.3 Fluid forces 

 

The sectional added mass coefficients and fluid damping coefficients are calculated 

by assuming Lewis form sections. Figures 3.8 and 3.9 show the sectional added mass, 

( , )m x ω , and damping coefficients, ( , )N x ω , of some sections (STN=0, 5, 10, 15 

and 20) according to wave encounter frequency ( eω ) where STN 0 denotes the AP 
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and STN 20 is the FP. Asymptotic values of sectional added mass at infinite 

frequency are presented in Table 3.3. The sectional damping coefficients decrease to 

zero at a higher frequency range.   

 

Table 3.3 Asymptotic values of added mass at infinite frequency at mean draught 

station number 0 5 10 15 20 
added mass (tonne/m) 3.42 209.9 331.8 125.4 1.11 
 

The Lewis form sections are presented and compared with the original ship sections 

in Figures 3.10. Lewis form sections follow the original shape well for most sections; 

however for fine or bulbous sections at bow and stern, the Lewis conformal 

transformation does not map the hull sections as accurately. The hull section contour 

can be defined more accurately using the multi-parameter conformal transformation 

technique (Bishop et al. 1978c). The hydrodynamic coefficients for some sections at 

mean draught are shown in Figures 3.11 and 3.12, comparing the Lewis form 

formulation to the multi-parameter conformal transformation technique. 4, 6 and 8 

parameter conformal transformations are used. The added mass coefficients are close 

to each other whether using the Lewis or multi-parameter mapping as shown in 

Figure 3.11. Figure 3.12 shows that the fluid damping coefficients differ slightly 

between the Lewis form and the multi-parameter mapping at stations 2 and 18, while 

for other sections the fluid damping coefficients estimated by the Lewis form are 

close to those using multi-parameter mapping. The Lewis form formulation was 

employed in the present study considering the benefit of its simplicity. 

 

The reduction of added mass due to three-dimensional flow effect is applied using 

Townsin’s (1969) formulation. This factor is only applicable to the lower modes of 

vibration and to the diagonal terms of the generalised added mass matrix (Bishop and 

Price 1979). Table 3.4 presents the wet resonance frequencies of the hull vibration 
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(r=2, 3, 4) with and without three-dimensional reduction. The table shows that three-

dimensional reduction increases resonance frequencies. Hence forth the reduced 

added mass is used in the analysis. 

 

Table 3.4 ‘Wet’ resonance frequency of hull girder vibration with/without 3-D 
correction (wave encounter frequency) 

mode Wet natural frequency 
without 3-D reduction (rad/s) 

Wet natural frequency with 3-D 
reduction (rad/s) 

2-node (r=2) 7.9 8.4 
3-node (r=3) 17.1 18.7 
4-node (r=4) 28.0 32.2 

 

For the vertical deflection of the hull, the generalized fluid forces due to hull motion 

and distortion can be expressed by the matrix [ ]A  and [ ]B , as described in 

Equations 2.44 (see also Appendix 2).  By contrast to the generalised structural 

mass, damping and stiffness coefficients in the dry hull, ars, brs and crs of the diagonal 

matrices in Equation 2.5, [ ]A  and [ ]B  do not form a symmetric array. The 

matrices [ ]A  and [ ]B  are neither symmetric nor positive definite, and are 

dependent on encounter frequency and speed. The off-diagonal terms are not small 

enough to be negligible.  

 

Table 3.5 illustrates the magnitude of the structural damping, based on the method by 

Kumai (1958) and diagonal hydrodynamic fluid damping terms at various 

frequencies.  Structural damping becomes more dominant by comparison with fluid 

damping as the mode number increases. The stiffness terms, [ ]C  of Equation 2.44, 

correspond to purely hydrostatic effects and are independent of frequency. 
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Table 3.5  Generalised structural damping (brr) and fluid damping (Brr) for 
various modes (kN ms) 

Mode, r Structural 
damping 

Fluid 
damping at 
ωe=0.883 

Fluid 
damping at 
ωe=8.4 

Fluid 
damping at 
ωe=18.7 

0 - 1.125e4 36.90 27.8 
1 - 2.910e3 30.40 24.9 
2 3.9546e2 1.716e3 28.60 25.2 
3 1.2009e3 2.380e3 23.00 29.6 
4 2.5574e3 2.952e3 28.2 25.9 
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3.4 Solution of equations of motion 

 

The linear equation of motion, Equation 2.44, is solved in both the frequency and 

time domains in regular head waves of unit amplitude. The responses in frequency 

domain analysis, i.e. the steady state response, are compared to the responses in 

linear time domain analysis using various numerical simulation methods, namely 

convolution integral and direct integration, in order to check the accuracy of these 

numerical methods. The transient response for a unit impulse force is also presented 

using a convolution integral method and a direct numerical integral method. 

  

3.4.1 Frequency domain analysis 

 

Considering exponential decay in wave pressures according to water depth in 

calculating the hydrodynamic forces (Equations 2.21 and 2.29), it was shown in 

Section 2.2 that it is convenient to introduce the concept of Smith correction. Figure 

3.13 shows that the Smith correction factor κ decreases as kT (wave number 

multiplied by draught) increases, at five sections along the hull. The Smith correction 

factor decreases to zero as the wave number becomes high (i.e. shorter wave length).  

 

As previously discussed in Section 2.3, the principal coordinate responses for a 

harmonic excitation in frequency domain are obtained: 

 { } [ ]{ }( ) ( ) ( )e e w ep H Fω ω ω=      (3.1) 

where, [ ])( eH ω  is the complex frequency response function defined as  

[ ] [ ] [ ] [ ]{ } 12( ) ( ) ( )e e e e eH a A i b B c Cω ω ω ω ω
−

= − + − + + +   (3.2) 
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The system being linear, a sinusoidal input (a regular wave) produces a steady 

sinusoidal output of the same frequency. By definition, the frequency response 

function, H(ωe) in Equation 3.2, is the complex response to waves of unit amplitude 

and the diagonal elements of |H(ωe)| are shown in Figure 3.14 as a function of wave 

encounter frequency. It can be seen that the diagonal elements show peak at the 

appropriate resonance (i.e. at 0.883 rad/s for 0,1r s= =  and at the wet resonance 

frequencies shown in Table 3.4 for 2r s= ≥ ).  

 

The magnitudes of the linear wave excitation force (diffraction and Froude-Krylov 

force) due to unit amplitude regular head wave are presented in Figure 3.15. In the 

high encounter frequency range (say above 5.0 rad/s), the wave excitation force is 

very small for all modes.  

 

Figure 3.16 shows the amplitudes of the first five principal coordinates for three 

different Froude numbers (Fn = 0.20, 0.25 and 0.275). It can be pointed out that the 

peaks correspond to the maxima of |H(ωe)| and each generalised coordinate has 

distinct dominant peaks at the same encounter frequencies. The peaks of p2, p3 and p4 

correspond to the resonance frequencies for the wet modes, r=2, 3 and 4, respectively 

show are shown in Table 3.4. It can be seen that the resonance characteristic of the 

system do not depend on the speed of the ship. As the speed increases the magnitude 

of the principal coordinates increase. The coupling between rigid and distortions is 

apparent as all principal coordinates display a substantial peak at eω =0.883 rad/s, 

corresponding to the pitch/heave resonance. The peaks of the two principal 

coordinates (p0 and p1, respectively) are likely to occur at very low encounter 

frequencies. Physically, modes 0 and 1 represent the heave and pitch modes, 

respectively. Figure 3.17 shows the heave and pitch as a function of non-

dimensionalized frequency. The heave transfer function has a peak response, even 
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though it only looks like a small hump around /e L gω =2.24 at Fn=0.275, where 

the corresponding wave/hull length ratio (λ/L) is around 1.2, by contrast, the pitch 

transfer function has a flatter peak response. The amplitudes of the heave transfer 

function increase as the ship speed increases (Fn=0.2, 0.25 and 0.275, respectively).  

 

The frequency responses of midship bending moment for these different Froude 

numbers is depicted in Figure 3.18 with the wave encounter frequency range up to 40 

rad/s. The first big peak occurs around the wave encounter frequency of 0.883 rad/s. 

This peak comes from the resonances in heave motion, i.e. at / 1.2Lλ ≈ . Another 

peak corresponds to the wave encounter frequency of 8.4 rad/s, which results from 

the first flexural mode of hull vibration in wet condition. This frequency may be 

resonant with the high frequency wave excitation (i.e. the so-called springing 

response), however it does not always imply that the response of the ship in a seaway 

is affected severely because of wave energy distribution. At the high frequency range, 

wave energy is small.   

 

Damping is a crucial factor for the resonance response. The damping consists of 

hydrodynamic damping and structural damping. Figure 3.19 shows the bending 

moment amidships at Froude number of 0.275, when the structural damping is 

omitted. It shows that the structural damping is dominant compared with the 

hydrodynamic damping for the first flexural mode.  

 

In order to estimate whether N=4 is adequate to ensure convergence in the modal 

superposition, a sensitivity study on the influence of higher modes is carried out. 

Figure 3.20 shows the vertical bending moments at three different locations along the 

hull, in which the maximum number of modes in the summation (see Equation 2.13) 

is varied (N=2, 3, 4 and 5). For the midship bending moment, the higher mode 
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effects (above N=5) are negligible. Bending moments at 1/4 L and 3/4 L appear to be 

affected at corresponding resonance frequency regions. However the difference is so 

small as to be negligible. It can thus be concluded that the first three flexural modes 

(r=2, 3 and 4) is adequate to ensure convergence. Through the sensitivity study, it can 

also be pointed out that the two-node mode (r=2) is completely dominant for the 

wave bending moment. 
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Figure 3.13 Smith correction factor at mean draught as a function of kT 
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Figure 3.16 Variation of principal coordinate amplitudes with encounter frequency at 

three different speeds 
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Figure 3.17 Heave and pitch transfer functions as a function of /e L gω  
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Figure 3.20 Sensitivity of modal summation on bending moments 
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3.4.2 Numerical methods for time domain analysis 

 

The ship responses are assumed to be harmonic due to harmonic excitation. Under 

this assumption, the added mass and damping coefficients are determined in the 

frequency domain and the equation of motion in the frequency domain can be 

transformed to the time domain, as explained in sections 3.4.2.1. and 3.4.2.2. It 

implies that the responses in the time domain at each time step display oscillatory 

steady state behaviour and the equations of motions cannot be applied directly to a 

general time dependent excitation.  

 

Two time domain simulation methods are introduced in this section: one is the 

convolution integral method and the other is the direct numerical integral method.   

 

3.4.2.1 Convolution integral method 

 

The total response of a linear system having a number of inputs can be computed by 

determining the response to each input considered separately and then summing the 

individual responses. The impulse response function, h(t), of a time-invariant system 

denotes the output time function which results when the input signal is a unit impulse 

accruing at t=0. It is assumed that the output was zero before the application of the 

impulse and would have remained zero if the impulse had not been applied. When 

the impulse is set as ( ) ( )x tτ δ τ−  in the mathematical expression, where )(tδ  is 

the Dirac delta function, the response to each impulsive input is obtained by 

multiplying the impulse response function h(t) by the strength of the impulse. That is 

the convolution integral expressed as: 
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 ( ) ( ) ( )y t h x t dτ τ τ
∞

−∞

= −∫  .     (3.3) 

As impulse response function is the response of the system to a unit impulse at time 

t=0, so that there can be no response before the input is applied, the lower limit of the 

integral in Equation 3.3 may be replaced by 0 without change of value of y(t) 

(Ballard et al. 2003). Furthermore, the condition imposed allows the upper limit in 

Equation 3.3 to be replaced by the arbitrary time t.  

