
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Self-organising Agent Communities

for Autonomic Computing

by

Mariusz Jacyno

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

February 2010

http://www.soton.ac.uk
mailto:mj04r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Mariusz Jacyno

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:mj04r@ecs.soton.ac.uk

iv

Efficient resource management is one of key problems associated with large-scale dis-

tributed computational systems. Taking into account their increasing complexity, inher-

ent distribution and dynamism, such systems are required to adjust and adapt resources

market that is offered by them at run-time and with minimal cost. However, as observed

by major IT vendors such as IBM, SUN or HP, the very nature of such systems prevents

any reliable and efficient control over their functioning through human administration.

For this reason, autonomic system architectures capable of regulating their own function-

ing are suggested as the alternative solution to looming software complexity crisis. Here,

large-scale infrastructures are assumed to comprise myriads of autonomic elements, each

acting, learning or evolving separately in response to interactions in their local environ-

ments. The self-regulation of the whole system, in turn, becomes a product of local

adaptations and interactions between system elements.

Although many researchers suggest the application of multi-agent systems that are suit-

able for realising this vision, not much is known about regulatory mechanisms that are

capable to achieve efficient organisation within a system comprising a population of

locally and autonomously interacting agents.

To address this problem, the aim of the work presented in this thesis was to understand

how global system control can emerge out of such local interactions of individual system

elements and to develop decentralised decision control mechanisms that are capable to

employ this bottom-up self-organisation in order to preserve efficient resource manage-

ment in dynamic and unpredictable system functioning conditions. To do so, we have

identified the study of complex natural systems and their self-organising properties as an

area of research that may deliver novel control solutions within the context of autonomic

computing.

In such a setting, a central challenge for the construction of distributed computational

systems was to develop an engineering methodology that can exploit self-organising prin-

ciples observed in natural systems. This, in particular, required to identify conditions

and local mechanisms that give rise to useful self-organisation of interacting elements

into structures that support required system functionality. To achieve this, we proposed

an autonomic system model exploiting self-organising algorithms and its thermodynamic

interpretation, providing a general understanding of self-organising processes that need

to be taken into account within artificial systems exploiting self-organisation.

Contents

Acknowledgements xxv

1 Introduction 1

1.1 Architecture of Modern IT Systems . 2

1.1.1 Services . 3

1.1.2 Service Registries . 3

1.1.3 Service Configuration Through Switching 4

1.1.4 Power Management . 4

1.1.5 Service Provisioning . 4

1.1.6 Physical Limitations . 5

1.2 IT System Management Problems . 5

1.3 The Origins of Management Complexity 7

1.3.1 System Administration . 8

1.3.2 Functioning Conditions . 8

1.3.2.1 Interdependence . 8

1.3.2.2 Physical Constraints . 9

1.3.2.3 Openness . 10

1.4 Autonomic Computing vision . 11

1.5 Aims of work . 12

1.5.1 Research Contributions . 13

1.5.1.1 Decentralised Autonomic System Model 13

1.5.1.2 Self-organising Agent Communities 13

1.5.1.3 Importance of Spatial Embeddedness for Self-organisation 14

1.5.1.4 Thermodynamics in Computational System 14

1.5.1.5 System Stabilisation Through Positive and Negative Feed-
back . 15

1.6 Overview of Document . 15

2 Issues in Complexity Studies 17

2.1 Introduction . 17

2.2 Complex Systems . 17

2.2.1 What is complexity? . 17

2.2.2 Characteristics of Complex Systems 18

2.2.2.1 Distinction Between Micro and Macro Level in Complex
System . 18

2.2.2.2 Hierarchical Structuring of Complex Systems 18

2.2.2.3 Emergent Behaviour . 19

v

vi CONTENTS

2.3 Openness . 20

2.3.1 Consequences of Openness . 20

2.3.1.1 Openness to Information 20

2.3.1.2 Openness to Structural Modification 21

2.3.2 Characteristics of Open Systems 22

2.3.2.1 Embedded Computation 22

2.3.2.2 Dynamics . 22

2.4 Self-organisation . 22

2.4.1 Characteristics of Self-organising Systems 23

2.4.1.1 Global Order From Local Interactions 23

2.4.1.2 Non-linearity and Feedback Loops 23

2.4.1.3 Distributed Control, Robustness and Resilience 24

2.4.2 Self-organisation Process Overview 24

2.4.2.1 Self-organisation Processes 24

2.4.2.2 Requirements for Self-organisation 25

2.4.3 Thermodynamic Account of Self-organisation 25

2.5 Thermodynamics of Self-organsation . 26

2.5.1 Thermodynamics of Self-organisation 26

2.5.2 Displacement from Equilibrium . 27

2.5.3 Energy Transfer . 27

2.5.4 Gradient Dissipation . 28

2.5.5 Work . 29

2.5.6 Information . 29

2.5.7 Thermodynamics Beyond Physics 30

2.5.8 Thermodynamic Account of Self-organisation in Computational
Systems . 31

2.5.8.1 Entropy in a Two-agent System 31

2.5.8.2 A Full Population Model 32

2.6 Discussion . 33

3 Computational Complex Systems 35

3.1 Autonomic Computing . 35

3.1.1 Aims of Autonomic Computing . 36

3.1.2 Autonomic System Architecture 37

3.1.3 Autonomic Computing Challenges 38

3.2 Multi-agent Systems . 38

3.2.1 General architecture of multi-agent systems 39

3.2.2 Decentralised Control and Autonomy 39

3.2.3 Coordination Mechanisms . 40

3.2.3.1 Controlling the Degree of Interaction Between Agents . . 40

3.2.3.2 Computational Organisations 40

3.2.3.3 Coordination Through Environment 41

3.2.4 Multi-agent Systems in Practice 41

3.2.4.1 Scalability . 41

3.2.4.2 Dynamism . 42

3.2.4.3 Top-down Control and Autonomy 42

3.3 Computational Complex Systems Review 42

CONTENTS vii

3.3.1 Cellular Automata . 43

3.3.1.1 Architecture . 43

3.3.1.2 Computation in CA . 43

3.3.1.3 Mechanisms for Designing CA to Perform Computation . 43

3.3.2 Artificial Neural Networks . 44

3.3.2.1 Architecture . 45

3.3.2.2 Computation in Artificial Neural Networks 45

3.3.2.3 Mechanisms for Achieving Computation Relying on Ar-
tificial Neural Networks 46

3.3.3 Swarming . 46

3.3.3.1 Decentralised Data Clustering 47

3.3.3.2 Analysis of Self-organisation in Swarming Systems 48

3.3.3.3 Decentralised Graph Colouring 49

3.3.3.4 Resource Management Through Biologically Inspired Di-
vision of Labour . 49

3.4 Discussion . 51

3.4.1 Information Flows . 51

3.4.1.1 Information Perception 51

3.4.1.2 Information Processing 52

3.4.1.3 Information Propagation 52

3.4.2 Bottom-up Information Flow Regulation 53

3.4.2.1 Dynamic Interaction Topologies 53

3.4.2.2 Local Regulatory Mechanisms 53

3.5 Thermodynamics of Self-organisation . 54

4 Modelling an Autonomic System 57

4.1 Introduction . 57

4.2 Load-balancing Within a Minimalistic Multi-agent System Model 58

4.3 Simulation . 59

4.3.1 Model Design . 59

4.3.2 Consumer Strategies . 61

4.4 Results . 63

4.4.1 System Size . 63

4.4.2 System Load . 64

4.4.3 Consumer Heterogeneity . 66

4.4.4 Service Reliability . 67

4.5 Thermodynamic Interpretation . 68

4.5.1 Equilibrium, Constraint and Work 70

4.5.1.1 Equilibrium . 70

4.5.1.2 Constraint . 70

4.5.1.3 Work . 71

4.5.2 Decentralised Control Interpretation 71

4.5.2.1 Measures . 72

4.5.2.2 Experiment 1. Influence of System Strategies 73

4.5.2.3 Experiment 2. Influence of System Heterogeneity 74

4.5.2.4 Hypotheses Evaluation 75

4.6 Discussion . 76

viii CONTENTS

5 The Model 77

5.1 Introduction . 77

5.2 Model Features . 77

5.3 Decentralised Autonomic System Model 79

5.3.1 Model for Service Consumers . 84

5.3.2 Model for Service Providers . 87

5.3.3 Information Exchange Mechanisms 92

5.3.3.1 Communicating knowledge to providers 94

5.3.3.2 Obtaining Knowledge from Providers 94

5.3.3.3 Tuple Integration . 95

5.3.3.4 Information Merge for an Agent with a Default Knowl-
edge Model . 95

5.3.3.5 Information Merge for a Non-default Knowledge Model . 96

5.3.3.6 Information Outflow Regulatory Mechanism 97

5.3.3.7 Information Inflow Regulatory Mechanism 98

5.4 Experimental Setup . 99

5.4.1 Consumer Turnover Mechanism . 99

5.4.2 Service Supply Setup . 100

5.4.3 Service Demand Setup . 101

5.4.4 Agent Strategies Setup . 102

5.4.5 System Constants and Parameters 104

5.4.5.1 System Constants . 104

5.4.5.2 System Parameters . 104

5.5 System Behaviour Analysis Measures . 104

5.5.1 System Throughput . 104

5.5.2 Agent Communities . 105

5.5.2.1 Provider constraint measure 107

6 Load Balancing 109

6.1 Introduction . 109

6.2 Load-balancing . 111

6.2.1 The Load Balancing Problem . 111

6.2.2 Load Balancing Performance Measures 113

6.3 Consumer Agent Turnover . 114

6.4 Consumer Agent Communities . 116

6.5 Impact of Communities on Individual Performance 120

6.6 Conclusions and Summary . 122

7 Adaptive Service Provisioning 125

7.1 Introduction . 125

7.2 Adaptive Service Provisioning Problem . 128

7.3 Adaptive Service Provisioning in Open System 131

7.3.1 Resource Market Adaptation During Consumer Turnover 132

7.3.2 Consumer Agent Communities . 134

7.4 Adaptive Service Provisioning with Discrete Environmental Change . . . 135

7.4.1 Resource Market Adaptation in Discretely Changing Environment 138

7.4.2 Consumer Agent Communities . 141

CONTENTS ix

7.5 Adaptive Service Provisioning with Continuous Environmental Change . . 142

7.5.1 Resource Market Adaptation in Continuously Changing Environ-
ment . 144

7.5.2 Consumer Agent Communities . 147

7.6 Conclusions . 148

8 Power Management 153

8.1 Introduction . 153

8.2 Power Management . 156

8.2.1 Power Management Problem . 156

8.2.2 Extended Model for Service Providers 157

8.2.3 Power Management Efficiency Analysis Measures 159

8.2.3.1 Total On-line Resources Capacity 159

8.2.3.2 Available On-line Resources Capacity 159

8.3 Power Management with Discrete Environmental Change 160

8.3.1 On-line Resource Market Adaptation in Discretely Changing En-
vironment . 161

8.3.2 Consumer Agent Communities . 164

8.4 Power Management with Continuous Environmental Change 165

8.4.1 On-line Resource Market Adaptation in Continuously Changing
Environment . 168

8.4.2 Consumer Agent Communities . 172

8.5 Conclusions . 172

8.6 Summary . 174

9 Thermodynamic Interpretation 177

9.1 Introduction . 177

9.2 Design Principles . 178

9.2.1 Conditions for Self-organisation . 179

9.2.1.1 Openness and energy flow 180

9.2.1.2 Agitation . 181

9.2.1.3 Spatial Embeddedness . 183

9.2.1.4 Gradient Following . 184

9.2.2 Mechanisms for Self-organisation 186

9.2.2.1 Interactions . 187

9.2.2.2 Agent Co-adaptation Through Coupling 187

9.2.2.3 Community Formation Through Positive Feedback 188

9.2.2.4 Community Stabilisaton Through Negative Feedback . . 192

9.3 Thermodynamic Interpretation . 195

9.3.1 Autonomic system self-organisation process overview 195

9.3.2 Agent Communities as Computational Thermodynamic Engines . 198

9.3.2.1 Mechanical thermodynamic engine 198

9.3.2.2 Organic thermodynamic engine 200

9.3.2.3 Computational thermodynamic engine 201

9.4 Conclusions . 205

10 Conclusions and Future Work 209

10.1 Thesis Summary . 209

x CONTENTS

10.2 Research Contributions . 211

10.2.1 Decentralised Autonomic System Model 212

10.2.2 Self-organising Agent Communities 212

10.2.3 Importance of Spatial Embeddedness for Self-organisation 212

10.2.4 Thermodynamics in Computational System 213

10.2.5 System stabilisation through positive and negative feedback 213

10.3 Limitations . 214

10.3.1 Model realism . 214

10.3.2 Thermodynamic Work-cycle . 214

10.3.3 Formal Models for Maximal System Efficiency 215

10.3.4 Model Complexity . 215

10.4 Future Work . 215

10.4.1 Towards Complex Computational Ecologies 216

10.4.2 Identifying Thermodynamic Work-cycles 216

10.5 Conclusions . 217

Appendix 1Simulator design . 218

List of Figures

2.1 Representation of an open system . 21

2.2 A glass of liquid at temperature T1 is placed in a room at temperature
T2, where T1 > T2. The disequilibrium produces a field potential that
spontaneously drives a flow of energy in the form of heat, −dQ1, from
the glass to the room so as to drain the potential until it is minimized
(the entropy is maximized). At this point thermodynamic equilibrium
is reached and all flows stop. The expression −dQ1 = dQ2 refers to
conservation of energy in that the flow of heat from the glass equals the
flow of heat into the room. 28

4.1 The impact of system size on global (left) and local (right) system costs.
Left: mean system cost for representative runs of four strategies, ∅ (empty
circle), P (solid circle), R (empty rectangle) and RP (solid rectangle),
where a dotted line (C∗) corresponds to the optimal cost (in each case
consumer demand matches service provision such that UN : SN = 1 : 2).
Right: mean workflow completion costs for representative runs of systems
of 540 components (UN = 180, US = 360) for three workflows, W1, W2

and W3, where dotted lines (C∗(W1), C∗(W2), and C∗(W3)) correspond
to the optimal costs for each workflow. In each case TN = 400 seconds. . . 62

4.2 Relation between mean system cost and system load for agents relying
on R (left) and RP (right). Three levels of system load are represented:
L = 1 (circle), L = 2 (box), L = 3 (rectangle). The dotted line (C∗)
corresponds to optimal system cost. In each case, SN = 240, while UN is
varied from 120 through 360. 64

4.3 Mean workflow completion costs for representative runs with R and RP

under increased system load (L = 3). Dotted lines represent optimal
costs for each workflow. UN = 360, SN = 240, TN = 400 seconds. 64

4.4 Mean workflow completion costs for agents relying on R (left) and RP

(right) where H = 4. Within each workflow type, four subclasses
are identified in order of increasing capacity requirement (s1, s2, s3, s4).
Dotted lines correspond to the optimal cost for each workflow group.
UN = 180, SN = 360, TN = 400 seconds. 65

4.5 Relation between mean system cost and degree of resource failure for
consumers relying onR (solid line) andRP (dotted line). Initially, UN =
180, SN = 360. From the 40th second, one randomly selected resource
fails permanently each second. Symbols indicate the mean system cost
experienced at an equivalent constant load, calculated over a window
300s < t < 400s, for load values drawn from {1, 2, 3, 4, 5, 6, 12}. 68

xi

xii LIST OF FIGURES

4.6 Left figure illustrates correlation between the level of system constraint
(κ) and its efficiency (e) for three model configurations: R (rectangles),
P (circles) and RP (triangles). Right figure shows the level of constraint
(rectangles) and the system efficiency (circles) for RP model configu-
ration during system reliability experiments. UN = 180, SN = 360,
TN = 400 seconds, H = 1. 74

4.7 Relation between system efficiency (e) and constraint (κ) for four differ-
ent heterogeneity system configurations (H = 1, 2, 3, 4) for the system
employing RP strategists (left) and R strategists (right). In all experi-
ments UN = 180, SN = 360, TN = 400 seconds. 74

5.1 An overview of the resource management organisation process. Two sys-
tem states are represented: disorganised (on the left) and organised (on
the right), where users (U) impose a demand for different types of re-
sources (service requirement) on resource providers. The initially ineffi-
cient configuration (left), represents the case in which providers have no
knowledge of what services are in demand, and consumers don’t know
which providers offer their desired services. The final, stable organisation
(right), in which service demand is satisfied by local supply, emerges from
limited information exchange between consumers and providers regarding
service availability. 81

5.2 An example of autonomic system functioning. A number of tasks (T) are
issued by infrastructure users (U) to autonomic system computational
nodes (N). When a task is intercepted by this node, a new consumer
agent (C) is spawned within the system and co-located with the provider
managing such node. 82

5.3 The diagram showing sequential steps performed by a consumer agent
during information exchange activities. Actions are ordered according
to their occurrence within the scope of a single allocation cycle and are
repeated in the same order in the following allocations. 93

5.4 Information exchange between consumer agents. Two providers (P1 and
P2) are represented with co-located with them consumers: (C5, C6) ∈ P1
and (C1, C2, C3) ∈ P2. Consumer C5 decides to communicate informa-
tion to provider P2. During the communication act, the agent sends its
personal registry content and the provider name it is co-located with in
the form of a tuple I = 〈Rc, αp,Ω〉. Provider P2 propagates received in
this form information to co-located with it consumers (C1, C2, C3) (step
2). During the communication act, the consumer additionally signals to
the provider service type (St) it is currently interested in allocation. This
information is used by the provider to update its local demand model. . 95

5.5 Function regulating inflow of foreign information to consumer agents. In
here the value of threshold T , below which consumer will accept infor-
mation from the offering it provider is a function of consumer’s stress
(Ωc). 98

5.6 Capacity levels of deployed within the system providers based on expo-
nential probability distribution. 100

5.7 Capacity levels demanded by 250 tasks introduced to the system. The
distribution of task capacities is drawn from an exponential probability
distribution. 100

LIST OF FIGURES xiii

5.8 Distribution of task time allocation deadlines (Sl) drawn from an expo-
nential probability distribution. 101

6.1 Figure illustrates mean system throughput as a function of increasing con-
sumer agent turnover probability for three system model configurations:
AF model (line with rectangles), NF model (line with circles) and FF
model (line with triangles). 114

6.2 Number of rejected allocative requests as a function of increasing con-
sumer agent turnover probability for three system model configurations:
AF model (line with rectangles), NF model (line with circles) and FF
model (line with triangles). 114

6.3 Mean number of extracted communities as a function of increasing con-
sumer agent turnover probability for two system model configurations:
AF model (line with rectangles) and FF model (line with triangles). . . . 115

6.4 Mean community homogeneity as a function of increasing consumer agent
turnover probability for two system model configurations: AF model (line
with rectangles) and FF model (line with triangles). 115

6.5 Correctly organised consumer agent communities extracted fromAF model
for conditions where consumer turnover probability is equal zero. Edges
between nodes represent information exchanges between consumer agents
where node shapes correspond to specific (denoted by node label) service
type the consumer is required to allocate. The size of each node indicates
the amount of resource capacity that is currently demanded by the task. . 117

6.6 Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal zero. Edges be-
tween nodes represent information exchanges between consumer agents
where node shapes correspond to specific (denoted by node label) service
type the consumer is required to allocate. The size of each node indicates
the amount of resource capacity that is currently demanded by the task. . 118

6.7 Correctly organised consumer agent communities extracted fromAF model
for conditions where consumer turnover probability is equal 0.1. Edges
between nodes represent information exchanges between consumer agents
where node shapes correspond to specific (denoted by node label) service
type the consumer is required to allocate. The size of each node indicates
the amount of resource capacity that is currently demanded by the task. . 118

6.8 Mean community coverage as a function of increasing consumer agent
turnover probability for two system model configurations: AF model (line
with rectangles) and FF model (line with triangles). 119

6.9 Provider evaluation scores kept within local registries of consumer agents
from: AF model (line with rectangles), FF model (line with triangles)
and NF model (line with circles). 121

7.1 Three classes of control organisation: a) centralised control, b) distributed
control reliant on consensual, up-to-date, global information, and c) fully
decentralised control. Service providers and consumers are represented
by small circles, central executives or central repositories by large circles.
Agents may store information (lozenges) and/or execute co-allocation al-
gorithms (brains). Dotted lines connote information exchange, whereas
dashed lines connote the pairing of services and resources achieved by the
co-allocation process. 126

xiv LIST OF FIGURES

7.2 Mean system throughput as a function of increasing consumer agent
turnover. Three model configurations are presented: AF (line with rect-
angles), NF (line with circles) and FF (line with triangles). 132

7.3 Mean number of rejected consumer allocation queries for three model
configurations: AF (line with rectangles), NF (line with circles) and FF
(line with triangles). 132

7.4 Mean number of extracted communities as a function of increasing con-
sumer agent turnover probability for two system model configurations:
AF model (line with rectangles) and FF model (line with triangles). . . . 133

7.5 Mean community homogeneity as a function of increasing consumer agent
turnover probability for two system model configurations: AF model (line
with rectangles) and FF model (line with triangles). 133

7.6 Mean community coverage as a function of increasing consumer agent
turnover probability for two system model configurations: AF model (line
with rectangles) and NF model (line with triangles). 134

7.7 Correctly organised consumer agent communities extracted fromAF model
for conditions where consumer turnover probability is equal zero (χ = 0).
Edges between nodes represent information exchanges between consumer
agents where node shapes correspond to specific (denoted by node label)
service type the consumer is required to allocate. The size of each node
indicates the amount of resource capacity that is currently demanded by
the task. 135

7.8 Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal zero (χ = 0).
Edges between nodes represent information exchanges between consumer
agents where node shapes correspond to specific (denoted by node label)
service type the consumer is required to allocate. The size of each node
indicates the amount of resource capacity that is currently demanded by
the task. 136

7.9 Correctly organised consumer agent communities extracted fromAF model
for conditions where consumer turnover probability is equal 0.15 (χ =
0.15). Edges between nodes represent information exchanges between
consumer agents where node shapes correspond to specific service type
the consumer is required to allocate. The size of each node indicates the
amount of resource capacity that is currently demanded by the task. . . . 137

7.10 Figure illustrates step function according to which demand for a number
of unique service types (represented on Y axis) undergoes rapid change
at simulation periods indicated on X axis. 137

7.11 Mean system throughput as a function of simulation time for AF model
(rectangles), NF model (circles) and FF model (triangles). For all models
consumer turnover probability is set to zero (χ = 0). 138

7.12 Mean system throughput as a function of simulation time for AF model
(rectangles), NF model (circles) and FF model (triangles). For all models
consumer turnover probability is set to 0.1 (χ = 0.1). 138

7.13 Mean system throughput as a function of increasing consumer agent
turnover. Three model configurations are presented: AF (solid line with
rectangles), NF (dotted line with circles) and FF (dashed line with tri-
angles). 139

LIST OF FIGURES xv

7.14 Mean number of rejected consumer allocation queries for three model
configurations: AF (solid line with rectangles), NF (dotted line with
circles) and FF (dashed line with triangles). 139

7.15 Mean number of extracted communities as a function of increasing con-
sumer agent turnover probability for two system model configurations:
AF model (line with rectangles) and FF model (line with triangles). . . . 139

7.16 Mean community homogeneity as a function of increasing consumer agent
turnover probability for two system model configurations: AF model (line
with rectangles) and FF model (line with triangles). 139

7.17 Correctly organised consumer agent communities extracted fromAF model
for conditions where consumer turnover probability is equal zero (χ = 0)
and there exists demand for four unique service types. Edges between
nodes represent information exchanges between consumer agents where
node shapes correspond to specific (denoted by node label) service type
the consumer is required to allocate. The size of each node indicates the
amount of resource capacity that is currently demanded by the task. . . . 140

7.18 Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal zero (χ = 0)
and there exists demand for four unique service types. Edges between
nodes represent information exchanges between consumer agents where
node shapes correspond to specific (denoted by node label) service type
the consumer is required to allocate. The size of each node indicates the
amount of resource capacity that is currently demanded by the task. . . . 141

7.19 Correctly organised consumer agent communities extracted fromAF model
for conditions where consumer turnover probability is equal 0.1 (χ = 0.1)
and there exists demand for four unique service types. Edges between
nodes represent information exchanges between consumer agents where
node shapes correspond to specific service type the consumer is required
to allocate. The size of each node indicates the amount of resource ca-
pacity that is currently demanded by the task. 142

7.20 Figure illustrates sinusoidal function according to which demand for the
subset of service types in phase (dotted line) and service types in the anti-
phase (solid line) increases proportionately to the probability defined on
Y axis. In here, the function period is set to Ξ = 4.4 where the maximum
probability value the function achieves is Θ = 0.03. 143

7.21 Demand change for d1 = {A,B,C,D} services subset (dotted line) and
corresponding supply of resources constituting s1 subset for AF model
configuration. Figures, in a clockwise direction (starting from a top left
one), illustrate demand-supply match for following sinusoidal function
periods Ξ ∈ {1.1, 2.2, 4.4, 8.8}. In all experiments the maximum proba-
bility of consumer changing their service type preferences is equal to 0.03
(Θ = 0.03). 144

7.22 Demand change for d1 = {A,B,C,D} services subset (dotted line) and
corresponding supply of resources constituting s1 subset for NF model
configuration. Figures, in a clockwise direction (starting from a top left
one) illustrate demand-supply match for following sinusoidal function pe-
riods Ξ ∈ {1.1, 2.2, 4.4, 8.8}. In all experiments the maximum probabil-
ity of consumer changing their service type preferences is equal to 0.03
(Θ = 0.03). 144

xvi LIST OF FIGURES

7.23 Demand change for s1 = {A,B,C,D} services subset (dotted line) and
corresponding supply of resources constituting s1 subset for AF model
configuration. Figures, in a clockwise direction (starting from a top
left one), illustrate demand-supply match for following consumer agent
turnover probabilities: χ ∈ {0.0, 0.1, 0.2, 0.3}. In all experiments the the
sinusoidal function period Ξ remains set to 2.2 (Ξ = 2.2). 145

7.24 Demand change for s1 = {A,B,C,D} services subset (dotted line) and
corresponding supply of resources constituting s1 subset for NF model
configuration. Figures, in a clockwise direction (starting from a top
left one), illustrate demand-supply match for following consumer agent
turnover probabilities: χ ∈ {0.0, 0.1, 0.2, 0.3}. In all experiments the the
sinusoidal function period Ξ remains set to 2.2 (Ξ = 2.2). 145

7.25 Mean system throughput as a function of changing sinusoidal demand
function period (Ξ) depicted on X axis. Results summarise performance
of the three model configurations: AF (solid rectangles), NF (solid cir-
cles) and FF (solid triangles). In all experiments Θ = 0.03 and chi = 0.1. 146

7.26 Mean system throughput as a function of consumer turnover probability
(χ). Results summarise performance of the three model configurations:
AF (solid rectangles), NF (solid circles) and FF (solid triangles). In all
experiments Ξ = 2.2 and Θ = 0.03. 146

7.27 Mean number of extracted communities as a function of increasing con-
sumer agent turnover probability for two system model configurations:
AF model (line with rectangles) and FF model (line with triangles). . . . 147

7.28 Mean community homogeneity as a function of increasing consumer agent
turnover probability for two system model configurations: AF model (line
with rectangles) and FF model (line with triangles). 147

7.29 Correctly organised consumer agent communities extracted fromAF model
for conditions where consumer turnover probability is equal zero (χ = 0)
and there exists demand for four unique service types. Edges between
nodes represent information exchanges between consumer agents where
node shapes correspond to specific (denoted by node label) service type
the consumer is required to allocate. The size of each node indicates the
amount of resource capacity that is currently demanded by the task. . . . 148

7.30 Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal zero (χ = 0)
and there exists demand for four unique service types. Edges between
nodes represent information exchanges between consumer agents where
node shapes correspond to specific (denoted by node label) service type
the consumer is required to allocate. The size of each node indicates the
amount of resource capacity that is currently demanded by the task. . . . 149

7.31 Correctly organised consumer agent communities extracted fromAF model
for conditions where consumer turnover probability is equal 0.1 (χ = 0.1)
and there exists demand for four unique service types. Edges between
nodes represent information exchanges between consumer agents where
node shapes correspond to specific service type the consumer is required
to allocate. The size of each node indicates the amount of resource ca-
pacity that is currently demanded by the task. 150

LIST OF FIGURES xvii

7.32 Provider evaluation scores kept within local registries of consumer agents
for: AF model (line with rectangles), FF model (line with circles) and
NF model (line with triangles) for conditions in which consumer turnover
probability equals 0.1 (χ = 0.1) . 151

8.1 Figure illustrates the demand intensity step function according to which
the demand level (represented on Y axis) for system resources undergoes
rapid change at simulation periods indicated on X axis. Here, the value of
1 on the Y axis indicates conditions at which demand-supply proportion
is equal and the system operates at its full capacity. 160

8.2 Figure illustrates the total amount of capacity demanded by consumer
agents (empty circles), available on-line capacity offered by provider agents
(solid circles) and total on-line capacity (triangles) for the AF model
configuration in conditions where system is open and consumer turnover
probability equals 0.1 (χ = 0.1) . 161

8.3 Figure illustrates the total amount of capacity demanded by consumer
agents (empty circles), available on-line capacity offered by provider agents
(solid circles) and total on-line capacity (triangles) for the NF model
configuration in conditions where system is open and consumer turnover
probability equals 0.1 (χ = 0.1). 161

8.4 Mean number of rejected consumer allocation queries as a function of
simulation time for two model configurations: AF (solid line) and NF
(dotted line). Both models are run in conditions where system is open
and consumer turnover probability equals 0.1 (χ = 0.1). 162

8.5 Mean number of rejected consumer allocation queries for three model
configurations: AF (line with rectangles), NF (line with circles) and FF
(line with triangles). 162

8.6 Mean system throughput as a function of increasing consumer agent
turnover. Three model configurations are presented: AF (line with rect-
angles), NF (line with circles) and FF (line with triangles). 163

8.7 Power management efficiency for three model configurations: AF (line
with rectangles), NF (line with circles) and FF (line with triangles).
Lines illustrate percentage of energy that has been saved by provider
agents that moved into off-line state. 163

8.8 Mean number of extracted communities as a function of increasing con-
sumer agent turnover probability for two system model configurations:
AF model (line with rectangles) and FF model (line with triangles). . . . 165

8.9 Mean community homogeneity as a function of increasing consumer agent
turnover probability for two system model configurations: AF model (line
with rectangles) and FF model (line with triangles). 165

8.10 Correctly organised consumer agent communities extracted fromAF model
for conditions where consumer turnover probability is equal 0.1 (χ = 0.1).
Edges between nodes represent information exchanges between consumer
agents where node shapes correspond to specific service type the con-
sumer is required to allocate. The size of each node indicates the amount
of resource capacity that is currently demanded by the task. 166

xviii LIST OF FIGURES

8.11 Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal 0.1 (χ = 0.1).
Edges between nodes represent information exchanges between consumer
agents where node shapes correspond to specific (denoted by node label)
service type the consumer is required to allocate. The size of each node
indicates the amount of resource capacity that is currently demanded by
the task. 167

8.12 Figure illustrates sinusoidal function according to which demand intensity
within the system varies proportionately to the probability defined on Y
axis. Here, the function period is set to Ξ = 2.2 where the maximum
probability value the function achieves is Θ = 0.03. 167

8.13 Figures (organised in a clockwise manner, starting from a top-left cor-
ner) illustrate power management efficiency for AF model for model
configuration where sinusoidal function period (Ξ) has following values:
1.1, 2.2, 4.4, 8.8. Each figure illustrates the total amount of capacity de-
manded by consumer agents (dotted line), available on-line capacity of-
fered by provider agents (solid line) and the total on-line capacity (bold
dashed line). All results are obtained from open system model where
consumer turnover probability equals 0.1 (χ = 0.1) 169

8.14 Figures (organised in a clockwise manner, starting from a top-left cor-
ner) illustrate power management efficiency for NF model for model
configuration where sinusoidal function period (Ξ) has following values:
1.1, 2.2, 4.4, 8.8. Each figure illustrates the total amount of capacity de-
manded by consumer agents (dotted line), available on-line capacity of-
fered by provider agents (solid line) and the total on-line capacity (bold
dashed line). All results are obtained from open system model where
consumer turnover probability equals 0.1 (χ = 0.1) 169

8.15 Mean system throughput as a function of changing sinusoidal demand
function period (Ξ). Results summarise performance of three model con-
figurations: AF (rectangles), NF (circles) and FF (triangles). In all
experiments the maximum consumer turnover probability is set to 0.1
(χ = 0.1). 169

8.16 Percentage of saved energy by providers in off-line mode (as compared to
the system configuration where all providers are on-line) as a function of
increasing sinusoidal function period (Ξ). Results summarise performance
of three model configurations: AF (rectangles), NF (circles) and FF (tri-
angles). In all experiments the maximum consumer turnover probability
is set to 0.1 (χ = 0.1). 169

8.17 Figures (organised in a clockwise manner, starting from a top-left corner)
illustrate power management efficiency for AF model for model config-
uration where consumer turnover probability (χ) has following values:
0.0, 0.1, 0.2, 0.3. Each figure illustrates the total amount of capacity de-
manded by consumer agents (dotted line), available on-line capacity of-
fered by provider agents (solid line) and the total on-line capacity (bold
dashed line). All results are obtained from open system model where
sinusoidal function period is set to 4.4 (Ξ = 4.4). 171

LIST OF FIGURES xix

8.18 Figures (organised in a clockwise manner, starting from a top-left corner)
illustrate power management efficiency for NF model for model config-
uration where consumer turnover probability (χ) has following values:
0.0, 0.1, 0.2, 0.3. Each figure illustrates the total amount of capacity de-
manded by consumer agents (dotted line), available on-line capacity of-
fered by provider agents (solid line) and the total on-line capacity (bold
dashed line). All results are obtained from open system model where
sinusoidal function period is set to 4.4 (Ξ = 4.4). 171

8.19 Mean system throughput as a function of increasing consumer turnover
probability (χ). Results summarise performance of three model configu-
rations: AF (rectangles), NF (circles) and FF (triangles). In all experi-
ments sinusoidal function period is set to 4.4 (Ξ = 4.4). 171

8.20 Percentage of saved energy by providers in off-line mode (as compared to
the system configuration where all providers are on-line) as a function of
increasing consumer turnover probability (χ). Results summarise perfor-
mance of three model configurations: AF (rectangles), NF (circles) and
FF (triangles). In all experiments sinusoidal function period is set to 4.4
(Ξ = 4.4). 171

8.21 Mean community homogeneity for AF model configuration (solid line)
and FF model configuration (dotted line) as a function of increasing
consumer turnover (χ). In all experiments the value of sinusoidal function
period is equal to 4.4 (Ξ = 4.4). 172

8.22 Mean community homogeneity for AF model configuration (solid line)
and FF model configuration (dotted line) as a function of increasing
consumer agent turnover probability (Θ). In all experiments the value of
sinusoidal function period is equal to 4.4 (Ξ = 4.4). 172

8.23 Correctly organised consumer agent communities extracted fromAF model
for conditions where consumer turnover probability is equal 0.1 (χ = 0.1).
Edges between nodes represent information exchanges between consumer
agents where node shapes correspond to specific service type the con-
sumer is required to allocate. The size of each node indicates the amount
of resource capacity that is currently demanded by the task. 173

8.24 Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal 0.1 (χ = 0.1).
Edges between nodes represent information exchanges between consumer
agents where node shapes correspond to specific (denoted by node label)
service type the consumer is required to allocate. The size of each node
indicates the amount of resource capacity that is currently demanded by
the task. 174

9.1 Self-organisation in natural open systems arises as a result of following
conditions: openness, agitation, spatial embeddedness and gradient fol-
lowing. Bottom-up organisation in decentralised software systems is de-
pendent on re-interpretation and engineering of these features within a
computational environment. 180

