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ABSTRACT 

 
A Fay-Herriot type model with independent area effects is often assumed when small area 

estimates based on area level data are required. However, under this approach out of sample 

areas are limited to synthetic estimates. In this paper we relax the independent area effects 

assumption, allowing area random effects to be spatially correlated. Empirical best linear 

unbiased predictors are then developed for areas in sample as well as those that are not in 

sample, with variance components estimated via maximum likelihood and residual (restricted) 

maximum likelihood. An expression for the mean cross-product error (MCPE) matrix of the 

small area estimators is derived, as is an estimator of this matrix. The estimation approach 

described in the paper is then evaluated by a simulation study, which compares the new 

method with other methods of small area estimation for this situation. 
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Summary 

A Fay-Herriot type model with independent area effects is often assumed when small 

area estimates based on area level data are required. However, under this approach out 

of sample areas are limited to synthetic estimates. In this paper we relax the 

independent area effects assumption, allowing area random effects to be spatially 

correlated. Empirical best linear unbiased predictors are then developed for areas in 

sample as well as those that are not in sample, with variance components estimated via 

maximum likelihood and residual (restricted) maximum likelihood. An expression for 

the mean cross-product error (MCPE) matrix of the small area estimators is derived, as 

is an estimator of this matrix. The estimation approach described in the paper is then 

evaluated by a simulation study, which compares the new method with other methods of 

small area estimation for this situation. 
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1. Introduction 

Large sample surveys are usually designed to produce reliable estimates of national or 

large area characteristics. However, there is a growing demand for similar estimates for 

smaller areas or domains. Such estimates are now routinely calculated using the so-

called indirect or model-based approach. This uses auxiliary information for the small 

areas of interest and has been characterized in the statistical literature as ″borrowing 

strength” from the relationship between the values of the response variables and the 

auxiliary information. 

 

In many applications, however, only area level aggregate data are available. In such 

cases, small area estimation is usually based on the Fay-Herriot mixed model with 

independent area specific random effects (Rao, 2003). See Fay and Herriot (1979), 

Ghosh and Rao (1994), Prasad and Rao (1990), Datta and Lahiri (2000) and Butar and 

Lahiri (2003). Furthermore, there can be some (often many) small areas of interest 

where there is no sample, and consequently, no data. Model-based estimates for such 

areas can be computed, but this is typically by making the clearly incorrect assumption 

of no random effects for these areas. If random effects are uncorrelated between areas 

there seems to be no way around this problem because there is no information about an 

out of sample area that can be used to estimate its effect. However, most small area 

boundaries are essentially arbitrary, and there appears to be no good reason why 

population units just one side of such a boundary should not generally be correlated 

with population units just on the other side. The implication of this observation is that 

correlation between small area effects should be the norm, rather than the exception. 

That is, small area models should allow for spatial correlation of area random effects. 
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An immediate benefit of using such models is that prediction of random area effects for 

out of sample areas becomes straightforward. In an earlier paper (Saei and Chambers, 

2005) the authors developed this approach for the case where unit level data are 

available from the in-sample areas. This paper extends this approach to the important 

aggregate data situation. In particular, the empirical best linear unbiased predictor 

(EBLUP) for an area level characteristic for areas in sample as well as those that are not 

in sample is derived for the case of aggregate area level data, assuming a Fay-Herriot-

type linear mixed model with spatially correlated area random effects. 

 

In section 2 we define this model and its associated notation. The EBLUP is developed 

in section 3, based on use of either maximum likelihood or restricted maximum 

likelihood methods for estimating the variance components of the model. The mean 

cross-product errors matrix of the EBLUP estimator and an estimator of this quantity 

are developed in section 4. Results from a simulation study of the performance of the 

new method are then provided in section 5. Section 6 concludes the paper with a 

discussion of potential avenues for further research. 

