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ABSTRACT

A Fay-Herriot type model with independent area effects is often assumed when small area
estimates based on area level data are required. However, under this approach out of sample
areas are limited to synthetic estimates. In this paper we relax the independent area effects
assumption, allowing area random effects to be spatially correlated. Empirical best linear
unbiased predictors are then developed for areas in sample as well as those that are not in
sample, with variance components estimated via maximum likelihood and residual (restricted)
maximum likelihood. An expression for the mean cross-product error (MCPE) matrix of the
small area estimators is derived, as is an estimator of this matrix. The estimation approach
described in the paper is then evaluated by a simulation study, which compares the new

method with other methods of small area estimation for this situation.
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Summary

A Fay-Herriot type model with independent area effects is often assumed when small
area estimates based on area level data are required. However, under this approach out
of sample areas are limited to synthetic estimates. In this paper we relax the
independent area effects assumption, allowing area random effects to be spatially
correlated. Empirical best linear unbiased predictors are then developed for areas in
sample as well as those that are not in sample, with variance components estimated via
maximum likelihood and residual (restricted) maximum likelihood. An expression for
the mean cross-product error (MCPE) matrix of the small area estimators is derived, as
Is an estimator of this matrix. The estimation approach described in the paper is then
evaluated by a simulation study, which compares the new method with other methods of

small area estimation for this situation.
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1. Introduction

Large sample surveys are usually designed to produce reliable estimates of national or
large area characteristics. However, there is a growing demand for similar estimates for
smaller areas or domains. Such estimates are now routinely calculated using the so-
called indirect or model-based approach. This uses auxiliary information for the small
areas of interest and has been characterized in the statistical literature as "borrowing
strength” from the relationship between the values of the response variables and the

auxiliary information.

In many applications, however, only area level aggregate data are available. In such
cases, small area estimation is usually based on the Fay-Herriot mixed model with
independent area specific random effects (Rao, 2003). See Fay and Herriot (1979),
Ghosh and Rao (1994), Prasad and Rao (1990), Datta and Lahiri (2000) and Butar and
Lahiri (2003). Furthermore, there can be some (often many) small areas of interest
where there is no sample, and consequently, no data. Model-based estimates for such
areas can be computed, but this is typically by making the clearly incorrect assumption
of no random effects for these areas. If random effects are uncorrelated between areas
there seems to be no way around this problem because there is no information about an
out of sample area that can be used to estimate its effect. However, most small area
boundaries are essentially arbitrary, and there appears to be no good reason why
population units just one side of such a boundary should not generally be correlated
with population units just on the other side. The implication of this observation is that
correlation between small area effects should be the norm, rather than the exception.

That is, small area models should allow for spatial correlation of area random effects.



An immediate benefit of using such models is that prediction of random area effects for
out of sample areas becomes straightforward. In an earlier paper (Saei and Chambers,
2005) the authors developed this approach for the case where unit level data are
available from the in-sample areas. This paper extends this approach to the important
aggregate data situation. In particular, the empirical best linear unbiased predictor
(EBLUP) for an area level characteristic for areas in sample as well as those that are not
in sample is derived for the case of aggregate area level data, assuming a Fay-Herriot-

type linear mixed model with spatially correlated area random effects.

In section 2 we define this model and its associated notation. The EBLUP is developed
in section 3, based on use of either maximum likelihood or restricted maximum
likelihood methods for estimating the variance components of the model. The mean
cross-product errors matrix of the EBLUP estimator and an estimator of this quantity
are developed in section 4. Results from a simulation study of the performance of the
new method are then provided in section 5. Section 6 concludes the paper with a

discussion of potential avenues for further research.

2. Model Specification

We assume that the population of interest is made up of D areas and the aim is to
estimate the conditional expectation of the area mean of a survey variable Y for each of
them. The D-vector of these conditional expectations is denoted by 6 and we note that
the conditioning is with respect to the values of auxiliary variables as well as random
area effects. We assume a standard unit level mixed effects model for Y, defined in

terms of a fixed effect contribution X'B, where X is a vector X of unit level



characteristics, a random area effect Z'u, where Z is a vector of area level

characteristics, and an individual random effect. This induces a linear model for 0,
given by® = X + Zu , where X is the matrix of area means of X, Z is the matrix of
(area level) values of Z, B is a vector of unknown regression coefficients (including an

intercept) and u is an unknown vector of random area effects. Following standard

practice, we assume that u is a realisation from a multivariate normal distribution with
zero mean vector and variance-covariance matrix an of order D. Furthermore,

Q =Q(A) isa function of an unknown parameter A .