9.2 Mean system throughput as a function of increasing allocative pressure
(ν) applied to the model. The pressure is reflected by the shorter ω time
intervals that define probabilistic (Poisson based) task time arrival to the
system. For presented results ω ∈ 〈40s, .., 5s〉. 182

xx LIST OF FIGURES

9.3 Level of mean constraint measured for consumer population (empty rect-
angles) and provider population (solid rectangles) as a function of increas-
ing allocative pressure. The pressure is reflected by the shorter ω time
intervals that define probabilistic (Poisson based) task time arrival to the
system. For presented results ω ∈ 〈40s, .., 5s〉. 182

9.4 Informational gradient formed by the evaluation scores associated with
selection of particular provider agents. In here 20 agents are illustrated
in a descending evaluation scores order. 185

9.5 Facilitation of global system functionality such as load-balancing, adap-
tive service provisioning or power management is achieved through self-
organising agent communities. Formation and stabilisation of these com-
munities is achieved through local decision-making mechanisms that give
rise to coupling, positive feedback and negative feedback. 186

9.6 Community formation through positive feedback. Here, three distinct
pairs of consumer-provider agents are identified. Each pair is represented
as a coupled set of consumer and provider agents that reliably offer and
consume (as denoted by solid arrow) resources. 189

9.7 Community formation through positive feedback. Here, C1 consumer
allocation request is rejected by P1 provider. In response, the consumer
identifies and employs P2 provider agent. The dashed arrow between
C2 and C1 consumers illustrates information sharing that is mediated
between both agents through P2 provider agent (for simplicity not shown).189

9.8 Community formation through positive feedback. Here, a causal and
circular relationship is established between C1 and C2 consumer agents
that both start to share their local provider evaluations between each
other (as illustrated by the two-directed dashed arrow). The shaded area
represents a subset of consumer agents that form a community as well as
resources that are shared and employed by the community members. . . . 190

9.9 Community formation through positive feedback. Here, the two-agent
community incorporates another consumer agent (C3) as well as another
resource (P3). The dashed arrows illustrate the information flow that
is collectively sustained by the community members, whereas the shaded
area represents consumer agents that form the community as well as re-
sources that are shared and employed by the community members. 190

9.10 System configuration where only positive feedback exists. Here, two con-
sumer sub-populations that are equal in demanded resource capacity ex-
ist, each requiring different service type for allocation. The unbalanced
size of both communities (reflecting the amount of resources they con-
sume) shows negative effect of positive feedback (denoted for both com-
munities as an arc) that causes one community to grow at the expense of
resources shortage for the latter community. This leads to the4 unstable
system functioning due to resource competition reflected by the dotted
arrow. 193

9.11 System configuration where positive and negative feedback exist. Here,
two consumer sub-populations that are equal in demanded resource ca-
pacity exist, each requiring different service type for allocation. As a
result of negative feedback (dotted arc), the system is capable to regulate
the growth of both communities such that they consume equal resource
capacity and the effects of resource competition are minimal. 193

LIST OF FIGURES xxi

9.12 System throughput achieved by two model configurations. The config-
uration in which agents are provided with mechanisms that facilitated
both positive and negative feedback is illustrated by the solid line. Poor
performance shown by dotted line corresponds to model configuration in
which agents are equipped with positive feedback mechanisms only. 195

9.13 Number of extracted agent communities for two model configurations.
The configuration in which agents are provided with mechanisms that
facilitated both positive and negative feedback is illustrated by the solid
line. Poor performance shown by dotted line corresponds to model config-
uration in which agents are equipped with positive feedback mechanisms
only. 195

9.14 Delivery of global system functionality such as load-balancing, adaptive
service provisioning or power management is facilitated through self-
organising agent communities. Formation and stabilisation of these com-
munities is achieved through local decision-making mechanisms that give
rise to coupling, positive feedback and negative feedback. 196

9.15 Heat engine diagram. Here, the engine (illustrated by the circle) is sit-
uated between the heat source (TH) and the cold sink (TC). QH is the
heat flowing into the engine whereas QC is waste heat going into the cold
sink. W is the useful work coming out of the engine. 199

9.16 Mechanical thermodynamic engine. Here, the system comprises following
mechanical elements: cylinder, piston and crankshaft. The mechanical
work is extracted by heating up the cylinder (using provided TH) that
causes the gas, which is located between the cylinder head and the piston,
to expand and thus to move piston downards. This propels the crankshaft
as a result of which mechanical work is extracted. 200

9.17 Organic thermodynamic engine. Here, a model of an ant colony is pre-
sented and the process of ants self-organisation into a foraging trail re-
described in terms of thermodynamic work extraction involving four key
steps: (a) Gradient creation; (b) Structure formation; (c) Structure main-
tenance and; (d) Re-exploration. 200

9.18 Computational thermodynamic engine diagram. Here, the ‘heat’ source
(U) represents a group of infrastructure users from which a stream of in-
formation (Iu) (representing service allocation requests) is fed to the agent
community (denoted by the circle). The information that is considered
by the community as a ‘waste’ (Ie) is dissipated outside its boundaries to
the environment (E). Task allocation and thus work extraction (W) by
the community is achieved through organised transfer of information Ic
across community members . 202

9.19 Single agent thermodynamic work-cycle. Step 1: Inflowing allocation re-
quest (Iu) agitates consumer agent (denoted by A∗). Step 2: Constraint
required for a useful work extraction is established as a result of Ic infor-
mation inflow from community members (A). Step 3: Work is extracted
by following the informational gradient. Step 4: Constraints are released
as a result of local information dissemination to other agents as well as
its dissipation (Ie) to the environment (E). 203

List of Tables

5.1 Default model constant values used throughout experiments. 105

5.2 Default model parameter values used throughout experiments. 105

7.1 The general model configuration for adaptive service provisioning scenario
where demand changes are triggered through consumer agent turnover
mechanism. 131

7.2 The change in the number of demanded service types (|Capabilityαp|) for
subsequent steps in the step demand function. 138

7.3 The number of demanded service types (|Capabilityαp|) for the sinusoidal
demand function. 143

8.1 The change in the demand intensity (and the number of demanded service
types for subsequent steps in the step demand intensity function. 161

8.2 The demand intensity configuration for the sinusoidal demand function.
In here, depending on the sinusoidal demand function configuration, the
demand intensity oscillates between 0− 1 demand-supply ratio range. . . 166

xxiii

Acknowledgements

Many thanks go to my supervisors, Seth Bullock, Terry Payne and Michael Luck, for

their guidance and help; my colleagues from both IAM and SENSe group that offered

an interdisciplinary insight into my work and inspired to pursue my own fascinations.

Finally, I wish to thank my parents for their support and love that gave me strength

and encouraged to never give up.

A smart machine will first consider which is more worth its while: to perform the given

task or, instead, to figure some way out of it.

— Stanislaw Lem, The Futurological Congress, 1971

xxv

Chapter 1

Introduction

Modern software systems are among the most complex human artefacts [25, 38]. This is

evident in today’s information systems that depend on so many modules, sources of data,

network connections, input and output devices that it has become very difficult to predict

or control their interactions. This observation is manifested and emphasised through

the ongoing evolution from standalone computer applications to systems composed of

a large number of distributed and interacting components [118, 21]. Although such

modular architectures offer opportunities to tackle system complexity by decomposing

the overall structure into specialised components, they also present challenges in the

maintenance of reliable and predictable operation in changing conditions.

As a result, it is not surprising that over seven years ago IBM released a manifesto

arguing that the main obstacle to further progress in the IT industry is a looming

software complexity crisis. To respond to this, an Autonomic Computing initiative

was announced with the vision of systems capable of regulating their own functioning.

Here, large-scale infrastructures are assumed to comprise myriads of autonomic elements,

each acting, learning or evolving separately in response to interactions in their local

environments [133]. The self-regulation of the whole system then becomes an emergent

product of local adaptations and interactions between system elements.

Although multi-agent systems research offers many suitable models for realising this

vision [23], the functioning of complex IT systems may become too complicated to be

predicted by ‘divide and rule’ analysis [6, 133], and controlled through existing coor-

dination mechanisms. One reason for this is the existence of highly non-linear global

system dynamics, resulting in emergent system behaviour that is difficult to understand

and predict [35, 41, 131]. Furthermore, recent research in pervasive, ubiquitous and grid

frameworks argues that the computational landscape is beginning to significantly change

[101, 20]. This is caused by the departure from closed and deterministic environments,

requiring systems to function in dynamic and unpredictable conditions. For this reason,

they must be modeled as open systems, able to change their composition at run-time

1

2 Chapter 1 Introduction

[57]. Consequently, whilst multi-agent architectures offer a natural decomposition into

autonomous entities, autonomic systems may demand more robustness and agility than

the existing agent-based control techniques may currently offer.

For this reason, the tenets of IBM’s Autonomic Computing manifesto are inspired by

the phenomenon of homeostatic control that has evolved over millennia to maintain

system equilibrium in biological organisms. The observation of natural systems (for

example ecosystems, insect colonies, complex adaptive systems) in biology [105, 74, 34]

and physics [56, 39], suggests that they have developed internal control mechanisms,

allowing them to organise and adapt, relying only on local interactions between the sys-

tem components. This self-organisation process [39, 107] depends on certain principles

that have begun to be understood over the past few years [38], leading to the emer-

gence of biologically inspired control mechanisms that are decentralised and robust, yet

still restricted to domain specific applications (for example ant path planning for Inter-

net traffic routing in telecommunications networks, industrial manufacturing control or

directing the behaviour of robots) [94, 70, 77].

Encouraged by these preliminary results, the development of Autonomic Computing has

initiated interdisciplinary research offering alternative means of controlling distributed

computational systems. In such a setting, a central challenge is to develop an engineering

methodology that can exploit self-organising principles observed in natural systems for

the construction of effective autonomic software infrastructures.

However, for this approach to become useful, we must first understand the underlying

principles of natural self-organisation, and, in particular, how to apply these principles

in the context of open IT systems. This is the main issue addressed in this thesis, focus-

ing on the application of self-organisation to distributed networked computer systems

engineering, where the large-scale functional structure of the system is allowed to emerge

from the interactions between system components at the local scale.

1.1 Architecture of Modern IT Systems

To understand the increasing difficulty at controlling modern IT systems, below we

outline the general building blocks of such infrastructures and explain the origins of

their management complexity.

An IT system can be thought of as a collection of computing resources tied together to

perform a specific set of functions [58]. Depending on the granularity and scope, both an

individual server as well as a microprocessor containing varying integrated elements on a

single chip are rightful system representatives. From an autonomic system point of view,

these lower-level systems combine to form larger systems: multiprocessors combine to

form servers, servers combine with storage devices and client or access devices to form

Chapter 1 Introduction 3

networked systems, and so on.

In this thesis the focus is on system architectures that comprises a number of networked

servers. These hardware machines are considered as computational nodes on which

e-business application servers are deployed. The nature of modern application servers

(based eg., on Java 2 Enterprise Edition [100] architecture) allows developers to abstract

away from physical connectivity of the machines on which servers are running and thus

form a homogeneous software environment comprising a network of interacting platforms

(deployment containers [124]), each hosting a number of applications. Below we outline

some of the important building blocks of IT infrastructures that are of our interest.

1.1.1 Services

The functionality of IT infrastructure is provided by server nodes that offer limited

quantity of resources (eg. software programs, hard drive storage, or CPU power) to

users that request them. The access to these distributed resources is facilitated through

software elements (service providers) that are responsible for the provision of requested

resources. For this purpose, it is assumed that each server node hosts a single service

provider that, in turn, offers the access to node’s resources in the form of a service.

1.1.2 Service Registries

Services offered by a system are distributed over a number of networked physical ma-

chines. As a result, access to any of these applications requires possession of an appro-

priate endpoint address, defining the exact networked machine handling the requested

service. However, large IT infrastructures are characterised by the dynamism reflected

in constant system reconfiguration, involving the introduction of new servers or replace-

ment of existing ones in order to cope with hardware failures and varying service demand.

Because of this, resources, as well as applications, are migrate to different physical loca-

tions, rendering already known endpoint locations stale. To avoid disinformation about

changing system structure, Service Oriented Architectures (SOA) [75, 67] assume the

existence of service registries, which are dedicated system components providing infor-

mation about other resources within the system [3]. Based on this, it is assumed that

if any service is being migrated to a different physical address or introduced/removed

from the system, this change would be reflected within a registry service. This facil-

itates dynamic service selection, where service consumers are informed about services

upon interaction with the registry without the need to know a priori about the physical

locations of these services [87].

4 Chapter 1 Introduction

1.1.3 Service Configuration Through Switching

Although application servers allow for a number of different services to be deployed and

provisioned at the same time, due to security restrictions, it is often assumed that each

server will provide only one type of service with the number of simultaneous provisions

controlled by the number of available resources. If demand requirements change and

the server is demanded to offer a different service, there is a certain time-lag associated

with the current service undeployment and redeployment of a new one. This procedure

of changing the offered service is often termed service switching.

1.1.4 Power Management

Maintaining IT infrastructure with a large number of servers introduces a substantial

energy cost required to maintain system servers in operation. As observed in [98] the

rapidly rising cost and environmental impact of energy consumption in these systems

has become a multi-billion dollar concern globally. As a result, efficient power manage-

ment has become a highly desirable, if not critical, characteristic of any large scale IT

infrastructure.

To achieve this, individual server nodes are allowed to perform local power manage-

ment adjustments involving alteration of CPU cycles, disabling of unnecessary server

components (eg. additional CPU) or the eventual temporary shut-down of the node.

It is assumed that these power management activities need to be continuously evalu-

ated during system operation such that the host of servers that are kept on-line offers

sufficient amount of resources to satisfy the changing demand that is imposed by the

infrastructure users.

1.1.5 Service Provisioning

The complicated process of provisioning system resources demands a level of abstraction

sufficient for non-expert users to be able to utilise services offered by the system. This

is achieved by specialised components (business components [72]) which, though not

providing any resources, are responsible for automating interaction with service providers

and provisioning offered by them resources. These components, considered as service

consumers [87], exist at the interface between users (or other services) and the service

providers, and are responsible for:

• intercepting resource requests from users/clients;

• locating existing and available resources; and

• reliably providing execution results.

Chapter 1 Introduction 5

1.1.6 Physical Limitations

As a result of running on hardware components, the computation performed by the

system is subject to the following constraints:

• interaction between system elements takes time and is subject to failure due to

the distribution of system services over different physical nodes that may lose

connectivity or have insufficient bandwidth [122];

• there is a limited number of requests that may be simultaneously served during

each service provisioning (the number of how many simultaneous service executions

may take place is often controlled through the maximum number of instances that

the system is configured to handle in parallel [100]);

• execution of services is not instantaneous but takes time [5];

1.2 IT System Management Problems

Given the above defined general building blocks of modern IT systems, let us now

outline key management duties that are involved whilst preserving correct operation of

such infrastructures and the possible problems that may arise during such process.

In this thesis we are assuming that the the system is an open infrastructure that is

controlled by a single infrastructure provider. This means that all services offered by the

system (eg., calendaring, e-mail or photo applications) are owned by this infrastructure

provider and thus all service providers (offering particular system resources) act so as

to contribute to the overall system welfare. The defined in this way infrastructure is

an open computational environment accessible by external users that aim to satisfy

their individual service allocation requests. These users demand instantaneous access

to system resources (eg., calendaring, e-mail or photo application) and thus the system

has to deliver them in an on-demand manner by identifying available service providers

that are free and capable to offer demanded services.

Under these conditions, the general aim of the infrastructure provider is to maximise the

usage of the offered by him services and, at the same time, minimise the infrastructure

running costs. Among a number of difficulties that may arise during system operation,

it has been observed [60, 41, 61] that the following three ones are considered to have a

direct impact on its functioning cost and thus efficiency :

1. Both, infrastructure users and as well as system servers will demand (and offer)

various amounts of resources. Consequently, inappropriate allocation of user re-

quests to service providers that have less (or more than required by the user)

6 Chapter 1 Introduction

resources may either overutilise or underutilise particular system servers. This

unbalanced distribution of resources would decrease satisfaction of utilising them

users (since overutilised servers may offer degraded quality of the service), as well

as prevent maximal usage of the system services because resources of underutilised

servers would not be used to their full extent.

2. Infrastructure users may have different goals and thus be interested in allocating

various service types. Inappropriate configuration of the type of services that

are being currently offered by the system with respect to the service interests

imposed by users will result in loss of potential customers as well as additional

maintenance cost of servers that were wrongly configured and hence unused. This,

in turn, generates further maintenance costs in the form of a wasted energy needed

to maintain these servers in an on-line state.

3. The number of users as well as resource quantities they demand may change during

the system operation. Whilst keeping all servers on-line will generate substantial

energy cost [98] and may generate a surplus of unused resources, insufficient num-

ber of available on-line system resources might introduce shortage of available

on-line resources. Both configurations are thus inefficient and should be avoided

during system operation.

If the IT infrastructure operated under deterministic conditions, eg., the demand im-

posed by users would remain static and unchanged over the system operation, and the

system would be closed and hence its internal configuration would remain static, all

three aforementioned problems could be easily avoided through correct and static con-

figuration of the individual servers. For example, if the infrastructure provider knew

beforehand how many users would require an e-mail client application and how many

would utilise instant messenger application, it could configure the servers appropriately

such that the system would achieve optimal efficiency at the lowest management cost.

Furthermore, if such situation would never change the system, in principle, could operate

at this optimal configuration forever.

However, as we have already suggested, and will more closely investigate in the next

section, modern IT systems are open and dynamic, where the number of users as well

as their interests may change over time. Furthermore, the system is prone to failures,

software upgrades and addition of new elements that prevent its structure to remain

static. As a consequence, management of such systems cannot be realised through static

configuration but represents a non-trivial challenge involving the continuous adjustment

and reconfiguration of it internal elements to represent the best response to the prevailing

conditions.

This leads us to the three general management issues that we will focus on in this thesis

and attempt to provide decision-making mechanisms capable to automate control over

them:

Chapter 1 Introduction 7

1. Load-balancing

Resource allocation requests arriving to the system should be evenly and fairly

distributed across a population of suitable service providers. Such distribution of

requests, and thus load on particular providers, should prevent situations in which

certain providers become underutilised at the expense of others being overutilised

and thus unable to provision services to service consumers requesting them.

2. Service provisioning

The population of service providers should offer services that are currently de-

manded by infrastructure users such that the amount of demanded resources is

matched by the supply.

3. Power management

The system has to be configured in a manner that minimises costs involved in main-

taining unused servers in an on-line mode, thus limiting the energy cost required

to maintain the whole infrastructure.

So far, the management over these three functions has been mostly devolved to human

administrators. However, there are certain characteristics of modern IT systems that

render this approach unsuitable and unprofitable. We discuss these issues in the next

section.

1.3 The Origins of Management Complexity

Modern IT infrastructures are undoubtedly state-of-the-art artefacts, integrating the

most advanced software engineering techniques such as object oriented programming,

networking, persistence and web-services [72, 87]. Their distributed nature, functional

decomposition into resource providers, consumers, information brokers and finally multi-

layered architecture, represent high-end standards for modern software development [75].

Despite these advantages, it has been recently observed that the management costs in-

flicted by these infrastructures set their wide applicability and further adoption in ques-

tion [42, 1]. This issue, already approached by the main software vendors such as IBM,

SUN and HP [60, 44], implies that due to properties introduced by these applications,

software systems engineering has reached its limits, beyond which novel approaches

for the construction and control of large-scale computational systems may be needed

[58, 134]. The genesis of the problem stems from the combination of matured and

previously successful control mechanisms with functioning conditions that were never

previously experienced by software systems. The system management difficulties arising

from the combination of the both above provided properties are explained below.

8 Chapter 1 Introduction

1.3.1 System Administration

The capabilities offered by these infrastructures come at a cost of tuning the behaviour

of all system components in accordance with some system-level metrics of efficiency [1].

As we have outlined in the previous section (Section 1.2) such efficiency, whilst con-

sidering resource management, is dependent on the regulation of the three system-level

functions: load-balancing, service provisioning and power management. This, within the

distributed system comprising of a population of servers, involves their local adjustment

and reconfiguration such that the global system efficiency is preserved.

A common technique to facilitate this for a system that is too complicated to be fully

controlled by an individual or a group of administrators is to divide the management

problem into parts and devolve responsibility of controlling each to a dedicated group

of administrators [126, 1]. This top-down control technique, successfully applied in a

wide range of decision-making problems, follows a simple divide and rule strategy which

is facilitated by logically dividing the distributed system into administrative domains,

each comprising a small enough group of system nodes small enough to be effectively

managed by a team of administrators. The achievement of the global system efficiency

thus depends on flexible control of system parameters (eg., type of deployed services on

particular servers, server utilisation level or security access constraints) within dedicated

administrative domains that, in concert, contribute towards global system performance.

However, the efficiency of the underlying divide and rule approach is defied as soon as a

system becomes large enough to be considered profitable on a large scale. Paradoxically,

the reason for this stems not from ill defined architecture, but from conditions within

which these systems function, as considered next.

1.3.2 Functioning Conditions

Large-scale distributed infrastructures no longer operate in predictable and controlled

conditions [133, 14]. As such, they challenge existing means of control and prove them

inefficient in realistic deployment environments. Below we discuss functioning conditions

that have a direct effect on the system behaviour and its management efficiency.

1.3.2.1 Interdependence

The true benefit of relying on these infrastructures stems from their distributed nature.

As such, the infrastructures offer mechanisms that promote deployment of a system onto

clusters comprising interconnected computational nodes. Application servers deployed

on individual nodes do not operate in isolation but form an organic network of inter-

connected sub-systems, each sub-system offering a diverse set of services that are vital

for the functioning of the whole infrastructure.

Chapter 1 Introduction 9

Both, increasing scale and interconnectivity catalyse dependence between individual sub-

systems, where functional code is distributed among different system nodes. As a result,

control and parameter tuning involves a set of interdependent systems rather than a

single and isolated machine. From a management perspective, this requires a group of

administrators, tasked to control fractions of a networked environment to effectively,

and in a timely manner, coordinate their actions and adjustments.

To give an example, consider a situation where one of the infrastructure administrators

reconfigures a system node to offer a different service. This local adjustment requires

coordination with other node administrators to verify whether there are no other services

dependent on the current service, and if so, to take actions to relocate the existing

service into other nodes and update service registries about the change. However, even

though this operation has been successful, the performed change may cause other servers,

offering the same type of service, to become overutilised and hence less responsive,

leading to inefficient load-balancing and the formation of a bottleneck. Thus, not only

is a timely response required, but so is the ability to predict the consequences of local

changes on the global system level.

1.3.2.2 Physical Constraints

In contrast to single-machine operating systems, each distributed infrastructure is based

on a physical network that connects interdependent nodes and defines limited routes

through which data can flow between application servers. Although modern application

servers preserve a sufficient level of abstraction for system engineers to ‘forget’ about

the intricacies of the underlying physical topology whilst engineering distributed compo-

nents, it has been recently observed that computation over the network has a significant

impact on global system behaviour and thus requires more attention than has been given

so far [45, 113, 48, 49].

In the infrastructure models discussed above, the underlying network of interconnected

computational nodes will have a direct effect on constraining information flows between

nodes and thus influence patterns of interactions between distributed system compo-

nents. For example, the physical limitation of a finite bandwidth within the infrastruc-

ture may lead to the emergence of nodes that exploit high bandwidth at the cost of

others utilising less of it and thus interacting to a lesser extent.

All these constraints imposed on the physical network and its constituents will result in

the emergence of specific interaction patterns between system components distributed

over these nodes. These patterns can be characterised as logical network layer, im-

posed over the physical one, where the more frequent the interactions between particu-

lar system components, the stronger the connectivity of relations between the network

components involved. Given this, both physical and logical networks do not exist in

10 Chapter 1 Introduction

isolation, but exert feedback on each other. For example, the bandwidth allocation

on a physical network may constrain the number of interactions of system components

on a logical network. Also, increasing the frequency of interactions between particular

system components, and thus bandwidth consumption, may lead to the emergence of

strong connectivity between certain system nodes, and the possible reduction or loss of

connectivity (or data trafficking) between others.

In such systems, these constraints do not remain static during system functioning. Due

to changing conditions, both security policies and bandwidth limits for particular nodes

might be modified along with the new specification of incoming hardware nodes or

software running on them. Consequently, both logical and physical networks are more

likely to continuously evolve, driven by their causal relations and changing conditions.

Understanding how these networks change over time might become a useful tool for

predicting and controlling global system behaviour through exposed tunable parameters.

1.3.2.3 Openness

The interconnected nature of system nodes encourages openness of system components

to interactions beyond the nodes they currently reside on. For example, services collo-

cated on different nodes might form a coherent functional workflow requiring distributed

invocation of each other. Consequently, the behaviour of services might become subject

to modification by processes external to the node and thus beyond its direct control.

This will require precise coordination of administrators controlling different nodes to

avoid overutilisation or to react to node failures and system reconfiguration in a timely

manner.

The system is in constant interaction with the distributed environment it is embedded

within. For a set of communicating software components, the underlying environment

is represented through machines referring to nodes, the physical network enabling dis-

tributed computation and the operating system hosting the application server. The

local actions of system components may indirectly influence the functioning of such an

environment, the results of which may in turn feed back into the system. For example,

overutilisation of a particular node’s CPU or a subset of distributed network band-

width may negatively affect the functioning of processes that host the application server

(hardware components, operating system, network routers). Furthermore, each such

element might already host other processes, not related to the infrastructure, and thus

may indirectly affect the behaviour of the system. For example, for operating systems

(OS) on which application servers are hosted, the primary objective would be to pre-

serve reliable and efficient functioning even at the cost of compromising the application

server’s performance or reliability. Also, physical interconnectivity might be exploited

by other networked processes, stimulating its bandwidth. Finally, all the described com-

Chapter 1 Introduction 11

ponents are subject to unexpected failure that may propagate to the system and affect

its performance [22, 21].

Since these infrastructures are dedicated to providing their functionality to servers re-

questing it, the system might be viewed as being under pressure driven by load and

demand imposed by its users. In general, load defines the number of requests the sys-

tem has to serve at the given time, whereas demand is the variety of offered functionality

being utilised. When increased both put more pressure and thus work on the system.

Since users are external to the system, the stress they impose on the system is not a priori

known and may vary over time, requiring sufficient adjustment from the administrator

side to cope with changes.

1.4 Autonomic Computing vision

To address the software management crisis, extensive research has been undertaken

[58, 133, 91] in seeking alternative ways of engineering systems that are no longer fully

dependent on skilled IT administrators but self-manage their vital functions. Due to the

limited application of existing AI control techniques, this has resulted in a revolutionary

shift of paradigm pioneered by a growing interest in natural complex systems and the

emergence of alternative software architectures, in the form of multi-agent systems,

supporting more flexible computation [134].

The observation of natural systems (for example ecosystems, insect colonies, complex

adaptive systems) in biology [105, 74, 34] and physical systems [56, 39], suggests that

they have developed internal control mechanisms, allowing them to organise and adapt,

relying only on local interactions between system components. This self-organisation

process [39, 107] depends on certain principles that have begun to be understood over

the past few years [38], leading to emergence of biologically inspired control mechanisms

that are decentralised and robust, yet still restricted to domain specific applications (for

example ant path planning for Internet traffic routing in telecommunication networks,

industrial manufacturing control or directing the behaviour of robots) [94, 70, 77]. En-

couraged by these preliminary results, Autonomic Computing initiates interdisciplinary

research offering alternative means of controlling distributed systems. In such a setting,

a central challenge for the construction of distributed computational systems is to de-

velop an engineering methodology that can exploit self-organising principles observed in

natural systems for the construction of autonomic software infrastructures.

12 Chapter 1 Introduction

1.5 Aims of work

In this thesis we are interested in designing principled tools and methods for building

autonomic computational systems that are capable of regulating their own function-

ing in a manner that maximises their utility. In particular, we aim to provide local

decision-making mechanisms that are able to regulate service provisioning in dynamic

and indeterministic conditions consistent with those experienced by modern and dis-

tributed service provisioning infrastructures.

To achieve this, we conduct an interdisciplinary study in which we apply self-organising

techniques observed in natural complex systems to automate the control over the three

key resource management functions: load-balancing, service provisioning and power

management that we discussed in Section 1.2.

Throughout this study we assume that the system is open to structural change and oper-

ates in a dynamic environment. For this reason, the control mechanisms should be able

to adaptively regulate the operation of the three aforementioned resource management

functions in the following manner.

1. Load-balancing

We expect the system to configure such that resource allocation requests arriving

to it are evenly and fairly distributed across a population of suitable provider

agents. Such distribution of requests, and thus load on particular providers, should

prevent situations in which certain providers become underutilised at the expense

of others being overutilised and thus unable to provision services to consumer

agents requesting them.

2. Adaptive Service Provisioning

The population of provider agents offering various services should be adaptive.

Whenever demand for particular service types changes, we expect the population

to reconfigure and adjust appropriately such that the supply of demanded services

matches the demand imposed on the system.

3. Power Management

Not only should the system respond and adjust to changing user interests, but also

to the intensity of demand imposed by them. In situations where only a subset of

available system resources is required to satisfy user demand, the remaining part

of the system resources should remain in a power-saving mode, thus limiting the

energy cost required to maintain the whole infrastructure.

Although there exists a number of criteria based on which the efficiency of an auto-

nomic system can be evaluated (eg., system mean time response, system throughput)

Chapter 1 Introduction 13

we decided to evaluate system efficiency at achieving the three above resource manage-

ment tasks. By doing so, we were able to explicitly focus on key resource management

challenges that need to be addressed within modern IT systems and to understand how

self-organisation can be applied to deliver them.

As an outcome of this study, we provide a physical interpretation of self-organisation

phenomena that may be applied as a guideline for engineering artificial self-organising

systems. The research contributions resulting from this study are provided in Section

1.5.1.

1.5.1 Research Contributions

In this thesis we have addressed the problem of applying self-organisation to preserve

reliable control over the resource management within decentralised autonomic systems.

To do so, we have studied characteristics of natural and open complex systems that

exhibit self-organising features and showed that these can be understood as an outcome

of certain physical laws existent within nature.

Based on this understanding, two computational models were provided to help us under-

stand how the self-organising features of these complex systems can be applied within

modern IT systems.

As an outcome of this study, we offer design principles for engineering self-organising

autonomic software systems in which control over their functioning is decentralised and

facilitated through local interactions and adaptations between its autonomous elements.

The research contributions achieved through this study are outlined below.

1.5.1.1 Decentralised Autonomic System Model

We offer a decentralised autonomic system model that is tasked to control resource man-

agement in dynamic and open environments. Using this model, we study how adaptive

system-level response arises out of local interactions of individual system elements that

employ for this purpose only simple stimuli-response mechanisms and local information

exchange.

1.5.1.2 Self-organising Agent Communities

Understanding how local interactions between system elements give rise to certain global

system dynamics becomes one of the major difficulties whilst engineering decentralised

systems. In this thesis we address this problem by extending the system analysis to

14 Chapter 1 Introduction

include an intermediary level (meso-level), residing between the level at which the be-

haviour of individual agents is analysed (micro-level) and the level at which the collective

response of the whole system is considered (macro-level).

At this intermediary level we identify system organisation into agent communities that

are the key structures that support adaptive and efficient maintenance of the three

system functions: load-balancing, adaptive service provisioning and power management.

1.5.1.3 Importance of Spatial Embeddedness for Self-organisation

We show the relevance of spatial embeddedness for achieving system self-organisation.

To achieve such spatial property, the system agents are instructed to establish interaction

topology according to which the peers that are closer to each other are more likely to

interact and affect each other behaviour than the elements that are located at a greater

distance. Only when such underlying interaction topology arises, can system components

organise into globally efficient collective structures referred to as communities.

To realise such topology in our model we propose an affinity algorithm (described in

detail in Section 5.3.3.6) the role of which during community formation is discussed in

Section 9.2.2.3.

1.5.1.4 Thermodynamics in Computational System

Whilst thermodynamics is mostly related to the study of heat engines and provides basis

for understanding how mechanical work can be extracted from the supplied energy, we

stress the relevance of this discipline in achieving computational system self-organisation.

More specifically, we show that natural self-organising systems employ the same work ex-

traction principles for achieving adaptive respnose and that understanding of conditions

and mechanisms influencing such process will contribute towards principled engineering

of adaptive and decentralised autonomic systems.

For this purpose we propose a set of design principles which, when incorporated into our

model based on exemplary mechanisms, achieve system organisation that is analogous

to the one existent in the natural systems. As such bottom-up organisation is driven by

thermodynamic principles of self-organisation, we provide a thermodynamic interpreta-

tion of agent communities as artifacts which act analogously to thermodynamic engines

but in stead of energy are fed with information that they transform into informational

gradients from which useful work can be extracted.

Chapter 1 Introduction 15

1.5.1.5 System Stabilisation Through Positive and Negative Feedback

A system in which its constituents employ only locally available information whilst con-

ducting resource allocation decisions is prone to instablilities or even chaotic response

resulting from resource competition. In this study not only we show that organised sys-

tem structures in the form of agent communities are critical in suppressing this patho-

logical behaviour within a model where no central or hierarchical control is imposed, but

also suggest how reliable control over the system can be provided based on positive and

negative feedback loops that stabilise the formation and operation of such communities.

In particular, affinity algorithm (discussed in Section 5.3.3.6) is proposed that gives

rise to a positive feedback responsible for triggering the agent community formation,

whereas agent stress-based information inflow regulatory mechanism (discussed in Sec-

tion 5.3.3.7) is introduced to facilitate negative feedback that preserves stable operation

of such communities.

1.6 Overview of Document

The remainder of the document is organised as follows.

Chapter 2 presents a background material related to the research undertaken in the area

of complex systems, outlining theory behind autonomic computing, multi-agent systems,

complexity and self-organisation. In Chapter 3 a review of existing decentralised com-

putational models is provided with both their strengths and weaknessess outlined. In

Chapter 4 a simple decentralised model is presented and its self-organising capabilities

studied in the context of load-balancing problem. Presented in this chapter work in-

vestigates the applicability of thermodynamic interpretation of global system behaviour

arising as a product of simple and naive local algorithms employed by agents. A more

advanced autonomic system model is presented in Chapter 5 and its efficiency in achiev-

ing load-balancing, adaptive service provisioning and power management is evaluated in

the three following chapters: Chapter 6, Chapter 7 and Chapter 8. The thermodynamic

interpretation of self-organisation observed within the model is provided in Chapter

9 that concludes with a set of design principles aimed at providing general guidelines

for engineering artificial self-organising systems. The conclusion and further work is

presented in Chapter 10

A number of publications has arisen as a result of the work discussed in this thesis.

As these publications relate to particular topics discussed in several chapters, below

we outline them together with a reference to the relevant chapter. A paper discussing

thermodynamics of self-organisation and its application to computational systems [13]

is a direct outcome of the literature review presented in Chapter 3. A work presented in

[47] offers the analysis of bottom-up control approach of the first simplistic multi-agent

16 Chapter 1 Introduction

system model discussed in Chapter 4. Finally, the outcome of the work involving more

realistic model, with particular attention to adaptive service provisioning problem that

was presented in Chapter 7 was published in [65] and [66] 1.

1It is important to note that the autonomic system model used in the last two publications was
an intermediate version between simple model presented in Chapter 4 and the more realistic model
discussed in Chapter 5. To minimise the volume of the content presented in this thesis, we did not
discuss the intermediate model architecture within this document, as it was provided within the two
relevant publications

Chapter 2

Issues in Complexity Studies

2.1 Introduction

In this chapter we introduce general properties of complex natural self-organising sys-

tems. As these systems differ from the deterministic human made artifacts, we focus on

the distinguishable features that need to be considered whilst designing artificial self-

organising systems of this kind. In particular, we explain the concepts of complexity,

emergence and openness that define such systems architectures and influence their be-

haviour. Followed by this, we discuss the phenomenon of self-organisation that plays a

key role in maintaining stable and adaptive behaviour.