 

The linear hydroelastic equation of motion (Equation 2.44) was given as: 

[ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( )l l l wa A p t b B p t c C p t F t+ + + + + =&& & .  (3.4) 

The linear responses are obtained by applying convolution integral formulation, as: 

 { } [ ]{ }( ) ( ) ( )
t

l w
o

p t h F t dτ τ τ= −∫ .    (3.5) 

Here, [ ])(τh  is the impulse response function matrix, which can be estimated using 

the linear system coefficients.  

 

Using the inverse Fourier transformation of the frequency response function, the 

impulse response function [ ])(τh  is defined by adopting the new variable eω ω= −  

(Bishop and Price 1979): 

 [ ] [ ]1( ) ( )
2

i th t H e dωω ω
π

∞

−∞

= ∫                (3.6) 

where  

[ ] [ ] [ ] [ ]{ } 12( ) ( ) ( )H a A i b B c Cω ω ω ω ω
−

= − + + + + + = ( ) i th e dωτ τ
∞

−

−∞
∫  
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and h(t) and H(ω) form a Fourier transform pair. 

 

If the integrand is assumed to be symmetric, Equation 3.6 may be written as (Ballard 

et al. 2003): 

 [ ] [ ]
0

1( ) ( ) i th t H e dωω ω
π

∞

= ∫      (3.7) 

The impulse response function of velocity, )(thv , and acceleration, )(tha , can be 

obtained by differentiating Equation 3.7. That is (Wu et al. 1996): 

[ ] [ ]
0

1( ) ( ) i t
vh t i H e dωω ω ω

π

∞

= ∫      (3.8) 

[ ] [ ]2

0

1( ) ( ) i t
ah t H e dωω ω ω

π

∞

= −∫      (3.9) 

Then, the velocity and acceleration responses can be obtained using the convolution 

integral as: 

{ } [ ]{ }
0

( ) ( ) ( )
t

l v lp t h F t dτ τ τ= −∫&     (3.10) 

{ } [ ]{ }
0

( ) ( ) ( )
t

l a lp t h F t dτ τ τ= −∫&&     (3.11) 

 

The alternative method to find the impulse response function of h(t) is called the 

Hamiltonian method (Bishop and Price 1979). Equation 3.4 can be transformed to 

the Hamiltonian form such that 

 [ ]{ } [ ]{ } { })()()( tEtyGtyI =+&      (3.12) 

 where, { } { }( ) ( ) ( 0,1, , )r ry t p t r N= =& K  



 

Chapter 3 Linear Solution                                                      65 
                                                                                   

 

  { } { }1( ) ( ) ( 1, 1, , 2 1)r r Ny t p t r N N N− −= = + + +K  

[ ]I  is a unit matrix and the matrices [ ]G  and { })(tE are derived from the matrices, 

[ ]a A+ , [ ]b B+ , [ ]c C+  and { })(tF . 

The solution of Equation 3.12 is 

 1

0

( ) ( )
t

y Y Y E t dτ τ τ−= Λ −∫      (3.13) 

where [ ]Y  contains the eigenvectors and ( )tΛ  is the diagonal matrix related 

eigenvalues.  

Comparing Equation 3.5 to Equation 3.13, the impulse response functions for the 

principal coordinates are given as (Bishop and Price 1979) : 

 [ ] [ ] 1
1( ) 0 ( ) 0, 0 0

0
a Ah t Y t Y for t for t

−
−
⎡ ⎤+= Ι Λ ≥ = <⎢ ⎥
⎢ ⎥⎣ ⎦

. (3.14) 

 

3.4.2.2 Direct numerical integral method 

 

The direct integral method is also a widely used method in the time domain 

simulation. The implicit Newmark-beta method is suitable for nonlinear systems by 

using iteration. Using the Newmark-beta method scheme, the velocity and 

displacement at time t+Δt are given by (Weaver et al. 1987): 

 { } txxxx tttttt ∆+−+= ∆+∆+ &&&&&& γγ )1(      (3.15) 

 { }( )2)5.0( txxtxxx ttttttt ∆+−+∆+= ∆+∆+ &&&&& ββ    (3.16) 

where, β  and γ  are selected as 1/4 and 1/2 respectively, as suitable values for this 

investigation. 



 

Chapter 3 Linear Solution                                                      66 
                                                                                   

 

A step-by-step procedure with iteration is used, because the force (linear or 

nonlinear) depends on the response together with its derivatives. To start the iteration 

in the jth time step, the velocity is provided in terms of the previous displacement 

value and velocity (explicit predictor). An improved value for velocity (corrector) is 

obtained after an estimation of acceleration by the Newmark-beta method. The 

iteration at the jth time step will stop when a criterion of convergence is reached such 

as:  

 001.0
)(max

)()(max
)(

)()1(

=≤
−+

ε
tp

tptp
k

r

k
r

k
r

, for kth iteration step, 

where pr is the principal coordinates. 

 

3.4.3 Time domain analysis – Linear system 

 

3.4.3.1 Response to a unit impulse 

 

When a unit impulse applies at 0.85L from F.P. (station 17), the time histories of the 

principal coordinates, shear force and bending moments are calculated. Both the 

convolution integral method and the Newmark-beta method are applied. As discussed 

in Section 3.4.2, the impulse response function is estimated using two methods, i.e. 

inverse Fourier transform and the Hamiltonian method.  

 

The diagonal terms of the complex frequency response function ( )H ω  are shown in 

Figure 3.21. The corresponding diagonal terms of the impulse response function 

matrix (IRF 1) derived by inverse Fourier transform is shown in Figure 3.22 for a 

duration of 20 or 10 seconds. By contrast to Fourier transform, the impulse response 
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function calculated by the Hamiltonian method requires a frequency to be specified, 

as the matrices involved are frequency dependent. Usually a sufficiently large 

frequency is used. In this investigation, the IRF was estimated at two frequencies: 

one is the wave encounter frequency of 0.883 rad/s (IRF 2, in the region of 

heave/pitch resonance frequency) and the other is 8.445 rad/s (IRF 3, 1st flexural 

resonance frequency). These impulse response functions are presented in Figure 3.22 

together with those from inverse Fourier transform. In this figure, the impulse 

response function of IRF 1 is close to that of IRF 2 for rigid body mode (r=0,1) while 

IRF 1 is close to IRF 3 for the flexural modes (r=2,3,4). It is obvious that in the 

impulse response function of IRF 1, the frequency effects, both low and high 

frequencies, are well reflected.  

 

Principal coordinates applying a unit impulse at station 17, calculated by the 

convolution integral method with three different impulse response functions of IRF1, 

IRF2 and IRF3, are shown in Figure 3.23. The same trends observed in the IRFs can 

be seen in the corresponding principal coordinates in Figure 3.23. Heave and pitch 

motion (p0 and p1), estimated by IRF 1 and IRF 2, decay faster. However, the 

estimated heave and pitch motion by IRF 3 decays very slowly, because there is no 

structural damping for modes r=0,1 and the fluid damping estimated at high 

frequency ( eω = 8.445 rad/s) is small. For the higher modes, the results of IRF 1 are 

close to those of IRF 3. The results from the Newmark-beta method are also shown 

in Figure 3.23, with two different system matrices of [ ]a A+ , [ ]b B+ , [ ]c C+ : 

estimated at eω = 0.883 rad/s (Newmark 1) and 8.445 rad/s (Newmark 2). Principal 

coordinates by Newmark 1 are close to those of IRF 2 and Newmark 2 is close to 

IRF 3 as expected. Figures 3.24 and 3.25 show velocity and acceleration responses 

due to a unit impulse respectively. These figures show similar trends to the 

displacement response in Figure 3.23, according to the calculation method used. 
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Velocity and acceleration of IRF 1 contains high frequency oscillation in modes 

r=0,1. 

 

The time history of the midship bending moment is shown in Figure 3.26, and the 

corresponding Fourier transform in Figure 3.27. The estimated midship bending 

moment by IRF1, IRF3 and Newmark 2 are close to each other at the first mode wet 

resonance frequency of 8.445 rad/s. Figures 3.26 and 3.27 show that the contribution 

of 2 ( )p t  with a dominant frequency of 8.445 rad/s is large, while the contributions 

of 3( )p t  and 4 ( )p t  are small. The curves in Figure 3.26 show that the components 

of high frequency die out rapidly. The curve of the Fourier transform in Figure 3.27 

shows two small peaks at high frequency around 18.7 rad/s and 32.2 rad/s (3 and 4-

node wet resonance frequencies). However, it should be noted that the response at 

high frequencies decays fast, such that the Fourier transform may not be accurately 

carried out.  

 

From Figures 3.23 to 3.27, it is concluded that the convolution integral method using 

the impulse response function estimated by the inverse Fourier transform may give 

correct results in the whole frequency range of excitation, while the system matrix 

for the Hamiltonian method and the Newmark-beta method need to be modified for 

the rigid body in order to calculate the transient response. For example, Domnisoru 

and Domnisoru (1977) calculated the hydrodynamic coefficients separately: the 

hydrodynamic terms of rigid modes are calculated using the ship oscillation 

frequency (i.e. heave/pitch resonance) and those of flexural modes are calculated at 

the first flexural mode frequency.  
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3.4.3.2 Response to a sinusoidal excitation 

 

The principal coordinates and bending moments are calculated in the time domain 

for the ship travelling with Fn=0.275 in a regular head wave of unit amplitude 

encountered with frequencies eω =0.883 rad/s (i.e near heave/pitch resonance) and 

eω =8.445 rad/s (i.e. 2-node wet resonance). This is carried out in order to verify the 

consistency of the numerical methods used. The steady-state responses (frequency 

domain response) were evaluated using an existing methodology (Bishop et al. 1977). 

With the linear system, the steady-state response (SSR) is sinusoidal with the 

corresponding excitation frequency. The results calculated by the numerical methods 

of the previous section are compared with the steady state responses in the time 

domain. Figures 3.28 and 3.29 show the principal coordinates. Figure 3.28 shows 

that the principal coordinate estimated by SSR as well as IRF 1, IRF 2 and Newmark 

1 are very close to the steady state response, in which the Hamiltonian method (IRF 

2) and the Newmark method (Newmark 1) use the system matrix at one particular 

frequency (in this case, 0.883 rad/s). Those using IRF 3 are not particularly good as 

they increase with time, due to the system matrix being at a high frequency. In Figure 

3.29, the principal coordinates of IRF 1, IRF 3 and Newmark 2 are close, for the 

higher modes, to the steady state response with the regular wave at an encounter 

frequency of eω = 8.445 rad/s. Naturally those for IRF 2, using the Hamiltonian for a 

frequency of 0.883 rad/s show, by and large, different and smaller amplitudes. 

 

It can be concluded that by and large the convolution integral methods and 

Newmark-beta method, provided the system matrices at the relevant eω  are used, 

do not make much difference for a regular wave (single sinusoidal excitation). 