Not all of the areas will be represented in sample. An area d will be denoted as in

sample if a direct survey estimate for the characteristic &, of that area is available.
Otherwise the area is out of sample. Let D, denote the number of small areas in sample,

with D = D - D, denoting the number of out of sample areas. We can then partition

_ - Z 0
the matrices X and Z into X =[X! X']" and Z:{ 05 z } corresponding to sample

r

and non-sample areas. Similarly we can partition the random area effects vector as

u=[u, u']". The objective is to predict the value of
0 XB+Zu
e = S — _ S S S ] (1)
0, XB+Zu

Let 6, ={0,, d =1, 2, ...,D.} denote the vector of direct estimates for the in sample

areas. Generally, these direct estimates will be weighted averages of unit level data

obtained in samples taken from each of the in sample areas. Consequently application of



the underlying unit level model that led to (1) implies that these direct estimates will

follow the closely related model
0,=0,,+e,
where 0 =X_B+Zu_and e, represents estimation error. Here X_ denotes the

weighted estimate of )_(S obtained from the sample data in the in sample areas. Note that

X, can be replaced by X when X_ is not available.

The model (2) is often referred to as a Fay-Herriot model. Under this model the

sampling error vector e_ is assumed to be independent of u and normally distributed,
with zero mean vector and variance-covariance matrix aZWS, where W, is a known

square matrix of order n (the overall sample size). Combining this assumption with (1),

we see that the implied model for @, is

where Var(g,) = o*(W, + 9Z,QZ)) =c’Z, and p =0/ o°.

3. Empirical Best Linear Unbiased Prediction

In this section we describe an algorithm for computing the empirical best linear
unbiased estimate of B and the corresponding predictions of u_ and u_ given the area
level data és and )_(SW. This assumes that the parameter & in (3) is known (or that a

good estimate of it is available), and is based on combining the ideas of Henderson

(1950) and Harville (1977).

()

(3)



Put I, equal to the log-likelihood for B generated by és given the value of the random
component vector u_, |, equal to the logarithm of the probability density of u_ given
the value of the random component vector u_, I3 equal to the logarithm of the
probability density function of random component u_and set | =1 +1, +1,. The best

linear unbiased predictors (BLUPs) of B, u_and u_ are then the values of these

quantities where | is maximised (Henderson, 1950). Of course, these BLUPs depend on
the variance components ¢ and A, so the empirical best linear unbiased predictors
(EBLUPS) are obtained by substituting estimates for these parameters. In what follows,

we describe an algorithm that calculates these EBLUPs by combining the above method

for calculating the BLUPs of B, u_and u,_ with ML and REML estimation of the

variance components.

Q. Q
Let { > Sr} denote the partition of the variance-covariance matrix € corresponding

rs r

to the in sample and out of sample components of u. Similarly, put

-1

. {T* T*} [Z’WlZ +o A, ~97'A, Q.0
T — sS sr — S S S s|r Sj[rsrrr

T. T S 5 W (N o s WA e O

rs 48 r rs S|I’ sror

where A, = Q. -Q Q'Q ). An iterative procedure for obtaining the ML estimates

srorrrs

of ¢ and A for given &7 is then:
1. Assign initial values to the variance components ¢ and A .
2. Using the current values for these variance components, calculate Q.

3. Update B = (X, Z. "X, ) "X 2.0

SWT's



where 2 ' =W'-W'ZT. ZW" .

4. Update u, = T.Z/W'(0-X_p).

§STTS

5. Update u, =T.Z'W,'(0-XB).

6. Update ¢ = D' (tr(T 0™") + o “u/) "u ).
7. Check for convergence of the different estimates. If not return to step 2.

8. Update A = f (A, 0, T,

.,o°,1i,) where f is the Fisher score or Newton-Raphson
updating function for this parameter, i.e. a function whose specification depends
on the parameterization of €, and where current values for variance
components are used in the right hand side of this equation.