 

2. Model Specification  

We assume that the population of interest is made up of D areas and the aim is to 

estimate the conditional expectation of the area mean of a survey variable Y for each of 

them. The D-vector of these conditional expectations is denoted by θ  and we note that 

the conditioning is with respect to the values of auxiliary variables as well as random 

area effects. We assume a standard unit level mixed effects model for Y, defined in 

terms of a fixed effect contribution ′X β , where X is a vector X of unit level 
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characteristics, a random area effect ′Z u , where Z is a vector of area level 

characteristics, and an individual random effect. This induces a linear model for , 

given by 

θ

θ = Xβ + Zu , where  X  is the matrix of area means of X,  is the matrix of 

(area level) values of Z, β  is a vector of unknown regression coefficients (including an 

intercept) and   is an unknown vector of random area effects. Following standard 

practice, we assume that   is a realisation from a multivariate normal distribution with 

zero mean vector and variance-covariance matrix  of order D. Furthermore, 

 is a function of an unknown parameter 

Z

u

u

σ u
2Ω

 Ω = Ω(λ) λ . 

 

Not all of the areas will be represented in sample. An area d will be denoted as in 

sample if a direct survey estimate for the characteristic  of that area is available. 

Otherwise the area is out of sample. Let  denote the number of small areas in sample, 

with   denoting the number of out of sample areas. We can then partition 

the matrices  

θd

Ds

Dr = D − Ds

X  and  into    Z X = [ ′Xs ′Xr ′]  and  corresponding to sample 

and non-sample areas. Similarly we can partition the random area effects vector as 

. The objective is to predict the value of 

Z =
Zs 0
0 Zr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   u = [ ′us ′ur ′]

 
  
θ =

θs

θr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
Xsβ + Zsus

Xrβ rur

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (1) 
+ Z

 

Let { ,   = 1, 2, ..., }s d dθ=θ sD  denote the vector of direct estimates for the in sample 

areas. Generally, these direct estimates will be weighted averages of unit level data 

obtained in samples taken from each of the in sample areas. Consequently application of 
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the underlying unit level model that led to (1) implies that these direct estimates will 

follow the closely related model 

 s sw s= + eθ θ  (2) 

where   θsw = Xswβ + Zsus  and   es  represents estimation error. Here Xsw  denotes the 

weighted estimate of   Xs  obtained from the sample data in the in sample areas. Note that 

  Xsw can be replaced by   Xs when   Xsw is not available. 

 

The model (2) is often referred to as a Fay-Herriot model. Under this model the 

sampling error vector    is assumed to be independent of u and normally distributed, 

with zero mean vector and variance-covariance matrix , where  is a known 

square matrix of order n (the overall sample size). Combining this assumption with (1), 

we see that the implied model for 

es

σ 2Ws Ws

sθ  is 

 s sw s sw s s s sw s= + = + + =e X Z u e Xθ θ β β + ζ  (3) 

where 2 2( ) ( )s s s s sσ ϕ σ′= + =W Z ΩZζ Σ ϕ = σ u
2 / σ 2Var  and . 

 

3. Empirical Best Linear Unbiased Prediction 

In this section we describe an algorithm for computing the empirical best linear 

unbiased estimate of β  and the corresponding predictions of  and u  given the area 

level data 

us r

sθ  and   Xsw . This assumes that the parameter  in (3) is known (or that a 

good estimate of it is available), and is based on combining the ideas of Henderson 

(1950) and Harville (1977). 

σ 2
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Put    equal to the log-likelihood for l1 β  generated by sθ  given the value of the random 

component vector   ,   equal to the logarithm of the probability density of    given 

the value of the random component vector , l

us l2 us

ur 3 equal to the logarithm of the 

probability density function of random component ur  and set l . The best 

linear unbiased predictors (BLUPs) of 

= l1 + l2 + l3

β ,  and  are then the values of these 

quantities where   is maximised (Henderson, 1950). Of course, these BLUPs depend on 

the variance components 

us ur

l

ϕ  and , so the empirical best linear unbiased predictors 

(EBLUPs) are obtained by substituting estimates for these parameters. In what follows, 

we describe an algorithm that calculates these EBLUPs by combining the above method 

for calculating the BLUPs of ,    and u  with ML and REML estimation of the 

variance components. 