Furthermore use of the inverse Fourier transform method to obtain IRF is better for 

transient arbitrary excitation.  
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One other issue should be noted, with reference to initial condition. The motion is 

initiated from the steady state response of the frequency domain solution instead of 

being initiated from rest i.e. ( 0) Re e oi t
o o op t t p e ω⎡ ⎤= = = ⎣ ⎦ , an approach followed by 

others (i.e. Fonseca and Guedes Soares 1998). For the Hamiltonian method, the 

complementary solution of the ordinary differential equation of motion is calculated 

according to the initial condition and added to particular integral solutions (Bishop 

and Price 1979). These complementary solutions by initial condition and 

homogeneous solution are shown in Figure 3.30. The fluctuation of these two 

responses may be cancelled out, so that total responses (black line) seem to be 

sinusoidal at the initial stage of the simulation, and this allows observation of a 

periodic response in the initial stage of simulation. 
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Figure 3.21 Diagonal terms of the complex frequency response function ( )H ω  
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Figure 3.23 Principal coordinate due to unit impulse at station 17 
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Figure 3.24 Velocity due to unit impulse at station 17 
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Figure 3.25 Acceleration due to unit impulse at station 17 
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Figure 3.26 Time history of midship bending moment due to unit impulse 
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Figure 3.27 Fourier transform of midship bending moment 
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Figure 3.28 Principal coordinate amplitudes for a regular wave encountered with 

eω = 0.883 rad/s
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Figure 3.29 Principal coordinate amplitude for a regular wave encountered with 

eω = 8.445 rad/s 
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Figure 3.30 Principal coordinate amplitudes estimated by convolution integral 
method (IRF2) with the impulse response estimated by Hamiltonian method in 

considering initial condition at t=0 
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3.5 Conclusive remarks 

 

1. The rigid body motion is only affected by a small amount due the number of 

modes in the modal summations. The vertical bending moment and shear force 

on the other hand are more sensitive, depending on position along the hull. 

Influence of the five modes (N=0, 1, 2, 3 and 4) are adequate to ensure 

convergence.  

 

2. The convolution integral method using the impulse response function estimated 

by the inverse Fourier transformation may give correct results by comparison 

with steady state sinusoidal response for the whole frequency range of excitation 

while the system matrix for the Hamiltonian method and the Newmark beta 

direct integration method need to be modified, i.e. have the relevant wave 

encounter frequency properties in order to calculate transient response.  

 

3. The added mass coefficients at mean draught are close to each other, whether 

using the Lewis form transformation or multi-parameter conformal 

transformation. The fluid damping coefficients differ slightly between the Lewis 

form and the multi-parameter mapping at bow and aft body sections. The Lewis 

form formulation is acceptable for its simplicity, however it is not accurate 

enough and may not describe well enough fluid forces, especially nonlinear 

effects considered in thenext section. 
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Chapter 4  

Nonlinear Solution 

 

4.1 Introduction 

 

In the linear solution discussed in Chapter 3, time domain responses to a unit impulse 

response and a sinusoidal excitation due to a regular wave obtained. In the linear 

solution, the hydrodynamic coefficients were estimated at mean draught and assumed 

to be independent of time. That assumption is based on the small amplitude of 

motion and the wall-sided section profile. When a ship with large flare sections 

travels in large amplitude waves, the forces have to be estimated at instantaneous 

draught in a time domain simulation. 

 

A ship travelling in a seaway moves up and down (only vertical motion is considered 

in the present study) and may regularly emerge and immerse from/into the water 

surface. The emergence and immersion conditions of the hull are considered as 

follows: When the ship (ship's keel) emerges from the water and re-enters, bottom 

slamming will occur (F6). When the wave surface exceeds one-tenth of still water 

draught, the so called "flare slamming" force (F1) comes into operation. When the 

wave surface exceeds deck level, green water (F5) takes place. The bottom slamming 

(F6) starts at bottom when the hull impinges into water surface and continues up to 

one-tenth of still water draught. The flare slamming (F1) is applied above one-tenth 

of the draught until the hull moves upward again. Furthermore the modification of 

hydrodynamic force (F2, F3), Froude-Krylov and restoring forces (F4) are applied 

during the whole procedure. 

 

The equations of motion for large amplitude sinusoidal/regular waves (Equations 



 
Chapter 4 Nonlinear Solution                                                  82 
                                                                                   

 

2.44 and 2.45) divided the nonlinear forces into six components, which allows 

estimation of the contribution of each force to the response. Parametric studies on 

these force components are performed and discussed. In summary, the following 

nonlinear forces and their combination, caused by hull geometry changes, are 

considered: 

F1: flare slamming force 

F2: nonlinear modification due to added mass variation 

F3: nonlinear modification due to fluid damping variation 

F4: nonlinear modification to hydrostatic restoring and Froude-Krylov force 

F5: green water effects 

F6: impact slamming force 

 

During time domain simulation, the instantaneous draught is determined using the 

linear and the nonlinear responses. The linear responses of displacement, velocity 

and acceleration, given by in Equation 2.44, are calculated using the frequency 

domain solution for a given regular wave, and obtaining the time domain variation 

for this simple harmonic motion, rather than using any of the time domain solutions 

discussed in Chapter 3. Then, the total motion of the hull is determined by adding the 

current linear hull motion and the nonlinear hull motion at the previous time step. 

The instantaneous draught is obtained by subtracting the vertical displacement from 

the current wave elevation at any position along the hull. The nonlinear forces (Fi, 

i=1, … 6) are then calculated at the instantaneous draught using the relative motion 

and its derivatives for each section. As mentioned before, the reason for separating 

the linear and nonlinear parts in the equation of motion is to use linear (or mean 

draught) radiation and diffraction force in estimating the impulse response function 

as defined by Equation 3.7. It also means that the nonlinear effect of these radiation 

and diffraction forces is modified though the F2 and F3 force components. The 
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numerical convolution integral method is applied in calculating nonlinear responses 

in time domain simulations. 

The ship is flexible so that structural dynamic effects of the flexural modes may 

contribute to wave loads, four flexible modes, N=4, were included in the analysis 

 

 

4.2 Time domain simulation of nonlinear responses 
 

The nonlinear responses are calculated in a linear manner; the nonlinear equation of 

motion from Equation 2.45 is presented as 

[ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( )nl nl nl nla A p t b B p t c C p t F t+ + + + + =&& &  (4.1) 

and the nonlinear principal coordinates can also be calculated as 

 { } [ ]{ }
0

( ) ( ) ( )
t

nl nlp t h F t dτ τ τ= −∫           (4.2) 

{ } [ ]{ }
0

( ) ( ) ( )
t

nl v nlp t h F t dτ τ τ= −∫&     (4.3) 

{ } [ ]{ }
0

( ) ( ) ( )
t

nl a nlp t h F t dτ τ τ= −∫&&     (4.4) 

where the impulse response functions ( )h t  )(thv  and )(tha  are defined in 

Equations 3.7, 3.8 and 3.9 respectively. 

 

Time domain simulations are carried out using the present method for the S175 

container ship (see Chapter 3 for properties) travelling in regular head waves at a 

number of speeds, encounter frequencies and wave amplitudes investigated in the 

experiments by O’Dea et al. (1986), Watanabe et al. (1989), Chen et al. (1999). The 

nonlinear effects are illustrated in the form of various combinations of the separate 

forces in order to observe their influence.  
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Hydrodynamic coefficients are dependent on wave encounter frequency and the 

shape of the wetted section. The variation of sectional added mass and fluid damping 

coefficients with draught was calculated using 0.5 m intervals (-9.5 m denotes the 

keel line), as shown in Figures 4.1 and 4.2 for some sections (Stations 0, 5, 10, 15, 20, 

where 0 is A.P. and 20 is F.P.). Added mass, as shown in Figure 4.1, increases in 

general as draught increases, while the fluid damping does not. Fluid damping 

coefficients of midship section decrease as draught increases, because the beam-

draught ratio becomes larger. The hydrodynamic coefficients are dependent on the 

beam-draught ratio and sectional area coefficient in the Lewis form formulation used. 

It should be noted that use of multi-parameter conformal mapping to describe all 

relevant hydrodynamic coefficients provide an improvement in accuracy, due to 

improved description of section shape (See Fig. 3.10). During the time simulation 

accounting for non-linear effects (F1, F2 and F3), hydrodynamic coefficients at the 

appropriate instantaneous draught value along the ship are obtained by interpolation. 

When the wave elevation come over the deck (e.g. 10 m at station 20), the 

hydrodynamic coefficients (m, N) are assumed to be constant with those estimated at 

the deck level. Fluid actions above deck (green water) are included in the nonlinear 

force F5. 

 

In Chapter 2, the formulation of the hydrodynamic force was developed based on 

relative motions with Smith correction. When the draught changes, the Smith 

correction factor varies so that the new Smith correction factor needs to be calculated 

at the new draught. The Smith correction factor is dependent on sectional geometry 

and wave number, hence pre-calculation of the Smith correction factor was made at 

several wave heights for the given wave number of a regular wave (similar to Figure 

3.13). The exact values of the Smith correction factor are obtained by interpolation at 

the instantaneous draught value along the ship. 
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The flare slamming force (F1) has a coefficient, nlm T∂ ∂  in Equation (2.54) where 

m  is added mass and T is draught.  Figure 4.3 shows the coefficient, nlm T∂ ∂  at 

several forward sections. As the draught rises, especially for a bow section (Station 

19) with a relatively large flare, nlm T∂ ∂ increases. Bottom flatness gives a large 

variation in nlm T∂ ∂ (e.g. station 10), which might be reflected in the evaluation of 

the influence of bottom slamming. However this effect is dominant at midship 

sections where bottom emergence rarely occurs, if it occurs at all. In the present 

calculation, the bottom impact force will be calculated using the empirical formula 

described in Chapter 2.4.2 and force F1 is not included below 0.1 of the mean 

draught.  

 

Figure 4.4 shows the deviation of added mass estimated at the mean draught from 

that estimated at instantaneous draught (mnl), which is a coefficient for the nonlinear 

modification of the hydrodynamic force. Figure 4.5 shows the deviation in fluid 

damping in Equation 2.49, levels of which are comparable to the added mass. the 

effect of flare can be easily seen in these figures, through the large variations 

observed in the foremost station, when the instantaneous draught is far above the 

mean draught. 

 

The instantaneous wave profile along the ship is important. Figure 4.6 shows two 

examples for vertical motion of the ship and the relative vertical motion, in the form 

of the instantaneous draught at two time instants, t=12 and t=15.5 seconds, for 

λ/L=1.2 and wave amplitude a=L/60, with Fn=0.275. The deck and bottom are also 

shown for convenience. In this calculation, five nonlinear forces (F1, F2, F3, F4 and 

F5 ) are considered. From this figure, the relative vertical motion can be found and 

the occurrence of deck wetness can be ascertained if the freeboard is known. Figure 
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4.6 also shows whether the ship bottom emerges and, subsequently, impinges on the 

wave surface or not. The solid blue line indicates instantaneous draught based on 

linear analysis alone, while the dashed red line indicates those by including nonlinear 

analysis. Figure 4.6 shows that the hull emerges from bow to station 16 ( /x L = 0.8) 

in a linear response while the nonlinear response shows that the hull emerges up to 

around station 18 ( /x L = 0.9). Similar differences can be observed regarding the 

deck wetness. The differences indicate that it is important to consider the effects of 

non-linearities when evaluating the instantaneous draught and forces, Fi, i=1,…,6.  

 

The time history of instantaneous draught at F.P. (station 20) is shown in Figure 4.7 

for small and large wave amplitudes a=L/120, and a=L/60 with Fn=0.275, and 

λ/L=1.2. In this figure, the solid blue line (linear) indicates the overestimates 

compared with the dashed red line (nonlinear). It can also be seen that for the large 

amplitude wave, the nonlinear effects are more emphasized. The figures show that an 

increase in wave amplitude may cause bow emersion or deck wetness, but over 

predicted by linear analysis. 

