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ABSTRACT 

The investigation of neuron structures is an 

incredibly difficult and complex task that 

yields relatively low rewards in terms of 

information from biological forms (either 

animals or tissue). The structures and 

connectivity of even the simplest invertebrates 

are almost impossible to establish with 

standard laboratory techniques, and even 

when this is possible it is generally time 

consuming, complex and expensive. Recent 

work has shown how a simplified behavioural 

approach to modelling neurons can allow 

“virtual” experiments to be carried out that 

map the behaviour of a simulated structure 

onto a hypothetical biological one, with 

correlation of behaviour rather than 

underlying connectivity. The problems with 

such approaches are numerous. The first is the 

difficulty of simulating realistic aggregates 

efficiently, the second is making sense of the 

results and finally, the models often take days 

to run therefore it would be advantageous to 

have a model which can be synthesized onto 

hardware. In this paper we present a 

synthesizable VHDL implementation of 

Neuron models that allow large aggregates to 

be simulated. The models are demonstrated 

using a post synthesis system level VHDL 

model of the C. Elegans locomotory system. 

1. INTRODUCTION 

1.1. Biological Neurons 

Neurons are body cells specialized for signal 

transmission and signal processing. Figure 1 

shows the typical structural characteristics of a 

neuron. It has a cell body (or soma) and root-

like extensions called neurites. Amongst the 

neurites, one major outgoing trunk is the axon, 

and the others are dendrites. The signal 

processing capabilities of a neuron is its ability 

to vary its intrinsic electrical potential 

(membrane potential) through special electro-

physical and chemical processes. A single 

neuron receives signals from many other 

neurons, (typically in order of 10,000 for 

mammals) at   specialized sites on the cell 

body or on the dendrites, known as synapses. 

 
Fig 1: Diagram of a generic neuron 

Synapses receive signals from a pre-synaptic 

neuron and alter the state of the postsynaptic 

neuron (the receiver neuron) and eventually 

trigger the generation of an electric pulse, the 

action potential (a spike), in the postsynaptic 

neuron. This action potential is initiated at the 

rooting region of the axon, the axon-hillock, 

and it subsequently travels along the axon 

sending information signal to the other parts of 

the nervous system. 

1.2. Neuron Models 

Models of neurons can be created at various 

level of abstraction ranging from molecular 

level to network level. The pioneering 

Hodgkin–Huxley model [1] and other 

compartmental models based on it [2-4] model 

variation in cell membrane voltage using ion 

channels kinetics. Models such as “Integrate 

and Fire” are built with an assumption that the 

timing of a spike is the information carrier and 

not the shape of the spike [5-7]. 

An alternative approach is to develop highly 

abstract neuron models encapsulating the 

essential functionality of a neuron relevant for 

network behaviour in order to develop 

understanding of network population 

dynamics. Binary neuron models (McCulloch 

and Pitts [8]), the Perceptron Model 

(Rosenblatt [9]) and the Spiking-rate model 

[10] represent this end of the spectrum in 
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neuron modelling and they are widely used in 

artificial neural networks. 
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Fig 2: Typical Action Potential 

2. VHDL Neuron Library 

The neuron is a complex entity, it receives 

multiple inputs from synapses and although it 

has a single output, this output can be mapped 

to the inputs of many synapses. 

 
Fig 3: Block diagram of neuron model 

The diagram in figure 3 is an overview of the 

different blocks in this model. The synapses 

are in themselves separate entities, while the 

threshold, oscillator and burst blocks are the 

components which make up the neuron 

models. To simplify and reduce the size the 

neuron model it was decided to have two 

different types. The first neuron model was 

made up of a threshold and burst block, this 

neuron is triggered by synaptic input.  

The second neuron type was made up of an 

oscillator and burst block, this neuron was to 

be triggered periodically and is used to drive 

network activity. The operation of each type of 

neuron, the synapse and each components of 

the system is to be described in further detail. 

Simulations of each component are performed 

and the desired operation is verified. 

2.1. Neuron 1 (Activated by synapses) 

    This is the core of all nervous system 

models and behaves like real biological 

neurons.The weightings from each of the 

synapses are summed at the input by the 

threshold block. If the total sums of all the 

synaptic weightings are equal to or above the 

excitatory threshold then the burst block is 

told to fire. However, if the sum is equal to or 

below the inhibitory threshold then the burst 

block is told to cease firing. 

   The burst block is effectively a timer and a 

counter. The timer has the important job of 

shaping the action potential, timing the “on” 

period and refractory (mandatory minimum) 

“off” period. The counter in this block is 

responsible for counting the number of action 

potentials fired in a burst. For example  for a 

single “on” message from the threshold block 

a number of action potentials will be fired by 

the burst block as defined by the parameter  

BurstLength. If during a burst an “off” signal 

is received from the threshold block then the 

burst is truncated. 

