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AN INVESTIGATION OF THE EFFECTS OF CURVATURES 

ON NATURAL VIBRATION CHARACTERISTICS OF 

CURVED BEAMS AND PLATES 

 
by Bo Hu 

 

Curved structures are mostly investigated through the numerical method. In the numerical 

model, the curved beam or plate is easily simulated by assembled elements.  Although the 

approximate solution can be obtained, numerical results are inadequate to demonstrate 

the effect of the curvature on the whole system. In order to reveal such effect and 

implicative mechanism of the curvature, an analytical way needs to be proved applicable 

to the curved structure. The present thesis thus develops the perturbation method to 

analyze the natural behaviour of curved beam structures.  

The governing equations for curved beams with the variable and arbitrary curvature 

are derived. The complex parameter introduced by the curvature is modified by the 

perturbation method. Simplified equations physically reveal the feature of the mode 

transition, impacts in terms of boundary conditions, etc. due to the change of curvatures. 

Based on the asymptotic solutions, the singly curved plate is analyzed by using the 

Rayleigh- Ritz method. The analysis is further developed to the laminated composite 
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curved beam. Examples present extra characteristics brought by the composite materials. 

In order to support the analytical solutions, finite element models of the curved beam 

with different type of varying curvatures are established. Numerical results illustrate 

more phenomena in transition of mode shape following the change of curvatures and the 

wave propagation behaviour of curved beams.  
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Chapter 1 Introduction 

 

 

 

1.1 Research Background 

1.1.1 Overview of curved structure 

Curved structures classified by their geometry are usually named as arches and shells 

which are the most common construction elements in the nature and the technology. An 

arch has the capacity of spanning a space while maintaining its shape and supporting 

significant loads. It was first developed in the Indus Valley civilization circa 2500 BC and 

subsequently in Mesopotamia, Egypt, Assyria and Etruria. Arches were used for 

underground structures such as drains and vaults till ancient Romans were the first to use 

them widely as an important technique in cathedral buildings. China has built the world 

first open- spandrel stone segmental arch bridge since 605 AD. The arch is significant 

because when subjected to vertical loads, its two ends develop reactions inwardly within 

horizontal direction. The Roman doorway, for example, shown in Figure 1.1, its 

construction depends on a series of wedge-shaped blocks set side by side in a semi-

circular curve or along two intersecting arcs (as in a pointed arch). The central block is 

called the keystone, and the two points where the arch rests on its supports are known as 

the spring points. The arch can carry a much greater load than a flat beam of the same 

size and material, because downward pressure forces the blocks together instead of apart. 

In order to keep the system in a state of equilibrium, the resulting outward thrust must be 

resisted by the arch's supports. In order to minimize the horizontal thrust, the highly rigid 

building materials such as lightweight monolithic (one-piece) arches of steel, concrete, or 

laminated wood are thereby largely used. 

Shell construction began in the 1920s and emerged as a major long-span concrete 

structure after World War II. In the building construction, a thin, curved plate element is 
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shaped to transmit applied forces by compressive, tensile, and shear stresses which 

describes its resistance to deformation in terms of separable stretching and bending 

effects; these curved elements are then assembled to large structures in the plane of the 

surface and spreads forces throughout the whole structure, which means every part of the 

structure supports only a small part of the load, giving it its strength. 

In the present day, applications of the curved structure are tremendously expanded. 

Independent of the specific scale, curved structures make an important contribution to the 

development of several branches of engineering. In the architecture aspect, thin shells are 

used for roofing purposes which could increase the internal space with the minimal 

amount of materials. They are commonly seen as the roof of the warehouse. Architects 

also largely adopted curve structures in buildings for their fashionable design and other 

special functions. The most recent example is the new Beijing Olympic Stadium, the 

 

Figure 1.1 arch: Ex Estrados; In intrados; K keystone; S springer; v voussoirs (Wikipedia) 
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whole structure of which is constructed by steel curved beams. In bridge engineering, 

arch bridges are developed to span long distance over rivers, valleys or channels without 

supports from columns. In offshore engineering, pressure vessels and associated pipe 

work are manufactured by shell elements. Pipes are normally bent into the curved state 

when laying down and staying underwater, which could be treated as curved beams in 

mathematic models. In structural engineering, optimal design needs the use of curved 

structures. In mechanical engineering, machine blades with curvature are important 

functional parts. In naval architecture, the idea of utilizing a curved structural concept 

with great potential for the construction is applied, for example, to an inland waterway 

vessel. The basic concept is taking advantage of the inherent strength capacity of a plate 

after the bending resistance limit is exceeded. This can be done by giving the shell plating 

a specific curvature and that transforms bending stresses into membrane stresses which 

will give a general drop in stress level. More recently, the introduction of fiberglass and 

similar lightweight composite materials has impacted the construction of exterior skin of 

vehicles ranging from boats, racing cars, fighter and stealth aircraft, and so on, which 

utilize the hydrodynamic, aerodynamic and some functional aspects of thin curved 

structures.  

This large amount of engineering applications is mainly due to the following 

advantages of the curved structure;  

(i) Significant span capacity can be achieved;  

(ii) In addition to the slenderness, curved beam or shell structures own high 

compression-resistance characteristics allowing advantageous dynamic and 

stability capacities;  

(iii) Variable curvature configuration expands the structure design flexibility and 

fashionable look; 

(iv) To apply walls as thin as possible is a natural optimization strategy to reduce 

dead load and minimize construction material;  

(v) Significant benefits of using composite materials are expected to result in a 

30-40% weight savings and a 10-30% cost reduction compared to 

conventional metallic structure. 
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1.1.2 Characteristics of curved structures 

In general, engineering problems are mathematical models of physical situations. 

Thin-walled curved structures attracted lots of researchers‟ interests. Various 

mathematics models were developed generally based on spatial form geometries such as 

curved beams, curved plates and shells. These models are analyzed to reveal their 

features, which make them recognizable as useful objects in engineering. The curved 

beam is usually modelled in one dimension, by neglecting the lateral motion. The 

complexity of the curved beam primarily comes from the curvature which is not only 

involved in the geometrical parameter, but also has impact on the resultant stress, 

stiffness and displacement functions. The curvature along with the arc-length direction 

can be either constant or variable. It is still straightforward to analyze constant curved 

structures; by contrast, the variation in curvature brings mathematical difficulties and 

even nonlinearity considerations into equations of motion. Sorted by curvature, curved 

beams appear in different shapes like circular, parabolic, elliptic, s-shaped and so on. The 

curved beam can be also classified by the type of cross section, such as symmetrical, 

unsymmetrical, continuously varying or hybrid. For the two-dimensional configuration, 

the terminology of “curved plate”, also called “shell panel” is referring to a shell having 

small changes in slope of the un-deformed middle surface. The analysis of the curved 

plate is usually based on thin shell theory which is applied when the thickness is 

relatively small compared to its other dimensions and in which deformations are not large 

compared to thickness. The curved plate has curvatures in two dimensions, which could 

be variable or constant in either direction. Table 1.1 lists some examples of the most 

common geometric forms of curved structures in engineering applications. 

The challenge of the curved beam and the curved plate studies can be shown in many 

aspects. Unlike the straight beam, the curvature of the curved beam introduces geometric 

coupling between the axial and transverse motions and even with the rotations. The 

inherent coupling is the source for the element‟s efficiency, which requires two coupled 

displacement functions for the in-plane vibration behaviour, and three coupled 

displacement functions for the out-plane vibration problem. These functions coupled in 

the differential equations are required to be known functions rather than unknown  
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in the curved beam. These displacement expressions also have to fulfil specific boundary 

conditions. Plenty of efforts have been made to find the trial functions that increase the 

efficiency and accuracy of solutions. However, it is difficult to build up a structural 

Table 1.1 Examples of curved structures 

 

 
 

Different types of arch bridges 

 
 

Different types of roofs 

 
 

The INTERBARGE project from FEM Engineering AS company brings curved elements into 

several key areas of vessel design which is vital for an efficient and economical way of 

transporting cargo on the inland rivers/waterways of Europe. 

 
 

Shells in composite materials 
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system to control variable coefficients existing in the curvature, cross section, material 

property, load case and boundary conditions. These coefficients in the equations of 

motion might be constant, linear or even nonlinear. It is not difficult to find a mathematic 

way to decouple equations with constant coefficients. The closed form solution can be 

then obtained by solving the differential equations by providing the boundary conditions. 

However, for those curved beams which have variable parameters, it is not 

straightforward to get the decoupled differential equations. Vast research work is focused 

on creating more accurate mathematical models and revealing the characteristics of 

curved structures. In the mean time, researchers have to overcome errors generated in the 

solution procedure such as membrane and shear locking phenomena. On the other hand, 

in the real world, many methods were invented to simplify the manufacture procedure of 

the curved structure, reduce storage space and minimize the cost in the construction. 

The research works on curved beam and shell panel structures are comprehensively 

reviewed in the present thesis, in the following categories:  

(i) Thin-walled curved structure theories; 

(ii) Static and dynamic behaviours;  

(iii) Variable parameters;  

(iv) Composite materials;  

(v) Analytical and numerical approaches. 
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1.2 Literature Review 

Studies on the curved beam could be traced back to the early twenty century. Taken 

as the milestone in the history, Den Hartog (1928) obtained the lowest natural frequency 

of circular arcs using the Rayleigh-Ritz method. Forsberg (1964) studied the influence of 

boundary conditions on the modal characteristics of thin-walled cylindrical shells. Deb 

Nath (1969) designed experiments to verify the analytical results of the circular curved 

plate. Fleisher
 
(1974) developed planar curved structure elements for the curved beam 

and different types of curved plates; his studies firstly showed that the variation in 

curvatures leads to a significant change in natural vibration characteristics.  

During the last two decades the most progress has been achieved in terms of both 

theoretical development and engineering availability. Large amount of research work was 

published to demonstrate achievements on curved structure studies, among which there 

are several important review papers. Laura and Maurizi (1987) gave a brief discussion of 

recent work dealing with the dynamic behaviour of arches. Recommendations are given
 

with respect to straightforward calculations of fundamental
 
frequencies of arch-type 

structures. Several complicating factors
 
are accounted for. Chidamparam and Leissa 

(1993) attempted to organize and summarize the extensive published literature on in-

plane, out-plane and coupled vibrations of curved bars, beams, rings and arches. 

Particular attention was given to the effects of initial static loading, nonlinear vibrations 

and the application of finite element techniques. Auciello and De Rosa (1994) examined a 

number of approaches from the Ritz and Galerkin methods to the finite element 

techniques on the free vibration of different kinds of stepped arches and arches with 

linearly varying cross-section. Most recently, Zhao et al. (2006) reviewed advances of 

research on curved beams. Based on a discussion of equilibrium equations, strain-

displacement relations and governing equations of curved beams, a summary of basic 

static theories and dynamic theories, and modelling methods for curved beams, and in-

plane vibrations and out-plane vibrations are given in the paper.  

Despite the merely academic motive behind some of the publications, potential 

engineering applicability does exist in many areas. The present thesis attempts to review 
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the most recent achievements on the vibration behaviour of curved beam and curved plate 

structures. 

1.2.1 Thin-wall curved beam and shell theories 

The majority of existing beam theories are invariably based on the Euler-Bernoulli 

hypothesis of plane cross sections remaining plane during deformation, which also 

applies to the thin curved beam. Thin walled theories typically include the postulates 

expressed in Love‟s first approximation (Love, 1944). These postulates may be written as 

follows:  

 the thickness of a beam is small compared to a characteristic dimension. Here a beam 

is considered as thin if the ratio of its thickness to the radius of the curvatures of its 

surface is less than or approximately equal to one-tenth. 

 the deflections of the beam are small. This permits the use of the equations of the un-

deformed beam to describe its subsequent deformation and with the use of Hooke‟s 

law, results in a linear elastic theory. 

 the transverse normal stress is negligible. This is a result of postulate 1. 

 normal to the reference surface of the beam remain normal and the beam thickness 

remains unchanged.  

The Timoshenko theory relaxes the normality assumption of the Euler-Bernoulli 

beam theory and gives a better approximation to the true behaviour of the beam by taking 

into account a constant state of transverse shear strain with respect to the thickness 

coordinate. However, it is known that the shear stress distribution across the cross section 

is non-uniform. Timoshenko theory that does not account for a non-uniform variation of 

the through thickness shear stress uses a shear correction factor depending on the cross 

section in order to compensate for the errors introduced. The higher order theories (Lo et 

al., 1978) eliminate dependence on the shear correction factor, which normally assume 

cubic in-plane displacements in the through thickness direction and transverse 

inextensibility.  

Wang (1995) presented the deflection and stress resultants of single-span 
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Timoshenko straight beams with general loading and boundary conditions, in terms of the 

corresponding Euler-Bernoulli beam solutions. The deflection relationships show clearly 

the effect of shear deformation, which allow engineers to readily obtain the bending 

solutions of Timoshenko beams from the Euler-Bernoulli solutions without more 

complicated flexural-shear deformation analysis. Reddy and Wang (1997) developed the 

relationship between the bending solutions of the Euler-Bernoulli beam theory and the 

refined higher order beam theory. In (2001) they further developed exact relationship 

between the bending solutions of the Levinson beam and plate theories and the Euler-

Bernoulli beam and Kirchhoff plate theories. However, all these relationships are limited 

to the bending solutions. For the curved beam, the coupling effects from the extensional 

vibration cannot be neglected.  

The vibration problem of the open-form thin shell panel or the curved plate is usually 

based on thin shell theories which typically include the hypothesis expressed in Love‟s 

(1944) first approximation. Equations of motion of thin elastic shells are derived by 

Krauss (1967) and Leissa (1973). Vinson (1989) summarized formulations and classical 

solutions of the thin walled structures. Liew et al. (1997) comprehensively reviewed 

vibration of shallow shells. Price et al. (1998) analyzed the vibration of cylindrical pipes 

and open shells based on different thin shell theories including Donnell‟s theory, Love‟s 

theory and an improved theory.  