9. Return to step 2 and repeat the procedure until the values of the different

parameters converge.
We denote the final values of B, u_ and u_output by the above iterative process by B

u, and u, respectively. These estimates are then substituted in (1) to give the ML-

based EBLUP 6 of 0,
. |0 XB+2Z.ia
0= As _ _sl?_'_ sljs . (4)
0, X,B+Zu

In order to define the REML-based EBLUP, we modify this iterative procedure to give

the REML estimates of ¢ and A . Define

v/ -1y v/ -1
XSW“/S XSW XSWWS ZS O
' -1y [ -1 -1 -1 -1
V=| ZWX, ZW.'Z +9’A, ~p A, Q.0

slr=srorr

0 —p Q0 A P QI +QQ A Q. QF

o orsT Us|r roorsT Us|rsrorr



V, V, Vg, T, T, T

11 12 13

andlet V=V, V_, V,|and vVi=T=]| . T,, T,, | be the partitions of the
‘gl ‘22 ‘G3 ' ' 1;3

matrix V and its inverse that correspond to the dimensions of B, u_ and u_. Replacing

T; by T,, in the iterative algorithm above leads to the REML estimates of the variance

components, and hence to the REML-based EBLUP of 0.

4. Estimating the Mean Cross-Product Error (MCPE) Matrix

We first obtain the mean cross-product errors matrix (MCPE) of the ML-based EBLUP

. 0, -6
estimator (4). This has prediction error 0 —0 = {f S] with
0,-0,

MCPE(é) = E[(é — 0)(6 —0)']. Without loss of generality we assume that the population

values are ordered so that values from the Dy in sample areas precede the values from

the D, = D - Ds out of sample areas. Put @ = (¢,A")" . Then, following Prasad and Rao
(1990) and after some algebra, we have

MCPE(8) = MCPE(8,,,,) + M (o2, ®)
where

MCPE(®,, ) = E[(6,,,, —0)(0,,,, —0)1= Mﬂ(az, )+ Mﬂu(az, w)+ M, (c%, o).

BLUP
Here M (@) and M (o) measure the uncertainty due to estimation of B and u;
M ﬁu(co) is the covariance between the estimators of B and uand M_(w) measures the

uncertainty due to estimation of the variance components o . Using the general results

set out in Henderson (1975), the first three components of (5) are given by

()



2 °T o
Mﬁ,(O' ,W)=0 XT, X

M (0%, ) = °ZT'Z
and

2 V(N YN VIN wlz 77 WY (% YIN VI
M, (0%0)=-c’[X(X,2'X, )" X, W'ZTZ + ZTZW'X_ (X, Z'X )" X ].
The final component Mm(az,co) is a measure of the uncertainty due to estimation of

the variance components @ = (¢ A’)" and is defined as follows. Put
A=ZT =[A/, Al,...,A T andlet Z_ be the a " row of the matrix Z, so that
oA, 0w =0(Z,T )/ oo . Then
M (c%, @)=o’[tr(V V' B)]
where . =Z'W'Z_+ oZ!W.'Z Y, Z'W.'Z_and V_ is the first Ds columns of the
matrix 0A , / dw . Here B is the asymptotic variance-covariance matrix of the estimator
of the variance components vector o . An estimator of the MCPE matrix of the EBLUP
0 is therefore
MCPE(8) = M ,(c2, &) + M , (%, &) + M, (67, &) +2M, (67, &) (6)

where @ is the ML estimate of the variance components vector o .

In order to define the corresponding estimator of the MCPE matrix of the REML-based
EBLUP, we replace the ML estimate @ and its asymptotic variance-covariance matrix,
B by corresponding REML values, and evaluate T~ at the REML estimates of the
various parameters. Substitution in (6) then yields the REML-based estimator of the

MCPE matrix.



