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AN INVESTIGATION OF THE EFFECTS OF CURVATURES
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CURVED BEAMS AND PLATES

by Bo Hu

Curved structures are mostly investigated through the numerical method. In the numerical
model, the curved beam or plate is easily simulated by assembled elements. Although the
approximate solution can be obtained, numerical results are inadequate to demonstrate
the effect of the curvature on the whole system. In order to reveal such effect and
implicative mechanism of the curvature, an analytical way needs to be proved applicable
to the curved structure. The present thesis thus develops the perturbation method to

analyze the natural behaviour of curved beam structures.

The governing equations for curved beams with the variable and arbitrary curvature
are derived. The complex parameter introduced by the curvature is modified by the
perturbation method. Simplified equations physically reveal the feature of the mode
transition, impacts in terms of boundary conditions, etc. due to the change of curvatures.
Based on the asymptotic solutions, the singly curved plate is analyzed by using the

Rayleigh- Ritz method. The analysis is further developed to the laminated composite



curved beam. Examples present extra characteristics brought by the composite materials.
In order to support the analytical solutions, finite element models of the curved beam
with different type of varying curvatures are established. Numerical results illustrate
more phenomena in transition of mode shape following the change of curvatures and the

wave propagation behaviour of curved beams.
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Introduction

Chapter 1 Introduction

1.1 Research Background

1.1.1 Overview of curved structure

Curved structures classified by their geometry are usually named as arches and shells
which are the most common construction elements in the nature and the technology. An
arch has the capacity of spanning a space while maintaining its shape and supporting
significant loads. It was first developed in the Indus Valley civilization circa 2500 BC and
subsequently in Mesopotamia, Egypt, Assyria and Etruria. Arches were used for
underground structures such as drains and vaults till ancient Romans were the first to use
them widely as an important technique in cathedral buildings. China has built the world
first open- spandrel stone segmental arch bridge since 605 AD. The arch is significant
because when subjected to vertical loads, its two ends develop reactions inwardly within
horizontal direction. The Roman doorway, for example, shown in Figure 1.1, its
construction depends on a series of wedge-shaped blocks set side by side in a semi-
circular curve or along two intersecting arcs (as in a pointed arch). The central block is
called the keystone, and the two points where the arch rests on its supports are known as
the spring points. The arch can carry a much greater load than a flat beam of the same
size and material, because downward pressure forces the blocks together instead of apart.
In order to keep the system in a state of equilibrium, the resulting outward thrust must be
resisted by the arch's supports. In order to minimize the horizontal thrust, the highly rigid
building materials such as lightweight monolithic (one-piece) arches of steel, concrete, or

laminated wood are thereby largely used.

Shell construction began in the 1920s and emerged as a major long-span concrete

structure after World War I1. In the building construction, a thin, curved plate element is

1
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Figure 1.1 arch: Ex Estrados; In intrados; K keystone; S springer; v voussoirs (Wikipedia)

shaped to transmit applied forces by compressive, tensile, and shear stresses which
describes its resistance to deformation in terms of separable stretching and bending
effects; these curved elements are then assembled to large structures in the plane of the
surface and spreads forces throughout the whole structure, which means every part of the

structure supports only a small part of the load, giving it its strength.

In the present day, applications of the curved structure are tremendously expanded.
Independent of the specific scale, curved structures make an important contribution to the
development of several branches of engineering. In the architecture aspect, thin shells are
used for roofing purposes which could increase the internal space with the minimal
amount of materials. They are commonly seen as the roof of the warehouse. Architects
also largely adopted curve structures in buildings for their fashionable design and other
special functions. The most recent example is the new Beijing Olympic Stadium, the
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whole structure of which is constructed by steel curved beams. In bridge engineering,
arch bridges are developed to span long distance over rivers, valleys or channels without
supports from columns. In offshore engineering, pressure vessels and associated pipe
work are manufactured by shell elements. Pipes are normally bent into the curved state
when laying down and staying underwater, which could be treated as curved beams in
mathematic models. In structural engineering, optimal design needs the use of curved
structures. In mechanical engineering, machine blades with curvature are important
functional parts. In naval architecture, the idea of utilizing a curved structural concept
with great potential for the construction is applied, for example, to an inland waterway
vessel. The basic concept is taking advantage of the inherent strength capacity of a plate
after the bending resistance limit is exceeded. This can be done by giving the shell plating
a specific curvature and that transforms bending stresses into membrane stresses which
will give a general drop in stress level. More recently, the introduction of fiberglass and
similar lightweight composite materials has impacted the construction of exterior skin of
vehicles ranging from boats, racing cars, fighter and stealth aircraft, and so on, which
utilize the hydrodynamic, aerodynamic and some functional aspects of thin curved

structures.

This large amount of engineering applications is mainly due to the following
advantages of the curved structure;

(1) Significant span capacity can be achieved;

(i) In addition to the slenderness, curved beam or shell structures own high
compression-resistance characteristics allowing advantageous dynamic and
stability capacities;

(iii)  Variable curvature configuration expands the structure design flexibility and
fashionable look;

(iv)  To apply walls as thin as possible is a natural optimization strategy to reduce
dead load and minimize construction material;

(V) Significant benefits of using composite materials are expected to result in a
30-40% weight savings and a 10-30% cost reduction compared to

conventional metallic structure.
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1.1.2 Characteristics of curved structures

In general, engineering problems are mathematical models of physical situations.
Thin-walled curved structures attracted lots of researchers’ interests. Various
mathematics models were developed generally based on spatial form geometries such as
curved beams, curved plates and shells. These models are analyzed to reveal their
features, which make them recognizable as useful objects in engineering. The curved
beam is usually modelled in one dimension, by neglecting the lateral motion. The
complexity of the curved beam primarily comes from the curvature which is not only
involved in the geometrical parameter, but also has impact on the resultant stress,
stiffness and displacement functions. The curvature along with the arc-length direction
can be either constant or variable. It is still straightforward to analyze constant curved
structures; by contrast, the variation in curvature brings mathematical difficulties and
even nonlinearity considerations into equations of motion. Sorted by curvature, curved
beams appear in different shapes like circular, parabolic, elliptic, s-shaped and so on. The
curved beam can be also classified by the type of cross section, such as symmetrical,
unsymmetrical, continuously varying or hybrid. For the two-dimensional configuration,
the terminology of “curved plate”, also called “shell panel” is referring to a shell having
small changes in slope of the un-deformed middle surface. The analysis of the curved
plate is usually based on thin shell theory which is applied when the thickness is
relatively small compared to its other dimensions and in which deformations are not large
compared to thickness. The curved plate has curvatures in two dimensions, which could
be variable or constant in either direction. Table 1.1 lists some examples of the most

common geometric forms of curved structures in engineering applications.

The challenge of the curved beam and the curved plate studies can be shown in many
aspects. Unlike the straight beam, the curvature of the curved beam introduces geometric
coupling between the axial and transverse motions and even with the rotations. The
inherent coupling is the source for the element’s efficiency, which requires two coupled
displacement functions for the in-plane vibration behaviour, and three coupled
displacement functions for the out-plane vibration problem. These functions coupled in

the differential equations are required to be known functions rather than unknown
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Table 1.1 Examples of curved structures

Different types of roofs

The INTERBARGE project from FEM Engineering AS company brings curved elements into
several key areas of vessel design which is vital for an efficient and economical way of
transporting cargo on the inland rivers/waterways of Europe.

Shells in composite materials

in the curved beam. These displacement expressions also have to fulfil specific boundary
conditions. Plenty of efforts have been made to find the trial functions that increase the
efficiency and accuracy of solutions. However, it is difficult to build up a structural
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system to control variable coefficients existing in the curvature, cross section, material
property, load case and boundary conditions. These coefficients in the equations of
motion might be constant, linear or even nonlinear. It is not difficult to find a mathematic
way to decouple equations with constant coefficients. The closed form solution can be
then obtained by solving the differential equations by providing the boundary conditions.
However, for those curved beams which have variable parameters, it is not
straightforward to get the decoupled differential equations. Vast research work is focused
on creating more accurate mathematical models and revealing the characteristics of
curved structures. In the mean time, researchers have to overcome errors generated in the
solution procedure such as membrane and shear locking phenomena. On the other hand,
in the real world, many methods were invented to simplify the manufacture procedure of

the curved structure, reduce storage space and minimize the cost in the construction.

The research works on curved beam and shell panel structures are comprehensively

reviewed in the present thesis, in the following categories:

(i) Thin-walled curved structure theories;
(i) Static and dynamic behaviours;

(i) Variable parameters;

(iv)  Composite materials;

(v) Analytical and numerical approaches.
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1.2 Literature Review

Studies on the curved beam could be traced back to the early twenty century. Taken
as the milestone in the history, Den Hartog (1928) obtained the lowest natural frequency
of circular arcs using the Rayleigh-Ritz method. Forsberg (1964) studied the influence of
boundary conditions on the modal characteristics of thin-walled cylindrical shells. Deb
Nath (1969) designed experiments to verify the analytical results of the circular curved
plate. Fleisher (1974) developed planar curved structure elements for the curved beam
and different types of curved plates; his studies firstly showed that the variation in

curvatures leads to a significant change in natural vibration characteristics.

During the last two decades the most progress has been achieved in terms of both
theoretical development and engineering availability. Large amount of research work was
published to demonstrate achievements on curved structure studies, among which there
are several important review papers. Laura and Maurizi (1987) gave a brief discussion of
recent work dealing with the dynamic behaviour of arches. Recommendations are given
with respect to straightforward calculations of fundamental frequencies of arch-type
structures. Several complicating factors are accounted for. Chidamparam and Leissa
(1993) attempted to organize and summarize the extensive published literature on in-
plane, out-plane and coupled vibrations of curved bars, beams, rings and arches.
Particular attention was given to the effects of initial static loading, nonlinear vibrations
and the application of finite element techniques. Auciello and De Rosa (1994) examined a
number of approaches from the Ritz and Galerkin methods to the finite element
techniques on the free vibration of different kinds of stepped arches and arches with
linearly varying cross-section. Most recently, Zhao et al. (2006) reviewed advances of
research on curved beams. Based on a discussion of equilibrium equations, strain-
displacement relations and governing equations of curved beams, a summary of basic
static theories and dynamic theories, and modelling methods for curved beams, and in-

plane vibrations and out-plane vibrations are given in the paper.

Despite the merely academic motive behind some of the publications, potential

engineering applicability does exist in many areas. The present thesis attempts to review
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the most recent achievements on the vibration behaviour of curved beam and curved plate

structures.

1.2.1 Thin-wall curved beam and shell theories

The majority of existing beam theories are invariably based on the Euler-Bernoulli
hypothesis of plane cross sections remaining plane during deformation, which also
applies to the thin curved beam. Thin walled theories typically include the postulates
expressed in Love’s first approximation (Love, 1944). These postulates may be written as

follows:

« the thickness of a beam is small compared to a characteristic dimension. Here a beam
is considered as thin if the ratio of its thickness to the radius of the curvatures of its
surface is less than or approximately equal to one-tenth.

. the deflections of the beam are small. This permits the use of the equations of the un-
deformed beam to describe its subsequent deformation and with the use of Hooke’s
law, results in a linear elastic theory.

. the transverse normal stress is negligible. This is a result of postulate 1.

. normal to the reference surface of the beam remain normal and the beam thickness

remains unchanged.

The Timoshenko theory relaxes the normality assumption of the Euler-Bernoulli
beam theory and gives a better approximation to the true behaviour of the beam by taking
into account a constant state of transverse shear strain with respect to the thickness
coordinate. However, it is known that the shear stress distribution across the cross section
is non-uniform. Timoshenko theory that does not account for a non-uniform variation of
the through thickness shear stress uses a shear correction factor depending on the cross
section in order to compensate for the errors introduced. The higher order theories (Lo et
al., 1978) eliminate dependence on the shear correction factor, which normally assume
cubic in-plane displacements in the through thickness direction and transverse

inextensibility.

Wang (1995) presented the deflection and stress resultants of single-span
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Timoshenko straight beams with general loading and boundary conditions, in terms of the
corresponding Euler-Bernoulli beam solutions. The deflection relationships show clearly
the effect of shear deformation, which allow engineers to readily obtain the bending
solutions of Timoshenko beams from the Euler-Bernoulli solutions without more
complicated flexural-shear deformation analysis. Reddy and Wang (1997) developed the
relationship between the bending solutions of the Euler-Bernoulli beam theory and the
refined higher order beam theory. In (2001) they further developed exact relationship
between the bending solutions of the Levinson beam and plate theories and the Euler-
Bernoulli beam and Kirchhoff plate theories. However, all these relationships are limited
to the bending solutions. For the curved beam, the coupling effects from the extensional

vibration cannot be neglected.

The vibration problem of the open-form thin shell panel or the curved plate is usually
based on thin shell theories which typically include the hypothesis expressed in Love’s
(1944) first approximation. Equations of motion of thin elastic shells are derived by
Krauss (1967) and Leissa (1973). Vinson (1989) summarized formulations and classical
solutions of the thin walled structures. Liew et al. (1997) comprehensively reviewed
vibration of shallow shells. Price et al. (1998) analyzed the vibration of cylindrical pipes
and open shells based on different thin shell theories including Donnell’s theory, Love’s

theory and an improved theory.

1.2.2 Static and dynamic behaviours

The dynamic problems of a curved structure generally involve the in-plane vibration
which primarily consists of bending-extensional modes, the out-plane vibration which is
essentially bending-twisting dynamics, and coupled motions consisting of extension,
flexure, shear and twist. Yu et al. (1995) presented exact and accurate analytical solutions
for the free vibration of circular cylindrical shell panels with arbitrary combinations of
simple boundary conditions. An effective computer program using the transfer matrix
method is presented by Yildirim (1997) for both in-plane and out-of-plane free vibration
analysis of elastic uniform arcs having double-symmetrical cross-sections. Goh (1998)

formulated governing equations using thin shell theory and applied to a pressurized arch
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shell component. A numerical investigation based on the Rayleigh-Ritz method is utilized
to determine the behaviour of arch-shell under various types of loading including a snow
load, a wind load and a horizontal side load distributed along the arc length. Tarnopolsky
and De Hoog (1999) obtained asymptotic approximations for vibrational modes of
helices. Walsh and White (2000) described the vibrational power transmission due to
flexural, extensional and shears types of travelling wave in a curved beam which has a
constant radius of curvature. They also studied the effect of curvature in three different
frequency regions whose limits depend upon the type of wave considered. Eisenberger
and Efraim (2001) presented the exact dynamic stiffness matrix of a circular shear
deformable beam by considering them as the end forces of the beam when it is deformed
with unit displacement at its ends. The stiffness matrix is frequency dependent, and the
natural frequencies are those that cause the matrix to become singular. Therefore, the
natural frequencies are obtained by equating the stiffness matrix to zero. Lee and Hsiao
(2002) developed the semi-exact solutions for the free in-plane vibrations of curved non-
uniform beams with constant radius. The two coupled governing differential equations
are reduced to complete sixth-order ordinary differential equations with variable
coefficients in the longitudinal displacement. Numerical analysis shows that the taper
ratio, the centre angle and the arc length have significant influence on the natural
frequencies. Kang et al. (2003) provided a systematic approach for the free vibration
problem of multi-span planar circular curved beams with general boundary conditions
and supports. The system considered multiple point discontinuities. Dispersion equations
are solved by combining the wave reflection, transmission and the field transfer matrices.
Huang et al. (2003) developed an analytical solution to the proposed governing equations
to analyze the free vibration and stability of a circular arch under initial stresses due to
the static preloading. Differing from traditional ways, this paper considered not only the
most important factor, static stress resultant, also all initial stress resultants. Kim et al.
(2002) used energy method to solve the in-plane and out-plane free vibration problem of
the curved beam with non-symmetric thin-walled cross-section. Two thin-walled curved
beam elements corresponding to extensional and inextensional conditions are developed
using third and fifth order Hermitian polynomials. The influences of the thickness-

curvature effect are investigated. Wu and Chiang (2004) investigated the dynamic
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response of an arch with a moving load using the curved beam element with implicit
shape functions. Gridin et al. (2005) presented convincing evidence for the existence of
trapped modes localized in the regions of maximal curvature, and offered predictions of
when and why such trapping occurs. To this end, two methods were developed, one is
asymptotic, which assumes smallness of dimensionless curvature, and the other is

numerical.