2.1.1. Neuron 1 VHDL Definition 

 The entity definition for the neuron 

component allows the user to specify generics 

to tune the model, such as bit length for timers 

and set other parameters for the model such as 

threshold for excitation and inhibition. 
port ( 

   signal Clock    : in std_logic; 

   signal nReset   : in std_logic; 

   signal nDisable : in std_logic; 

   -- Threshold Block Signals 

   signal SynWeightVector : in  

           signed_vector((NumberSynapses-1)  

                                 downto 0); 

   -- Burst Block Signals 

   signal APTime   : unsigned((TimeRes - 1)  

                                 downto 0); 

   signal RefTime  : unsigned((TimeRes - 1)  

                                 downto 0); 

   -- Axon Action Potential Signal 

   signal Axon : out std_logic );  

The entity port definition begins with three 

control signals, Clock, nReset and nDisable. 

nDisable behaves like a synchronous reset, 

allowing certain neurons to be disabled. The 

input from the synapses is defined as a vector 

of signed 16 bit synaptic weights. The length 

of the vector is specified by the generic 

NumberSynapses. Configuration signals for 

the Action potential time and refractory period 

are defined next. These are unsigned bit 

vectors of length specified by the generic 

TimeRes. This allows the size of the internal 

counters to be changed so logic is not wasted. 

Finally the output of the Axon is defined.  

2.1.2. Simulation of Neuron 1 

  A Simulation was run to test the behaviour 

of the Neuron model. As tested 32-bit length is 

used for all counters. The action potential time 

is set to 1ms and refractory period is 2ms. The 

length of the burst is five. 

 



Fig 4: Activation of Neuron Type 1 

The figure 4 shows the Modelsim trace from 

simulation of this type of neuron. Each white 

vertical line is 1 ms of simulated time. The top 

two traces are synaptic inputs while the bottom 

trace is the output of the neuron. 

At 1ms, the first synaptic input activates, 

adding a synaptic weight of 3 to the neuron. 

This pushes the neuron over its activation 

threshold and the neuron fires. Each action 

potential is 1 ms with a 2 ms gap before the 

following action potential (refractory period).  

Fig 5: Truncation of Burst 

The figure 5 shows the Modelsim trace for 

simulation of this type of neuron which is 

truncated by inhibition. Firstly the neuron is 

activated as before but after the third action 

potential the second synapse is activated with 

a synaptic weight of -3. This brings threshold 

sum under the inhibition threshold and causes 

the burst to be truncated after only 3 action 

potentials instead of the full 5. These traces 

show that the system is performing as desired. 

2.2. Neuron 2 (Periodic activation) 

The second type of neuron is one which is 

activated by an internal oscillator. This allows 

neurons to be included in models which drive 

activity by providing a certain pattern of action 

potentials. The oscillator is controlled by two 

parameters, period and phase. The only other 

component is a burst block which behaves 

exactly the same as in Neuron type 1.  

2.2.1. Neuron 2 Entity Definition 

The entity definition for the neuron 

component allows the user to specify generics 

to tune the model, such as bit length for timers 

and set other parameters for the model such as 

threshold for excitation and inhibition. 

port ( 

  signal Clock: in std_logic; 

  signal nReset: in std_logic; 

  signal nDisable: in std_logic; 

  signal CountPhase: in std_logic; 

-- Oscillator Block Parameters 

  signal Period: in unsigned((OscResolution  

                            - 1) downto 0); 

  signal Phase: in unsigned((OscResolution 

                            - 1) downto 0); 

-- Burts Block Parameters 

  signal APTime: unsigned((TimeRes - 1)  

                                 downto 0); 

  signal RefTime: unsigned((TimeRes - 1)  

                                 downto 0); 

-- Axon Action Potential Signal 

  signal Axon : out std_logic); 

The entity definition here is similar to that of 

neuron 1 but there are some distinct 

differences. The input signals for synapses 

have been removed and have been replaced by 

input signals for period and phase of the 

oscillator. The sizes of these signals are 

specified by the generic OscResolution. 

Finally a control signal CountPhase has been 

added to enable or disable the counters phase 

offset reducing the overall logic. 

2.2.2. Simulation of Neuron 2 

Simulation was performed to test the 

operation of Neuron 2.  A 32-bit length was 

used for all counters, action potential time was 

1 ms and refractory period was 2 ms. The 

phase offset was 2 ms and period was 16 ms. 

This time the burst length was set to 3. 