 

Figures 4.8 and 4.9 show heave and pitch motions, bow acceleration at 0.85L, 

bending moment and shear force at forward quarter for two wave amplitudes of 

a=L/120 and a=L/60 respectively, for the ship travelling at Fn=0.275 in regular head 

waves of length λ=1.2L. The nonlinear forces of F1, F2, F3, F4 and F5 are considered. 

The heave and pitch motions in Figures 4.8 and 4.9 are close to a simple harmonic 

for the sinusoidal wave; however the amplitudes decrease in comparison with linear 

response, showing the nonlinear effects. The reduction in motions for higher 

amplitude waves (a=L/60 in Figure 4.9) are larger than those for lower amplitude 

waves (a=L/120 in Figure 4.8). The vertical bending moments and shear forces in 

both Figures 4.8 and 4.9 are not simple harmonic and the positive and negative peaks 

are not symmetric by comparison with linear solutions. By definition, the positive 
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and negative bending moments indicate the sagging and hogging moments, 

respectively. The nonlinear hogging moment does not change much compared with 

the linear one in both Figures 4.8 and 4.9. Sagging moments in Figures 4.8 and 4.9 

show a large peak and some fluctuations. The fluctuation of the signal comes from 

the distortion responses of the hull vibration, mainly 2-node hull girder vibration, 

because of flare slamming. It is generally known that sagging moment is larger than 

hogging moment. In a sagging condition, the wave profile is high at the fore and after 

parts of the ship and low at amidships. In this condition, the large flare at the bow 

sections (and after body) creates a large buoyancy force, which increases the bending 

moment and the shear force. This cannot be considered to occur in the linear solution. 

On the contrary, in the hogging condition, the bending moment may decrease 

compared to the linear solution; however the deviation is not large compared with 

those for sagging moment because a flared section does not vary much below the still 

water line. In Figures 4.8 and 4.9, the shear forces, including the nonlinear effects in 

the sagging condition, are larger than those estimated by linear theory. 
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Figure 4.1 Variation of added mass according to draught at infinite frequency (in 
practice ωe=37.5 rad/s was used), 0 denotes still water line 
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 Figure 4.2 Variation of fluid damping according to the draught at eω = 0.883 rad/s, 

0 denotes still water line 
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Figure 4.4 Added mass coefficient according   Figure 4.5 Damping coefficient according 
       to draught [units: tonne/m]      to draught [units: kN m/s2] 
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Figure 4.6 Instantaneous draught, λ/L=1.2, a=L/60, Fn=0.275 
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Figure 4.7 Instantaneous draught at station 20 (F.P), λ/L=1.2, a=L/120 and L/60, 
Fn=0.275 
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Figure 4.8 Time simulation of heave and pitch motions, bow acceleration at 0.85L, 

bending moment and shear force at 0.75L, λ/L=1.2, a=L/120, Fn=0.275 
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Figure 4.9 Time simulation of heave and pitch motions, bow acceleration at 0.85L, 
bending moment and shear forces at 0.75L, λ/L=1.2, a=L/60, Fn=0.275 
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4.3 Variation and Influence of nonlinear force components 

on the response 

 

Figures 4.10 to 4.14 represent the time histories of the instantaneous draught and 

each nonlinear force (F1, F2, F3, F4 and F5) at a number of sections along the ship for 

a regular head wave of λ/L=1.2, a=L/120 and a=L/60 at Froude number Fn=0.275. 

The solid blue line and solid red line indicate the nonlinear forces for a=L/120 and 

a=L/60, respectively, and the dashed blue line and dashed red line indicate 

corresponding instantaneous draughts for a=L/120 and a=L/60, respectively. The 

deck and bottom lines for each section are also presented in black. Although the time 

histories and components of each individual force component as shown separately, 

the instantaneous draught is calculated using all components. 

 

F1 in Figure 4.10 occurs only during negative relative motion (hull immersing) 

because when the hull is emerging, F1 cannot pull the hull (i.e. F1 is negative), hence 

it has an intermittent appearance. F1 is assumed to continue until the instantaneous 

draught rises up to deck, so the duration time of one cycle flare slamming force is 

about 3~4 seconds for a regular wave of λ/L=1.2 (wave period is 7.1 seconds). The 

flare slamming force is the force due to the rate of change of the added mass with 

time (see Equation 2.47). The first and second graphs (at station 20 and 18) in Figure 

4.10 show double peaks. As shown in Figure 3.10, the bow sections under using 

Lewis form mapping cannot reflect the bulbous shape properly. The change of added 

mass (i.e. m T∂ ∂ ) is small for such a Lewis form, which may make double peaks. A 

multi-parameter mapping technique or a panel method can be used, in order to 

estimate more accurately hydrodynamic forces for such complex section shapes. 

When the hull re-enters the water, a large amplitude F1 force occurs, because of the 
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rapid change of added mass (see Figure 4.3). In Section 2.3, it was noted that flare 

slamming is assumed to have an effect above 0.1 mean section draught, so the F1 

force between hull bottom to 0.1 draught will be omitted and instead the estimated 

bottom slamming force will be considered. In Figure 4.10, the maximum magnitude 

(350 kN/m) of F1 due to a regular wave of a=L/60 occurs at station 18 and it is much 

larger than that of a=L/120, 80 kN/m. The magnitude of force F1 decays around 

amidships and increases again as approaching A.P. The ninth graph (station 0) in 

Figure 4.10 shows that stern slamming occurs, for example, at 43.7 seconds and then 

the F1 force rises to 210 kN/m. At the instant of 42.4 seconds, the bow section 

immerses below the water surface, as shown in the first graph in Figure 4.10. This is 

an indication that the method can be observed by looking at the instantaneous 

draughts. 

  

The nonlinear modifications of radiation and diffraction force are shown in Figures 

4.11 (a,b) and 4.12 (a,b). In Equations 2.48 and 2.49, those forces were divided into 

added mass force (F2, Figure 4.11) and damping force (F3, Figure 4.12). Both figures 

are estimated for two regular wave amplitudes of a=L/120 and a=L/60 with λ/L=1.2, 

Fn=0.275. The magnitude of F2 force in Figure 4.11a becomes large (negative) when 

the instantaneous draught reaches its peaks and begins to decreases in the fore part of 

the ship. The excitation force may increase as draught rise. When the draught is 

below still water line, for example, from 45 seconds to 49 seconds, there is a small 

magnitude F2 force at stations 20 and 17 (the first and second graphs in Figure 4.11a) 

compared with sections in the vicinity of amidships (the third and fourth graphs). 

This is because the added mass of the fore sections of the ship below the still water 

line do not vary significantly with draught, as was shown in Figure 4.4. The trend of 

the first graph (station 20) is somewhat different to the other graphs in Figure 4.11a, 

because the dominant term in F2 (see Equation 2.48, F21 force is the first term and F22 

is the second term in Equation 2.48) at the bow section is the speed dependent term 
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(F22), while acceleration term (F21) is dominant at other sections as illustrated in 

Figure 4.11b. The magnitude of F2 force (with a=L/60) is two to three times that 

obtained with a=L/120.  

 

The first graph in Figure 4.12a shows that F3 force at station 20 is relatively large, 

and it is positive when draught increases so that it magnifies the total hydrodynamic 

force at the bow section. The speed dependent term F32 (the second term in Equation 

2.49) is dominant at fore sections, as shown in the first to third graphs in Figure 

4.12b. The sectional fluid damping coefficients are affected by the shape of the 

wetted area, i.e. area-beam ratio and beam-draught ratio in the Lewis form 

formulation, so the deviation of fluid damping coefficients is not simply dependent 

on variation with draught. In Figure 4.2, the damping coefficients amidships decrease 

as draught rises, which is the opposite trend to the other sections. The fourth graph in 

Figure 4.12a shows that F3 force is mainly positive at the midship section compared 

with negative values at other sections.  

 

The time history of the nonlinear restoring and Froude-Krylov force (F4) at λ/L=1.2 

and Fn=0.275 is shown in Figure 4.13a. According to the definition of F4 in Equation 

2.50, it is noted that this nonlinear Froude-Krylov force is the difference between the 

linear Froude-Krylov force together with the fluid restoring force and the direct 

integral of dynamic pressure on the wetted hull at instantaneous draught. In Figure 

4.13b, these two linear and nonlinear forces, respectively, are plotted separately for a 

wave with a=L/60. The last term in Equation 2.50 is defined as F40, with remaining 

nonlinear terms denoted F41. Figure 4.13a shows that the nonlinear force at the bow 

sections increases much more in comparison with that of the midship section, thus 

confirming that the nonlinear effects increase with larger flare. When green water 

occurs at station 20, nonlinear F41 stays nearly constant (see Figure 4.13b). This 

means that there is no additional hydrostatic Froude-Krylov force. On the other hand, 
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the linear Froude-Krylov force cannot reflect this effect. Figure 4.13b shows that F41 

force is much larger at the bow section, when the deck gets immersed, compared 

with F40. For other sections, the magnitude between F40 and F41 shows little 

difference. 

 

Figure 4.14 shows the time history of the green water force (F5 in Equation 2.61) 

using the quasi-static approach for λ/L=1.2, a=L/60 and Fn=0.275. F51, F52 and F53 

denote the fluid weight, the rate of change of water height and the inertia of fluid, 

first, second and third terms respectively. The inertia of fluid (F53) is the main 

component of total green water force and it is negative (push on the deck), together 

with fluid weight (F51), while green water occurs. On the other hand, the force due to 

the rate of change of water height (F52) is positive (pull on the deck), acting as the 

modification of total force on deck. The resultant F5 force would be positive when 

the green water leaves the deck, but physically impossible, and is always negative 

(Wang et al. 1998). In the current application, the impact force induced by a water-jet 

event which may be negative, is not considered. When the incident wave height is 

a=L/120, deck immersion does not happen at all, as shown in Figure 4.7.  

 

The generalised forces of F1, F2, F3, F4 and F5 are shown in Figures 4.15 and 4.16, 

with regular waves of a=L/120 and a=L/60, respectively, at Fn=0.275, respectively. 

Figure 4.17 presents the generalised force for a=L/60 at Fn=0.2. Figure 4.15 shows 

that the generalised forces of F3 and F4 are the most influential for all modes. F1 and 

F2 are a little smaller. The nonlinear generalised forces become larger as wave height 

increases (Figure 4.16, compared with Figure 4.15). F1 is larger at the first mode 

(heave) and F3 is large at the fifth mode (r=4). When the wave height rises to a=L/60 

in Figure 4.16, F1 and F3 become dominant. F4 is important in both cases. The linear 

forces (Flin) shows diffraction and Froude-Krylov forces estimated at mean draught. 

The generalised force when the ship speed reduce to Fn =0.2 is shown in Figure 4.17. 