1.2.2 Static and dynamic behaviours 

The dynamic problems of a curved structure generally involve the in-plane vibration 

which primarily consists of bending-extensional modes, the out-plane vibration which is 

essentially bending-twisting dynamics, and coupled motions consisting of extension, 

flexure, shear and twist. Yu et al. (1995) presented exact and accurate analytical solutions 

for the free vibration of circular cylindrical shell panels with arbitrary combinations of 

simple boundary conditions. An effective computer program using the transfer matrix 

method is presented by Yildirim (1997) for both in-plane and out-of-plane free vibration 

analysis of elastic uniform arcs having double-symmetrical cross-sections. Goh (1998) 

formulated governing equations using thin shell theory and applied to a pressurized arch 
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shell component. A numerical investigation based on the Rayleigh-Ritz method is utilized 

to determine the behaviour of arch-shell under various types of loading including a snow 

load, a wind load and a horizontal side load distributed along the arc length. Tarnopolsky 

and De Hoog (1999) obtained asymptotic approximations for vibrational modes of 

helices. Walsh and White (2000) described the vibrational power transmission due to 

flexural, extensional and shears types of travelling wave in a curved beam which has a 

constant radius of curvature. They also studied the effect of curvature in three different 

frequency regions whose limits depend upon the type of wave considered. Eisenberger 

and Efraim (2001) presented the exact dynamic stiffness matrix of a circular shear 

deformable beam by considering them as the end forces of the beam when it is deformed 

with unit displacement at its ends. The stiffness matrix is frequency dependent, and the 

natural frequencies are those that cause the matrix to become singular. Therefore, the 

natural frequencies are obtained by equating the stiffness matrix to zero. Lee and Hsiao 

(2002) developed the semi-exact solutions for the free in-plane vibrations of curved non-

uniform beams with constant radius. The two coupled governing differential equations 

are reduced to complete sixth-order ordinary differential equations with variable 

coefficients in the longitudinal displacement. Numerical analysis shows that the taper 

ratio, the centre angle and the arc length have significant influence on the natural 

frequencies. Kang et al. (2003) provided a systematic approach for the free vibration 

problem of multi-span planar circular curved beams with general boundary conditions 

and supports. The system considered multiple point discontinuities. Dispersion equations 

are solved by combining the wave reflection, transmission and the field transfer matrices. 

Huang et al. (2003) developed an analytical solution to the proposed governing equations 

to analyze the free vibration and stability of a circular arch under initial stresses due to 

the static preloading. Differing from traditional ways, this paper considered not only the 

most important factor, static stress resultant, also all initial stress resultants. Kim et al. 

(2002) used energy method to solve the in-plane and out-plane free vibration problem of 

the curved beam with non-symmetric thin-walled cross-section. Two thin-walled curved 

beam elements corresponding to extensional and inextensional conditions are developed 

using third and fifth order Hermitian polynomials. The influences of the thickness-

curvature effect are investigated. Wu and Chiang (2004) investigated the dynamic 
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response of an arch with a moving load using the curved beam element with implicit 

shape functions. Gridin et al. (2005) presented convincing evidence for the existence of 

trapped modes localized in the regions of maximal curvature, and offered predictions of 

when and why such trapping occurs. To this end, two methods were developed, one is 

asymptotic, which assumes smallness of dimensionless curvature, and the other is 

numerical. 

Besides the in-plane vibration, Lee and Chao (2000) derived the uncoupled and 

reduced sixth order ordinary differential equations with variable coefficients in the out-

of-plane flexural displacement and the tensional displacement, respectively. The exact 

solutions of curved non-uniform beams are obtained by providing the material and 

geometric properties in arbitrary polynomial forms. Tufekci and Dogruer (2006) 

presented an exact solution of the equations for out-of-plane deformations of arches with 

arbitrary axes and cross sections by using the initial value method by which the 

displacement, slope, twist angle and stress resultants can be calculated analytically along 

the arch axis. The equation takes into account the shear deformation effect. An advantage 

of the method is that the high degree of static indeterminacy adds no extra difficulty to 

the solution. 

1.2.3 Variable parameters 

Properties of the curved structure might usually not be constant. These properties 

represent the state of the geometry and the material, which are expressed as the 

parameters in the mathematical equations. While the application of curved structures with 

constant parameters is well catered for, the solution for those with variable parameters is 

not yet completely understood. In addition to the geometry and material as the main 

category, it is possible to subdivide the variation in the geometric parameters as varying 

curvature and variable cross section.  

 Geometric parameters 

The analytical solution of a non-circular curved beam must be formulated by the 

series solution method. The series solution method is reliable, but needs lots of terms and 
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is restricted by the convergence ratio. Researchers usually expand the curvature as 

Fourier or Taylor series with respect to the arc-length in order to represent varying 

curvature. Non-circular elastic curved beams were firstly studied by Romanelli and Laura 

(1972) by using Rayleigh‟s principle. Wang and Moore (1973) determined the lowest 

natural extensional frequency of a clamped elliptic arch with constant section, which 

indicated the effect of arc angle on the natural frequencies of the arc. Wang (1975) 

studied the fundamental frequency of clamped parabolic arcs. Based on the same 

numerical method, Lee and Wilson (1989) obtained frequencies and modes for parabolic, 

sinusoidal and elliptic arches. Experimental validations of the lowest four natural modes 

were included. Guierrez et al. (1989) obtained the lowest frequency coefficients of 

symmetrical and unsymmetrical arch-type structures, using polynomial coordinate 

functions and the Ritz method. Scott and Woodhouse (1992) studied the musical saw 

behaviour by examining the underlying physics of the confinement process. The paper 

analyzed the trapped modes of the curved strip in S-shaped configuration. The analysis 

revealed the essential nature of the internal reflection process, in terms of the change with 

curvature of the dispersion characteristics of the strip. Charpie and Burroughs (1993) 

gave a comprehensive review on the free in-plane vibration of beams with variable 

curvature and depth. They also provided an analytical model with a quadratic polynomial 

trial function considering shear deformation, rotatory inertia and centreline extensibility 

and the equations of motion were solved by an extension of the classic Galerkin method. 

Tarnopolskaya and Hoog (1996) demonstrated the coupling between the membrane and 

flexural modes of curved beams using asymptotic analysis. The curvature function is used 

to define the shape of curved beams. Experiments with piezo-electric foils confirm the 

validity of the asymptotic approximation for high mode-number extensional vibrations. 

Tseng et al. (1997) developed an approach which introduces the concept of dynamic 

stiffness matrix into a series solution for in-plane vibrations of arches with variable 

curvature. The variable coefficients were expressed in their Taylor expansion series about 

a point on the arch. The first six modes for parabolic and elliptic arches with various 

boundary conditions are calculated. Huang et al. (1998) developed an exact solution for 

in-plane vibration of arches with variable curvature as well as cross section using the 

Frobenius method combined with the dynamic stiffness method. Examples for a series of 
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parabolic arches show the effects of rise to span length, slenderness ratio and variation of 

cross section. Oh et al. (1999) investigated the in-plane vibrations of non-circular arches 

such as parabolic, elliptic and sinusoidal including the effects of rotatory inertia, shear 

and axial deformations. The governing equations are solved numerically and the lowest 

four natural frequencies are obtained. A buckling formulation for anisotropic variable 

curvature panels is presented by Jaunky et al. (1999). The segment approach was used 

where displacements fields within each shell segment are represented by Bezier 

polynomials. Ambur (2001) applied the same method to the optimal design of grid-

stiffened panels with variable curvature. Many researcher such as Leung and Zhou (1995) 

and Kim et al. (2003) adopt dynamic stiffness matrix methods to solve vibrations of non-

uniform curved beams. The proposed approach basically introduces the concept of 

dynamic stiffness matrix into a series solution in terms of polynomials which are derived 

as explicit expressions of displacement functions for governing equations. The arch under 

consideration is decomposed into several spans with different radii of curvature and in 

each sub-domain. For the system with many variables, numerical scheme on the quadratic 

eigenproblem in calculating the exact dynamic stiffness matrix is more efficient and 

successful.  

In addition to the papers introduced above which studied the variable cross section, 

Suzuki and Takahashi (1977), Irie et al. (1980) and Sakiyama (1985) also made 

contributions in the earlier stage. Laura and Irassar (1988) studied the arches with linear 

varying thickness. Most recently, Wu and Chiang (2003) constructed a hybrid beam by 

using an arch segment connected with a straight beam segment at each of its two ends.  

 Material parameter 

Geist (1998) applied the asymptotic formulae to the variable mass density and show 

how the natural frequencies of the Timoshenko beam depend on the material and 

geometric parameters which appear in the differential equations. In Awrejcewicz (1999)‟s 

paper, the doubly curved shells considered were constituted by isotropic material which 

shows in-plane non-homogeneity in the sense that Young‟s modulus is taken as a function 

of the in-plane shell coordinate. Forster and Weidl (2006) proved the existence of trapped 
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modes in elastic strips perturbed by local changes of Young‟s modulus. The asymptotic 

formula is derived to describe the behaviour of the trapped modes in the limit case of 

small differences of Young‟s modulus. 

Research work on the static and the dynamic behaviour of curved structures is 

mostly limited to the isotropic material. Only a few papers were devoted to composite 

materials. Composite materials show the benefits of high strength-weight ratio and 

corrosion-resistance through careful design. Researchers have developed various theories 

for analyzing the laminated composite structures. Based on the singular layer equivalent 

assumption, the classical laminate theory (CLT) (Love, 1888) and the first-order shear 

deformation theory (FSDT)
 
(Reissner, 1945; Mindlin, 1951) are developed. Accounting 

for transverse shear deformations, the higher-order shear deformation theory (HSDT)
 

(Reddy, 1984) is developed. Nosier and Reddy (1992) processed the vibration and 

stability analysis of cross-ply laminated circular cylindrical shells. Lam and Loy (1995) 

studied the influence of boundary conditions on laminated thin cylindrical shells. Noor 

and Burton (1996) classified a number of references on vibration of sandwich panels and 

shells. Bardell et al. (1997) analyzed vibrations of thin laminated cylindrically curved 

panels using finite element method. Yahnioglu and Selim (2000) investigated some 

bending problems for a composite strip with a periodically curved structure. Results show 

that the effect of the geometrical nonlinearity on the foregoing stress distribution decays 

with changes in material properties. Tseng et al. (2000) based on the Timoshenko curved 

beam theory, studied the free vibration of composite laminated beams of variable 

curvature. The dynamic stiffness method is used to overcome the difficulty of 

convergence ratios for the whole beam by the subdividing of sub-domains. For elliptic 

arches, the effects of stacking sequence, short and long axes ratios, material orthotropic 

ratio, and opening angles on the natural frequencies are also studies. Bozhevolnaya and 

Frostig (2001) modelled the curved sandwich beams with a transversely flexible core. 

Wang (2001) studied the flexural behaviour of the composite curved beam with variable 

curvature and demonstrated the delamination phenomena. Fares et al. (2003) based on the 

higher-order shell theory, derived formulations to design the orthotropic laminated 

spherical and cylindrical shells. The discrepancy between different theories is 
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investigated by numerical examples. Towfighi and Kundu (2003) studied elastic wave 

propagation problem in anisotropic curved plates. Bozhevolnaya and Sun (2004) studied 

free vibrations of singly curved sandwich beams by applying the Galerkin method. The 

model takes into consideration both radial and circumferential displacements of the beam 

core with the assumption of linear distribution across the thickness. The faces of the 

sandwich are treated as thin beams. It is shown that there are four types of eigen-modes 

and a coupling coefficient is introduced to study the dynamic coupling of motions in 

these types of eigen-modes. 

1.2.4 Approaches 

Mathematical models are differential equations with a set of corresponding boundary 

and initial conditions. The differential equations are derived by applying the fundamental 

laws and principles of nature to a system or a control volume. These governing equations 

represent balance of mass, force, or energy. When possible, the exact solution of these 

equations renders detailed behaviour of a system under a given set of conditions. The 

analytical solutions are composed of two parts: a homogenous part and a particular part. 

In any given engineering problem, there are two sets of parameters that influence the way 

in which a system behaves. First, there are those parameters that provide information 

regarding the natural behaviour of a given system. These parameters include properties 

such as modulus of elasticity, thermal conductivity, and viscosity. On the other hand, 

there are parameters that produce disturbances in a system. Examples of these parameters 

include external forces, moments, temperature difference across a medium, and pressure 

difference in fluid flow. The system characteristics dictate the natural behaviour of a 

system, and they always appear in the homogenous part of the solution of a governing 

differential equation. In contrast, the parameters that cause the disturbances appear in the 

particular solution. It is important to understand the role of these parameters in finite 

element modelling in terms of their respective appearances in stiffness or conductance 

matrices and load or forcing matrices. The system characteristics will always show up in 

the stiffness matrix, conductance matrix, or resistance matrix, whereas the disturbance 

parameters will always appear in the load matrix. 
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The closed form solution for either the curved beam or the shell panel is obtained 

from the determination of the displacement expressions in the equations of motions. 

These expressions of the displacement need to be satisfied with the boundary conditions. 

The curvature brings the coupling effect into the governing equations, so even for one 

dimensional curved beam, it is difficult to obtain the exact solution for either every kind 

of curvature or every boundary condition. In order to obtain the analytical solutions, the 

task is to find the homogenous and particular part of the displacement expressions. 

However, the disturbances caused by curvature exist in the particular solution. It could be 

more complex if nonlinearity is introduced into vibration modes. Other than 

straightforward solution of the differential equations, many other approaches are used to 

obtain the approximate solutions, from analytical methods such as Rayleigh-Ritz method, 

Galerkin method and asymptotic methods etc. to the numerical method such as the finite 

strip method and the finite element method etc.  

 Energy method 

Carmichael (1959) demonstrated the Rayleigh-Ritz method through an analysis which 

was made of the vibration of a rectangular plate whose edges are elastically restrained 

against rotation. Plate deflections are represented by a set of functions which define the 

normal modes of vibration of a beam whose ends are elastically restrained against 

rotation. Values of various integrals of these functions and their derivatives are 

established. Frequencies are obtained from a set of linear simultaneous equations which 

may be solved by a simple iterative process.  Based on the generalized Green Function, 

Lin (1998) gave the exact solution for static analysis of an extensible circular curved 

Timoshenko beam with non-homogeneous elastic boundary conditions. A finite element 

method can be developed based on the results for the dynamic analysis. Liew and Feng 

(2000) used energy method for the three dimensional elasticity solutions for free 

vibrations of conical shell panels with cantilevered and clamped boundary conditions. 