λ

β us r

 

Let  denote the partition of the variance-covariance matrix  corresponding 

to the in sample and out of sample components of u . Similarly, put 

 

Ωss Ωsr

Ωrs Ωrr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ω

   
T * =

Tss
* Tsr

*

Trs
* Trr

*

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′ZsWs

−1Zs + ϕ −1Λ s|r −ϕ −1Λ s|rΩsrΩrr
-1

−ϕ −1Ωrr
-1ΩrsΛ s|r ϕ −1(Ωrr

-1 + Ωrr
-1ΩrsΛ s|rΩsrΩrr

-1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

 

where 
  

. An iterative procedure for obtaining the ML estimates 

of 

Λs|r = (Ωss − ΩsrΩrr
-1Ωrs )

−1

ϕ  and  for given  is then: λ σ 2

1. Assign initial values to the variance components ϕ  and λ . 

2. Using the current values for these variance components, calculate Ω . 

3. Update * 1 1 * 1( )sw s sw sw s
− − −′X X Xβ = Σ Σ θ  
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where    . Σ s
*−1 = W−1 − W−1ZsTss

* ′Z W−1
s

4. Update * 1
s (ss s s s

−′u T Z W X= θ − β) . 

5. Update * 1(r sr s s s
−′u T Z W X= θ − β) . 

6. Update    . ϕ = Ds
−1(tr(Tss

*Ωs
−1) + σ −2 ′usΩs

−1us )

7. Check for convergence of the different estimates. If not return to step 2. 

8. Update * 2( , , , , )ssf ϕ σ= T uλ λ s  where f is the Fisher score or Newton-Raphson 

updating function for this parameter, i.e. a function whose specification depends 

on the parameterization of Ω , and where current values for variance 

components are used in the right hand side of this equation. 

9. Return to step 2 and repeat the procedure until the values of the different 

parameters converge. 

We denote the final values of β ,    and  output by the above iterative process by us ur β̂ , 

ˆ su  and  respectively. These estimates are then substituted in (1) to give the ML-

based EBLUP  of 

ˆ ru

θ̂ θ , 

 
ˆ ˆ ˆˆ
ˆ ˆ ˆ

s s s s

r r r

⎡ ⎤ ⎡ ⎤+
= =⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

X Z u

X Z u

θ β
θ

θ β r

. (4) 

 

In order to define the REML-based EBLUP, we modify this iterative procedure to give 

the REML estimates of ϕ  and λ . Define 

 

   

V =

′XswWs
−1Xsw ′XswWs

−1Zs 0
′ZsWs

−1Xsw ′ZsWs
−1Zs + ϕ −1Λ s|r −ϕ −1Λ s|rΩsrΩrr

-1

0 −ϕ −1Ωrr
-1ΩrsΛ s|r ϕ −1(Ωrr

-1 + Ωrr
-1ΩrsΛ s|rΩsrΩrr

-1)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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and let  and  be the partitions of the 

matrix V and its inverse that correspond to the dimensions of 

  

V =

V11 V12 V13

V21 V22 V23

V31 V32 V33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

V−1 = T =

T11 T12 T13

. T22 T23

. . T33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

β ,  and   . Replacing 

 by    in the iterative algorithm above leads to the REML estimates of the variance 

components, and hence to the REML-based EBLUP of 

us ur

   Tss
* T22

θ . 

 

4. Estimating the Mean Cross-Product Error (MCPE) Matrix 

We first obtain the mean cross-product errors matrix (MCPE) of the ML-based EBLUP 

estimator (4). This has prediction error 
ˆ

ˆ
ˆ

s s

r r

⎡ ⎤−
− = ⎢ ⎥

−⎢ ⎥⎣ ⎦

θ θ
θ θ

θ θ
, with 

. Without loss of generality we assume that the population 

values are ordered so that values from the D

ˆ ˆ ˆMCPE( ) E[( )( )′= − −θ θ θ θ θ ]

s in sample areas precede the values from 

the Dr = D - Ds out of sample areas. Put ω = (ϕ , ′λ ′) . Then, following Prasad and Rao 

(1990) and after some algebra, we have 

  (5) 2ˆMCPE( ) MCPE( ) ( , )BLUP Mω σ≅ +θ θ  ω

where 

  
MCPE(θBLUP ) = E[(θBLUP − θ)(θBLUP − θ ′) ] = Mβ (σ 2 , ω) + Mβu (σ 2 , ω) + Mu (σ 2 , ω) . 