Besides the in-plane vibration, Lee and Chao (2000) derived the uncoupled and
reduced sixth order ordinary differential equations with variable coefficients in the out-
of-plane flexural displacement and the tensional displacement, respectively. The exact
solutions of curved non-uniform beams are obtained by providing the material and
geometric properties in arbitrary polynomial forms. Tufekci and Dogruer (2006)
presented an exact solution of the equations for out-of-plane deformations of arches with
arbitrary axes and cross sections by using the initial value method by which the
displacement, slope, twist angle and stress resultants can be calculated analytically along
the arch axis. The equation takes into account the shear deformation effect. An advantage
of the method is that the high degree of static indeterminacy adds no extra difficulty to

the solution.

1.2.3 Variable parameters

Properties of the curved structure might usually not be constant. These properties
represent the state of the geometry and the material, which are expressed as the
parameters in the mathematical equations. While the application of curved structures with
constant parameters is well catered for, the solution for those with variable parameters is
not yet completely understood. In addition to the geometry and material as the main
category, it is possible to subdivide the variation in the geometric parameters as varying

curvature and variable cross section.

. Geometric parameters

The analytical solution of a non-circular curved beam must be formulated by the

series solution method. The series solution method is reliable, but needs lots of terms and
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is restricted by the convergence ratio. Researchers usually expand the curvature as
Fourier or Taylor series with respect to the arc-length in order to represent varying
curvature. Non-circular elastic curved beams were firstly studied by Romanelli and Laura
(1972) by using Rayleigh’s principle. Wang and Moore (1973) determined the lowest
natural extensional frequency of a clamped elliptic arch with constant section, which
indicated the effect of arc angle on the natural frequencies of the arc. Wang (1975)
studied the fundamental frequency of clamped parabolic arcs. Based on the same
numerical method, Lee and Wilson (1989) obtained frequencies and modes for parabolic,
sinusoidal and elliptic arches. Experimental validations of the lowest four natural modes
were included. Guierrez et al. (1989) obtained the lowest frequency coefficients of
symmetrical and unsymmetrical arch-type structures, using polynomial coordinate
functions and the Ritz method. Scott and Woodhouse (1992) studied the musical saw
behaviour by examining the underlying physics of the confinement process. The paper
analyzed the trapped modes of the curved strip in S-shaped configuration. The analysis
revealed the essential nature of the internal reflection process, in terms of the change with
curvature of the dispersion characteristics of the strip. Charpie and Burroughs (1993)
gave a comprehensive review on the free in-plane vibration of beams with variable
curvature and depth. They also provided an analytical model with a quadratic polynomial
trial function considering shear deformation, rotatory inertia and centreline extensibility
and the equations of motion were solved by an extension of the classic Galerkin method.
Tarnopolskaya and Hoog (1996) demonstrated the coupling between the membrane and
flexural modes of curved beams using asymptotic analysis. The curvature function is used
to define the shape of curved beams. Experiments with piezo-electric foils confirm the
validity of the asymptotic approximation for high mode-number extensional vibrations.
Tseng et al. (1997) developed an approach which introduces the concept of dynamic
stiffness matrix into a series solution for in-plane vibrations of arches with variable
curvature. The variable coefficients were expressed in their Taylor expansion series about
a point on the arch. The first six modes for parabolic and elliptic arches with various
boundary conditions are calculated. Huang et al. (1998) developed an exact solution for
in-plane vibration of arches with variable curvature as well as cross section using the

Frobenius method combined with the dynamic stiffness method. Examples for a series of
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parabolic arches show the effects of rise to span length, slenderness ratio and variation of
cross section. Oh et al. (1999) investigated the in-plane vibrations of non-circular arches
such as parabolic, elliptic and sinusoidal including the effects of rotatory inertia, shear
and axial deformations. The governing equations are solved numerically and the lowest
four natural frequencies are obtained. A buckling formulation for anisotropic variable
curvature panels is presented by Jaunky et al. (1999). The segment approach was used
where displacements fields within each shell segment are represented by Bezier
polynomials. Ambur (2001) applied the same method to the optimal design of grid-
stiffened panels with variable curvature. Many researcher such as Leung and Zhou (1995)
and Kim et al. (2003) adopt dynamic stiffness matrix methods to solve vibrations of non-
uniform curved beams. The proposed approach basically introduces the concept of
dynamic stiffness matrix into a series solution in terms of polynomials which are derived
as explicit expressions of displacement functions for governing equations. The arch under
consideration is decomposed into several spans with different radii of curvature and in
each sub-domain. For the system with many variables, numerical scheme on the quadratic
eigenproblem in calculating the exact dynamic stiffness matrix is more efficient and

successful.

In addition to the papers introduced above which studied the variable cross section,
Suzuki and Takahashi (1977), Irie et al. (1980) and Sakiyama (1985) also made
contributions in the earlier stage. Laura and Irassar (1988) studied the arches with linear
varying thickness. Most recently, Wu and Chiang (2003) constructed a hybrid beam by
using an arch segment connected with a straight beam segment at each of its two ends.

« Material parameter

Geist (1998) applied the asymptotic formulae to the variable mass density and show
how the natural frequencies of the Timoshenko beam depend on the material and
geometric parameters which appear in the differential equations. In Awrejcewicz (1999)’s
paper, the doubly curved shells considered were constituted by isotropic material which
shows in-plane non-homogeneity in the sense that Young’s modulus is taken as a function

of the in-plane shell coordinate. Forster and Weidl (2006) proved the existence of trapped
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modes in elastic strips perturbed by local changes of Young’s modulus. The asymptotic
formula is derived to describe the behaviour of the trapped modes in the limit case of

small differences of Young’s modulus.

Research work on the static and the dynamic behaviour of curved structures is
mostly limited to the isotropic material. Only a few papers were devoted to composite
materials. Composite materials show the benefits of high strength-weight ratio and
corrosion-resistance through careful design. Researchers have developed various theories
for analyzing the laminated composite structures. Based on the singular layer equivalent
assumption, the classical laminate theory (CLT) (Love, 1888) and the first-order shear
deformation theory (FSDT) (Reissner, 1945; Mindlin, 1951) are developed. Accounting
for transverse shear deformations, the higher-order shear deformation theory (HSDT)
(Reddy, 1984) is developed. Nosier and Reddy (1992) processed the vibration and
stability analysis of cross-ply laminated circular cylindrical shells. Lam and Loy (1995)
studied the influence of boundary conditions on laminated thin cylindrical shells. Noor
and Burton (1996) classified a number of references on vibration of sandwich panels and
shells. Bardell et al. (1997) analyzed vibrations of thin laminated cylindrically curved
panels using finite element method. Yahnioglu and Selim (2000) investigated some
bending problems for a composite strip with a periodically curved structure. Results show
that the effect of the geometrical nonlinearity on the foregoing stress distribution decays
with changes in material properties. Tseng et al. (2000) based on the Timoshenko curved
beam theory, studied the free vibration of composite laminated beams of variable
curvature. The dynamic stiffness method is used to overcome the difficulty of
convergence ratios for the whole beam by the subdividing of sub-domains. For elliptic
arches, the effects of stacking sequence, short and long axes ratios, material orthotropic
ratio, and opening angles on the natural frequencies are also studies. Bozhevolnaya and
Frostig (2001) modelled the curved sandwich beams with a transversely flexible core.
Wang (2001) studied the flexural behaviour of the composite curved beam with variable
curvature and demonstrated the delamination phenomena. Fares et al. (2003) based on the
higher-order shell theory, derived formulations to design the orthotropic laminated

spherical and cylindrical shells. The discrepancy between different theories is
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investigated by numerical examples. Towfighi and Kundu (2003) studied elastic wave
propagation problem in anisotropic curved plates. Bozhevolnaya and Sun (2004) studied
free vibrations of singly curved sandwich beams by applying the Galerkin method. The
model takes into consideration both radial and circumferential displacements of the beam
core with the assumption of linear distribution across the thickness. The faces of the
sandwich are treated as thin beams. It is shown that there are four types of eigen-modes
and a coupling coefficient is introduced to study the dynamic coupling of motions in
these types of eigen-modes.

1.2.4 Approaches

Mathematical models are differential equations with a set of corresponding boundary
and initial conditions. The differential equations are derived by applying the fundamental
laws and principles of nature to a system or a control volume. These governing equations
represent balance of mass, force, or energy. When possible, the exact solution of these
equations renders detailed behaviour of a system under a given set of conditions. The
analytical solutions are composed of two parts: a homogenous part and a particular part.
In any given engineering problem, there are two sets of parameters that influence the way
in which a system behaves. First, there are those parameters that provide information
regarding the natural behaviour of a given system. These parameters include properties
such as modulus of elasticity, thermal conductivity, and viscosity. On the other hand,
there are parameters that produce disturbances in a system. Examples of these parameters
include external forces, moments, temperature difference across a medium, and pressure
difference in fluid flow. The system characteristics dictate the natural behaviour of a
system, and they always appear in the homogenous part of the solution of a governing
differential equation. In contrast, the parameters that cause the disturbances appear in the
particular solution. It is important to understand the role of these parameters in finite
element modelling in terms of their respective appearances in stiffness or conductance
matrices and load or forcing matrices. The system characteristics will always show up in
the stiffness matrix, conductance matrix, or resistance matrix, whereas the disturbance

parameters will always appear in the load matrix.
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The closed form solution for either the curved beam or the shell panel is obtained
from the determination of the displacement expressions in the equations of motions.
These expressions of the displacement need to be satisfied with the boundary conditions.
The curvature brings the coupling effect into the governing equations, so even for one
dimensional curved beam, it is difficult to obtain the exact solution for either every kind
of curvature or every boundary condition. In order to obtain the analytical solutions, the
task is to find the homogenous and particular part of the displacement expressions.
However, the disturbances caused by curvature exist in the particular solution. It could be
more complex if nonlinearity is introduced into vibration modes. Other than
straightforward solution of the differential equations, many other approaches are used to
obtain the approximate solutions, from analytical methods such as Rayleigh-Ritz method,
Galerkin method and asymptotic methods etc. to the numerical method such as the finite

strip method and the finite element method etc.
« Energy method

Carmichael (1959) demonstrated the Rayleigh-Ritz method through an analysis which
was made of the vibration of a rectangular plate whose edges are elastically restrained
against rotation. Plate deflections are represented by a set of functions which define the
normal modes of vibration of a beam whose ends are elastically restrained against
rotation. Values of various integrals of these functions and their derivatives are
established. Frequencies are obtained from a set of linear simultaneous equations which
may be solved by a simple iterative process. Based on the generalized Green Function,
Lin (1998) gave the exact solution for static analysis of an extensible circular curved
Timoshenko beam with non-homogeneous elastic boundary conditions. A finite element
method can be developed based on the results for the dynamic analysis. Liew and Feng
(2000) used energy method for the three dimensional elasticity solutions for free

vibrations of conical shell panels with cantilevered and clamped boundary conditions.
« Asymptotic method

As one of the asymptotic method, perturbation method has the advantage in obtaining
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approximate theoretical solutions. The governing equations involve the variable
parameter of curvature which introduces the nonlinear terms. When the equations of
motion or boundary conditions have the nature of nonlinearity, closed form solutions
cannot be found. Perturbation techniques like the method of multiple scales are used to
study local dynamics of weakly nonlinear systems about an equilibrium state. To obtain
an approximate analytical solution of a weakly nonlinear continuous system, one can
either directly apply a perturbation method to the governing partial-differential equation
of motion and boundary conditions, or first discretize the partial-differential system to
obtain a reduced-order model and then apply a perturbation method to the nonlinear
ordinary-differential equations of the reduced-order model (Pramod, 2003). In general, a
limiting solution or a class of solutions are dependent on the parameter with a limiting
value (Cole, 1968). Boyce and Goodwin (1964) used the perturbation approach for the
solution of the eigenvalue problem of random strings and beams. Evensen (1968) solved
the governing nonlinear differential equation of beams with various boundary conditions
using the perturbation method. Tarnopolskaya et al. (1999) use the perturbation method
to obtain the natural frequency and mode shape of circular and s-shaped curved beams.
The features of mode transition phenomenon are revealed clearly and the effect of beam
curvature is explained physically. However, the analytic approximations are up to the first
order; therefore the analysis is limited to the low-frequency natural modes. Nayfeh and
Arafat (2000) gave an overview of the perturbation methods used to obtain analytical

solutions of nonlinear dynamical systems.

« Finite element method

There are many practical engineering problems for which we cannot obtain exact
solutions. This inability to obtain an exact solution may be attributed to either the
complex nature of governing differential equations or the difficulties that arise from
dealing with the boundary and initial conditions. To deal with such problems, we resort to
numerical approximations In contrast to analytical solutions, which show the exact
behaviour of a system at any point within the system, numerical solutions approximate
exact solutions only at discrete points, called nodes. The first step of any numerical

procedure is discretization. This process divides the medium of interest into a number of
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small sub-regions and nodes. There are two common classes of numerical methods: the
finite difference method and the finite element method. With finite difference methods,
the differential equation is written for each node, and the derivatives are replaced by
difference equations. This approach results in a set of simultaneous linear equations.
Although finite difference methods are easy to understand and employ in simple
problems, they become difficult to apply to problems with complex boundary conditions.
This situation is also true for problems with non-isotropic material properties. In contrast,
the finite element method uses integral formulations rather than difference equations to
create a system of algebraic equations. Moreover, an approximate continuous function is
assumed to represent the solution for each element. The complete solution is then
generated by connecting or assembling the individual solutions, allowing for continuity at

the inter-elemental boundaries.

