
Behavioural Simulation and Synthesis of
Biological Neuron Systems using VHDL

Julian A. Bailey, Peter R. Wilson, Andrew D. Brown
School of Electronics and Computer Science,

University of Southampton, UK
{jab05r,prw,adb}@ecs.soton.ac.uk

John Chad

School of Neuroscience,
University of Southampton, UK

J.E.Chad@soton.ac.uk

ABSTRACT

The investigation of neuron structures is an

incredibly difficult and complex task that

yields relatively low rewards in terms of

information from biological forms (either

animals or tissue). The structures and

connectivity of even the simplest invertebrates

are almost impossible to establish with

standard laboratory techniques, and even

when this is possible it is generally time

consuming, complex and expensive. Recent

work has shown how a simplified behavioural

approach to modelling neurons can allow

“virtual” experiments to be carried out that

map the behaviour of a simulated structure

onto a hypothetical biological one, with

correlation of behaviour rather than

underlying connectivity. The problems with

such approaches are numerous. The first is the

difficulty of simulating realistic aggregates

efficiently, the second is making sense of the

results and finally, the models often take days

to run therefore it would be advantageous to

have a model which can be synthesized onto

hardware. In this paper we present a

synthesizable VHDL implementation of

Neuron models that allow large aggregates to

be simulated. The models are demonstrated

using a post synthesis system level VHDL

model of the C. Elegans locomotory system.

1. INTRODUCTION

1.1. Biological Neurons

Neurons are body cells specialized for signal

transmission and signal processing. Figure 1

shows the typical structural characteristics of a

neuron. It has a cell body (or soma) and root-

like extensions called neurites. Amongst the

neurites, one major outgoing trunk is the axon,

and the others are dendrites. The signal

processing capabilities of a neuron is its ability

to vary its intrinsic electrical potential

(membrane potential) through special electro-

physical and chemical processes. A single

neuron receives signals from many other

neurons, (typically in order of 10,000 for

mammals) at specialized sites on the cell

body or on the dendrites, known as synapses.

Fig 1: Diagram of a generic neuron

Synapses receive signals from a pre-synaptic

neuron and alter the state of the postsynaptic

neuron (the receiver neuron) and eventually

trigger the generation of an electric pulse, the

action potential (a spike), in the postsynaptic

neuron. This action potential is initiated at the

rooting region of the axon, the axon-hillock,

and it subsequently travels along the axon

sending information signal to the other parts of

the nervous system.

1.2. Neuron Models

Models of neurons can be created at various

level of abstraction ranging from molecular

level to network level. The pioneering

Hodgkin–Huxley model [1] and other

compartmental models based on it [2-4] model

variation in cell membrane voltage using ion

channels kinetics. Models such as “Integrate

and Fire” are built with an assumption that the

timing of a spike is the information carrier and

not the shape of the spike [5-7].

An alternative approach is to develop highly

abstract neuron models encapsulating the

essential functionality of a neuron relevant for

network behaviour in order to develop

understanding of network population

dynamics. Binary neuron models (McCulloch

and Pitts [8]), the Perceptron Model

(Rosenblatt [9]) and the Spiking-rate model

[10] represent this end of the spectrum in

Dendrite

Soma

Axon

Hillock

Node of Ranvier

Schwam Cell

Axon

Presynaptic

terminal

Synapse

neuron modelling and they are widely used in

artificial neural networks.

0

40

-70

mV

Restig Potential

(Leaking Iron Channels)

Depolarization due to

sodium channels

Inactivation of sodium

channels & activation of

pottasium channels

closing of sodium and

potassium channels

Spike

Fig 2: Typical Action Potential

2. VHDL Neuron Library

The neuron is a complex entity, it receives

multiple inputs from synapses and although it

has a single output, this output can be mapped

to the inputs of many synapses.

Fig 3: Block diagram of neuron model

The diagram in figure 3 is an overview of the

different blocks in this model. The synapses

are in themselves separate entities, while the

threshold, oscillator and burst blocks are the

components which make up the neuron

models. To simplify and reduce the size the

neuron model it was decided to have two

different types. The first neuron model was

made up of a threshold and burst block, this

neuron is triggered by synaptic input.

The second neuron type was made up of an

oscillator and burst block, this neuron was to

be triggered periodically and is used to drive

network activity. The operation of each type of

neuron, the synapse and each components of

the system is to be described in further detail.