5. Simulation Results

In this section we use simulation to demonstrate how the new methodology outlined
above provides improved results compared with existing EBLUP methods for small
area estimation when not all areas of interest are represented in sample. The population
values were generated from a linear mixed model with spatially correlated area random

effects, defined by

Y, =05+Xx, +U, +¢e,.
The values e, were independently generated from a normal distribution with zero mean
and variance o”. The values u = [ul,uz,...,uDs ,..,Uy]" were generated from a
multivariate normal distribution with zero mean vector and variance-covariance matrix
olQ(A) = o[, - A¥)A, - A"
where 1 is an identity matrix of order D and ¥ is a known square matrix of the same

order containing strictly positive weights. This is the SAR or simultaneous

autoregressive model (Cressie, 1993). Let V') =[y ] tobe a D x D matrix with .. =

1 if areas i and j are considered “spatial neighbours” and is zero otherwise. The weight

matrix ¥ was then constructed by scaling the elements of ¥ to have row sums equal
to one. Two different versions for ¥ were used, defined by the regional maps for

Ghana and Nigeria provided in Cliff and Ord (1973). The x, values were generated

from a uniform distribution between 0 and 1 and were kept fixed throughout the
simulations. Values of y, were generated for D = 40 (Ghana) and D = 50 (Nigeria)

with 90 population units per area. The first Ds = 30 (Ghana) and 40 (Nigeria) areas were

taken to be in sample areas, with the remaining D, = 10 areas considered as being out of

10

(7)

(8)



sample. Random samples of size ny were taken from each in sample area, with nq
increasing with d. The population data were aggregated to yield area level means for
both in sample and out of sample areas. The sample data from the in sample areas were
also aggregated to produce corresponding sample means, which were then used to
estimate the model parameters via REML. Note that under the SAR model (8) the
updating equation for the parameter A under the Fisher scoring method (see step 8 of
the EBLUP estimation procedure described in section 3) is given by

A = A4, +hb,

k
where b =-0.5[p o7 *u/(6Q." / 6A)u, + @ tr((6Q" / 6A)T,,) — tr((6€." / 64)Q")] and
b, is the (2, 2) element of inverse of the information matrix for the estimators ¢ and A
Note that we fixed o at its true value throughout the estimation process. The

information matrix of the REML estimators ¢ and 1 is given by

1 pl(v=2r)+o'r, @2k, -9 k,)

I -
REML 2 ) (w—Zkf;l:l) + Vll _ Zkfll))

where
L ='tr(Q'T,,),
r,=tr(Q'T,Q'T,),
k, = @ tr((0Q.' 1 0A)T,,),
vlztr((GQS;1 10A)Q.),
k, = @ tr(T,,(6Q;' 1 0A)T,Q),

v, = tr((2Q 1 0A)Q, (6Q 1 04)Q),

k&Y = tr(T,, (0" 1 0A4)T,, (0" 1 04))

11



kl(n) — o7 tr]( 39;1 | 02)T,, (695;1 10A)Q].

Given the above set up, we considered four ways of defining the small area estimates.
The first corresponded to a synthetic estimation procedure, where the mixed model
defined by (7) and (8) is first fitted to the sample data, but then estimation is carried out
on the basis that ug = 0 in every small area. We refer to this as method A below. The
second also fits (7) and (8) to the sample data, but forces 4 =0 in (8), i.e. this method
assumes there is no spatial correlation among the area effects. Estimation then
incorporates predicted area effects for in sample areas, but sets these to zero for out of
sample areas. This is denoted method B in what follows. In contrast, the third method
takes account of the correlation between areas when estimating the model parameters.

However, it still sets the predicted value of u, to zero for out of sample areas. We refer

to this as method C. Finally, the fourth method, denoted D, corresponds to the EBLUP

procedure defined earlier in this paper.

The process of generating population and sample data, estimation of model parameters

and calculation of (A) — (D) was independently replicated 3000 times. For each set of

estimates & and each small area d we then calculated the actual and average estimated

mean squared errors

3000 . N
ActMSE, = diag, (Z 6, -6,)®6,-6,)/ 3oooj
k=1

k=1

3000
EStMSE, = diag, (Z MCPE(®,)/ 3000)

12



where diag, (X) denotes the d™ element of the main diagonal of X. The actual

coefficient of variation

ACtMSE,
3000

Y6, /3000
k=1

ACtCV, =100 x

and the estimated coefficient of variation

EStMSE,
3000 .

3" 6,,/3000
k=1

EStCV, =100 x

were then calculated, as was the average coverage of the area d total by the nominal

95% confidence intervals defined by these estimated mean squared errors.

