The pion's electromagnetic form factor at small momentum transfer in full lattice QCD

Boyle, P.A., Flynn, J.M., Jüttner, A., Kelly, C., de Lima, H.Pedroso, Maynard, C.M., Sachrajda, C.T. and Zanotti, J.M. RBC (2008) The pion's electromagnetic form factor at small momentum transfer in full lattice QCD Journal of High Energy Physics, 2008, (7), 112-[21pp]. (doi:10.1088/1126-6708/2008/07/112).


Full text not available from this repository.


We compute the electromagnetic form factor of a ``pion" with mass m? = 330 MeV at low values of Q2??q2, where q is the momentum transfer. The computations are performed in a lattice simulation using an ensemble of the RBC/UKQCD collaboration's gauge configurations with Domain Wall Fermions and the Iwasaki gauge action with an inverse lattice spacing of 1.73(3) GeV. In order to be able to reach low momentum transfers we use partially twisted boundary conditions using the techniques we have developed and tested earlier. For the pion of mass 330 MeV we find a charge radius given by r?2330 MeV = 0.354(31) fm2 which, using NLO SU(2) chiral perturbation theory, translates to a value of r?2 = 0.418(31) fm2 for a physical pion, in agreement with the experimentally determined result. We confirm that there is a significant reduction in computational cost when using propagators computed from a single time-slice stochastic source compared to using those with a point source; for m? = 330 MeV and volume (2.74 fm)3 we find the reduction is approximately a factor of 12

Item Type: Article
Digital Object Identifier (DOI): doi:10.1088/1126-6708/2008/07/112
Keywords: lattice qcd, electromagnetic processes and properties, nonperturbative effects
ePrint ID: 143313
Date :
Date Event
28 July 2008e-pub ahead of print
July 2008Published
Date Deposited: 26 May 2010 08:22
Last Modified: 18 Apr 2017 20:03
Further Information:Google Scholar

Actions (login required)

View Item View Item