 Asymptotic method 

As one of the asymptotic method, perturbation method has the advantage in obtaining 
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approximate theoretical solutions. The governing equations involve the variable 

parameter of curvature which introduces the nonlinear terms. When the equations of 

motion or boundary conditions have the nature of nonlinearity, closed form solutions 

cannot be found. Perturbation techniques like the method of multiple scales are used to 

study local dynamics of weakly nonlinear systems about an equilibrium state. To obtain 

an approximate analytical solution of a weakly nonlinear continuous system, one can 

either directly apply a perturbation method to the governing partial-differential equation 

of motion and boundary conditions, or first discretize the partial-differential system to 

obtain a reduced-order model and then apply a perturbation method to the nonlinear 

ordinary-differential equations of the reduced-order model (Pramod, 2003). In general, a 

limiting solution or a class of solutions are dependent on the parameter with a limiting 

value (Cole, 1968). Boyce and Goodwin (1964) used the perturbation approach for the 

solution of the eigenvalue problem of random strings and beams. Evensen (1968) solved 

the governing nonlinear differential equation of beams with various boundary conditions 

using the perturbation method. Tarnopolskaya et al. (1999) use the perturbation method 

to obtain the natural frequency and mode shape of circular and s-shaped curved beams. 

The features of mode transition phenomenon are revealed clearly and the effect of beam 

curvature is explained physically. However, the analytic approximations are up to the first 

order; therefore the analysis is limited to the low-frequency natural modes. Nayfeh and 

Arafat (2000) gave an overview of the perturbation methods used to obtain analytical 

solutions of nonlinear dynamical systems. 

 Finite element method 

There are many practical engineering problems for which we cannot obtain exact 

solutions. This inability to obtain an exact solution may be attributed to either the 

complex nature of governing differential equations or the difficulties that arise from 

dealing with the boundary and initial conditions. To deal with such problems, we resort to 

numerical approximations In contrast to analytical solutions, which show the exact 

behaviour of a system at any point within the system, numerical solutions approximate 

exact solutions only at discrete points, called nodes. The first step of any numerical 

procedure is discretization. This process divides the medium of interest into a number of 
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small sub-regions and nodes. There are two common classes of numerical methods: the 

finite difference method and the finite element method. With finite difference methods, 

the differential equation is written for each node, and the derivatives are replaced by 

difference equations. This approach results in a set of simultaneous linear equations. 

Although finite difference methods are easy to understand and employ in simple 

problems, they become difficult to apply to problems with complex boundary conditions. 

This situation is also true for problems with non-isotropic material properties. In contrast, 

the finite element method uses integral formulations rather than difference equations to 

create a system of algebraic equations. Moreover, an approximate continuous function is 

assumed to represent the solution for each element. The complete solution is then 

generated by connecting or assembling the individual solutions, allowing for continuity at 

the inter-elemental boundaries.  

Yang and Sin (1995) created the two-, three-, four- and five-node Timoshenko beam 

elements which include the effects of shear deformation and rotary inertia. The elements 

are formulated in terms of curvature, and hence can present fully the total potential 

energy including the bending energy and the shear energy. Hinton, et al. (1995) derived 

finite strip method which uses a combination of finite elements and Fourier series to 

analyze curved shell panels with uniform geometrical and material properties in a 

particular direction. Jones (1996) described the extension of an existing isotropic thin 

shell element to a new element. This new element is formulated based upon Flügge‟s thin 

shell theory, with the capability of modelling curved laminated orthotropic structures. 

The proposed element is found to yield consistently accurate results in the inextensional 

and extensional regimes of flexural motion without membrane locking. Chakravorty et al. 

(1996) applied a finite element analysis to the free vibration behaviour of doubly curved 

laminated composite shells. They investigated the effects of various composite 

parameters such as fibre orientations and lamination schemes and several geometrical 

parameters like aspect ratio, smaller height to greater height ratio, thickness to radius 

ratio, and radii of curvature ratio. Bardell et al. (1997) used the finite element method to 

furnish a detailed study of vibration characteristics of completely free, open, cylindrically 

curved, isotropic shell panels. Reddy et al. (1997) demonstrated an elementary exposition 
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of locking-free shear deformable beam finite element models based on different beam 

theories. Friedman and Kosmatka (1998) created a two-node finite element with 

capability to model curved geometry exactly and obtain exact results in static and 

dynamic analysis. Bardell, et al. (1997) gave the h-p version of the finite element method 

to furnish a detailed study of the vibration characteristics of completely free, open, 

cylindrically curved, isotropic shell panels. Results illustrated interesting features of the 

natural behaviour of curved panels due to the increase in the curvature. Moser et al. 

(1999) illustrated the effectiveness of using the FE method to model guided wave 

propagation problems. In recent years, Raveendranath et al. (2000) investigated the 

performance of a curved beam finite element with a coupled polynomial displacement 

field. Cunningham, et al. (2000) used commercial FEM codes to validate the 

experimental results of free vibration of doubly curved sandwich panels and investigated 

the effects of changing radii of curvature on the natural frequencies of vibration. 

Raveendranath et al. (2000), in order to avoid the membrane locking phenomenon, 

developed two nodes curved beam element based on a coupled polynomial displacement 

field. Litewka and Rakowski (2000) created a new element by making use of the exact 

static shape functions in the stiffness matrix and the mass matrix to analyze the shear and 

compressibility effects on the natural frequency of arches. Nayak et al. (2002) developed 

new element based on Reddy‟s higher-order theory. Wu and Chiang (2003, 2004) 

reviewed various curved beam elements for natural vibration analysis and derived the 

simple implicit shape functions, which are associated with the tangential, radial and 

rotational displacements of the arch element. Ribeiro (2004) applied a p-version, 

hierarchical finite element to the curved, moderately thick, elastic and isotropic beam. 

Geometrically non-linear vibrations due to finite deformations are investigated. The 

influence of the thickness, longitudinal inertial and curvature radius on the dynamic 

behaviour of curved beams are studied. Wu and Chiang (2004) presented a simple 

approach to obtain the 18 unknown constants for the three displacement functions. By 

means of the displacement functions, the stiffness and mass matrices of each arch 

element are calculated and then the free vibration analysis of the arches is performed. 

Chen (2005) gave full review and demonstration of the development of differential 

quadrature element method (DQEM) in-plane vibration analysis model of arbitrarily 



Introduction 

20 

 

curved beam structures. 
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1.3 The Present Work 

The present thesis locates the research emphasis on the impact of arbitrary and 

variable curvatures on the natural behaviour of the curved beam and the curved plate. 

Based on the comprehensive literature reviews, summations and achievements of the 

present research are given as follows: 

Firstly, many researches demonstrated behaviours of the curved structures as results 

but seldom found the deep relationship between changes in the curvature with natural 

vibration behaviours. The present work proves this relationship which shows mode 

transition behaviours with kinds of regulations. Further, this relationship is substantially 

impacted by various boundary conditions, which is also proved by both theoretical and 

numerical solutions.  

Secondly, analytical methods are hardly used to solve equations of motion of curved 

beams with variable parameters until the perturbation technology are used to decouple the 

flexure vibration and the extensional vibration. The present research further develops the 

Tarnopolskaya and Hoog‟s work (1999) to the second order perturbation approximations 

which gives more accurate results. 

Thirdly, the curved plate problem are solved based on thin shell theories in the 

published works, but analytical solutions are only limited to the specific curvature and 

boundary condition. In the present thesis, the perturbation approximations of curved 

beams are adopted by the energy method to obtain the natural frequencies of curved 

plates with variable curvatures. 

Fourthly, it is shown that the present method is not only applicable to the continuous 

varying curvature problem but also to the curved beam with other kind of curvatures.  

Finally, the investigation is extended to the laminated curved beams with different 

lamina orientation and stacking sequence, which reveals extra characteristics brought by 

the composite materials. 
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1.4 Layout of the Thesis 

The present research comprises both analytical and numerical methods. From the 

derivation of governing equations to the post-process solutions, the procedure is 

organised in the following manner. Chapter One introduces the research background, 

reviews the publications on the dynamic and static behaviour of curved structures, 

summarizes the analytical approaches and proposes the motivation and achievements of 

this work. Chapter Two develops the fundamental formulations of a curved surface. The 

equations of motion are derived for the curved beam with variable curvature. The non-

dimensional equations and boundary conditions are demonstrated as well. Chapter Three 

demonstrates the solution procedure. The perturbation method is used to simplify the 

equations to obtain their approximate solutions. The relationship between eigenvalue and 

curvature is formulated. The simplified equations are used to interpret mode transition 

phenomena physically due to the changes of curvatures. Finite element method is 

introduced in Chapter Four. Numerical models are established by using the commercial 

code ANSYS (2002). In Chapter Five, examples of the curved beams with various types 

of curvatures are given to illustrate the effects of curvature on the natural characteristic. 

Curved beams with constant curvature and varying curvature are calculated respectively. 

Different boundary conditions are also considered. Numerical results from ANSYS code 

support analytical ones. Some new characteristics of curved beams revealed by numerical 

results are demonstrated, which leads to the limitation of the current analytical solutions. 

Chapter Six gives examples for curved beam with arbitrary curvatures. The analysis is 

extended to the curved plate through the Rayleigh energy method in Chapter Seven. The 

two-dimensional natural modes are demonstrated. Chapter Eight investigates the effects 

on the laminated composite curved beams by taking orthotropic laminated material 

properties back into the dimensionless solutions. Chapter Nine concludes on the present 

work and summarizes the effects of curvature on the natural characteristics of the curved 

beam and the curved plates. Recommendations for future work are proposed. 

The structure of the present thesis is illustrated in Figure 1.2.  
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Figure 1.1 Structure of the thesis 
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Chapter 2 
Theoretical Formulations 

 

 

 

The deformation of a curved body may be described geometrically by means of its 

middle surface, its edge-line and its thickness. In the three-dimensional coordinate system, 

the curved body is bounded by two closely spaced curved surfaces, the distance between 

the surfaces being small in comparison with the other dimensions. For the purpose of 

developing a general method of treatment of the problem of curved beams and curved 

plates, this chapter presents straightforward derivations of the sets of general 

formulations relating to the element of the theory of the curvature of surfaces (Huang et 

al. 1988). The equations of motion are derived based on these theoretical formulations. 

2.1 Brief Outline of the Theory of Surfaces 

 

 

Figure 2.1 sketch of the curved surface 
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As shown in Figure 2.1, a surface S is defined, in a rectangular coordinate system o-

xyz as follows: 

, , .                              (2-1) 

where the coordinates x, y, z are the functions of the curvilinear coordinates of the 

surface. Assume that the parameters  and  always vary within a definite region, the 

position vector of a point P on the un-deformed surface is represented by: 

                                                   (2-2) 

For a neighbouring point Q near to the point P, the vector  can be obtained using 

Taylor formulation, 

  (2-3) 

which is approximately, 

                                      (2-4) 

Assume that  and  are two unit vectors or base vectors along  and  directions, 

respectively, and en ( ) a unit normal vector at point P.   

,     ,    ,   .                  (2-5) 

We can define χ as the angle between these two base vectors, where A and B 

represent the length of related vectors, respectively.  

2.1.1 The first quadratic form of the surface  

The square of the length of a line element  is defined as the first quadratic form of 

the surface, that is, 
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.            (2-6)                                        

2.1.2 The second quadratic form  

To the curvature of a curve on the surface, the second quadratic form is introduced, 

i.e. 

  

   .                                                         (2-7)

 
Here, the higher order terms are neglected and the definitions 

     ,    ,     .                      (2-8) 

are introduced.  

2.1.3 Curvature of a curve 

As shown in Figure 2.2, an intersection curve of the surface S with the plane nPQ is 

drawn. The curvature at point  P  of the intersection curve is defined as follows: 

,                                                     (2-9) 

where,  

,          (2-10) 
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Assume is the tangent to a curve on the surface 

and, 

,                                    (2-11) 

Then, 

                                                

.                  (2-12) 

 

 

 

Figure 2.2 definition of curvature 
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2.2 Deformation of the Surface 

2.2.1 Displacement field 

Using the Kirchhoff hypothesis, the class of displacements is restricted to the 

following linear relationships: 

,                                (2-13a) 

,                               (2-13b) 

.                                         (2-13c) 

where u, v and w are the components of displacements at the mid-plane (i.e. z=0) in the α, 

β and normal directions, respectively, and θα and  θβ are the rotations of the normal to the 

middle surface during deformation about the α and β axes, respectively. Assuming the 

shear strains are equal to zero, then θα and θβ are expressed as follows: 

,                                                 (2-14a) 

 .                                                (2-14b) 

Figure 2.3 shows a general body in its initial configuration and in its current 

configuration. Let the body in its un-deformed configuration be Γ0 and denote the 

deformed configuration by Γ1. The initial position of a point P, is given by the position 

vector r, and the current point P‟ is given by the position vector R. When the surface S 

has strain, a displacement vector of P exists as follows: 

.                                   (2-15) 

The distance from the origin to a point P‟ of strained surface is as 

follows:
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Figure 2.3 the deformation of the curved body from the initial configuration to the current 
configuration 

.                                      (2-16) 

2.2.2 Strain-displacement equation 

The well-known strain-displacement equations of the three-dimensional theory of 

elasticity in orthogonal curvilinear coordinates are derived in Appendix I shown as 

follows: 

,                          (2-17a) 

,                        (2-17b) 

 .                                     (2-17c) 

where , and  are strains at an arbitrary point of the curved body.  Substituting the 
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displacement field into above equations, strains at any arbitrary point of the curved thin 

shell based on Love and Timoshenko theories (Reddy and Wang 1997) are expressed as 

follows: 

,                                                 (2-18a) 

,                                                 (2-18b) 

.                                                (2-18c) 

where ,  and  represent strains on the middle surface;  and  are the middle 

surface changes in curvature and  is the middle surface twist, given by (Qu and Tang 

2000) 

,          (2-19a) 

,         (2-19b) 

                 (2-19c) 

2.2.3 Constitutive equations 

The integration of the stresses through the thickness leads to the constitutive 

equation, which is expressed in terms of the  extensional, extensional-bending 

coupling, and bending stiffness matrices as follows: 

 ,                                               (2-20a) 

 .                                              (2-20b) 

where N and M are the resultant force matrix and moment matrix, respectively. 