 
Fig 6: Operation of Neuron 2 

Figure 6 shows the Modelsim trace from 

simulation of this type of neuron. Each white 

vertical line is 1 ms of simulated time. It is 

clear that 2 ms after simulation begins the 

neuron fires its first train of action potentials. 

Each action potential is 1 ms long separated by 

a 2 ms refractory period. Exactly 16 ms after 

the first action potential was fired a second set 

of three action potentials are fired, which 

shows that the system is behaving as desired. 

2.3. Synapse 

The second of the core components of the 

nervous system is the Synapse. It is through 

synapses that neurons communicate with each 

other. The synapse model is simpler compared 

to the neuron model because it has a single 

input and single output (where as the neuron 

receives many inputs and transmit to many 

other neurons). 



The synapse consists of two arrays of timers. 

A timer in the first array is activated upon 

receipt of an action potential. This first array 

of timers models the delay of the action 

potential travelling down the axon and the 

delay of the neurotransmitter crossing the 

synapse. This combined delay is called Tdel. 

Once a timer in the first array ends it triggers 

two events. The first event is to increase the 

output of the synapse wsyn by a predetermined 

amount. The second is to start a timer in the 

second array of timers. The function of this 

group of timers is to ensure the variable wsyn is 

changed for a certain duration, hence its name, 

Tdur. 

After a timer in the second array signals the 

time Tdur has passed, the output wsyn is then 

.decremented. It is possible that a second 

action potential could activate the synapse 

whilst already active. The inclusion of arrays 

of timers allows for this. Successive 

activations can be handled with minimal 

handshake logic. In this case the output wsyn 

would be increased again by the 

predetermined amount if two or more 

activation’s coincide. A more detailed 

description is available in [10-12]. 

2.3.1. Synapse entity definition 

The entity definition for the synapse 

component allows the user to specify generics 

to tune the model, such as bit length for timers 

and set other parameters for the model such as 

synaptic weighting. 
port ( 

  signal Clock  : in std_logic; 

  signal nReset : in std_logic;    

  signal nDisable  : in std_logic; 

  -- Input Signals        

  signal Axon      : in std_logic; 

  -- Configuration Signals 

  signal Tdel      : unsigned((StackResDel 

                           - 1) downto 0); 

  signal Tdur      : unsigned((StackResDur 

                           - 1) downto 0); 

  -- Output Signals 

  signal SynWeight: out signed(15 downto   

                                      0)); 

The three familiar control signals appear first 

followed by the input signal from the pre-

synaptic axon. Two configuration signals Tdel 

and Tdur are defined, each has an associated 

generic which allows the user to tune the 

length StackResDel and StackResDur. Finally 

the output signal is a 16 bit signed value for 

the synaptic weighting. 

2.3.2.  Simulation of the Synapse 

Simulation was performed to test the 

operation of the Synapse. All timers were 

defined at 32-bit length and both the 

delay/duration times were set to 1 ms. The 

weighting increment was set to 1.0. 

 
Fig 7: Operation of Synapse 

The figure 7 shows the Modelsim trace from 

simulation of the synapse. Each white vertical 

line is 1 ms of simulated time. 

After 1 ms a pulse arrives on the top trace 

which represents action potentials arriving at 

the synapse. After a delay of 1ms the output of 

the synapse (bottom trace) is incremented by 

1. This happens for each of the arriving pulses 

so that the output reaches a value of 4. The 

output is incremented for a duration of 1ms 

before being decremented. This continues to 

happen until the output returns to 0 and shows 

that the model is behaving as designed. 

3. VHDL Neuron Network Models 

3.1. Introduction 

VHDL is a powerful language and allows the 

creation of standard sets of tools for the 

creation of network designs. The Neuron and 

Synapse models were compiled into a library 

which allows the referencing each model 

entity as components where the various model 

parameters could be specified.  

Connectivity is specified by defining the 

various signals between neurons and synapses. 

Outputs from neurons are connected to 

synapses and synapses are connected to the 

input of another neuron. This connectivity 

makes it simple to generate networks. 

3.2. C. Elegans Locomotory Model 

The C. Elegans Locomotory Neuron System 

is implemented using the VHDL library of 

Neurons and Synapses described in the 

previous section. The key element from a 

systems perspective is that the model can be 

reset and directionally controlled (allowing 

interface to sensory neurons or a “higher 

level” abstract model) and interfaced to 

biologically realistic muscle models. The 

interface is therefore completely defined using 

a standard interface described in [11]. 



3.3. C. Elegans Locomotory System 

C. Elegans is a free living nematode with 

302 neurons which has a generation time of 

about 3.5 days. The nematode can grow to a 

length of 1.3mm long and a diameter of 80μm 

if there is a sufficient supply of food available. 