Simulations of each component are performed

and the desired operation is verified.

2.1. Neuron 1 (Activated by synapses)

 This is the core of all nervous system

models and behaves like real biological

neurons.The weightings from each of the

synapses are summed at the input by the

threshold block. If the total sums of all the

synaptic weightings are equal to or above the

excitatory threshold then the burst block is

told to fire. However, if the sum is equal to or

below the inhibitory threshold then the burst

block is told to cease firing.

 The burst block is effectively a timer and a

counter. The timer has the important job of

shaping the action potential, timing the “on”

period and refractory (mandatory minimum)

“off” period. The counter in this block is

responsible for counting the number of action

potentials fired in a burst. For example for a

single “on” message from the threshold block

a number of action potentials will be fired by

the burst block as defined by the parameter

BurstLength. If during a burst an “off” signal

is received from the threshold block then the

burst is truncated.

2.1.1. Neuron 1 VHDL Definition

 The entity definition for the neuron

component allows the user to specify generics

to tune the model, such as bit length for timers

and set other parameters for the model such as

threshold for excitation and inhibition.
port (

 signal Clock : in std_logic;

 signal nReset : in std_logic;

 signal nDisable : in std_logic;

 -- Threshold Block Signals

 signal SynWeightVector : in

 signed_vector((NumberSynapses-1)

 downto 0);

 -- Burst Block Signals

 signal APTime : unsigned((TimeRes - 1)

 downto 0);

 signal RefTime : unsigned((TimeRes - 1)

 downto 0);

 -- Axon Action Potential Signal

 signal Axon : out std_logic);

The entity port definition begins with three

control signals, Clock, nReset and nDisable.

nDisable behaves like a synchronous reset,

allowing certain neurons to be disabled. The

input from the synapses is defined as a vector

of signed 16 bit synaptic weights. The length

of the vector is specified by the generic

NumberSynapses. Configuration signals for

the Action potential time and refractory period

are defined next. These are unsigned bit

vectors of length specified by the generic

TimeRes. This allows the size of the internal

counters to be changed so logic is not wasted.

Finally the output of the Axon is defined.

2.1.2. Simulation of Neuron 1

 A Simulation was run to test the behaviour

of the Neuron model. As tested 32-bit length is

used for all counters. The action potential time

is set to 1ms and refractory period is 2ms. The

length of the burst is five.

Fig 4: Activation of Neuron Type 1

The figure 4 shows the Modelsim trace from

simulation of this type of neuron. Each white

vertical line is 1 ms of simulated time. The top

two traces are synaptic inputs while the bottom

trace is the output of the neuron.

At 1ms, the first synaptic input activates,

adding a synaptic weight of 3 to the neuron.

This pushes the neuron over its activation

threshold and the neuron fires. Each action

potential is 1 ms with a 2 ms gap before the

following action potential (refractory period).

Fig 5: Truncation of Burst

The figure 5 shows the Modelsim trace for

simulation of this type of neuron which is

truncated by inhibition. Firstly the neuron is

activated as before but after the third action

potential the second synapse is activated with

a synaptic weight of -3. This brings threshold

sum under the inhibition threshold and causes

the burst to be truncated after only 3 action

potentials instead of the full 5. These traces

show that the system is performing as desired.

2.2. Neuron 2 (Periodic activation)

The second type of neuron is one which is

activated by an internal oscillator. This allows

neurons to be included in models which drive

activity by providing a certain pattern of action

potentials. The oscillator is controlled by two

parameters, period and phase. The only other

component is a burst block which behaves

exactly the same as in Neuron type 1.

2.2.1. Neuron 2 Entity Definition

The entity definition for the neuron

component allows the user to specify generics

to tune the model, such as bit length for timers

and set other parameters for the model such as

threshold for excitation and inhibition.

port (

 signal Clock: in std_logic;

 signal nReset: in std_logic;

 signal nDisable: in std_logic;

 signal CountPhase: in std_logic;

-- Oscillator Block Parameters

 signal Period: in unsigned((OscResolution

 - 1) downto 0);

 signal Phase: in unsigned((OscResolution

 - 1) downto 0);

-- Burts Block Parameters

 signal APTime: unsigned((TimeRes - 1)

 downto 0);

 signal RefTime: unsigned((TimeRes - 1)

 downto 0);

-- Axon Action Potential Signal

 signal Axon : out std_logic);

The entity definition here is similar to that of

neuron 1 but there are some distinct

differences. The input signals for synapses

have been removed and have been replaced by

input signals for period and phase of the

oscillator. The sizes of these signals are

specified by the generic OscResolution.