Considering the general single layer equivalent theory, the stiffness matrices A, B, D for 

the n layers laminates are derived in Appendix II. 
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2.3 Equilibrium Equations 

The equations of equilibrium are formed by equating to zero the resultant force and 

resultant moment of all the forces applied to a portion of the shell. Define the force and 

moment vector on a shell element shown in Figures 2.4 and 2.5 as follows: 

,        ,        (2-21a) 

 ,              .             (2-21b) 

Assuming  is the contribution force on the unit area, the equilibrium of the force and 

moment on this element are expressed as follows: 

 ,                              (2-22a) 

 .             (2-22b) 

Substituting equations (2-21) into equation (2-22), six equilibrium equations projected in 

three directions can be obtained as follows: 

,                  (2-23a) 

 ,                (2-23b) 

 ,                         (2-23c) 

,                   (2-23d) 

 ,                  (2-23e) 

 .                                 (2-23f) 
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Considering the natural vibration of a single curved beam, in the planar coordinate 

system shown in Figure 2.4 and Figure 2.5, let ,  and , where s is the 

circumferential coordinate measured around the centreline; x and z are the principal axis 

of the beam cross-section; r is the general radial coordinate. Assume there is no strain in 

the lateral x direction and consider the equilibrium of the forces on an element of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 notation and positive directions of moment resultants in shell coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 notation and positive directions of force resultants in shell coordinates 
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beam shown in Figure 2.6, the following equations can be obtained: 

In tangential direction                         ,                                          (2-24a) 

In radial direction                                ,                                         (2-24b) 

Moment equilibrium                                    .                                                (2-24c) 

 where ρ is the density, A’ is the area of the cross section per unit width, u is the tangential 

displacement, w is the radial displacement of the mid-surface, Ms is the bending moment, 

Ns is the tensile force and Qs is the shear force. The second derivative of the displacement 

about time t gives the acceleration, which shows inertia after multiply by the mass ρA’. 

Substituting the curvature k, defined as , and equation (2-24c) into equation (2-24a) 

and (2-24b), results in: 

 ,                                      (2-25a) 

 .                                     (2-25b) 

It is also assumed that velocity in x direction is zero, which leads to resultant forces 

Nx, Nxs and moments Mx, Mxs being equal to zero. Therefore, the constitutive behaviour of 

the curved beam, in terms of mid-plane values and resultant quantities is expressed as 

follows: 

 .                                     (2-26) 

where A11 is the tension stiffness, B11 is the coupling stiffness and D11 is the flexible 

stiffness respectively. For an isotropic beam, A11 and D11 in the governing equations are 

replaced by the extensional rigidity A and flexural rigidity D. 

According to equations (2-17)-(2-19), for the thin curved beam, when , the 
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strain in s direction in terms of the middle surface is express as follows: 

 ,                                              (2-27a) 

 .                                       (2-27b) 

Assuming the material of the curved beam is balanced and symmetrical in terms of the 

middle surface, which leads to , the constitutive equations are thus simplified as 

follows: 

 ,                                        (2-28a) 

       .                                (2-28b) 

Omiting the index„s‟ in notations, substituting equation (2-28) into equation (2-25), 

 

Figure 2.6 sketch of forces on a beam element 
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equations (2-25) is expanded as follows:  

 ,             (2-29a)  

 .              (2-29b)  
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2.4 Dimensionless Governing Equations 

In many problems, we are interested in comparing the dimensionless response rather 

than the actual values, which is of great help when we are comparing results with 

different properties and performing parametric studies. A transformation to dimensionless 

variables of the coordinate s and the curvature k can be made as follows: 

,   .                                                 (2-30) 

Moreover, the dimensionless axial and transverse displacements are shown as follows: 

,  .                                                 (2-31) 

where l is the length of the beam.  

For the sake of convenience, a dimensionless parameter η is introduced by dividing 

 at both sides of governing equations, 

  .                                                  (2-32) 

From equation (2-32) it can be seen that  is the ratio of the flexural stiffness to the 

tension stiffness. For the isotropic curved beam, it represents the geometrical properties. 

For the composite material, it also includes the impact of the material property.  

Expressing the displacements as harmonic functions of time with frequency ω, i.e. 

 and , the dimensionless governing equations of the curved beam 

with variable curvature is then expressed as follows: 

 ,                (2-33a)  

 .                (2-33b)  

where λ is the square of the non-dimensional frequency or the non-dimensional 
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eigenvalue  of the system.  It is defined as follows: 

 .                                                     (2-34) 

This non-dimensional eigenvalue is the ratio of the square of natural frequency ω to the 

square of vibration frequency  in tension motion. For our convenience in the 

following description, we may simply say the non-dimensional frequency λ of the beam 

in stead of its full definition description mentioned herein. 

Equation (2-33) represents the extensional and flexural coupled vibrations of curved 

beams with general curvature. Since curvature is not limited to constant, non-linear terms 

are involved in the flexural deformation part of above equations. In the following 

chapters, the perturbation method is used to simplify the governing equations. 
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2.5 Boundary Conditions 

In addition to the equations of equilibrium and compatibility, the governing 

equations must satisfy certain boundary conditions. To complete the formulation of the 

problem where a fourth order differential equation is involved, such conditions 

corresponding to the edge constraints must be specified. Boundary conditions are applied 

at both ends of the curved beam, i.e. when  and . Following boundary 

conditions are considered in the present studies. They are: 

1. Free end 

There is no constraint applied at the end. All DOFs are free. The moment, shear and 

axial force at the end are equal to zero, shown as follows: 

, , ,                                               (2-35) 

according to equation (2-24c) and equation (2-28), equation (2-35) is equivalent to 

,                                               (2-36a) 

,                                               (2-36b)  

 
.                                      (2-36c) 

2. Hinged end 

The end of the beam can freely rotate but all displacements are equal to zero, shown 

as follows: 

, ,                                                (2-37a) 

The moment at the end is also equal to zero, shown as follows: 

,                                                            (2-37b) 
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according to equation (2-28b), which results in, 

 .                            (2-37c) 

3. Clamped end 

All DOFs are constrained at the end of the beam, shown as follows: 

, .                                               (2-38a) 

Additionally, the rotation of the mid-surface during the deformation is equal to zero. 

From equation (2-14), it results in  

 .                                         (2-38b) 

The hinged and clamped conditions provide the extensional constraints on the beam, 

which is vital to the effects of changing curvatures and will be explained in Chapter 

Three, section 3.2. 
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2.6 Summary 

The governing equations of curved beams are derived based on the deformation of a 

curved surface. The curvature k is not limited to a constant value; therefore, the 

governing equations can be used to solve the natural vibration problem for the curved 

beam with variable curvature.  On the other hand, the variation in curvature brings the 

extra unknown parameter into the equations. Therefore, the key issue in solving the 

equations is how to treat the curvature parameter. In the following chapters, the 

perturbation method is adopted to deal with variable curvature problem.  
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Chapter 3  
 Perturbation Analysis 

 

   

 

In Chapter two, the non-dimensional governing equations of the curved beam were 

derived, which is coupled flexural and extensional vibration and also includes the 

variable curvature parameter. Therefore, it is difficult to solve by the classical analytical 

methods. By using perturbation techniques, in general, one expects analytic dependence 

on a small parameter. A solution or a class of solutions are dependent on this parameter 

with a limiting value. In physical problems, it is important to discover the nature of this 

dependence by working with various approximate differential equations and to 

investigate the nature of solutions from perturbation procedures. This chapter will 

demonstrate the process of using the perturbation technique on the vibration analysis of 

curved beams. 

3.1 Transformation of Governing Equations 

The eigenvalue of the vibration beam problem can also be expressed as follows (Qu 

and Tang 2000): 

.                                                      (3-1) 

This non-dimensional eigenvalue is the ratio of the square of natural frequency ω to the 

square of vibration frequency  in bending motion. 

Considering equation (2-34), one can establish the relationship between the 

eigenvalue and the square of non-dimensional natural frequency as follows: 

.                                                           (3-2) 
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Based on the number of oscillations in the non-dimensional amplitude of transverse 

and longitudinal displacement, estimate for the order of magnitude of terms is as follows: 

 ,  ,   .                                (3-3) 

and leads to the scaled parameters as follows: 

,  ,  .                                        (3-4) 

In the dimensionless coordinates, for the sake of keeping the same order of 

magnitude of terms in the governing equations, substituting equations (3-2) and equation 

(3-4) into the equation (2-33), results in 

 ,                  (3-5a)   

 .                  (3-5b)  

The solution to the transformed non-dimensional governing equations (3-5) depends 

on the parameter  defined as follows: 

 .                                                  (3-6) 

which is a dimensionless quantity, determined by both the curvature and the ratio of the 

flexural stiffness to the extensional stiffness. It is not like  which represents the 

geometric and material properties. This small parameter  also includes the impact from 

the curvature. For the straight beam,  is equal to zero, then equation (3-5) turns out to be 

the Euler-Bernoulli beam equations. The interesting thing is that the parameter    is not 

linear with the curvature. When the curvature is very small, the flexural stiffness is larger 

than the extensional stiffness. With the increase in the curvature, a critical point exists 

when the extensional stiffness predominates the vibration. In consequence, the parameter 

 is controlled in the region of . Thus  has the feature to be taken as the small 

parameter to obtain an approximate solution of the eigenvalue problem. This leads to the 
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change in characteristics of the natural vibration, which will be examined mathematically 

in the following sections.  

Substituting equation (3-6) into equation (3-5), one obtains the following equations: 

 ,                       (3-7a)  

 .                       (3-7b)  

Applying the perturbation technique into equation (3-7), the solution is assumed in the 

following expansion form: 

   ,                                               (3-8a) 

    ,                                         (3-8b) 

 .                                        (3-8c) 
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3.2 Zero Order Approximations 

The zero order perturbation solutions are easily written as follows: 

    ,  ,   .                     (3-9)        

Substituting the perturbation solutions into equation (3-7), the zero order perturbation 

equations are obtained as follows:  

 ,              (3-10a)  

 .               (3-10b)  

Since the leading power of ξ is zero, equations (3-10) are reduced by setting  as 

follows: 

 ,                                            (3-11a) 

 .                                  (3-11b) 

Equations (3-11) are the zero order approximation equations, which eliminate non-linear 

terms in governing equations (3-5). In equation (3-11), the differential of the term 

 is equal to zero, which indicates that the mean axial tension along the mid-

surface of the curved beam is constant and independent of the length s.  

In order to obtain the solutions of the transverse displacement, substituting the 

differential of equation (3-11b) into equation (3-11a), the fifth order differential equation 

can be obtained as follows: 

 .                                    (3-12) 

The solution of the equation (3-12) is obtained as follows: 
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 .                                           (3-13) 

where P0 is a constant. The closed form solution to the homogeneous equation of the 

straight beam  is shown as follows (Qu and Tang 2000): 

 .     (3-14) 

where C1, C2, C3 and C4 are unknown constants. For the clamped or hinged boundary 

conditions, there are four boundary conditions respectively as follows: 

Hinged:                       , ,  , .                 (3-15a) 

Clamped:                     , ,  , .                (3-15b) 

Applying the boundary conditions into the transverse displacement , the unknown 

constant C2, C3, C4 and P0 can be obtained. C1 is not important in terms of the 

normalization of the transverse displacement. 

Furthermore, equation (3-11a) leads to another equation, which is expressed as follows: 

        .                                             (3-16) 

where  is a constant. Substituting equation (3-16) into equation (3-11b), it gives that: 

    .                                        (3-17) 

Equation (3-17) shows physically the nature of free vibration problems for curved beams. 

Where on the right side of equation (3-17), if either  or   is assumed equal to zero, the 

equation can be reduced to the form as follows: 

     .                                         (3-18) 

It is obvious that equation (3-18) represents the flexural vibration of the straight beam. 
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Hence, equation (3-17) is taken as a straight beam flexural vibration plus the additional 

term  which represents the coupling effects from the curvature and the tension. 

Consider the boundary conditions of the curved beam. If either end of the curved 

beam is free, there will be no tension in the beam provided by boundary conditions which 

leads to . Therefore, it does not matter how curvature changes, as if either end is 

free, these changes in curvature will not affect the natural behaviour of the curved beam. 

Based on this conclusion, the following analysis only considers the clamped and hinged 

boundary conditions. The easy way to express the solution of equation (3-17) in another 

form shown as follows: 

  .                                               (3-19) 

where  is the eigenvector of the straight beam, and  is the particular solution. 

The eigenvalue can be derived based on equation (3-17), from which the particular 

solution  can be also expressed as follows: 

 .                                                     (3-20) 

where considering a curved beam with specific curvature, the non-dimensional curvature  

 is defined as the function of , which can be expressed as follows: 

.                                                   (3-21) 

where b represents the amplitude of curvature and  represents the shape function of 

curvature. 

The constant  can be derived by adopting the following procedure. Integrating equation 

(3-16) with respect to ,  it results in: 

                  .                                    (3-22) 
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and in either case of clamped or hinged boundary condition,  

   .                                            (3-23) 

Thus, substituting equation (3-23) into equation (3-22), it results in: 

        .                                                (3-24) 

Hence, equation (3-20) can be rewritten as follows: 

 ,                                            (3-25) 

where,                               

     ,                             (3-26) 

Substituting equation (3-26) into equation (3-25), it results in 

,                     (3-27)  

then,                               

              ,                                        (3-28) 

Therefore,                              

         .                                         (3-29) 

Substituting equation (3-14) into equation (3-29) and applying the boundary condition, 

the eigenvalue can be obtained, which also indicates the relationship between the 

curvature and the natural frequency. Examples of curved beams with various curvatures 

and with different boundary conditions will be demonstrated in the Chapter five.  
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3.3 First Order Approximation Equations 

The zero order perturbation solutions give the approximate results, though it can 

explain physical meaning of the vibration characteristics. In this section, the accuracy of 

the results will be improved by the first order perturbation equations. The first order 

perturbation solutions are written as follows:  

 , 

 , 

 .                                      (3-30)        

Substituting equation (3-30) into equation (3-7), the first order perturbation equations can 

be obtained as follows:         

   
                                                                                                 (3-31a) 

  
                                                                                                 (3-31b)  

Since the leading power of ξ is equal to one, equations (3-31) are reduced by setting  

 as follows: 

 ,                                   (3-32a)  

 .             (3-32b)  

It is obvious that the tension along the curved beam is not constant anymore. It takes 
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account of the effects from the initial rotation and the linear momentum in the 

longitudinal direction, which can be observed by integrating equation (3-32a) as follows: 

.            (3-33) 

where  can be obtained by integrating equation (3-33) and using the boundary 

conditions  and given as follows: 

 .             (3-34) 

Substituting equation (3-34) into equation (3-32b), one obtains the following equation: 

  
                                                                                (3-35) 

The solution of the equation is easily written as follows: 

.                                             (3-36) 

where  is the eigenvector of the straight beam expressed as follows:  

.    (3-37) 

and  is the particular solutions. It is complex to obtain  directly from equation (3-

36), thus using similar procedure with the zero order perturbation, differentiate equation 

(3-32b) and then substitute into equation (3-32a), the fifth order differential equation can 

be obtained as follows: 

. (3-38) 
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which can be further simplified as follows: 

,                                  (3-39) 

where 

 .            (3-40) 

Then, using similar derivation procedure as zero order, find  and substituting into 

equation (3-36). Let  is expressed by equations only including . The whole 

procedure is processed by using the commercial code MAPLE, the unknown constant D2, 

D3, D4 and the eigenvalue Λ1 are also solved. 