Here 
  

 and    measure the uncertainty due to estimation of β  and u; 

 is the covariance between the estimators of 

Mβ (ω) Mu (ω)

  
Mβu (ω) β  and u and  measures the 

uncertainty due to estimation of the variance components 

Mω (ω)

ω . Using the general results 

set out in Henderson (1975), the first three components of (5) are given by 
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Mβ (σ 2 , ω) = σ 2XT11X

′  

     Mu (σ 2 , ω) = σ 2ZT*Z′

and 

   
Mβu (σ 2 ,ω) = −σ 2[X( ′XswΣ s

−1Xsw )−1 ′XswWs
−1ZsT

*Z′ + ZT* ′ZsWs
−1Xsw( ′XswΣ s

−1Xsw )−1X′ ]. 

The final component    is a measure of the uncertainty due to estimation of 

the variance components  

Mω (σ 2 ,ω)

ω = (ϕ   ′λ ′)  and is defined as follows. Put 

 and let  be the    ∆ = ZT* = [ ′∆1,  ′∆2 ,..., ′∆ D ′] Zα α th row of the matrix , so that 

. Then 

Z

  ∂∆α / ∂ω = ∂(ZαT*) / ∂ω

     Mω (σ 2 , ω) = σ 2[tr(∇α Σ s
* ′∇ ′α B)]

where     and  is the first DΣ s
* = ′ZsWs

−1Zs + ϕ ′ZsWs
−1Zs½s ′ZsWs

−1Zs ∇α s columns of the 

matrix  . Here B is the asymptotic variance-covariance matrix of the estimator 

of the variance components vector 

∂∆α / ∂ω

ω . An estimator of the MCPE matrix of the EBLUP 

 is therefore  θ̂

 2 2 2ˆ ˆ ˆ ˆ( ) ( , ) ( , ) ( , ) 2 ( , )u uMCPE M M M Mβ β ωσ σ σ σ= + + +θ ω ω ω 2 ω̂  (6) 

where  is the ML estimate of the variance components vector ω̂ ω . 

 

In order to define the corresponding estimator of the MCPE matrix of the REML-based 

EBLUP, we replace the ML estimate ω̂  and its asymptotic variance-covariance matrix, 

B by corresponding REML values, and evaluate  at the REML estimates of the 

various parameters. Substitution in (6) then yields the REML-based estimator of the 

MCPE matrix. 

T*
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5. Simulation Results 

In this section we use simulation to demonstrate how the new methodology outlined 

above provides improved results compared with existing EBLUP methods for small 

area estimation when not all areas of interest are represented in sample. The population 

values were generated from a linear mixed model with spatially correlated area random 

effects, defined by 

 . (7)   ydi = 0.5 + xdi + ud + edi

The values   were independently generated from a normal distribution with zero mean 

and variance  . The values  were generated from a 

multivariate normal distribution with zero mean vector and variance-covariance matrix 

edi

σ 2

   
u = [u1,u2 ,...,uDs

,...,uD ′]

  (8)    σ u
2Ω(λ) = σ u

2[(ID − λΨ)(ID − λ ′Ψ )]−1

where    is an identity matrix of order D and ID Ψ  is a known square matrix of the same 

order containing strictly positive weights. This is the SAR or simultaneous 

autoregressive model (Cressie, 1993). Let  to be a Ψ0 = [ψ 0ij ] D × D matrix with 
  

 = 

1 if areas i and j are considered “spatial neighbours” and is zero otherwise. The weight 

matrix  was then constructed by scaling the elements of  to have row sums equal 

to one. Two different versions for Ψ  were used, defined by the regional maps for 

Ghana and Nigeria provided in Cliff and Ord (1973). The  values were generated 

from a uniform distribution between 0 and 1 and were kept fixed throughout the 

simulations. Values of   were generated for D = 40 (Ghana) and D = 50 (Nigeria) 

with 90 population units per area. The first D

ψ 0ij

Ψ Ψ0

0

xdi

ydi

s = 30 (Ghana) and 40 (Nigeria) areas were 

taken to be in sample areas, with the remaining Dr = 10 areas considered as being out of 
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sample. Random samples of size nd were taken from each in sample area, with nd 

increasing with d. The population data were aggregated to yield area level means for 

both in sample and out of sample areas. The sample data from the in sample areas were 

also aggregated to produce corresponding sample means, which were then used to 

estimate the model parameters via REML. Note that under the SAR model (8) the 

updating equation for the parameter λ  under the Fisher scoring method (see step 8 of 

the EBLUP estimation procedure described in section 3) is given by 

    λk  =  λk −1 + b1b2

where     and 

 is the (2, 2) element of inverse of the information matrix for the estimators 

b1 = −0.5[ϕ −1σ −2 ′us (∂Ωss
−1 / ∂λ)us + ϕ −1tr((∂Ωss

−1 / ∂λ)T22
* ) − tr((∂Ωss

−1 / ∂λ)Ωss
−1)]

  b2 ϕ̂  and λ̂ . 