 
Chapter 4 Nonlinear Solution                                                  97 
                                                                                   

 

F4 force is dominant for all modes, and is a little smaller at low speed (Fn=0.2). From 

Figures 4.15 to 4.17, it may be said that F4 is the most influential for all of the case 

simulation and F2 is also large with generally an opposite sign to F4. F3 is larger at 

higher modes, especially the fifth mode. F5 is shown as being magnified 100 times in 

Figures 4.16 to 4.17 and is relatively small compared to other components. In general, 

the amplitudes of nonlinear wave excitation forces F1, F2, F3 and F4 are not so 

different as to indicate a dominant force among them.
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Figure 4.10 Flare slamming force (F1), λ/L=1.2, Fn=0.275 (STN 20~13) (continued) 
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Figure 4.10 Flare slamming force (F1), λ/L=1.2, Fn=0.275 (STN 10~0)
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Figure 4.11a Nonlinear modification of added mass force (F2), λ/L=1.2, Fn=0.275 
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Figure 4.11b Nonlinear modification of added mass force (F2), λ/L=1.2, Fn=0.275
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Figure 4.12a Nonlinear modification of fluid damping force (F3), λ/L=1.2, Fn=0.275
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Figure 4.12b Nonlinear modification of fluid damping force (F3), λ/L=1.2, Fn=0.275
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Figure 4.13a Nonlinear Froude-Krylov force and hydrostatic restoring force (F4),  
λ/L=1.2, Fn=0.275 
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Figure 4.13b Nonlinear Froude-Krylov force and hydrostatic restoring force (F4),  

λ/L=1.2, Fn=0.275, a=L/60 
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Figure 4.14 Green water force (F5), λ/L=1.2, a=L/60, Fn=0.275 
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Figure 4.15 Generalised forces (F1, F2, F3, F4 and F5), λ/L=1.2, Fn=0.275, a=L/120
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Figure 4.16 Generalised forces (F1, F2, F3, F4 and F5), λ/L=1.2, Fn=0.275, a=L/60 
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Figure 4.17 Generalised forces (F1, F2, F3, F4 and F5), λ/L=1.2, Fn=0.2, a=L/60 
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4.4 Response to regular waves 

 

4.4.1 Existing experiments 

 

O’Dea et al. (1992) performed an experimental study, with a model of the S175, with 

the objective of identifying nonlinear effects on vertical motion. The experimental 

results cover two speeds of advance, corresponding to Fn=0.2 and 0.275 for the 

vertical motion and acceleration and Fn=0.25 for the vertical bending moment. The 

wavelengths used were 1.0L, 1.2L and 1.4L, while the wave amplitude was in the 

range of L/240 to L/40. To investigate the nonlinearity of the motion responses, 

Fourier analyses were applied to heave, pitch and bow acceleration measurements in 

regular waves.  

 

To obtain information on wave loads and vertical wave bending moments, a flexural 

model was used. Watanabe (1989) measured heave, pitch and vertical wave bending 

moments for the S175 container ship in regular head waves with λ/L=1.2, a=L/60, 

Fn=0.25. A video camera was equipped on the deck of the model to observe deck 

wetness. Chen et al. (1999) carried out model tests in CSSRC focusing on the 

nonlinearity of wave-induced loads. More information is provided on these two 

experimental set-ups in section 4.4.3, when comparing predicted and measured wave 

loads. 

 

The calculated results at Fn=0.2, 0.25 and 0.275 using the present method are 

compared with the existing experimental data.  
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4.4.2 Ship motions 

 

Calculations were performed for the heave and pitch motions, and the vertical 

acceleration on the bow at a point located at 0.15 L from F.P. The amplitudes of the 

first harmonics of heave, pitch and vertical acceleration will be compared with the 

experimental results. Heave and pitch transfer functions are shown in Figure 4.18 

and 4.19 as a function of non-dimensional wave frequency, e L gω , when the ship 

advances with Froude number 0.25. These were calculated using F1, F2, F3, F4 and F5. 

The amplitudes are non-dimensionalized by the wave amplitude for heave and by the 

wave slope for pitch. The estimated wave amplitude was selected varied between 

L/480 and L/34 and the linear transfer function is also plotted together as reference. 

The selected wave amplitudes are a/L=1/480, 1/200, 1/120, 1/80, 1/60, 1/50, 1/40, 

1/34. The response amplitudes are defined as the first harmonics of a Fourier series 

of the time history of the response.  

 

Figure 4.18 shows that the linear effect is small below non-dimensional wave 

frequency 1.9 and above 2.7. Nonlinearity increases around the resonance peak at 

e L gω =2.24. When wave amplitude is L/480 (small amplitude of wave), the heave 

transfer function is close to a linear solution, so that the asymptotic condition is 

satisfied. As wave amplitude increases, the heave transfer function reduces. The 

figure shows that heave responses do not reduce further above a=L/50, because the 

buoyancy force and hydrodynamic force do not increase anymore when deck wetness 

occurs. Figure 4.19 shows the nonlinear effect on pitch motions is small above non-

dimensional wave frequency 2.75. In the range of 1.6 to 2.5 of e L gω , 

nonlinearity increases as the wave amplitude becomes larger. Pitch motion shows a 



 
Chapter 4 Nonlinear Solution                                                  112 
                                                                                   

 

different aspect to heave, in that when deck wetness occurs pitch motion is still 

reduced, as wave amplitude increases.  

Figures 4.20 and 4.21 show the heave and pitch transfer functions at Fn=0.275 as a 

function of non-dimensional wave frequency. These figures show similar trends to 

those at Fn=0.25. The nonlinearities appear to be a little more pronounced. Figures 

4.22 and 4.23 present the second harmonics of the heave and pitch motions, as a 

function of non-dimensional wave frequency and for several wave amplitudes at 

Fn=0.25. These higher order effects are small for vertical motions. For heave, the 

second harmonics are in most cases less than 2% of the first harmonics (compared 

with Figure 4.18). The second harmonics of pitch motions are slightly larger, but less 

than 6% of the first harmonics. The second harmonics of heave motion show the 

magnification of amplitude around the resonance frequency. The largest magnitudes 

of the second harmonics occur for waves with high slope. 

  

4.4.2.1 Combination of nonlinear force components 

 

Three nonlinear force schemes are presented: one (COMP 1) includes only flare 

slamming (F1) and hydrostatic restoring and the Froude-Krylov force (F4); another 

(COMP 2) adds the modification of hydrodynamic force (F2, F3) and the third 

(COMP 3) adds green water load (F5). The transfer functions of heave, pitch and bow 

acceleration (at 0.15L from A.P.) are presented in Figures 4.24 and 4.25, for Fn=0.2 

and 0.275, respectively, and three different λ/L values in the ship-wave matching 

region. The calculations are carried out for different wave steepness ratio ka. Heave 

amplitudes are non-dimensionalized by the wave amplitude, pitch amplitudes by the 

wave slope and the vertical acceleration at the bow amplitudes by ga/L. In Figure 

4.24, at Fn=0.2, COMP 2 (F1+F2+F3+F4) and COMP 3 (F1+F2+F3+F4+F5) show 

better agreement to experiments (O'Dea et al. 1992) than COMP 1 (F1+F4) for pitch 
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and bow acceleration, which show more nonlinearity. For heave motions, COMP 1 is 

in better agreement to measurements in general. This figure also shows that F5 force 

occurs when wave steepness is larger than 1.0, where its influence can be seen. F5 

has a relatively large influence on heave and pitch motion at λ/L=1.2 and F5 has little 

influence at λ/L=1.0 and 1.4. When the ship advances at Fn=0.275 (Figure 4.25), 

COMP 2 and COMP 3 present better agreement to measurements and exhibit more 

effects of nonlinearity. The responses of heave, pitch and acceleration, in general, are 

close to measurements in general. The calculated heave motion at λ/L=1.4 and 1.2 is 

slightly larger than the experiments; however the trend against wave steepness is 

close to experiments. For higher wave steepness values (ka>1.0), nonlinearity does 

not increase for the heave motion at λ/L=1.4 in the case of COMP 2. With reference 

to F5, for either Froude number, it is difficult to judge whether its inclusion results in 

better agreement with the measurements, as these are scarce when green water occurs. 

 

4.4.2.2 Parameter study of hydrodynamic force modification (F2, F3) 

 

Nonlinear modification of the hydrodynamic force of added mass (F2) and fluid 

damping (F3) is presented in Equations 2.48 and 2.49, respectively. Because the 

magnitude of the damping coefficient in the low frequency range is not small and is 

comparable to the added mass, as shown in Figures 4.1 and 4.2, the effect of the 

nonlinear forces F2 and F3 were checked in three different ways. The first (Type 1) is 

all the hydrodynamic force modifications at incident wave encounter frequency; this 

is what has been used so far in all the result shown. The second (Type 2) is all the 

hydrodynamic force modifications at infinite frequency where the damping 

coefficient is negligible. The third (Type 3) is that the nonlinear modification of the 

radiation force is calculated for the infinite frequency and the modification of the 

diffraction force is estimated for the incident wave encounter frequency. The heave, 
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pitch and acceleration responses are presented in Figures 4.26 and 4.27, according to 

three types of hydrodynamic force modification for the S175 travelling at Fn=0.2 and 

Fn=0.275, respectively. F1, F2, F3 and F4 forces are included in the calculation. These 

figures show that Type 1 shows better agreement with experiments for all responses. 

Type 2 and Type 3 are not much different from each other; this means that the 

modification of the diffraction force does not have much influence. In Type 2, the 

hydrodynamic force is estimated at infinite frequency, so that the damping force is 

negligible. Comparing Type 1 with Types 2 and 3, one may conclude that the 

modification of damping force F3 has a large influence on the responses. 

 

4.4.2.3 Total derivatives of relative displacement zrel and the influence of hull 

flexibility on estimating nonlinear force 

 

The nonlinear forces in Equations 2.47 to 2.50 are expressed as a function of the 

relative displacement and its total derivatives. This relative displacement and total 

derivatives were expressed in Equation 2.55 to 2.59. The modal summation was 

carried out up to the third distortion mode (i.e. N=4). The effect of higher modes, i.e 

hull flexibility, for nonlinear force is shown in Figure 4.28. The displacement total 

derivatives in Equations 2.56 to 2.57 were calculated by mode summation up to N=2 

and N=4 using Type 1 concept for F2 and F3. A practical approach in nonlinear time 

domain simulation is to estimate the nonlinear fluid loading for rigid body motion 

(N=1) only (e.g. Romos et al. 2000). On the other hand, Wu and Hermundstad 

(2002) and Domnisoru and Domnisoru (1997) include all flexible modes in 

estimating the nonlinear forces. The figure shows that the two graphs for N=2 and 

N=4 are very close to each other for all motions and vertical acceleration. It is 

concluded that hull flexibility of higher modes has only a small influence on the 

nonlinear motion response. It is noted that this mode summation is applied only in 

calculating the nonlinear force, while all the resultant linear and nonlinear responses 
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of motions (i.e. relative motion and derivatives) and wave loads were calculated by 

mode summation with N=4.  

 

Responses for displacement, velocity and acceleration are obtained by convolution 

integral between the nonlinear forces and the impulse response functions of h(t), hv(t) 

and ha(t), respectively, in the Equations 4.2 to 4.4 . The convolution integral is rather 

time intensive, so another proposal is that velocity and acceleration may be 

calculated by time derivatives of displacement and velocity. That is:  

 ( ) ( )( ) p t p t tp t
dt

− −∆
=& ,      (4.5) 

( ) ( )( ) p t p t tp t
dt

− −∆
=
& &

&& .      (4.6) 

Two calculated results are shown in Figure 4.29, using Type 1 method for F2 and F3. 

One is for velocity and acceleration estimated by convolution integral and the other 

is when they were estimated by numerical differentiation. The figure shows for both 

cases heave and pitch responses are very close and accelerations are slightly different.  