Finally, the eigenvalue is solved as follows: 

.                                                (3-41) 
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3.4 Second Order Approximation Equations 

Comparing to the zero order perturbation equations, the first order equations have 

advantages of taking account of the coupling effect which is controlled by the small 

parameter ξ. However, there is still the simplification in perturbation equations. The 

accuracy of results could be improved by the second order perturbations.  

The second order perturbation solutions are shown as follows: 

,                                       (3-42a) 

,                           (3-42b) 

.                         (3-42c)        

Substituting equation (3-42) into equation (3-7), the second order perturbation equations 

are obtained as follows: 

                   

(3-43a) 

      

(3-43b)  

Equation (3-43) can be rewritten by setting   as follows: 

 ,                 (3-44a)  

 .            (3-44b)  
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Equation (3-44) is in the same format with the original equations of motion (3-7), which 

means the second order perturbation approximations take account of all effects from the 

curvature and the coupling of stiffness. The solution procedure to obtain the eigenvalue 

and eigenvector is similar to the previous sections, namely 

1. Combine two equations into one and integrate equation. 

2. According to the beam shape define the curvature value. 

3. Through derivation to find out the particular solution . 

4. Let the displacement  is expressed only by homogeneous solution . 

5. Substituting lower order perturbation solutions into the second order equations. 

6. Using boundary conditions to solve unknown constants. 
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3.5 Summary 

This chapter demonstrated the perturbation approach applied the natural vibration 

analysis of curved beams. The reason for using perturbation method is to expand the 

unknown curvature parameter into a series equation, represented by the known factors. 

The non-dimensional governing equations are solved depending on a small parameter, 

which represents the geometric property, material property and the curvature and shows 

how these properties affect the natural vibration of a curved beam.  

The zero order perturbation decouples the flexural and extensional vibration, which 

explains the physical meaning of the vibration characteristics of the curved beam. The 

transverse displacement of the curved beam is represented by the straight beam 

displacement combined with the special solution. This special solution generates the 

effects from curvatures. The first order perturbation improves the accuracy of the results 

and the second order solutions take account of all effects from the curvature, the stiffness 

and the coupling. The differences between different orders are observed from equations 

for extensional mode and bending mode. Mode transition phenomena will be explained 

by results of both eigenvalue and mode shapes. Examples will be given in Chapter five.  

Table 3.1 Differences between different order perturbations, (observed from equations) 

Perturbation Zero order First order Second order 

Extensional 

mode 

Tension is constant 

equation (3-16) 

Tension includes effect  

from initial rotation and 

linear momentum 

Equation (3-33) 

Additional component 

added, the change of 

tension is not linear 

Equation (3-44a) 

Bending 

mode 

Particular solution 

Wp is linear to the 

curvature. 

Equation (3-25) 

Couple the effect from 

tension 

Equation (3-32b) 

Couple the effect from 

tension 



Finite Element Models 

54 

 

Chapter 4 Finite Element Models 

 

This chapter is presented to prove that numerical methods to establish the curved 

beam and the curved plate subjected to various variable curvatures are accepted as an 

alternative to the formulations presented in the previous chapter. One widely-accepted 

method relies on the use of Finite Element Analysis (FEA) which allows the designer to 

model the geometry; material properties; imperfections (such as out-of-roundness), 

fabrication-induced residual stresses, misalignment and corrosion defects, as well as 

boundary conditions. The primary advantage of the FEA is that there are numerous 

commercial FE codes available. Thus eliminating any need to develop actual code. These 

commercial FE codes have the additional advantages of being very user friendly, and 

providing sophisticated pre- and post-processing options. 

4.1 General Procedure 

The FEA analysis model is translated from the engineering model and key issues 

include the selection of the commercial code, the determination of the loads and 

boundary conditions, development of the mathematical model, choice of element types, 

design of the mesh, solution procedures and verification and validation. Numerous 

decisions are to be made during this analysis process as follows: 

• Extent of the model. The use of a full model is preferred in FEA. Symmetric 

conditions may be utilized to reduce the size of finite element model, if appropriate. The 

model should include the main features of the physical structure related to dynamic 

behaviour and capture all relevant modes. 

• Material properties. Material nonlinearity may have to be considered in some 

circumstances, particularly in order to account for the effects of residual stresses. 

• Loads. All possible loads and their combinations are to be considered. 
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• Boundary conditions. Boundary conditions are the constraints applied to the model. 

The boundary conditions should suitably reflect the constraint relationship between the 

structural component and its surroundings. 

• Element types. Finite element types are specialized and can only simulate a limited 

number of response types. The choice of element types should be best suited to the 

problem. 

• Mesh design. The discretization of a structure into a number of finite elements is 

one of the most critical tasks in finite element modelling and often a difficult one. The 

following parameters need to be considered in designing the layout of elements: mesh 

density, mesh transitions and the stiffness ratio of adjacent elements. As a general rule, a 

finer mesh is required in areas of high stress gradient. The performance of elements 

degrades as they become more skewed. If the mesh is graded, rather than uniform, as is 

usually the case, the grading should be done in a way that minimizes the difference in 

size between adjacent elements. 

The basic steps involved in any finite element analysis consist of the following 

procedures: 

1 Pre-processing phase: Create and discretize the solution domain into finite elements; 

that is, subdivide the problem into nodes and elements. Assume a shape function to 

represent the physical behaviour of an element; that is, an approximate continuous 

function is assumed to represent the solution of an element. Develop equations for an 

element. Assemble the elements to present the entire problem. Construct the global 

stiffness matrix. Apply boundary conditions, initial conditions, and loading. 

2 Solution phase: Solve a set of linear or nonlinear algebraic equations simultaneously 

to obtain nodal results, such as displacement values at different nodes or temperature 

values at different nodes in a heat transfer problem. 

3 Post processing phase: Obtain other important information such as values of 

principal stresses, heat fluxes, etc. 
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4.2 FEA Solutions of Natural Vibration 

In the dynamic problem of a structural system, using a finite element idealization, 

the dynamic equilibrium equation of the system is written in a matrix form as 

,                                                (4-1) 

where M, C and K denote respectively the mass, damping and stiffness matrices of the 

structural system. In general, M and K are symmetric matrices whilst C is non-symmetric. 

u is the displacement vector and F is the external force vector. To determine the natural 

vibrations of this structural system, damping and external loads are ignored and hence 

Equation (4-1) reduces to  

.                                                    (4-2) 

It is assumed that the solution of Equation (4-2) has the harmonic form 

u = q e
iωt

 ,                                                        (4-3) 

which upon substitution into Equation (4-2) leads to 

(K −ω
2
M) q = 0.                                                   (4-4) 

Equation (4-4) is a linear homogenous algebraic system of equations with unknown 

vector q and ω
2
. This is known as the eigenvalue problem of the structural system, with ω 

and q representing the natural frequency and the corresponding principal mode vector 

respectively. A nontrivial solution of Equation (4-4) requires the determinant of the 

coefficient matrix to be zero, that is 

det (K −ω
2
M) = 0.                                              (4-5) 

The expansion of the determinant in Equation (4-5) results in a polynomial equation 

of ω
2
  designated as the characteristic equation of the structural system. If the system has 

N degrees of freedom, N solutions of ω
2
 can be obtained from Equation (4-5). 
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4.3 The Choice of Element 

In the present work, the commercial code ANSYS (2002) is adopted for modelling 

and analysis. There are three elements in ANSYS which are able to model the curved 

beam as shown in Table 4.1: 

Table 4.1 Selected elements in ANSYS 

BEAM4 PLAN42 SHELL93 

a uniaxial element with 

tension, compression, torsion, 

and bending capabilities. The 

element has six degrees of 

freedom at each node: 

translations in the nodal x, y, 

and z directions and rotations 

about the nodal x, y, and z 

axes. Stress stiffening and 

large deflection capabilities 

are included. 

used for 2-D modeling of solid 

structures. The element can be 

used either as a plane element 

(plane stress or plane strain) or 

as an axisymmetric element. 

The element is defined by four 

nodes having two degrees of 

freedom at each node: 

translations in the nodal x and 

y directions. The element has 

plasticity, creep, swelling, 

stress stiffening, large 

deflection, and large strain 

capabilities. 

defined by eight nodes, four 

thicknesses, and the 

orthotropic material properties 

and particularly well suited to 

model curved shells. The 

element has six degrees of 

freedom at each node: 

translations in the nodal x, y, 

and z directions and rotations 

about the nodal x, y, and z 

axes. The deformation shapes 

are quadratic in both in-plane 

directions. 

 
 

 

 

A simple test is made to find the accuracy of the chosen elements. Table 4.2 

illustrates the natural frequency of a curved beam calculated using these three elements 

compared with the reference value also using FEA from (Fleischer 1974). The properties 

of the uniform curved beam are listed as follows: 
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l=10.16cm, a=7.62cm, t=0.033cm, r=76.2 cm, E=6.89e
10

 N/m
2
,  =2660 Kg/m

3
, μ=0.33 

where  is the density, r is radius of curvature, l is the length, a is the width, t is the 

thickness, E is Young‟s modulus and   is the Poisson‟ ratio. The curved edges are 

clamped. 

Table 4.2 natural frequency of selected elements 

Mode shape BEAM4  Hz PLAN42 Hz SHELL93 Hz Fleischer
  
Hz 

1  870.32 868.93 870 868.55 

2  958.61 958.87 957.882 958.48 

3  1292.01 1290.11 1291 1289.12 

In order to compare the numerical results with analytical results, in some case the 

natural frequency is converted into dimensionless state. The following equation is used 

for this transformation. The non-dimensional frequency is defined as follows: 

.                                            (4-6) 

where  is the density, l is the length, E is Young‟s modulus and   is the Poisson‟ ratio. 

A convergence study has also been carried out, shown in Figure 4.1. Due to the simple 

geometry, more than 20 elements ensure the results are accurate enough.  
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Figure 4.1 convergence study of SHELL93 element 

Although all three elements are able to model the curved beam and show similar 

accuracy for the circular curved beam, based on all following reasons SHELL93 is taken 

as the numerical analysis of curved structures.  

1. make the numerical simulation closer to the real structure 

2.  capable for two dimensional curved panels 

3. easier to control boundary conditions 

4. more accurate for larger curvatures 

5. Avoid shear locking by using the designed stress-strain relationship (ANSYS 

Theory Reference)  
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4.4 FE model of Curved Beam 

4.4.1 The circular curved beam 

The equation of the curvature is derived in Chapter 2 and the curvature taken as a 

variable parameter is used in the perturbation equations in Chapter3. In order to model 

the curved beam or plate, the curvature need to be transformed into ANSYS coordinate 

system.  

The first model shown in Figure 4.2 is the sketch of a circular curved beam with the 

properties as: the length is 1000 mm, the width is 150 mm, the thickness is 0.8 mm, the 

density ρ is 7770 kg/m
3
, Young‟s modulus E is 200 GPa. The global coordinate system 

is represented by the Cartesian coordinate system o-αβγ. oβ is along the direction of the 

straight line between two ends of the beam; oα is normal to oβ direction, along the short 

edge of shell. oγ is normal to the plan αoβ. The geometry of the shell is that l denotes the 

length of curved edge; a denotes the length of short edge; r denotes the radius of curved 

edge. 

The non-dimensional curvature denoted by k  defined as follows: 

 .                                                                (4-7) 

where l is the length of the beam, r  is the radius of curvature and k is the curvature. 

The relation between the non-dimensional curvature and the subtended angle of the 

curved beam is defined as follows: 

 .                                               (4-8) 

In present numerical studies, the changes in subtended angle are used to represent the 

changes in curvatures. 
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Figure 4.2 Geometry of curved beam with a constant curvature 

4.4.2 The S-shape strip 

The s-shape elastic strip has zero curvature at the inflection point; the curvature 

increases monotonically in magnitude away from that point in both directions. For the 

simple model of the strip as a uniform beam in static equilibrium under end moments, the 

curvature would vary linearly with axial distance. 

The anti-symmetric linear curvature function can be defined as follows: 

                                .                                              (4-9) 

where k denotes the curvature, b denotes the amplitude of curvature and s denotes the 

length of arch.  

The global coordinate system is represented by the Cartesian coordinate system o-

α β 

o 

γ 
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αβγ, shown in Figure 4.3. oβ along the zero curvature direction; oα is normal to oβ 

direction, along the short edge of shell. oγ is normal to the plan αoβ. A code is developed 

in MATLAB to solve the function of  and  which represents the 

 

Figure 4.3 finite element models for the strip of varying curvature 

coordinate of each point on the curved edges of the S-shape strip. In ANSYS the anti-

symmetric linear curves are expanded into a two dimensional strip. The SHELL93 

element is used to mesh the strip. 

4.4.3 Other curvatures 

Similar to the circular curved and S-shape curved beam, through the curvature 

function, many kinds of geometry can be defined, shown in Table 4.3. Curved beams 

with these curvatures can also be modelled by creating curves of  and  in the 

model.  

Using the curvature function it is possible to solve the perturbation equations 
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demonstrated in Chapter 3; however, there are also some types of curved beams which 

are difficult to represent by such function. The example will be given in Chapter 6. 

Table 4.3 Curvature function of various curves 

k Geometry of curved edge Figure 

1 circle 4-2 

2s-1 S-shape 4-3 

s Euler ś spiral 

 

s
2 

double clothoid 

 

s
2
-1 Polynomial spiral 
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4.5 Boundary Conditions Treatment 

Since both clamped and hinged boundary conditions provide the extensional restraint, 

changes of curvature will cause the mode transitions of the curved beams. Therefore to 

examine different boundary conditions is an important procedure in the numerical 

analysis. Boundary conditions demonstrated in Chapter three will be treated in the 

following forms in numerical analysis.  