Note that we fixed  at its true value throughout the estimation process. The 

information matrix of the REML estimators 

σ 2

ϕ̂  and λ̂  is given by 

   
IREML =

1
2

ϕ −2 (ν − 2r1) + ϕ −4r11 ϕ −1(2k1-v1 − ϕ −1k11)
. (ϕ −2k11

(11) + v11 − 2k1
(11) )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

where 

   r1 = ϕ1tr(Ωss
−1T22 ) , 

   r11 = tr(Ωss
−1T22Ωss

−1T22 ) , 

   k1 = ϕ −1tr((∂Ωss
−1 / ∂λ)T22 ) , 

  v1=tr((∂Ωss
−1 / ∂λ)Ωss ) , 

   k11 = ϕ -1tr(T22 (∂Ωss
−1 / ∂λ)T22Ωss

−1) , 

  v11 = tr((∂Ωss
−1 / ∂λ)Ωss (∂Ωss

−1 / ∂λ)Ωss ) , 

   k11
(11) = tr(T22(∂Ωss

−1 / ∂λ)T22(∂Ωss
−1 / ∂λ))  
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   k1
(11) = ϕ −1tr[(∂Ωss

−1 / ∂λ)T22 (∂Ωss
−1 / ∂λ)Ωss] . 

 

Given the above set up, we considered four ways of defining the small area estimates. 

The first corresponded to a synthetic estimation procedure, where the mixed model 

defined by (7) and (8) is first fitted to the sample data, but then estimation is carried out 

on the basis that ud = 0 in every small area. We refer to this as method A below. The 

second also fits (7) and (8) to the sample data, but forces λ = 0  in (8), i.e. this method 

assumes there is no spatial correlation among the area effects. Estimation then 

incorporates predicted area effects for in sample areas, but sets these to zero for out of 

sample areas. This is denoted method B in what follows. In contrast, the third method 

takes account of the correlation between areas when estimating the model parameters. 

However, it still sets the predicted value of u  to zero for out of sample areas. We refer 

to this as method C. Finally, the fourth method, denoted D, corresponds to the EBLUP 

procedure defined earlier in this paper. 

d

 

The process of generating population and sample data, estimation of model parameters 

and calculation of (A) – (D) was independently replicated 3000 times. For each set of 

estimates  and each small area d we then calculated the actual and average estimated 

mean squared errors 

θ̂

  
3000

1

ˆ ˆ( )( ) / 3000d d k k k k
k

ActMSE diag
=

⎛ ⎞′= − −⎜ ⎟
⎝ ⎠
∑ θ θ θ θ

  
3000

1

ˆ( ) / 3000d d k
k

EstMSE diag MCPE
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ θ
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where     denotes the ddiagd (X) th element of the main diagonal of X. The actual 

coefficient of variation 

 

  

ActCVd = 100 ×
ActMSEd

θdk / 3000
k =1

3000

∑
 

and the estimated coefficient of variation 

 3000

1

100
ˆ /3000

d
d

dk
k

EstMSEEstCV

=

= ×

∑θ
 

were then calculated, as was the average coverage of the area d total by the nominal 

95% confidence intervals defined by these estimated mean squared errors. 

 

Information about the various simulation scenarios considered, including average 

sample sizes and true values of the variance components, is provided in Table 1. 

Thirteen different combinations of overall sample sizes and parameter values (Par1 – 

Par13) in (7) and (8) were used in the simulations. Table 2 shows the average values of 

both the actual coefficient variation (ActCV) and estimated coefficient of variation 

(EstCV) for the four estimation methods we considered. These show that for Method A 

in particular, estimated CVs are far from their actual values, irrespective of whether the 

areas concerned are in sample or out of sample. This problem persists, albeit in a 

somewhat reduced form, with Method B and Method C, where now it is out of sample 

areas whose estimated CVs tend to be far too optimistic. The results also indicate that 

Method C performs better than Method B for both in sample and out of sample areas. 