2.2 Complex Systems

The main difficulty in building autonomic computational systems is associated with

the complexity exhibited by such systems. As this property challenges traditional and

often centralised methods of mapping functionality to designed components [133, 14, 96],

below we provide a more detailed definition of this term.

2.2.1 What is complexity?

According to the Latin root complexus, complexity means ‘entwined’ or ‘embraced’.

Therefore, in order to have a complex system, there must be [25]:

• two or more distinct parts,

• joined in such a way that it is difficult to separate them.

17

18 Chapter 2 Issues in Complexity Studies

Here we find the basic duality between parts which are at the same time distinct and

connected. The analytical method alone will not allow us to understand the functioning

of a complex system, as by separating the components, their connections and the be-

haviour arising from them will be destroyed. When components are mutually entangled,

a change in one component will propagate through a topology of connections to other

components which, in turn, will affect even further components, including the one that

initially changed. This makes the global behaviour of the system very hard to track in

terms of atomic elements [38, 25] even where a complex system’s behaviour is familiar

and hence to some extent predictable (eg. termites build a mound, birds flock, etc.) it

remains difficult to understand (eg., how is the mound achieved?).

Furthermore, the complexity of a system increases with the number of distinct compo-

nents, the number of connections between them, the complexities of the components,

and the complexities of the connections.

2.2.2 Characteristics of Complex Systems

2.2.2.1 Distinction Between Micro and Macro Level in Complex System

A complex system is not characterised solely by the number of components (i.e. being

large), but by an architecture of organised complexity as a system of systems [74, 33].

It is more than just the items being interconnected: their organisation in a set of inter-

connected subsystems and the resulting distinct behaviour of the overall system are the

defining characteristics of a complex system. Based on this we can observe that there

are at least two levels in a complex system [129]:

• micro-level at which the behaviour of atomic system elements is considered (eg.,

individual agents within a multi-agent system); and

• macro-level that is the level at which global system response is observed (eg.,

behaviour of the whole multi-agent system).

2.2.2.2 Hierarchical Structuring of Complex Systems

The very first question that needs to be answered is how, despite their architecture, nat-

ural complex systems can adapt and effectively manage and organise their functioning.

Research in cybernetics focusing on the analysis of natural systems [34] shows that, a

multilevel structure of control arises that is composed of a number of the aforementioned

micro and macro levels. Such a hierarchical approach allows the decision problem to

be factored into different levels, such that decisions at the higher level constrain the

decisions at the lower level [34]. The decision at the higher level is easy to make since it

Chapter 2 Issues in Complexity Studies 19

only considers an abstract version of the repertoire of possible actions. The decision at

the lower level is easy because only a small part of the problem space remains after the

higher level decisions have been made. In this way, the number of choices at each level

can be kept acceptably small, while the range of the entire system, which is the product

of the choices at the different levels, can be made arbitrarily large.

It is important to note, however, that this recursive definition of hierarchical control

states only how a system may be observed or interpreted. The functional analysis shows

that such levels of control do not act independently but form heterarchies in which the

relations between levels are non-linear and characterised by a high degree of feedback

[33]. This is because even within the simplest complex system (comprising only a micro

and macro level), both levels do not function independently but influence each other’s

actions in a non-linear and interactive manner, where the resulting global behaviour

emerges from the micro-level and affects the functioning of low-level components.

2.2.2.3 Emergent Behaviour

To understand the functioning of complex systems, it is not possible to approach it

through decomposition of structure into its smallest building blocks (such as entities,

agents) and further examination of such components independently [96]. The main

obstacle to this reductionist approach is caused by emergent behaviour, often described

by the ancient dictum “the whole is more than the sum of the parts”. To explain this

phenomenon, assume a multi-agent system to be representative of a complex system

with well defined behaviours of the individual agents. In this case, emergent behaviour

denotes the appearance of a relatively new global behaviour of the system that is difficult

to infer from the most complete knowledge of the behaviours of the individual agents,

taken separately or in other partial combinations [33, 129]. Traffic jams are another

example of emergent behaviour, taking place within a natural open system. Assuming

that a group of cars forms a complex system, we can observe that such a system is

capable of exhibiting emergent behaviour in the form of a traffic jam that cannot be

inferred from the individual behaviours of cars.

It is important to note that emergent behaviour is a dynamic process whose formation

and effects are difficult to predict, since they bring relatively new characteristics to the

already functioning system [14, 134]. These novel characteristics can not be under-

stood by analysing behaviour of individual system elements, but are the result of their

interactions and arising from it collective dynamics.

20 Chapter 2 Issues in Complexity Studies

2.3 Openness

Because modern IT systems co-exist with each other within a dynamic networked envi-

ronment, it is important to consider a system as being embedded and influenced by its

environment. Such a view has important implications when considering reliable control

over system functioning.

Openness in computational systems may be defined in a number of ways, including

openness to new information (i.e. learning) and openness to new components or agents

[57]. In practice, many consequences (such as dynamics of the environment, complexity

of interactions and emergent behaviour) are often neglected while building and modeling

modern distributed systems. As a result, this lack of understanding causes most systems

to be open to new components and knowledge, but in practice unscalable, uncontrol-

lable and exhibiting unpredictable global behaviour [131, 14]. This is because, so far,

software engineering is still in the early stages of defining and envisioning openness and

often relies on similarities with closed systems, resulting in a continuation of the system

centric vision, where the focus is on well-defined systems situated in predictable and

controlled environments. Openness here is viewed as an enhancement of closed system

capabilities where systems interact in a highly controllable and predictable way with

external environmental processes. Progress in building open systems is thus slow and

often misguided through the application of control mechanisms that are not scalable and

flexible in dynamic and unpredictable environments.

2.3.1 Consequences of Openness

The notion of openness allows us to observe that there are two aspects that define an

open system: the system itself and the environment in which it is situated. This can

be explained by the illustration in Figure 2.1. Assuming a multi-agent system as an

architectural representation of an open system, the figure illustrates the environment

populated with agents and services, from which we can distinguish that some of them

form an open system, and some are external to it.

2.3.1.1 Openness to Information

According to Hewitt et al.’s definition of an open system [32], one can capture the

life-cycle of such a system in terms of information that flows to and from the system.

In Figure 2.1 openness to information is represented through the symmetric arrow (IF),

indicating the existence of the bidirectional information flow between the environment

and the open system. To explain such openness, we can consider system users as con-

Chapter 2 Issues in Complexity Studies 21

System

Agents

Agents

Environment

information flows

new element introduction

Agents

Agents

existing element removal

Figure 2.1: Representation of an open system

stituting a dynamic environment that exerts pressure on the system to configure appro-

priately to the demand imposed by users.

2.3.1.2 Openness to Structural Modification

Another important consequence of openness is described in [102] where, apart from

openness to information, systems are also open to structural modification. Depending

on the characteristics of the system-environment interplay, the system may structure

(form) itself using environmental components, causing the boundary between the system

and environment in Figure 2.1 to be dynamic and change over time. In the figure, we can

observe that the inflow of new information to the system may in turn trigger changes in

its composition. For example, increasing demand imposed by system users will require

more agents to be created and introduced to the system, whereas reduced demand will

lead to a decrease in the number of agents required to consume resources.

22 Chapter 2 Issues in Complexity Studies

2.3.2 Characteristics of Open Systems

2.3.2.1 Embedded Computation

New emerging scenarios in the domain of grid, pervasive and ubiquitous computing show

that computation is starting to be injected into the physical world, where components

and collectives operate autonomously [101, 20]. Such embodiment also occurs in pure

software systems (disconnected with the real world), where open systems may share

environments with other systems, which concurrently evolve and adapt to the changing

environment. According to [33], such evolution and adaptation is in general parallel

and distributed: there is not just one system and its environment, but a multitude of

systems evolving simultaneously, partially autonomously, partially in interaction. This

network structure entails that no absolute distinction can be made between internal and

external, i.e., between system and environment, and as a result, what is system for one

process is environment for another.

2.3.2.2 Dynamics

Open systems are in constant flux. The complex interplay between the environment

and the system increases its dynamics [86], since it is not clear what will trigger system

processes and when. Such dynamic interplay between an open system and its environ-

ment is a very complex process, where it has been observed that constant interaction

may be propagated and reinforced, causing the system to be never optimally adapted

to an environment, since the process of evolution of the system will itself change the

environment, so that a new adaptation is needed, and so on [33]. As a result of this

continual evolution, a change in the environment may influence the same system to gen-

erate a different behaviour (emergent behaviour), without any change in the behavioural

characteristics of its constituents [129].

From the system point of view, maintenance of the dynamic state is crucial if the system

is to adapt to the changing conditions and avoid critical states [113], where although the

interaction with the environment may negatively affect the system functioning, it also

sustains its dynamics. As a result, the system is no longer isolated from the underlying

environment, but rather its adaptation is driven by interactions with it [33].

2.4 Self-organisation

Analyses of natural open and complex systems suggest that due to their complexity,

scale and dependence on other systems situated within an environment, no externally

derived mechanism can control their behaviour [105, 17]. Instead, a system itself needs

Chapter 2 Issues in Complexity Studies 23

to impose the force that organises it into a functional structure and resists environmental

changes. This is where self-organisation plays a crucial role and can be defined as the

spontaneous creation of a globally coherent pattern from local interactions between

otherwise disordered collections of interacting parts [33].

Because we are just starting to face the realisation that complex software systems require

more flexible and autonomic [58] approaches to the control of their global behaviour [131,

69], self-organisation is an attractive but fairly new and relatively unexplored concept in

this domain. This section briefly presents key concepts related to self-organisation and

explains the requirements for its occurrence.

2.4.1 Characteristics of Self-organising Systems

2.4.1.1 Global Order From Local Interactions

The emergence of the global organisation is provided by local interactions of the elements

that belong to a self-organising system. This suggests that self-organising systems are

capable to maintain their organisation relying on decentralised coordination mechanisms

arising from the actions of individual entities.

2.4.1.2 Non-linearity and Feedback Loops

The dynamics of a natural self-organising system is typically non-linear because of circu-

lar or feedback relations between the components. This results in a less straightforward

relationship between cause and effect, where small causes can have large effects, and large

causes can have small effects. Such non-linearity can be understood from the relation

of feedback that holds between the system’s components, where each component affects

other components, but these components in turn affect the first component. Thus the

cause-and-effect relation is circular and any change in the first component is fed back via

its effects on the other components to the first component itself. Feedback can have two

basic values: positive (that reinforces or amplifies the initial changes and makes devia-

tions grow in an explosive manner) or negative (that suppresses change and stabilises the

system, bringing deviations back to their original state). In complex self-organising sys-

tems, there are several interlocking positive and negative feedback loops, so that changes

in some directions are amplified while changes in other directions are suppressed. This

can lead to very complicated and difficult to predict emergent behaviour that effectively

maintains organisation within the system.

24 Chapter 2 Issues in Complexity Studies

2.4.1.3 Distributed Control, Robustness and Resilience

In self-organising systems, control of the organisation is typically distributed over the

whole of the system, where all parts contribute evenly to the resulting arrangement.

Robustness or resilience means that self-organising systems are relatively insensitive to

perturbations or errors, and have a strong capacity to restore themselves. There are

three reasons for such behaviour:

• self-organising systems rely on redundant, distributed organisation allowing un-

damaged regions to make up for damaged ones;

• self-organisation thrives on randomness, fluctuations or noise, which generate a

large enough variety of actions to compensate for unpredictable situations; and

• the overall organisation is stabilised by positive and negative feedback loops.

Neural networks are good examples of computer simulations of self-organising systems.

Such networks, trained to achieve a certain task, will in general still be able to perform

that task when damaged, for example by the random removal of nodes and links. In-

creasing damage will decrease performance, but the degradation will be graceful ; that

is, the quality of the output will diminish gradually without a sudden loss of function.

A traditional computer program or mechanical system, on the other hand, will stop

functioning if random components are removed.

2.4.2 Self-organisation Process Overview

2.4.2.1 Self-organisation Processes

Organisation can be described as the characteristic of being ordered or structured so as

to fulfill a particular function [25]. By being structured we mean that the components

of a system are arranged in a particular order, represented by both connections, which

integrate the parts into a whole, and separations that differentiate them, so as to avoid

interference. Function, in turn, means that this structure fulfills a purpose.

Research investigating the process of self-organisation in natural open systems [33],

suggests that the organisation within these systems arises through the self-organising

process of blind variation (the generation of a large number of possible states or actions)

and natural selection of the most preferred ones.

Variation explores different regions in the system’s state space until it enters a state space

in a range of an attractor, which precludes further variation outside the attractor, and

thus restricts the freedom of the system’s components to behave independently. Because

not all attractors within the system result in an organised structure, the selection process

Chapter 2 Issues in Complexity Studies 25

is responsible for influencing the variation process to reach the attractor desired for the

organisation purposes. Variation can be motivated and achieved either by change a

of internal system configuration (internal variation, for example interactions between

components), or through change in the relationship between system and environment

(external variation), for example interaction with external components or systems.

Selection, on the other hand, acts as an inward (produced by the system itself) pressure

that acts on individual system elements by constraining their degrees of freedom. The

resulting from this loss of autonomy of individual elements enables them to establish

stable patterns of interactions that are coherent with global system organisation.

2.4.2.2 Requirements for Self-organisation

Mechanical control systems, such as a thermostat or an automatic pilot, have both

variety and selectivity built in by the system designer, but dynamic systems need to au-

tonomously evolve these capabilities. For this to happen, there are certain requirements

with respect to system architecture and functioning conditions that have been observed

by Nobel prize winner Ilya Prigogine [56] in the area of dynamical far-from-equilibrium

systems.

Firstly, Prigogine showed that variety within such systems can be fostered by keeping

the system in dynamic state so that it has plenty of stationary states to choose from. In

physical systems the increase in system dynamics is mostly achieved through input of

energy flow that ‘agitates’ individual system elements due to a surplus heat conducted

through system elements through their interactions. This leads us to the second self-

organisation requirement that is, the system has to be open. Finally, as Prigogine

observed in his studies, the system has to belong to class of dissipative systems, in which

a certain quantity, usually its energy (often in a degraded form), is dissipated from the

system, since only in such systems are attractors or points to which the system converges

present.

2.4.3 Thermodynamic Account of Self-organisation

Observations of our real world supply us with enough evidence that surrounding us

natural systems such as ecologies [56], social systems [28, 7] or even markets [111] exhibit

a strong tendency to organise and to continue producing even more complicated and

sophisticated patterns of order. This is somewhat surprising considering the difficulty

in arriving at that ordered state based only on the variation and selection processes

explained in this chapter.

Even more puzzling becomes the observation [116] that such order producing processes

are not limited only to living systems, but arise in non-living physical or chemical com-

26 Chapter 2 Issues in Complexity Studies

pounds [117]. Whereas in living systems the self-organisation could be explained as a

mechanism that emerged through evolution and was employed as an internal regula-

tory mechanism aimed to preserve individual’s survival, the analogous explanation of

this phenomenon within the physical domain becomes invalid as these systems do not

exploit any evolutionary based mechanisms, yet still produce ordered structures.

This already implies that self-organisation cannot be attributed only to intelligent plan-

ning or local mechanisms that were adjusted through long and complex evolutionary

process but arises even from the simplest interactions between non-complicated and

non-living elements. Despite this, we can observe that there exists an end-directed

aim of both physical and biological systems to choose organised states over the ones

that are not. Considering the fact that achieving and maintaining organisation is less

probable than relaxing into disordered state, there is a growing understanding that

self-organisation is a consequence of certain laws of physics [54] studied in the area of

thermodynamics. Based on these studies, in the next chapter we will address two of

the most important questions: 1) why and under what conditions do systems choose

ordered states over the ones that exhibit less organisation; and 2) how can we interpret

order production process accompanied during self-organisation in a manner that would

allow us to apply it for artificial systems engineering.

2.5 Thermodynamics of Self-organsation

One powerful strength of a thermodynamic account of self-organisation is its potential

to apply across physical, chemical, biological, social, and socio-technological domains.

However, it is most clearly and straightforwardly articulated in the absence of the be-

liefs, desires, and functions that are proper parts of the ‘higher’ systems. Here we first

present the thermodynamic framework in the context of physical and then biological

systems before demonstrating its application in the context of the particular class of

socio-technological system explored in the remainder of this thesis.

2.5.1 Thermodynamics of Self-organisation

Studies investigating the thermodynamics of self-organisation in far-from-equilibrium

systems can be found in [80, 116, 55]. Irrespective of whether the investigated system

is described in terms of ‘dissipative structures’ [80], autonomous agents [55] or an auto-

catakinetic system [116], self-organisation is interpreted as a process of organised energy

flow from which work can be extracted and employed by the system for its structure

maintenance [56, 128, 117]. Central to understanding this process are the following con-

cepts derived from thermodynamics: displacement from equilibrium, energy transfer,

gradient dissipation, constraint formation and work.

Chapter 2 Issues in Complexity Studies 27

2.5.2 Displacement from Equilibrium

According to classical thermodynamics, the behaviour of physical systems can be ex-

plained as transformations of energy between the system and its surroundings. Hence,

when both are allowed to interact, what is exchanged between them is energy [56]. En-

ergy, here, has a general meaning, defining the capacity of the system to perform work,

and may be added to the system by increasing its temperature, pressure or a chemical

potential.

Considering the energy of the system and its environment, we can measure the relative

difference between both, often defined as a potential or gradient. If the gradient is equal

to zero, meaning that both the system and its environment have the same energy (e.g.,

temperature, or pressure) we consider them to be at equilibrium. In this state, the

system is indistinguishable from its environment and has no capacity to perform work.

Any deviation from equilibrium implies that free energy is stored, and that there may be

the potential to release this energy through useful work. The extent to which a system

is displaced from equilibrium is reflected in the gradient (difference) between the state

variables defining its energy state (e.g., temperature) and that of its environment.

2.5.3 Energy Transfer

To displace a system from equilibrium requires that it be supplied with energy (be it

thermal, mechanical or chemical), distinguishing it from its surroundings. According

to the first law of thermodynamics, energy transfer can proceed in two different ways:

through heat (Q) and work (W). This is captured in the formula summarising the first

law:

dU = dQ+ dW,

where dU is an infinitesimal change in the internal energy of the system, dQ is the

infinitesimal amount of heat added to the system and dW is the infinitesimal amount of

work done on the system. Although heating up a system and performing work on it will

each increase its energy, each differs in the manner in which energy is being distributed

in the system and thus whether the system moves away from equilibrium.

This difference is reflected through entropy (S) which can be interpreted as a measure of

the uncertainty about how energy is distributed in the system [50, 51]. Adding heat (Q)

to the system increases our overall uncertainty about the energy content of the system

and causes proportional increase in entropy. This is manifested through the following

relation:

dS = dQ/T,

where S is the entropy, dQ is the infinitesimal amount of heat added to the system and

T is the absolute temperature of the system. For this reason, it represents the amount of

28 Chapter 2 Issues in Complexity Studies

T1 T2

T1 T2>

-dQ1 = dQ2

Figure 2.2: A glass of liquid at temperature T1 is placed in a room at temperature
T2, where T1 > T2. The disequilibrium produces a field potential that spontaneously
drives a flow of energy in the form of heat, −dQ1, from the glass to the room so as
to drain the potential until it is minimized (the entropy is maximized). At this point
thermodynamic equilibrium is reached and all flows stop. The expression −dQ1 = dQ2
refers to conservation of energy in that the flow of heat from the glass equals the flow

of heat into the room.

energy that we lose information about when it is transferred and that we are thus unable

to extract. When, on the other hand, work is done on the system (W) our knowledge

about the energy content of the system increases, thus we are better able to distinguish

between the system and its environment. In this case, work done on the system does

not affect internal system entropy and thus represents the only way to move a system

further from equilibrium [56].

2.5.4 Gradient Dissipation

The second law of thermodynamics states that if two systems are allowed to interact and

exchange energy, that is if the constraints imposed between them are removed, then the

systems will evolve to equilibrium, a new state in which we cannot differentiate between

the systems. A statistical consequence of this physical law is that entropy will increase.

The active nature of the second law is intuitively easy to grasp and empirically easy

to demonstrate. Figure 2.2 shows a glass of hot liquid placed in a room at a cooler

temperature. The difference in temperatures in the glass-room system constitutes a

potential and induces a flow of energy in the form of heat. This ‘drain’ on the potential

flows from the glass (source) to the room (sink) until the potential is minimized (the

entropy is maximized) and the liquid and the room are at the same temperature. At this

point, all flows and thus all entropy production stops and the system is at thermodynamic

equilibrium. The same principle applies to any system where any form of energy is out

of equilibrium with its surroundings (e.g., whether mechanical, chemical, electrical or

energy in the form of heat).

The second law alone does not tell us which of the available energy transfer paths a

system will select in order to move back to equilibrium. The idea can be demonstrated

in a classic experiment on self-organisation first devised by Henri Bénard in 1900 [117].

Chapter 2 Issues in Complexity Studies 29

A viscous fluid is held between a uniform heat source below and the cooler temperature

of the air above. That is, there is a potential difference between fluid and air with a field

force of a magnitude, F , determined by the difference between the two temperatures.

When F is below a critical threshold heat flows from the source (fluid) to the sink (air)

in the form of disordered collisions between the constituent molecules, and entropy is

produced. If F exceeds the critical threshold Bénard ‘cells’ emerge spontaneously, each

cell consisting of hundreds of millions of molecules moving collectively together in the

form of rotating vertical convection columns. In this organised mode, the transfer of

energy through the system and its dissipation to its surroundings is much more efficient

than through unorganised collisions [103]. Such behaviour does not violate the second

law. As long as a self-organising system produces entropy (minimises potentials) at a rate

that is sufficient to compensate for its own ordering (persistence away from equilibrium)

then the balance demanded by the equation of the second law is not violated [56, 117].

2.5.5 Work

So far we have discussed displacement from equilibrium, constraint on energy transfer

and gradient dissipation as distinct concepts describing the active nature of physical

laws. But how can they be employed to control energy movement within systems, such

that useful work could be extracted from their functioning [52]? Consider a system

consisting of two connected tanks of equal volume but with different numbers of gas

molecules. This difference defines a gradient between both tanks. As soon as a conduit

between them is opened, gas whooshes through it, equalising the number of molecules

in the tanks and erasing the gradient between them. Gas can rush through even if it has

to turn a turbine along the way, thereby doing mechanical work. The energy to do that

work came from the thermal energy of the environment, but the conversion from thermal

to mechanical energy was paid for by the increase of disorder as the system equilibrated.

Now, if we repeat the first process again by first closing the conduit and transferring

energy from one tank to the other, we can repeat the same process of work extraction and

gradient dissipation. Although simplified, this principle of work extraction constitutes

a thermodynamic work cycle, which underpins the supply of most of the world’s electric

power and almost all motor vehicles.

2.5.6 Information

Within statistical mechanics, the entropy of a system at equilibrium can be recast in

terms of the variety of microscopic states available to the system:

S ≡ k lnΩ,

30 Chapter 2 Issues in Complexity Studies

where Ω is the number of states in which the system can be found when at equilibrium,

and k is the Boltzmann constant, 1.38x10−16J/K. Consequently, entropy has been

interpreted as a measure of macro-level disorder, formalised as Shannon entropy [108]

defined as:

S = −
∑

pi log pi,

where i ranges over the possible states of the system and pi is the probability of finding

the system in state i.

As such, it is possible to reinterpret the thermodynamic work cycle in information the-

oretic terms [52, 78]. We have seen that the difference between doing work on a system

and merely heating it up is the difference between how informed we are about the organ-

isation of the system’s energy. The potential gradient that must be established within a

system before useful work can be extracted from it is thus also an informational prop-

erty. Given that we are interested in computational systems that consume electricity

and also process information, there is scope for the equivalences between information,

energy and entropy to be useful, but also confusing.

2.5.7 Thermodynamics Beyond Physics

The application of thermodynamics is not limited only to physical systems [52]. Ever

since Alfred Lotka (1922) began writing about energy flows as the basis for natural selec-

tion, there has been a thermodynamic paradigm in evolutionary theory. Lotka observed

that selection will favour those organisms that, in pulling resources into their own ser-

vice, also increase the energy throughputs of their ecosystems [128]. What all organisms

have in common is that they operate and evolve at some distance from thermodynamic

equilibrium. By doing so they maintain the integrity of their organisational structures by

irreversibly degrading free energy through informed kinetic pathways acquired through

evolution. From this perspective, succession can be considered as the process by which

an ecosystem moves away from thermodynamic equilibrium with its environment [56].

By developing this account, the principles of variation and natural selection can be given

a sound thermodynamic basis. The principle of variation derives from two sources: the

entropic drive to generate configurational randomness and the quantum indeterminacy

about where that randomness will occur. Natural selection follows from competition

among alternative patterns of energy utilisation [127].

One consequence of this perspective is an increasing appreciation that organisms can be

viewed as more sophisticated ‘engines’ than the physical systems described so far [116].

According to [55], for instance, life or its physical manifestation can be described in terms

of an autonomous agent. This agent is a collectively autocatalytic system performing

one or more thermodynamic work cycles that: (1) measures useful displacements from

Chapter 2 Issues in Complexity Studies 31

equilibrium from which work can be extracted; (2) discovers devices that couple to those

energy sources such that work can be extracted; and (3) applies work to develop and

maintain the constraints that enable the further extraction of work.

2.5.8 Thermodynamic Account of Self-organisation in Computational

Systems

Whilst much is still to be understood in relation to the role the thermodynamics plays at

producing order and life in particular [54], initial models how it may be applied to study

and understand the self-organising properties of decentralised and information-driven

systems have already been provided [24, 29].

These models suggest that the concepts such as equilibrium, constraint and work, which

were initially derived from the study of thermodynamics can be generalised and applied

to computational, multi-component infrastructures represented as multi-agent systems.

More specifically, as suggested by Gambhir and Guerin in [24, 29] the equilibrium within

an information-driven system can be associated with the behavioural degree of feedom

of a software agent. Here, each agent may be characterised by its behavioural repertoire,

the set of actions that are currently available to it. During each decision-cycle, an agent

is required to select one action from the set of available ones and, by executing it, act

upon its environment. The behaviour of the agent will exhibit the highest degree of

uniformity when selection of any action is equally probable during each decision cycle,

and the agent behaves randomly. Since the degree of uniformity of the whole population

can be measured as the average over individual agent states, a multi-agent system can

be said to be at equilibrium when all agent decisions are made at random.

Given this, the emergence of constraint that would influence agent to favor only certain

actions from the whole repertoire would indicate agent’s (or system’s) displacement from

equilibrium and thus more organised state from which useful work can be extracted.

Relying on this intuitive interpretation of equilibrium, in what follows we provide two

examples of such software system architectures [90, 24], the functioning of which is

interpreted from the thermodynamical viewpoint outlined above. In each case, the local

decision-making of individual system elements is achieved through the creation and

destruction of gradients achieved through organised flow of information.

2.5.8.1 Entropy in a Two-agent System

A thermodynamic account of self-organisation within a multi-agent system is presented

by Parunak and Brueckner in [90]. The authors consider a simple coordination problem

between two agents who desire to be together, one a mobile walker, the other in a fixed

32 Chapter 2 Issues in Complexity Studies

location. Both agents are embedded within a spatial environment with neither knowing

the location of the other. The coordination problem for the walker is to locate the other

agent and move towards it. An intelligent observer capable to seeing the state of both

agents could send instructions to direct the movement of the walker. However, in this

model Parunak and Brueckner investigate stigmergic coordination inspired by organ-

isation in insect colonies. For this purpose, the stationary agent deposits pheromone

molecules at its location. Initially, the walker is unable to sense any molecules and per-

forms unguided movements. However, once pheromone molecules diffuse through the

environment and are detected by the walker, it follows the gradient formed by them, thus

reaching the target. We can understand how self-organised system behaviour emerges

from the random processes of pheromone molecule diffusion on two levels: a macro-level

at which coordinated behaviour of the walker agent arises; and a micro-level represented

by a random motion of pheromone molecules that diffuse through the environment.

An analysis of system organisation at both levels based on Shannon’s entropy reveals

that an increase in the micro-level entropy (as pheromone molecules diffuse to occupy

an increasing number of locations) is accompanied with a decrease in entropy at the

macro-level (as the movement of the walker is increasingly informed by the pheromone

gradient).

This simple example illustrates not only how ‘intelligent’ behaviour emerges from a

simple, entropy increasing processes, but also that the resulting self-organisation does

not defy the second law of thermodynamics since the price paid for the entropy reduction

at the macro system level is the increase in entropy generated by the random process

that produces and maintains the gradient.

2.5.8.2 A Full Population Model

A continuation of Parunak and Brueckner’s work is presented by Gambhir et al. in

[24]. Here, the authors apply a computational model of an ant foraging system to

demonstrate how complex organisation of interacting agents can be explained in terms of

ideas from far-from-equilibrium thermodynamics. Their analysis of this classic example

of self-organisation distinguishes three distinct modes of system behaviour: structure

formation, structure maintenance and structure decay. During structure formation,

some members of a population of agents diffusing over the environment discover a food

source and establish a pheromone distribution instructing other agents to organise their

activities into a foraging trail. By maintaining this structure, the population achieves

reliable transport of food to the nest. Once the food source becomes depleted, the

structure begins to decay and the agents return to their initial disorganised state.

To interpret how the system is displaced from equilibrium and how work is extracted

from these conditions, the authors evoke ideas of unconstrained and constrained transfers

of energy that are responsible for thermodynamical organisation and work extraction.

Chapter 2 Issues in Complexity Studies 33

Within a computational system, unconstrained flow of heat is considered as a diffusive,

entropy producing process of agents performing random walks. By contrast, constrained

transfer of energy, in the form of interactions with an organised pheromone distribution,

is interpreted as work done on agents, constraining their behavioural degrees of free-

dom (i.e., agent movements are directed to climb the pheromone intensity gradient, as

in the case of the walker agent discussed above). The insights drawn from this model

are similar to those arrived at by Parunak and Brueckner [90]. An initial increase in

entropy, during which agents explore the state space, enables the formation of organisa-

tion, imposing constraints on agent behaviour through interaction with the pheromone

field. To measure construction and destruction of constraints in this self-organising sys-

tem, Shannon’s entropy is applied. The measure of useful work done by the system is

represented by the number of pieces of food taken from the food-source to nest over a

run.

2.6 Discussion

At the end of the previous chapter we were interested in understanding why do natural

systems tend to prefer organised states over the ones that exhibited disorder. To answer

this question we hinted that self-organisation is a process that arises as a consequence of

certain physical laws. These laws as well as their account in achieving self-organisation

were presented in this chapter.

Surprisingly, and against our initial expectations, the role of these laws (the second law

of thermodynamics in particular) in achieving self-organisation is, at the first glance,

dubious as they describe the end-directed progression of the universe towards more

disordered state [56].

However, as these studies also show, it is this very destructive and ubiquitous nature that

allows spontaneous ordering to take place. In here, self-organisation is not considered

as an end-directed goal that aims to produce as much order within the universe as it

is possible, but is merely a side effect of the opposite processes that tend to produce

disorder. How can this puzzle be understood?

Even the most classical self-organisation experiment (Benard cells) that we have de-

scribed in Section 2.5.4 shows that, given the natural tendency of the system to move

into more disorganised and low energy state, it will choose the internal configuration

that allows it to degrade the supplied into it energy at the fastest rate. This can be

achieved once the system configures itself to fulfill that goal and this is when the self-

organisation takes place. In this case, the self-organised state would be sustained as

long as the system is fed with energy that displaces it further from equilibrium and thus

increases the tendency of the system to move back into the low energy state.

34 Chapter 2 Issues in Complexity Studies

If we now consider living organisms, we can interpret their functioning under the same

lines. The difference would be that now we are dealing with organisms that exhibit

intentional dynamics [117, 116] which allows them to identify and couple to the sources of

energy located within their environment, such that their organisation could be sustained

and not employed only for energy degradation but also for work extraction that preserves

the survival of the organism [55].

What are the implications of the above provided thermodynamic account of self-organisation

within the context of computational system engineering? In the reviewed in this chap-

ter self-organising computational models, we have described how information disparity

drives self-organisation in a population of software agents and that random behaviour

is an integral part of the maintenance of information flows that allow such a population

to organise effectively. This contrasts starkly with the (sometimes implicit) assump-

tion present in the multi-agent system community that software agents share complete

knowledge of the system, and make decisions as a result of joint deliberation, or at the

behest of a central executive charged with deducing optimal behaviour. This approach

is analogous to relying on a kind of maxwell demon to control a computational ecosys-

tem. The demon knows the position and state of every element in the system and is

able to impose/remove constraints that allow the system to do useful work. However,

thermodynamic considerations imply that, even if such a demon could be implemented,

it would be extremely costly.

The interpretation provided here should not be considered exclusive. While thermody-

namics and self-organisation have been the object of extensive research, there are still

open questions with respect to the application of these ideas to systems that are far from

equilibrium but capable of maintaining steady state [56]. In such cases, considerations

of thermodynamical systems at, close to, or moving towards their equilibrium state are

insufficient, making far-from-equilibrium thermodynamics an open and active area of

study with direct implications for engineering open computational ecosystems.

More importantly, if we aim to engineer self-organising IT systems, we must understand

the underlying thermodynamic principles of natural self-organisation, and, in particular,

how to apply these principles in the context of open IT systems. For this purpose, in

the next chapter we outline the existing work that has been done in the area of decen-

tralised system engineering with explicit focus on means through which self-organising

system response was obtained. Based on this, we contrast the presented approaches

with discussed in this chapter thermodynamic principles of self-organisation.

Chapter 3

Computational Complex Systems

In the previous chapter we introduced some general properties of complex systems to-

gether with the means they employ for sustaining stable behaviour and organisation. In

this chapter we will focus on the application of such systems to the control problems

relevant to IT systems. In particular, we will introduce in detail the aims of Autonomic

Computing, outline multi-agent system models suitable for realising this computation

and, finally, review the existing work aiming to apply natural self-organisation and com-

plexity studies to engineering artificial systems.

To this end, the chapter is organised in the following manner. In Section 3.1 we outline

autonomic computing challenges. Section 3.2 introduces agent-based computing and

multi-agent system models. Following this, Section 3.3 reviews three different artifi-

cial complex system models within which self-organisation was studied and applied for

achieving useful function from the system. We conclude with discussion in Section 3.4.

3.1 Autonomic Computing

The success of Autonomic Computing, according to IBM [58], will deliver control tech-

niques that present remarkable ability in:

• homeostasis: carrying out self-regulatory functions across a wide range of exter-

nal conditions, always maintaining a steady internal system state called homeosta-

sis;

• automaticity: doing all this without any conscious recognition or effort from the

system; and

• holism: self-governing the whole system, not just parts.

35

36 Chapter 3 Computational Complex Systems

Each of these properties points to significant characteristics of self-regulatory mecha-

nisms in natural systems that so far have been oversimplified, discarded or not suffi-

ciently well understood, whilst considering control mechanisms for software systems. In

particular, self-regulation is viewed here as a response of a system to a number of wide

external conditions, directed towards maintenance of a steady internal state. This im-

plies open and dynamic systems tasked to self-manage their activity in response to some

external pressures.

However, self-regulation is not a conscious effect of some centralised authority continu-

ously inspecting the state of every element and the existence of, for example, component

failure applying recovery plan. Rather, global self-management arises as a product of

the interactions of individual elements and their local responses to sensed changes in the

same principled way as the social intelligence of an ant colony arises largely from the

interactions among individual ants [121]. This suggests that self-regulation is an effect

of some self-organising processes the system is relying on and willingly exploiting for its

own benefit.

Finally, just as an increase in heart rate without a corresponding adjustment to breath-

ing and blood pressure would be disastrous, bringing autonomic capabilities to storage

systems would certainly be an improvement, but if the computing systems that mine the

data in those storage repositories become next to impossible to manage, that partial au-

tomation will not yield much overall benefit [42]. Autonomic computing is thus a holistic

vision that will enable the whole of computing to deliver much more automation than

the sum of its individually self-managed parts. This leads to an important consequence

— it does not suffice to produce autonomic elements such as particular infrastructure

components in order to engineer self-regulating systems. System-level engineering is

required.