Yang and Sin (1995) created the two-, three-, four- and five-node Timoshenko beam
elements which include the effects of shear deformation and rotary inertia. The elements
are formulated in terms of curvature, and hence can present fully the total potential
energy including the bending energy and the shear energy. Hinton, et al. (1995) derived
finite strip method which uses a combination of finite elements and Fourier series to
analyze curved shell panels with uniform geometrical and material properties in a
particular direction. Jones (1996) described the extension of an existing isotropic thin
shell element to a new element. This new element is formulated based upon FlCgge’s thin
shell theory, with the capability of modelling curved laminated orthotropic structures.
The proposed element is found to yield consistently accurate results in the inextensional
and extensional regimes of flexural motion without membrane locking. Chakravorty et al.
(1996) applied a finite element analysis to the free vibration behaviour of doubly curved
laminated composite shells. They investigated the effects of various composite
parameters such as fibre orientations and lamination schemes and several geometrical
parameters like aspect ratio, smaller height to greater height ratio, thickness to radius
ratio, and radii of curvature ratio. Bardell et al. (1997) used the finite element method to
furnish a detailed study of vibration characteristics of completely free, open, cylindrically

curved, isotropic shell panels. Reddy et al. (1997) demonstrated an elementary exposition
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of locking-free shear deformable beam finite element models based on different beam
theories. Friedman and Kosmatka (1998) created a two-node finite element with
capability to model curved geometry exactly and obtain exact results in static and
dynamic analysis. Bardell, et al. (1997) gave the h-p version of the finite element method
to furnish a detailed study of the vibration characteristics of completely free, open,
cylindrically curved, isotropic shell panels. Results illustrated interesting features of the
natural behaviour of curved panels due to the increase in the curvature. Moser et al.
(1999) illustrated the effectiveness of using the FE method to model guided wave
propagation problems. In recent years, Raveendranath et al. (2000) investigated the
performance of a curved beam finite element with a coupled polynomial displacement
field. Cunningham, et al. (2000) used commercial FEM codes to validate the
experimental results of free vibration of doubly curved sandwich panels and investigated
the effects of changing radii of curvature on the natural frequencies of vibration.
Raveendranath et al. (2000), in order to avoid the membrane locking phenomenon,
developed two nodes curved beam element based on a coupled polynomial displacement
field. Litewka and Rakowski (2000) created a new element by making use of the exact
static shape functions in the stiffness matrix and the mass matrix to analyze the shear and
compressibility effects on the natural frequency of arches. Nayak et al. (2002) developed
new element based on Reddy’s higher-order theory. Wu and Chiang (2003, 2004)
reviewed various curved beam elements for natural vibration analysis and derived the
simple implicit shape functions, which are associated with the tangential, radial and
rotational displacements of the arch element. Ribeiro (2004) applied a p-version,
hierarchical finite element to the curved, moderately thick, elastic and isotropic beam.
Geometrically non-linear vibrations due to finite deformations are investigated. The
influence of the thickness, longitudinal inertial and curvature radius on the dynamic
behaviour of curved beams are studied. Wu and Chiang (2004) presented a simple
approach to obtain the 18 unknown constants for the three displacement functions. By
means of the displacement functions, the stiffness and mass matrices of each arch
element are calculated and then the free vibration analysis of the arches is performed.
Chen (2005) gave full review and demonstration of the development of differential

quadrature element method (DQEM) in-plane vibration analysis model of arbitrarily
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curved beam structures.
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1.3 The Present Work

The present thesis locates the research emphasis on the impact of arbitrary and
variable curvatures on the natural behaviour of the curved beam and the curved plate.
Based on the comprehensive literature reviews, summations and achievements of the

present research are given as follows:

Firstly, many researches demonstrated behaviours of the curved structures as results
but seldom found the deep relationship between changes in the curvature with natural
vibration behaviours. The present work proves this relationship which shows mode
transition behaviours with kinds of regulations. Further, this relationship is substantially
impacted by various boundary conditions, which is also proved by both theoretical and

numerical solutions.

Secondly, analytical methods are hardly used to solve equations of motion of curved
beams with variable parameters until the perturbation technology are used to decouple the
flexure vibration and the extensional vibration. The present research further develops the
Tarnopolskaya and Hoog’s work (1999) to the second order perturbation approximations

which gives more accurate results.

Thirdly, the curved plate problem are solved based on thin shell theories in the
published works, but analytical solutions are only limited to the specific curvature and
boundary condition. In the present thesis, the perturbation approximations of curved
beams are adopted by the energy method to obtain the natural frequencies of curved

plates with variable curvatures.

Fourthly, it is shown that the present method is not only applicable to the continuous

varying curvature problem but also to the curved beam with other kind of curvatures.

Finally, the investigation is extended to the laminated curved beams with different
lamina orientation and stacking sequence, which reveals extra characteristics brought by

the composite materials.
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1.4 Layout of the Thesis

The present research comprises both analytical and numerical methods. From the
derivation of governing equations to the post-process solutions, the procedure is
organised in the following manner. Chapter One introduces the research background,
reviews the publications on the dynamic and static behaviour of curved structures,
summarizes the analytical approaches and proposes the motivation and achievements of
this work. Chapter Two develops the fundamental formulations of a curved surface. The
equations of motion are derived for the curved beam with variable curvature. The non-
dimensional equations and boundary conditions are demonstrated as well. Chapter Three
demonstrates the solution procedure. The perturbation method is used to simplify the
equations to obtain their approximate solutions. The relationship between eigenvalue and
curvature is formulated. The simplified equations are used to interpret mode transition
phenomena physically due to the changes of curvatures. Finite element method is
introduced in Chapter Four. Numerical models are established by using the commercial
code ANSYSS (2002). In Chapter Five, examples of the curved beams with various types
of curvatures are given to illustrate the effects of curvature on the natural characteristic.
Curved beams with constant curvature and varying curvature are calculated respectively.
Different boundary conditions are also considered. Numerical results from ANSYS code
support analytical ones. Some new characteristics of curved beams revealed by numerical
results are demonstrated, which leads to the limitation of the current analytical solutions.
Chapter Six gives examples for curved beam with arbitrary curvatures. The analysis is
extended to the curved plate through the Rayleigh energy method in Chapter Seven. The
two-dimensional natural modes are demonstrated. Chapter Eight investigates the effects
on the laminated composite curved beams by taking orthotropic laminated material
properties back into the dimensionless solutions. Chapter Nine concludes on the present
work and summarizes the effects of curvature on the natural characteristics of the curved

beam and the curved plates. Recommendations for future work are proposed.

The structure of the present thesis is illustrated in Figure 1.2.
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Figure 1.1 Structure of the thesis
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Chapter 2
Theoretical Formulations

The deformation of a curved body may be described geometrically by means of its
middle surface, its edge-line and its thickness. In the three-dimensional coordinate system,
the curved body is bounded by two closely spaced curved surfaces, the distance between
the surfaces being small in comparison with the other dimensions. For the purpose of
developing a general method of treatment of the problem of curved beams and curved
plates, this chapter presents straightforward derivations of the sets of general
formulations relating to the element of the theory of the curvature of surfaces (Huang et

al. 1988). The equations of motion are derived based on these theoretical formulations.

2.1 Brief Outline of the Theory of Surfaces

Figure 2.1 sketch of the curved surface
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As shown in Figure 2.1, a surface S is defined, in a rectangular coordinate system o-

xyz as follows:
x=x(af),y =y(a.pB),z= z(apB). (2-1)

where the coordinates x, y, z are the functions of the curvilinear coordinates (. £) of the
surface. Assume that the parameters « and g always vary within a definite region, the
position vector of a point P on the un-deformed surface is represented by:

7 = #(a,B). (2-2)

For a neighbouring point Q near to the point P, the vector PQ can be obtained using

Taylor formulation,

— (a7 aé 27 . s 837 877 5
PG = {Stda +22df + 2[5 (de)? + 2 - dadp + 3% (dB)?] + -}, (23)
which is approximately,
PG~ di=2da+24p (2-4)
A 8B '

Assume that e, and &g are two unit vectors or base vectors along e and £ directions,

respectively, and e, (@, 5) a unit normal vector at point P.

o= Ae,, i Bep, €, € =COSY, €,= _Esmx . (2-5)

We can define y as the angle between these two base vectors, where A and B
represent the length of related vectors, respectively.

2.1.1 The first quadratic form of the surface

The square of the length of a line element d7 is defined as the first quadratic form of
the surface, that is,

I = (ds)?
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=dr-dr

B ar E:?'r é‘_'d S'rd
- (Sae +5598) (32 + 350)

= A*(da)* + 2ABcosydadf + B*(df)*

= [da  dp] [ABCDj;dadﬁ ABCD;{dadﬁ] [j;} (2-6)

2.1.2 The second quadratic form

To the curvature of a curve on the surface, the second quadratic form is introduced,

ie.
11=z?q'-§’={2—£da+z—;dﬁ+ [ ]+}?
= L(da)* + 2Mdadf + N(df)>. (2-7)
Here, the higher order terms are neglected and the definitions
_ @R — L 8 —
L="—-¢e, M_ama,r_?'e”’ N_a.ﬁ‘:'e”' (2-8)

are introduced.

2.1.3 Curvature of a curve

As shown in Figure 2.2, an intersection curve of the surface S with the plane nPQ is

drawn. The curvature at point P of the intersection curve is defined as follows:

—1_da -
K_R g5’ (2-9)
where,
ﬁ-n=ﬁcos(§+dﬂ—ﬂ)=—lﬁlsini—ﬂk —%|m|'fiﬂ, (2-10)
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Assume T is the tangent to a curve on the surface

and,
|—|- P —
ds = _|PQ - PQ = |PQ],
Then,
_ EP_Q"?!
~ |FglFgl

i Lida)®+ 2Mdad B +N{df)"

1 Ada) +24Bcosydadf +5° (af)Y

(2-11)

(2-12)

Figure 2.2 definition of curvature
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2.2 Deformation of the Surface

2.2.1 Displacement field

Using the Kirchhoff hypothesis, the class of displacements is restricted to the

following linear relationships:

Ula,B,z) = ula, ) + 28, (a, ), (2-13a)
V(e B,z) = v(e, B) + z6g(a, ), (2-13b)
W(a,f) =w(a B). (2-13c)

where u, v and w are the components of displacements at the mid-plane (i.e. z=0) in the «,
S and normal directions, respectively, and 6, and @ are the rotations of the normal to the
middle surface during deformation about the « and £ axes, respectively. Assuming the

shear strains are equal to zero, then 6, and 6 are expressed as follows:

g =——-= (2-14a)
v dw
g =— -2 (2-14b)

Figure 2.3 shows a general body in its initial configuration and in its current
configuration. Let the body in its un-deformed configuration be Ty and denote the
deformed configuration by I';. The initial position of a point P, is given by the position
vector r, and the current point P’ is given by the position vector R. When the surface S

has strain, a displacement vector of P exists as follows:
A(a,B) = Ue, +Vey + We,, (2-15)

The distance from the origin to a point P’ of strained surface is as

follows:
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Figure 2.3 the deformation of the curved body from the initial configuration to the current
configuration

R(a,B) =7(a,B) + A(a,B). (2-16)
2.2.2 Strain-displacement equation

The well-known strain-displacement equations of the three-dimensional theory of
elasticity in orthogonal curvilinear coordinates are derived in Appendix | shown as

follows:

€a = PO, -T2 =E£+Eﬁ+a’ (2-172)
_ PP _g-s_ 185 viv W i

€ = Pgg B  ABda BE',E’—I_RS’ (2-17b)
_A48 (Uy B3 (V -

“af T Fap (A) +AE|rx (E)' (2-17¢)

where e, e;and e,z are strains at an arbitrary point of the curved body. Substituting the
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displacement field into above equations, strains at any arbitrary point of the curved thin

shell based on Love and Timoshenko theories (Reddy and Wang 1997) are expressed as

follows:
€, = £, T ZK,, (2-18a)
€g = &g + ZKp, (2-18b)
€ap = Eqp T ZT. (2-18c)

where ¢, £; and ¢, represent strains on the middle surface; x, and x are the middle

surface changes in curvature and *=# is the middle surface twist, given by (Qu and Tang
2000)

E 38 AR da % Bag Rz EBap AB de \R; A8
_af8g 1885 1 (1 fu v frs) 1 (1 fr fm)
Kag =52 T 4 ba R, \E8F AEda Rz lada  ABBE (2-19¢)

2.2.3 Constitutive equations

The integration of the stresses through the thickness leads to the constitutive
equation, which is expressed in terms of the 3 x 3 extensional, extensional-bending

coupling, and bending stiffness matrices as follows:

N =As+ Bg, (2-20a)

M= EBes+Dr. (2-20b)

where N and M are the resultant force matrix and moment matrix, respectively.
Considering the general single layer equivalent theory, the stiffness matrices A, B, D for

the n layers laminates are derived in Appendix II.

30



Theoretical Formulations

2.3 Equilibrium Equations

The equations of equilibrium are formed by equating to zero the resultant force and
resultant moment of all the forces applied to a portion of the shell. Define the force and

moment vector on a shell element shown in Figures 2.4 and 2.5 as follows:

N,=Nge,+ Nygeg +Que,, Nz =Npeg +Npoe, +Qpe,,  (2-21a)

P —

M, =M,ge, —M.ep, Mg = Mpe, — Mg e5 . (2-21b)

Assuming g is the contribution force on the unit area, the equilibrium of the force and

moment on this element are expressed as follows:

o (N2B) + 5 (Nga)+ GaB=0, (2-22a)
2 (M.B) + = (M;A) + Az, X N.B + Beg X N;A=0. (2-22b)
g X Np

Substituting equations (2-21) into equation (2-22), six equilibrium equations projected in

three directions can be obtained as follows:

1 (BN, | 8ANgg | 34 a5 % _ -
AE'( e + an +3|51NEE|E de N.E)-I_Ra-l_q'ﬂ: 0, (2 233_)

1 (@BN BAN 88 24 ] _
AE(—F—+—F—+ Nza EN)+RS+qE—D, (2-23b)
1 (38Qy | P40\ _ N _ Mg - ]
AE( fx + ag } Ry 35+q” 0, (2 230)
1 (8BM, | 8AMgy | 84 a5 _
E( 2z T ag +EME _EME}_QE =0, (2-23d)
1 E'E"'d' dAM a4
(B B, -2, ) -0 = 0, (2-23¢)
My _
Nop = Npo — 2+ =0. (2-231)
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Figure 2.5 notation and positive directions of moment resultants in shell coordinates

Considering the natural vibration of a single curved beam, in the planar coordinate
system shown in Figure 2.4 and Figure 2.5, leta =s, f =xand A = B =1, where s is the
circumferential coordinate measured around the centreline; x and z are the principal axis
of the beam cross-section; r is the general radial coordinate. Assume there is no strain in

the lateral x direction and consider the equilibrium of the forces on an element of the
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beam shown in Figure 2.6, the following equations can be obtained:

. Ny | @ _ 4 87u ,

In tangential direction % Ta pA =, (2-24a)
L . 80s _ N _ 8w _

In radial direction i pPA —=, (2-24b)

Moment equilibrium =Q,. (2-24c¢)
where p is the density, 4’is the area of the cross section per unit width, u is the tangential
displacement, w is the radial displacement of the mid-surface, M; is the bending moment,
N is the tensile force and Qs is the shear force. The second derivative of the displacement

about time t gives the acceleration, which shows inertia after multiply by the mass pA4’.

Substituting the curvature k, defined as k = Rl, and equation (2-24c) into equation (2-24a)

and (2-24b), results in:

oMy N _ % _
k 8= 8= pA aet ' (2 25&)
TN, =pa Tt (2-25b)

It is also assumed that velocity in x direction is zero, which leads to resultant forces
Ny, Nyxs and moments My, Mys being equal to zero. Therefore, the constitutive behaviour of
the curved beam, in terms of mid-plane values and resultant quantities is expressed as

follows:
Ns _ *‘111 311] €q
[M_j B [Bn D,, [xs] ' (2-26)

where Aj; is the tension stiffness, Bii is the coupling stiffness and Dj; is the flexible
stiffness respectively. For an isotropic beam, A;; and D13 in the governing equations are

replaced by the extensional rigidity A and flexural rigidity D.