Method D – as one would expect – performs much better in this regard, with estimated 

and actual CVs for both in sample and out of sample areas being very close. Note also 
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that average values of ActCV for Methods B, C and D in Table 2 are very similar for 

small values of λ , but use of Method D leads to substantial gains in efficiency for large 

values of    and σ u
2 λ . As might be expected, these gains are more pronounced for large 

values of D. 

 

Irrespective of potential increases in efficiency, an important gain from modelling the 

spatial correlation of the area random effects is better estimation of mean squared error. 

This is confirmed in Table 3 where we see that prediction intervals generated under 

Method A generally lead to severe undercoverage because they are based on 

conditionally biased synthetic estimators. In contrast, intervals generated under Method 

B has good coverage for in sample areas, but a very poor coverage for out of sample 

areas (even when there is no spatial correlation), reflecting this method’s use of 

conditionally biased synthetic estimators for out of sample areas. There also seems to be 

some evidence that this coverage gets worse as this spatial correlation increases. The 

same pattern applies for the results generated by Method C, with somewhat better 

coverage for out of sample areas. On the other hand, Method D records coverages very 

close to the nominal 95% level for in sample areas, and only slightly less for out of 

sample areas. Furthermore, this overall good performance holds across all sets of 

parameter values investigated, including where there is no spatial correlation. Note that 

larger values of D also lead to better coverage performance. 

 

Table 3 also reports average confidence interval widths under Methods A – D. As 

expected, there is very little difference between Methods C and D for in sample areas. 

For such areas, and in particular for large values of  and σ u
2 λ , Method A results in very 
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wide confidence intervals. This reflects large standard error estimates under Method A 

for these values of  and σ u
2 λ . However, in spite of these large estimated standard 

errors, prediction interval coverages are very far from the nominal 95% level because of 

the biased estimators under this method. Small differences in covariate values for in 

sample and out of sample areas leads to insignificant differences in average confidence 

interval width for Method A. However, the three other methods considered, especially 

Method D, lead to significant differences in average confidence interval width between 

in and out of sample areas in such situations. 

 

Finally, in Figure 1 we show the variation in relative bias for Methods A, B and D by 

area for both in and out of sample areas for two parameter sets (par3 and par 11). These 

confirm the overall superiority of Method D. 

 

6. Summary and Discussion 

In this article we develop EBLUP estimates for small area means under a Fay-Herriot 

type model when there are no sample units in the area. The model assumes spatially 

correlated area effects defined by the SAR model (8). Our simulations indicate that our 

proposed method has the potential to lead to substantial increases in prediction 

efficiency for these areas when there is strong spatial correlation in the data. They also 

show that the estimates of mean squared error calculated under the spatial model are 

much more accurate than those based on the usual synthetic estimates that are often 

used for out of sample area prediction. As a consequence, confidence intervals based on 

these estimates of mean squared error tend to be more accurate, in the sense of 

achieving their nominal level of coverage. Note these conclusions are based on 
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simulation results just by leaving 10 areas out of sample, out of a total of 40 (Ghana 

scenario) and 50 (Nigeria scenario). We anticipate that the better performance of 

Method D relative to that of Methods A – C will become even more clear when the 

proportion of out of sample areas increases. 

 

Note that our method makes the usual area level data assumption (e.g. Rao and Yu, 

1994) that   is known. Recently, Wang and Fuller (2003) have investigated methods 

for fitting area level models without this assumption, and work is underway to see 

whether their ideas can be applied here. 

σ 2

 

The analysis in this paper has been restricted to the area level linear mixed model. Many 

applications, however, are based on non-linear mixed models, e.g. generalised linear 

mixed models. The methodology outlined in this paper can be extended to these 

situations, and results from this research will be published elsewhere. Application to 

other spatial correlation models, e.g. the conditional autogressive (CAR) model, is also 

of interest. 
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Table 1. Parameter sets used in the simulations. Note Ds = number of in sample areas, Dr = 

number of out of sample areas and  n  is average sample size for in sample areas. 