3.1.1 Aims of Autonomic Computing

Although the realisation of fully autonomic computing will take many years and will re-

quire substantial understanding of natural system functioning, the properties of modern

IT systems allow the identification of four key domains within which self-management

will be required [58]:

• self-configuration — configuration of components and systems follows high-level

policies, and the rest of the system adjusts automatically and seamlessly;

• self-optimisation — components and systems continually seek and achieve nonlin-

ear tuning parameters and opportunities to improve their own performance and

efficiency;

Chapter 3 Computational Complex Systems 37

• self-healing — the system automatically detects, diagnoses and repairs localised

software and hardware problems; and

• self-protection — the system automatically defends against malicious and cascad-

ing failures. It uses early warnings to anticipate and prevent system-wide failures.

3.1.2 Autonomic System Architecture

Autonomic computing envisions self-managing software infrastructures as computational

ecologies [26] comprising myriads of autonomic elements, each adjusting their functioning

according to the perceived state of the environment and the response of other autonomic

elements [42, 9].

Whilst autonomic systems will utilise distributed computing and service oriented archi-

tectures [67], system components, including services, will be represented as autonomous

loci of control. Consequently, the systems self-management will be a product of the

interactions between and decisions of individual elements, with the objective of moni-

toring managed processes (eg., services) and their external environments, and executing

behaviour capable of preserving expected behaviour.

The behaviour of each autonomic element will be driven by goals that its designer has

embedded in it, by other elements that have authority over it, or by subcontracts to peer

elements with its tacit or explicit consent. However, to achieve flexibility and dynamism,

it is assumed that more sophisticated techniques will be utilised to express the goals and

objectives of autonomic elements [58, 71]. Thus, hard-coded behaviours will give way to

high-level objectives such as ‘maximise this utility function’ or ‘find reliable provider’.

Similarly, hard-wired connections between system components will be replaced with dy-

namic and flexible interaction patterns involving less direct specifications of an element’s

partners — from specification by physical address to specification by name and finally

to specification by function, with the partners identity being resolved only when it is

needed.

Whilst all this will be provided on top of pre-existing service oriented architectures

(SOA), autonomic features will augment these models with features unavailable previ-

ously. First, as service providers, autonomic elements will not offer services to every

requesting consumer, as would typical web services or objects in an object-oriented

environment. They will provide a service only if providing it is consistent with their

goals. Second, as consumers, autonomic elements will autonomously and proactively

issue requests to other elements to carry out their objectives.

Because the complexity of system management will be devolved into autonomic elements,

they will involve more complexity than simple objects. Thus, autonomic elements will

have complex life cycles, continually carrying on multiple threads of activity, and con-

tinually sensing and responding to the environment in which they are situated.

38 Chapter 3 Computational Complex Systems

Autonomy, proactivity, and goal-directed interactivity with their environment are dis-

tinguishing characteristics of software agents [53, 88]. Viewing autonomic elements as

agents and autonomic systems as multi-agent systems makes it clear that agent-oriented

architectural concepts will be critically important whilst engineering self-managing sys-

tems.

3.1.3 Autonomic Computing Challenges

With autonomic computing being at the forefront of a paradigm shift of modern com-

puting [134], the difficulties involved in its achievement have already been identified as

nontrivial and interdisciplinary. In particular, understanding of following properties is

considered crucial for progress in engineering self-managing software systems [58]:

• Emergent behaviour. Interactions between independent and autonomic computing

elemenets will produce qualitatively new behaviour on the global system level

[8, 6]. Controlling, and designing this emergent behavior in autonomic systems is

a challenge at the heart of autonomic computing [58, 93].

• Robustness. Autonomic systems cannot guarantee to operate without system ele-

ment malfunctions. Consequently, a theory of robustness for autonomic systems,

including definitions and analyses of robustness, diversity, redundancy, and opti-

mality, and their relationship to one another is required [22, 115].

• Adaptation. Actions performed in parallel by myriads of autonomic elements stress

the effects of learning conducted individually by each component to preserve its

local goals. Furthermore, the learning and decision-making of each element will

affect the functioning of others with no guarantee that the system will converge

to the optimum [2]. Thus what is needed are design principles and learning mech-

anisms that cope well in described environments [94, 133]. With respect to this,

machine learning by a single agent in static environments is well studied, but learn-

ing in multi-agent systems is a challenging but relatively unexplored problem, with

virtually no major principles and only a handful of empirical results.

3.2 Multi-agent Systems

When addressing complex computational problems, multi-agent systems offer more con-

venient alternatives to centralised systems that often struggle with a lack of scalability

and flexibility in response to unexpected conditions. From this perspective, the tradi-

tional way of conceiving software, in terms of functional entities interacting with each

other in a client-server fashion, is substituted by a perspective in which software is

modeled and designed in terms of autonomous software entities (agents), situated in an

Chapter 3 Computational Complex Systems 39

environment and capable of proactive actions toward their individual goal achievement

[86, 84].

3.2.1 General architecture of multi-agent systems

Multi-agent systems can be described using two different levels of granularity (that also

relate to different focuses of research within the multi-agent system community), as

follows [134]:

• micro-level (focuses on individual agents, their architectures and corresponding

decision-making mechanisms); and

• macro-level (agent societies, organisations and teams) at which the multi-agent

system displays global behaviour, whose conformance to the application require-

ments, for instance, determines its success as a whole.

Another important aspect of multi-agent systems is represented by the environment,

considered to be an integral part of such systems [57, 81, 89] that both influences and

is influenced by the actions of agents.

3.2.2 Decentralised Control and Autonomy

The ability of agents to make autonomous decisions enables them to control their own

actions to a higher degree and to exhibit much more autonomy than the components of

traditional distributed systems [86]. As a result, the multi-agent system approach offers

the capability to represent the system-level objectives (global goals) in a distributed

manner, where individual agents are responsible for the achievement of sub-goals and

therefore the overall system objective results from the actions of all agents.

The flexibility of the system is therefore achieved through decentralised system control

and autonomy at a lower level, represented by the individual agents. Such architec-

tures offer much greater ability to quickly counteract unexpected situations by enabling

agents to autonomously respond to detected problems (i.e. failures), whereas decen-

tralised global control minimises the chance of a serious system failure in case of partial

system damage [91, 88, 134].

Although this approach offers valuable characteristics for building large scale and com-

plex distributed systems, the reliable and predictable functioning of multi-agent systems

depends strongly on the ability to organise and coordinate the actions of individual

agents.

40 Chapter 3 Computational Complex Systems

3.2.3 Coordination Mechanisms

The introduction of multiple loci of control, resulting in the overall decentralisation of

system control, if not properly influenced, may lead to a decreased performance of a

system or its unpredictable functioning. Such undesired behaviour, in general, arises

because agents are concerned only with the achievement of their individual goals, yet

the system objective (defined at the global level) results from the actions of all agents.

As a result, multi-agent systems need to be endowed with coordination mechanisms

ensuring that agents interact in a manner that permits their activities to be developed

and integrated into the overall solution. In turn, this can be represented as a process

of efficient management of the dependencies (conflicts) arising between agent activities

[68], leading to organised behaviour of the system. To enable such coherent behaviour

we distinguish four general approaches, as follows.

3.2.3.1 Controlling the Degree of Interaction Between Agents

The most effective and restrictive way to coordinate a group of agents is to control the

degree of interaction between them by exerting strict control over each agent and each

interaction [132, 133], so that agents can interact in predictable and required ways at

each level. Such techniques for controlling the degree of interaction impose a relatively

static organisational structure on agents [19], where their autonomy and flexibility are

reduced to provide controlled interactions. This approach works well for very simple

and deterministic environments, where the size of the multi-agent system is very small

and the environment is static. In such scenarios agents are able to coordinate efficiently

and cooperate through contracts, rational planning and collective decisions in order to

achieve the requested goal [86, 15].

3.2.3.2 Computational Organisations

Following and extending the previous strategy, many approaches model multi-agent

systems as organisations of interacting agents [86, 130], where agents are endowed with

cooperation and negotiation capabilities that imitate human interactions, and are able to

form computational organisations [123]. The shift toward computational organisations

shows the tendency to increase the autonomy of individual agents and to control their

actions through organisational roles and prohibitions, making the coordination problem

distributed among a number of agents.

Chapter 3 Computational Complex Systems 41

3.2.3.3 Coordination Through Environment

Coordination techniques relying on the organisational metaphor or on control over agent

interactions are mostly achieved through mentalistic attitudes of agents and explicit

exchange of messages (seen as communication acts). This often results in a small number

of complex software agents, gifted with reasoning and planning capabilities.

Another important approach to the coordination problem tends to exploit interactions

between agents and the explicitly modeled environment [83]. This is either achieved

through coordination artifacts [82], representing shared information repositories (eg.

shared blackboards), situated within an environment, and further shared and exploited

by a collective of agents for achieving a social objective or by relying on stigmergy.

Inspired by natural biological systems [27, 91] stigmergy that is indirect interaction

through active environments in which agents deposit information, thus influencing and

directing the behaviour of other agents. In this case, the role of the environment is to

limit the information dissemination to relevant agents (those local to the origin of the

information) and to allowing the state or irrelevant information to leave the system. This

group of coordination mechanisms is the most promising for large scale systems since it

acknowledges the existence of an uncertain environment and exploits the full potential

of interacting and situated agents both in offensive and defensive ways, by enabling

autonomous entities to stimulate the system dynamics through interaction with the

environment, thus making it more adaptive and responsive to unpredictable conditions.

3.2.4 Multi-agent Systems in Practice

Despite the architectural advantages of multi-agent systems over centralised systems,

their potential and practical application has been, so far, limited to small scale and

fairly static environments. This is due to the extensive focus on scenarios relying on the

deterministic conditions of multi-agent system functioning, which limits the application

of existing coordination mechanisms in real-world dynamic and unpredictable conditions.

As a result, in practice most research within the multi-agent systems community is

influenced by traditional engineering, making multi-agent systems evolutionary rather

than revolutionary in terms of the models and approaches used during their design. This

can be represented by the following issues that need to be considered while building

effective multi-agent systems.

3.2.4.1 Scalability

The very first problem is scalability. Increasing the number of agents affects the dy-

namics of the system and results in a decreased ability of individual agents to obtain

global and up to date information about the system, thus localising their perception.

42 Chapter 3 Computational Complex Systems

This removes the possibility of efficient centralised control and requires the application

of decentralised coordination mechanisms [10, 123]. As a result, it has been noted that

increasing the number of interacting agents within multi-agent systems has a large im-

pact on the effectiveness of coordination techniques, making most of them inefficient and

unscalable [19].

3.2.4.2 Dynamism

Multi-agent systems approaches often neglect the existence of an environment, or wrap

it as a system component, considering it as a deterministic and fully controllable inner

part of the system [89]. An observed shift toward more uncertain environments [134],

where agents are required to operate in dynamic conditions (for example sensor networks

or grid environments), shows that environments play an important role in the overall

system functioning and can no longer be neglected or simplified. As a result, approaches

that try to wrap the environment into a system component may become limited, due to

the unpredictability and instability they bring, which can distort the system [89].

3.2.4.3 Top-down Control and Autonomy

The increasing requirement to deploy agents within uncertain open environments, and

the fact that the number of interacting components (agents and services) may vary and

be impossible to control, requires a focus on dynamic aspects of the system [113]. Un-

fortunately, many classical approaches emphasise static models of the system, focusing

on entities, states and events, where to make agents act predictably, their autonomy is

limited and often traded off against control of the whole system using a top-down ap-

proach [91], requiring any desired system-level behaviour to be explicitly represented in

lower-level components [92]. This can significantly decrease the flexibility of multi-agent

systems that require higher autonomy in order to adapt to unexpected changes [33].

3.3 Computational Complex Systems Review

Provided the architecture of multi-agent systems and its decentralised nature resembling

many natural systems, let us now focus on examples of computational systems the

operation of which was inspired by the behaviour of natural self-organising systems.

Chapter 3 Computational Complex Systems 43

3.3.1 Cellular Automata

3.3.1.1 Architecture

A Cellular Automata (CA) is an architecture consisting of a number of components

(cells) situated on a lattice on which the cells form a row of neighbouring elements.

Here, we focus on the most commonly used CA architecture, where a row has only one

dimension (the system components form a one-dimensional array) and the cells can only

be in one of two states (0 or 1). It is also assumed that the rightmost cell of the lattice

has the leftmost cell as a neighbour, thus making the whole row have the form of a torus.

The functioning of the system is performed through interactions between cells, where it

is assumed that only the neighouring cells can interact. The locality of interactions is

defined through the radius (r), which identifies the neighbourhood size of each cell. For

example, radius equal to 3 defines the number of neighbouring cells on each side of the

cell.

3.3.1.2 Computation in CA

The computation in CA is achieved through a cell’s state transitions from one state

to another, briefly described below. The row of cells starts out with some initial con-

figuration of local states and, at each time step, the states of all cells in the row are

synchronously updated, according to defined rules. These rules are specified by the sys-

tem designer and are the driving mechanisms which influence the particular evolution

of all the system cell’s states. For example, the rule may state that if most of the neigh-

bouring cells are in state 0, then the cell should also change to the same state. Because

neighbouring cells can be found in a number of different state configurations, each CA

rule is specified by a rule table with an entry for each local configuration, outlining the

transition of that local configuration. For a fixed neighbourhood size (r), the number of

entries in the rule table is finite (22r+1 entries in rule table for neighbourhoods of radius

r) and the space of rules is finite (22
2r+1

rules). The locality of cells causes the state

transitions in CA cells to be affected not only by their current state, but also by the

state of neighbouring cells. This feature often leads to the emergence of complex global

patterns represented by all the system cell states, which result from the simple and local

rules.

3.3.1.3 Mechanisms for Designing CA to Perform Computation

Although CA are suitable for studying the behaviour of natural systems, the application

of CA as a parallel computing system suffers from the lack of a programming paradigm

44 Chapter 3 Computational Complex Systems

or a general approach to constructing local rules that would enable global information

processing to emerge and yield expected results.

Work addressing this problem can be found in [85], where an adaptive technique for

programming CA is described. As a solution to this control problem, Packard proposes

to apply genetic algorithms responsible for evolving CA rules towards the most fit ones,

where the fitness is measured by the CA’s ability to accomplish the following classifica-

tion task. Given the initial configuration of the CA, the goal of the system is to decide

whether the density of 1s in an initial configuration is greater than 0.5 or less than

0.5. Evolutionary mechanisms involving crossover and point mutation operating on CA

cell rules lead to observation of two distinct types of rules being evolved with distinct

global behaviour: active and inactive. The population of inactive rules makes the CA

incapable to of transmitting information over the whole system, since they create static

regions (within a system) that contain local cell state modifications forever. Very active

rules, on the other hand, tend to communicate too much information to do successful

computation. For these chaotic rules, rapid state transitions propagate over the entire

system, where a given region is influenced equally by a large number of regions in the

past. Given these characteristics, Packard observes that the rules that tend to be chosen

by the adaptive process tend to lie near the region that marks the boundary between

chaotic (active) rules and non-chaotic (inactive) rules. The observed behaviour is ex-

plained by the necessity of the system to be in a dynamic state in order to maintain

efficient information flow, allowing the computation to take place between a number of

independent and localised elements.

3.3.2 Artificial Neural Networks

Whereas in the previously described CA model we were explicitly focusing on the locality

of interactions between neighbouring system elements, the model of neural networks that

we describe in this section introduces another important characteristics of decentralised

systems, that is networks of interactions.

This computing paradigm takes its inspiration from the functioning of neural networks,

which are the main constructs of human and animal brains. As the name suggests, neural

networks consist of simple and highly interconnected neurons, interacting with each

other through the exchange of electrical impulses. The aim in designing artificial neural

networks (ANNs) is to understand and exploit the functioning of underlying mechanisms

which render these artifacts superior to any other existing computational machines,

where their main characteristics are robustness to damage and real-time reactiveness to

a continuously changing stream of sensory input.

Chapter 3 Computational Complex Systems 45

3.3.2.1 Architecture

Artificial neural network models are often represented as networks of interconnected

elements, which simulate the functioning of a biological neuron. Interactions between

these artificial neurons (henceforth called neurons) are facilitated through connections,

where each such connection has an associated strength (weight) and acts as an input

for the neuron. It is assumed that each neuron can have more than one input and

that exchanged information is represented as a simple scalar message. Because the

functionality of a neural network emerges from the interactions between neurons, the

functioning of an individual neuron can be described as follows. Upon receiving a signal

from its inputs, the neuron performs a weighted sum of its inputs (based on the strengths

of the connections representing the inputs), and then fires a binary signal if the total

input exceeds a certain level. This signal may be received by other connected neurons

and propagated further, eventually forming an output of the neural network processing

task. Based on this, during ANN execution (usage), the input variable values are placed

in the neurons that serve as data input units, which propagate signals to other neurons.

When the entire network has been executed, the values received at the output layer

values act as the output of the entire network.

3.3.2.2 Computation in Artificial Neural Networks

As in biological neural networks, the goal of ANNs is to map a range of input values

into the output values, which represent a solution to a given problem. Before such

a network will be able to effectively perform that task, it has to be trained, through

a process of learning the strengths of connections between the neurons. There exist

different learning strategies, where the learning process may take place even while the

network is functioning. ANNs have been applied successfully to a number of prediction

problems that are difficult for traditional computing architectures such as:

• classification, where the objective is to determine to which of a number of discrete

classes a given input case belongs (eg. signature recognition); or

• regression, where the objective is to predict the value of a (usually) continuous

variable (eg. tomorrow’s stock price, the fuel consumption of a car, next year’s

profits).

Due to their recurrent interconnectedness and a lack of central control, neural networks

are capable of exhibiting non-linear behaviour, where their information-processing is per-

formed in dynamic conditions. Such a computation without stable states is a computing

paradigm different from Turing’s and introduces a number of interesting characteristics.

46 Chapter 3 Computational Complex Systems

3.3.2.3 Mechanisms for Achieving Computation Relying on Artificial Neu-

ral Networks

Work described in [104] focuses on this aspect and investigates the computational capa-

bilities of the non-linear dynamical system, represented by the neural network. Within

this context, computation is defined as the mapping between received inputs and outputs

in the classification domain problem.

The presented model consists of a neural network composed of 256 neurons with 33000

connections, which are then used to form a specific topology, with highly recurrent con-

nections. The system dynamics and non-linear behaviour is controlled by the following

parameters: the number of neurons; the number of incoming connections per neuron;

the variance of the zero-centered Gaussian distribution from which the weights for the

incoming connections are drawn; and the external input signal driving each neuron.

Based on these control parameters, a network is assumed to exhibit chaotic dynamics

if arbitrary small differences in a (initial) network state x(0) are highly amplified and

do not vanish at the current state x(t). A totally ordered network, on the other hand,

forgets immediately about the (initial) network state x(0) and the current network state

x(t) is determined to a large extent by the current input u(t).

Given this, the network performance is evaluated against the classification problem.

Schurmann et al. observe that by pushing the network into dynamic, far from equilib-

rium state, the neural network performs the best when its dynamics is between order

and chaos.

The same observation is reported by Bertschinger and Natschlager in [4], focusing on

the relationship between the dynamical behavior of a system also represented by neural

network, and its computational capabilities. To define this relationship, the authors

calculate the critical boundary in the parameter space where the transition from ordered

to chaotic dynamics takes place, and further show that only near the critical boundary

can such networks perform complex classification tasks.

3.3.3 Swarming

So far we have presented two distinct examples of decentralised models based on which

self-organising properties of natural systems can be studied, that is Cellular Automata

(CA) and Artificial Neural Networks (ANNs). Although these models show how com-

putation can be realised through local interactions, their application to autonomic com-

puting is not straightforward. Whilst the first model suffers from too broad generality

of its architecture to be directly applied to autonomic computing the latter one, on the

other hand, is too neural-networks domain specific to be easily operationalised within

the context of IT systems management.

Chapter 3 Computational Complex Systems 47

In this section we consider the third example of self-organising system models that is

inspired by the functioning of insect societies such as ant or termite colonies, fireflies,

bees, bacteria or slime molds [112]. Models of these decentralised architectures are often

described as swarming systems, where swarming relates to a ‘useful self-organisation of

multiple entities through local interactions’ [94].

Although individual organisms within these systems may be considered as very simple

and locally interacting entities, many biologists studying these systems [105] suggest

that they possess collective information processing abilities the understanding of which,

as we will show in the remainder of this section, has a potential to provide decentralised

means of control suitable for autonomic systems [91, 134].

3.3.3.1 Decentralised Data Clustering

Work exploiting the swarming system characteristics is presented in [93], where Parunak

et al. focus on the problem of data clustering based on its similarity defined through a

similarity function. Most existing data clustering algorithms suffer from centralisation,

where data structure and similarity function are centralised, and the requirement to

preserve both the population of items being clustered and the similarity function to

remain constant during clustering.

To overcome these limitations, Parunak et al. provide a decentralised data clustering

algorithm, influenced by the behaviour of ants performing the same operation in their

habitat. The natural algorithm works as follows. As ants wander about, they pick up

objects with a probability u and drop them with a probability d. The probability u

decreases, and d increases, with the objects’ similarity to nearby objects. As objects

move from regions where they are dissimilar to their surroundings to regions where they

are similar, homogeneous clusters form.

In the adaptation of the ants clustering algorithm, the objects to be clustered are repre-

sented as active content agents (representing paragraphs of text) that are able to change

their location by moving into different places. Because initially content agents are as-

signed randomly to a fixed set of logical places (distributed over multiple processors), the

system’s objective is to maximise the similarity among the content agents that occupy a

given place. During information clustering, parallel decision-making conducted by sim-

ple agents is exploited. From an individual system element point of view, each content

agent relies only on local information, where it compares its information content with

the information content of a random sample of agents from the same and other places.

Based on that, it probabilistically decides to change its place, where the probability

increases with the increase in similarity that the move would provide. As a result of this

decentralised decision-making process, conducted by a large number of simple agents,

homogeneous places form, where information in each place represents similar concepts.

48 Chapter 3 Computational Complex Systems

Experiments conducted on a simulation model show that a system composed of a large

number of such active components reaches a high average place homogeneity very quickly,

where its convergence speed has an exponential fit. Another interesting observation is

that increasing the number of agents (and thus data to cluster) does not affect the

exponential characteristics of the algorithm.

3.3.3.2 Analysis of Self-organisation in Swarming Systems

Similar observations are supported by work investigating self-organising properties of

swarming systems, represented by an artificial model of a food foraging ants colony [29].

Based on this model, Guerin and Kunkle observed that the self-organisation process

continuously stimulates the system to undergo transitions from structure (of foraging

trails) formation, its maintenance, and finally decay. The ability of the system to dy-

namically discover new foraging trails and thus leap into optimal system configurations

is driven by the availability of the food within the environment explored by the ants

and the stigmergic coordination [121] ants utilise for collective food location and trans-

portation. In achieving this flexible system adaptation, local information propagation

through stigmergic mechanisms plays a crucial role, and is achieved by depositing digital

pheromones (imitating chemical substances) into the environment by foraging ants that

successfully located the food source. These pheromones attract other foragers and thus

mark the route from the nest to the nearest food source, the strength of which is propor-

tional to the amount of ants attracted by it and thus source of the food. As pheromones

evaporate over a specific time period, routes that are not reinforced by ants decay and

the foraging trail disappears. This naturally inspired coordination mechanism couples

the activities of individual agents catalysing self-reinforcing and closed flows of informa-

tion between collocated components. Although ants do not have an internal model of

a foraging trail, and react to attracted pheromones, their collective activity results in

ordered structures maintained by their local decisions.

Given this description, Gambhir et al. observe that too strong information propaga-

tion to the environment (stimulated by the deposited pheromone strength) locks agents

into pathological tight loops, where agents wander in circles, attracted by each other’s

pheromones that, due to high strength, prevents evaporation before being reinforced.

In this configuration, the system is totally inefficient at the foraging task due to never

being able to transport collected food back to the nest. As a solution to this problem,

Gambhir et al. limit the pheromone strength, such that it evaporates once the food is

being exploited at the current location and before other agents are attracted by it.

Chapter 3 Computational Complex Systems 49

3.3.3.3 Decentralised Graph Colouring

The dependence between information exchange between system components and perfor-

mance of a large-scale agent system is also observed in other swarming architectures. In

[12] Brueckner and Parunak investigate the graph colouring problem by applying a de-

centralised multi-agent system in which a fixed topology of networked agents represents

graph nodes. The distributed graph-colouring model represents a class of agent systems

in which the agents are only able to interact locally based on potentially incomplete or

outdated knowledge. Such systems occur for instance in real-world applications that de-

ploy large numbers of agents in a physical environment with limited resources available to

the individual agent (e.g., swarming robotics, sensor networks and autonomic systems).

In general, the graph colouring concerns colour assignment to individual nodes (out of a

fixed set) such that the number of edges that connect nodes of the same colour is min-

imised. In the model in [12] agents perform local decisions about which colour to switch,

based on the exchanged information communicated about the occupied colours from the

neighbouring agents and local strategy that aims to minimise conflicting colours. The

rate at which individual agents make their decisions (by randomly selecting agents from

a population) is controlled by an activation level parameter (AL). Whilst changing

the colour, the agent communicates this to the neighbouring nodes. To reflect noisy

and time-constrained information exchange, delay of communication between agents is

stimulated by a communication latency parameter (CL).

By increasing the frequency at which agents make decisions (AL parameter) above a

critical value, Brueckner and Parunak observe that the emerging dynamics of the decision

processes includes a robust phase change in system performance, defining three regions

in which the system performs 1) ‘better’ than random’, 2) ‘worse’ than random and 3)

‘asymptotic’ to random. For the first and last configuration, the population is able to

solve a complex problem, but in the case of worse than random region, the system is in a

thrashing mode that prevents the agents from finding and maintaining a good solution.

As a solution to this problem, Brueckner and Parunak derive local metrics that allow

agents to detect that the system is thrashing and by stimulating the rate of decision-

making (AL) to suppress inefficient decision-making of individual agents contributing

towards this pathological behaviour.

3.3.3.4 Resource Management Through Biologically Inspired Division of

Labour

Regulation of labour is fundamental to the organisation of insect societies and is thought

to be one of the principal factors in their ecological success [99]. Exhibited by adaptive

allocation of individual colony members into a number of different tasks [28], such self-

regulatory processes offer a decentralised means of control that, if sufficiently understood,

can become an efficient way of constructing artificial self-organising systems.

50 Chapter 3 Computational Complex Systems

An example of such a process can be observed in an ant colony [7] where from a popula-

tion of homogeneous ants, each capable of handling the same number of tasks, a system

proliferates into distinct but organised collectives (castes) of elements. Each such col-

lective specialises at carrying out specific tasks such as food foraging, nest building,

brood feeding, nest defense, etc. The survival of the colony depends on both the effi-

cient handling of each system task and the adaptive division of resources (ants) into a

number of such collectives achieving different tasks. For example, if there is more brood

to feed, food foraging needs to be carried more efficiently; if the colony is expanding,

more builders are required to carry out the nest expanding; if the colony is under attack,

a group of food foraging ants needs to be minimised and recruited for the nest defense.

One of the most striking aspects of such a self-regulatory response achieved by division

of labour is plasticity, a property achieved through the workers’ behavioral flexibility:

the ratios of workers performing the different tasks that maintain the colony’s viability

and reproductive success can vary (i.e., workers switch tasks) in response to internal

perturbations or external challenges [7].

Understanding how this flexibility is implemented at the level of individual workers

which certainly do not possess any global representation of the colony’s needs has been

addressed in [120, 7, 73], revealing that self-regulatory properties of insect colonies stem

from simple threshold based responses of system elements to perceived demand, in which

specialisation of system elements to handle particular tasks arises as a result of a re-

inforcement process, the principles of which are explained in [120]. Here, Theraulaz et

al. present a simple stimulus-response threshold model where m tasks within a system

are associated with stimuli or demands, the levels of which increase if they are not sat-

isfied (because they are not performed by enough individuals or at high enough rates).

Likewise, system elements capable of handling any of these tasks maintain a list of re-

sponse thresholds, each for a particular task. These thresholds represent the likelihood

of reacting to task-associated stimuli where low threshold individuals perform tasks at

a lower level of stimulus than high threshold individuals. Given this, within individual

workers, performing a given task induces a decrease of the corresponding threshold, and

not performing the task induces an increase of the threshold. This reinforcement process

leads to the emergence of specialised workers; that is, workers that are more responsive

to stimuli associated with particular task requirements from a group of initially identical

individuals.

A number of self-organising models exploring labour division based on such threshold

reinforcement mechanisms are presented in [94, 16, 110]. In [94] Parunak and Brueckner

propose a stigmergic coordination mechanism to preserve energy resources within a

power constrained mobile ad-hoc network achieved by activation and deactivation of

servers according to the locally perceived demand. In [110] a decentralised system model

exploring the process of division of labour in a honey bee colony is presented by Robinson

et al. Another example of an ant coordination mechanism is introduced by Cicirello et al.

Chapter 3 Computational Complex Systems 51

in [16] and applied to the distribution of different tasks among a set of servers adapting

to the perceived demand.

3.4 Discussion

Irrespective of whether these systems are abstract models of interacting cells, imitations

of a swarm of insects or a chemical system, the exploitation of their computational capa-

bilities requires facilitation of both function and control. Whereas the first relates to the

mechanisms through which the system is achieving the required tasks (i.e. performing

stock market price prediction or managing distributed resources over a network of dis-

tributed mobile nodes), the latter is concerned with the processes controlling the reliable

provision of the functionality despite perturbances and varying functioning conditions.

The process through which function and control is facilitated in these models is related

to self-organisation of system elements into collectives (otherwise called organisations)

[37], characterised by robustness and resilience to perturbations and single component

failures [129]. As the ability to robustly provide function and control through a set

of interacting autonomic elements is at the heart of autonomic computing, below we

characterise the means through which these processes are addressed in decentralised

models.

3.4.1 Information Flows

Recent insights into understanding the functioning of decentralised models have re-

vealed that the organisation of localised system elements into collectives handling par-

ticular functions and self-regulatory activities is subject to their behavioural stimulation

achieved either by direct or indirect information exchange [57, 7, 95]. Such information

dissemination, stimulated independently and in parallel by autonomous system elements,

gives rise to self-sustaining flows of information across the system that, in turn, are as-

sumed to play the key role in organising the whole system [91].

Although within emerging networks of interacting agents no system element has the abil-

ity to control information exchange beyond its locality, it is the information perception,

processing and propagation performed by each agent that stimulates the global system

functioning and gives rise to function and control. Below we characterise these three

activities.

3.4.1.1 Information Perception

Elements acquire new information by interacting with other components as well as with

the environment they sense. Such interactions have a certain locality, preventing each

52 Chapter 3 Computational Complex Systems

component from obtaining and operating on full knowledge about the current system

state. As a consequence, information acquired by individual system elements represents

only a local view of the current system state. Here, the locality stems from constraints

imposed by the time, cost to transmit information and the system dynamics that causes

information to become stale as soon as the system configuration changes [105].

3.4.1.2 Information Processing

Given this limited scope of available knowledge to individual system elements, the mech-

anisms governing their behaviour do not involve complex reasoning, but exhibit simple

and reactive stimulus-response properties. For example, in CA, state change rules are

designed in such a manner that each perceived state change of a neighbouring rule is

mapped to a new state the cell switches, thus propagating this change to other nearby

elements. In artificial neural networks (ANNs) each neuron, upon receiving a signal

(and based on the current weight and threshold parameter), propagates it further to the

interconnected nodes. In a more sophisticated model, represented by swarming systems

such as ant colonies, the acquired information acts as a ‘potential field’ attracting indi-

vidual elements to perform certain tasks, such as food foraging, brood feeding or nest

construction. Again, individual ants do not perform complex decision-making on the

perceived information, but rather act as automata with reactive strategies dependent on

the information signaled and their location.

3.4.1.3 Information Propagation

Information processing may lead to the modification of perceived information and thus

dissemination of filtered or modified knowledge to other system elements. For example,

in the case of a swarming system involving ants, the individual ant sensing pheromones

will be attracted by it (if they are sufficiently strong) and thus modify its behaviour

accordingly. This behavioural modification affects also what information the ant prop-

agates to the environment or other elements in the future. In this case, an ant that

has been attracted by a food foraging trail will actively forage and deposit informa-

tion, encouraging other ants to follow the same process. In ANNs perceived stimuli will

be propagated only if they exceed a certain propagation threshold. The effects of this

process, analysed from an individual’s perspective are understandable. However, when

a set of components interacting in parallel is considered, propagation of certain infor-

mation may lead to the adjustment of the behaviours and willing contribution in this

self-reinforcing process of other elements, until all system components (within a certain

local system vicinity) form a group of coherently acting components. This feature, often

described as autocatalytic potential or positive feedback [11, 91] is said to play key role

in achieving the system’s self-organisation.

Chapter 3 Computational Complex Systems 53

3.4.2 Bottom-up Information Flow Regulation

The existence of information flow within the system does not suffice to organise system

elements into collectives that provide the required functionality. Both the manner in

which information is communicated between localised elements and how this process is

being regulated through local decision-making mechanisms have significant impact on

the arising information flows and thus the ability of the system to self-organise or drift

between ordered or chaotic states. These observations, shared across such decentralised

system models are described below.

3.4.2.1 Dynamic Interaction Topologies

Traditional software systems conform to a static model of computation, where it is

performed by the flow of information through static and pre-imposed at design time

interactions between the system components. Within the reviewed decentralised ar-

chitectures, on the other hand, computation involves and is inherently related to the

modification of their internal structure or organisation, often defined through relation-

ships and interactions between system elements. Because of this, the system responds

to the environmental changes by reorganising its structure and thus adapting to new

conditions. For example, in the case of CA, computation is performed through the

modification of states of individual cells, which lead to the formation of specific global

patterns that exhibit information-processing capabilities. The same local behaviour is

observed in artificial neural networks, where strengths of associations between simple

neurons play crucial role in the ability of the network to perform complex classification

tasks. Finally, swarming systems also achieve their global goals through reconfiguration

of their organisational structure reflected by the proliferation of ants into collectives that

handle different system level tasks.

3.4.2.2 Local Regulatory Mechanisms

As there is no global controller directing the decisions of individual system elements,

the control over the arising interaction topologies and thus the manner in which infor-

mation flows across the system is devolved to individual system elements. For example,

Packard [85] showed that it is the role of local rules embedded within individual cel-

lular automata that, by appropriately regulating the information exchange, sustain the

organisation of the whole system and prevent its descent into a chaotic state. In this

context, he observed that the population of evolved ‘active’ rules tended to communicate

too much information to perform successful computation, leaving the system in rapid

state transitions propagating over the entire system, whereas ‘inactive’ rules were inca-

pable of transferring information over the whole system. The best system efficiency was

54 Chapter 3 Computational Complex Systems

achieved with rules that existed near the region that defines the transition from chaotic

to non-chaotic ones.

Similar observations are supported by Guerin and Gambhir [24] investigating self-organising

properties of a swarming system represented by the model of the food foraging ants

colony. Here, the authors show that propagation of strongly biased information to the

environment (through digital pheromones the foraging ants deposit) locks agents into

pathological tight loops. In this configuration, the system forms organised and circular

foraging routes that are totally inefficient at transporting food back to the nest. By lim-

iting the strength of pheromones too much, on the other hand, the system is incapable

of forming any structures, since information evaporates before it is reinforced by ants,

leaving individual foragers to randomly explore the area. Similarly to the case of the

most effective CA’s rules residing at the boundary between ordered and chaotic system

behaviour, the most effective pheromone strength parameter value in ant-like system is

set to reside between two observed behavioural extremes.