 

4.4.3 Wave loads 

 

The vertical bending moment calculated at amidships is shown in Figures 4.30 and 

4.31 for Fn=0.25 and a range of wave amplitude / 480 / 34L a L≤ ≤ . F1, F2, F3, F4 

and F5 were used, with F2, F3 following Type 1 method. The first and second 

harmonics of bending moment are non-dimensionalized by 2gaBLρ  where a is 

wave amplitude and B is ship beam. Figure 4.30 shows the transfer function of 

bending moment at midship for several wave amplitudes. The amplitudes are 

amplified around the resonance of the motions (around non-dimensional wave 
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encounter frequency of 2.5). The second harmonic of amidships bending moment 

shown in Figure 4.31, also has peak at e L gω ≈2.5. 

 

The first harmonics of bending moment transfer function depend slightly on wave 

amplitudes and show small differences to linear values. It is interesting to note that 

application of the nonlinear method produces values higher than the linear except 

for / 40a L≥ . The second harmonics of bending moment depend strongly on wave 

amplitudes (Figure 4.31). The vertical bending moment contains strong high-order 

effects. The second harmonics of the bending moment at amidships can be as high as 

45% of the first harmonics at the largest wave amplitude of a/L=34 and 29% at 

a/L=60. 

 

Figures 4.32 and 4.33 show the transfer functions of the vertical shear force at station 

15 for several wave amplitudes corresponding to same operational parameters and 

calculation method as for the bending moment. The first and second harmonics of 

bending moment are non-dimensionalized by gaBLρ . The variations with wave 

encounter frequency are very similar to the bending moment at amidships, as shown 

in Figures 4.30 and 4.31. The first harmonics of shear force transfer function are 

amplified in the range of 2 to 3 of non-dimensional wave encounter frequency. The 

magnitudes of the first harmonics of shear force are larger than these linear 

predictions for all wave amplitudes used, and they are amplified most at 

e L gω ≈2.5, which is higher than the resonance in heave and pitch motion. This 

tendency was also observed in the vertical bending moments. The second harmonics 

in Figure 4.33 can be significant and they strongly depend on wave amplitude. The 

maximum magnitude of the second harmonics is about 50% of the first harmonics at 

wave amplitude a/L=1/34 and about 30% at a/L=1/60.  
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Figure 4.34 shows the first and second harmonics of vertical bending moment, 

together with comparisons with experimental values, at three stations (5, 10 and 15). 

The calculations were performed for the S175 travelling at a speed of Fn=0.25 in a 

regular wave with wave amplitude a/L=1/60. In the figure, the first harmonic is  

non-dimensionalized by ( )2/M gaBLρ , and the second harmonic by 

( )2 2/ /M ga BL Tρ , where T is mean draught as per the experiments. The circle 

marks and plus marks are the results measured by Watanabe et al (1989) and in 

CSSRC by Chen et al. (1999), respectively. The first harmonics of bending moment 

show good agreement with experiments at station 5 and 10. At station 15, the 

calculated results are rather smaller, around λ/L=1.2, compared to those by both 

Watanabe and Chen et al, even for the Type 1 method. For the measured results of 

the second harmonics of bending moment, Watanabe’s results are in general larger 

than these by Chen et al. In Figure 4.34, the calculated magnitudes of the second 

harmonics are, in general, larger than the measurements by Watanabe et al. (1989) at 

stations 5 and 10, while the calculated results are close to the experimental 

measurement at station 15 (See Type 1).  

 

Another important aspect of wave loads is asymmetry of peaks. Figure 4.35 presents 

the positive peaks (sagging) and negative peaks (hogging) of bending moment at 

stations 5, 8, 10 , 12 and 15 for the ship travelling at Fn=0.25 in regular waves of 

λ/L=1.2 and a/L=1/60. The figure shows the strong asymmetry of the positive and 

negative peaks, the sagging peaks being much larger than the hogging peaks. The 

maximum ratio between sagging and hogging peaks occurs at station 15, reaching 

about 5. It is a results of the nonlinearities due to the flared section in the fore part of 

the ship. The calculated results in Figure 4.35 are in good agreement for the hogging 

condition and slightly larger in the sagging condition, except the foremost station 

(station 15) measurements were taken by Watanabe et al. (1989). Once again the 
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differences between the measurements by Watanabe et al. (1989) and Chen et al. 

(1999) can be seen.  

 

Investigations along the same lines using different methods for evaluating F2 and F3 

(namely Types 1, 2 and 3) as in Section 4.4.1 were carried out for the vertical 

bending moment, and the results are shown in Figures 4.34 to 4.35. Figure 4.34 

shows that Type 1 (the modification of hydrodynamic force at incident wave 

encounter frequency) gives the best fit to experiments for the first harmonics of 

amidships bending moment. It can also seen that the differences between predictions 

using Type 1 and Type 2 and 3 only begin to emerge forward of amidships also 

confirmed in Figure 4.35. For 2nd harmonics, results predicted with Type 1 method 

are larger than those with Type 2 or 3 in stations 5 and 15. 

 

Watanabe et al. (1989) used a 4.5m long flexible S175 model made of synthetic resin 

and foam urethane to simulate the bending rigidity of the a real ship. Chen at al. 

(1999, 2001) used the plastic material (ABS702 material) satisfying the geometrical 

similarity of the hull form, hydrodynamic similarity, together with the structural 

similarity for the global vertical bending and shearing. The principal particulars of 

both models are shown in Table 4.1, with those for the real ship. Comparing the two 

models, the bending rigidities at midship (EI) are different from each other and the 2-

node natural frequency in the 'dry' mode also shows a difference. However, it is hard 

to say whether this causes the differences in second harmonics of midship bending 

moment seen in Figure 4.34. More verification for the model tests may be needed. 

 

Table 4.1 Principal particulars of S175 and its model 
Items Real ship Watanabe (1989) Chen (2001)  
Lbp 175.0 4.5 3.6 

Beam, m 25.4 0.653 0.523 
Depth, m 15.4 0.596 0.317 

Draught, m 9.5 0.244 0.195 
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Displacement, tonnes 24742 0.412 0.21525 
GM, m 1.0 0.0227 0.021 

EI, midship, kg mm2 2.28 x 1018 3.61 x 1018 10.66 x 109 
Dry 2-node frequency  1.60 10.0 12.57 

Structural damping  0.051  
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Figure 4.18 Heave transfer function, Fn=0.25 
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Figure 4.19 Pitch transfer function, Fn=0.25 
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Figure 4.20 Heave transfer function, Fn=0.275 
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Figure 4.21 Pitch transfer function, Fn=0.275 
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Figure 4.22 Second harmonic of heave transfer function, Fn=0.25 
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Figure 4.23 Second harmonic of pitch transfer function, Fn=0.25 
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Figure 4.24 Heave, pitch and bow acceleration at station 17 with respect to wave 
steepness in comparison with experiment data, Fn=0.2 
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Figure 4.25 Heave, pitch and bow acceleration at station 17 with respect to wave 

steepness in comparison with experiment data, Fn=0.275 
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Figure 4.26 Parameter study of damping coefficients on heave, pitch and bow 

acceleration (at station 17) with respect to wave steepness, Fn=0.2 
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Figure 4.27 Parameter study of damping coefficients on heave, pitch and bow 

acceleration (at station 17) with respect to wave steepness, Fn=0.275 
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Figure 4.28 Sensitivity to hull flexibility effect estimating fluid forces on ship motion 

with respect to wave steepness, Fn=0.275 
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Figure 4.29 Heave, pitch and bow acceleration at station 17 with respect to wave 

steepness by two differentiating methods, Fn=0.275 
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Figure 4.30 First harmonic of midship bending moment, Fn=0.25 
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Figure 4.31 Second harmonic of midship bending moment, Fn=0.25 
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Figure 4.32 1st harmonic of shear force at 0.75 L, Fn=0.25 
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Figure 4.33 2nd harmonic of shear force at 0.75 L, Fn=0.25 
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Figure 4.34 First and second harmonics of bending moment compared with 
experiments, a=L/60, Fn=0.25, non-dimensionalized with  

2/( )M gBL aρ  for 1st and 2 2/( / )M gBL a Tρ  for 2nd
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Figure 4.35 Nonlinear sagging and hogging moment according to modifications of 
hydrodynamic force, F12345, λ/L=1.2, a=L/60, Fn=0.25 
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4.5 Response to bottom impact load 

 

Figure 4.36 shows the sectional bottom slamming force (F6), at four sections at the 

fore part and one at the stern of the ship with time steps of 0.01 seconds. The impact 

time variation was calculated according to the Kawakami’s (1977) assumption (i.e. 

Equation 2.67) and the maximum pressure according to Stavovy and Chuang (1976) 

(i.e. Equation 2.64). The figure shows that a time interval of 0.01 second reflects 

time variation of the impact force well. The bottom slamming force occurs when the 

hull bottom re-enters the wave, as observed in this figure. The stern slamming is also 

observed as shown in the fourth graph in Figure 4.36.  The green dashed line shows 

the instantaneous draught at each section. The ship is travelling in regular head 

waves, λ/L=1.2, a=L/60 and Fn=0.275. The instantaneous draught was determined 

using linear and nonlinear motions, the latter with F1, F2 and F3 (Type 1), F4 and F5. 

F6 force is combined with the other nonlinear force components at each time step, 

and the responses are calculated by convolution integral, as per Equation 4.2. The 

corresponding motions and wave loads of the ship are presented in Figure 4.37. The 

blue solid line indicates the response for the linear case, the black line indicates the 

nonlinear response, including F6, and the red line indicates the response excluding F6, 

i.e. F1+F2+F3+F4+F5. The figure shows that heave and pitch motions are little 

affected by the bottom slamming force, while bow acceleration, bending moment and 

shear force are amplified by the slamming force. Compared between the black and 

red lines in Figure 4.9, it can be seen that bottom impact has greater influence than 

flare slamming on bow acceleration, bending moment and shear force. When hull 

bottom impacts water surface, severe high-frequency vibration responses are 

observed in the time history of bending moment and shear force. In order to evaluate 

the high frequency responses, Fourier transform is applied to the time history of the 

bending moment. In Figure 4.38 and 4.39, the solid blue line denotes the response 

due to F1, F2, F3, F4 and F5 nonlinear forces, while the solid red line presents 
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responses including the bottom slamming force (F6). The figure shows that the high 

frequency bending moments are much affected by the impact loads. Around 8.4 rad/s, 

which is the resonance frequency of 2-node hull girder vibration, the whipping peak 

occurs.  