According to equations (2-17)-(2-19), for the thin curved beam, when z << R_, the
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W
Z
X
KN O
cross-section view / \\ =y
/odl N
/ \ M+ M
M / \
R/ \
/ \
/ N
// \\
: // \\
h N+ N
Q+d0
A
Figure 2.6 sketch of forces on a beam element
strain in s direction in terms of the middle surface is express as follows:
fu
£, =5, Thw, (2-27a)
2k du 8w
K =u—+ kE — %= (2-27b)

Assuming the material of the curved beam is balanced and symmetrical in terms of the

middle surface, which leads to By, = 0, the constitutive equations are thus simplified as

follows:
N, = Ay (Z+kw), (2-28a)
M, =Dy, (w2 + 12 -2¥) (2-28b)

Omiting the index‘s’ in notations, substituting equation (2-28) into equation (2-25),
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equations (2-25) is expanded as follows:

2 (8 g0 &w 2 (3 T i
Dysk ds (u 5s T k 8 8s° ) T Ay Bs(ﬂs t kw} PA = (2-292)
G L du  wy du _ g dw _

Dyt 8s2 (u a tk s af) Ank (Bs + kw) pA gt (2-29b)
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2.4 Dimensionless Governing Equations

In many problems, we are interested in comparing the dimensionless response rather
than the actual values, which is of great help when we are comparing results with
different properties and performing parametric studies. A transformation to dimensionless

variables of the coordinate s and the curvature k can be made as follows:

s=% k=K. (2-30)

-

Moreover, the dimensionless axial and transverse displacements are shown as follows:

| E

u =

W= (2-31)

=

where | is the length of the beam.

For the sake of convenience, a dimensionless parameter # is introduced by dividing

A4, at both sides of governing equations,

n=ok (2-32)

From equation (2-32) it can be seen that 7 is the ratio of the flexural stiffness to the
tension stiffness. For the isotropic curved beam, it represents the geometrical properties.

For the composite material, it also includes the impact of the material property.

Expressing the displacements as harmonic functions of time with frequency w, i.e.
i = ue'™® and w = we'“* the dimensionless governing equations of the curved beam

with variable curvature is then expressed as follows:

k2 (a4 R E-20) 4 2 (2 kw) = —aa, (2-33a)
n ;’;: (a2 +EE- ..:;—) —E(ZE+kw)=—aw. (2-33b)

where A is the square of the non-dimensional frequency or the non-dimensional
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eigenvalue of the system. It is defined as follows:

A=eArel (2-34)

This non-dimensional eigenvalue is the ratio of the square of natural frequency w to the
square of vibration frequency +/4,, /pA'l? in tension motion. For our convenience in the

following description, we may simply say the non-dimensional frequency A of the beam

in stead of its full definition description mentioned herein.

Equation (2-33) represents the extensional and flexural coupled vibrations of curved
beams with general curvature. Since curvature is not limited to constant, non-linear terms
are involved in the flexural deformation part of above equations. In the following

chapters, the perturbation method is used to simplify the governing equations.
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2.5 Boundary Conditions

In addition to the equations of equilibrium and compatibility, the governing
equations must satisfy certain boundary conditions. To complete the formulation of the
problem where a fourth order differential equation is involved, such conditions
corresponding to the edge constraints must be specified. Boundary conditions are applied
at both ends of the curved beam, i.e. when s=0 and s =1. Following boundary

conditions are considered in the present studies. They are:
1. Freeend

There is no constraint applied at the end. All DOFs are free. The moment, shear and

axial force at the end are equal to zero, shown as follows:

M=0N=00Q=0, (2-35)

according to equation (2-24c) and equation (2-28), equation (2-35) is equivalent to

1415—;{5—':5 =0, (2-36&)
) 2k fu  dwy
E(HE_;{E_E{S:) =0. (2'36C)

2. Hinged end

The end of the beam can freely rotate but all displacements are equal to zero, shown

as follows:

u=0w=0, (2-37a)

The moment at the end is also equal to zero, shown as follows:

M =0, (2-37b)
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according to equation (2-28b), which results in,

vy, (2-37¢)
3. Clamped end
All DOFs are constrained at the end of the beam, shown as follows:
u=0w=0, (2-38a)

Additionally, the rotation of the mid-surface during the deformation is equal to zero.

From equation (2-14), it results in

¢=—"+uk=0. (2-38b)

The hinged and clamped conditions provide the extensional constraints on the beam,
which is vital to the effects of changing curvatures and will be explained in Chapter

Three, section 3.2.
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2.6 Summary

The governing equations of curved beams are derived based on the deformation of a
curved surface. The curvature k is not limited to a constant value; therefore, the
governing equations can be used to solve the natural vibration problem for the curved
beam with variable curvature. On the other hand, the variation in curvature brings the
extra unknown parameter into the equations. Therefore, the key issue in solving the
equations is how to treat the curvature parameter. In the following chapters, the

perturbation method is adopted to deal with variable curvature problem.
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Chapter 3
Perturbation Analysis

In Chapter two, the non-dimensional governing equations of the curved beam were
derived, which is coupled flexural and extensional vibration and also includes the
variable curvature parameter. Therefore, it is difficult to solve by the classical analytical
methods. By using perturbation techniques, in general, one expects analytic dependence
on a small parameter. A solution or a class of solutions are dependent on this parameter
with a limiting value. In physical problems, it is important to discover the nature of this
dependence by working with various approximate differential equations and to
investigate the nature of solutions from perturbation procedures. This chapter will
demonstrate the process of using the perturbation technique on the vibration analysis of

curved beams.

3.1 Transformation of Governing Equations

The eigenvalue of the vibration beam problem can also be expressed as follows (Qu
and Tang 2000):

A=A (3-1)

This non-dimensional eigenvalue is the ratio of the square of natural frequency w to the

square of vibration frequency +/ D4, /pA'l* in bending motion.

Considering equation (2-34), one can establish the relationship between the

eigenvalue and the square of non-dimensional natural frequency as follows:

A= — (3-2)
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Based on the number of oscillations in the non-dimensional amplitude of transverse

and longitudinal displacement, estimate for the order of magnitude of terms is as follows:

A~0(k?), a~o (k=) #~0), (3-3)

and leads to the scaled parameters as follows:

- k o w
.IC =—ii=—,W=— . 3'4
i W= (3-4)

In the dimensionless coordinates, for the sake of keeping the same order of
magnitude of terms in the governing equations, substituting equations (3-2) and equation
(3-4) into the equation (2-33), results in

i(nﬁj—;‘mﬂf%— Z’“)+i(£+ kw) = —nAdl, (3-54)

;ﬁ (ﬂﬂz—f_ +n?§5% - a:‘?) —k (%4— Eﬁ?) = —AW . (3-5b)

The solution to the transformed non-dimensional governing equations (3-5) depends

on the parameter ¢ defined as follows:

f=ln =k (3-6)

which is a dimensionless quantity, determined by both the curvature and the ratio of the
flexural stiffness to the extensional stiffness. It is not like n which represents the
geometric and material properties. This small parameter £ also includes the impact from
the curvature. For the straight beam, ¢ is equal to zero, then equation (3-5) turns out to be
the Euler-Bernoulli beam equations. The interesting thing is that the parameter ¢ is not
linear with the curvature. When the curvature is very small, the flexural stiffness is larger
than the extensional stiffness. With the increase in the curvature, a critical point exists
when the extensional stiffness predominates the vibration. In consequence, the parameter
£ is controlled in the region of [0,£%]. Thus ¢ has the feature to be taken as the small

parameter to obtain an approximate solution of the eigenvalue problem. This leads to the

42



Perturbation Analysis

change in characteristics of the natural vibration, which will be examined mathematically

in the following sections.

Substituting equation (3-6) into equation (3-5), one obtains the following equations:

(o (554 r 8- T) 1 2 (22 o) = -2 670
L2 (B0 om0 (S eke)= 2 6

Applying the perturbation technique into equation (3-7), the solution is assumed in the

following expansion form:

A(E) =Xz A, (3-8a)
(5,8 = L35 80,03, (3-8b)
W(E, ) = Loz £ W, (3) . (3-8c)
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3.2 Zero Order Approximations
The zero order perturbation solutions are easily written as follows:
AE) =4y, 0(58) =1,(5), W(EE)=W,(5). (3-9)

Substituting the perturbation solutions into equation (3-7), the zero order perturbation

equations are obtained as follows:

Since the leading power of & is zero, equations (3-10) are reduced by setting £"** = 0 as

follows:
a fad, | 7o N _
2 (et kw,) =0, (3-11a)
1 8%%, Biig |, 7 YV Ay
22004 (ot ki, ) = 22, (3-11b)

Equations (3-11) are the zero order approximation equations, which eliminate non-linear
terms in governing equations (3-5). In equation (3-11), the differential of the term

[%—F Eﬁrﬂ] is equal to zero, which indicates that the mean axial tension along the mid-

surface of the curved beam is constant and independent of the length s.

In order to obtain the solutions of the transverse displacement, substituting the
differential of equation (3-11b) into equation (3-11a), the fifth order differential equation

can be obtained as follows:

Z[e (52— a0m)] = 0. (3-12)

The solution of the equation (3-12) is obtained as follows:
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W, = kv, + P, . (3-13)

where Py is a constant. The closed form solution to the homogeneous equation of the

straight beam i, is shown as follows (Qu and Tang 2000):
W, =C, [C:sin (ﬁ;ZEJ + Cycos (ﬁ:iE) + C, sinh (ﬁ:iE) + cosh (ﬁ»:ZE)] . (3-14)

where C;, Cy, C3 and C,4 are unknown constants. For the clamped or hinged boundary
conditions, there are four boundary conditions respectively as follows:

Hinged: 5(0) =0, Wy(1) =0, 25 _ g 270 _ (3-154)
Clamped: W,(0) =0, Wy(1) =0, = _ 25D _¢ (3-15b)

Applying the boundary conditions into the transverse displacementi,, the unknown
constant C,, C3;, C4 and Py can be obtained. C; is not important in terms of the

normalization of the transverse displacement.

Furthermore, equation (3-11a) leads to another equation, which is expressed as follows:

aii,

—+ kiv, = 1. (3-16)

where T is a constant. Substituting equation (3-16) into equation (3-11b), it gives that:

T MW, = —kr. (3-17)

=

Equation (3-17) shows physically the nature of free vibration problems for curved beams.
Where on the right side of equation (3-17), if either k or T is assumed equal to zero, the
equation can be reduced to the form as follows:

8%

& — A,i, = 0. (3-18)

854

It is obvious that equation (3-18) represents the flexural vibration of the straight beam.

45



Perturbation Analysis

Hence, equation (3-17) is taken as a straight beam flexural vibration plus the additional

term &kt which represents the coupling effects from the curvature and the tension.

Consider the boundary conditions of the curved beam. If either end of the curved
beam is free, there will be no tension in the beam provided by boundary conditions which
leads to T = 0. Therefore, it does not matter how curvature changes, as if either end is
free, these changes in curvature will not affect the natural behaviour of the curved beam.
Based on this conclusion, the following analysis only considers the clamped and hinged
boundary conditions. The easy way to express the solution of equation (3-17) in another

form shown as follows:
Wy = W, + Wy, (3-19)
where W, is the eigenvector of the straight beam, and W, is the particular solution.

The eigenvalue can be derived based on equation (3-17), from which the particular

solution W, can be also expressed as follows:

=

T

Wy = . (3-20)

= |

where considering a curved beam with specific curvature, the non-dimensional curvature

k is defined as the function of 5, which can be expressed as follows:
k = bE(3). (3-21)

where b represents the amplitude of curvature and & (3) represents the shape function of

curvature.

The constant T can be derived by adopting the following procedure. Integrating equation

(3-16) with respect to 5, 0 = 5 = 1 it results in:

-5} =a@} + [ kw,ds . (3-22)
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and in either case of clamped or hinged boundary condition,
fig(0)=1,(1)=0. (3-23)
Thus, substituting equation (3-23) into equation (3-22), it results in:
T = [ kiyds. (3-24)

Hence, equation (3-20) can be rewritten as follows:

Wy == J kiods, (3-25)
where,
[} kiyds = [ ki,ods + [) k,ods (3-26)

J} kivyds = [ kivods + = [T k2 [} kivydsds, (3-27)
then,
[} s = S 29
Therefore,
Wy, = W + i::;:?:n:j (3-29)

Substituting equation (3-14) into equation (3-29) and applying the boundary condition,
the eigenvalue can be obtained, which also indicates the relationship between the
curvature and the natural frequency. Examples of curved beams with various curvatures

and with different boundary conditions will be demonstrated in the Chapter five.
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3.3 First Order Approximation Equations

The zero order perturbation solutions give the approximate results, though it can
explain physical meaning of the vibration characteristics. In this section, the accuracy of
the results will be improved by the first order perturbation equations. The first order

perturbation solutions are written as follows:
A(E) = Ap + 84y,
(5§ = 4,(3) + 41, (3,
W(s, &) = Wy(5) + &W,(5). (3-30)

Substituting equation (3-30) into equation (3-7), the first order perturbation equations can
be obtained as follows:

g ~ PR Bla,+Eh,) 8w +Ew.) 8 (8l +Fa,)
"rE{% (% + "rulja_: +< .: T a_j ) }+ E( a+§ + k(i + "rwlj)
_ H(B +ER, )@, +Ea,)
i »
(3-31a)
% ( (i, + fuij au +$d N a:{ﬁ;jﬁi}) B (aj ) k(iw, + fwij)
_ (Bg+ER, ) wo+Ew,)
= '
(3-31b)

Since the leading power of & is equal to one, equations (3-31) are reduced by setting

&"=2 =0 as follows:

2 (Leskn,)=SR -0, (3-323)
fim (2—"% + e T8 - (B ) = - M . (3-32b)

It is obvious that the tension along the curved beam is not constant anymore. It takes
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account of the effects from the initial rotation and the linear momentum in the

longitudinal direction, which can be observed by integrating equation (3-32a) as follows:

B, | .. pEdtiE, FA 0, 4
¥+ I{Wj_ = fD s az — fu TEJT.S +T1. (3'33)
[ —
effect of rotation effect of linear momentam

where T; can be obtained by integrating equation (3-33) and using the boundary

conditions i,(0) = 0 and given as follows:

v, = [} [[Ryapdsds— [ [Tk 25 dsds + [} kw, ds . (3-34)

Substituting equation (3-34) into equation (3-32b), one obtains the following equation:

g k(8%w,)

S, 1 8% fakd, | 2, _
E +,EE(E¥+¥}—UD o 45— [ Roflg s+ [ i Rytlgdsds -
1 8

(3-35)
The solution of the equation is easily written as follows:
Wy =W,y +W,,. (3-36)

where W, is the eigenvector of the straight beam expressed as follows:
w, =D, [Dg sin (;‘HZE) + Dacns(ﬁiﬁ) + D, sinh {ﬂiﬁj + cosh (ﬁiﬁ)]. (3-37)

and W, is the particular solutions. It is complex to obtain @ directly from equation (3-

36), thus using similar procedure with the zero order perturbation, differentiate equation
(3-32b) and then substitute into equation (3-32a), the fifth order differential equation can

be obtained as follows:

8 1{341;“-,_ B }] 8 {1[31 (ai ED) E'Eﬂn]} (35{»‘-9 EDED) 8 (E L )
as [i PN il \as %) T e 8= ) PH (3-38)
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which can be further simplified as follows:

(a;;? - ﬁu':'}i)] =I(3), (3-39)

where

r©- 2L (EE) 158 - (G55 + 2(55). o

Then, using similar derivation procedure as zero order, find #,; and substituting into

equation (3-36). Let W, is expressed by equations only including i, . The whole
procedure is processed by using the commercial code MAPLE, the unknown constant Do,
D3, D4 and the eigenvalue A, are also solved.