3.5 Thermodynamics of Self-organisation

In all the presented models system efficiency is proportional to its ability to achieve

order and structure. During this self-organisation process, individual system elements

transition from initially disorganised and chaotic interactions into those that are dis-

tinguishable and traceable through stable topologies, viewed either as isles of similarly

configured cells within CA or collectives of ants forming a foraging trail within a swarm-

ing system.

To achieve such organisation, various techniques and local-decision making mechanisms

have been applied. For example, Packard applied evolutionary algorithms to ‘breed’ the

most efficient local rules, whereas Guerin and Gunkle explored simple stimuli-response

model parametrisations to encourage an ant colony model to achieve the food forag-

ing task. As a consequence, although complex system models presented above show

interesting self-organising capabilities, they are achieved at the cost of large amount of

experimentation and model tinkering. Whilst this is not a main issue addressed within

these efforts, the application of such complex systems to preserve control over autonomic

computing infrastructures requires a more principled and methodological approach.

In particular, given the fact that complex systems exhibit emergent behaviour that, as

we have seen, is the motive force for achieving organised (or chaotic) system response,

a careful understanding of such a phenomenon is required. For this purpose, not only

do we need to provide adaptive decision-making mechanisms, but more importantly, we

need to understand why and under what conditions such mechanisms lead to increased

system efficiency. Understanding this bottom-up self-organisation phenomenon will al-

low not only for construction of artificial self-organising models but, more importantly,

Chapter 3 Computational Complex Systems 55

engineering of dependable and reliable autonomic systems.

To advance the current state of research in this direction, we consider a study of thermo-

dynamics and self-organisation as key investigation areas. According to thermodynamics

of self-organisation (described in Section 2.5), the increase in system organisation can

be understood as the emergence of constraint imposed on individual system elements

that arise as a result of energy flow across the system’s boundary. If properly regulated,

such a flow displaces the system from equilibrium and allows useful work to be extracted

from the system. From a thermodynamic viewpoint, work extraction is not a result of

intelligent acting of system constituents (since they may be simple molecules) but results

from an end-directed behaviour of such elements aiming to dissipate the energy-related

gradient and push the system back to equilibrium.

Although the research focusing on thermodynamics of self-organistion within artificial

systems is at its infancy, there have been several approaches (presented in Section 2.5.8)

that extend thermodynamic analysis to artificial computational models, revealing that

the same patterns of behaviour can be observed within artificial systems.

In the remainder of this thesis, we will extend this analysis and interpretation within the

context of autonomic computational systems design. In doing so, to approach the three

control problems introduced in Section 1.2 through bottom-up control mechanisms, we

will employ open multi-agent systems to model decentralised autonomic systems and

analyse their response whilst introducing decision-making processes that impose con-

straint, generate gradient and exploit that gradient for a useful work extraction. Within

such systems, rather than considering energy flows, we will focus on the role of infor-

mation flows across an open system’s boundary and between its individual autonomous

elements.

As such flows within natural systems are responsible for structure formation and its ro-

bust maintenance, we will investigate under what conditions will agents self-organise and,

if so, what impact will such organisation have on the efficiency of the system in achieving

three of the aforementioned system-level functions. During the experimental analysis

we will reveal what processes and decision-making mechanisms are critical at achieving

global system stability and organisation and that are consistent with the principles of

self-organisation discussed in Section 2.5. Finally, we will extend the thermodynamic in-

terpretation to the class of decentralised multi-agent systems and provide general design

principles aiding the design and engineering of such artificial self-organising systems.

Chapter 4

Modelling an Autonomic System

4.1 Introduction

In the previous chapter we introduced the general characteristics of complex natural

systems, including their multi-level architecture, emergent behaviour and self-organising

features responsible for adaptive and robust behaviour of these systems. Following this,

we presented the existing state-of-the art in applying these decentralised models to

perform adaptive and efficient computation on behalf of human operators. Finally, we

suggested thermodynamics and self-organisation studies as a necessary route to advance

the understanding of self-organising properties exhibited by these systems as well as

their principled engineering within the context of autonomic computing.

In this chapter we offer an introductory study of applying self-organisation to preserve

control over autonomic computational systems. To do so, we present a minimialistic

multi-agent system model provided with simple local decision-making mechanisms and

confront it with the problem of load-balancing within a controlled resource allocation

environment. Based on the experimental results, we then analyse system efficiency and

its ability to establish constraint on the behaviour of its constituents that, according to

thermodynamics, identifies organised system state in which useful work can be extracted.

Since the main aim of this chapter is to introduce decentralised multi-agent system

control into autonomic systems and study its self-organising potential, we focus our

attention on the simple thermodynamic analysis of self-organisation observed within the

autonomic system model and do not offer any ready-to-use solutions for any particular

resource management problem. In the remainder of this thesis, this analysis is extended

to a more advanced and realistic autonomic system model, the self-organising properties

of which are analysed in a range of more challenging and realistic problems.

To this end, the chapter is organised in the following manner. In Section 4.2 we describe

the load-balancing problem that we will approach, relying on the minimialistic autonomic

57

58 Chapter 4 Modelling an Autonomic System

system model described in Section 4.3. Empirical results, evaluating system performance

are presented in Section 4.4, whereas the thermodynamic analysis of system behaviour

is conducted in Section 4.5. The chapter concludes with discussion presented in Section

4.6.

4.2 Load-balancing Within a Minimalistic Multi-agent Sys-

tem Model

Achieving load-balancing (defined in Section 1.5) in a decentralised manner represents

a non trivial challenge that, if not properly approached, may result in poor system

scaleability or an unexpected loss of the system performance. In particular, it has been

observed [40] that the introduction of shared and constrained resources into a system

composed of a large number of independent and concurrent components, responsible for

offering and consuming resources on behalf of system users, may quickly and unexpect-

edly lead to the emergence of undesirable system behaviour, often described as resource

competition [94]. In this state, consumer agents end up competing for specific subsets of

resources, leaving others under-utilised. This results in poor global resource utilisation

reflected by inefficient load-balancing over the set of available resource providers. Fur-

thermore, because there is no centralised control, the system may simply self-reinforce

this competitive behaviour leading to a very rapid degradation of system performance

[41].

A close investigation of this problem shows that inefficient resource utilisation on the

system scale arises from poor decisions made by individual system elements concern-

ing their selection of resources. This presents us with the problem of facilitating local

decision-making mechanisms capable of suppressing competitive interactions between

resource consuming elements. Where competition cannot be avoided, for instance where

demand for resources outstrips supply, such resource allocation mechanisms should effec-

tively distribute service provision across the system, thus preserving fairness. As these

mechanisms concern the manner in which resources are selected by consumers, in the

remainder of this chapter we will refer to them as resource allocating mechanisms.

In the remainder of this chapter we will approach this problem with a minimialistic multi-

agent system model in which agents are required to adaptively balance the consumption

of available within the system resources such that inefficient resource competition is

avoided. Since the intention of such a design is to investigate how global system stability

and efficiency can arise as a result of local interactions and simple decision-making

mechanisms, we do not aim to provide a ready-to-use solution to the load-balancing

problem but offer a thermodynamic analysis of observed bottom-up system organisation.

Chapter 4 Modelling an Autonomic System 59

4.3 Simulation

4.3.1 Model Design

The autonomic system model that we will explore in this chapter is based on a multi-

agent system architecture that comprises:

• a service registry, that serves as an inventory of the resource providers within the

system;

• a population of SN agents representing resource providers (services);

• a population of UN agents representing resource consumers (consumers).

Services are provided by agents that facilitate access to resources (disk storage, CPU

time, etc.)1. Each service has a type and a capacity. For example, S1:A10 represents a

service provider (identified by the prefix S and a unique instance number, 1) of type A

and capacity 10. Such a service is able to simultaneously satisfy a number of resource

consumers requesting up to a total of 10 units of resource A.

Consumers consume resources according to a personal workflow defining the type, ca-

pacity and order of services required. For example, U1:W1 represents a consumer (identi-

fied by the prefix U and a unique instance number, 1) with workflow W1. Workflows are

represented by an ordered set of service demands. For example, W1 = {A10, B5, C15},

where the number next to each service type indicates resource capacity required by this

particular service type. Here, we assume that consumers may share identical workflows,

and that, moreover, different workflows may demand the same service types. As such,

consumers may be in competition with one another for the same system resources.

The registry is an agent tasked with maintaining an inventory of system services.

When queried by a consumer, it supplies a list including any and all services with a type

that matches the service required by any of the consumers workflow components. This

list is constructed in set order.

Service Allocation is performed independently by each consumer. For each workflow,

the agent first obtains from the registry a list of existing services capable of providing

any of the resources required by the workflow2. This action takes time Tx and incurs an

execution cost, Cx. Repeatedly, services are chosen from this list and their availability

determined (each time incurring a query cost, Cq, and consuming time, Tq). Services

1We assume that each agent can facilitate access to only one service, and refer to such agents as
“services” in order to distinguish them from service consumer agents.

2In reality the information obtained from such registries can become stale and unreliable over time
since resources are continually leaving and joining the system. Ultimately, we are interested in systems
where this unreliability is sufficient to ensure that agents prefer not to make use of it at all.

60 Chapter 4 Modelling an Autonomic System

may be unavailable because they are busy to the extent that they do not have the

spare capacity required by the workflow component, or because they are no longer

part of the system. Once an available service has been located, the agent attempts to

allocate the next component of its workflow. Once all components of the workflow are

allocated to services in this way, the agent attempts to execute the workflow using these

services. Since services are not locked during the allocation process, it is possible that

a consumer agent may allocate a workflow component but find that the service is busy

when it attempts to execute it. In such circumstances, the consumer must re-allocate

this workflow component. Successfully executing a component also takes time, Tx, and

incurs an execution cost, Cx. Should a service fail during execution, the consumer still

pays the execution cost, but must also re-allocate the workflow component. If, during

any allocation process, a consumer makes n attempts to locate an available service

of a particular type, the allocation is deemed to have failed, as is the workflow it is

part of. Here, for each workflow component to be allocated, we set n equal to the

number of services of the required type returned by the registry. Whether successful

or unsuccessful, upon completing a workflow, a consumer agent, Ui is inactive for some

randomly determined period drawn from a uniform distribution [0, ωi] after which the

same workflow allocation process begins again.

Given the costs involved in the allocation process, we can define an optimal level of

performance against which to compare system behaviour. The cost to an individual

consumer of completing a workflow Wj can be written as

C(Wj) = Cx +

|Wj |∑

i=0

fiCq + (gi + 1)(Cq + Cx)

Here, fi and gi are, respectively, the number of failed attempts to locate an available

resource and the number of failed attempts to execute a located resource, for each

workflow component, i. A workflow is achieved with minimal cost where ∀i, fi = gi = 0,

giving

C∗(Wj) = Cx +

|Wj |∑

i=0

(Cq + Cx)

For a system of consumers and services involving WN unique workflows, where the

proportion of consumers attempting to complete workflow Wi is pi, the optimal system

cost, C∗, can be written as

C∗ =

WN∑

i=0

C∗(Wi)pi

Chapter 4 Modelling an Autonomic System 61

Time is not represented explicitly within the system, as the simulation takes place

in real time, with an independent parallel thread associated with each consumer, each

service and the registry. As such, agent activity takes time, which is a limiting physical

property of the system. Moreover, system update is truly asynchronous, which avoids

the possibility that components might become phase locked, or other artifacts that may

result from discrete, synchronous time updating [43, 31].

To realise this, the underlying multi-agent system model is constructed such that every

consumer agent is a an independent software thread 3 driven by its own internal control

mechanism. As a result, all consumer agents asynchronously and in parallel conduct their

resource allocation decisions whilst searching for available resources. During this process

the time it takes to allocate is proportional to the number of requests the consumer agent

performs until it finds an available service.

Scenarios explored here all conform to the following specification, unless stated other-

wise. An equal number of agents repeatedly attempt to execute each of three different

workflows for a period of time, TN . Since we expect simple workflows to be requested

more frequently, the maximum period of time for which a consumer will sleep after com-

pleting (or failing to complete) a workflow, ω, is workflow-dependent such that more

complicated workflows tend to be associated with longer periods of sleep:

W1 = {A10}, ω1 = 1s

W2 = {A10, B10}, ω2 = 2s

W3 = {A10, B10, C10}, ω3 = 3s

For all agents, the following values are assigned to the costs and execution times of service

interactions and service executions: Cx = 20 units, Tx = 500ms, Cq = 10, Tq = 100ms.

Based on the equations derived above, these parameters define minimal costs for a

consumer attempting to execute each workflow: C∗(W1) = 50 units, C∗(W2) = 80 units,

C∗(W3) = 110 units. Since the proportion of consumers attempting to execute each

workflow is the same, the optimal cost for a system can be calculated as C∗ = 80 units.

4.3.2 Consumer Strategies

Consumers rely on strategies to guide their individual behaviour. Here we explore min-

imally sophisticated strategies separately and in combination.

• Null strategy (∅): when attempting to allocate a workflow component to a

service, the consumer agent proceeds to select services from the list of available

resources obtained from the registry, in order.

3The system model is written in Java programming language.

62 Chapter 4 Modelling an Autonomic System

 0

 80

 160

 240

 320

 400

 90 180 270 360 450 540

M
e

a
n

 s
y
s
te

m
 c

o
s
t

Number of system components

C*

 0

 20

 40

 60

 80

 100

 120

 140

M
e

a
n

 a
g

e
n

t
c
o

s
t

RP R RP R RP R

C*(W3)

C*(W2)

C*(W1)

Figure 4.1: The impact of system size on global (left) and local (right) system costs.
Left: mean system cost for representative runs of four strategies, ∅ (empty circle),
P (solid circle), R (empty rectangle) and RP (solid rectangle), where a dotted line
(C∗) corresponds to the optimal cost (in each case consumer demand matches service
provision such that UN : SN = 1 : 2). Right: mean workflow completion costs for repre-
sentative runs of systems of 540 components (UN = 180, US = 360) for three workflows,
W1, W2 and W3, where dotted lines (C∗(W1), C∗(W2), and C∗(W3)) correspond to

the optimal costs for each workflow. In each case TN = 400 seconds.

• Random selection (R): attempting to allocate a workflow component to a ser-

vice, the consumer makes random choices from the list of available resources ob-

tained from the service registry.

• Preferential selection (P): when attempting to allocate a workflow component

to a service, the consumer preferentially returns to the last service employed for

that component, if it was executed successfully during the last workflow, otherwise

the null strategy is employed.

• Hybrid strategy (RP): when attempting to allocate a workflow component to

a service, the consumer preferentially returns to the last service employed for that

component, if it was executed successfully during the last workflow, otherwise the

random selection strategy is employed.

We do not expect these simple strategies to be employed within real autonomic systems.

However, the simplicity of the randomising and canalising behaviours that they employ,

both separately and in combination, make them good candidates for examination, since

these processes are considered by thermodynamics studies to play key roles in achiev-

ing system self-organisation. To understand how these processes achieve global system

efficiency within the context of the load-balancing problem, below we provide an experi-

mental evaluation that is then followed by a thermodynamic analysis, explicitly focusing

on constraint imposing/relaxing features of the proposed mechanisms.

Chapter 4 Modelling an Autonomic System 63

4.4 Results

Here we characterise the behaviour of the minimal simulated system, concentrating

on the manner in which system performance scales with four system parameters: size,

heterogeneity, load and reliability. In each case, we are interested in both the efficiency of

the system as a whole, and the efficiency of the consumer agents within it. The former

is measured over a specific test period by calculating the average cost per executed

workflow. This measure makes sense where consumers never (or rarely) fail to execute a

workflow. At the level of individual consumers, we are interested in any advantage that

one class of consumers (say those attempting to execute a simple workflow) might have

over another. In each case, we are interested in how different consumer agent strategies

impact on these measures.

4.4.1 System Size

First, we examine how the system responds to an increase in the number of consumers

and services. Figure 4.1(left) illustrates the relationship between mean system cost and

user strategy as the number of system components is varied. The results illustrated in

this figure were achieved through consecutive model runs, where at each run a number of

consumer and provider agents was increased such that the demand-supply ratio remained

in balance but the size of the system increased.

For consumers employing the null strategy, system cost increases linearly with system

size. Consumers employing a simple preference for remembered services (P) show a slight

improvement, but the system cost still scales linearly with system size. The introduction

of randomised selection of services R improves performance in two senses. First, system

cost is now unaffected by system size. Second, the level of system efficiency approaches

optimal levels (recall that C∗ = 80), particularly when randomised selection is combined

with a preference for remembered services RP.

How does the combination of two extremely simple mechanisms result in impressive per-

formance that is robust to increasing system size? When employing the randomised

strategy, selections of resources by consumers disperse, avoiding the resource compe-

tition that results from the ∅ strategy. When R is combined with P, consumers are

able to remember and return to services that have been involved in successfully exe-

cuting a workflow, attenuating dispersal. By discouraging consumers from continuing

to randomly choose from the same set of services, preferences reduce the possibility of

conflict.

Figure 4.1(right) depicts the mean workflow completion costs for consumers relying on

the two most successful strategies for the largest system size depicted in Figure 4.1(left).

64 Chapter 4 Modelling an Autonomic System

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 50 100 150 200 250 300 350 400

M
e

a
n

 s
y
s
te

m
 c

o
s
t

Time

C* 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 50 100 150 200 250 300 350 400

Time

C*C*

Figure 4.2: Relation between mean system cost and system load for agents relying on
R (left) and RP (right). Three levels of system load are represented: L = 1 (circle),
L = 2 (box), L = 3 (rectangle). The dotted line (C∗) corresponds to optimal system

cost. In each case, SN = 240, while UN is varied from 120 through 360.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

M
e

a
n

 a
g

e
n

t
c
o

s
t

RP R
W1

RP R
W2

RP R
W3

C*(W3)

C*(W2)

C*(W1)

Figure 4.3: Mean workflow completion costs for representative runs with R and RP

under increased system load (L = 3). Dotted lines represent optimal costs for each
workflow. UN = 360, SN = 240, TN = 400 seconds.

For both strategies, the average departure from optimal performance increases linearly

with workflow size. However, this departure is extremely small for the RP strategy.

4.4.2 System Load

Up to this point, the provision of system resources has matched the demand of system

consumers: there exists a potential allocation of services where every workflow com-

ponent can be executed simultaneously and every system service is fully occupied. In

principle, this situation allows an allocation process to exhibit convergent behaviour.

Since real utility computing infrastructures must cope with variation in both the level

and type of demand for (and provision of) services, demand may sometimes outstrip

supply, precluding such an allocation.

To investigate the impact on system behaviour of variation in the balance between supply

and demand, we vary the system load, L, defined as the ratio of consumer demand to

service provision. For a system where L = 1, in principle every workflow component

can be simultaneously satisfied by system services. Doubling this load (L = 2) ensures

Chapter 4 Modelling an Autonomic System 65

 0

 50

 100

 150

 200

 250

 300

 350

M
e

a
n

 a
g

e
n

t
c
o

s
t

s1 s2 s3 s4
W1

s1 s2 s3 s4
W2

s1 s2 s3 s4
W3

C*(W3)

C*(W2)

C*(W1)

 0

 50

 100

 150

 200

 250

 300

 350

s1 s2 s3 s4
W1

s1 s2 s3 s4
W2

s1 s2 s3 s4
W3

C*(W3)

C*(W2)

C*(W1)

Figure 4.4: Mean workflow completion costs for agents relying on R (left) and RP

(right) where H = 4. Within each workflow type, four subclasses are identified in
order of increasing capacity requirement (s1, s2, s3, s4). Dotted lines correspond to the

optimal cost for each workflow group. UN = 180, SN = 360, TN = 400 seconds.

that only half of the consumers’ workflow components can be executed simultaneously.

Here, system load is manipulated by holding the number, type and capacity of system

services constant, and varying the number of consumers (but not the proportions of

different workflows being allocated). Doubling the number of consumers thus doubles

system load.

Scenarios are identical to those described in Section 4.3.1 save that there is heterogeneity

in the demand for capacity across workflows:

W1 = {A10}

W2 = {A11, B11}

W3 = {A12, B12, C12}

How does the system respond to increasing load? Figure 4.2 illustrates the relationship

between mean system cost and load for the two most successful strategies. The ability

of RP to approach optimal performance where supply matches demand (L = 1) is lost

for higher system load, and the advantage it enjoys over R is reduced. Neither strategy

can cope with the increased number of “collisions” during resource allocation that result

when consumers can no longer utilise preferred services exclusively.

Recall that consumer costs increase linearly with workflow size for systems where sup-

ply meets demand (see Figure 4.1 (right)). By contrast, Figure 4.3 demonstrates that

mean workflow completion costs accelerate with workflow size for both strategies when

system resources fail to match consumer demand (L > 1). The costs of competition for

scarce resources are being borne disproportionately by consumers with more workflow

components to allocate.

66 Chapter 4 Modelling an Autonomic System

4.4.3 Consumer Heterogeneity

It is highly unrealistic to assume that agents attempting to allocate the same type of

resource will also share exactly the same service preferences. For example, in the domain

of utility computing, different amounts of CPU processing power, storage size, quality

of service, etc., may be required. Hence, for each consumer, only a subset of services

of a particular type will be capable of satisfying its particular demands. Since many of

these attributes are dynamic properties that may change rapidly and unpredictably, it

may be that a centrally maintained registry of services cannot be relied upon to provide

the information required by consumers to identify appropriate services.

In order to manipulate the degree of heterogeneity in consumer demand, H, within

the model we assign different capacity requirements to consumers and differing capacity

provision to services. A consumer will be satisfied by any service of the required type with

free capacity that either equals or exceeds its capacity requirements. As such, consumers

with high capacity demands must necessarily have at least as difficult an allocation task

as consumers with lower capacity demands. In all cases considered here, there exists

an allocation of services to consumers where all available service capacity is utilised in

executing every workflow component simultaneously (i.e., supply always exactly matches

demand), and no service has capacity to simultaneously execute more than one workflow

component. We define H as the number of unique levels of service capacity required by

the workflows of a consumer population (or, equivalently, the number of unique levels of

capacity provided by a population of services). Thus, for H = 1, all workflows share the

same capacity requirements, whereas for H = 2, each workflow (and every service type)

is present in a low-capacity and high-capacity variant such that each variant is assigned

to an equal number of consumers. The scenarios reported below are otherwise identical

to those described in Section 4.3.1, with systems comprising of 180 consumers and 360

services.

For consumers employing the random selection strategy, R, there is a significant in-

crease in cost, and in its variation, as the degree of consumer heterogeneity increases.

While R preserves a uniform distribution of resource requests among a group of ser-

vices of the same type, and thus effectively minimises the number of conflicts, it is

blind to the various levels of capacity offered by services. By contrast, the RP strategy,

which combines R with preferential selection of previously utilised services, delivers a

significant improvement in performance. Here, the system converges to a near optimal

allocation of services to consumers, effectively matching consumer capacity demands to

service capacity provision from a global as well as local perspective. This convergence is

achieved, even though there exists a potential for conflict between low- and high-capacity

consumers over who gets to utilise high-capacity services.

These observations are confirmed by Figure 4.4 which depicts the mean workflow com-

pletion costs for a high degree of consumer heterogeneity (H = 4). For each workflow,

Chapter 4 Modelling an Autonomic System 67

four levels of capacity demand are introduced: {s1, s2, s3, s4}. While high-capacity

workflows tend to attract higher allocation costs, irrespective of consumer strategy, the

departure from optimal allocation costs is much reduced for RP strategists. Consumers

adopting this hybrid strategy were thus able to form preferences for resources that not

only satisfied their own resource demands but, in the case of low-capacity consumers,

also contributed to satisfying the demands of their competitors, increasing overall system

efficiency.

4.4.4 Service Reliability

A further distinguishing characteristic of utility computing infrastructures is the lack of

assurance that existing services will not fail or become unavailable during a consumer’s

lifetime. To investigate the impact of resource failure, randomly selected services are

removed from the system at a constant rate. The scenario is initially identical to that

described in Section 4.4.2, with 360 unallocated services in principle exactly matching

the demand of 180 consumers. However, after a 40-second period of normal service

allocation during which time the system settles to its typical behaviour, services begin

to be removed at random at a rate of one per second, until none remain.

Figure 4.5 illustrates the manner in which mean system cost varies over time in such a

scenario, both for R strategists and RP strategists. Over the majority of the simulated

period, the RP population enjoys an advantage over the R population in terms of

allocative efficiency. However, this advantage decreases over time. For each population,

costs rise with increasing service failure at an accelerating rate, until a catastrophe is

reached at around 360 seconds. At this point, certain types of resource are no longer

present within the system, preventing some workflows from being completed successfully.

By 400 seconds, all consumers are paying a cost associated with accessing the registry,

but are failing to carry out any allocation activity.

For the scenarios simulated here, over time, as services fail, system load increases. It

is instructive to compare the mean system cost that results from service failure to that

reported for the same constant system load. Prior to the first resource failure at t =

40, system load has been stable at L = 1. Subsequently, as resource failure increases

system load, it is remarkable that consumers are able to achieve an allocative efficiency

equivalent to a system under constant load for load values as high as L = 12. Despite

the scale of the system and the simplicity of the resource allocation mechanisms, it is

evident that the allocative reconfiguration required by increasing load can be achieved

smoothly and efficiently.

As noted above, as the number of failed resources (and thus system load) increases, the

advantage that RP has over R in terms of allocative efficiency diminishes until, under

extreme system load, it disappears. This result can be interpreted as indicating that

68 Chapter 4 Modelling an Autonomic System

 0

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350 400

M
e

a
n

 s
y
s
te

m
 c

o
s
t

Time

C*

R

RP

Figure 4.5: Relation between mean system cost and degree of resource failure for con-
sumers relying on R (solid line) and RP (dotted line). Initially, UN = 180, SN = 360.
From the 40th second, one randomly selected resource fails permanently each second.
Symbols indicate the mean system cost experienced at an equivalent constant load, cal-
culated over a window 300s < t < 400s, for load values drawn from {1, 2, 3, 4, 5, 6, 12}.

the role of preferential selection within the RP strategy also diminishes over time, with

behaviour increasingly dominated by random selections at high system load.

4.5 Thermodynamic Interpretation

Neither R nor P were able to efficiently and fairly allocate services to resources in all

of the scenarios explored here. While P performed poorly in every test, the relative

strength of R quickly diminished when confronted with a degree of consumer hetero-

geneity. It is therefore perhaps surprising that a hybrid strategy, RP, combining both

simple strategies yields convergent behaviour that is more efficient in every test.

Within scenarios where there is competition for scarce resources, an interesting interplay

between the R and P elements of the hybrid strategy arises. As Figure 4.5 shows, as

long as competition for resources is weak, stable consumer preferences can be established

and exploited. These allow the system to converge and exhibit near optimal behaviour.

However, once the system load increases, the difference in performance between R and

RP disappears. This suggests that, within the hybrid population, the proportion of time

spent relying on the P element of the strategy gradually reduces, until agent behaviour

is dominated by the R element.

It is important to note that this gradual change is motivated by increasing pressure

within the system. When this pressure is held constant at a particular level, as it was

in the system load tests, mean system cost stabilises rapidly, despite individual agent

behaviour alternating between the P and R strategy elements. Even at high loads, the

system does not exhibit oscillatory behaviour during this stabilisation. This suggests

that the system is able to adaptively balance the elements of the hybrid strategy in

response to particular levels of demand. In some sense, the strategy also ensures that

this balance is not achieved at the expense of fairness within the system, since results

Chapter 4 Modelling an Autonomic System 69

show that, on average, every agent with the same workflow spends the same amount of

time employing each strategy element.

Since there is no central controller deciding which agent should rely on what strategy

element, for a given system pressure, it is interesting to explore by what means the

balance between strategy elements is brought about. At any point in time, a system

of hybrid consumers can be represented as two interdependent populations of agents,

each relying either on random selection or developed preferences. Agents relying on R

are more aggressive, selecting resources randomly and thereby dispersing their activity

across all system resources. Agents relying on P, on the other hand, canalise their

activity in a specific region of the system resources. Where supply meets or exceeds

demand, the former encourages system fairness, while the latter lowers system cost.

Moreover, both populations exert a specific pressure on each other. By “stealing” the

preferred resources of conservative P agents, aggressiveR agents drive P agents to switch

strategy. At the same time, R agents that successfully allocate resources also switch

strategy. In both cases, such switching prevents agents relying upon the same resource

for a long time. This ensures that the costs of resource competition are distributed fairly

among all agents. Furthermore, as system dynamism increases (with increasing load or

heterogeneity, for instance), and the chance of developing useful preferences falls, the

proportion of R agents increases. Likewise, if system dynamism relaxes, the proportion

of agents successfully exploiting preferences increases. This coupling between strategy

elements drives the system behaviour, and its response to externalities such as load or

heterogeneity.

The nature of this coupling resembles certain accounts of self-organisation within nat-

ural decentralised systems that we presented in Section 3.5. There, the capability of a

thermodynamic system to self-organise and thus perform useful work was proportional

to its distance from thermodynamic equilibrium. Only in this state did the constraints

limiting the behavioural degrees of freedom of individual system elements form, enabling

useful work to be extracted from the system.

In what follows, we conduct a very simple exercise of re-interpreting the aforementioned

concepts of equilibrium, constraint and work within the context of our autonomic system

model. Having given such an interpretation, we apply it to analyse the behaviour of the

model. In doing so, we lay down a basic thermodynamic framework that will be extended

in the remainder of this thesis.

70 Chapter 4 Modelling an Autonomic System

4.5.1 Equilibrium, Constraint and Work

4.5.1.1 Equilibrium

In thermodynamics an equilibrium is associated with a state of uniformity, where all dif-

ferences (eg. temperature, pressure) between interacting systems elements are minimal

or non-existent.

As we suggested in Section 2.5.8 one way of interpreting the concept thermodynamic

equilibrium within a computational system model can be provided by analysing be-

havioural repertoire of each agent and the degree of freedom each agent holds when

choosing actions from such a repertoire. If there exists no bias and the selection of any

action is equally probable, the system can be thought of a to be in equilibrium state.

The emergence of certain bias for particular subset of actions that agents tend to choose,

on the other hand, can be understood as the departure of the system from the state of

uniformity represented by the equilibrium.

In the remainder of this section we will elaborate on this analogy in a more detailed

manner by introducing thermodynamic concepts of constraint and work to the com-

putational system model and using them to analyse system dynamics and relation to

system efficiency.

4.5.1.2 Constraint

Given that we are now able to identify whether a multi-agent system is at equilibrium,

let us consider what change indicates that the system has been shifted from such a state.

Again, we will interpret this in accordance with thermodynamics.

For the purpose of explanation, assume the existence of an imaginary force F that,

when applied to the agent, imposes a constraint on the actions it may select from

its behavioural repertoire, where the stronger the force, the greater such a constraint

becomes.

In physical systems the discussed constraining force can be as crude as mechanical work

causing gas compression within the thermodynamic engine, or as sublime as the self-

organised columns of interacting molecules of viscose fluid observed in the Benard cells

experiment (described in section 2.5.4). The literature review summarised in Section 3.4

suggests that within a computational system the constraining role of the aforementioned

‘mechanical’ or ‘thermal’ forces can be facilitated through information that is being

exchanged between agents and that may either limit or relax the behavioural repertoire

of the agent.

Chapter 4 Modelling an Autonomic System 71

4.5.1.3 Work

Both energy and information exchange are the result of local interactions between system

components (molecules in a physical system; agents in a computational system) and, un-

der the right conditions, both are ‘motive forces’ for achieving spontaneous system organ-

isation. However, as we observed when discussing thermodynamics of self-organisation

(Section 3.5), it is not the mere injection of energy that allows a thermodynamic system

to perform work, but the organisation of this energy, which displaces the system from

equilibrium.

The same can be said of the distribution of information within a computational system.

Here, the capacity of the system to perform useful work is determined by the ability

of agents to establish interactions and information exchanges between their peers that

impose constraints on their behavioural repertoire. In this state, agents begin to favour

interactions that increase their personal utility (eg. their efficiency at allocating tasks)

and limit possibly uncoordinated ones that could destabilise the performance of other

agents. Consequently, the eventual capacity of the system to perform useful work arises

from organised flow of information across the population of interacting agents.

4.5.2 Decentralised Control Interpretation

Having provided a re-description of thermodynamic concepts of equilibrium, constraint

and work within a computational system, let us now apply these terms to interpret the

process of decentralised control within the autonomic system model presented in this

chapter. We base our interpretation on the evaluation of two following hypotheses:

Hypothesis 1:

The increase in computational system efficiency can be understood in terms of thermo-

dynamic displacement from equilibrium and, according to this, is proportional to the

increase of constraint imposed on the behaviour of the system elements.

Hypothesis 2:

The decrease in computational system efficiency can be understood in terms of a ther-

modynamic return to equilibrium and, according to this, is proportional to the decrease

of constraint imposed on the behaviour of the system elements.

It is important to note that both hypotheses can be achieved independent of each other.

For example, we do not exclude the possibility of achieving high system efficiency in

situations where system is in equilibrium or far from equilibrium. Therefore, validation

of one of the hypotheses does not necessarily entail the outcome of the other hypothesis.

72 Chapter 4 Modelling an Autonomic System

4.5.2.1 Measures

To identify the system’s displacement from equilibrium and the associated emergence of

constraint on the behaviour of its elements, a measure of system constraint is provided.

The efficiency of the system, and thus its capacity to perform useful work is provided

through a system efficiency measure. Both measures are explained below.

System Constraint (κ)

For each consumer agent we define its behavioural repertoire by the set of unique service

providers that it may choose to query for its task allocation. The degree of constraint

(κ ∈ [0, 1]) is defined through the following formula:

κ = 1−
Nc

N

where N represents the total number of providers and thus constitutes the full agent’s

behavioural repertoire, whereas Nc corresponds to the set of the providers from which

choice is made (choice set) the value of which is calculated for the particular strategy as

follows.

• R strategy configuration: Since agents relying on this strategy do not have any

constraint imposed on the selection of any action from their behavioural repertoire,

we assume that Nc = N .

• P strategy configuration: For agents that employ only P strategy and thus either

establish preference to a successful provider or continue provider selection in the

same, ordered, manner from the top of registry list have a choice set defined by the

number of provider queries (q) they have made until they discovered the available

provider or failed the allocation. As a consequence, for this configuration Nc = q.

• RP strategy configuration: Agents using this strategy are assumed to have a choice

set defined based on the strategy component that the agent was employing during

the service allocation. If the agent successfully relied on P strategy component and

thus successfully allocated service employing the previously established preference,

its Nc = 1 since it achieved its allocation in one query (q = 1). However, if the

agent failed to rely on established preference and thus conducted unconstrained

selection relying on R strategy component, its choice set is defined as Nc = N ,

implying that it performed a random choice from the whole behavioural repertoire

of possible actions.

Given the measure of constraint experienced by each consumer separately, the system

constraint is defined as an average of individual agent constraints over a sampling period

of time (which we define to be a 10 second time interval).

Chapter 4 Modelling an Autonomic System 73

System efficiency (e)

We define system efficiency (e ∈ [0, 1]) by scaling the obtained mean system functioning

cost (costcurrent) by the most optimal (minimal) cost achievable for the current model

run (costmin) . The efficiency (e) is thus defined by the following formula:

e =
costmin

costcurrent

4.5.2.2 Experiment 1. Influence of System Strategies

In this section we provide results that illustrate how system efficiency (e) and constraint

(κ) change when agent strategies are varied. The scenarios explored here are identical

to those employed in the scalability tests (see section 4.4.1) in which three different

model setups are provided. Each such setup differs only by the configuration of local

strategies (R, RP and P) agents are set to employ. Results showing how the degree of

constraint varies for these three setups are illustrated on the left side of Figure 4.6. The

relationship between system performance and the degree of system’s constraint for each

of the three model setups is plotted on the right side of the figure.