Finally a control signal CountPhase has been

added to enable or disable the counters phase

offset reducing the overall logic.

2.2.2. Simulation of Neuron 2

Simulation was performed to test the

operation of Neuron 2. A 32-bit length was

used for all counters, action potential time was

1 ms and refractory period was 2 ms. The

phase offset was 2 ms and period was 16 ms.

This time the burst length was set to 3.

Fig 6: Operation of Neuron 2

Figure 6 shows the Modelsim trace from

simulation of this type of neuron. Each white

vertical line is 1 ms of simulated time. It is

clear that 2 ms after simulation begins the

neuron fires its first train of action potentials.

Each action potential is 1 ms long separated by

a 2 ms refractory period. Exactly 16 ms after

the first action potential was fired a second set

of three action potentials are fired, which

shows that the system is behaving as desired.

2.3. Synapse

The second of the core components of the

nervous system is the Synapse. It is through

synapses that neurons communicate with each

other. The synapse model is simpler compared

to the neuron model because it has a single

input and single output (where as the neuron

receives many inputs and transmit to many

other neurons).

The synapse consists of two arrays of timers.

A timer in the first array is activated upon

receipt of an action potential. This first array

of timers models the delay of the action

potential travelling down the axon and the

delay of the neurotransmitter crossing the

synapse. This combined delay is called Tdel.

Once a timer in the first array ends it triggers

two events. The first event is to increase the

output of the synapse wsyn by a predetermined

amount. The second is to start a timer in the

second array of timers. The function of this

group of timers is to ensure the variable wsyn is

changed for a certain duration, hence its name,

Tdur.

After a timer in the second array signals the

time Tdur has passed, the output wsyn is then

.decremented. It is possible that a second

action potential could activate the synapse

whilst already active. The inclusion of arrays

of timers allows for this. Successive

activations can be handled with minimal

handshake logic. In this case the output wsyn

would be increased again by the

predetermined amount if two or more

activation’s coincide. A more detailed

description is available in [10-12].

2.3.1. Synapse entity definition

The entity definition for the synapse

component allows the user to specify generics

to tune the model, such as bit length for timers

and set other parameters for the model such as

synaptic weighting.
port (

 signal Clock : in std_logic;

 signal nReset : in std_logic;

 signal nDisable : in std_logic;

 -- Input Signals

 signal Axon : in std_logic;

 -- Configuration Signals

 signal Tdel : unsigned((StackResDel

 - 1) downto 0);

 signal Tdur : unsigned((StackResDur

 - 1) downto 0);

 -- Output Signals

 signal SynWeight: out signed(15 downto

 0));

The three familiar control signals appear first

followed by the input signal from the pre-

synaptic axon. Two configuration signals Tdel

and Tdur are defined, each has an associated

generic which allows the user to tune the

length StackResDel and StackResDur. Finally

the output signal is a 16 bit signed value for

the synaptic weighting.

2.3.2. Simulation of the Synapse

Simulation was performed to test the

operation of the Synapse. All timers were

defined at 32-bit length and both the

delay/duration times were set to 1 ms. The

weighting increment was set to 1.0.

Fig 7: Operation of Synapse

The figure 7 shows the Modelsim trace from

simulation of the synapse. Each white vertical

line is 1 ms of simulated time.

After 1 ms a pulse arrives on the top trace

which represents action potentials arriving at

the synapse. After a delay of 1ms the output of

the synapse (bottom trace) is incremented by

1. This happens for each of the arriving pulses

so that the output reaches a value of 4. The

output is incremented for a duration of 1ms

before being decremented. This continues to

happen until the output returns to 0 and shows

that the model is behaving as designed.

3. VHDL Neuron Network Models

3.1. Introduction

VHDL is a powerful language and allows the

creation of standard sets of tools for the

creation of network designs. The Neuron and

Synapse models were compiled into a library

which allows the referencing each model

entity as components where the various model

parameters could be specified.