Finally, the eigenvalue is solved as follows:

A=Ay + EA,. (3-41)
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3.4 Second Order Approximation Equations

Comparing to the zero order perturbation equations, the first order equations have
advantages of taking account of the coupling effect which is controlled by the small
parameter & However, there is still the simplification in perturbation equations. The

accuracy of results could be improved by the second order perturbations.

The second order perturbation solutions are shown as follows:

A(E) = Ay +EA, + E2A,, (3-42a)
(5,&) = 1y(5) + &1, (5) + Sﬂﬁ: (5), (3-42b)
w(s, &) = W (5) + $iwy (5) + fg Wy (3). (3-42c)

Substituting equation (3-42) into equation (3-7), the second order perturbation equations

are obtained as follows:

8 Blg,+&a, +8%4, a‘fﬁn+§ﬁ-,+$‘ﬁ:
£ 2 (E(ay+ 20, + 20 )2 4 B PE) TR lR)) |

%(au +$;3+$ iy J—i—ﬁ(ﬁ%—i— Ewy + & 1’4‘32]) _ _fl._ﬂ.n+fﬂ,_+$"ﬂ:i{;ll._ﬁn+§ﬂ,_+$"ﬂ=:l
(3-43a)
1 a(a +f:,'F.J +E*‘“ | Wt +E Wy
kas [ (@, + &0, + &*0 ]a-+‘f ] e :I}_
(—__un 53;4.5?‘-5:) + E(ﬁ’g + f'l?-’l + fzﬁ}gj) — _l-.ﬂn+‘fﬂ:+§hﬂ::|;&.ﬁ'n+‘fﬁ;+‘,hﬁ':'_jl
(3-43b)
Equation (3-43) can be rewritten by setting &™=* = 0 as follows:
e dk da,  @w, e e — ':Enﬂ:+ﬁzﬁn:|
(B 58) 5 (Getim) = == (3-442)
1 8% fa,8k o84, #8%w By | 7o Y _ (Bl +A,#, 44000,
(Tt e 5e) —(Ge+ ) = : : (3-44b)
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Equation (3-44) is in the same format with the original equations of motion (3-7), which
means the second order perturbation approximations take account of all effects from the
curvature and the coupling of stiffness. The solution procedure to obtain the eigenvalue

and eigenvector is similar to the previous sections, namely

Combine two equations into one and integrate equation.

According to the beam shape define the curvature value.

Through derivation to find out the particular solution i, .

Let the displacement i, is expressed only by homogeneous solution i,

Substituting lower order perturbation solutions into the second order equations.

© g~ W D PE

Using boundary conditions to solve unknown constants.
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3.5 Summary

This chapter demonstrated the perturbation approach applied the natural vibration
analysis of curved beams. The reason for using perturbation method is to expand the
unknown curvature parameter into a series equation, represented by the known factors.
The non-dimensional governing equations are solved depending on a small parameter,
which represents the geometric property, material property and the curvature and shows

how these properties affect the natural vibration of a curved beam.

The zero order perturbation decouples the flexural and extensional vibration, which
explains the physical meaning of the vibration characteristics of the curved beam. The
transverse displacement of the curved beam is represented by the straight beam
displacement combined with the special solution. This special solution generates the
effects from curvatures. The first order perturbation improves the accuracy of the results
and the second order solutions take account of all effects from the curvature, the stiffness
and the coupling. The differences between different orders are observed from equations
for extensional mode and bending mode. Mode transition phenomena will be explained

by results of both eigenvalue and mode shapes. Examples will be given in Chapter five.

Table 3.1 Differences between different order perturbations, (observed from equations)

Perturbation Zero order First order Second order

Extensional | Tension is constant | Tension includes effect | Additional component

mode equation (3-16) from initial rotation and added, the change of
linear momentum tension is not linear
Equation (3-33) Equation (3-44a)
Bending Particular solution | Couple the effect from Couple the effect from
mode W, is linear to the tension tension
curvature. Equation (3-32b)

Equation (3-25)
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Chapter 4 Finite Element Models

This chapter is presented to prove that numerical methods to establish the curved
beam and the curved plate subjected to various variable curvatures are accepted as an
alternative to the formulations presented in the previous chapter. One widely-accepted
method relies on the use of Finite Element Analysis (FEA) which allows the designer to
model the geometry; material properties; imperfections (such as out-of-roundness),
fabrication-induced residual stresses, misalignment and corrosion defects, as well as
boundary conditions. The primary advantage of the FEA is that there are numerous
commercial FE codes available. Thus eliminating any need to develop actual code. These
commercial FE codes have the additional advantages of being very user friendly, and

providing sophisticated pre- and post-processing options.

4.1 General Procedure

The FEA analysis model is translated from the engineering model and key issues
include the selection of the commercial code, the determination of the loads and
boundary conditions, development of the mathematical model, choice of element types,
design of the mesh, solution procedures and verification and validation. Numerous

decisions are to be made during this analysis process as follows:

 Extent of the model. The use of a full model is preferred in FEA. Symmetric
conditions may be utilized to reduce the size of finite element model, if appropriate. The
model should include the main features of the physical structure related to dynamic

behaviour and capture all relevant modes.

» Material properties. Material nonlinearity may have to be considered in some

circumstances, particularly in order to account for the effects of residual stresses.

« Loads. All possible loads and their combinations are to be considered.
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« Boundary conditions. Boundary conditions are the constraints applied to the model.
The boundary conditions should suitably reflect the constraint relationship between the

structural component and its surroundings.

« Element types. Finite element types are specialized and can only simulate a limited
number of response types. The choice of element types should be best suited to the
problem.

» Mesh design. The discretization of a structure into a number of finite elements is
one of the most critical tasks in finite element modelling and often a difficult one. The
following parameters need to be considered in designing the layout of elements: mesh
density, mesh transitions and the stiffness ratio of adjacent elements. As a general rule, a
finer mesh is required in areas of high stress gradient. The performance of elements
degrades as they become more skewed. If the mesh is graded, rather than uniform, as is
usually the case, the grading should be done in a way that minimizes the difference in

size between adjacent elements.

The basic steps involved in any finite element analysis consist of the following

procedures:

1 Pre-processing phase: Create and discretize the solution domain into finite elements;
that is, subdivide the problem into nodes and elements. Assume a shape function to
represent the physical behaviour of an element; that is, an approximate continuous
function is assumed to represent the solution of an element. Develop equations for an
element. Assemble the elements to present the entire problem. Construct the global
stiffness matrix. Apply boundary conditions, initial conditions, and loading.

2 Solution phase: Solve a set of linear or nonlinear algebraic equations simultaneously
to obtain nodal results, such as displacement values at different nodes or temperature
values at different nodes in a heat transfer problem.

3 Post processing phase: Obtain other important information such as values of

principal stresses, heat fluxes, etc.
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4.2 FEA Solutions of Natural Vibration

In the dynamic problem of a structural system, using a finite element idealization,

the dynamic equilibrium equation of the system is written in a matrix form as
Mii + Ci1 + Ku = F, (4-1)

where M, C and K denote respectively the mass, damping and stiffness matrices of the
structural system. In general, M and K are symmetric matrices whilst C is non-symmetric.
u is the displacement vector and F is the external force vector. To determine the natural
vibrations of this structural system, damping and external loads are ignored and hence
Equation (4-1) reduces to

Mii + Ku = 0. (4-2)
It is assumed that the solution of Equation (4-2) has the harmonic form
u=qe“, (4-3)
which upon substitution into Equation (4-2) leads to
(K —»°M) q = 0. (4-4)

Equation (4-4) is a linear homogenous algebraic system of equations with unknown
vector g and w?. This is known as the eigenvalue problem of the structural system, with
and g representing the natural frequency and the corresponding principal mode vector
respectively. A nontrivial solution of Equation (4-4) requires the determinant of the

coefficient matrix to be zero, that is
det (K —©*M) = 0. (4-5)

The expansion of the determinant in Equation (4-5) results in a polynomial equation
of ®® designated as the characteristic equation of the structural system. If the system has

N degrees of freedom, N solutions of ? can be obtained from Equation (4-5).
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4.3

The Choice of Element

Finite Element Models

In the present work, the commercial code ANSYS (2002) is adopted for modelling

and analysis. There are three elements in ANSYS which are able to model the curved

beam as shown in Table 4.1:

Table 4.1 Selected elements in ANSYS

BEAM4

PLANA42

SHELL93

a uniaxial element with
tension, compression, torsion,
and bending capabilities. The
element has six degrees of
freedom at each node:
translations in the nodal X, v,
and z directions and rotations
about the nodal x, y, and z
axes. Stress stiffening and

large deflection capabilities

used for 2-D modeling of solid
structures. The element can be
used either as a plane element
(plane stress or plane strain) or
as an axisymmetric element.
The element is defined by four
nodes having two degrees of
freedom at each node:
translations in the nodal x and

y directions. The element has

defined by eight nodes, four
the
orthotropic material properties

thicknesses, and

and particularly well suited to
The
element has six degrees of

model curved shells.

freedom at each node:
translations in the nodal x, v,
and z directions and rotations

about the nodal X, y, and z

are included. plasticity, creep, swelling, | axes. The deformation shapes
stress stiffening, large | are quadratic in both in-plane
deflection, and large strain | directions.
capabilities.
x‘ﬁ K s
/ % t
. % o J »
/L’>< \ [ XFRu Lx‘u

A simple test is made to find the accuracy of the chosen elements. Table 4.2

illustrates the natural frequency of a curved beam calculated using these three elements

compared with the reference value also using FEA from (Fleischer 1974). The properties

of the uniform curved beam are listed as follows:
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1=10.16cm, a=7.62cm, t=0.033cm, r=76.2 cm, E=6.89¢*° N/m?, p =2660 Kg/m®, n=0.33

where p is the density, r is radius of curvature, | is the length, a is the width, t is the

thickness, E is Young’s modulus and « is the Poisson’ ratio. The curved edges are

clamped.
Table 4.2 natural frequency of selected elements
Mode shape BEAM4 Hz PLANA42 Hz SHELL93 Hz Fleischer Hz
1 870.32 868.93 870 868.55
2 958.61 958.87 957.882 958.48
3 1292.01 1290.11 1291 1289.12

In order to compare the numerical results with analytical results, in some case the
natural frequency is converted into dimensionless state. The following equation is used

for this transformation. The non-dimensional frequency is defined as follows:

12(1 — 4} ew?
q=plF(1-—p e /5. (4-6)

where p is the density, | is the length, E is Young’s modulus and 4 is the Poisson’ ratio.

A convergence study has also been carried out, shown in Figure 4.1. Due to the simple

geometry, more than 20 elements ensure the results are accurate enough.
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Convergence

980
960
940
920

900
880 e

natural frequency

860

0] 10 20 30 40 50 60

=] st mode 2nd mode

Figure 4.1 convergence study of SHELL93 element

Although all three elements are able to model the curved beam and show similar
accuracy for the circular curved beam, based on all following reasons SHELL93 is taken

as the numerical analysis of curved structures.

make the numerical simulation closer to the real structure
capable for two dimensional curved panels
easier to control boundary conditions

more accurate for larger curvatures

I N

. Avoid shear locking by using the designed stress-strain relationship (ANSYS

Theory Reference)

59



Finite Element Models

4.4 FE model of Curved Beam
4.4.1 The circular curved beam

The equation of the curvature is derived in Chapter 2 and the curvature taken as a
variable parameter is used in the perturbation equations in Chapter3. In order to model
the curved beam or plate, the curvature need to be transformed into ANSY'S coordinate

system.

The first model shown in Figure 4.2 is the sketch of a circular curved beam with the
properties as: the length is 1000 mm, the width is 150 mm, the thickness is 0.8 mm, the
density p is 7770 kg/m®, Young’s modulus E is 200 GPa. The global coordinate system
is represented by the Cartesian coordinate system o0-afy. of is along the direction of the
straight line between two ends of the beam; oa is normal to of direction, along the short
edge of shell. oy is normal to the plan aof. The geometry of the shell is that | denotes the
length of curved edge; a denotes the length of short edge; r denotes the radius of curved

edge.

The non-dimensional curvature denoted by k defined as follows:

k=l (4-7)

where | is the length of the beam, r is the radius of curvature and k is the curvature.

The relation between the non-dimensional curvature and the subtended angle of the

curved beam is defined as follows:
6=k x360/ (4-8)

In present numerical studies, the changes in subtended angle are used to represent the

changes in curvatures.
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Figure 4.2 Geometry of curved beam with a constant curvature

4.4.2 The S-shape strip

The s-shape elastic strip has zero curvature at the inflection point; the curvature
increases monotonically in magnitude away from that point in both directions. For the
simple model of the strip as a uniform beam in static equilibrium under end moments, the

curvature would vary linearly with axial distance.
The anti-symmetric linear curvature function can be defined as follows:
k=b(2s—1). (4-9)

where k denotes the curvature, b denotes the amplitude of curvature and s denotes the

length of arch.

The global coordinate system is represented by the Cartesian coordinate system o-
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afy, shown in Figure 4.3. of along the zero curvature direction; oa is normal to off
direction, along the short edge of shell. oy is normal to the plan aof. A code is developed
in MATLAB to solve the function of «(k) and F(k) which represents the

Figure 4.3 finite element models for the strip of varying curvature

coordinate of each point on the curved edges of the S-shape strip. In ANSYS the anti-
symmetric linear curves are expanded into a two dimensional strip. The SHELL93

element is used to mesh the strip.
4.4.3 Other curvatures

Similar to the circular curved and S-shape curved beam, through the curvature
function, many kinds of geometry can be defined, shown in Table 4.3. Curved beams
with these curvatures can also be modelled by creating curves of a(k) and (k) in the

model.

Using the curvature function it is possible to solve the perturbation equations
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demonstrated in Chapter 3; however, there are also some types of curved beams which

are difficult to represent by such function. The example will be given in Chapter 6.

Table 4.3 Curvature function of various curves

k Geometry of curved edge Figure
1 circle 4-2
2s-1 S-shape 4-3

S Eulers spiral

52 double clothoid U

s2-1 Polynomial spiral @/—\9
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4.5 Boundary Conditions Treatment

Since both clamped and hinged boundary conditions provide the extensional restraint,
changes of curvature will cause the mode transitions of the curved beams. Therefore to
examine different boundary conditions is an important procedure in the numerical
analysis. Boundary conditions demonstrated in Chapter three will be treated in the

following forms in numerical analysis.

For the circular curved beams, various boundary conditions are introduced into the

global coordinate systemo—«afy . 0« is along the direction of the straight line between
two ends of the beam; o is normal to o« direction, along the short edge of the beam.

oy is normal to the plan aop .

For the s-shaped strip, o along the zero curvature direction; o is normal to oc

direction, along the short edge of shell. oy is normal to the plan «o0p.

Case 1 Spin

The transverse displacement is fixed and no moment applied at the boundary.

only U, =0, (4-10)

Case 2 Clamped

AllDOFs=0. (4-11)
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Case 3 Hinged

All the displacements are fixed at the boundary, but rotations are not fixed.