The locomotion of C.Elegans is achieved by 

dorsal-ventral movement of the body which 

produces a sinusoidal wave which propagates 

along the length of the body. Body movements 

are produced by four strips of muscle cells that 

run in four quadrants between longitudinal 

ridges inside the body cavity [13-15]. 

3.4. C Elegans VHDL Library 

A C.Elegans locomotory model was 

conceived in 2000 by Enric Claverol [10] 

based on data from White et al [13]. There is 

limited electrophysiological data available 

about C. Elegans [16], therefore models of the 

locomotory system are based upon a mixture 

of anatomical data from White et al [13] and 

analysis of video recordings of the animals 

behaviour. 

 
 

 

 

 

 

 

 
Fig 8:C. Elegans Locomotion Model 

The diagram shown in Figure 8 was 

generated by a specially designed user 

interface developed in-house to allow 

straightforward design of the networks for the 

simulator without having to generate the 

VHDL test bench manually. 

The key is a visual aid to the function of each 

type of neuron. Only six types are listed but 

each type can be divided into either dorsal or 

ventral subtypes. 

It is a long winded process to type in the 

definitions of each of the 86 neurons and 164 

synapses. This can be simplified by identifying 

a repeated sub-circuit in the system. 

 
 

 

 

 
Fig 9: Locomotion Sub-Circuit 

The locomotion sub-circuit is shown in the 

above figure. It consists of only eight neurons. 

In the VHDL design this circuit was given the 

name Loco_Unit. Ten of these units are used 

to construct the complete model.  

Using this approach has the advantage that if 

something if wrong with the loco_unit the one 

change in the library changes all the units in 

the design simultaneously. This loco_unit 

forms the basis of the LibElegans VHDL 

Library. The nematode was simulated using a 

post-synthesis version of the C. Elegans 

locomotion model. These results were 

compared to results in previous work [10-12]. 

 
Fig 10: VHDL Simulation of C. Elegans Model 

Figure 10 shows the waveform trace of the 

electrical activity in the muscle cells. The trace 

shown shows the waves of action potentials 

propagating from the head to the tail on one 

side of the worm and then on the other side 

with a phase lag. Midway through simulation 

the parameters of the model were changed in 

the VHDL test bench and the worm reversed 

direction with the muscle activity now 

propagating in the opposite direction. Again 

the parameters are switched to demonstrate the 

ability of the model to cope with arbitrary 

changes in direction. This behaviour agrees 

with the activity shown in Claverol [10] and 

Modi [12]. 

4. Issues with Synthesis 

The synthesis of the C Elegans locomotion 

model was a challenging process. The model 

as originally designed consists of 86 neurons 

and 164 synapses. Using figures based on the 
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resources used by a single neuron and single 

synapse in our previous work [11], this yielded 

a resource usage of over 200,000 function 

generators and 85,000 flip-flops. This meant 

the design was too large to fit on all but the 

largest FPGAs.Whilst the previous versions of 

the libraries were synthesizable meaningful 

designs were too large to be practically 

synthesized. One issue was that all the neurons 

in the previous version of the libraries had 

Threshold, Burst and Oscillator blocks. 

Consider the C Elegans Locomotion model, 

six of the neurons need only an oscillator and 

burst block, the rest only need threshold and 

burst blocks. A reduction in wasted logic can 

be achieved by defining two types of neurons, 

those which can drive activity and those which 

behave more like real neurons.  

A further reduction in wasted logic was 

achieved by allowing the sizes of all counters 

to be defined by the user, instead of specifying 

32-bit counters throughout the model for 

modeling time delays. This saves plenty of 

space when you consider only four 32-bit 

counters are required in the C Elegans model 

while most other counters are less than 12-bits 

long. Finally two more simple optimizations 

were made. Many of the blocks of the model 

interpreted a zero value for a counter as a 

indication that a block should be disabled. 

Including a disable pin on the block reduced 

the amount of logic required by the state 

machine. Also using up counters instead of 

down counters reduced the number of NOT 

gates required by the design and so reduced 

the logic overhead required by the counters. 

The C Elegans design now requires 78,399 

function generators and 56,766 flip-flops. This 

is huge reduction in required logic thanks to 

the optimizations. 

5. Conclusion 

A synthesizable neuron library has been 

developed which allows the modelling of the 

nervous systems of animals with simple 

nervous systems. The library was tested using 

the C Elegans locomotion system and the 

results were compared against previous work. 

The advantages of building such a library is 

that is it possible to run accurate simulations 

using the designs loaded on FPGAs in real 

time compared to taking hours or tens of days 

on a PC. Post synthesis simulation and 

verification has been performed. The next task 

is to download and test the designs on an 

FPGA while running in real time. 
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