Connectivity is specified by defining the

various signals between neurons and synapses.

Outputs from neurons are connected to

synapses and synapses are connected to the

input of another neuron. This connectivity

makes it simple to generate networks.

3.2. C. Elegans Locomotory Model

The C. Elegans Locomotory Neuron System

is implemented using the VHDL library of

Neurons and Synapses described in the

previous section. The key element from a

systems perspective is that the model can be

reset and directionally controlled (allowing

interface to sensory neurons or a “higher

level” abstract model) and interfaced to

biologically realistic muscle models. The

interface is therefore completely defined using

a standard interface described in [11].

3.3. C. Elegans Locomotory System

C. Elegans is a free living nematode with

302 neurons which has a generation time of

about 3.5 days. The nematode can grow to a

length of 1.3mm long and a diameter of 80μm

if there is a sufficient supply of food available.

The locomotion of C.Elegans is achieved by

dorsal-ventral movement of the body which

produces a sinusoidal wave which propagates

along the length of the body. Body movements

are produced by four strips of muscle cells that

run in four quadrants between longitudinal

ridges inside the body cavity [13-15].

3.4. C Elegans VHDL Library

A C.Elegans locomotory model was

conceived in 2000 by Enric Claverol [10]

based on data from White et al [13]. There is

limited electrophysiological data available

about C. Elegans [16], therefore models of the

locomotory system are based upon a mixture

of anatomical data from White et al [13] and

analysis of video recordings of the animals

behaviour.

Fig 8:C. Elegans Locomotion Model

The diagram shown in Figure 8 was

generated by a specially designed user

interface developed in-house to allow

straightforward design of the networks for the

simulator without having to generate the

VHDL test bench manually.

The key is a visual aid to the function of each

type of neuron. Only six types are listed but

each type can be divided into either dorsal or

ventral subtypes.

It is a long winded process to type in the

definitions of each of the 86 neurons and 164

synapses. This can be simplified by identifying

a repeated sub-circuit in the system.

Fig 9: Locomotion Sub-Circuit

The locomotion sub-circuit is shown in the

above figure. It consists of only eight neurons.

In the VHDL design this circuit was given the

name Loco_Unit. Ten of these units are used

to construct the complete model.

Using this approach has the advantage that if

something if wrong with the loco_unit the one

change in the library changes all the units in

the design simultaneously. This loco_unit

forms the basis of the LibElegans VHDL

Library. The nematode was simulated using a

post-synthesis version of the C. Elegans

locomotion model. These results were

compared to results in previous work [10-12].

Fig 10: VHDL Simulation of C. Elegans Model

Figure 10 shows the waveform trace of the

electrical activity in the muscle cells. The trace

shown shows the waves of action potentials

propagating from the head to the tail on one

side of the worm and then on the other side

with a phase lag. Midway through simulation

the parameters of the model were changed in

the VHDL test bench and the worm reversed

direction with the muscle activity now

propagating in the opposite direction. Again

the parameters are switched to demonstrate the

ability of the model to cope with arbitrary

changes in direction. This behaviour agrees

with the activity shown in Claverol [10] and

Modi [12].

4. Issues with Synthesis

The synthesis of the C Elegans locomotion

model was a challenging process. The model

as originally designed consists of 86 neurons

and 164 synapses. Using figures based on the

Muscle

Forward Interneuron

Backward Interneuron

Cross Inhibition

Head/Tail Drivers

Locomotion Drivers

Key

Muscle

Forward Interneuron Backward Interneuron

Cross Inhibition

resources used by a single neuron and single

synapse in our previous work [11], this yielded

a resource usage of over 200,000 function

generators and 85,000 flip-flops. This meant

the design was too large to fit on all but the

largest FPGAs.Whilst the previous versions of

the libraries were synthesizable meaningful

designs were too large to be practically

synthesized. One issue was that all the neurons

in the previous version of the libraries had

Threshold, Burst and Oscillator blocks.

Consider the C Elegans Locomotion model,

six of the neurons need only an oscillator and

burst block, the rest only need threshold and

burst blocks. A reduction in wasted logic can

be achieved by defining two types of neurons,

those which can drive activity and those which

behave more like real neurons.