U,=0U; =0,U,=0,M=0. (4-12)
Case 4 Free

No shear, axial force and moment at the boundary.
All DOFs are free (4-13)
Case 5 Rolling

Only the horizontal displacement is free.

O U, =0,U, =00, =00 =00, =0. (4-14)
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Chapter 5 Curved Beams with
Variable Curvature

The natural vibration behaviour of the curved beam with variable curvatures is
analyzed in Chapter three. The solution of the perturbation equations is derived. In order
to investigate effects of curvature on the natural characteristics of curved beams, in this
chapter, the relationship between eigenvalue and curvature are formulated by solving
unknown constants in equation (3-29). The circular curved beam and S-shape strip are
taken as examples. Results are obtained and plotted in MATLAB code. Some features

caused by the curvature are revealed. Numerical results are also plot and explained.

5.1 Curved Beam with Constant Curvature

As defined in equation (3-21), non-dimensional curvature k is a function of the

length of arch 5. The constant curvature is independent of S, therefore the shape function

K (5) is equal to 1 and then equation (3-21) can be rewritten as follows:
k(5) =bK(5)=b=1r (5-1)

where the curvature amplitude b is equal to constant that is the curvature of an arch with

a constant radius r. Substituting equation (5-1) into equation (3-29), it results in:

[cl Sin(A*S) + C, COS(A*S) + C, sinh( A*S) + cosh(A%§)]

=
I
O

(5-2)

b* . sin(A‘s) + C, cos(A's) + C, sit( A‘s) + cosh(As) s
J’_
A—b?

where constant C can be eliminated by normalizing the transverse displacement and

constants C;, C, and C3 need to be solved by using appropriate boundary conditions.
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Firstly, hinged boundary conditions are processed as follows.
5.1.1 Hinged boundary conditions

According to equation (2-37), hinged boundary conditions can be treated as:

w(©)=0,ww-0,3 7O _o WO _, (5-3)
ds ds

Substituting boundary conditions shown in equation (5-3) into equation (5-2), it
yields four equations. Three unknown constants C;, C, and C; are obtained by solving

these equations and shown as follows:

=N (5-4)
sin A*
C,=1, (5-5)
C, = 1-cosh 1A4 . (5-6)
sinh A*

Substituting the first condition in equation (5-3) and equation (5-4) — (5-6) into
equation (5-2), the relationship between the eigenvalue and curvature can be

formulated as follows:

AlC, +1)

b? =
(C +1 lC sm(A“s)+C cos(A‘*s)+C S|nh(A4s)+cosh(A4s)}i

AC, +1) . (65-7)
(C +1)— lC (1-cosA‘)+C, sin A +C,(cosh A* —1) +sinh A‘*J

A

1-A 1—coslA B 1—cosh1A
sin A* sinh A*
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The code to solve equation (5-7) is written in MATLAB; the result is obtained and
illustrated in Figure 5-1. The horizontal coordinates is amplitude of the curvature b. The

vertical coordinates the non-dimensional eigenvalue A.

x 10° Circular curved beam with hinged ends
25 T T T T T

3rd anti-symmetric mode |

2 |- —
<
(]
=

2 15F :
()
Ry

o 3rd anti-symmetric mode

g
9o
12
C
[}

£ 1y -
o
<
o
z

2nd symmetric mode
0.5 2
2nd anti-symmetric mode
1st symmetric mode
0 | | | | | | 1st antj-symmetric mode
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

curvature b
Figure 5.1 Non-dimensional eigenvalue of a circular beam with hinged boundary conditions

The symmetric modes and the anti-symmetric modes are labelled on the curves. The
definition of symmetric modes and anti-symmetric modes can be easily demonstrated by
the mode shapes. When the deflection of the left half of the beam is the same with the
right half of the beam, it can be called symmetric mode. If the deflection of the left half
of the beam is of the opposite sign to that of the right half, it is called anti-symmetric

mode.

From Figure 5.1, it can be seen that with the increase in curvature, frequencies of
symmetric modes rise dramatically and frequencies in anti-symmetric modes remain
almost constant. As curvature increase from zero, the frequency of first symmetric mode

starts rising. The rising will stop when curvature reaches a certain large value, and from
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which the frequency of second symmetric mode start to increase. It will stop rising when
it reaches another larger value of curvature. The trends continue in higher symmetric

modes.

The analysis is also processed by finite element method in ANSYS.

Natural frequency of circular curved beam with hinged ends

600 T T T T T T T T m
o e 4
A 3rd symmetric mode
500 - 7
3rd anti-symmetric mode
400 - 2
£
kel
o
3
g e
@ 300- e 2nd symmetric mode N
% . — ,*,*_kf*xw ——f————————
T
p=}
®
c
200 2nd anti-symmetric mode 7]
100 s e ey 1st,symmetric mode ,
/ 1st anti-symmetric mode
0a | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10 11

subtended angle 6 (degree)

Figure 5.2 Natural frequency of circular curved beam with hinged ends

The natural frequency of the circular curved beam with hinged boundary conditions
is shown in Figure 5.2. The circular curved beam has the properties as the length of the
beam is 1000 mm, the width is 150 mm, the thickness is 0.8 mm, the density p is 7770
kg/m®, Young’s modulus E is 200 GPa. A is the area of cross section and | is second
moment of inertia. f is the frequency (Hz) obtained from ANSYS and o is angular

frequency (rad/s).

Natural frequencies obtained from ANSYS are converted to the non-dimensional

eigenvalue using the following equations:
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- pAl*w?
-7 (5-8a)
w = 2af (5-8b)

Circular curved beam with hinged ends

Perturbation

3rd anti-symmetric mode

Non-dimensional eigenvalue A
=

2nd symmetric mode
F* x X x X

2nd anti-symmetric mode

1st symmetric,mol
o T * ;* * * Tst aﬁt‘i—séﬁmmﬁtri‘c*moa?e

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

curvature b

Figure 5.3 Comparisons of non-dimensional eigenvalue of circular curved beam with hinged

boundary condition

Figure 5.3 combines results from both perturbation analysis and FEA. From Figure

5.3, it is observed that mode transitions occurred at several curvature values. For the first

symmetric mode, it happens at about b=0.007. For the second symmetric mode, it

happens at about b=0.038. For the third symmetric mode, it happens at about b=0.09.

Another observation is the trend of the curves rises according to the increase in the

curvature. Considering the second symmetric mode, there is a relatively rapid rise in

frequency when the curvature amplitude b, attains a value of about 0.018. The rise

continues till b attains a value of about 0.065, after which frequency is unaffected by the

curvature. In a similar way at b=0.065, the third symmetric mode, which was invariant
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with b till now, shows a rapid increase. The increase continues till b reaches about 0.14;
after this the frequency is again unaffected. Thus, at a given range of b only one
symmetric mode will experience a significant change in frequency; the others, lay and
large, remain unaffected. Note that anti-symmetric modes are unaffected and generally

invariant with changes in curvatures.

It has been demonstrated that the curvature bring the geometric coupling between the
extensional mode and the flexural mode. In Figure 5.3, two sets of solid lines represent
the asymptotic curves. The set of rising lines represents the membrane vibration. Another
set of horizontal lines represents the pure flexural vibration. At the beginning, natural
frequency curves rise to a higher value following the route of the membrane asymptotic
line. The natural frequency stops increasing when it is close to the horizontal asymptotic
line. The curve then moves following the flexural asymptotic line horizontally. It
illustrates how the extensional stiffness and the flexural stiffness interact in the curved

beams.

Figure 5.3 illustrate the effect of curvature on the natural frequency of curved
circular beam. They also indicate that the symmetric and anti-symmetric modes sequence
appears in a reverse order when a certain curvature is reached. The mode transition
phenomena are illustrated using numerical results and shown in Figure 5.4. Three cases
are given according to the value of radius of curvature. For the straight beam (case one),
the mode shapes keep normal. As b increase (case two), the lowest natural frequency
changes to respond the first even mode shape, which means the mode sequence changes.

For case three, b is larger enough and then the first odd mode does not exist.
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Figure 5.4 Variation in mode sequence due to the rising in curvatures
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5.1.2 Clamped boundary conditions
The clamped boundary conditions according to equation (2-38) can be treated as:

W(0)=0, w0, WO _, dw{)

—=0. 5-9
ds ds (5-9)

Substituting boundary conditions shown in equation (5-9) into equation (5-2), it yields
four equations. Three unknown constants C;, C, and C; are obtained by solving these

equations and shown as follows:

2= 'm%gf , (5-11)
C,=-C, . (5-12)
where,
G =sin A* —sinh A* (5-13)
H=cosA! -1 , (5-14)
| = Al (cos A* —cosh A%) : (5-15)
J=—A'sin A+, (5-16)
M =—coshAf +1 , (5-17)
N = —A*sinh A . (5-18)

Using the same procedure as shown in last section, substitute the first condition in

equation (5-9) into equation (5-2) and it gives that:
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A(C, +1) . (5-19)

bz = 1 i 1 1 1 1
(C,+1)-A" lCl(l—cos A*) +C,sin A* + C,(cosh A* —1) +sinh A’J

Equation (5-19) represents the relationship between eigenvalue and curvature, which
is solved in MATLAB code and results are illustrated in Figure 5-5. The trends of mode

transitions are similar the one with hinged boundary conditions.

x 10° Circular curved beam with clamped ends
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Figure 5.5 Non-dimensional eigenvalue of a circular beam with clamped boundary conditions

Substituting equation (5-19) into equation (5-2), the natural mode shape can be
obtained, which is plotted in Figure 5.6. It clearly shows the natural modes changes from

the anti-symmetric modes to the symmetric modes when the curvature increases.
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eigenvalue

550

Figure 5.7 Symmetric mode shape transitions for a clamped circular curved beam

If the anti-symmetric mode is ignored, the transverse displacement is expressed as

follows:

76



Curved Beams with Varying Curvature

1/a 1/4 1/4 1/a
A

A 1 . 1 A :
WD=C{51I1 - cnsh[ﬁﬁﬁ (s—:)]-l—smh “—cos [ﬁﬁ” (s—:)]—sm “—cosh—— —

-
= .

ﬂ_.'d- 174
sinh COS—> }

(5-20)

The mode shapes for only symmetrical modes and the extension vary during the
transition stage are plotted in Figure 5.7 and Figure 5.8. It is found that the transition of
mode shapes following the increase of the curvature is similar as the one with the hinged

boundary condition.
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Figure 5.8 extension varies with the curvature
The tension are expressed by equation (3-16) as follows:

EE + kv, =1,
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Substituting the solution of eigenvalue and transverse displacement into above equation,

the tension can be obtained as follows:

N ﬁl.-'rﬁl- ﬁlﬂm ﬁlﬂﬁ} ﬁll}fr; 4 ﬁlﬂﬁ} _.-11;4
e = b |sin cosh + sinh COS — gin ginh —
2 2 2 pAl/e 2
0 . (5-21)

Figure 5.8 also explains the mode transition phenomenon. When the eigenvalue
increases, the tension also increases in one direction. At the brake point 10.2, the mode
transition occurs. The extra tension released and the mode shape turns from the
symmetrical to the anti-symmetrical. At the next brake point 10.5, mode shape turns to
the symmetrical again but with higher half wave. The following transition happens at the

brake point 17, similar as before.
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For cases of those boundary conditions which have no tension constraint, all natural

frequencies remain almost constant shown in Figure 5.9.
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Figure 5.9 Simply support boundary condition
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5.2 S-shape Strip

The analysis is not limited to the curved beam with constant curvature. The example
S-shape strip has the following properties: length of the beam is 1000 mm, the width is
150 mm, the thickness is 0.8 mm, the density p is 7770 kg/m®, Young’s modulus E is 210
GPa, Poisson’s ratio p is 0.28. The curvature shape function in equation (3-21) allows
curvature change to different forms. S-shape curved beam has different characteristics of
natural behaviour, the curvature of which is taken as linear anti-symmetric. The shape

function of s-shape strip can be simply expressed as follows:
K()=25-1,0<5<1 (5-22)
Therefore equation (3-21) can be rewritten as follows:
K(5) =b(25-1). (5-23)

where at both ends of the beam, the amplitude of curvature is maximum and it is
equal to zero in the middle of the beam. Substituting equation (5-23) into equation
(3-29), it results in:

W=C, [cl sin(A‘S) + C, COS(A*S) + C, sinh( A*S) + cosh(A%§)J

k[ ke, [cl Sin(A*S) + C, cos(A*S) + C, sinh( A*8) + cosh(Aig)]dg
+ 2
A- :lZ ds

L1 1 ) 1 1 5-24
= C[Cl sin(A*S) +C, cos(A*S) + C, sinh( A*S) + cosh( A §)] (5-24)

A [— C, (cos Al +1)+C,sin an C,(cosh A +1) + sinh A}*]
Cb?®
N [Clsin AF +C,(cos A ~1) - C,sinh At — (cosh A 1)
A-b?%/3
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From the circular beam study, it is found that under both hinged and clamped
boundary conditions, the transverse displacement at ends is equal to zero. Therefore
substituting the condition (wW(0)=0) into equation (5-24), it gives the relationship

between eigenvalue and amplitude of curvature, shown as follows:

bZ — - A(CZ +1) -
(C,+ 1)j:(2§ _1)%ds + j; (25— 1)[(:1 Sin(A*S) + C, cos(A'S) + C, sinh( A*S) + cosh(A%g)Jd§

_ A(C, +1) .
Y3(C, +1)+ A l— C,(cos A* +1) +C, sin A* + C, (cosh A* +1) +sinh A’

LA [Cl sin A* + C,(cos A —-1)—-C,;sinh Af - (cosh A -1)
(5-25)

where the constant C is eliminated by normalizing the transverse displacement and

constants C;, C, and C3 need to be solved by using appropriate boundary conditions.
5.2.1 Hinged boundary conditions

Substituting equation (5-3) into equation (5-24), it yields four equations. Three
unknown constants C;, C, and C3 are obtained by solving these equations and shown as

follows:
C,=-— ! lﬁ-FCOSA%), (5-26)
sin A*
C,=1, (5-27)
1 1
C,=- - cl+ cosh A‘*) . (5-28)
sinh A*

Therefore equation (5-25) can be solved by substituting equation (5-26) — (5-28).
Results are illustrated in Figure 5.10. The horizontal coordinates is the amplitude of the

curvature b. The vertical coordinates the non-dimensional eigenvalue A. The symmetric
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modes are shown in dashed lines and the anti-symmetric modes are shown in solid lines.
The trends of natural mode changes of the s-shape strip are different from that of the
circular beam with constant curvatures. Unlike the circular beam, the symmetric modes
of s-shape strip will not be significantly affected by changes in curvature. On the other
hand, the anti-symmetric natural frequencies start increasing with the rising of curvature
and will stop rising until reach a certain large curvature parameter. It can be concluded
that the mode transitions of s-shape curved beam has a reverse order of the curved beam

with constant curvature.

x 10° S-shape strip with hinged ends

25 T T T T T
/ / 3rd symmetric mode

—+— FEA
/ 3rd anti-symmetric mode Analytical

15

__, 2nd anti-symmetric.mode
* *

Non dimensional eigenvalue A\

2nd symmetric mode

0.5

+*

= ., 1stanti-symmetric mode . '
1st symmetric mode

0’ —— | | | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

curvature b

Figure 5.10 Non-dimensional eigenvalue of an s-shape strip with hinged end conditions

Mode transition behaviour is also illustrated in Figure 5.11. The first three natural
modes for three different curvatures are plotted. Symmetric modes are noted by s, anti-
symmetric modes are noted by as. The frequencies are given, which match with the non-

dimensional eigenvalue after the convert by equation (5-8).
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Modes b=0 b=0.1 b=0.2

1t P ——
s 1.88Hz s 1.889 Hz s 1.892 Hz

2" W
as 7.573Hz s 17.113 Hz s 17.139 Hz

3rd W
s 17.102 Hz as 25.672Hz as 27.149 Hz

4th :i i ~ -
as 30.52 Hz as 44.325Hz s 47.903 Hz

Figure 5.11 mode shape transition of S-shape with hinged boundaries

5.2.2 Clamped boundary conditions

Using the similar procedure with the hinged boundary condition case, the unknown

constants here can be obtained as follows:

_NH -MJ
'UHI-G)
_ MI-NG
2 HI-GJ)

C,=-2A"“(C,+1)-C, ,
where,

G= —(sin A* —sinh A%) ,

H= —cosA% -1+ 2A’% sinh A% ,

| = —A (cos A* —cosh A%) ,

J=2coshAf + Afsin Af —2 |
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M =cosh A" +1—2A *sinh A* (5-36)

N =—2cosh A* + A sinh A* +2 . (5-37)

Substituting equation (5-29) — (5-31) into equation (5-25), eigenvalue can be
obtained by giving a range of value of curvature. Results are illustrated in Figure 5.12.
The trends of mode frequencies changing are similar with hinged boundary conditions.