Information about the various simulation scenarios considered, including average
sample sizes and true values of the variance components, is provided in Table 1.
Thirteen different combinations of overall sample sizes and parameter values (Parl —
Parl13) in (7) and (8) were used in the simulations. Table 2 shows the average values of
both the actual coefficient variation (ActCV) and estimated coefficient of variation
(EstCV) for the four estimation methods we considered. These show that for Method A
in particular, estimated CVs are far from their actual values, irrespective of whether the
areas concerned are in sample or out of sample. This problem persists, albeit in a
somewhat reduced form, with Method B and Method C, where now it is out of sample
areas whose estimated CVs tend to be far too optimistic. The results also indicate that
Method C performs better than Method B for both in sample and out of sample areas.
Method D - as one would expect — performs much better in this regard, with estimated

and actual CVs for both in sample and out of sample areas being very close. Note also

13



that average values of ActCV for Methods B, C and D in Table 2 are very similar for

small values of A, but use of Method D leads to substantial gains in efficiency for large
values of aj and 4. As might be expected, these gains are more pronounced for large

values of D.

Irrespective of potential increases in efficiency, an important gain from modelling the
spatial correlation of the area random effects is better estimation of mean squared error.
This is confirmed in Table 3 where we see that prediction intervals generated under
Method A generally lead to severe undercoverage because they are based on
conditionally biased synthetic estimators. In contrast, intervals generated under Method
B has good coverage for in sample areas, but a very poor coverage for out of sample
areas (even when there is no spatial correlation), reflecting this method’s use of
conditionally biased synthetic estimators for out of sample areas. There also seems to be
some evidence that this coverage gets worse as this spatial correlation increases. The
same pattern applies for the results generated by Method C, with somewhat better
coverage for out of sample areas. On the other hand, Method D records coverages very
close to the nominal 95% level for in sample areas, and only slightly less for out of
sample areas. Furthermore, this overall good performance holds across all sets of
parameter values investigated, including where there is no spatial correlation. Note that

larger values of D also lead to better coverage performance.

Table 3 also reports average confidence interval widths under Methods A — D. As

expected, there is very little difference between Methods C and D for in sample areas.

For such areas, and in particular for large values of aj and 4, Method A results in very

14



wide confidence intervals. This reflects large standard error estimates under Method A
for these values of aj and 4. However, in spite of these large estimated standard

errors, prediction interval coverages are very far from the nominal 95% level because of
the biased estimators under this method. Small differences in covariate values for in
sample and out of sample areas leads to insignificant differences in average confidence
interval width for Method A. However, the three other methods considered, especially
Method D, lead to significant differences in average confidence interval width between

in and out of sample areas in such situations.

Finally, in Figure 1 we show the variation in relative bias for Methods A, B and D by
area for both in and out of sample areas for two parameter sets (par3 and par 11). These

confirm the overall superiority of Method D.

6. Summary and Discussion

In this article we develop EBLUP estimates for small area means under a Fay-Herriot
type model when there are no sample units in the area. The model assumes spatially
correlated area effects defined by the SAR model (8). Our simulations indicate that our
proposed method has the potential to lead to substantial increases in prediction
efficiency for these areas when there is strong spatial correlation in the data. They also
show that the estimates of mean squared error calculated under the spatial model are
much more accurate than those based on the usual synthetic estimates that are often
used for out of sample area prediction. As a consequence, confidence intervals based on
these estimates of mean squared error tend to be more accurate, in the sense of

achieving their nominal level of coverage. Note these conclusions are based on

15



simulation results just by leaving 10 areas out of sample, out of a total of 40 (Ghana
scenario) and 50 (Nigeria scenario). We anticipate that the better performance of
Method D relative to that of Methods A — C will become even more clear when the

proportion of out of sample areas increases.

Note that our method makes the usual area level data assumption (e.g. Rao and Yu,

1994) that o is known. Recently, Wang and Fuller (2003) have investigated methods
for fitting area level models without this assumption, and work is underway to see

whether their ideas can be applied here.