A further reduction in wasted logic was

achieved by allowing the sizes of all counters

to be defined by the user, instead of specifying

32-bit counters throughout the model for

modeling time delays. This saves plenty of

space when you consider only four 32-bit

counters are required in the C Elegans model

while most other counters are less than 12-bits

long. Finally two more simple optimizations

were made. Many of the blocks of the model

interpreted a zero value for a counter as a

indication that a block should be disabled.

Including a disable pin on the block reduced

the amount of logic required by the state

machine. Also using up counters instead of

down counters reduced the number of NOT

gates required by the design and so reduced

the logic overhead required by the counters.

The C Elegans design now requires 78,399

function generators and 56,766 flip-flops. This

is huge reduction in required logic thanks to

the optimizations.

5. Conclusion

A synthesizable neuron library has been

developed which allows the modelling of the

nervous systems of animals with simple

nervous systems. The library was tested using

the C Elegans locomotion system and the

results were compared against previous work.

The advantages of building such a library is

that is it possible to run accurate simulations

using the designs loaded on FPGAs in real

time compared to taking hours or tens of days

on a PC. Post synthesis simulation and

verification has been performed. The next task

is to download and test the designs on an

FPGA while running in real time.

6. References
[1] A. L. Hodgkin and A. F. Huxley, “A quantitative

description of membrane current and its application

to conduction and excitation in nerve”, Journal of

Physiology, Vol. 117, pp500-544, 1952.

[2] Rinzel and Rail W. “Transient response in a

dendritic neuron model for current injected at one

branch”, Biophysics Journal, Vol. 14, pp759-790,

1974.

[3] Rail W., “Core conductor theory and cable

properties of neurons.”, Handbook of Physiology.,

pp39-97. American Physiological Society, 1977.

[4] Rail W., “Electrophysiology of a dendritic model.“,

Biophysics. Journal., Vol. 2, pp145-167, 1962

[5] Christodoulou G., Bugmann G., and Clarkson T.G.

The temporal noisy-leaky integrator neuron model.

In Beale R. and Plumbley M.D., editors, Recent

advances in neural networks. Prentice Hall, 1993.

[6] Smith L.S. A one-dimensional frequency map

implemented using a network of integrate-and-fire

neurons. In Proceedings of the 8th International

Conference on Artificial Neural Networks, pages

991-996. Springer, 1998.

[7] Smith L.S., Nischwitz A., and Cairns D.E.

Synchronization of integrate-and-fire neurons with

delayed inhibitory lateral connections. In Marinaro

M. and Morasso P.G., editors, Proceedings of

ICANN94, pages 142-145. Springer-Verlag, 1994.

[8] McCulloch W.S. and Pitts W. A logical calculus of

the ideas immanent in nervous activity. Bull, of

Math. Biophysics, 5:115-133, 1943.

[9] Rosenblatt F. The perceptron: A probabilistic model

for information storage and organization in the

brain. Psychol. Rev., 65:384-408, 1958.

[10] Enric T. Claverol , “An event-driven approach to

biologically realistic simulation of neural

aggregates”, PhD thesis, University of Southampton,

September 2000

[11] Bailey J.A., Wilson P.R. Brown A.D. “Behavioural

simulation of biological neuron systems using

VHDL and VHDL-AMS”, IEEE Behavioural

Modeling and Simulation, Sept. 2007, San Jose,

USA.

[12] Modi S.S, “Design of SystemC Framework for

Simulation of Biological Neuron System”, MSc.

Report, University of Southampton, November 2003

[13] White J.G., Southgate E., Thomson J.N., and

Brenner S. “The structure of the nervous system of

Caenorhabditis elegans.” Phil. Trans. R. Soc. Lond.

/Biol],314:1-340, 1986.

[14] Wicks S.R. and Rankin C.H. “The integration of

antagonistic reflexes revealed by laser ablation of

identified neurons determines habituation kinetics of

the caenorhabditis elegans tap withdrawl

response.”, J. Comp. Physiol. A, 179(5):675-85,

1996

[15] Suzuki M., Tsuji T. Ohtake H. “A model of motor

control of the nematode C. Elegans with neuronal

circuits, Artificial Intelligence in Medcine.”, 35:75-

86, 2005

[16] Goodman M.B., Hall D.H., Avery L., Lockery

S.R.,”Active currents regulate sensitivity and

dynamic range in C. Elegans neurons”, Neuron,

20(4):763-72, 1998.