It can be concluded that for a beam whose curvature is a symmetric or anti-
symmetric function, only those modes possessing the same type of symmetry in the
transverse displacement undergo a mode transition. It can be proven from equation (3-20)
that if the curvature shape function is symmetric (or anti-symmetric) and the transverse
displacement function is anti-symmetric (or symmetric), the integration will be equal to
zero; thus no tension can be generated in the beam. Therefore, curvature does not affect

the natural behaviour of curved beam.

x 10° S-shape strip with clamped ends
4.5 T T

—— FEA
35F Analytical

3rd symmetric mode

251

3rd anti-symmetric mede —

Non-dimensional eigenvalue A

15 2nd anti-symmeyi

2nd symmetric mode

1st anti-symmetric mogde
§ — ~ | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
cunvature b

* ——— *
1st symmetric mode

Figure 5.12 Non-dimensional eigenvalue of an s-shape strip with clamped end condition
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5.3 Summary

5.3.1 Discussion on different order perturbations

The difference between different order perturbations results normally refer to the
accuracy comparing with the closed form solution. As reviewed in the background, very
limited closed form solution for curved beams with specific boundary conditions exists.
Hence, in this section, the first natural frequency of a circular curved beam with clamped
boundary condition is provided to demonstrate the accuracy of different order

perturbation. FEA results are used for comparison.

From Figure 5.13, it is found that for a thin curved beam (thickness less than 1/20 of
the length), the eigenvalue of different order perturbations are very similar. From
equation (3-6), it is easy to see the parameter £ is very small for small thickness, which
explains all curves coincide together. When the thickness increased, in Figure 5.14, the
curves of first order and second order perturbations are closer to the FEA results. Since
the parameter # includes also the curvature parameter, it is noted that within the lower
curvature range, all curves still coincide together until the curvature becomes large

enough; parameter & starts to affect the trends of the eigenvalue.
5.3.2 Discussion on natural frequencies change for large curvatures

For example, in Figure 5.12, the curve for the first anti-symmetric mode rises rapidly
before the value of curvature reach 0.1. After that, the trend of the curve remains steady.
The first anti-symmetric mode gradually transits to the second anti-symmetric mode. If
the curvature continues increasing, at a certain large curvature, say much larger than the
value of 0.35, the second anti-symmetric mode will finish transition to the third second
anti-symmetric. Therefore, at a certain large curvature, the first anti-symmetric mode will
not exist and the curve for the first anti-symmetric mode will stop before that value. In
such case, the first natural frequency of the curved beam with large curvature can be very
high.
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5.3.3 Summary

From the analysis in this Chapter, it is easy to conclude that for the curved beam
whose curvature can be expressed as the function of the length of the arc, the perturbation
solution can be derived. Different curved beams have different natural modes, but the
changes in the curvature lead to the mode transition phenomena. These mode transition
phenomena can be seen from plots of natural frequency, mode shape and tension of the
curved beam. All analytical results are compared with FEA ones, showing very good

agreement.

14000 T —— T

12000

10000

8000

6000 -

4000
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Figure 5.13 Non-dimensional eigenvalue comparisons of a thin (n=1e-6) circular curved beam
with clamped ends
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Figure 5.14 Non-dimensional eigenvalue comparisons of a thicker (n=1e-4) circular curved beam
with clamped ends
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Chapter 6 Curved Beam with
Arbitrary Curvatures

Not all curvatures can be easily expressed as the function of the length of arc such as the
curved beam with parabolic arc. Another example, in the construction industry, is that of
curved beams requiring to be weld to straight beams at both ends. It is not straightforward
to apply the perturbation method to those kinds of curved structures. In order to expand
the present analysis suitable for arbitrary geometries, some transformations and

assumptions are made in this Chapter.
6.1 Treatment of Arbitrary Curvature

It has been demonstrated that when the curvature can be expressed as the function of the
length of arc, the natural behaviour can be investigated through the perturbation method.
However, in real engineering applications, not all geometries can be ideally expressed by
the curvature function. For a parabolic curved beam, shown in Figure 6.1, the arc length

can be expressed as follows:

s(8) =6V1+62+sinh 18 where0 <8 <m (6-1)
k=—>— where0 <8 <m (6-2)
2(1+6%)z

According to equation (6-1) and (6-2), the curvature function can be derived as follows:

k(s) = [Zds = [ 22ds, (6-3)
where = = :: cosh B (6_4)

ds  J730%s:

Jirg? gminh @
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and == = (6-5)

By substituting equation (6-4) and (6-5) into equation (6-3), it is seen that if the curvature
is assumed as the function of the arc length, the equation would be very complex.

Therefore we try to seek another solution.

| foous | |

Figure 6.1 sketch of a parabolic curved beam

A parabola can also be obtained as the limit of a sequence of ellipses where one
focus is kept fixed as the other is allowed to move arbitrarily far away in one direction.

The equation of a parabola in rectangular coordinates is as follows:
_'L:l' = M: . (6-6)

Looking back to the curvature equation in Chapter 2, the curvature for the parabola arc is
as follows:
:}.

R(x)=—48 _—_ 22 (6-7)

dy 2T 1+(2ax)®]z
[1—|_“.—}I ] :
\dx s

0,

|m

From the zero order perturbation equation, it is assumed that the solution of the curved
beam is equal to the solution of the straight beam plus the particular solution. This
assumption leads to x = = for the curved beam with small amplitudes of curvature.
Therefore, in rectangular coordinates, equation (3-12) transforms to the following

equation:
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2 (E2 - agiw, )] =0. (6-8)

By substituting equation (6-7) into equation (6-8), the solution procedure is similar as

previous analysis.
6.2 Natural Vibration of a Parabolic Arc

An example is given by Lee and Wilson (1989) for a parabolic arc with dimension
of 1=36.7cm and h=9.17cm, and with cross-section dimensions of 2.54cm and 0.635cm.
The boundary condition is clamped at both ends. The natural frequencies are shown in
Table 6.1.

Table 6.1 Natural frequency of parabolic arch (Hz)

Mode number Lee and Wilson (1989) Perturbation FEM
1 363 356.4 358.6
2 818 770.8 810.6
3 1450 1360.3 1433.1

The zero and first order perturbation solutions are calculated. Because the
thickness/length ratio is small < 1/50, results from both are similar. However, for second
and third mode, the perturbation results are much lower than Lee and Wilson (1989), who
used dynamic stiffness method. This is caused by that the transverse displacement and the
curvature are the function of x other than s. Assume the length of the beam is fixed, due

to the curved shape, the difference between x and s will generate the tolerance.

The mode shape transition of the parabolic arc behaves similar as the circular curved

beam because they have the same symmetric configuration.
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Chapter 7 Effect of Curvature on the
Natural Vibration of
Curved Plates

If the lateral direction of a curved beam cannot be ignored, it is called singly curved plate
in this Chapter. Such curved structures are normally solved by the thin shell theory, which
has been reviewed and derived in Chapter 1 and Chapter 2 respectively. For the curved
plate with variable curvature, the governing equations become very complex, and
researchers normally seek help from numerical approaches. In this Chapter, the
perturbation method is shown to be applicable for the thin curved plate when combined
with the Rayleigh-Ritz method. However, more features caused by changes in curvature

are revealed by FEA results.
7.1 Application of Perturbation Solution

The most common analytical approach to deal with the natural behaviour of a flat

plate is the Rayleigh-Ritz method. The natural frequency can be expressed as follows:

) \Y
o = , (7-1)
PP/ [ [P w?
2, [} [ wdso
where V is the strain energy
V=—>[ Mxds. (7-2)

where M and # can be found from equation (2-19) and (2-20).

and w is the transverse displacement,
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W = Ez:j_ Wn ) (7-3)

where W, is the displacement function for the curved beam and can be expressed as

follows:

A Csm( )+C cos( )+C smh(—)+cosh(—)+W (7-4)

W, is the particular solution for curved beam and can be obtained following the same
procedure shown in Chapter three, section 3.2. W, can be obtained using the boundary
conditions. Substituting w into equation (7-1), the natural frequency can be obtained for a

circular curved beam with the property given in Chapter four, section 4.3.

Table 7.1 natural frequency of circular beam with hinged ends

Mode shape Rayleigh-Ritz Hz ANSYS Hz
1 318.4 325.2
2 659.1 668.4
3 1297.7 1308.3

For the singly curved plate, the transverse displacement functions for lateral and
longitudinal directions are expressed as follows:

w = E n=1%mn W W (7'5)
=c,.sin(™y +c_, cos(M%) + ¢, sinh( M%) + cosh(™2y, (7-6)
a a a a
W, =C, sm( ) +C,, cos( ) +C., smh( ) + cosh(—) +W,, (7-7)

where the notation x represents the short straight edge with width a and s represents the
curved edge with the length |. W, is the particular solution for curved beam, see equation
(3-25). Once the boundary conditions are known, Wy, and W, can be derived and then

substituting to equation (7-1) to obtain the natural frequency. The natural frequency of a
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circular curved plate with the same property given in Chapter four, section 4.3 is

calculated as an example. Four edges are hinged. The result is shown in Table 7.2.

Table 7.2 Natural frequency of curved plate with hinged edges

Mode number Rayleigh-Ritz Hz ANSYS Hz
1,2 710.1 719.8
1,3 812.3 822.6
1,3 1087.3 1095
2,1 1128.6 1140

Although the energy method combining with the perturbation method is able to solve
the curved plate problem, it needs large work on equation derivations for different
boundary conditions. As comparisons, FEM is easier to solve the free vibration problem

and more applicable to reveal most features related to the changes in curvatures.
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7.2 Propagation Behaviour of the Curved Plate
7.2.1 Circular curved plate

Scott and Woodhouse (1992) calculated the wave propagation along an infinite strip
of constant curvature. They used wave equations to demonstrate the impact of curvatures
on wave propagation. The solution is not explicit until the present paper simulates the
similar results by FEA. The transverse displacement in horizontal direction of a circular
curved strip is calculated. The first three symmetric modes are shown in Figure 7.1. The
transverse displacement varies along the strip. Using FEA result, Figure 7.2 simulates the
wave propagation along a strip of constant curvature, comparing with results from Scott
and Woodhouse (1992), it shows the similar trends of curves. The infinite strip is
simulated by pinned boundary conditions. Three groups of curves represent three

symmetric waveguide branches.

The first symmetric mode is represented by solid lines, called “bending-beam” mode.
It can be found that four solid lines which represent curved beams with four different
curvatures coincide together. This indicates curvature does not affect natural behaviour of
infinite curved beams because there are no boundary conditions to provide tension to the
beam. Dashed curves represent second symmetric modes. Four curves represent four
strips with different curvatures (subtended). From bottom to top, the curvature increases
from 0° to 57.3°. For the most curved strip, when the wave number increases, the natural
frequency reduces initially and then increases. When the wave number exceeds 20,
natural frequencies tend to be identical for all curved strips. In other words, the curvature
can not affect the natural frequency when the mode number is large enough. For the third
symmetric modes, dot curves indicate the trends appear to converge at large wave number.
However, this involves very higher frequencies. Therefore no further works will be done

in this case.

Other boundary condition corresponding to the second lateral symmetric modes are
calculated and some is shown as follows, which illustrates how the natural frequencies
change due to changes in curvature. Figure 7.3 is for the clamped circular curved strip,

using the same property as in Chapter five, section 5.1, the lower natural frequency rises
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Third symmetric mode
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Figure 7.1 transverse displacements for first three lateral symmetric modes of an elastic strip
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Figure 7.2 Dispersion curves for second symmetric lateral vibration mode of circular curved strip.
Four curves represent four strips with different curvatures (subtended angles). The trends of
curves is similar with one shown in Scott and Woodhouse (1992)
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faster than the higher ones, which indicates the mode transition phenomenon occurring in
large curvature strip. The fully clamped boundary condition in Figure 7.4 shows the
similar result. It can be seen that the natural frequency of the circular curved beam has

slight changes for different boundary conditions.

Figure 7.5 shows the curved plate with fully clamped boundaries. There is no first
symmetric waveguide mode for the normal displacement function due to high stiffness in
the longitudinal direction. The fully free boundary conditions show in Figure 7.6, that
there is no mode transition occurring, but the lower modes increase more rapidly than

higher modes. This indicates that the mode sequence will alter at a very large curvature.

“aration in mode sequence withend clamped condition
112

T T T T T T T

—— 1st mode
—=— Znd mode
—4— 3rd mode
—— dthmode

10

108

Hz

106
104

102

MaLral frequency

100

g4 1 I 1 1

Im

] 0.4 1 1.8 2 2.4 ] 3.4 Ful 4.5
Subtended angle & degree

Figure 7.3 Natural frequencies of circular curved beam with two ends clamped for the second
waveguide branch
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“ariation in mode sequence with full clamped condition

—+ litmack
=&- 2xl mk

Hz

MLl freauency T

10 15

Subtended angle 8 degree
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Figure 7.6 natural frequencies of curved plate with full free boundary condition

7.2.2 S-shape strip

The ‘bending-beam’ modes of the S-shape strip with different amplitude curvatures
are shown in Figure 7.7, which shows the similar mode transition phenomena as the one-
dimension curved strip shown in figure 5.11, but in this example, The strip is clamped at

both ends and the property is same with the one shown in Chapter five, section 5.2.

In this chapter, more interest is focused on the lateral vibration modes. The first
confined modes on first three second symmetric waveguide branch of the normal
displacement function are shown in Figure 7.8. In Figure 7.8a, there is no transverse
deflection in horizontal direction, which is called first symmetric waveguide mode.
Figure 7.8b shows the transverse deflection in horizontal direction, which is called
second symmetric waveguide mode. The mode shape shown in Figure 7.8c represents the

third symmetric wave guide mode.
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For the second symmetric mode of wave propagation, the natural modes for the
transverse displacement function are confined to the vicinity of the points of zero
curvature and they are not affected by the boundary conditions at both ends of s-shape
strip. This means the natural frequencies for each mode are same for any boundary

conditions applied at ends of the beam.