As the figures show, the best system efficiency is achieved for the system in which agents

rely on the RP strategy. In this state, the system also achieves the highest degree of

constraint, as agents establish preferences to provider agents that are capable to satisfy

their requests. In this configuration the system is capable to attain the highest level

of constraint, as consumers establish and exploit preferred providers during the system

operation. However, as the right figure shows, maintaining such high level of constraint

is only possible in optimal functioning conditions. Here both, the efficiency and the level

of constraint are presented for RP model configuration in which service providers are

continually (in 4 second time intervals) removed from the system, starting from the 40th

simulation second. As the demand-supply proportion gradually changes and there are

less resources to satisfy consumer requests, we can observe that the initially high level of

constraint begins to dissappear in favour of more exploratory selection of resources that

is driven by R strategy component. The gradual decrease in the system constraint level

becomes in this situation accompanied by the decreasing system efficiency as it becomes

more difficult and thus more costly to discover available providers.

The worst performance can be observed for a system relying on the P strategy. This is

caused by the high competition for a small subset of available system resources, during

which consumers attempt to query providers that are already busy. As a result of this,

even though they eventually establish preferences to successful providers, in the next

allocation round these providers are already employed by other agents. Such competitive

behaviour is avoided when agents rely only on the R strategy.

74 Chapter 4 Modelling an Autonomic System

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

E
ffi

ci
en

cy

e κ
RP

e κ
R

e κ
P

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500 550

C
on

st
ra

in
t l

ev
el

Simulation time (s)

Figure 4.6: Left figure illustrates correlation between the level of system constraint
(κ) and its efficiency (e) for three model configurations: R (rectangles), P (circles) and
RP (triangles). Right figure shows the level of constraint (rectangles) and the system
efficiency (circles) for RP model configuration during system reliability experiments.

UN = 180, SN = 360, TN = 400 seconds, H = 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

E
ffi

ci
en

cy

e κ
H=1

e κ
H=2

e κ
H=3

e κ
H=4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

E
ffi

ci
en

cy

e κ
H=1

e κ
H=2

e κ
H=3

e κ
H=4

Figure 4.7: Relation between system efficiency (e) and constraint (κ) for four different
heterogeneity system configurations (H = 1, 2, 3, 4) for the system employing RP

strategists (left) and R strategists (right). In all experiments UN = 180, SN = 360,
TN = 400 seconds.

It is interesting to observe that, despite the lack of any learning mechanism allowing

agents to return to efficient providers (since agents are not able to establish any prefer-

ences), the system achieves a high level of efficiency. Furthermore, this is accompanied

by the lack of any constraint imposed on the behavioural repertoire of R strategists. In

contrast to this, P strategists that achieve close to the highest level of constraint achieve

the worst performance observed among the three model configurations.

The explanation for these observations is provided in the next sections where we investi-

gate how measures of the efficiency and constraint change when the difficulty of resource

allocation is varied through heterogeneity and, finally, discuss the results.

4.5.2.3 Experiment 2. Influence of System Heterogeneity

In Figure 4.7 (left) a relation between system efficiency and constraint for four different

system heterogeneity settings (H = 1, 2, 3, 4) is illustrated for a system model in which

agents employ the RP strategy. Figure 4.7 (right) illustrates mean efficiencies of models

Chapter 4 Modelling an Autonomic System 75

employing the RP and R strategies for the corresponding heterogeneity levels. In both

cases, the experimental model setups are identical to those explored in the heterogeneity

tests in Section 4.4.3.

Results reporting the system efficiency and constraint for system configuration in which

agents employ only the P strategy are not shown as the performance achieved by such

a configuration, due to high competition for resources, is poor in every setting.

The system where consumers employ the RP strategy (left side of Figure 4.7) outper-

forms a model setup where agents rely only on the R strategy (right side of Figure 4.7).

A more detailed analysis of the difference in both model performances is reported in

Section 4.4.3, including mean workflow completion costs for model setup where hetero-

geneity is equal 4 (H = 4).

Since the only difference between both model setups is the ability of agents relying on

RP strategy to exploit a preference for the last successfully executed provider, it is the

ability of system elements to establish a constraint on their selection that achieves higher

than the R strategists performance. As results on the left figure show, the formation

of constraint through this simple technique becomes increasingly important as demand

for resources becomes more heterogeneous and thus the difficulty of resource allocation

demanded from the system.

4.5.2.4 Hypotheses Evaluation

The above experiments confirm that the high system efficiency is predetermined by the

system’s ability to impose constraint on the behaviour of consumer agents. This, as the

heterogeneity results presented in Section 4.5.2.3 illustrate, is especially important in

conditions when the difficulty of resource allocation increases and the consumer agent

requests can be satisfied only by a subset of available providers.

Moreover, the analysis of results reported in Section 4.5.2.2 suggests that the satisfactory

degree of constraint cannot be pre-imposed by the fixed system configuration that either

limits agent’s behavioural repertoire (when consumers are allowed to use the P strategy

only) or removes the possibility to establish a constraint (when agents are allowed to

rely on the R strategy only). Consequently, what is required is the system design that

has the capacity to either impose or relax constraints on the behaviour of its elements

at run-time and in response to existing resource demand conditions. To this end, for the

simple resource allocation scenarios explored by the model, agents with the RP strategy

configuration exhibit such adaptive behaviour.

Important to note is that the degree of constraint imposed on agents is a variable prop-

erty that is adjusted by the system at run-time through local strategy reconfigurations

conducted by individual system agents. In the case when such conditions are mild (eg.

76 Chapter 4 Modelling an Autonomic System

when heterogeneity level is minimal) there may be no need to impose the constraint on

the selection of providers. However, as the difficulty of resource allocation grows such

that only a subset of providers may satisfy particular consumer agents, the existence of

constraint is a necessity for stable and reliable system operation.

4.6 Discussion

In this chapter we have presented a simple model of a decentralised autonomic system

tasked to effectively distribute available system resources to users requesting them. To

facilitate this, a set of very simple local strategies was provided and their efficiency eval-

uated for a variety of different resource allocation scenarios and strategy configurations.

To understand why only certain strategy combinations are able to preserve balanced and

fair provision of resources, a thermodynamic interpretation of the system response was

provided. In this interpretation we introduced a very simple thermodynamic framework,

based on which the self-organising properties of the system were discussed.

In what follows, we will focus on more challenging resource management problems in-

volving dynamic load-balancing, adaptive service provisioning and power management.

In particular, we will propose fully decentralised autonomic system models that func-

tion without a central registry and within which providers are allowed to reconfigure

at run-time in order to adjust the service type they offer (or their on-line status) to

perceived demand. As such system flexibility will demand more adaptation at the level

of autonomous system elements, we will propose novel algorithms achieving the required

system functionality.

Finally, having more advanced models of autonomic systems, we will extend our under-

standing of their design and functioning by analysing a thermodynamic account of their

self-organisation.

Chapter 5

The Model

5.1 Introduction

In this section, we propose a framework for a bottom-up role and resource allocation

mechanism, whereby the adaptation of agents (in response to changes in the environ-

ment) is based on stimulus-response based reinforcement mechanisms inspired by be-

haviours that encourage self-organisation within insect societies [7, 120].

In contrast to the previously introduced simplistic model (in Chapther 4), here we

consider a fully decentralised model with no access to central service registries. In the

absence of such centralised controllers, the system elements need to preserve a certain

degree of autonomy, allowing for local adaptation to occur given perceived changes in the

environment. This architectural flexibility is provided through the use of a decentralised

multi-agent system architecture.

To this end, in Section 5.2 we outline the general properties of the model, whereas

Section 5.3 provides a detailed explanation of its architecture and local-decision making

mechanisms employed by autonomous agents. Section 5.4 discusses the experimental

setup of such a model that we will apply during its experimental evaluation in the

remainder of this thesis. Finally, Section 5.5 concludes the chapter with an explanation

of system behaviour and the performance analysis tools that we will use for measuring

system efficiency and analysing behaviour in a range of dynamic resource allocation

conditions.

5.2 Model Features

In the previous chapter we have considered a very simplistic version of a distributed

system constituting a population of resource providing and resource consuming agents

77

78 Chapter 5 The Model

together with a single service registry. Whilst sufficient for our analysis, such model

lacked some of the key features that distinguish modern autonomic systems and their

dynamic nature of computation. In what follows, we outline these features and, in the

remainder of this chapter, explain how they were incorporated into our more realistic

autonomic system model.

1. Distributed architecture

In order to model distributed systems, we rely on multi-agent system model.

We assume that each system element is represented as an autonomous software

agent that either consumes resources (consumer agent) or provides them (provider

agent).

2. Physical constraints

Agents provide and consume resources offered by physical machines. As a con-

sequence, both the quantity of offered resources as well as the computational re-

sources used by the agents during their decision-making process are constrained.

For this reason, we assume that following constraints should be considered by the

model:

(a) Limited resource capacity

Provision of a service by a provider agent to any consumer agent requesting it

can not be guaranteed. The provider may honor the request only if it currently

has enough resources and is configured to offer the requested service.

(b) Interaction cost

Interactions between system components involve certain costs in terms of

time and energy. In this thesis we focus on the former type of cost where

each interaction between agents consumes time and thus inefficient behaviour

may affect the overall performance of the system in terms of jobs completed

within a period of time.

(c) Provider reconfiguration

Provider agents are capable of reconfiguring at run-time to offer a different

service type. As this activity in real systems often requires rebooting or

erasing of critical data stored on the machine, we impose a timeout during

which the provider agent is unable to service incoming requests.

3. Decentralisation

In large scale IT systems it is difficult, impossible or impractical to preserve full

access to global information about the system state for individual agents to employ

during their decision-making process. We reflect this decentralisation through:

(a) Lack of global information about individual and global provider efficiency

Chapter 5 The Model 79

Consumer agents are not provided with central controller or global informa-

tion repository allowing them to select the currently most efficient providers.

Consequently, each agent operates only on a local information discovered

through individual experience or information exchange with local peers.

(b) Lack of global information about individual and global consumer demand

Similarly, there exists no central authority offering information about the

current demand imposed by consumer agents. For this reason, provider agents

also rely only on information discovered through interactions with consumer

agents to guide their provisioning decisions.

4. Provider heterogeneity

Various services are offered by a number of provider agents with varying levels

of resource capacity. As a consequence, the same service type may be offered by

several providers, each provider possibly being characterised by a different level of

reliability and a different response time.

5. Consumer heterogeneity

IT infrastructures are environments within which requests originating from a di-

verse group of different users need to be satisfied. To reflect heterogeneity in user

requests, we assume that each request may differ in the type of service demanded,

the capacity (representing a scalar quantity or amount of resources required) and

sought time limit before it has to be allocated.

6. Dynamism

The model represents the operation of an open and dynamic system.

(a) Supply — demand fluctuations

The ratio between supply and demand does not remain static but varies

according to some mechanism intended to approximate real conditions.

(b) Changing demand

Each request is unique with respect to demanded service type, service capac-

ity and allocation time limit. Furthermore, the overall system demand may

change at run-time requiring different service types to be offered by provider

agent population.

(c) Openness

System is not closed: new agents arrive and existing ones are removed.

5.3 Decentralised Autonomic System Model

The challenge of role and resource allocation can be viewed as a market-based, service

allocation problem, where there is a (continually changing) demand for services of a given

80 Chapter 5 The Model

type, and thus the market responds1 by changing its supply of such services (or their

on-line/off-line status) to satisfy the demand. As stated earlier, a multi-agent system is

analogous to an autonomic system, which can be thought of as a collection of computing

resources tied together to perform a specific set of functions [58]. These resources may

be hosted in a distributed fashion by a number of servers deployed over networked

machines, which provide services to each other. The framework is therefore modeled

as a multi-agent system comprising a number of provider agents (providers), that offer

services of a specific type, and consumer agents (consumers) which request and utilise

the available services to achieve some task. We assume that both service providers and

service consumers are agents running on constrained hardware components. Depending

on the characteristics of the system, interaction between these agents may be limited by

power consumption (e.g., sensors), bandwidth consumption, or time-delayed response,

all of which may have associated costs if service execution is to take place “on-demand”,

quickly or by some deadline. In the system presented below, one aspect of such hardware

limitation is represented in the form of service capacity, such that each agent may only

satisfy service requests for a restricted set of service types, provided to a limited number

of consumers simultaneously.

To facilitate the supply of a larger variety of services to consumers, we assume an agent

is capable of reconfiguring the service type it provides at run-time. This involves a

significant cost in the form of down-time during which various administration tasks

may be performed, such as: completing existing service commitments; removing secu-

rity compromising data from the machine state, or resetting the execution stack; or

loading the new software modules representing the new service types. We also consider

that providers increase their utility by successfully satisfying service requests, and that

consumers increase their utility by successfully consuming services. Thus, to maximise

utility, provider agents try to avoid offering services for which there is little demand (thus

minimising idle time), and consumer agents try to reduce the time required to provision

services (during which their requests are not satisfied) by locating providers that are

available and can rapidly satisfy their requests. To locate possible service providers,

a decentralised service discovery model is assumed, whereby each agent maintains a

limited registry of details regarding service providers in its environment. Consumers

can discover new providers through regular dialogue with other peers, which continually

evolve and share their awareness of local service availability (see Figure 5.1).

The evolution of the system is therefore driven by a continually reconfiguring network

of peers. Both consumer and provider agents co-adapt to each other by exchanging

information, and reconfiguring their interactions; i.e., by changing which services are

offered (in response to observed changes in service demand), or by changing which

providers should be contacted (based on observations of the availability of different

1In this context, we refer to the market as a decentralised collection of service providers, that each
respond individually based on their perception of changing service demand, rather than a single, atomic,
coordinating entity.

Chapter 5 The Model 81

C
A

A

A
A

A

C

CC

C

C

B
B

B

B

B

U

U

U

U

U

U

U U

U

U

U

U

U

U

U

U

U

U

system system

Figure 5.1: An overview of the resource management organisation process. Two
system states are represented: disorganised (on the left) and organised (on the right),
where users (U) impose a demand for different types of resources (service requirement)
on resource providers. The initially inefficient configuration (left), represents the case in
which providers have no knowledge of what services are in demand, and consumers don’t
know which providers offer their desired services. The final, stable organisation (right),
in which service demand is satisfied by local supply, emerges from limited information

exchange between consumers and providers regarding service availability.

services). These local responses are driven by the decision-making mechanisms (detailed

in Sections 5.3.1, 8.2.2 and 5.3.3, and summarised below) and the information that is

propagated throughout the topology of agents as a result of their activities.

As providers have no global information regarding service demand, they utilise their own

experience (based on the frequency and type of queries they receive from consumers), as

well as information of service availability garnered from those consumers they interact

with, to determine whether to continue offering a given service type or to switch to

providing another service type. Consumers discover new providers through a process of

social learning, where new information is acquired through “gossiping”. When a con-

sumer and provider interact, the consumer may provide details of other providers that it

has interacted with together with their efficiency estimates. This information is propa-

gated from the provider agent to other consumers that are co-located with this provider

and thus employ it at that time. During this process, consumers learn to which peers

to communicate their local information such that their local resources market environ-

ment remains stable and offers sufficient amount of resources to satisfy their demand.

Consequently, service management and provisioning strategies should emerge from lo-

cal co-adaptations of individual agents based on observations of previous transactions.

Whilst this naturally involves sharing some knowledge, the agents independently modify

their individual models of the local environment. Since service availability can fluctu-

ate as a result of several factors, including current demand contention for services, and

demand for other service types (resulting in a reconfiguration of service offerings), it is

82 Chapter 5 The Model

5

U (T)
2

U (T)
8

U (T)
1

U (T)
6

U (T)
5

N1

N2

N3
P1

P2

P3

U (T)

Autonomic System

C6

C5

C4
C3

C5

C1

C2

1

2

3

6

5

4

Figure 5.2: An example of autonomic system functioning. A number of tasks (T)
are issued by infrastructure users (U) to autonomic system computational nodes (N).
When a task is intercepted by this node, a new consumer agent (C) is spawned within

the system and co-located with the provider managing such node.

necessary that agents maintain an accurate model of the environment by maintaining a

continuous flow of pertinent information with their peers.

Whilst this notion of sharing information may initially appear counter intuitive (raising

the question as to why a consumer would supply information on available and efficient

providers to other resource seeking consumers, thus possibly reducing supply on its own

preferred services), it provides a mutually beneficial mechanism whereby consumers can

acquire a timely and accurate model of services in the local community, and providers

can determine a realistic estimate of the service demand in the same community, and

thus (if necessary) switch to improve their own utility. The neighbourhood that emerges

is dependent on the size of the model that consumers retain of their peers. In addition,

the stability of the neighbourhood is also dependent on this model size; the larger the

model, the greater the chance of instability, as more providers may switch the type of

services they offer in response to the perceived change in demand.

The framework makes the assumption that agents will exchange information freely and

truthfully and that, moreover, the amount of information passed between agents will be

influenced by the degree of consumer stress that the consumers experience. This con-

sumer stress (described more formally in Section 5.3.1) reflects the difficulty in locating

available providers for a given service, and hence provides an indication as to whether

the service supply can sufficiently meet current service demand. Whilst there is, per-

haps, the opportunity for deceit in such a system, since the supply of (and demand for)

services can fluctuate, maintaining an accurate model of the environment in each agent

involves maintaining a continuous flow of information between agents.

Chapter 5 The Model 83

A sketch of an autonomic system model is illustrated in Figure 5.2. During the system

lifetime, a continuous stream of tasks (T) is issued to a system. These tasks represent

service allocation requests and originate from infrastructure users (U) that interactively

engage with the system for a limited time period (session). During this time users

interactively issue a number of tasks and await a system response. Each task arriving

to the system is handled by a consumer agent that is spawned by the system for each

new user. During consumer agent initialisation, the agent is provided with the list of

provider agents existing within the system and becomes co-located with one of them on a

particular node managed by that provider. If there are other consumer agents co-located

with the same provider, the newly created consumer becomes automatically co-located

with these agents too. For example, as illustrated in Figure 5.2, the arrival of task (T1)

from a user U1, causes the creation of a new consumer agent C5 and its co-location

with provider P1 managing node N1. At the end of this step, consumer C5 is also co-

located with consumer C6 sharing the same provider. After co-location, the consumer

becomes updated by the local provider about the existing resource state of the local

system environment. Based on this information, the consumer builds its internal model

of the local resources environment, and relies on it when conducting allocation. During

the allocation process, the consumer agent may decide to employ a different provider

for its task allocation than the one it was co-located with initially. If the consumer

successfully employs the other provider, it changes its co-location and ‘migrates’ to the

other node2. For example, in Figure 5.2, consumer C5, that was originally co-located

with provider P1 eventually migrates to node N2. After this, C5 is no longer co-located

with P1 and C6, but instead with P2, C3 and C4.

As the number and requirements of consumers cannot be known a priori, and as this

demand and preference will vary over time, the design goals are threefold:

1. determine which providers should be configured to offer what service types, in

order to satisfy current demand;

2. determine which of the providers known to a consumer should be utilised such that

the system minimises competition; and

3. determine how should the system be organised such that it is robust to changes in

supply and demand for particular service types.

The remainder of this section provides details regarding the models assumed by both the

service consumers (Section 5.3.1), and service providers (Section 8.2.2). The mechanisms

used to facilitate knowledge exchange (i.e., “gossiping”) are presented in Section 5.3.3.

2It is important to note that we use terms such as ‘co-location’ and ‘migration’ only for descriptive
purposes. In reality, all agents may exist on the same machine or be distributed on a set of machines
and never change their location.

84 Chapter 5 The Model

5.3.1 Model for Service Consumers

Consumers are agents that request and consume services provided by one of the provider

agents. An agent may be capable of both offering services to its peers, as well as

consuming services offered by its peers; however, for the purposes of this thesis, we

consider the model for each behaviour as separate.

The process of service allocation is initialised when a consumer agent receives a service

request that is in the form of a task (T) represented as a tuple:

T = [St, Sc, Sl],

where St represents the service type demanded by the task, Sc identifies the demanded

capacity the service has to offer, and Sl is the maximum time the allocation may take

before the task is considered as failed.

The consumer monitors the behaviour of known service providers locally, and uses this

knowledge both to provision future service requests, and to share this knowledge when

establishing community knowledge. For this purpose, the consumer maintains a local

registry, Rc containing tuples corresponding to services that the agent is aware of. Each

tuple is defined as follows:

Rc = 〈αp, ǫ, λ〉

where αp corresponds to an agent that has provided the service of the type required by

the consumer at some point in the past, evaluation denoted by ǫ ∈ [0.01..∞] corresponds

to a score or preference for using provider αp and affinity denoted by λ ∈ [0.01..∞]

reflects the score of preference for communicating local information to agent αp.

As consumers will not possess complete knowledge about whether a provider is currently

available, or even if it is still configured to provide the service of type type, they rely

on a local learning mechanism which enables them to estimate the possible demand of

a given service type. This estimate is based on the periodically exchanged information

obtained from the different providers they interact with (Section 5.3.3), the result of

which is stored within the relevant epsilon (ǫ) parameter within their local registry Rc.

This registry is also used when provisioning services of a given type. During this process,

the consumer issues requests to the providers selected from this registry, until a provider

is found which can satisfy the request. The order in which providers are selected is pro-

portional to their ǫ score and is achieved through a probabilistic roulette wheel selection

mechanism. To guarantee that any provider will be queried at most once during the

Chapter 5 The Model 85

same allocation cycle, the providers that were already selected by the roulette wheel

mechanism (with no success) are not considered in subsequent selections.

Each request takes some finite time (Tq), and the provider will respond either to confirm

that it will satisfy the request (i.e., that it is available to provide the desired service

type) within a specified Sl allocation time limit, or to reject the query; either because

it currently does not provide that service type, it is unavailable (i.e., it is currently

satisfying another query, and does not have sufficient resource to simultaneously honour

an additional request without compromising current commitments) or because it is not

able to provide the service within Sl time limit (i.e., it is overutilised and this affects its

service provisioning time).

Each provider may offer a limited number of service instances of a given type simultane-

ously (depending on the resource capacity it currently has); therefore, provided that it

has enough resources to satisfy another allocation query, a new request can be honoured.

If a provider is capable of honouring the request, the service is executed. The execu-

tion takes some finite time Te during which the amount of resources demanded by the

allocated task are consumed from provider. Once the allocation finishes, the resources

occupied by the task are released.

Typically, at the beginning and end of every allocation cycle, the agent exchanges local

knowledge with known providers (described in Section 5.3.3). The knowledge exchange

is assumed to take some finite time, Ti (irrespective of the number of providers involved),

and corresponds to the process of sharing information about local service demand (and

availability), and thus evolving a localised community structure. After the allocation of

the current task, the agent inspects its local task queue and if there is another task to be

allocated, it initiates another allocation cycle. If the task allocation fails, it is assumed

that the consumer will reattempt to allocate the same task before it finally fails and

removes it from its local queue.

The time intervals between which new tasks will be dispatched to a consumer agent

is determined probabilistically using a Poisson distribution, with the mean ω. If the

consumer is already allocating a task, the newly arriving one will be added to its local

queue.

The consumer periodically updates the ordered set Rc to reflect its experience in allo-

cating tasks, and to minimise the number of future rejected queries. If a request was

successfully satisfied, then the tuple rp corresponding to the provider αp which provided

the service type is modified, such that ǫ is incremented in the following manner:

ǫαp → ǫαp +
Sl
S∗
l

where S∗
l is the time it took an agent to finalise service execution with help of provider

86 Chapter 5 The Model

Algorithm 1 Consumer task allocation algorithm

Require: a consumer αc with a need for service type of capacity capacity, and the set
P, which contains all the known providers that appear in Rc

Ensure: a service of type type is provisioned, and Rc is updated through the exchange
of information

1: R′
c := exchangeRegistryWithProvider (Rc, αp)

2: Rc := mergeRegistry (Rc,R
′
c)

3: for (q := 0 to fmax) do
4: fq := 0
5: rp := Rc[q modulo |Rc|]
6: if typeOfTuple (rp) = type then
7: αp := providerOfTuple (rp)
8: response := sendRequest (αp, 〈αc, type, capacity, cs〉)
9: if response = accept then

10: break
11: else if response = reject then
12: increment (fq)
13: end if
14: end if
15: end for
16: if exec (rp) = success then
17: Rc := (Rc/rp) ∪ 〈αp, type, ǫ − δǫ〉 {Increment ǫ of successfully executed provider

rp}
18: end if
19: for all rp ∈ Rc do
20: Rc := (Rc/rp) ∪ 〈αp, type, ǫ× δdecay〉 {Update ǫ of rp}
21: end for
22:

23: for all αp ∈ Pc do
24: R′

c := exchangeRegistryWithProvider (Rc, αp)
25: Rc := mergeRegistry (Rc,R

′
c)

26: end for
27: awaitNewTask ()

αp, and Sl is the overall task allocation time limit defined by the task.

To ensure that this model of provider availability does not become stale, a decay function

is used to adjust the ǫ and λ parameters for all tuples in Rc, by applying a decay

coefficient δdecay
3.

A consumer agent maintains a stress parameter (Ωc ∈ [0, 1]) that represents an agent’s

local estimate of how effectively it acts within the system given the information it has

about available resources. The stress value is updated by the consumer at the end of

3The decay coefficient used in this model has the value δdecay = 0.9; this value was determined
empirically.

Chapter 5 The Model 87

each allocation cycle through the following formula:

Ωc →
q

N

where q is the number of provider queries conducted by the consumer agent during the

current allocation round and N is the number of provider estimates (ǫ) (kept by the

consumer agent within its local Rc registry) that are greater than 0.1ǫmax (ǫmax being

the maximum estimate value kept within the consumer’s registry).

The value of the stress is proportional to the number of queries (q) and inversely propor-

tional to the number of attractive provider estimates (N) kept within its local registry.

If the agent conducts more queries than N (q > N) and thus has run out of informed

decisions, the stress reaches the maximum value equal to unity (Ωc = 1). In order to

maintain gradual stress change over the agent operation, each consumer agent remem-

bers four recent stress estimates (calculated in four recent allocations) and calculates

average of these as its current stress level. Stress calculated in this manner influences

the manner in which an agent acquires information communicated by other peers.

The algorithm used by a consumer agent is represented in Algorithm 1. In line 1-2, the

registry is updated through the information exchange with the provider the consumer

agent is currently co-located with. The consumer then, using the roulette wheel selection

mechanism, traverses its personal registry list, searching for providers that can satisfy its

service request, until one is found (lines 3-15). Once a provider is found and its service

provision is successful, the consumer updates its ǫ rating for this provider (lines 16-18).

Prior to exchanging information with the selected subset of providers (lines 23-26), the

ratings of all the providers kept within consumer’s registry are decremented using the

decay coefficient (lines 19-21). Finally, the agent awaits a new task arrival into its queue

(line 27) or selects the one already awaiting allocation.

5.3.2 Model for Service Providers

Providers model the local demand for services to determine which services they should

offer. However, within resource-bounded environments, providers may only offer a lim-

ited number of services at any time, despite posessing the capability of offering several

types of services; due to limitations in physical resources (e.g. memory size, processor

capacity, etc), or based on security issues. Business sectors (such as the E-Business

sector) also limit the number of software modules that servers can provide at any time

to avoid information leak. The suspension of availability of one service type and intro-

duction of another can have an implicit cost, as this reconfiguration typically takes some

time during which the agent cannot perform any further service execution, and thus will

not obtain any utility increase. We therefore assume that each provider agent αp can

only offer one service type at any time, but has the capability of offering several other

88 Chapter 5 The Model

service types (subject to reconfiguration). The set:

Capability =
⋃

∀αp∈MAS

Capabilityαp

contains the union of all service types available from all service providers in the multi-

agent system (MAS), whereas Capabilityαp corresponds to the set of services that αp

is capable of offering.

Thus, to determine which service type αp should offer, it maintains a model of current,

local service demand, and determines which services to offer from that model. To achieve

this, the provider maintains a registry Rp containing tuples corresponding to service

types (St ∈ Capabilityαp) the agent is able to offer. Each tuple is defined as follows:

rt = 〈St, s, θ〉

where St corresponds to a unique service type, s ∈ [0.01..∞] corresponds to a stimulus

or preference for selecting St to offer and θ ∈ [θmin, θmax] represents a response threshold

associated with this service type the role of which is explained in the remainder of this

section.

Providers receive requests from consumers in the following form:

reqi = 〈αc, St, Sc, Sl〉

whereby αc corresponds to the consumer which submitted the request, St ∈ Capability

corresponds to the type of service the consumer requested, Sc represents the capacity

of resources required by the task, and Sl indicates the maximum time limit the service

provision is allowed to take.

Using the Rp registry, the provider models the current service type demand based on its

local interactions with consumers. Each such interaction is considered by the provider

as a signal reinforcing provision of a specific service type St. During such an interaction,

the provider updates the preference for that service type St within its registry according

to the following formula:

s→ s+ ψ,

where s is the stimulus value associated with St service type and ψ is a parameter

defining the increase of the estimate value.

The provider periodically (in one second intervals) consults the Rp registry to determine

whether or not to reconfigure its offered service. As there is no global view of current

Chapter 5 The Model 89

service demand, each provider infers which service type to offer based on local demand

observed from previously received requests. If the type of service that the provider

decided to offer is the same as the service that is currently being offered, then no action

is taken. Otherwise, the provider performs a switch operation, whereby the provider

changes the type of service it can provide. Whilst this switching process has no explicit

economic cost, it has an implicit cost as the process takes a finite Ts time, during which

no other service can be provided.

To decide which service type to offer, the provider employs a probabilistic selection

mechanism, according to which the probability p of offering a unique service type (St)

from its Rp registry is determined based on the following equation:

p =
s2

s2 + θ2

where s is the current stimulus value associated with the service type (St) kept within

provider’s Rp registry and θ represents the response threshold (that we explain in detail

below) associated with the same St registry tuple.

The above applied formula is derived from the study of natural self-organising mecha-

nisms governing the division of labour within insect societies (ant colonies) and describes

a model of probabilistic response of an individual to perceived task stimulus (eg. food

foraging or brood feeding) [7, 120]. In our autonomic system model, the obtained p

probabilities correspond to the choice of provisioning a unique service type. Based on

the calculated probabilities for each service type, every decision-cycle (every one second),

the provider probabilistically (using roulette wheel section) selects the service type that

will be offered.

Given the above formula for determining p probabilities, it is clear that the value of

the obtained probability for each unique service type is dependent not only on the

stimulus (s) corresponding to how many consumer agents requested such a service type

but also to the response threshold (θ). Within natural self-organising systems such as

insect societies, this parameter identifies the persistence of an individual to continue

performing the same task that it was carrying out beforehand. In this context, it has

been observed that such persistence is proportional to the time spent performing one

particular task where the longer such an individual was carrying one particular activity

(eg. food foraging in ant colony) the more resilient it was to switching to conduct a

different activity. Within studies focusing on self-organisation in insect societies [7, 120],

such reluctance (otherwise called specialisation) of an individual to conduct an other

task than the current one is regulated through response threshold update functions that

work in the following manner. For the task that is being currently carried out by an

individual, its θ parameter value is decreased over time, whereas for other tasks that

are not being currently performed, their θ values increase. Persistence facilitated in this

manner allows for a smooth division of labour to occur within a collective of system

90 Chapter 5 The Model

individuals that was initially unspecialised and unbiased to perform any task.

In our autonomic system model we extend the original threshold update functions such

that the values of θ parameters are not only augmented through some static constants

(as has been done for the insect societies models presented in [7, 120]) but also depend

on the current provider agent utilisation level (U). This is done in the following manner.

Each tuple within the provider registry is updated during every provider’s decision cycle

in the following manner:

θ → θ − 2× (U + 5),

if the provider is currently offering the given service type and

θ → θ + U + 5

otherwise, where U denotes the current provider utilisation level. Throughout the ex-

perimental evaluation we have identified that the best provider adaptation is achieved in

conditions where 10 ≤ θ ≤ 60 and where the value of the constant used for the threshold

update is equal to 5 (as presented in the above functions).

To ensure that the model maintained for current service demand does not become stale,

a decay function is used to adjust the s parameter for all tuples in the Rp registry, using

the decay coefficient ∆decay.

A provider agent maintains a stress parameter (Ωp ∈ [0, 1]), the value of which is propor-

tional to the frustration it experiences whilst deciding which service type to offer. If the

agent reconfigures its resource provision on a frequent basis, its stress level is considered

to be high. However, if the agent is persistent at offering a specific service type, and

thus reconfigures rarely, its stress level is low.

To capture these intuitive relations in the form of provider stress (Ωp), a measure of en-

tropy from statistical mechanics is applied. This is facilitated in the following way. Each

decision cycle (every second) during which the stress value is calculated, the provider

normalises all stimuli (s) estimates contained in all N tuples within its Rp registry and

applies these to calculate Shannon’s entropy with the use of the following formula:

Ωp =
−
∑N

n=1
sn log sn

logN
,

The obtained provider stress Ωp is a real number kept in Ωp ∈ [0, 1]. If Ωp ≈ 0, the

stress level is low since there exists a strong stimulus, reflected by high stimulus (s)

value for one specific service type and weak stimuli for other service types. However,

when Ωp ≈ 1, the stress level is high since the stimuli for all service types have similar

values and thus the probability of selecting any service type is equal.

Chapter 5 The Model 91

Algorithm 2 Provider service provisioning algorithm

Require: a provider αp currently offering service of type typep with available capacity
capacityp, and the set S, which contains tuples, rt of all the known and unique
service types, Stype, it may offer.

Ensure: an accurate to the local demand service type is offered

1: reqi := receiveRequest() {where reqi = 〈type, capacity, timelimit〉} {service of cer-
tain type (type), capacity (capacity) and allocation time limit (timelimit) is required
}

2: if (typep 6= type ∧ (capacityp < capacity) then
3: sendResonse(reqi,REJECT)
4: else
5: sendResonse(reqi,ACCEPT)
6: executeService(reqi)
7: rt := 〈Stype, s, θ〉 {based on reqi}
8: if rt ⊆ S then
9: rt := 〈Stype, max(1, s+ 1), θ〉 {update stimulus for requested by consumer agent

Stype}
10: else
11: r′t := {〈Stype, 1, θ〉}
12: S := (S/ rt) ∪ r′t {Update the Registry S}
13: end if
14: update response threshold (θ) for each rt ∈ S
15: calculate probabilities for all rt ∈ S
16: perform roulette wheel selection of a single rt ∈ S
17: if S[0] 6= typep then
18: PerformSwitch()
19: end if
20: for all rt ∈ S do
21: rt := (Stype, s×∆decay, θ〉 {Decay stimulus value (s) of every rt tuple}
22: end for
23: end if

During service provisioning, both the time it takes to provision a particular service

(Te), as well as the time it takes to respond to a service provision query (Tq) is a

dynamic property that is determined by the current provider’s utilisation level (U).

Since each provider is distinguished by its maximum resource capacity, its utilisation

can be reflected as a fraction of capacity that is already used (employed by consumer

agents). Given this, the execution time (Te) is defined by the following formula:

Te = Tmin
e + U2 × Tnorm

e

where Tmin
e is the minimal service execution time (Tmin

e = Tnorm
e /4) and Tnorm

e defines

provider normal response time whilst being under utilisation equal to 1. The time it

takes for a provider to respond to a service provision query (Tq), in turn, is derived from

the following formula:

92 Chapter 5 The Model

Tq = Tmin
q + U2 × Tmin

q ,

where Tmin
q is a minimal response time incurred during the query.

In this model a provider will accept service provision queries if its utilisation (after

provisioning of the requested service) will remain in 0 ≤ U ≤ 2. This suggests that

consumers may actually demand more capacity than the provider may offer. This is

possible, since once the utilisation exceeds unity, computational resources (such as CPU,

connections to database, etc.) that were previously dedicated to a single service provision

now become shared between different service provisions. Although this enables the

provider to satisfy more demand, it also causes the quality of the offered service to drop

down in the form of provision time.