 
Set Parameter Values 
  n   σ

2  σ u
2  λ  Ds Dr

Par1 7.93 1 5.0 0.00 30 10 
Par2 7.93 1 5.0 0.60 30 10 
Par3 10.67 1 5.0 0.92 30 10 
Par4 8.53 1 0.5 0.60 30 10 
Par5 7.37 1 0.5 0.92 30 10 
Par6 7.33 1 1.5 0.60 30 10 
Par7 7.17 1 1.5 0.92 30 10 
Par8 8.05 1 1.5 0.60 40 10 
Par9 8.05 1 1.5 0.92 40 10 
Par10 9.13 1 5.0 0.60 40 10 
Par11 8.05 1 5.0 0.92 40 10 
Par12 7.18 1 0.5 0.60 40 10 
Par13 8.43 1 0.5 0.92 40 10 
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Table 2 Estimated coefficients of variation (EstCV) and actual coefficients of variation 

(ActCV) for different methods of estimation, averaged over the small areas. Areas denotes the 

small areas whose values are averaged, while Set denotes the set of parameter values used in 

the simulation (see Table 1 for their definition). 

 
Method 

A B C D 
Areas Set 

ActCV EstCV ActCV EstCV ActCV EstCV ActCV EstCV 
Par1 226.02 57.09 100.56 56.25 101.45 58.60 101.93 102.31
Par2 273.12 86.04 120.95 59.88 116.23 65.55 114.87 116.01
Par3 689.76 161.75 322.43 90.84 253.10 94.24 205.05 216.89
Par4 87.11 28.89 51.48 32.58 49.88 34.21 49.56 50.68
Par5 182.53 47.66 91.67 44.32 74.26 43.59 66.58 72.67
Par6 149.42 47.49 75.90 43.09 73.10 46.03 72.46 73.98
Par7 280.52 69.05 127.58 52.64 101.72 50.79 87.51 94.80
Par8 143.70 40.12 65.92 40.92 64.13 42.56 62.29 61.29
Par9 286.52 63.53 99.59 51.15 88.28 47.92 65.00 64.99
Par10 268.63 73.65 98.61 51.45 94.59 54.14 90.83 89.14
Par11 486.06 107.44 154.11 71.45 131.80 63.35 94.62 94.32
Par12 83.00 24.37 48.17 34.51 46.91 35.00 46.02 45.48

All 

Par13 160.30 39.15 68.01 40.73 60.53 38.94 49.14 49.36
Par1 221.52 56.66 53.88 53.81 54.60 53.09 54.62 53.09
Par2 267.41 85.95 59.10 58.61 54.71 53.75 54.67 53.65
Par3 488.26 115.57 72.89 70.28 46.98 47.82 45.92 46.03
Par4 85.74 28.90 37.54 37.62 36.11 35.99 36.13 35.93
Par5 186.34 48.05 50.01 49.78 41.98 42.62 41.44 41.79
Par6 147.31 47.55 47.62 47.96 45.54 45.59 45.56 45.50
Par7 283.30 69.40 56.81 56.13 44.90 45.05 44.17 44.16
Par8 142.99 40.15 45.19 45.07 43.53 43.20 43.54 43.14
Par9 291.54 63.75 54.64 53.87 43.74 44.24 42.86 42.90
Par10 267.18 73.58 53.29 53.13 49.63 49.20 49.66 49.11
Par11 495.03 108.01 73.57 72.30 52.21 52.90 51.02 50.96
Par12 83.07 24.45 39.30 39.31 37.95 37.73 37.94 37.68

In 
sample 

Par13 163.06 39.28 45.06 44.93 38.34 39.01 37.65 37.93
Par1 230.1 55.17 228.77 42.94 230.10 55.17 232.33 234.00
Par2 285.43 84.29 292.23 49.02 285.43 84.29 280.30 288.56
Par3 483.00 115.24 594.05 74.66 483.00 115.24 391.86 439.70
Par4 91.19 28.86 93.31 17.49 91.19 28.86 89.85 94.91
Par5 171.08 46.51 216.66 27.93 171.08 46.51 142.00 165.32
Par6 155.75 47.34 160.73 28.47 155.75 47.34 153.18 159.40
Par7 272.2 68.02 339.88 42.17 272.2 68.02 217.54 246.71
Par8 146.55 39.99 148.87 24.31 146.55 39.99 137.32 133.89
Par9 266.44 62.65 279.39 40.27 266.44 62.65 153.56 153.37
Par10 274.43 73.94 279.91 44.71 274.43 73.94 255.54 249.28
Par11 450.16 105.15 476.29 68.05 450.16 105.15 269.02 267.76
Par12 82.76 24.07 83.64 15.30 82.76 24.07 78.35 76.67

Out of 
sample 

Par13 149.27 38.64 159.80 23.90 149.27 38.64 95.09 95.06
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Table 3 Confidence interval width and coverage of nominal 95% confidence intervals 

(95%Coverage) generated by different methods of estimation, averaged over the small areas. 