The analysis in this paper has been restricted to the area level linear mixed model. Many
applications, however, are based on non-linear mixed models, e.g. generalised linear
mixed models. The methodology outlined in this paper can be extended to these
situations, and results from this research will be published elsewhere. Application to
other spatial correlation models, e.g. the conditional autogressive (CAR) model, is also

of interest.
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Table 1. Parameter sets used in the simulations. Note Ds = number of in sample areas, D, =

number of out of sample areas and n is average sample size for in sample areas.

Set Parameter Values

n o o A Ds Dy
Parl 7.93 1 5.0 0.00 30 10
Par2 7.93 1 5.0 0.60 30 10
Par3 10.67 1 5.0 0.92 30 10
Par4 8.53 1 0.5 0.60 30 10
Par5 7.37 1 0.5 0.92 30 10
Par6 7.33 1 1.5 0.60 30 10
Par7 7.17 1 1.5 0.92 30 10
Par8 8.05 1 1.5 0.60 40 10
Par9 8.05 1 1.5 0.92 40 10
Par10 9.13 1 5.0 0.60 40 10
Parll 8.05 1 5.0 0.92 40 10
Parl12 7.18 1 0.5 0.60 40 10
Par13 8.43 1 0.5 0.92 40 10
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Table 2 Estimated coefficients of variation (EstCV) and actual coefficients of variation
(ActCV) for different methods of estimation, averaged over the small areas. Areas denotes the
small areas whose values are averaged, while Set denotes the set of parameter values used in
the simulation (see Table 1 for their definition).

Areas Set Method
A B C D
ActCV EstCV ActCV EstCV ActCV EstCV ActCV EstCV
All Parl 226.02 57.09 100.56 56.25 101.45 58.60 101.93 102.31

Par2 273.12 86.04 120.95 59.88 116.23 65.55 114.87 116.01
Par3 689.76 161.75 322.43 90.84 253.10 94.24 205.05 216.89
Par4 87.11 28.89 5148 3258 49.88 34.21 4956 50.68
Par5 182.53 47.66 91.67 4432 7426 4359 66.58 72.67
Par6  149.42 4749 7590 43.09 7310 46.03 7246 73.98
Par7 280.52 69.05 127.58 52.64 101.72 50.79 87.51 94.80
Par8 143.70 40.12 6592 4092 6413 4256 62.29 61.29
Par9 286.52 63.53 9959 5115 88.28 47.92 65.00 64.99
Parl0 268.63 73.65 98.61 5145 9459 54.14 90.83 89.14
Parll 486.06 107.44 154.11 71.45 13180 63.35 94.62 94.32
Parl2 83.00 2437 48.17 3451 4691 35.00 46.02 45.48
Parl3 160.30 39.15 68.01 40.73 6053 3894 49.14 49.36
In Parl 22152 56.66 53.88 5381 54.60 53.09 54.62 53.09
sample Par2 267.41 8595 59.10 58.61 54.71 53.75 54.67 53.65
Par3 488.26 11557 7289 70.28 46.98 47.82 4592 46.03
Par4 85.74 2890 3754 3762 36.11 3599 36.13 3593
Par5 186.34 48.05 50.01 49.78 4198 42.62 4144 41.79
Par6 14731 4755 47.62 47.96 4554 4559 4556 45.50
Par7 283.30 69.40 56.81 56.13 4490 45.05 44.17 44.16
Par8 14299 40.15 4519 45.07 4353 4320 4354 4314
Par9 29154 63.75 54.64 53.87 43.74 4424 4286 4290
Parl0 267.18 73.58 53.29 53.13 49.63 49.20 49.66 49.11
Parll 495.03 108.01 7357 7230 5221 5290 51.02 50.96
Parl2 83.07 24.45 3930 3931 3795 37.73 3794 37.68
Parl3 163.06 39.28 45.06 4493 3834 39.01 37.65 37.93
Out of Parl 230.1 55.17 228.77 4294 230.10 55.17 232.33 234.00
sample Par2 28543 84.29 29223 49.02 28543 84.29 280.30 288.56
Par3 483.00 115.24 594.05 74.66 483.00 11524 391.86 439.70
Par4 91.19 2886 9331 1749 91.19 28.86 89.85 9491
Par5 171.08 46.51 216.66 27.93 171.08 46.51 142.00 165.32
Par6  155.75 47.34 160.73 28.47 155.75 47.34 153.18 159.40
Par7 272.2 68.02 339.88 4217 2722 68.02 217.54 246.71
Par8 146.55 39.99 148.87 2431 146.55 39.99 137.32 133.89
Par9 266.44 62.65 279.39 40.27 266.44 62.65 153.56 153.37
Parl0 274.43 73.94 27991 44771 27443 73.94 255.54 249.28
Parll 450.16 105.15 476.29 68.05 450.16 105.15 269.02 267.76
Parl2 82.76 2407 83.64 1530 8276 24.07 7835 76.67
Parl3 149.27 38.64 159.80 23.90 149.27 38.64 95.09 95.06
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Table 3 Confidence interval width and coverage of nominal 95% confidence intervals
(95%Coverage) generated by different methods of estimation, averaged over the small areas.
Areas denotes the set of small areas whose values are being averaged, while Set denotes the
set of parameter values used in the simulation (see Table 1 for their definition).