The natural frequencies are illustrated in figure 7.9, which shows that the sequence
of natural mode will not change following changes in curvatures. It can be seen that the
curvature affects the natural frequency but no mode transition happens because the lower

natural frequency increases also slower.

Considering fully clamped boundary conditions, the natural frequencies keep
increasing with the rising in the curvature, shown in Figure 7.10, once again no mode

transition happens.

a. First symmetric mode b. Second symmetric mode c. Third symmetric mode
2.01 Hz 281 Hz 1115 Hz

Figure 7.8 the first three 2 symmetric waveguide modes of an elastic strip of varying curvature
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Second waveguide branch with clamped ends
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Chapter 8 Effect of Curvature on
Natural Frequency
of Composite Curved Beams

As discussed in Chapter three the parameter n represents the geometry and material
properties. For the isotropic curved beam, the material property remains constant. For the
composite material, the property will change due to different layered laminae. In this
Chapter, the natural behaviour of curved beam will be discussed when both curvature and

material property change.
8.1 Effect on Natural Frequency

Examples are given to show how the natural modes of laminated strips changes
with the varying curvatures. The material properties of curved laminated beam are

selected shown in Table 8-1:

Table 8.1 Material properties of curved laminated beam
E1(Gpa) | E2(Gpa) | 11y | G12(Gpa) | o (kg/m’) | ply
S-glass/eproxy | 43 8.9 0.27 | 4.5 2000 [0/90/90/0]

The non-dimensional natural frequencies of an S-glass/proxy orthotropic laminated
beam with constant curvature are calculated by both analytical and finite element
methods. The circular curved beam has dimensions as the length of the beam is 1000 mm,
the width is 150 mm, and the thickness is 0.8 mm. The beam is clamped at both ends. In
the case of four layer symmetric ply [0/90/90/0], the results are shown in Figure 8.1. The
analytical and numerical results are in agreement with each other, which prove that the
zero order perturbation approximation can be used to solve the lower frequency
eigenvalue problems. In figure 8.1, the two set of solid lines represent the asymptotic

curves, which are given by (Tarnopolskaya 1996). The rising trends curve is called
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membrane asymptotic curve and the horizontal line is the flexural asymptotic curve. It
has been demonstrated that the rising of natural mode is caused by the extensional term in
the governing equations. The extensional terms of the general eigenmode represent the
eigenfunctions of the membrane. Hence, the natural modes rise to a higher value
following the routine of membrane asymptotic curves. However, this membrane term will
disappear in the vicinity of the point of the intersection of the two set of asymptotic
curves and vibrations convert into only flexural ones. The natural frequencies will not

pass over the flexural asymptotic curves.

Another example is illustrated in figure 8.2, which is the result comparison for s-
shape strip (the length is 1000 mm, the width is 150 mm and the thickness is 0.8 mm)
with clamped boundary conditions. The lower modes are in good agreement, but the error
in third mode indicates the zero order approximation is not adequate for describing the

higher eigenvalue problems.
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Figure 8.1 Clamped beam with constant curvature
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Figure 8.3 represents how much the curvature can affect the natural frequencies for

different modes. The frequency rising ratio is calculated by using natural frequency of

curved beams divided by that of a flat beam. It is clear that the lower natural frequencies

are affected much more than higher ones.
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Figure 8.2 S-shape strip with clamped end conditions
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8.2 Result Comparisons

Three different laminates are selected to compare the effect of fibre orientation and

stacking sequence on the non-dimensional natural frequency.
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Figure 8.4 First anti-symmetric mode of clamped S-shape strip

These laminates are four ply laminate laid up in [0/90/90/0] stacking sequence, two
ply laminate laid up in [0/90] stacking sequence and four ply laminate laid up in [45/-45/-
45/45] stacking sequence. The first example is the clamped S-shape strip. The first anti-
symmetric mode for three laminates is illustrated in Figure 8.4, from which it can be
found that the laminate [0/90] and [45/-45/-45/45] coincide because they have the same
ratio of Dy; to Aj1. The higher anti-symmetric modes of these three laminates have similar

trends.

Another example is the hinged circular beam. The fundamental natural mode is

plotted in Figure 8.5.
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x 10° First symmetric mode
6 T T T

= /\n
N

T

L

Non-dimensional frequency A

[0/90/90/0]
[0/90/0/90]
[45/-45/-45/45]

oE ! ! ! ! ! ! ! ! !
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

cunature b

Figure 8.5 First symmetric mode of hinged circular beam

Both examples show that the laminate which has the higher Dy; to Ay ratio will have

a faster and higher rising of natural frequencies due to increasing curvature.
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Chapter 9 Conclusions and Future
Works

9.1 Achievements

The present thesis investigates the effect of curvature on the natural behaviour of

curved beams and plates in many aspects.

The natural frequency changes in a regular way due to the variation in curvatures.
Mode shape transition phenomena happen due to the changes in curvatures
Effects from different kinds of curvatures.

Effects of curvature on the lateral vibration of curved plates

Impacts from various boundary condition

o o~ wDbhE

Natural behaviour of composite curved beams

All aspects are investigated based on both analytical and numerical approaches. The
present research further develops the work by Tarnopolskaya and Hoog (1999) to the
second order perturbation approximations which gives more accurate results and reveals
more characteristics mathematically due to changes of curvatures. The characteristics
caused by the changing in curvature have been physically interpreted, which are detailed

in following sections.
9.1.1 Mode sequence changes

The present studies reveal that a very slight change in curvature of curved beams
could cause significant variation in the natural characteristics. Under the boundary
conditions with extensional constraints, the natural frequency of the first symmetric (or

anti-symmetric depending on symmetry characteristics of curvature) mode increases
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rapidly with a small increase in the subtended angle, but this small change in the
curvature will not affect other natural modes. During the rapid increase in frequency there
IS a change in mode shape and the mode ends up as a second symmetric (or anti-
symmetric) mode. In turn, the frequency of the original second symmetric (or anti-
symmetric) mode begins to increase rapidly with a further small increase in the subtended
angle, and ends up as a third symmetric (or anti-symmetric) mode. All the symmetric (or
anti-symmetric) modes are seen to behave in this manner. The anti-symmetric (or
symmetric) modes remain almost constant. Hence, as the symmetric (or anti-symmetric)
mode increases and crosses the anti-symmetric (or symmetric) mode, the two modes exist

with the same frequency for a particular value of curvature.

Such mode transitions can only happen if the curvature function and the transverse

displacement function have the same symmetric or anti-symmetric state.

9.1.2 Boundary conditions

The natural characteristics of curved beam and plate with various boundary
conditions have been analyzed. It has been shown that the natural characteristics of the
curved structure with external constraints at both ends are influenced significantly by the
variation in curvature; however, for the curved structure with no external constraints at
both ends, the varying curvatures do not cause significant change in the natural

characteristics.

9.1.3 Wave propagation behaviour

The wave propagation behaviour of a singly curved plate is demonstrated using
numerical results, which was shown to agree with analytical results (perturbation
methods) for one case only. For the second symmetric waveguide modes, the natural
behaviour of the curved structure with any boundary conditions has the same trends,
shown in Chapter five. For the S-shaped strip, the second symmetric waveguide modes

are not influenced at all by the boundary conditions at two ends.

FEA is proved adequate to simulate the wave propagation behaviour of curved plates.
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9.1.4 Effects from characteristics of composite materials

Results show that the higher ratio of flexural stiffness to extensional stiffness causes
faster and higher value rising of natural frequencies with increasing curvature. The
composite characteristics of curved beams will significantly affect the characteristics due

to the changes in curvatures according to Figure 8.4 and Figure 8.5.
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9.2 Conclusions

Many features of natural behaviour of curved beams and plates are revealed;
however, the perturbation approximation method has some limits to demonstrate effect on
natural behaviours of curved beams due to the changing in curvatures. Firstly, the
approximation can obtain accurate results for very thin beams. If the height-length ratio
increases, the accuracy decreases. The reason is that the governing equations are derived
based on the classical thin beam theory. Next, the governing equations are derived to deal
with curved beam problems. In order to be applicable to singly curved plate, it needs to
be combined with the Rayleigh-Ritz method. However, even for the zero order
perturbation it is time consuming to derive equations. Neither first nor second order
perturbation solutions have been carried out on it. Only one boundary condition is
examined. Thirdly, lower order perturbation approximation only obtains accurate results

for the lower frequency mode transition.

To overcome the above shortcomings of analytical approach, the finite element
method is also used to analyze the curved beams with continuous varying curvatures for
the first time. Results are compared with analytical ones. It shows that FEA has the
advantage in modelling and results are more accurate in higher frequency vibrations. It is
found that FEA could perform the lateral vibration of curved structures without difficulty,
results from which can demonstrate the wave propagation behaviour of continuously

varying curvature.

On the other hand, finite element method also has limitations. For example, in order
to calculate beams with different curvatures, all these beams need to be modelled, which
IS time consuming and not convenient to analyze a series of problems. If using analytical

solution, only changes the curvature parameter, one can obtain the expected results.

Overall, the present thesis gives comprehensive review on the natural behaviour of
curved structures; investigates many features related to the variable curvature, which
provides the reference to engineers when curved beams and plates need to be considered

in the design.
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9.3 Future works

Although the perturbation method is applicable to the curved beams, from the
complex second order equations, we can see that it is not convenient for the thicker
beams analysis. Therefore a more applicable way needs to be found which could combine

the advantages of the present analytical solutions.

Another interesting research may be the damage and buckling of curved beams and
plates. Using the present analytical solution for the curved structures could be more

straightforward than numerical methods.
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Appendix

Appendix I

The strain-displacement equations of the three-dimensional theory of elasticity in

orthogonal curvilinear coordinates can be derived as follows:

PQ, = Ae,da, PQ, = A'e,'df, (I-1)
PQ, = Beyda, PQ, =B'e,'dp, (1-2)

From equation (2-12), we can obtain

oF ot , o
fe de de

( +£B_U+LB_AV_|_ ) +(a_z_£a_“1 ) [E——U]En,(l -3)

By ignore the second order items, we can obtain

| 88 8R 180 1 84 W
A=At 5ty (1-4)
and also
= =
(o [2R 2R _ 18v 185, W i
B'= |5 =Bt it anU+a) (1-5)

we also two tangent vectors of curves

o1 18R
1 A da

=&, + we, + e, (1-6)
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, ==—=¢e, tw,e, +pe,, (1-7)

_lav_ 134 _law _ U (1-8)
1 48z apag ' Ade R

18U 1 88 18w v
===V, p==———— (1-9)

Finally, the strain can be expressed as follows:

r

_Plog=Pgy _4'-a 15U v A W
fa T T pp. 4 _ABE+AEE',E‘+RH (1-10a)
_Plo;-Poz _F'-5_ 188  vav | w
€ = s == —EE'FEE-FE (1-10b)
_ A8 Uy B8 [V -
€«f = Fag (A) +Aﬂﬂ: (3) (1-10c)

where e, egand e,g are strains at an arbitrary point of the curved body.
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Appendix II

In this section, we consider plate analysis for layered orthotropic materials. Recall

from plate theory (Shenoi and Wellicome, 1993), the following relationships:

Kinematics:

(All-1)
a | [ | 2w
ox ox OX
ov ov 02w £x0 "X
{8}: 5 = 5 +Z —y = gyo + 7 K‘y
u | |au v 2w | 0 By
o o) oy x| oy

The terms are the mid-surface extensional and shear strains for
{ex0:€ 5xy0}

y0:
plate; while {ic, Ky, Koy} are the curvatures about the x and y axes, respectively, plus
X1y IR Xy

the twisting curvature (xy).

Constitutive (orthotropic laminae) :

O'xx Exx 611 (512 (516 Exx (All-2)
Oy (= [Q] Eyy =1 Q1 Qpn Qxp Eyy
Tyy Exy =Vxy!l2 Qe1 Q2 Qes Exy =Vxy!2
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Force and Moment Resultants:
(AlI-3)
N, =jtaxxdz, N, =jtayydz, Nyy = Nyx =jtaxydz
My :—Lz oxdz, My :—Lz owdz, My, =M, :—Lz Oyydz

Qy = _J.t oy dz, Qy = _-[t oy, Uz

Consider now a plate made of "N" layers (lamina) arranged as shown below.

AZ
* itN N ZN &
Z
b ) t/2 7
B o X

A »

t/2 3 S h 22

b, 2 7 4

A 4 A4 tl 1 —— €:O

Figure 11.1 Sketch of lamina

t; = thickness of layer i = Zi —Zi 4

i z centroid of layer i = Zi +t/2

Now, substitute (All-1) and (All-2) into (All-3), and integrate over the thickness.

The integral can be replaced by a summation over all N layers.

(All-4)
Ny o Exx
N J-I/Z J-t/Z [(5] ;
= (o2 = &
y —tr2] W —t/2 Yy
ny Oyxy Exy
%0 Ky
o) 2 dz
= & K
—t/2 y0 y
Exy0 Kyy
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or, summing over all N layers:

(All-5)
N N , €x0 , Kx
Ny 1= 2IQI{[ % §&y0 (dz+ [ {xy ¢ 20z
k=1 k-1 k-1
ny gxyO ny

Both the mid-surface strains and curvatures {x) are independent
{&x0. € xyO}

yo:&
of z for the laminated plate, i.e., the mid-surface strains are at the laminated plate mid-
surface (z=0) and the curvature of each lamina is the same. Hence, the last equation can

be written as:

(All-6)
Nx N €x0 Kx
— o) s d %K d
Ny =D [Qk 11 &yo L 244 Ky J'Z zdz
k=1 k-1 k-1
ny gxyO ny
The moment resultants can be similarly written.
(All-7)
My Oxx Exx
t/2 t/
My _I—tIZ oy (242 _I—t/Z[Q] y (292
My Oxy Exy
£ K
/2 _ x0 X |
——_t/Z[Q] Eyo (T27 Ky |20z
Exy0 Kyy
(AlI-8)
€x0 Ky

z
k 2
£y0 zdz+J‘Zk 1 Ky 2°dz

Xy Exy0 Kyy
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M, \ &0 | R | (Al1-9)
—_N'10 k k 52
My +==>[Ql 11 &y0 L zdz +1 Ky L 2°dz
k=1 k-1 k-1
My Exy0 Kyxy
Now do the following:
e integrate with respect to z for layer Kk,
e multiply [Q]k times the integral result for layer k, and
e sum over all N layers.
The result can be written as follows:
(Al-10)
Ny A1 Az Asg || éxo By Bio Big || &«
Ny e=|Po1 Ap A |y t+| B B By || ky
Ny | [P As2 Ass]|exo| LBer Bea Bes|xy,
and
(All-11)
M, By B B || éxo Diy D1z Dig || &y
My r=[Ba1 By Bog|{éyo t+| Do Dz Dyg |q Ky
My | L[Bsi Bz Besl|eyo| L[DPer De2 Desl|xyy
where the A, B and D coefficients are given by
(All-12)

N
= Z(C_?ij Ik (Zx —2¢)

Mz EMZ

Qi) (28 — 28 9)

B.=1
' 2

% (Qu)k(zk Zk 1)

X
}_\
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Using ty and T =2 1+ 12 then above becomes:

=Zx — Lk

(All-13)

Z(Qlj)k 1:k
k=1

N

i =2 (Qijk tZk

k=1

N i3
kZ_:(Qu)k [tkzk +EJ

Note that equations (All-10) and (All-11) could be combined and written as follows:

{l\ljl} [: EH } [E]{ } (All-14)
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