Areas denotes the set of small areas whose values are being averaged, while Set denotes the 

set of parameter values used in the simulation (see Table 1 for their definition). 

 
Confidence interval width 95%Coverage Areas Set 

A B C D A B C D 
Par1 2.16 2.13 2.21 3.93 36.48 78.89 80.10 94.76
Par2 3.19 2.26 2.47 4.37 43.77 77.50 81.73 94.29
Par3 4.81 2.62 2.73 5.87 36.82 74.41 80.15 94.23
Par4 1.09 1.26 1.32 1.94 46.33 78.26 82.22 94.23
Par5 1.71 1.59 1.58 2.64 40.10 75.94 81.73 94.69
Par6 1.78 1.65 1.76 2.82 44.54 77.89 81.91 94.29
Par7 2.77 2.06 2.04 3.86 37.23 75.66 80.73 94.73
Par8 1.53 1.59 1.65 2.39 39.85 80.79 83.65 94.43
Par9 2.50 1.98 1.90 2.59 33.39 79.90 83.06 94.71
Par10 2.74 1.91 2.02 3.35 39.13 80.74 83.68 94.43
Par11 4.28 2.70 2.51 3.80 33.29 79.76 82.98 94.64
Par12 0.94 1.36 1.38 1.80 41.81 81.39 84.11 94.33

All 

Par13 1.49 1.55 1.49 1.90 36.80 80.44 83.90 94.76
Par1 2.16 2.03 2.01 2.01 36.73 94.71 94.3.0 94.29
Par2 3.22 2.16 2.00 2.00 44.86 94.64 94.47 94.44
Par3 4.86 2.67 1.94 1.88 35.79 94.19 94.95 94.84
Par4 1.09 1.46 1.40 1.39 46.83 94.87 94.68 94.62
Par5 1.71 1.79 1.54 1.51 39.56 94.81 95.08 94.96
Par6 1.78 1.83 1.75 1.74 45.02 95.00 94.85 94.78
Par7 2.77 2.18 1.80 1.77 36.97 94.72 94.98 94.98
Par8 1.53 1.75 1.68 1.68 39.97 94.83 94.73 94.71
Par9 2.50 2.08 1.75 1.70 32.96 94.63 95.05 94.89
Par10 2.74 1.97 1.84 1.84 39.06 94.83 94.75 94.70
Par11 4.28 2.69 2.07 2.01 32.89 94.47 95.00 94.81
Par12 0.94 1.55 1.49 1.48 41.79 94.84 94.66 94.64

In 
sample 

Par13 1.49 1.71 1.49 1.46 36.28 94.94 95.16 94.99
Par1 2.09 1.66 2.09 9.01 35.57 28.91 35.57 94.18
Par2 3.17 1.88 3.17 10.89 42.32 25.66 42.32 93.18
Par3 4.87 3.10 4.87 18.24 36.24 18.75 36.24 93.95
Par4 1.09 0.67 1.09 3.57 44.85 28.42 44.85 93.07
Par5 1.71 1.02 1.71 6.03 41.71 19.31 41.71 93.86
Par6 1.79 1.10 1.79 6.05 43.10 26.55 43.10 92.83
Par7 2.77 1.69 2.77 10.15 38.00 18.51 38.00 93.99
Par8 1.53 0.94 1.53 5.20 39.36 24.65 39.36 93.28
Par9 2.49 1.58 2.49 6.17 35.11 21.01 35.11 93.98
Par10 2.74 1.68 2.74 9.43 39.40 24.36 39.40 93.35
Par11 4.28 2.72 4.28 11.00 34.87 20.95 34.87 93.94
Par12 0.95 0.61 0.95 3.05 41.88 27.58 41.88 93.09

Out of 
sample 

Par13 1.49 0.91 1.49 3.67 38.85 22.46 38.85 93.83
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Figure 1 Relative bias by area for two parameter sets (top = Par3, bottom = Par11). Dot-dash 

line is Method A, dashed line is Method B and solid line is Method D. 
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