Areas  Set Confidence interval width 95%Coverage
A B C D A B C D
All Parl 2.16 2.13 221 393 36.48 78.89 80.10 94.76

Par2 3.19 2.26 247 437 4377 7750 81.73 94.29
Par3 4.81 2.62 273 587 3682 7441 80.15 94.23
Par4 1.09 1.26 132 194 4633 78.26 8222 94.23
Par5 1.71 1.59 158 264 40.10 7594 8173 94.69
Par6 1.78 1.65 176 282 4454 7789 8191 94.29
Par7 2.77 2.06 204 386 3723 7566 80.73 94.73
Par8 1.53 1.59 165 239 39.85 80.79 83.65 94.43
Par9 2.50 1.98 190 259 3339 7990 83.06 94.71
Parl10 2.74 191 202 335 39.13 80.74 83.68 94.43
Parll 4.28 2.70 251 380 3329 79.76 8298 94.64
Parl2 0.94 1.36 1.38 180 4181 8139 8411 94.33
Parl3 1.49 1.55 149 190 36.80 80.44 83.90 94.76
In Parl 2.16 2.03 201 201 36.73 9471 943.0 94.29
sample Par2 3.22 2.16 200 200 4486 9464 9447 9444
Par3 4.86 2.67 194 188 3579 9419 9495 94.84
Par4 1.09 1.46 140 139 46.83 94.87 94.68 94.62
Par5 1.71 1.79 154 151 3956 9481 95.08 94.96
Par6 1.78 1.83 1.75 174 4502 9500 94.85 94.78
Par7 2.77 2.18 1.80 177 36.97 9472 9498 94.98
Par8 1.53 1.75 168 1.68 3997 9483 9473 94.71
Par9 2.50 2.08 1.75 170 3296 94.63 9505 94.89
Par10 2.74 1.97 1.84 184 39.06 9483 9475 94.70
Parll 4.28 2.69 207 201 3289 9447 9500 9481
Parl2 0.94 1.55 149 148 4179 9484 9466 94.64
Parl3 1.49 1.71 149 146 36.28 9494 9516 94.99
Out of Parl 2.09 1.66 209 9.01 3557 2891 3557 9418
sample Par2 3.17 1.88 3.17 10.89 4232 2566 4232 93.18
Par3 4.87 3.10 487 1824 36.24 1875 36.24 93.95
Par4 1.09 0.67 1.09 357 4485 2842 4485 93.07
Par5 1.71 1.02 1.71 6.03 4171 1931 4171 93.86
Par6 1.79 1.10 1.79 6.05 43.10 26,55 43.10 9283
Par7 2.77 1.69 277 10.15 38.00 1851 38.00 93.99
Par8 1.53 0.94 153 520 3936 2465 3936 93.28
Par9 2.49 1.58 249 6.17 3511 2101 3511 93.98
Par10 2.74 1.68 274 943 3940 2436 3940 93.35
Parll 4.28 2.72 428 1100 34.87 2095 3487 93.94
Parl2 0.95 0.61 095 3.05 4188 2758 41.88 93.09
Parl3 1.49 0.91 149 3.67 38.85 2246 38.85 93.83
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Figure 1 Relative bias by area for two parameter sets (top = Par3, bottom = Par11). Dot-dash
line is Method A, dashed line is Method B and solid line is Method D.
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