For the circular curved beams, various boundary conditions are introduced into the 

global coordinate system o . o  is along the direction of the straight line between 

two ends of the beam; o  is normal to o  direction, along the short edge of the beam. 

o is normal to the plan o .  

For the s-shaped strip, o  along the zero curvature direction; o  is normal to o  

direction, along the short edge of shell. o  is normal to the plan o . 

Case 1 Spin 

The transverse displacement is fixed and no moment applied at the boundary. 

i.e.                        only  .                                                     (4-10) 

Case 2 Clamped 

                          All DOFs = 0 .                                                            (4-11) 
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Case 3 Hinged 

 All the displacements are fixed at the boundary, but rotations are not fixed. 

                 .                                (4-12) 

Case 4 Free 

 No shear, axial force and moment at the boundary. 

                                                           All DOFs are free                                          (4-13) 

Case 5 Rolling 

 Only the horizontal displacement is free.  

 

                .                    (4-14) 
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Chapter 5   Curved Beams with 
Variable Curvature 

 

The natural vibration behaviour of the curved beam with variable curvatures is 

analyzed in Chapter three. The solution of the perturbation equations is derived. In order 

to investigate effects of curvature on the natural characteristics of curved beams, in this 

chapter, the relationship between eigenvalue and curvature are formulated by solving 

unknown constants in equation (3-29). The circular curved beam and S-shape strip are 

taken as examples. Results are obtained and plotted in MATLAB code. Some features 

caused by the curvature are revealed. Numerical results are also plot and explained. 

5.1 Curved Beam with Constant Curvature 

As defined in equation (3-21), non-dimensional curvature k̂  is a function of the 

length of arch s . The constant curvature is independent of s , therefore the shape function 

)(ˆ sK  is equal to 1 and then equation (3-21) can be rewritten as follows: 

rbsKbsk 1)(ˆ)(ˆ  .                                              (5-1) 

where the curvature amplitude b is equal to constant that is the curvature of an arch with 

a constant radius r. Substituting equation (5-1) into equation (3-29), it results in: 

 

 
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
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
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321

2

321

)cosh()sinh()cos()sin(

)cosh()sinh()cos()sin(

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

b

sdssCsCsCb

ssCsCsC

Cw

.

    (5-2) 

where constant C can be eliminated by normalizing the transverse displacement and 

constants C1, C2 and C3 need to be solved by using appropriate boundary conditions. 
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Firstly, hinged boundary conditions are processed as follows. 

5.1.1 Hinged boundary conditions 

According to equation (2-37), hinged boundary conditions can be treated as: 

0)0( w , 0)1( w , 0
)0(

2

2


sd

wd
, 0

)1(
2

2


sd

wd
 .                       (5-3) 

Substituting boundary conditions shown in equation (5-3) into equation (5-2), it 

yields four equations. Three unknown constants C1, C2 and C3 are obtained by solving 

these equations and shown as follows: 

4
1

4
1

sin

cos1
1




C  ,                                                (5-4) 

12 C  ,                                                        (5-5) 

4
1

4
1

sinh

cosh1
3




C  .                                              (5-6) 

Substituting the first condition in equation (5-3) and equation (5-4) – (5-6) into 

equation (5-2), the relationship between the eigenvalue and curvature can be 

formulated as follows: 
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 (5-7) 
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The code to solve equation (5-7) is written in MATLAB; the result is obtained and 

illustrated in Figure 5-1. The horizontal coordinates is amplitude of the curvature b. The 

vertical coordinates the non-dimensional eigenvalue Λ.  
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Figure 5.1 Non-dimensional eigenvalue of a circular beam with hinged boundary conditions 

The symmetric modes and the anti-symmetric modes are labelled on the curves. The 

definition of symmetric modes and anti-symmetric modes can be easily demonstrated by 

the mode shapes. When the deflection of the left half of the beam is the same with the 

right half of the beam, it can be called symmetric mode. If the deflection of the left half 

of the beam is of the opposite sign to that of the right half, it is called anti-symmetric 

mode.  

From Figure 5.1, it can be seen that with the increase in curvature, frequencies of 

symmetric modes rise dramatically and frequencies in anti-symmetric modes remain 

almost constant. As curvature increase from zero, the frequency of first symmetric mode 

starts rising. The rising will stop when curvature reaches a certain large value, and from 
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which the frequency of second symmetric mode start to increase. It will stop rising when 

it reaches another larger value of curvature. The trends continue in higher symmetric 

modes.  

The analysis is also processed by finite element method in ANSYS.  
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Figure 5.2 Natural frequency of circular curved beam with hinged ends 

The natural frequency of the circular curved beam with hinged boundary conditions 

is shown in Figure 5.2. The circular curved beam has the properties as the length of the 

beam is 1000 mm, the width is 150 mm, the thickness is 0.8 mm, the density ρ is 7770 

kg/m
3
, Young‟s modulus E is 200 GPa. A is the area of cross section and I is second 

moment of inertia. f is the frequency (Hz) obtained from ANSYS and ω is angular 

frequency (rad/s). 

Natural frequencies obtained from ANSYS are converted to the non-dimensional 

eigenvalue using the following equations:  
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 ,                                                            (5-8a) 

.                                                        (5-8b) 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

1.5

2

2.5
x 10

5 Circular curved beam with hinged ends

curvature b

N
o
n
-d

im
e
n
s
io

n
a
l 
e
ig

e
n
v
a
lu

e
 Λ

 

 

 

 

FEA

Perturbation

 

 

 

 

1st anti-symmetric mode
1st symmetric mode

2nd anti-symmetric mode

2nd symmetric mode

3rd anti-symmetric mode

3rd anti-symmetric mode

Asymptotic curve 

 

Figure 5.3 Comparisons of non-dimensional eigenvalue of circular curved beam with hinged 
boundary condition 

Figure 5.3 combines results from both perturbation analysis and FEA. From Figure 

5.3, it is observed that mode transitions occurred at several curvature values. For the first 

symmetric mode, it happens at about b=0.007. For the second symmetric mode, it 

happens at about b=0.038. For the third symmetric mode, it happens at about b=0.09. 

Another observation is the trend of the curves rises according to the increase in the 

curvature. Considering the second symmetric mode, there is a relatively rapid rise in 

frequency when the curvature amplitude b, attains a value of about 0.018. The rise 

continues till b attains a value of about 0.065, after which frequency is unaffected by the 

curvature. In a similar way at b=0.065, the third symmetric mode, which was invariant 
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with b till now, shows a rapid increase. The increase continues till b reaches about 0.14; 

after this the frequency is again unaffected. Thus, at a given range of b only one 

symmetric mode will experience a significant change in frequency; the others, lay and 

large, remain unaffected. Note that anti-symmetric modes are unaffected and generally 

invariant with changes in curvatures. 

It has been demonstrated that the curvature bring the geometric coupling between the 

extensional mode and the flexural mode. In Figure 5.3, two sets of solid lines represent 

the asymptotic curves. The set of rising lines represents the membrane vibration. Another 

set of horizontal lines represents the pure flexural vibration. At the beginning, natural 

frequency curves rise to a higher value following the route of the membrane asymptotic 

line. The natural frequency stops increasing when it is close to the horizontal asymptotic 

line. The curve then moves following the flexural asymptotic line horizontally. It 

illustrates how the extensional stiffness and the flexural stiffness interact in the curved 

beams. 

Figure 5.3 illustrate the effect of curvature on the natural frequency of curved 

circular beam. They also indicate that the symmetric and anti-symmetric modes sequence 

appears in a reverse order when a certain curvature is reached. The mode transition 

phenomena are illustrated using numerical results and shown in Figure 5.4. Three cases 

are given according to the value of radius of curvature. For the straight beam (case one), 

the mode shapes keep normal. As b increase (case two), the lowest natural frequency 

changes to respond the first even mode shape, which means the mode sequence changes. 

For case three, b is larger enough and then the first odd mode does not exist. 
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Case 1 b=0 

 
 Mode l Symmetry,  f =1.842 Hz              Mode 2 Anti-symmetry,  f =7.39 Hz 

 

 

 
 Mode 3 Symmetry,  f =16.688 Hz              Mode 4 Anti-symmetry,  f =29.779 Hz 

 

Case 2 b=0.02 

  
Mode l Anti-symmetry,  f =7.391 Hz                 Mode 2 Symmetry,  f =13.244 Hz 
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Mode 3 Symmetry,  f =18.468 Hz               Mode 4 Anti-symmetry,  f =29.786 Hz 

 

Case 3 b=0.9 

  
Mode l Anti-symmetry f =7.407 Hz              Mode 2 Symmetry f =15.821 Hz 

 

  
Mode 3 Anti-Symmetry f =29.819 Hz                 Mode 4 Symmetry f =45.364 Hz 

Figure 5.4 Variation in mode sequence due to the rising in curvatures 
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5.1.2 Clamped boundary conditions 

The clamped boundary conditions according to equation (2-38) can be treated as: 

0)0( w , 0)1( w , 0
)0(


sd

wd
, 0

)1(


sd

wd
 .                          (5-9) 

Substituting boundary conditions shown in equation (5-9) into equation (5-2), it yields 

four equations. Three unknown constants C1, C2 and C3 are obtained by solving these 

equations and shown as follows: 
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coshcos I  ,                                     (5-15) 

4
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4
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sinJ   ,                                           (5-16) 

1cosh 4
1

M   ,                                        (5-17) 

4
1

4
1

sinh N  .                                         (5-18) 

Using the same procedure as shown in last section, substitute the first condition in 

equation (5-9) into equation (5-2) and it gives that: 
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 (5-19) 

Equation (5-19) represents the relationship between eigenvalue and curvature, which 

is solved in MATLAB code and results are illustrated in Figure 5-5. The trends of mode 

transitions are similar the one with hinged boundary conditions.  
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Figure 5.5 Non-dimensional eigenvalue of a circular beam with clamped boundary conditions 

Substituting equation (5-19) into equation (5-2), the natural mode shape can be 

obtained, which is plotted in Figure 5.6. It clearly shows the natural modes changes from 

the anti-symmetric modes to the symmetric modes when the curvature increases.  
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Figure 5.6 Mode shape for clamped circular curved beam with increasing curvatures 

 

Figure 5.7 Symmetric mode shape transitions for a clamped circular curved beam 

If the anti-symmetric mode is ignored, the transverse displacement is expressed as 

follows: 
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,                                                                                                    

(5-20) 

The mode shapes for only symmetrical modes and the extension vary during the 

transition stage are plotted in Figure 5.7 and Figure 5.8. It is found that the transition of 

mode shapes following the increase of the curvature is similar as the one with the hinged 

boundary condition.  

 

Figure 5.8 extension varies with the curvature 

The tension are expressed by equation (3-16) as follows: 

 



Curved Beams with Varying Curvature 

78 

 

Substituting the solution of eigenvalue and transverse displacement into above equation, 

the tension can be obtained as follows: 

.  (5-21) 

Figure 5.8 also explains the mode transition phenomenon. When the eigenvalue 

increases, the tension also increases in one direction. At the brake point 10.2, the mode 

transition occurs. The extra tension released and the mode shape turns from the 

symmetrical to the anti-symmetrical. At the next brake point 10.5, mode shape turns to 

the symmetrical again but with higher half wave. The following transition happens at the 

brake point 17, similar as before. 
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5.1.3 Simply supported boundary conditions 

For cases of those boundary conditions which have no tension constraint, all natural 

frequencies remain almost constant shown in Figure 5.9.  
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Figure 5.9 Simply support boundary condition 
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5.2 S-shape Strip 

The analysis is not limited to the curved beam with constant curvature. The example 

S-shape strip has the following properties: length of the beam is 1000 mm, the width is 

150 mm, the thickness is 0.8 mm, the density ρ is 7770 kg/m
3
, Young‟s modulus E is 210 

GPa, Poisson‟s ratio μ is 0.28. The curvature shape function in equation (3-21) allows 

curvature change to different forms. S-shape curved beam has different characteristics of 

natural behaviour, the curvature of which is taken as linear anti-symmetric. The shape 

function of s-shape strip can be simply expressed as follows: 

12)(ˆ  ssK , 10  s                                           (5-22) 

Therefore equation (3-21) can be rewritten as follows: 

)12()(ˆ  sbsk .                                              (5-23) 

where at both ends of the beam, the amplitude of curvature is maximum and it is 

equal to zero in the middle of the beam. Substituting equation (5-23) into equation 

(3-29), it results in: 

 

 

 

 

 
3

)1(coshsinh)1(cossin2

sinh)1(coshsin)1(cos

)cosh()sinh()cos()sin(

ˆ

)cosh()sinh()cos()sin(ˆˆ

)cosh()sinh()cos()sin(

2

321

321

2

321

21

0

3214

1

0

3214

4

1

4

1

4

1

4

1

2

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

b

CCC

CCC

Cb

ssCsCsCC

sdk

sdssCsCsCCkk

ssCsCsCCw












































.

(5-24) 
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From the circular beam study, it is found that under both hinged and clamped 

boundary conditions, the transverse displacement at ends is equal to zero. Therefore 

substituting the condition ( 0)0( w ) into equation (5-24), it gives the relationship 

between eigenvalue and amplitude of curvature, shown as follows: 
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(5-25) 

where the constant C is eliminated by normalizing the transverse displacement and 

constants C1, C2 and C3 need to be solved by using appropriate boundary conditions.  

5.2.1 Hinged boundary conditions 

Substituting equation (5-3) into equation (5-24), it yields four equations. Three 

unknown constants C1, C2 and C3 are obtained by solving these equations and shown as 

follows: 
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C  ,                                   (5-26) 

12 C  ,                                                     (5-27) 
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1
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1
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
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Therefore equation (5-25) can be solved by substituting equation (5-26) – (5-28). 

Results are illustrated in Figure 5.10. The horizontal coordinates is the amplitude of the 

curvature b. The vertical coordinates the non-dimensional eigenvalue Λ. The symmetric 
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modes are shown in dashed lines and the anti-symmetric modes are shown in solid lines. 