 

The transfer function of heave, pitch and bow acceleration (at 0.85 L) are presented 

in Figures 4.40 and 4.41, for Fn=0.2 and 0.275, respectively, and three different λ/L 

values of 1.0, 1.2 and 1.4, as shown in Figures 4.24 and 4.25. These figures show 

that the responses, including the bottom slamming force (F6) (the solid blue line) are 

slightly smaller than the responses due to Fi, i=1,…,5 (the dashed red line). The first 

harmonics of bending moment due to nonlinear forces including F6 are very close to 

those without F6 and the second harmonics of bending moment show a small 

difference between them at stations 5, 10 and 15, as shown in Figure 4.42. It may be 

noted that heave, pitch and bow acceleration (i.e. the first harmonics of motion), and 

the first and second harmonics of bending moment are little affected by the impact 

loads. 
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Figure 4.36 Time history of bottom slamming force (F6) , λ/L=1.2, a=L/60, Fn=0.275 
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Figure 4.37 Time simulation of heave and pitch motions, bow acceleration, bending 
moment and shear force, λ/L=1.2, a=L/60, Fn=0.275 
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Figure 4.38 Time history of bending moment amidships, F12345 vs. F123456, 

λ/L=1.2, a=L/60, Fn=0.275 
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Figure 4.39 Fourier transfer of bending moment with/without bottom slamming force, 

F12345 vs. F123456, λ/L=1.2, a=L/60, Fn=0.275
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Figure 4.40 Heave, pitch and bow acceleration (at station 17) including bottom 
slamming force, Fn=0.2 
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Figure 4.41 Heave, pitch and bow acceleration (at station 17) including bottom 

slamming force, Fn=0.275 
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Figure 4.42 First and second harmonics of bending moment with/without bottom 
slamming force (F6), a=L/60, Fn=0.25,  
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4.6 Conclusive remarks 

 

1. The influence of each nonlinear force component (Fi, i=1,…,6) according to 

the variation of instantaneous draught is verified in the time domain 

simulation. Bow emergence/deck immersion conditions and the large 

variation of hydrodynamic force at bow flared sections are well reflected in 

estimating the nonlinear forces. 

 

2. In general, the amplitude of the nonlinear wave excitation force F1, F2, F3 and 

F4 is not so different as to indicate a dominant force among them. F5 (Green 

water) does not occur for a regular wave when the wave amplitude is below 

L/60 (a<L/60) and is small when it occurs.   

 

3. COMP 2 (including F1, F2, F3 and F4 ) and COMP 3 (including F1, F2, F3, F4 

and F5) for pitch and bow acceleration show, in general, better agreement to 

experiments and exhibit more effects of nonlinearities than COMP 1 

(including F1 and F4). It means that the modification of hydrodynamic forces 

(F2 and F3) is important as well as the flare slamming force (F1) and the 

hydrostatic Froude-Krylov force (F4). 

  

4. The responses of motions and wave loads of Type 1 (the modification of 

hydrodynamic force at incident wave encounter frequency) show better 

agreement with experiments than those of Type 2 (the modification of 

hydrodynamic force at infinite frequency) and Type 3 (radiation force at 

infinite frequency and diffraction force at incident wave encounter frequency). 
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Comparing Types 1, 2 and 3, it may be concluded that the modification of 

damping force F3 has a large influence on responses.  

 

5. The motion responses calculated by mode summation with N=2 and N=4 are 

very close to each other, so it is concluded that hull flexibility with higher 

distortion modes has only a small influence on the nonlinear motion 

responses.  

 

6. The calculated results of the first harmonics of bending moment are in good 

agreement with experiments at stations 5 and 10, while at station 15 the 

calculated results are rather smaller. The second harmonics of bending 

moment, in general, are larger than the measurements at stations 5 and 10, 

while the calculated results are close to the experimental measurements at 

station 15. The calculated results are in good agreement with experiments for 

the hogging condition and slightly larger in the sagging condition.  

 

7. The calculated high frequency bending moment is much affected by the 

impact loads (F6) and the whipping peaks are apparently observed around the 

resonance frequency of 2-node hull girder vibration. Heave, pitch, bow 

acceleration and the first and second harmonics of bending moment are little 

affected by the impact loads. 
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Chapter 5  

Alternative Method for Prediction of Nonlinear Ship 

Motions and Wave Loads 

 

5.1 Introduction 

 

In Chapter 2, a method for the prediction of the hydroelastic responses of ships in 

large amplitude motions was presented, based on the convolution integral method, 

whereby the nonlinear effects were applied as modifications and the linear and 

nonlinear responses combined (see Equation 2.44 and 2.45). In Chapter 3, the 

convolution integral method is compared to the direct integral method for linear 

responses in the time domain. Based on the excellent agreement observed, it was 

concluded that the responses estimated in the two methods are close to each other for 

a specific wave frequency in linear analysis. In Chapter 4, the influence of the 

nonlinear force components on ship motions and wave loads was evaluated, based on 

Equation 2.44 and 2.45. this method will hence forward will be referred to as Method 

1.   

 

In this chapter an alternative method (Method 2) is introduced for the nonlinear 

problem for ships in large amplitude of motions and wave loads. In this method, all 

hydrodynamic coefficients are varied with the instantaneous draught of each hull 

section. The bottom impact (F6) and green water (F5) are estimated in the same 

manner as in Chapter 2 and included among the total hydrodynamic forces. The 

flexible modes of the ship hull girder, represented by Timoshenko beam theory, are 

included as before, N=4.  



 
Chapter 5 Alternative Method for Prediction of Nonlinear Ship Motions and Wave Loads                   144 
                                                                                   

 

The calculations were performed for the S175 container ship and the predicted 

results are compared with those estimated by Method 1 and experiments, described 

in Chapter 4. 

 

5.2 Theoretical background for alternative method 

 

According to STF linear strip theory (Salvesen et al. 1970), when a ship oscillates in 

a regular wave, the vertical force on the ship hull can be expressed as, combining 

Equations 2.21 and 2.29 

( , )( , ) ( , ) ( , ) ( ) ( , )rel
e e e rel

e

Dz x tD iF x m x N x gB x z x t
Dt Dt

ω ω ω ρ
ω

⎡ ⎤⎧ ⎫
= − + −⎢ ⎥⎨ ⎬

⎢ ⎥⎩ ⎭⎣ ⎦
.(5.1) 

Theoretically, this expression is suitable for response predictions of wall sided 

sections heaving in small amplitude incident waves.  

 

For a slender ship advancing in large-amplitude incident regular waves, this equation 

can be generalised by setting B(x), m(x,ωe), N(x,ωe) to vary with time t, i.e. 

instantaneous draughts of the hull. The vertical relative displacement of each section 

to wave elevation at an instant is 

 ( , ) ( , ) ( , )relz x t w x t x tζ= − .     (5.2) 

As per linear theory the fluid force of Equation 5.1 can be split into radiation, 

hydrostatic restoring force and diffraction force but with time (or instantaneous 

draught) dependent values. Then the hydroelastic equation of motion can be 

expressed as follows: 

 [ ] [ ] [ ]( , ) ( ) ( , ) ( ) ( ) ( ) ( )e ea A t p t b B t p t c C t p t F tω ω+ + + + + =&& &  (5.3) 
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where the matrices [a], [b], and [c] are the generalised structural mass, damping and 

stiffness respectively, and [ ]( , )eA tω , [ ]( , )eB tω  and [ ]( )C t  are the added mass, 

fluid damping and hydrostatic restoring force estimated at instantaneous draught, 

respectively. F(t) is the incident wave excitation force, consisting of the diffraction 

force and the Froude-Krylov force. [ ]( , )eA tω , [ ]( , )eB tω , [ ]( )C t  and F(t) are 

obtained by following the formulation in the linear method (see Appendix 2). 

However, B(x), m(x,ωe), N(x,ωe) and their derivatives are estimated at 

instantaneous draught.  

 

The product of a time rate of change of added mass (fluid damping is dismissed by 

assumption in Section 2.3) and the square of the section’s vertical relative velocity is 

defined as F1 force (i.e. flare slamming) in Equation 2.54 (Gu et al. 2003). In this 

method (Method 2), Equation 5.3 does not contain F1, so that F1 force is treated 

separately and added. The bottom slamming force (F6, in Equation 2.66) and green 

water force (F5 in Equation 2.61) are also considered when these forces vary 

according to the instantaneous draught.  

 

In consequence, the hydroelastic equations of motion for ships in large amplitude 

waves is expressed as: (Gu et al. 2003) 

[ ] [ ] [ ] 1 5 6( , ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )e ea A t p t b B t p t c C t p t F t F t F t F tω ω+ + + + + = + + +&& &

.         (5.4) 

Equation 5.4 was numerically solved in the time domain step by step using the 

Newmark-beta direct integration method, as introduced in Chapter 3.4.2.2. 
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5.3 Results and comparisons 

 

Figure 5.1 shows heave and pitch motions, bow acceleration at 0.85L, midship 

bending moment and shear force at 0.75L for a regular wave amplitude a=L/60 with 

Fn=0.275 and λ/L=1.2. Compared with the results predicted by Method 1 in Figure 

4.9, the nonlinear responses by Method 2 in Figure 5.1 are close to those by Method 

1. The fluctuations of bending moment by Method 2 decrease, comparing Figure 4.9 

. 

Excluding the flare slamming force (F1), green water force (F5) and bottom impact 

slamming force (F6) from Method 2 and using Method 1 with F2, F3 (Type 1) and F4, 

then both methods are directly comparable.  The heave, pitch and bow acceleration 

(station 17) transfer functions calculated by the alternative method (Method 2) are 

presented in Figures 5.2 and 5.3 in comparison with those by the convolution integral 

method (Method 1) for Fn=0.2 and 0.275. Figure 5.2 shows that heave, pitch and 

bow acceleration transfer functions estimated by Method 2, are close to those by 

Method 1, in the case of low amplitude waves (below ka=0.05). Above that range, 

the heave responses of Method 2 are smaller than Method 1. Pitch and bow 

acceleration responses are close to each other. This trend is also seen in Figure 5.3, 

for Fn=0.275.  

 

Figures 5.4 and 5.5 show the heave, pitch and bow acceleration, including F1 and F5 

forces, comparing Method 1 and Method 2 as well as experimental results. In this 

figure, Method 2 denotes the solution with F(t) only (see Equation 5.4). One can also 

see the influence of subsequently adding F1 and F5 to the prediction by Method 2. 

The largest influence, as expected, is due to Force F1. The influence of green water 

(F5) is only seen at high values of ka. Predictions by Method 1 and 2, with equivalent 
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nonlinear influences, are very close to each other. This confirms the validity of both 

methods and numerical procedures used. 

 

The vertical bending moment is shown in Figure 5.6, comparing predictions by 

Method 1 and 2, with and without bottom slamming, and experimental results for a 

regular wave of amplitude a=L/60 at Fn=0.275. The figure shows that the first 

harmonics of the amidships bending moments estimated by Method 2 are close to 

those by Method 1 and agree well with experiments. Bending moments predicted by 

Method 2 at the quarter length points are a little closer to the experimental values. 

The second harmonics of bending moment by Method 2 are a little smaller than those 

of Method 1 for a short wave (λ/L<1.0) and larger above λ/L>1.0. In the later 

region predicted bending moments (2nd harmonics) by Method 2 are closer to the 

experimental measurements than Method 1. The bottom slamming force (F6) has 

only a small effect on the first and second harmonics of bending moments, as seen in 

Figure 5.6. 