The algorithm used by a provider agent is represented in Algorithm 2. On receiving

a service request (line 1), the provider verifies that it is currently able to provide the

service (in terms of service type, capacity and task allocation time limit) before going on

to execute the service4. Once the service execution (or reject) step has been completed,

the provider updates its internal registry by creating a tuple, rt, based on the request

(line 7). If a set of records for the requested type exists (i.e., rt ⊆ S in line 8), then

either the new tuple is added to the set (line 12), or if a similar tuple exists (based on

the service type (Stype) parameter value held in it), it is updated (line 9). The provider

then updates response thresholds for all sets of tuples S and calculates probabilities for

each such tuple based on the stimuli-response mechanism presented in this section (lines

14-15). This is followed by a roulette wheel based selection of a service type to offer

(line 16) and potential switch operation if the service type selected for provision is not

currently offered (lines 17-19). Finally, the provider decrements stimulus values for all

tuples stored within its local registry (lines 20-22).

5.3.3 Information Exchange Mechanisms

To facilitate the migration of knowledge regarding the availability of services and cur-

rent service demand, consumers share knowledge before revising their respective mod-

els. During the information exchange process, provider agents are used as information

brokers through which the communicated information is passed to consumer agents co-

located with them. In what follows, we explain how information is communicated by

system peers and what local decision-making mechanisms are implemented for regulating

this process in a decentralised manner.

Figure 5.3 shows the sequential steps involved in information exchange during a single

4The provider does not verify whether or not it can offer the desired service, if it is in the process
of reconfiguring or switching. In this case, all requests are rejected until any currently executed services
have been completed, and the provider has successfully changed its current service offering.

Chapter 5 The Model 93

consumer
agent

provider
agent(s)

obtaining knowledge
from providers

communicating knowledge
to providers

allocation
end

allocation
start

1

3

knowledge integration2

knowledge integration4

Figure 5.3: The diagram showing sequential steps performed by a consumer agent
during information exchange activities. Actions are ordered according to their occur-
rence within the scope of a single allocation cycle and are repeated in the same order

in the following allocations.

consumer allocation cycle. During each allocation cycle, a consumer agent performs

two information exchanges (arrows show the direction in which the information flows),

each followed by knowledge integration. The first information exchange act takes place

when the agent obtains a new task to be allocated (indicated by number 1). At this

stage, the agent might have been waiting for the task for a long period of time, and

its local model might have become outdated. Therefore, before pursuing the task, it

obtains knowledge from the provider it is co-located with. The second information

exchange process (indicated by number 2) is conducted once the resource allocation

cycle of a particular task completes. Since, throughout the task allocation period, the

agent updates its internal model based on the outcome of interaction with providers, it

communicates knowledge to a subset of selected providers. The choice of which providers

the information should be communicated to in this process is made based on an affinity

algorithm described in the remainder of this section.

Apart from communicating information, during each allocation cycle, the consumer

performs two knowledge integration activities. The first (denoted in Figure 5.3 as step

2) takes place when an agent obtains information from a provider co-located with it. The

knowledge integration takes place once the resource allocation cycle of a particular task

completes (represented in figure as 4). Since, throughout the task allocation period, the

agent might have communicated with a number of foreign registries from other agents,

it will use that information (stored in a temporary list) to update its internal model.

Below we outline in detail the mechanisms that allow consumers to obtain, communicate

and integrate knowledge.

94 Chapter 5 The Model

5.3.3.1 Communicating knowledge to providers

At the end of every allocation cycle, consumer agents gossip with other agents. Knowl-

edge communication is illustrated in Figure 5.4. A consumer C5 gossips information to

the selected provider (P2). The information that is received by P2 is represented in the

form of a tuple:

I = 〈Rc,Ωc, αp,Ωp〉

where Rc is a list of registry tuples originating from consumer C5, Ωc ∈ [0, 1] represents

consumer C5 stress level (defining how well it performs), αp is the provider agent C5 is

co-located with (P1) and Ωp ∈ [0, 1] represents P1′s stress level (described in Section

8.2.2).

The communicated information (I) is then propagated by provider P2 to all consumers

(C1, C2, C3) that are co-located with it. Apart from I, C5 also signals to P2 its currently

demanded service type (St) that is being used by the latter to update its internal demand

model.

During information communication, the consumer gossips the content of its local reg-

istry only to a subset of selected provider agents that have affinity estimates (kept

within consumer’s Rc registry) higher than the default value (0.01) and greater than

0.1λmax, where λmax is the highest affinity value the consumer has within its memory.

The affinity estimates are updated by an affinity algorithm during the tuple integration

process described in the remainder of this section.

5.3.3.2 Obtaining Knowledge from Providers

When obtaining knowledge from a provider, the queried provider propagates that query

to consumers that are co-located with it and sends the obtained list of tuples 〈I〉 back

to the consumer agent requesting it. The consumer also signals the provider about its

current service type demand (St), allowing the latter to update its demand model.

During information exchange conducted by both mechanisms, only a subset of tuples

contained within the consumer’s local registry is communicated, according to the fol-

lowing rule. The consumer selects the tuples that have an evaluation score greater than

0.1ǫmax, where ǫmax is the highest evaluation score the consumer has within its memory.

By doing this, low scored tuples are not communicated.

Chapter 5 The Model 95

P1 P2

C6

C5

C3

C1

C2

t

1
2

2

2

<I, >S

Figure 5.4: Information exchange between consumer agents. Two providers (P1
and P2) are represented with co-located with them consumers: (C5, C6) ∈ P1 and
(C1, C2, C3) ∈ P2. Consumer C5 decides to communicate information to provider
P2. During the communication act, the agent sends its personal registry content
and the provider name it is co-located with in the form of a tuple I = 〈Rc, αp,Ω〉.
Provider P2 propagates received in this form information to co-located with it con-
sumers (C1, C2, C3) (step 2). During the communication act, the consumer addition-
ally signals to the provider service type (St) it is currently interested in allocation. This

information is used by the provider to update its local demand model.

5.3.3.3 Tuple Integration

During the tuple integration process the consumer updates its internal model based

on a subset of tuples selected from the list 〈I〉 that were obtained during information

exchange.

As consumer agents are bounded, the processing of any inflowing information consumes

an agent’s computational resources (such as CPU, time or memory space) and there is a

limit on how much information the agent is allowed to process before its task allocation

efficiency becomes compromised. In this model, such a limitation is represented by

the upper bound (defined by L parameter) on the number of information tuples the

consumer will consider during tuple integration procedure. If, at the beginning of tuple

integration, the size of a list 〈I〉 is greater than L, the consumer will randomly (using

uniform distribution) remove tuples from this list, until its size matches L.

Since there are two knowledge integration activities during each task allocation cycle

(before and after allocation process as presented in Figure 5.3), it is assumed that

the limit of maximum foreign information registries that can be accepted during each

procedure is equal to L/2.

5.3.3.4 Information Merge for an Agent with a Default Knowledge Model

If the consumer agent is a newly created agent, experiencing the first information merging

process and thus has a default internal model (ǫ and λ values for all tuples originating

from its internal registry are set to default 0.01 values), the agent will update the ǫ for

each αp provider contained within its registry according to the following formula:

96 Chapter 5 The Model

ǫαp →

∑
ǫαp

∗

n

where ǫαp represents an evaluation score for provider αp the consumer stores within its

local memory and
∑
ǫαp

∗ is the sum of n evaluation scores for the matching provider

obtained from all inspected I tuples selected for the merging process.

The affinity scores are updated according to the following formula:

λαp →

∑
λαp

∗

n

where λαp represents affinity associated with αp provider stored within its internal reg-

istry tuple and
∑
λαp

∗ is the sum of n affinity scores for the matching αp provider

obtained from all inspected I tuples the agent decided to merge with its registry.

Finally, the stress level (Ωc) of a newly deployed agent is determined by the mean stress

of other consumers exchanging information with it:

Ωc →

∑
Ω∗
c

n

where Ωc represents the stress level of a consumer agent from which communicated

information originates and
∑

Ω∗
c is the sum of n consumer stress estimates originating

from all I tuples the agent decided to merge with its registry.

5.3.3.5 Information Merge for a Non-default Knowledge Model

If a consumer agent already experienced at least one information merging process (and

thus evaluation and affinity scores have already been modified during this process), it

will update the evaluation for each αp provider contained within its registry according

to the following formula:

ǫαp →
ǫαp +

∑
ǫαp

∗

n

2

where ǫαp represents an evaluation score for provider αp the consumer stores within its

local memory and
∑
ǫαp

∗ is the sum of n evaluation scores for the matching provider

obtained from all inspected I tuples selected for merging.

The affinity scores are updated according to the following formula:

λαp → λαp + λαp

∗

Chapter 5 The Model 97

where λαp defines internal consumer affinity score for a αp provider and λαp

∗ defines the

affinity value (calculated using an affinity algorithm) for αp provider from which the

external registry selected for the introduction originated.

The consumer’s stress (Ωc) is determined by the following formula:

Ωc →
Ωc +

∑
Ω∗

c

n

2

where Ωc represents a consumer’s local stress estimate and
∑

Ω∗
c is the sum of n stress

scores originating from information exchanging consumers.

5.3.3.6 Information Outflow Regulatory Mechanism

Consumers reveal information kept within their local registries only to a subset of pro-

vider agents with sufficiently high affinity (λ) scores assigned to them by the former

agents. Whereas the manner in which consumer employs affinity scores during informa-

tion outflow is described in Section 5.3.3.1, here an affinity algorithm that is responsible

for λ scores update is introduced and described in detail.

The update of affinity scores is conducted on the basis of the comparison of foreign

information communicated to the agent (I) with the knowledge locally maintained by

the consumer. To do so, each consumer agent compares every foreign registry R∗
c from

the tuples selected for processing I tuples (I = 〈R∗
c , αp〉) with its internal registry Rc.

The comparison is conducted according to the following algorithm:

1. For each αp provider located in the internal consumer registry, for which ǫ > 0.01,

a matching αp provider is located in the foreign R∗
c registry. If the evaluation

score of the provider within the foreign tuple is also greater than the minimal

value (ǫ∗ > 0.01), the affinity of the pair of tuples (λαp) is calculated with the use

of following formula:

λαp = 1− |
ǫαp − ǫαp

∗

ǫαp + ǫαp
∗
|

2. Using this algorithm, the affinity between every matching pair of tuples is calcu-

lated. The aggregated affinity score:

λ∗αp
=

∑
λαp

is then used to update affinity score of the tuple representing provider αp located

within consumers local registry:

λαp → λαp + λ∗αp

98 Chapter 5 The Model

1

1

T
T = - + 1c

c

Figure 5.5: Function regulating inflow of foreign information to consumer agents. In
here the value of threshold T , below which consumer will accept information from the

offering it provider is a function of consumer’s stress (Ωc).

As the affinity algorithm involves a comparison between local consumer registry and

the registries obtained through information inflow, it is assumed that a consumer agent

decides to apply this algorithm only if its internal model is non-default (has already

experienced at least one information merging process). In the situation when a con-

sumer agent has been initialised and contains default knowledge, instead of relying on

the affinity algorithm to update the affinity scores within its local Rc registry, the con-

sumer relies on the affinity score information communicated from other agents. This

information is then incorporated into its own registry (for details on how information is

merged for a default knowledge model see Section 5.3.3.4).

5.3.3.7 Information Inflow Regulatory Mechanism

As the inflow of foreign information to consumers will affect their local knowledge and

thus the selection of provider agents during the task allocation process, the consumers are

provided with local information inflow regulatory mechanisms that decide which foreign

registries become accepted and merged with the one internally held by the agents.

This is facilitated in the following manner. Consumer agents accept information only

from providers that have their stress level below T ∈ [0, 1] threshold (Ωp < T), where T

is determined by each consumer individually through the following function:

T = −Ωc + 1

where Ωc represents the individual stress level experienced by the consumer agent. The

detailed description of the procedure used by agents to calculate their stress level (Ω) is

described in Section 5.3.1 (consumers) and Section 5.3.2 (providers).

Chapter 5 The Model 99

Figure 5.5 illustrates the relationship between the T threshold value and the level of

consumer stress (Ωc). As shown, the regulatory mechanism imposes constraints on

the inflow of foreign information when a consumer’s stress increases and relaxes the

constraints otherwise. Such behaviour is motivated by the observation that providers

which exhibit low stress are those that specialised to offer one service type and thus are

employed as information intermediaries by consumer agents interested in that service.

Providers with high level of stress, on the other hand, are likely to switch to offer different

service type and, as a consequence, are likely to mediate knowledge from consumer agents

interested in different service types. Such information is considered as a threat as it will

confuse consumers accepting it to interact with providers that possibly offer different

types of services than they are after and thus destabilise the resources market. In order

to facilitate minimal information flow when this mechanism is in use, it is assumed

that a consumer agent always accepts at least one foreign gradient during knowledge

integration.

5.4 Experimental Setup

5.4.1 Consumer Turnover Mechanism

One of the most important features of autonomic systems is their ability to adapt to

changing conditions without human intervention. The most obvious environmental dy-

namics such systems will be required to counteract relates to variance in service type

demand. Such pressure is triggered on the system by the influx of new infrastructure

users demanding various service types that may be offered by the system, and requires

efficient reconfiguration of resources market in order to satisfy the demand for particular

type of requested services. In our model the change in service type demand is triggered

by the introduction of new consumer agents. This process is handled by the consumer

agent turnover mechanism described below.

During each task arrival to a consumer agent, a random number r ∈ [0, 1] is drawn from

a uniform distribution. If the value of r is greater than the value of 1 − χ, the agent

to which this task was despatched is removed from the system and replaced by the new

one. If, on the other hand, r < 1−χ, the task is handled by the consumer agent already

existing within the system.

Given this simple procedure, the consequences of introducing a new agent are twofold:

1. The newly deployed agent does not possess any information about the availability

and performance of providers existing within the system. To obtain this informa-

tion, it becomes co-located with a randomly chosen provider, under the condition

that this provider is currently offering the service type demanded by the task the

100 Chapter 5 The Model

consumer has to allocate 5. Although this does not guarantee that the co-located

provider will be available and capable of satisfying the task demand, by offering

the same service type the consumer is interested in, the provider may already host

other similar consumers that, through gossiping, may provide information about

the state of other potentially valuable providers to the new agent.

2. The type of the service that the newly introduced agent is required to allocate

is selected according to one of the three demand functions (step, sinusoidal and

stochastic) that we discuss in a greater detail in Chapter 7 in which we specifically

consider the problem of adaptive service provisioning.

The motivation for demanding each consumer agent to allocate the same service type

during its lifetime is made on the basis that tasks submitted by the same infrastructure

user correspond to the series of interactions with the same application, eg. email client,

instant messenger, photo application and are handled by the consumer agent initialised

for this user. However, depending on the operation the user is performing (eg. viewing

images, uploading images or processing images), tasks submitted by him may still differ

with respect to the required capacity (Sc) or the time limit the user wishes the task to

be completed (Sl). For a more detailed model operation overview see Section 5.3.

5.4.2 Service Supply Setup

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 5 10 15 20 25 30 35 40 45 50 55 60

O
ffe

re
d

ca
pa

ci
ty

Provider agent

Figure 5.6: Capacity levels of de-
ployed within the system providers
based on exponential probability dis-

tribution.

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 20 40 60 80 100 120 140 160 180 200 220 240 260

D
em

an
de

d
ca

pa
ci

ty

Individual tasks

Figure 5.7: Capacity levels de-
manded by 250 tasks introduced to
the system. The distribution of task
capacities is drawn from an exponen-

tial probability distribution.

Resource Capacity Limitation

Providers differ from each other with respect to the resource capacity they offer. The mo-

tivation for such uneven resource distribution follows from the observation that within

5In cases where no such provider exists, a randomly chosen (using a normal probability distribution)
provider from the population of all deployed agents is selected.

Chapter 5 The Model 101

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0 25 50 75 100 125 150 175 200 225 250

T
as

k
tim

e
lim

it
(m

s)

Individual tasks

Figure 5.8: Distribution of task time allocation deadlines (Sl) drawn from an expo-
nential probability distribution.

real computational systems there will be a large number of nodes offering relatively

small resource capacity and a small number of nodes that offer a large resource capacity.

Consequently, to model these conditions within our autonomic system model, we assume

that the distribution of capacity across providers (more specifically — the computational

nodes they manage) is approximated by the exponential probability distribution func-

tion. This is achieved as follows. Throughout all experiments conducted in the following

chapters, we assume that the total resource capacity offered by the whole system (Σ)

remains constant and equal to 29500 resource capacity units. However, as Figure 5.6

shows, such total resource capacity is distributed across individual providers based on

the exponential distribution.

5.4.3 Service Demand Setup

To reflect the dynamic nature of resource allocation, tasks that are issued to the system

differ from each other with respect to task demanded capacity (Sc), task completion

time limit (Sl) and task arrival rate. Below we explain how these values are dynamically

determined within our model.

Task demanded capacity (Sc) setup

Figure 5.7 illustrates task capacities that are demanded by 250 consumer agents. Since

throughout all experiments we keep this number fixed (but allow consumers to undergo

turnover process), the disposition of capacity levels across different tasks, that is il-

lustrated in the figure, reflects conditions in which infrastructure users have different

demands with respect to resource capacity required to fulfill their goals. As such non-

uniform division of capacity levels is provided on the basis of exponential probability

102 Chapter 5 The Model

distribution (the same used for distributing resources across the population of providers,

illustrated in Figure 5.6, there is no guarantee that consumers will be able to satisfy their

requests throughout their lifetime relying only on a single provider as its available re-

sources may not be sufficient for probabilistically set capacity levels demanded by new

tasks. However, it is assumed that the total capacity that is demanded in this manner

by the population of consumer agents, on average, is close to the total supply of system

resources Σ = 29500, meaning that there exist enough resources within the system to

satisfy the demand.

To match the capacity demanded by all consumer agents to the total system capacity

supply, the capacity of each newly injected task to the system is normalised according

to the following formula:

Sc = S∗
c

C

P
D,

where S∗
c is the capacity drawn from exponential distribution, C is the current number

of consumer agents within the system, P is the current number of provider agents within

the system and D is the weight ([0, 1]) that is used to define the actual capacity demand

level (eg. if set to 1 will indicate that the system capacity demand-supply ratio is equal

unity).

Task completion time limit (Sl) setup

The task completion time limit is not uniform for every task issued to the system but

varies according to an exponential function. Such a distribution is used to model the

situation where the proportion of users demanding tasks to be completed in a short

time interval is relatively small as compared to the majority of users demanding tasks

to be completed at a more affordable (longer) periods of time. An example of 250 task

completion time limits drawn from this distribution is illustrated in Figure 5.8.

Task Arrival Rate Setup

The time intervals between which new tasks will be dispatched to a consumer agent

are determined probabilistically using Poisson distribution, with the mean defined by ω

parameter. If the consumer is already allocating a task, the newly arriving one will be

added to its local queue.

5.4.4 Agent Strategies Setup

Depending on the manner in which consumer agents employ (or not) information ex-

change mechanisms, we consider three general model configurations, the efficiency of

which, in achieving desired system functionality, will be evaluated during experiments:

Chapter 5 The Model 103

AdaptiveF low model (henceforth called AF , FreeF low model (FF) andNoFlow model

(NF). Configuration of each of these models is explained below.

1. AdaptiveFlow model: A model in which there exists a communication of infor-

mation between agents and where the transfer of information is regulated by adap-

tive mechanisms. Here, the amount of foreign information accepted by consumers

is regulated through the information inflow regulatory mechanism described in

Section 5.3.3.7, whereas the decisions to which other agents the information is

gossiped is regulated through the information outflow regulatory mechanism, de-

scribed in Section 5.3.3.6. In the remainder of this chapter we will refer to this

model configuration as the AF model.

2. FreeFlow model: A model in which there exists a communication of information

between agents but with no regulatory mechanisms deciding which information

to accept and to which other peers to communicate it further. In this setup

consumers accept all the information inflowing to them and propagate it to a

randomly selected subset of known providers. In each allocation round, the number

of peers to which the information is communicated is selected on a random basis

(using uniform distribution) from a range of < 0, 30 > 6. In the remainder of this

section we will refer to this model configuration as the FF model.

3. NoFlow model: A model in which there is no communication of information be-

tween system agents. In this setup consumers are allowed to perform their local

learning but are not allowed to communicate their locally maintained knowledge

to other agents. In the remainder of this section we will refer to this model con-

figuration as the NF model.

On initialisation of each of these models, or new consumer deployment (during consumer

agent turnover), consumers are provided with full information about the existence of all

deployed within the system providers, but possess no knowledge about their current

configuration or availability. Such knowledge is established at run-time by the exchange

of information and local learning mechanisms. Similarly, providers (unless stated oth-

erwise) have no preference for providing any service and decide to offer service types

based on their local learning mechanisms and locally perceived information about con-

sumer demand. Once the model is initialised, consumers start their allocation within the

randomly determined time between the first 50s of simulation time. This non-uniform

initialisation is applied to avoid any possible activity synchronisation between consumer

agents. Once consumers become initialised, the task arrival rate is regulated through

the Poisson distribution set by the ω parameter.

6The selection of 30 agents as an upper range of maximum number of peers to which information is
communicated defined the half of the total population of providers deployed in all conducted experiments.

104 Chapter 5 The Model

It is important to state that the purpose of comparing the three above ‘flavors’ of the

same model, each distinguished by the combination of strategies that agents employ

during their decision-making, is done strictly on exploratory grounds. This means that

we are are interested in investigating the dynamics of a particular decentralised multi-

agent system model presented in this chapter and the influence of AF , NF and FF

strategy combinations on its behaviuor. In doing so we do not provide any comparison

criteria between other existing approaches and multi-agent system models addressing

alike resource management problem. We assume that such an engineering approach can

be done only when a sufficient understanding of our model dynamics and the role of

local decision-making mechanisms responsible for this is obtained.

5.4.5 System Constants and Parameters

The experiments that will be presented in the remainder of this thesis will involve vari-

ous parameter settings used to evaluate the efficiency of applied decision-making mech-

anisms under different resource allocation conditions. As this will involve manipulation

of various parameters, whilst keeping others unchanged, below we outline which model

settings we will consider as constants throughout the experiments (and thus will not

refer to them) and which will be used as parameters (hence referred to in experiments

in which they are modified).

5.4.5.1 System Constants

Table 5.1 lists the constants that will remain unchanged for all experiments, unless state

otherwise.

5.4.5.2 System Parameters

Table 5.2 lists the default model parameter values. In cases when we modify the values

of any of these parameters, we will explicitly state this during specific experimental

setup.

5.5 System Behaviour Analysis Measures

5.5.1 System Throughput

The number of successfully allocated tasks is computed by measuring both the number

of successful and failed allocations each consumer agent experienced. These numbers are

measured in 20s time intervals. Each time another time window is selected, it starts from

Chapter 5 The Model 105

Parameter Value Description

C 250 Total number of consumer agents
P 60 Total number of provider agents
Σ 29500 Total amount of offered by the system capacity
L 20 Upper bound on the number of considered for-

eign registries during tuple integration
D 1.0 Demand level parameter identifying the global

demand—supply ratio
U 2 Maximum allowed provider over-utilisation

level
ψ 1 The stimulus increment coefficient
Tq 250ms Time taken to query a provider (varies accord-

ing to provider utilisation level)
Te 4s Service execution time (varies according to pro-

vider utilisation level)
Ts 4s Time taken for a provider to perform a switch

operation
To 8s Time taken for a provider to move into off-

line/on-line mode (used for power management
functionality described in Chapter 8)

Table 5.1: Default model constant values used throughout experiments.

Parameter Value Description

Capability 10 Number of unique service types offered by the
system

ω 7s Task arrival rate (mean value of Poisson distri-
bution)

δdecay 0.9 Decay coefficient used to allow stale informa-
tion to decay within consumer registry

∆decay 0.7 Decay coefficient used to allow stale informa-
tion to decay within provider registry

Table 5.2: Default model parameter values used throughout experiments.

the middle of the latter sampling period; eg. if the first sampling period was between

0 − 20 initial simulation seconds, the second sampling period is between 10 − 30. In

each such sampling period, both successes and failures are averaged over the number of

all consumer agents; the number of successfully allocated tasks, which defines system

throughput, is calculated by subtracting the failed tasks from the successfully allocated

ones. Thus, the system that experiences more failures than successes is assumed to

achieve throughput equal to 0.

5.5.2 Agent Communities

The stability and efficiency of the system is dependent on the establishment of correct

interactions amongst system agents (consumers and providers). Given the fact that

during each interaction between consumer-provider pairs the information perceived by

106 Chapter 5 The Model

the provider is communicated to consumers employing it, consumer-consumer interac-

tions are considered as constituting the main underlying network through which the

information about the system state flows across the agents.

Provided this information flow network it is clear that only certain configurations of

interactions will allow agents to organise their service provision and consumption. For

example, it is unlikely to expect that consumer agents that are interested in allocating

different service would benefit from sharing their local knowledge models as they may

risk the situation of attracting other (interested in different service type) consumers

to engage with the reliable provider they were currently using. As a consequence, the

provider might decide to switch and start offering different service type that would

further destabilise the performance of the previously employing it consumers.

To identify whether, and under what conditions, consumer agent interactions are able to

relax into topological configuration in which information that is communicated to other

peers does not destabilise the system performance, we provide measures for extract-

ing community structure from the captured consumer-consumer interactions. In here,

we consider a community to be a subset of individuals that have more links to other

members of the community than to individuals from the remainder of the network [79].

Given this, we assume that communities consisting primarily of like-minded individuals,

represented here by consumers interested in allocating the same service type, may sup-

port the emergence of cooperation, by providing an environment in which co-operators

are more likely to interact with other co-operators and less likely to be exploited by

defectors [30].

Given this interaction network, the purpose of the community extraction measure is thus

to identify the characteristics of such a network, including:

1. identification of any sub-groups of agents that interact (and thus share their infor-

mation) more frequently between themselves than any other system agents (such

groups of agents are onwards referred to as communities);

2. characteristics of these communities, including:

(a) composition of the community, identifying whether consumer agents (distin-

guished by the service type they are interested in allocating) are of the same

type and thus how homogeneous with respect to this the community is;

(b) average community size;

(c) number of identified communities.

To capture these properties, we rely on the Girvan-Newman community extraction al-

gorithm [79]. The community identification procedure is as follows:

Chapter 5 The Model 107

1. During every goal allocation cycle, every consumer agent maintains a list of in-

teractions that it experienced and during which it was communicated with new

information. The list comprises the identities of consumer agents from which this

information originated 7.

2. Using above collected data, a network is reconstructed identifying the topology of

interactions, where nodes represent consumers and edges are drawn between those

consumer agents that interacted with each other. The network is constructed on

the basis of information collected within 10s sampling intervals within which, once

an interaction between a given pair of nodes (agents) was identified, the algorithm

stops further search of interactions for that pair of nodes 8.

3. A Girvan-Newman community extraction algorithm is applied to the network

topologies extracted in subsequent simulation time snapshots.

After community extraction completes, the obtained results are processed in the follow-

ing manner:

1. as a community that was captured by the algorithm, we consider a group of at

least 2 consumer agents;

2. for each captured community, we extract information about its size and composi-

tion, identifying the names of consumers and service types they demanded at this

simulation time snapshot;

3. knowing what service types were demanded by community members, we calculate

community homogeneity. To do so, we identify the most common demanded service

type within the community by dividing the number of agents interested in it by

the sum of all other demanded service types.

5.5.2.1 Provider constraint measure

To identify constraint imposed on the behavioural repertoire of provider agent population

during its service type provision, below we introduce the measure of constraint.

Each 20s time intervals provider’s service type demand estimates (s) 9 are normalised

7This information is collected only for statistical purposes, where during model operation, consumer
agents are not aware of this information and are not exploiting it in order to leverage their allocation
efficiency.

8The motivation for 10s interval length is based on the fact that on average, each allocation cycle
lasts for the time defined by task arrival rate (ω) which in all experiments is set to ω = 7s, thus allowing
for at least one allocation to take place within the network interaction sampling period.

9These estimates are kept in provider agent Rp registry and represent its attraction towards offering
a particular service type. Recall that the provider relies on a roulette wheel selection when deciding
which service type to offer.

108 Chapter 5 The Model

and applied to calculate Shannon’s entropy with the use of the following formula:

H =
−
∑N

n=1
sn log sn

logN
,

where sn is the demand estimate for particular service type and N denotes number of

unique service types the provider is capable to offer.

The obtained value is a real number kept in H ∈ [0, 1]. If H ≈ 0, the entropy is low (and

thus constraint high) since there exists high stimulus (s) value for one specific service

type and weak stimuli for other service types. However, when H ≈ 1, the entropy

experienced by the agent is high (and thus the constraint low) since the stimuli for all

service types have similar values and thus the probability of selecting any service type

is equal.

The entropy measurements obtained in this manner are then averaged over the popula-

tion of all provider agents that have been considered during the given time interval and

the overall provider constraint is reflected by the following formula:

PH = 1−Havg,

where Havg represents the mean entropy experienced by provider population.

Chapter 6

Load Balancing

6.1 Introduction

In the previous chapter we presented our decentralised autonomic system model that we

now apply to facilitate following autonomic system functionality: load-balancing, adap-

tive service provisioning and power management. Whereas the local decision-making

mechanisms facilitating adaptive service provisioning and power management are dis-

cussed in the following two chapters, in this chapter we focus our attention on achieving

load-balancing.

Load-balancing is one of the most common problems that faces modern service oriented

systems and, in general, relates to the efficient allocation of system resources among a

group of requesting them consumers [91]. The distributed nature of such systems, in

which resources are both offered and consumed by multiple actors makes it natural to

approach the load-balancing problem using a multi-agent system model. Here, individual

agents are tasked to manage both the balanced provision of system resources as well as

their reliable consumption on behalf of the infrastructure users. Achieving the efficient

load-balancing using such distributed model relates to the development of local decision-

making mechanisms that allow individual consumer agents to discover the best allocation

such that all consumer requests are satisfied and neither of provider agents becomes

unnecessarily overutilised. However, as has been observed by Hogg and Huberman in

[40], realising this optimal match between resources demand and supply is a challenging

task, especially if resource allocation is conducted within dynamic demand conditions.

In these situations the approaches that stress the adaptation and thus the autonomy of

individual agents are favoured over the ones that impose centralised solutions that are

less scaleable and responsive to changes [91].

The application of decentralised multi-agent system for achieving efficient load-balancing

has been discussed by Sen et al. [106], who consider a system of self-interested agents

allocating resources on the basis of limited knowledge about the global system state. In

109

110 Chapter 6 Load Balancing

this context, Sen et al. investigate the effects of limiting agents access to knowledge about

the state of system resources, and the resulting outcome on system resource utilisation.

In [40, 41], Hogg and Huberman examine the effects of local decision making on bal-

anced resource utilisation within a computational ecosystem represented by a population

of resource allocating agents. In this work, the authors demonstrate how imperfect in-

formation about resource state can lead to chaotic system behaviour and how this can by

suppressed through appropriate local decision-making mechanisms. Another strategy,

relying on local learning mechanisms designed to preserve energy minimising resource

allocation within a mobile ad-hoc network, is presented by Brueckner and Parunak [11].

In achieving local mechanisms that allow the system to reconfigure its resource alloca-

tion in a manner that minimises power consumption, Brueckner and Parunak draw their

inspiration from self-organising properties of natural systems (insect colonies).

The approach adopted in our work shares the same motivation of understanding how

global system stability, in the form of balanced access to resources, can arise when au-

tonomic system elements perform resource allocation independently, i.e., without cen-

tralised executive control. However, whereas previous work has investigated how the

heterogeneity of the system can lead to stability through either limiting the knowledge

possessed by individual agents [106] or by designing local decision procedures that di-

versify agent behaviour [40], here we focus on identifying the role of local information

exchange between system agents as well as conditions under which such information flow

can organise agent interactions and lead to efficient load-balancing.

Given this, we hypothesise that the efficiency of such a bottom-up approach depends on

the ability of agents to organise into communities. The knowledge that is locally gossiped

between the community members not only increases their individual awareness about

the availability of provider agents but also allows them to avoid resource competition

that could potentially arise if agents were unable to establish such organisations or relied

only on their personal and highly limited knowledge.

To this end, the chapter is organised as follows. In Section 6.2 we explain the load-

balancing problem and the role that agent communities play in addressing it within a

decentralised multi-agent system model, while Section 6.3 presents experimental results,

focusing on our model’s load-balancing efficiency and the above stated hypothesis eval-

uation. The analysis of agent communities is then presented in Section 6.4 and their

impact on individual agents performance discussed in Section 6.5. Finally, the chapter

ends with a discussion in Section 6.6.

Chapter 6 Load Balancing 111

6.2 Load-balancing

6.2.1 The Load Balancing Problem

Achieving load-balancing in a decentralised manner is a non-trivial challenge that, if not

properly approached, may result in poor system scaleability or an unexpected loss of sys-

tem performance. In particular, it has been observed [40] that the introduction of shared

and constrained resources into a system composed of a large number of independent and

concurrent components responsible for offering and consuming resources on behalf of

system users may quickly and unexpectedly lead to the emergence of undesirable system

behaviour, often described as resource competition [94]. In this state, consumer agents

end up competing for specific subsets of resources, leaving others under-utilised. This

results in poor global resource utilisation reflected by the inefficient load-balancing over

the set of available resource providers. Furthermore, because there is no centralised

control, the system may simply self-reinforce this competitive behaviour leading to a

very rapid degradation of system performance [41].

A close investigation of this problem shows that inefficient resource utilisation on the

system scale arises from poor decisions made by individual system elements concerning

their selection of resources [12]. In particular, in large scale IT systems it is typical that

individual consumer and provider agents are not the same but demand (and offer) differ-

ent amounts of resources. Consequently, as observed in Chapter 4 during heterogeneity

tests, inappropriate allocation of consumer requests to service providers that have less

resources (or more than required by the consumer) may either overutilise or underutilise

particular system servers. This unbalanced distribution of resources not only decreases

profit gained from service allocation (as overutilised servers offer degraded quality of

the service or simply reject the allocation queries) but also prevents maximal usage of

the system services because resources of the underutilised servers are not used to their

full extent. In addition, this inefficient match between resource consumers and suppliers

introduces additional infrastructure cost of maintaining surplus of available but unused

system resources.

This presents us with the problem of developing local decision-making mechanisms capa-

ble of suppressing competitive interactions between resource consuming elements. Where

competition cannot be avoided, for instance where demand for resources outstrips sup-

ply, such resource allocation mechanisms should effectively distribute service provision

across the system, thus preserving fairness.

In this thesis we explore decentralised autonomic system models where individual con-

sumers and providers demand (and offer) different types and quantities of resources that

need to be completed within a limited period of time. Considering the fact that con-

sumer agents within such model possess only local knowledge about the availability of

system providers, but are able to communicate this information to others, it is clear that

112 Chapter 6 Load Balancing

allowing them to reveal their personal provider evaluations to others will improve their

up-to-date knowledge about the availability of system resources. However, recall that

within our model (described in Chapter 5) the only information that is shared across

consumer agents is in the form of evaluation scores reflecting the efficiency of partic-

ular providers and does not include any additional information what service type this

provider is offering 1. As a consequence, if this limited information is shared among

consumers that are interested in allocating different types of services, it may also intro-

duce resource competition as neither of consumer agents possesses the information what

service type the provider is currently offering and, as a result of this, will attempt to

employ such provider thus consuming time for unsuccessful interaction.

Hypothesis 1:

Given these considerations, we should expect the best system efficiency in conditions

when consumer agents organise their information exchange such that it is communicated

only within a subset of peers that have the same service type interests. By doing this,

the collectively shared information about provider’s availability would increase individual

agents awareness about system resources availability as well as enhance cooperation on

the level of such a group, as every consumer would act in a manner that improves its

own as well as other group members efficiency.