The trends of natural mode changes of the s-shape strip are different from that of the 

circular beam with constant curvatures. Unlike the circular beam, the symmetric modes 

of s-shape strip will not be significantly affected by changes in curvature. On the other 

hand, the anti-symmetric natural frequencies start increasing with the rising of curvature 

and will stop rising until reach a certain large curvature parameter. It can be concluded 

that the mode transitions of s-shape curved beam has a reverse order of the curved beam 

with constant curvature.  
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Figure 5.10 Non-dimensional eigenvalue of an s-shape strip with hinged end conditions 

Mode transition behaviour is also illustrated in Figure 5.11. The first three natural 

modes for three different curvatures are plotted. Symmetric modes are noted by s, anti-

symmetric modes are noted by as. The frequencies are given, which match with the non-

dimensional eigenvalue after the convert by equation (5-8). 
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Modes                  b=0                                           b=0.1                                            b=0.2 

1
st      

 

                       s    1.88 Hz                                 s   1.889 Hz                              s   1.892 Hz 

 

2
nd    

  

                      as   7.573 Hz                               s   17.113 Hz                             s   17.139 Hz 

 

3
rd

     

                       s    17.102 Hz                            as   25.672 Hz                            as  27.149 Hz 

 

4
th 

    

                      as   30.52 Hz                              as   44.325 Hz                             s   47.903 Hz 

 

Figure 5.11 mode shape transition of S-shape with hinged boundaries 

5.2.2 Clamped boundary conditions 

Using the similar procedure with the hinged boundary condition case, the unknown 

constants here can be obtained as follows: 
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4
1

4
1

4
1

sinh21cosh 


M  ,                                   (5-36) 

2sinhcosh2 4
1

4
1

4
1

N  .                                   (5-37) 

Substituting equation (5-29) – (5-31) into equation (5-25), eigenvalue can be 

obtained by giving a range of value of curvature. Results are illustrated in Figure 5.12. 

The trends of mode frequencies changing are similar with hinged boundary conditions. 

It can be concluded that for a beam whose curvature is a symmetric or anti-

symmetric function, only those modes possessing the same type of symmetry in the 

transverse displacement undergo a mode transition. It can be proven from equation (3-20) 

that if the curvature shape function is symmetric (or anti-symmetric) and the transverse 

displacement function is anti-symmetric (or symmetric), the integration will be equal to 

zero; thus no tension can be generated in the beam. Therefore, curvature does not affect 

the natural behaviour of curved beam. 
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Figure 5.12 Non-dimensional eigenvalue of an s-shape strip with clamped end condition 
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5.3 Summary 

5.3.1 Discussion on different order perturbations 

The difference between different order perturbations results normally refer to the 

accuracy comparing with the closed form solution. As reviewed in the background, very 

limited closed form solution for curved beams with specific boundary conditions exists. 

Hence, in this section, the first natural frequency of a circular curved beam with clamped 

boundary condition is provided to demonstrate the accuracy of different order 

perturbation. FEA results are used for comparison. 

From Figure 5.13, it is found that for a thin curved beam (thickness less than 1/20 of 

the length), the eigenvalue of different order perturbations are very similar. From 

equation (3-6), it is easy to see the parameter  is very small for small thickness, which 

explains all curves coincide together. When the thickness increased, in Figure 5.14, the 

curves of first order and second order perturbations are closer to the FEA results. Since 

the parameter  includes also the curvature parameter, it is noted that within the lower 

curvature range, all curves still coincide together until the curvature becomes large 

enough; parameter  starts to affect the trends of the eigenvalue. 

5.3.2 Discussion on natural frequencies change for large curvatures 

For example, in Figure 5.12, the curve for the first anti-symmetric mode rises rapidly 

before the value of curvature reach 0.1. After that, the trend of the curve remains steady. 

The first anti-symmetric mode gradually transits to the second anti-symmetric mode. If 

the curvature continues increasing, at a certain large curvature, say much larger than the 

value of 0.35, the second anti-symmetric mode will finish transition to the third second 

anti-symmetric. Therefore, at a certain large curvature, the first anti-symmetric mode will 

not exist and the curve for the first anti-symmetric mode will stop before that value. In 

such case, the first natural frequency of the curved beam with large curvature can be very 

high. 
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5.3.3 Summary 

From the analysis in this Chapter, it is easy to conclude that for the curved beam 

whose curvature can be expressed as the function of the length of the arc, the perturbation 

solution can be derived. Different curved beams have different natural modes, but the 

changes in the curvature lead to the mode transition phenomena. These mode transition 

phenomena can be seen from plots of natural frequency, mode shape and tension of the 

curved beam. All analytical results are compared with FEA ones, showing very good 

agreement.  

 

Figure 5.13 Non-dimensional eigenvalue comparisons of a thin (η=1e-6) circular curved beam 
with clamped ends 

 

Figure 5.14 Non-dimensional eigenvalue comparisons of a thicker (η=1e-4) circular curved beam 
with clamped ends 



Curved Beam with Arbitrary Curvatures 

87 

 

Chapter 6   Curved Beam with 
Arbitrary Curvatures 

 

 

Not all curvatures can be easily expressed as the function of the length of arc such as the 

curved beam with parabolic arc. Another example, in the construction industry, is that of 

curved beams requiring to be weld to straight beams at both ends. It is not straightforward 

to apply the perturbation method to those kinds of curved structures. In order to expand 

the present analysis suitable for arbitrary geometries, some transformations and 

assumptions are made in this Chapter.  

6.1 Treatment of Arbitrary Curvature 

It has been demonstrated that when the curvature can be expressed as the function of the 

length of arc, the natural behaviour can be investigated through the perturbation method. 

However, in real engineering applications, not all geometries can be ideally expressed by 

the curvature function. For a parabolic curved beam, shown in Figure 6.1, the arc length 

can be expressed as follows: 

 , where                     (6-1) 

, where                                (6-2) 

According to equation (6-1) and (6-2), the curvature function can be derived as follows: 

,                                 (6-3) 

where                                           ,                                    (6-4) 



Curved Beam with Arbitrary Curvatures 

88 

 

and                                                        .                                                (6-5) 

By substituting equation (6-4) and (6-5) into equation (6-3), it is seen that if the curvature 

is assumed as the function of the arc length, the equation would be very complex. 

Therefore we try to seek another solution. 

 

Figure 6.1 sketch of a parabolic curved beam 

A parabola can also be obtained as the limit of a sequence of ellipses where one 

focus is kept fixed as the other is allowed to move arbitrarily far away in one direction. 

The equation of a parabola in rectangular coordinates is as follows: 

.                                                      (6-6) 

Looking back to the curvature equation in Chapter 2, the curvature for the parabola arc is 

as follows: 

.                                   (6-7) 

From the zero order perturbation equation, it is assumed that the solution of the curved 

beam is equal to the solution of the straight beam plus the particular solution. This 

assumption leads to  for the curved beam with small amplitudes of curvature. 

Therefore, in rectangular coordinates, equation (3-12) transforms to the following 

equation: 
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.                                            (6-8) 

By substituting equation (6-7) into equation (6-8), the solution procedure is similar as 

previous analysis. 

6.2 Natural Vibration of a Parabolic Arc 

An example is given by Lee and Wilson (1989) for a parabolic arc with dimension 

of l=36.7cm and h=9.17cm, and with cross-section dimensions of 2.54cm and 0.635cm. 

The boundary condition is clamped at both ends. The natural frequencies are shown in 

Table 6.1. 

Table 6.1 Natural frequency of parabolic arch (Hz) 

Mode number Lee and Wilson (1989) Perturbation FEM 

1 363 356.4 358.6 

2 818 770.8 810.6 

3 1450 1360.3 1433.1 

The zero and first order perturbation solutions are calculated. Because the 

thickness/length ratio is small < 1/50, results from both are similar. However, for second 

and third mode, the perturbation results are much lower than Lee and Wilson (1989), who 

used dynamic stiffness method. This is caused by that the transverse displacement and the 

curvature are the function of x other than s. Assume the length of the beam is fixed, due 

to the curved shape, the difference between x and s will generate the tolerance.  

The mode shape transition of the parabolic arc behaves similar as the circular curved 

beam because they have the same symmetric configuration. 
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Chapter 7   Effect of Curvature on the  
Natural Vibration of  

Curved Plates 

 

 

If the lateral direction of a curved beam cannot be ignored, it is called singly curved plate 

in this Chapter. Such curved structures are normally solved by the thin shell theory, which 

has been reviewed and derived in Chapter 1 and Chapter 2 respectively. For the curved 

plate with variable curvature, the governing equations become very complex, and 

researchers normally seek help from numerical approaches. In this Chapter, the 

perturbation method is shown to be applicable for the thin curved plate when combined 

with the Rayleigh-Ritz method. However, more features caused by changes in curvature 

are revealed by FEA results.   

7.1 Application of Perturbation Solution 

The most common analytical approach to deal with the natural behaviour of a flat 

plate is the Rayleigh-Ritz method. The natural frequency can be expressed as follows: 

 


a b
rea dsdxw

A

V

0 0

2

2

2


 ,                                             (7-1) 

where V is the strain energy 

.                                                  (7-2) 

where M and  can be found from equation (2-19) and (2-20). 

and w is the transverse displacement,  
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 ,                                                   (7-3)

    

 

where Wn is the displacement function for the curved beam and can be expressed as 

follows: 
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C
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CW  )cosh()sinh()cos()sin( 321


.            

(7-4) 

Wp is the particular solution for curved beam and can be obtained following the same 

procedure shown in Chapter three, section 3.2. Wn can be obtained using the boundary 

conditions. Substituting w into equation (7-1), the natural frequency can be obtained for a 

circular curved beam with the property given in Chapter four, section 4.3. 

Table 7.1 natural frequency of circular beam with hinged ends 

Mode shape Rayleigh-Ritz  Hz ANSYS  Hz 

1  318.4 325.2 

2  659.1 668.4 

3  1297.7 1308.3 

For the singly curved plate, the transverse displacement functions for lateral and 

longitudinal directions are expressed as follows: 

 ,                                        (7-5)
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,          (7-7) 

where the notation x represents the short straight edge with width a and s represents the 

curved edge with the length l. Wp is the particular solution for curved beam, see equation 

(3-25). Once the boundary conditions are known, Wm and Wn can be derived and then 

substituting to equation (7-1) to obtain the natural frequency. The natural frequency of a 
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circular curved plate with the same property given in Chapter four, section 4.3 is 

calculated as an example. Four edges are hinged. The result is shown in Table 7.2. 

Table 7.2 Natural frequency of curved plate with hinged edges 

Mode number Rayleigh-Ritz Hz ANSYS Hz 

1,2 710.1 719.8 

1,3 812.3 822.6 

1,3 1087.3 1095 

2,1 1128.6 1140 

Although the energy method combining with the perturbation method is able to solve 

the curved plate problem, it needs large work on equation derivations for different 

boundary conditions. As comparisons, FEM is easier to solve the free vibration problem 

and more applicable to reveal most features related to the changes in curvatures. 

 

 

 

 

 

 

 

 

 



Natural Vibration of Curved Plates 

93 

 

7.2 Propagation Behaviour of the Curved Plate 

7.2.1 Circular curved plate 

Scott and Woodhouse (1992) calculated the wave propagation along an infinite strip 

of constant curvature. They used wave equations to demonstrate the impact of curvatures 

on wave propagation. The solution is not explicit until the present paper simulates the 

similar results by FEA. The transverse displacement in horizontal direction of a circular 

curved strip is calculated. The first three symmetric modes are shown in Figure 7.1. The 

transverse displacement varies along the strip. Using FEA result, Figure 7.2 simulates the 

wave propagation along a strip of constant curvature, comparing with results from Scott 

and Woodhouse (1992), it shows the similar trends of curves. The infinite strip is 

simulated by pinned boundary conditions. Three groups of curves represent three 

symmetric waveguide branches.  

The first symmetric mode is represented by solid lines, called “bending-beam” mode. 

It can be found that four solid lines which represent curved beams with four different 

curvatures coincide together. This indicates curvature does not affect natural behaviour of 

infinite curved beams because there are no boundary conditions to provide tension to the 

beam. Dashed curves represent second symmetric modes. Four curves represent four 

strips with different curvatures (subtended). From bottom to top, the curvature increases 

from 0
o
 to 57.3

o
. For the most curved strip, when the wave number increases, the natural 

frequency reduces initially and then increases. When the wave number exceeds 20, 

natural frequencies tend to be identical for all curved strips. In other words, the curvature 

can not affect the natural frequency when the mode number is large enough. For the third 

symmetric modes, dot curves indicate the trends appear to converge at large wave number. 

However, this involves very higher frequencies. Therefore no further works will be done 

in this case.  

Other boundary condition corresponding to the second lateral symmetric modes are 

calculated and some is shown as follows, which illustrates how the natural frequencies 

change due to changes in curvature. Figure 7.3 is for the clamped circular curved strip, 

using the same property as in Chapter five, section 5.1, the lower natural frequency rises 
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First symmetric mode 

3.4 Hz 
Second symmetric mode 

263 Hz 

Third symmetric mode 

1190 Hz 

Figure 7.1 transverse displacements for first three lateral symmetric modes of an elastic strip 

 

 

Figure 7.2 Dispersion curves for second symmetric lateral vibration mode of circular curved strip. 
Four curves represent four strips with different curvatures (subtended angles). The trends of 

curves is similar with one shown in Scott and Woodhouse (1992) 
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faster than the higher ones, which indicates the mode transition phenomenon occurring in 

large curvature strip. The fully clamped boundary condition in Figure 7.4 shows the 

similar result. It can be seen that the natural frequency of the circular curved beam has 

slight changes for different boundary conditions. 

Figure 7.5 shows the curved plate with fully clamped boundaries. There is no first 

symmetric waveguide mode for the normal displacement function due to high stiffness in 

the longitudinal direction. The fully free boundary conditions show in Figure 7.6, that 

there is no mode transition occurring, but the lower modes increase more rapidly than 

higher modes. This indicates that the mode sequence will alter at a very large curvature. 

 

 

Figure 7.3 Natural frequencies of circular curved beam with two ends clamped for the second 
waveguide branch 
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Figure 7.4 Natural frequencies of circular curved beam with full clamped boundaries for second 
waveguide branch  

 

 

 

Figure 7.5 Curved plate with full clamped boundaries with second and third symmetric mode for 
second waveguide branch 
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Figure 7.6 natural frequencies of curved plate with full free boundary condition  

 

7.2.2 S-shape strip 

The „bending-beam‟ modes of the S-shape strip with different amplitude curvatures 

are shown in Figure 7.7, which shows the similar mode transition phenomena as the one-

dimension curved strip shown in figure 5.11, but in this example, The strip is clamped at 

both ends and the property is same with the one shown in Chapter five, section 5.2. 