 

From Figures 5.1 to 5.6, it may be concluded that the nonlinear hydroelastic response 

of ship motion and wave loads calculated by both Method 1 and Method 2 compared 

reasonably well to experimental measurements.  
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Figure 5.1 Time simulation of heave and pitch motions, bow acceleration at 0.85L, 

bending moment and shear force at 0.75L by Method 2, λ/L=1.2, a=L/60, Fn=0.275
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Figure 5.2 Ship motions and bow acceleration at station 17 with respect to wave 
steepness; comparison between Method 1 and Method 2, Fn=0.2 

 



 
Chapter 5 Alternative Method for Prediction of Nonlinear Ship Motions and Wave Loads                   150 
                                                                                   

 

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
pitch, λ/L=1.0, Fn=0.275

ka

θ/
(k

a)

Method 2
Method 1, F234
Linear
Exp., O'Dea 1992

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

heave, λ/L=1.4, Fn=0.275

ka

p/
a

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

heave, λ/L=1.2, Fn=0.275

ka

p/
a

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

heave, λ/L=1.0, Fn=0.275

ka

p/
a

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
pitch, λ/L=1.4, Fn=0.275

ka

θ/
(k

a)

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
pitch, λ/L=1.2, Fn=0.275

ka

θ/
(k

a)

0 0.05 0.1 0.15
10

15

20

25

30

35

40

45

50
Accel. at station 17

ka

A
cc

el
 L

/(g
a)

0 0.05 0.1 0.15
10

15

20

25

30

35

40

45

50
Accel. at station 17

ka

A
cc

el
 L

/(g
a)

0 0.05 0.1 0.15
10

15

20

25

30

35

40

45

50
Accel. at station 17

ka

A
cc

el
 L

/(g
a)

 

Figure 5.3 Heave, pitch and bow acceleration at station 17 with respect to wave 
steepness; comparison between Method 1 and Method 2, Fn=0.275 
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Figure 5.4 Heave, pitch and bow acceleration at station 17 as a function of wave 
steepness using Method 1 and 2, Fn=0.2 
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Figure 5.5 Heave, pitch and bow acceleration at station 17 as a function of wave 
steepness using Method 1 and 2, Fn=0.275 
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Figure 5.6 First and second harmonics of bending moment with/without bottom 
slamming force (F6); comparison between Methods 1 and 2, a=L/60, Fn=0.25 
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Chapter 6  

Conclusions 

 

6.1 Conclusion 

 

1. The linear response in regular waves is obtained both in frequency and time 

domain, the latter using convolution and direct integration methods, in order to 

ascertain the most suitable method for the nonlinear analysis. An investigation is 

carried out for the nonlinear solution, in order to understand the importance of 

the various force components and their numerical issues. The nonlinear solutions 

(both methods 1 and 2) developed in this study provide consistent and acceptable 

results over a range of speeds and wave steepness for rigid body motions, bow 

acceleration and sagging/hogging bending moments. This is based on comparison 

with extensive experimental measurements for the S175 container ship. 

 

From the linear time domain analysis 

2. The rigid body motion is little affected by the number of mode summations, 

while the vertical bending moments vary up and down according to the number 

of mode summations. The first five modes are adequate to ensure convergence. 

 

3. The convolution integral method using the impulse response function estimated 

by the inverse Fourier transformation may give correct results for the whole 

frequency range of excitation while the system matrix for the Hamiltonian 

method and the Newmark method need to be modified in order to calculate 

transient response. 
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From the nonlinear time domain analysis 

4. The nonlinear modifications of radiation and diffraction force (F2 and F3) are 

important as well as flare slamming force (F1) and nonlinear hydrostatic Froude-

Krylov force (F4). Furthermore, it is observed, from the parametric study, that the 

modification of damping force has a large influence on the responses.  

 

5. The whipping peaks on the bending moment due to the impact loads (F6) are 

apparently observed around the resonance frequency of 2-node hull girder 

vibration, which contributes larger peak values in hogging and sagging responses. 

Heave, pitch and bow acceleration (i.e. the first harmonics of motions), and the 

first and second harmonics of bending moment are little affected by the impact 

loads. 

 

From the alternative method 

6. Predictions by Method 1 (the convolution integral method) and Method 2 (the 

alternative method based on the direct numerical integration method), with 

equivalent nonlinear influences, are very close each other. This confirms the 

validity of both methods and numerical procedures used. The nonlinear 

hydroelastic response of ship motion and wave loads calculated by Method 1 and 

2 compared reasonably well to experimental measurements. 

 

6.2 Recommendations for further work 

 

1. Through the present research work, the hydroelasticity analysis for symmetric 

dynamic behaviour of ships in waves was carried out in regular waves. The 

method can extend to estimate the vertical responses to irregular waves. In 
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the linear analysis, the irregular seaway is expressed as the superposition of 

the regular waves. However the nonlinear responses may not be estimated the 

sum of responses corresponding to regular waves because the nonlinear fluid 

forces vary with current draught as well as frequency. One of the suggestion 

method for estimating the responses in irregular waves based on the present 

method (i.e. convolution integral method), is that the linear responses are 

calculated by the sum of responses to regular waves and the nonlinear forces 

estimated at instantaneous draught are calculated for a certain wave 

frequency (e.g. the heave/pitch resonance frequency) (Gu et al. 2003). The 

total responses are obtained by sum of linear and nonlinear responses.  

 

2. For the short-term and long-term predictions, it is important to investigate the 

motions and loads in all directional waves. The container ship may suffer the 

highest stresses in oblique waves. In order to predict hydroelastic responses 

of the horizontal and torsions modes based on the present method using strip 

theory, a thin-walled beam model is applicable (Bishop and Price 1979). 

Estimating the two-dimensional hydrodynamic coefficient, the multi-

parameter conformal mapping technique is utilised for asymmetric sections 

below water line (Westlake et al. 2000).  
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Appendix 1 Derivation of Froude-Krylov force 
 

The vertical sectional force can be obtained form Equation 2.20, using Gauss integral 

theorem as 

 ∫∫ ∂
∂

−=
A

A dA
z
pF        (A1.1) 

where the integrals extent over the instantaneous wetted sectional area A.  

 

Figure A1 shows a sketch of sections at rest and after vertically moved in waves. 

Here ),( txζ  is wave elevation and w(x,t) is the vertical displacement of the hull. 

(Jensen 2001) 

 
     (a)        (b) 

Figure A1 Sketch of section at different times: (a) section at rest; (b) section after 

vertical motion in waves 

 

The integral in Equation A1.1 can be written in the equilibrium coordinate system as 
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where T is the draught of the section with respect to mean water line and B(x,z) is 

the ship breadth as function of z. 
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The derivative in Equation A1.2 can be represented using the global coordinate Z as 
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p
z
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∂
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∂  .      (A1.3) 

Then the vertical sectional force of Equation A1.3 becomes  
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For the linear wave, the pressure is as shown in Equation 2.18, then 
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Finally, Equation A1.5 becomes 
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The first term in Equation A1.6 is the hydrostatic force in calm water and the 

remaining terms are the sectional force due to the dynamic pressure in the waves, 

which is called the Froude-Krylov force. 
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Appendix 2 Derivation of linear and nonlinear equation of 

motion 

 

Total vertical fluid force acting on a strip (Equation 2.31)  is 
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(A2.1) 

 

The hydrodynamic coefficients are decomposed into linear and nonlinear parts in 

Equations 2.32 and 2.33 as: 

 ( , , ) ( , ) ( , , )e o e nl em x t m x m x tω ω ω= +     (A2.2) 

 ( , , ) ( , ) ( , , )e o e nl eN x t N x N x tω ω ω= +     (A2.3) 

Decomposing the total vertical displacement )(tw also into linear and non-linear 

parts, 

 )()()( twtwtw nll += ,      (A2.4) 

then the relative vertical displacement of the ship becomes 

 ( , ) ( , ) ( , )r ro nlz x t z x t w x t= + , ( , )ro lz x t w ζ= − .   (A2.5) 

 

Substituting Equations A2.2 to A2.3 into Equation A2.1, the vertical fluid force 

becomes 
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  (A2.6) 

 

Letting the first and second terms of Equation A2.6 as Fl, the third and fourth terms 

as Hnl and the remained terms as Fnl, Equation A2.1 can be written as (see Equations 

2.36 to 2.39)  

 ),(),(),(),( txFtxHtxFtxF nlnll ++=       (A2.7) 

where  
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The generalised force is obtained by multiplying the mode shapes and integrating 
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along the ship length. That is to say: 

 ∫=
L

r dxtxFxwtF ),()()( .      (A2.11) 

 

Substituting Equation A2.7 into Equation 2.5, the hydroelastic equation of motion 

becomes in a matrix form as 

 [ ]{ } [ ]{ } [ ]{ } { } { } { }( ) ( ) ( ) ( ) ( )l nl nla p b p t c p t F t H t F t+ + = + +&& &  (A2.12) 

Decomposing the principal coordinates )(tp into linear and non-linear parts 

 { } { } { }( ) ( ) ( )l nlp t p t p t= + .     (A2.13) 

The hydroelastic equation motion of Equation A2.13 can be decomposed into linear 

and nonlinear parts  

 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( )l l l la p b p t c p t F t+ + =&& &    (A2.14) 

[ ]{ } [ ]{ } [ ]{ } { } { }( ) ( ) ( ) ( )nl nl nl nl nla p b p t c p t H t F t+ + = +&& & .  (A2.15) 

The linear fluid force { }lF  in Equation A2.14 can be decomposed in two parts 

(Bishop and Price 1979): 

 ( ) ( ) ( )l l wF t H t F t= − +       (A2.16) 

where ( )lH t  is the generalised force due to hull motions (radiation): That is 

 [ ]{ } [ ]{ } [ ]{ }( ) ( ) ( ) ( ) ( ) ( )l e l e l lH t A p t B p t C p tω ω= + +&& &   (A2.17) 
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∫=
l

rsors dxwwBgC
0

ρ .      (A2.20) 

( )wF t  is the generalized linear wave force vector: That is  
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         (A2.21) 

The force component ( )nlH t in Equation A2.9 is also expressed as 

 [ ]{ } [ ]{ } [ ]{ }( ) ( ) ( ) ( ) ( ) ( )nl e nl e nl nlH t A p t B p t C p tω ω= + +&& & ,  (A2.22) 

where [ ]( )eA ω , [ ]( )eB ω  and [ ]C  are the same in Equation A2.17. 

The generalised nonlinear force ( , )nlF x t  is written as 

 { }( ) ( ) ( , )nl r nl
L

F t w x F x t dx= ∫ .     (A2.23) 

 

From Equations A2.17 and A2.21 and Equations A2.22 and A2.23, both linear and 

nonlinear hydroelastic equation of motion (Equations 2.44 and 2.45) can be written 

as, 

 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( ) ( ) ( )e l e l l la A p t b B p t c C p t F tω ω+ + + + + =&& &    (A2.24) 

 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( ) ( ) ( )e nl e nl nl nla A p t b B p t c C p t F tω ω+ + + + + =&& & . 

           (A2.25) 
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Appendix 3 Derivation of nonlinear forces 
 

The sectional nonlinear force in Equation 2.39 is shown as  
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The D/Dt operator is defined as  
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              (A3.2) 

The first term in Equation A3.1 becomes (variable index and function dependence 

are omitted) 
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                          (A3.3) 

Substituting Equation A3.3 into A3.1 and arranging according to the time derivatives, 

added amass and fluid damping terms, the sectional nonlinear force is written as (see 

Equation 2.46 to 2.50) 

 ),(),(),(),(),( 4321 txFtxFtxFtxFtxFnl +++=            (A3.4) 
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Appendix 4 Definition of impact shape factor G(x) 
 

Assuming the distribution of normal pressure pn over the bottom one-tenth of the 

draught at any instant as a linear distribution, the pressure pn is written as (Bishop 

and Price 1979) 

 max( ) ( ( ) / )np p y dα α�  where 0.1 ( )d T x=    (A4.1) 

 

Figure A2 the vertical impact force at the ith element of the section 

 

In the figure A2, the vertical force at the ith element of the section is given by 

 cosi i ip sα δ        (A4.2) 

where  

 y1 is d and yn is 0,  
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The total vertical force per unit length on the section is thus 
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From Equation 2.66 without the time variation f(t), the shape factor is denoted as 
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G(x). Thus by comparing with Equation A4.3, 
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