In this chapter, more interest is focused on the lateral vibration modes. The first 

confined modes on first three second symmetric waveguide branch of the normal 

displacement function are shown in Figure 7.8. In Figure 7.8a, there is no transverse 

deflection in horizontal direction, which is called first symmetric waveguide mode.  

Figure 7.8b shows the transverse deflection in horizontal direction, which is called 

second symmetric waveguide mode. The mode shape shown in Figure 7.8c represents the 

third symmetric wave guide mode.  
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Case 1 b=0 

               
Mode 1 Symmetry f=4.4 Hz                Mode 2 Anti-symmetry f=13.5 Hz  

 

 
Mode 3 Symmetry f=23.9 Hz              Mode 4 Anti-symmetry f=38.9 Hz 

 

Case 2 b=0.1 

 
Mode 1 Symmetry f=4.4 Hz            Mode 2 Symmetry f=24 Hz 
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Mode 1 Anti-symmetry f=27.8 Hz       Mode 2 Anti-symmetry f=47.4 Hz 

 

 

Case 3 b=1.2 

 
Mode 1 Symmetry f=4.5 Hz                Mode 2 Symmetry f=23.9 Hz 

 
Mode 1 Anti-symmetry f=34 Hz                Mode 2 Symmetry f=59.4 Hz 

Figure 7.7 Variation in mode sequence due to the rising of curvature parameter, the s-strip is 
clamped at both ends 
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For the second symmetric mode of wave propagation, the natural modes for the 

transverse displacement function are confined to the vicinity of the points of zero 

curvature and they are not affected by the boundary conditions at both ends of s-shape 

strip. This means the natural frequencies for each mode are same for any boundary 

conditions applied at ends of the beam. 

The natural frequencies are illustrated in figure 7.9, which shows that the sequence 

of natural mode will not change following changes in curvatures. It can be seen that the 

curvature affects the natural frequency but no mode transition happens because the lower 

natural frequency increases also slower.  

Considering fully clamped boundary conditions, the natural frequencies keep 

increasing with the rising in the curvature, shown in Figure 7.10, once again no mode 

transition happens. 

 

   

a. First symmetric mode 

2.01 Hz  
b. Second symmetric mode 

281 Hz 
c. Third symmetric mode 

1115 Hz 

Figure 7.8 the first three 2
nd

 symmetric waveguide modes of an elastic strip of varying curvature 
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Figure 7.9 Natural frequencies (Hz) against curvatures for clamped boundary conditions at both 
ends (also for all kind boundary conditions at both ends) 

 

Figure 7.10 Natural frequencies (Hz) against curvature for full clamped boundary conditions
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Chapter 8   Effect of Curvature on 
Natural Frequency 

 of Composite Curved Beams 

 

As discussed in Chapter three the parameter η represents the geometry and material 

properties. For the isotropic curved beam, the material property remains constant. For the 

composite material, the property will change due to different layered laminae. In this 

Chapter, the natural behaviour of curved beam will be discussed when both curvature and 

material property change. 

8.1 Effect on Natural Frequency 

 Examples are given to show how the natural modes of laminated strips changes 

with the varying curvatures. The material properties of curved laminated beam are 

selected shown in Table 8-1: 

Table 8.1 Material properties of curved laminated beam 

 E1(Gpa) E2(Gpa) μ12 G12(Gpa) ρ(kg/m3)  ply 

S-glass/eproxy 43 8.9 0.27 4.5 2000 [0/90/90/0] 

The non-dimensional natural frequencies of an S-glass/proxy orthotropic laminated 

beam with constant curvature are calculated by both analytical and finite element 

methods. The circular curved beam has dimensions as the length of the beam is 1000 mm, 

the width is 150 mm, and the thickness is 0.8 mm. The beam is clamped at both ends. In 

the case of four layer symmetric ply [0/90/90/0], the results are shown in Figure 8.1. The 

analytical and numerical results are in agreement with each other, which prove that the 

zero order perturbation approximation can be used to solve the lower frequency 

eigenvalue problems. In figure 8.1, the two set of solid lines represent the asymptotic 

curves, which are given by (Tarnopolskaya 1996). The rising trends curve is called 
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membrane asymptotic curve and the horizontal line is the flexural asymptotic curve. It 

has been demonstrated that the rising of natural mode is caused by the extensional term in 

the governing equations. The extensional terms of the general eigenmode represent the 

eigenfunctions of the membrane. Hence, the natural modes rise to a higher value 

following the routine of membrane asymptotic curves. However, this membrane term will 

disappear in the vicinity of the point of the intersection of the two set of asymptotic 

curves and vibrations convert into only flexural ones. The natural frequencies will not 

pass over the flexural asymptotic curves.  

Another example is illustrated in figure 8.2, which is the result comparison for s-

shape strip (the length is 1000 mm, the width is 150 mm and the thickness is 0.8 mm) 

with clamped boundary conditions. The lower modes are in good agreement, but the error 

in third mode indicates the zero order approximation is not adequate for describing the 

higher eigenvalue problems. 
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Figure 8.1 Clamped beam with constant curvature  
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Figure 8.3 represents how much the curvature can affect the natural frequencies for 

different modes. The frequency rising ratio is calculated by using natural frequency of 

curved beams divided by that of a flat beam. It is clear that the lower natural frequencies 

are affected much more than higher ones. 
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Figure 8.2 S-shape strip with clamped end conditions 
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Figure 8.3 Natural frequency increasing ratio of circular curved beam 
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8.2 Result Comparisons  

Three different laminates are selected to compare the effect of fibre orientation and 

stacking sequence on the non-dimensional natural frequency.  
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Figure 8.4 First anti-symmetric mode of clamped S-shape strip 

These laminates are four ply laminate laid up in [0/90/90/0] stacking sequence, two 

ply laminate laid up in [0/90] stacking sequence and four ply laminate laid up in [45/-45/-

45/45] stacking sequence. The first example is the clamped S-shape strip. The first anti-

symmetric mode for three laminates is illustrated in Figure 8.4, from which it can be 

found that the laminate [0/90] and [45/-45/-45/45] coincide because they have the same 

ratio of D11 to A11. The higher anti-symmetric modes of these three laminates have similar 

trends. 

Another example is the hinged circular beam. The fundamental natural mode is 

plotted in Figure 8.5. 
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Figure 8.5 First symmetric mode of hinged circular beam 

Both examples show that the laminate which has the higher D11 to A11 ratio will have 

a faster and higher rising of natural frequencies due to increasing curvature.  
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Chapter 9   Conclusions and Future 
Works 

 

 

9.1 Achievements 

The present thesis investigates the effect of curvature on the natural behaviour of 

curved beams and plates in many aspects. 

1. The natural frequency changes in a regular way due to the variation in curvatures. 

2. Mode shape transition phenomena happen due to the changes in curvatures 

3. Effects from different kinds of curvatures. 

4. Effects of curvature on the lateral vibration of curved plates 

5. Impacts from various boundary condition 

6. Natural behaviour of composite curved beams 

All aspects are investigated based on both analytical and numerical approaches. The 

present research further develops the work by Tarnopolskaya and Hoog (1999) to the 

second order perturbation approximations which gives more accurate results and reveals 

more characteristics mathematically due to changes of curvatures. The characteristics 

caused by the changing in curvature have been physically interpreted, which are detailed 

in following sections. 

9.1.1 Mode sequence changes 

The present studies reveal that a very slight change in curvature of curved beams 

could cause significant variation in the natural characteristics. Under the boundary 

conditions with extensional constraints, the natural frequency of the first symmetric (or 

anti-symmetric depending on symmetry characteristics of curvature) mode increases 
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rapidly with a small increase in the subtended angle, but this small change in the 

curvature will not affect other natural modes. During the rapid increase in frequency there 

is a change in mode shape and the mode ends up as a second symmetric (or anti-

symmetric) mode. In turn, the frequency of the original second symmetric (or anti-

symmetric) mode begins to increase rapidly with a further small increase in the subtended 

angle, and ends up as a third symmetric (or anti-symmetric) mode. All the symmetric (or 

anti-symmetric) modes are seen to behave in this manner. The anti-symmetric (or 

symmetric) modes remain almost constant. Hence, as the symmetric (or anti-symmetric) 

mode increases and crosses the anti-symmetric (or symmetric) mode, the two modes exist 

with the same frequency for a particular value of curvature. 

Such mode transitions can only happen if the curvature function and the transverse 

displacement function have the same symmetric or anti-symmetric state. 

9.1.2 Boundary conditions 

The natural characteristics of curved beam and plate with various boundary 

conditions have been analyzed. It has been shown that the natural characteristics of the 

curved structure with external constraints at both ends are influenced significantly by the 

variation in curvature; however, for the curved structure with no external constraints at 

both ends, the varying curvatures do not cause significant change in the natural 

characteristics. 

9.1.3 Wave propagation behaviour 

The wave propagation behaviour of a singly curved plate is demonstrated using 

numerical results, which was shown to agree with analytical results (perturbation 

methods) for one case only. For the second symmetric waveguide modes, the natural 

behaviour of the curved structure with any boundary conditions has the same trends, 

shown in Chapter five. For the S-shaped strip, the second symmetric waveguide modes 

are not influenced at all by the boundary conditions at two ends. 

FEA is proved adequate to simulate the wave propagation behaviour of curved plates. 
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9.1.4 Effects from characteristics of composite materials 

Results show that the higher ratio of flexural stiffness to extensional stiffness causes 

faster and higher value rising of natural frequencies with increasing curvature. The 

composite characteristics of curved beams will significantly affect the characteristics due 

to the changes in curvatures according to Figure 8.4 and Figure 8.5. 
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9.2 Conclusions 

Many features of natural behaviour of curved beams and plates are revealed; 

however, the perturbation approximation method has some limits to demonstrate effect on 

natural behaviours of curved beams due to the changing in curvatures. Firstly, the 

approximation can obtain accurate results for very thin beams. If the height-length ratio 

increases, the accuracy decreases. The reason is that the governing equations are derived 

based on the classical thin beam theory. Next, the governing equations are derived to deal 

with curved beam problems. In order to be applicable to singly curved plate, it needs to 

be combined with the Rayleigh-Ritz method. However, even for the zero order 

perturbation it is time consuming to derive equations. Neither first nor second order 

perturbation solutions have been carried out on it. Only one boundary condition is 

examined. Thirdly, lower order perturbation approximation only obtains accurate results 

for the lower frequency mode transition. 

To overcome the above shortcomings of analytical approach, the finite element 

method is also used to analyze the curved beams with continuous varying curvatures for 

the first time. Results are compared with analytical ones. It shows that FEA has the 

advantage in modelling and results are more accurate in higher frequency vibrations. It is 

found that FEA could perform the lateral vibration of curved structures without difficulty, 

results from which can demonstrate the wave propagation behaviour of continuously 

varying curvature. 

On the other hand, finite element method also has limitations. For example, in order 

to calculate beams with different curvatures, all these beams need to be modelled, which 

is time consuming and not convenient to analyze a series of problems. If using analytical 

solution, only changes the curvature parameter, one can obtain the expected results. 

Overall, the present thesis gives comprehensive review on the natural behaviour of 

curved structures; investigates many features related to the variable curvature, which 

provides the reference to engineers when curved beams and plates need to be considered 

in the design. 



Conclusions and Future works 

112 

 

9.3 Future works 

Although the perturbation method is applicable to the curved beams, from the 

complex second order equations, we can see that it is not convenient for the thicker 

beams analysis. Therefore a more applicable way needs to be found which could combine 

the advantages of the present analytical solutions. 

Another interesting research may be the damage and buckling of curved beams and 

plates. Using the present analytical solution for the curved structures could be more 

straightforward than numerical methods. 
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The strain-displacement equations of the three-dimensional theory of elasticity in 

orthogonal curvilinear coordinates can be derived as follows: 

,                                     (I-1) 

,                                     (I-2) 

From equation (2-12), we can obtain 

  

 , (I-3) 

By ignore the second order items, we can obtain 

,                             (I-4) 

and also 

,                             (I-5) 

we also two tangent vectors of curves 

,                                     (I-6) 



Appendix 

125 

 

,                                     (I-7) 

From equation (I-5) and equation (I-6), we can obtain 

,                                  (I-8) 

,                                  (I-9) 

Finally, the strain can be expressed as follows: 

                        (I-10a) 

                       (I-10b) 

                                (I-10c) 

where , and  are strains at an arbitrary point of the curved body. 
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Appendix II 

 

 

In this section, we consider plate analysis for layered orthotropic materials.  Recall 

from plate theory (Shenoi and Wellicome, 1993), the following relationships: 

Kinematics: 
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 (AII-1) 

    The terms 
0 0 0{ , , }x y xy    are the mid-surface extensional and shear strains for 

plate; while { , , }x y xy    are the curvatures about the x and y axes, respectively, plus 

the twisting curvature (xy). 

Constitutive (orthotropic laminae) : 
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(AII-2) 

 

 



Appendix 

127 

 

Force and Moment Resultants: 
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(AII-3) 

Consider now a plate made of "N" layers (lamina) arranged as shown below. 
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Figure II.1 Sketch of lamina 

it
 = thickness of layer i = 

1i iz z   

iz  = z centroid of layer i = 
1 / 2i iz t    

Now, substitute (AII-1) and (AII-2) into (AII-3), and integrate over the thickness.  

The integral can be replaced by a summation over all N layers. 
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or, summing over all N layers: 
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              (AII-5) 

Both the mid-surface strains 
0 0 0{ , , }x y xy    and curvatures { ) are independent 

of z for the laminated plate, i.e., the mid-surface strains are at the laminated plate mid-

surface (z=0) and the curvature of each lamina is the same.  Hence, the last equation can 

be written as: 
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             (AII-6) 

The moment resultants can be similarly written. 
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(AII-9) 

Now do the following: 

 integrate with respect to z for layer k,  

 multiply [ ]kQ  times the integral result for layer k, and 

 sum over all N layers. 

The result can be written as follows: 
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(AII-10) 

and 
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(AII-11) 

where the A, B and D coefficients are given by 
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Using 
1k k kt z z    and 

1 / 2k k kz z t  , then above becomes: 
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Note that equations (AII-10) and (AII-11) could be combined and written as follows: 
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