Since this approach has the potential to facilitate efficient load-balancing in a bottom-up

manner that does not require any central control to be imposed within the system, our

aim is to examine the above stated hypothesis. To do so, in what follows we experiment

with three different model configurations 2 that is AF (Adaptive Flow), NF (No Flow)

and FF (Free Flow). In the AF model consumer agents employ affinity algorithm

that allows them to identify like-minded agents (interested in the allocation of the same

service type) and share their local provider evaluations only among these peers thus, in

principle, allowing for the desirable agent communities to emerge. The consumer agents

from the FF model do not employ affinity algorithm and, as a result, share their local

provider evaluations to a randomly chosen subset of provider agents that are selected

from the ones existing within the system. As a consequence, this prevents any stable

communities to be formed and introduces a risk of resource competition since consumers

interested in different service types may decide to share their local provider evaluations.

Finally, in the NF model configuration the consumer agents are configured to rely only

on their local knowledge and are not allowed to share it with any other system peers.

In what follows, we evaluate the efficiency of these models in conditions where the system

is open and new consumer agents are allowed to enter and consume different types of

1We assume that consumers do not share information what service types are offered by particular ser-
vice providers because maintaining such up-to-date information within a dynamic resource environment
would be difficult and could impact on system performance as agents could use stale knowledge

2More detailed description of these model configurations can be found in Chapter 5 (Section 5.4.4).

Chapter 6 Load Balancing 113

system resources. Under these circumstances we are interested in identifying which of

the aforementioned models achieves the best efficiency as well as adaptation to changing

conditions.

6.2.2 Load Balancing Performance Measures

Since in this chapter we are only focusing on the load-balancing problem, provider agents

are configured to offer only one type of a service that is fixed over their life-time, and

are not allowed to reconfigure their provision at run-time. However, in each experiment

there exist 10 different sub-sets of provider agents, each offering a unique service type

and there are 10 sub-sets of consumers interested in allocation of such unique service

types. Given this setup, the main responsibility of consumer agent population is to

identify groups of providers that offer service types demanded by them and effectively

balance the requests to the appropriate and available provider agents.

The efficiency of load-balancing is evaluated in system configurations in which distribu-

tion of resources capacity between individual provider agents is not uniform but varies

according to an exponential distribution function described in Section 5.4) 3 and where

the system is open and thus new agents are introduced based on a consumer agent

turnover mechanism (described in in Section 5.4.1). Finally, all experiments are set up

in a way that the total demand imposed by consumer agents is proportional to the total

supply of resources offered by provider agents (demand-supply = 1 : 1). The detailed

parametrisation of employed models is presented in Section 5.4.5.

Given the above experimental setup, as an indicator of efficient load balancing we will

apply three performance measures: system efficiency reflected by its throughput, system

organisation identified by the existence of agent communities and finally, the number

of rejected requests obtained by consumers during provider querying process. The first

two measures are explained in Section 5.5. The purpose and method of applying the

last measure is described below.

The rejected requests measure is motivated by the observation that each query in real

autonomic systems may introduce additional task allocation costs (eg., consumed band-

width, energy or time) which, if the tasks are required to be allocated successfully and

in an on-demand fashion, needs to be minimised by the infrastructure provider through

the application of control mechanisms. In all three discussed model configurations (AF ,

FF and NF) consumer agents already rely on simple adaptive mechanisms that allow

them to continue to search for available providers until the one capable of satisfying the

task constraints imposed by the task (service type, maximum allocation time limit and

resource capacity) is found. However, although this enables consumers to avoid already

3The distribution of capacity for each of the sub-set of provider agents offering unique service types
is such that despite the variance in capacity offered by individual provider agents, the total capacities
offered by each group of providers are equal.

114 Chapter 6 Load Balancing

heavily overutilised providers that cannot satisfy the stringent task specification, we as-

sume that provider query (and provider allocation) consume Tq query (and Te execution)

time 4 and thus inefficient (eg., brute force) search for available resources will eventually

result in task failure.

Consequently, model configurations that are able to successfully operate on locally avail-

able information about resource state and coordinate their resource selections in a man-

ner that avoids resource access conflicts should be identified by a low number of rejected

allocative queries.

The following experimental evaluation section is broken down into two parts. In the

first part (Section 6.3) the system throughput for three aforementioned model configu-

rations is evaluated in a range of dynamic resource allocation conditions, whereas in the

second part (Section 6.4) we focus on the identification of agent communities and model

parametrisations under which they emerged together with their role in achieving high

system throughput.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5

M
ea

n
sy

st
em

 th
ro

ug
hp

ut

Consumer agent turnover probability

Figure 6.1: Figure illustrates mean
system throughput as a function of
increasing consumer agent turnover
probability for three system model
configurations: AF model (line with
rectangles), NF model (line with cir-
cles) and FF model (line with trian-

gles).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5

R
ej

ec
te

d
co

ns
um

er
 r

eq
ue

st
s

Consumer agent turnover probability

Figure 6.2: Number of rejected
allocative requests as a function of
increasing consumer agent turnover
probability for three system model
configurations: AF model (line with
rectangles), NF model (line with cir-
cles) and FF model (line with trian-

gles).

6.3 Consumer Agent Turnover

Figure 6.1 illustrates the mean system throughput for three model configurations, AF

(rectangles), FF (triangles) and NF (circles), for increasing resource allocation dy-

namism reflected by the probability of consumer agent turnover . Here, the horizontal

4The duration of provider query (Tq) and execution (Te) is dependent on the current provider utili-
sation where it takes more time for a heavily utilised provider to respond to the consumer query. The
mechanism controlling Tq response time is described in Section 5.3.2.

Chapter 6 Load Balancing 115

dashed line indicates the hypothetical optimal allocative efficiency in conditions in which

the system is closed and agents are able to resolve all arising resource access conflicts.

As the results suggest, the best performance is achieved by the AF model in which con-

sumers share their local information with other consumers sharing the same service type

interests. For this configuration, as Figure 6.2 shows, the system is capable of suppress-

ing almost all rejected resource allocation queries for conditions when consumer agent

turnover is set to zero. Considering the NF and FF models, even for the initial closed

system conditions (when consumer agent turnover probability is equal zero), there ex-

ists an observable amount of rejected consumer requests suggesting more resource access

conflicts and thus less efficient load-balancing on the system level. This in turn impacts

on system performance for the NF and FF models that, as illustrated in Figure 6.1, is

worse than the one achieved by the AF model.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.1 0.2 0.3 0.4 0.5

M
ea

n
nu

m
be

r
of

 e
xt

ra
ct

ed
 c

om
m

un
iti

es

Consumer agent turnover probability

Figure 6.3: Mean number of ex-
tracted communities as a function of
increasing consumer agent turnover
probability for two system model
configurations: AF model (line with
rectangles) and FF model (line with

triangles).

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

M
ea

n
co

m
m

un
ity

 h
om

og
en

ei
ty

Consumer agent turnover probability

Figure 6.4: Mean community ho-
mogeneity as a function of increasing
consumer agent turnover probability
for two system model configurations:
AF model (line with rectangles) and
FF model (line with triangles).

In conditions in whihc the consumer agent turnover probability is greater than zero,

and thus new consumer agents enter the system, the performance of all three models

is compromised due to increasing system dynamics. However, in every consumer agent

turnover probability setting, the best performance and the lowest amount of rejected

consumer requests is achieved by the AF model.

Recall our hypothesis stated at the end of the previous section (Section 6.2.1) that the

best system performance is achieved in conditions when agents self-organise into com-

munities within which information is shared among like-minded (with respect to service

type interests) agents. Given the results reflecting system throughput and thus efficiency

in achieving load-balancing, we observed that two model configurations (AF and FF)

that relied on information gossiping achieved orthogonal with respect to each other per-

formances. Whereas the AF model achieved the best performance of all three considered

model configurations, the FF model exhibited the worst, even when compared to the

116 Chapter 6 Load Balancing

model configuration in which agents did not share their local knowledge (NF). Why

the AF model configuration outperformed not only the NF but, more interestingly, the

FF model that also employed information gossiping?

6.4 Consumer Agent Communities

To understand why the AF model performance scales much better for the increasing

dynamism of resource allocation let us analyse the underlying structure of agent inter-

actions and thus the manner in which locally communicated information influences the

consumer agent resource selection process. For this purpose, a network analysis was

performed for AF and FF models 5.

The topologies that represent consumer agent interactions showing which consumers

shared their local provider evaluations are illustrated for the AF model in the following

two figures, Figure 6.5 and Figure 6.7, each showing the results for different consumer

turnover probability configuration. The interaction topology for the FF model is shown

in Figure 6.6. For both model configurations the networks were constructed by aggre-

gating the consumer interactions that occurred within a 10 seconds period starting at

the 600th simulation second.

Figure 6.3 presents a distinct number of consumer agent communities that can be viewed

as collectives of agents that interact and reveal their personal provider evaluations more

frequently among themselves than between agents that are not part of the community.

Such communities are not pre-imposed (eg. configured at system design time) but arise

spontaneously as a result of local agent learning mechanisms and information exchange.

As shown, the number of such unique communities extracted from the AF model (rect-

angles) resides above a horizontal dotted line that defines the minimal possible number

of distinct communities for a properly configured system. For the presented results, this

number is equal to 10 as there are ten different subsets of consumers, with each group

interested in allocating different service type.

Considering the composition of extracted communities with regard to the similarity

of service type interests of the consumer agents, Figure 6.4 shows that communities

identified within the AF model (rectangles) exhibit high homogeneity (kept between 0.85

and 1) even for the increasing consumer agent turnover conditions. This means that the

majority of members forming each community are agents interested in allocation of the

same service type. The interaction network formed by the AF model consumer agents

operating in conditions in which consumer turnover probability is zero is presented in

Figure 6.5. Here, it is shown that consumers were able to organise into a sufficient

number of distinct and homogeneous collectives of interacting peers.

5There is no network analysis for the NF model as in this model configuration consumer agents do
not communicate any information between each other.

Chapter 6 Load Balancing 117

Figure 6.5: Correctly organised consumer agent communities extracted from AF
model for conditions where consumer turnover probability is equal zero. Edges between
nodes represent information exchanges between consumer agents where node shapes
correspond to specific (denoted by node label) service type the consumer is required
to allocate. The size of each node indicates the amount of resource capacity that is

currently demanded by the task.

The same cannot be said about the homogeneity of communities extracted from the FF

model (circles in Figure 6.4). Here, the mean community homogeneity varies between

0.53 and 0.66, suggesting that communities are formed out of a mixture of consumers

interested in the allocation of different service types. Furthermore, as Figure 6.3 shows,

the number of extracted communities for the FF model for the most of consumer agent

turnover probability settings (0.0−0.3) remains below the minimal required level, mean-

ing that consumers are unable to organise into distinct and highly homogeneous com-

munities. This is confirmed by the consumer interaction network presented in Figure 6.6

that illustrates the FF model consumer agent interactions in conditions where consumer

turnover probability is zero. As shown here, not only were consumers unable to establish

a sufficient number of distinct communities (corresponding to the number of uniquely

requested service types, equal to 10 in this model configuration) but also resulted in an

organisation characterised by low homogeneity due to interactions between consumers

interested in the allocation of different service types.

Finally, the impact of increasing system openness and thus resource allocation dynamism

on the proportion of consumer agents forming communities (at least of size two mem-

bers) is illustrated in Figure 6.8. Here it is shown that for both the AF and FF models

the fraction of system agents capable of forming and sustaining communities becomes

smaller as the system dynamics increases. Several conditions influence such gradual

decay of structures formed by agents. Firstly, the information flow sustaining communi-

118 Chapter 6 Load Balancing

Figure 6.6: Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal zero. Edges between nodes rep-
resent information exchanges between consumer agents where node shapes correspond
to specific (denoted by node label) service type the consumer is required to allocate. The
size of each node indicates the amount of resource capacity that is currently demanded

by the task.

Figure 6.7: Correctly organised consumer agent communities extracted from AF
model for conditions where consumer turnover probability is equal 0.1. Edges between
nodes represent information exchanges between consumer agents where node shapes
correspond to specific (denoted by node label) service type the consumer is required
to allocate. The size of each node indicates the amount of resource capacity that is

currently demanded by the task.

Chapter 6 Load Balancing 119

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

N
um

be
r

of
 e

xt
ra

ct
ed

 c
om

m
un

iti
es

Mean community coverage

Figure 6.8: Mean community coverage as a function of increasing consumer agent
turnover probability for two system model configurations: AF model (line with rect-

angles) and FF model (line with triangles).

ties in the AF model is regulated through the stress indicator perceived individually by

consumer agents. As the allocation dynamics increases due to the influx of new agents

and consumers become confused about which providers to select, the stress individually

perceived by agents reaches a high enough limit to block the information flow between

peers. Eventually, large and strong communities proliferate into smaller groups and

consumers forming them tend to establish dynamic and transient communities, mostly

for the duration of a single allocation. These communities are not identified by our com-

munity extraction mechanism as they decay very quickly and therefore overall system

community coverage decreases. Figure 6.7 provides a consumer interactions network

formed in conditions where consumer agent turnover is equal to 0.1. When compared

to the network topology captured in more stable conditions (for the same AF model),

where there is no new consumer agents influx (shown in Figure 6.5), it is visible that

large communities present in more stable allocation conditions proliferate into smaller

communities that are more resilient to instability in more dynamic conditions.

Another factor directly influencing the decay of communities is the influx of new con-

sumer agents. These agents are introduced whenever an existing agent is removed from

the system and are initially given no information about system state. Both the removal

of consumers with already established local knowledge and the introduction of new ones

with no knowledge at all causes a partial loss of information from the system. Although

this loss eventually becomes recuperated through the information exchange during the

process of which newly introduced consumers acquire information from their peers, the

frequent introduction of new agents (and the removal of the existing ones) may cut the

communication of information between groups of agents forming the same community

and thus disassemble it for a long enough period of time to prevent its re-formation to

original state. This is particularly visible within the FF model where agents do not

limit the information flow (do not react to stress as within the AF model) but still the

overall community coverage drops as the agent turnover increases.

120 Chapter 6 Load Balancing

6.5 Impact of Communities on Individual Performance

Up to this point we focused only on the analysis and comparison of two model configu-

rations that employed information exchange (AF and FF) and for this purpose showed

properties of networks arising as a result of local information exchanges between con-

sumer agents comprising these models. But what relevance do these information flow

topologies have on the behaviour of individual agents and how different it is from the

model configuration (NF) in which agents do not employ information exchange?

Consider Figure 6.9 where an illustration of provider evaluation scores maintained by

consumer agents within their local registries is shown. These were obtained from the

experimental runs discussed in Section 6.3 in which consumer agent turnover probability

is equal to 0.0. For the purpose of presentation, each consumer agent registry was

organised in descending provider evaluation score order and the obtained values were

averaged over the population of all agents. Given this, Figure 6.9 shows the evaluation

scores for the first 20 provider agents for three experimental model configurations: AF

model (rectangles), FF model (circles) and NF model (triangles).

Based on these results we can see that consumers within the NF model establish a

preference and high evaluation score only to a single provider agent as a result of their

own personal allocative experience. Although this allows them to consider such a pro-

vider in the first allocative request, the unavailability of this agent causes consumers to

seek other resources without any additional preference and thus randomly 6 which is

inefficient and generates a large number of resource access conflicts observed as rejected

queries and poor system performance. Furthermore, the inability of consumers to share

their information increases the probability that newly introduced agents that are not

satisfied by the provider they are co-located with, will begin a stochastic search for other

available providers.

How different from this is the memory state of consumer agents from the AF model?

Consider the line with rectangles in Figure 6.9 that illustrates evaluation scores main-

tained by consumer agents comprising the AF model. Here we can observe that, on

average, each consumer has established an attraction towards more than a single provi-

der. Furthermore, the number of valued providers (around six) is a close match to the

optimal number of providers that should be of interest for consumers (six) as there are

10 distinct provider and consumer sub-populations, each demanding and offering unique

service types within a system comprising 60 provider agents.

Given the NF model consumer evaluation scores characteristics (line with circles in the

figure), it is clear that the extended awareness of providers for AF model consumers

agents, reflected by more than a single evaluation score within consumer memory, is

6As explained in Chapter 5 (Section 5.3.1), consumers rely on roulette wheel selection during the
provider selection process.

Chapter 6 Load Balancing 121

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16 18 20

P
ro

vi
de

r
ev

al
ua

tio
n

sc
or

e

Unique provider agents

Figure 6.9: Provider evaluation scores kept within local registries of consumer agents
from: AF model (line with rectangles), FF model (line with triangles) and NF model

(line with circles).

provided through the information exchange between agents. As long as this information

is being communicated through the collective actions of agents sharing their individual

experiences, each community member will be capable of conducting more informed and

thus more efficient decisions. In relation to the load-balancing problem, AF model

consumers are able to quickly resolve allocative conflicts (if they arise) by conducting

the informed selection of another, highly evaluated provider. As the performance results

for the AF model show, this allows agents to achieve greater efficiency. Another strength

of communities can be observed during the influx of new consumer agents to the system

that have not established any preference for provider selection. Within the AF model,

once such a new agent becomes co-located with a provider agent, it will be supplied with

the community level information from other consumer agents that utilise this provider

for resource allocation. This, in turn, will increase its system resources state awareness,

avoid random provider search (if the co-located provider cannot satisfy its request) and

thus facilitate efficient load-balancing in an open system environment.

The information gossiping mechanism within the FF model was purposefully designed

to let consumer agents communicate information to agents that reside outside their com-

munities. By doing so, consumers interested in the allocation of a specific service type

(eg. X) encourage consumers that are after other service types (eg. Y) to engage with

providers offering the former type of a service. This causes Y consumers to interact

with X providers and thus achieve a large number of rejected requests. Within a system

where 10 different service types are demanded, consumers sharing their local evalua-

tions across different communities become continually frustrated over which providers

to select. This behaviour is illustrated in Figure 6.9 by a line with triangles showing the

evaluation scores maintained by consumer agents in the FF model. In contrast to the

AF model (lines with rectangles), consumers within the FF model are unable to limit

their selection to a valid subset of providers offering service types they demand and thus

experience a much higher number of rejected requests due to inefficient load-balancing.

122 Chapter 6 Load Balancing

6.6 Conclusions and Summary

In this chapter we analysed the performance of our decentralised autonomic system

model tasked to achieve efficient load-balancing in dynamic resource allocation condi-

tions. To do so, we hypothesised that the global system efficiency is dependent on

the ability of individual system agents to organise into communities. To examine this

hypothesis, we explored the performance of three different model configurations (AF ,

NF , and FF) that were distinguishable by the usage (or lack) of different local-decision

making mechanisms responsible for local information communication.

The results reported in Section 6.3 suggest that the best load-balancing efficiency is

achieved by the AF model. It is also the same model within which highly homoge-

neous and appropriately sized communities have been identified. Considering the poor

performance of the FF model accompanied by disorganised (low homogeneity) and in-

sufficiently sized communities or the inefficiency of the NF model where no communities

exist at all, the question may be stated: what is the role of agent communities in achiev-

ing high system efficiency and load-balancing in particular?

Given the nature of resource allocation within a decentralised system in which access

to a global information repository is absent, it is clear that the increase in system effi-

ciency can be achieved when localised agents conduct informed decisions when selecting

available resources. Having no central information repositories, the only possible way

of achieving this is to learn from others. Although no agent possesses sufficient knowl-

edge to let it facilitate optimal allocation, each individual agent maintains local bits of

information about performance of a small group (or even a single) provider(s) that it

engaged and employed for allocation at a recent time. By revealing this information

to others and encouraging other agents to do the same, individual agents may increase

their awareness of the availability of system resources. This enables them, in turn, to

make informed decisions that increase their personal as well as the overall system effi-

ciency. This is precisely what we have observed in the AF model where the identified

communities represented consumer agent collectives coherently sharing their individual

allocative experiences.

Considering the difference in performance between the AF and FF models that both

employ information exchange, we observed that only information exchange mechanisms

from the AF model allow the system to achieve high efficiency. This implies that not

only lack of information flow (NF model) but also inefficient information communication

(FF model) may destabilise resource allocation within the decentralised system.

Such insights imply two important things. Firstly, the provision of expected system func-

tionality (load-balancing in this context) in a bottom-up manner requires local decision-

making mechanisms that allow specific functional structures such as observed communi-

ties to arise out of local interactions and information exchanges between system agents.

Chapter 6 Load Balancing 123

And secondly, to sustain a desired system organisation in a form of communities within

the dynamic system operating conditions, agents need to employ local mechanisms that

regulate the flow of information between their peers.

In the next chapter we will continue our elaboration on the importance of system organ-

isation into communities and their bottom-up organisation and regulation through local

information exchange within more complicated system settings. In particular, we will

explore the problem of adaptive service provisioning where provider agents are allowed

to offer more than a single service type and thus may decide to reconfigure their ser-

vice provision at run-time and in response to locally perceived demand. Consequently,

global system efficiency depends not only on the efficient load-balancing but also on

the appropriate adaptation and configuration of provider agents. As in this chapter,

the experiments are carried over a number of dynamic resource allocation scenarios,

investigating system response and adaptation in changing conditions.

Chapter 7

Adaptive Service Provisioning

7.1 Introduction

In the the previous chapter we focused on the load-balancing problem within auto-

nomic systems. For this purpose a multi-agent system model was presented and local

decision-making mechanisms introduced that facilitated efficient distribution of resource

requests to resource providers available within the system. Throughout the experiments

carried out for different model configurations and dynamic resource allocation conditions

we observed that the efficiency of the agents depends on their ability to organise into

communities responsible for up-to-date information flow across community members.

In this chapter we continue our analysis of system organisation into communities and its

relevance in facilitating more advanced autonomic system functionality that is adaptive

service provisioning. To do so, we relax the assumption held in the previous chapter

that the proportion of consumer agents requesting various service types remains constant

over the simulation time. As a result, provider agents no longer offer a single and pre-

configured service type but are allowed to adjust to changing demand conditions at

run-time through service type reconfiguration.

In the past, the above described process of adjusting the system to the needs of its users

has been performed in the off-line mode by system administrators. Such infrastructure

managers were responsible for the reconfiguration of individual server nodes such that

the overall system resources supply matched some user demand model, often captured

through the analysis of historical demand data the system experienced in the past [58].

Whilst this approach was sufficient for small scale deployments where change in service

type demand was highly deterministic and therefore allowed for off-line reconfiguration

that closely matched to the on-line demand conditions, existing IT systems no longer

guarantee such stable functioning conditions. As a consequence, rather than relying

on an off-line server reconfiguration, modern autonomic systems stress the relevance of

125

126 Chapter 7 Adaptive Service Provisioning

on-line adaptation of offered by the system services to the currently perceived demand

conditions [59].

To address this adaptive service provisioning problem in a manner that minimises hu-

man administrator involvement, much of the current research in the area of autonomic

computing focuses on techniques preserving the inter-operation of existing IT systems’

software modules, often encapsulating their functions in terms of autonomic managers.

As a result, human decision-making becomes gradually replaced by automated responses

conducted by autonomic managers that follow certain rules and policies whilst conduct-

ing their decisions. In achieving this, techniques such as reinforcement learning [61, 119],

optimal control theory [125], and maximisation of expected utility [59] are then exploited

in order to balance power-performance tradeoffs, i.e., to achieve efficient allocations of

requested jobs at the same time as optimising the power consumption of unused servers.

Two kinds of control architecture tend to be employed: centralised and distributed ; both

of which are illustrated schematically in Figure 7.1. Centralised schemes rely on a central

executive to co-allocate services, schedule and plan system behaviour, etc. In contrast,

distributed control schemes employ distributed protocols and focus on the design of

intelligent parallel algorithms for coordinating the behaviour of agents.

Figure 7.1: Three classes of control organisation: a) centralised control, b) distributed
control reliant on consensual, up-to-date, global information, and c) fully decentralised
control. Service providers and consumers are represented by small circles, central exec-
utives or central repositories by large circles. Agents may store information (lozenges)
and/or execute co-allocation algorithms (brains). Dotted lines connote information ex-
change, whereas dashed lines connote the pairing of services and resources achieved by

the co-allocation process.

However, whilst these mechanisms are somewhat decentralised, they generally assume

that up-to-date information is freely available. Thus, in order to converge on an optimal

solution, such schemes require that each agent possesses a substantial amount of global

Chapter 7 Adaptive Service Provisioning 127

system information, resulting in the need to perform a large number of interactions in or-

der to maintain awareness of peer goals, actions, etc1. Furthermore, with the increasing

scale and dynamism involved with operation of modern IT systems, it become apparent

that collecting and processing up-to-date information in large scale deployments can

become a significant problem due to the time-delays associated with obtaining large

amounts of distributed information [60, 26, 41]. As a consequence, systems relying on

either centralised or distributed control schemes (Figures 7.1a and 7.1b) are often vul-

nerable to increasing system scale and/or dynamism. Although [125] proposed a control

scheme that is scaleable, Wang et al. relied on a ‘divide and conquer’ approach, where

allocation and power management problems are easily decomposable into subproblems

that can be solved independently by individual agents. However, as the authors note,

this is possible only when the global problem could be decomposed into independent

sub-problems with no mutual constraints, thus ensuring that no coordination was re-

quired between non-interacting agents. This assumption is unrealistic in service oriented

infrastructure deployments, where many workflow processes may compete for the use of

multiple services, distributed over a number of servers that thus become interdependent.

In addition to this, many of the systems described above consider small-scale deploy-

ments involving small numbers of agents (i.e., between two [61] and sixteen agents [125]),

whereas realistic, large-scale, autonomic infrastructures could comprise of hundreds,

thousands or possibly millions of such autonomous loci of control. Such large scale

deployments not only would require control mechanisms that allow them to relax into

efficient configuration, but also to achieve it in the robust and timely manner.

To facilitate such adaptive response within the context of adaptive service provisioning

we employ a multi-agent system model that we described in Chapter 5. Here, the model

scaleability is facilitated by providing decentralised architecture in which agents conduct

their decisions based on locally available information and thus do not require coordina-

tion protocols or access to global system state. The sufficient level of robustness and

adaptation, on the other hand, stems from the increased autonomy and independence

of individual provider agents that are allowed to make their own decisions about which

service types to offer, based only on their locally perceived information about the system

demand.

Given this model, we verify if adaptive service provisioning functionality can arise in

a bottom-up manner through local interactions and information exchanges between re-

source allocating agents. Similar to the work carried in the previous chapter, also in

here, we stress the relevance of agent organisation into collectives cooperatively sharing

their local information and for this reason continue the evaluation of hypothesis stated

in the previous chapter that the efficiency of the system depends on the ability of agents

1It is important to recognise the difference between this scheme and a fully decentralised model
(Figure 7.1c) in which every agent must make its own decisions based on locally available information
that may not be available to its peers.

128 Chapter 7 Adaptive Service Provisioning

to organise into communities.

To this end, in Section 7.2 we describe adaptive service provisioning issues raised by

autonomic computing. Our experimental model evaluation addressing this problem is

presented in the three following Sections 7.3, 7.4 and 7.5. Finally, the chapter ends with

discussion in Section 7.6.

7.2 Adaptive Service Provisioning Problem

In the previous section we suggested that one of the possible ways of addressing adaptive

service provisioning can be realised through the application of a decentralised multi-agent

system model in which individual provider agents are allowed to reconfigure and adjust

the offered by them service type based on the locally perceived consumer demand.

Whilst this approach offers flexibility and scaleability that is difficult to achieve within

centralised or distributed control schemes, it also introduces additional problem of ex-

erting stable and efficient configuration within a system of autonomously interacting

agents that operate only on locally available information.

One way of addressing the problem of controlling group of autonomous agents is to endow

them with coordination mechanisms that provide them with sufficient information about

the global system state such that coherent behaviour emerges out of their individual but

rational decisions. However, Arthur [2] demonstrated in the El Farol Bar problem that

instability can emerge within dynamic environments when independent rational agents

all have access to the same global information. In the game-theoretic example illustrated

by Arthur, each agent wishes to visit the bar if and only if less than 60% of the agent

population also wish to visit the bar. Consider a rational agent, A, that decides to visit

the bar. A might reasonably assume that every other agent will reach the same decision

and choose to visit the bar, in which case A must change her mind and choose not to

visit the bar. But she must also reason that every other rational agent would also change

their mind in this circumstance. The quandary rests on two symmetries: (i) every agent

employs the same decision-making mechanisms; and (ii) every agent reasons on the basis

of the same information.

Both these symmetries are typically present in the models of decentralised resource

allocation proposed in a number of problem domains, including coalition formation [109],

group problem solving [114] and teamwork [97]. A common property of such models

is their reliance on distributed protocols and focus on design of intelligent algorithms

coordinating the behaviour of agents. However, these mechanisms, whilst decentralised,

generally assume up-to-date shared information, and thus in order to converge to an

optimal solution, they require a substantial amount of global system information followed

by a large number of interactions among system elements to maintain awareness of peer

Chapter 7 Adaptive Service Provisioning 129

goals, actions, etc. As a consequence, they are often vulnerable to increasing system

scale and/or dynamism [19].

Whereas the above, AI inspired control approaches turn out to be prone to increasing

system scale and dynamism, it has been observed that natural decentralised systems,

which operation also involves efficient and adaptive management of resources, overcome

these vulnerabilities relying only on local interactions and adaptations between system

elements [7, 105].

One of the examples of such systems that was extensively studied and well understood

are insect societies that show their remarkable abilities at achieving division of labour

in a fully decentralised manner [91]. Here, the survival of the whole colony depends

on the ability of its constituents to effectively divide their labour, such that the system

survival functions are maintained. To do so, a potentially homogeneous population of

ants, each capable of handling the same range of tasks, dynamically differentiates itself

into a number of distinct but organised collectives or castes [120]. Each such collective

specialises in carrying out a specific task, such as food foraging, nest building, brood

feeding, nest defence, etc. The survival of the colony thus depends on both the efficient

handling of each system task and the adaptive division of resources (ants) into a number

of such collectives responsible for these different tasks. One of the most striking aspects

of such a regulatory response is its plasticity, a property achieved through the workers’

behavioral flexibility: the ratios of workers performing the different tasks that maintain

the colony’s viability and reproductive success can vary (i.e., workers switch tasks) in

response to internal perturbations or external challenges [7].

Understanding how this run-time flexibility within biological systems is implemented

at the level of individual system elements which certainly do not possess any global

representation of the colony’s needs has been addressed to some extent [120, 7, 73].

According to these studies the self-regulatory colony properties appear to stem from

simple threshold-based behaviours where the specialisation of system elements to handle

particular tasks arises as a result of reinforcement processes [120].

Despite the advances made in understanding such stimuli-response mechanisms, one of

the key issues involved in engineering models that exploit them for achieving adaptive

resource management remains the difficulty of influencing the ‘right’ interactions and

avoiding those that may frustrate and destabilise the system [91, 11]. Recent studies

focusing on this problem suggest that the processes responsible for this are local decision-

making mechanisms that perceive, process and propagate locally available information

amongst system elements [85, 93, 7, 99].

Results obtained from the analysis of the effects such local information dissemination has

on the ability of the system to self-organise point to the relevance of local decision-making

mechanisms that regulate information flow and prevent situations in which there exists

too little or too much communication between agents [24, 29, 11]. In the former case,

130 Chapter 7 Adaptive Service Provisioning

where there is little or no flow of information between the system elements, each must

act on the basis of extremely limited information and may tend to make poor decisions

that decrease overall system performance. In the latter case, where information can

flow too freely, or may be globally available, system behavior may become extremely

dynamic and unstable (as in the case of Athur’s El Farol Bar problem [2]), thus risking

the possibility of cached information becoming stale, inappropriate or irrelevant, and

consequently destabilising the overall system behaviour. In between these two extremes,

there may exist a regime in which information flow amongst system elements may bring

about stable and adaptive system response.

Such organised and constrained flow of information is critically relevant in our decen-

tralised model that we employ for achieving adaptive service provisioning. Recall the

problem of resource competition that we addressed through agent communities in the

last chapter and let us now consider lethal effects it may have on the model configuration

discussed in this chapter that we outline below.

As stated in the last chapter, consumer agents may compete for resources either if they

possess no information about resources availability and thus choose the random ones

or if they share their local provider evaluations among consumers that are interested in

the allocation of different service types than they require. Under these circumstances

resource competition contributed towards rejected resource queries that negatively af-

fected allocation time and, when exceeded task allocation deadline, caused the current

allocation to be failed. However, within the model considered in this chapter, in which

providers may decide to reconfigure their service provision at run-time 2, resource com-

petition introduces additional effect that is lethal to the system stability. Here, con-

sumers that mistakenly reveal their local provider evaluation scores to agents interested

in the allocation of other service types may now cause the latter, attracted through this

communicated information, to pursue these attractive providers and encourage them

to reconfigure and offer different service type. This will result in the local instability

as the consumer agents that were previously employing this provider will no longer be

able to utilise it and thus will be required to identify other one that is available and

correctly configured. This, within a model where consumers are unable to organise their

interactions and compete for resources may lead to global resource market instability

and chaotic system response, where provider agents continually reconfigure and thus are

unable to offer any resources.

Hypothesis 2:

We hypothesise that only model configurations in which agents are able to organise into

communities are able to secure system resources such that adaptive service provisioning

2For this purpose, provider agents rely on stimulus-response mechanisms (described in Chapter 5)
that are inspired by the division of labour within insect societies.

Chapter 7 Adaptive Service Provisioning 131

|Capabilityαp| Set of service types Number of Number of
(Capabilityαp) Consumers Providers

8 {A,B,C,D,E, F,G,H} 250 60

Table 7.1: The general model configuration for adaptive service provisioning scenario
where demand changes are triggered through consumer agent turnover mechanism.

emerges within the population of provider agents and thus the system achieves high level

of efficiency. This is achieved by agent communities that impose a constraint on the flow

of valuable information about providers availability, such that it is disseminated only

across community members and thus enhances their individual decision-making. As a

result of such regulated information flow, the risk of propagating too much information

to other system elements and thus lethal effects of resource competition are limited.

In what follows we will continue our hypothesis examination in the same manner as

in the previous chapter. For this purpose, three model configurations (AF , FF and

NF) will be employed and their efficiency at achieving adaptive service provisioning

investigated in the range of dynamic conditions. As stated earlier in this section, the

only difference between these models and the ones explored in the previous chapter is

the ability of provider agents to reconfigure at run-time.

7.3 Adaptive Service Provisioning in Open System

We start our experimental evaluation of adaptive service provisioning by applying con-

sumer agent turnover mechanism. For this, the resources market is set in the following

manner. Initially all provider agents are not specialised at offering any service type but

may configure themselves to offer one service type from the set of eight unique ones

(Capabilityαp = 8). The eventual provider configuration is determined at run-time

based on the locally perceived demand imposed by the population of consumer agents.

To reflect a heterogeneous demand for different service types, the population of consumer

agents is initially split into eight equal size groups. Each such consumer sub-population

is interested in allocating a unique service type. Consequently, when the model is run,

the optimal system configuration will be achieved if the resource market proliferates

into eight subsets of provider agents, each such subset offering a unique service type in

accordance to the demand imposed by consumers.

In order to introduce dynamism in service type demand over the simulation time, the de-

mand does not remain constant but experiences perturbations. This is achieved through

the consumer turnover mechanism that introduces demand variation in the following

manner. Each time a new consumer agent is introduced to the system, the service

type it will demand over its life-time is randomly selected from the set of service types

(Capabilityαp) the system is capable of providing. By increasing the probability of

132 Chapter 7 Adaptive Service Provisioning

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
hr

ou
gh

pu
t

Consumer agent turnover probability

Figure 7.2: Mean system through-
put as a function of increasing con-
sumer agent turnover. Three model
configurations are presented: AF
(line with rectangles), NF (line with
circles) and FF (line with triangles).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
ej

ec
te

d
co

ns
um

er
 r

eq
ue

st
s

Consumer agent turnover probability

Figure 7.3: Mean number of re-
jected consumer allocation queries
for three model configurations: AF
(line with rectangles), NF (line with
circles) and FF (line with triangles).

consumer agent turnover, regulated by the χ parameter as in Section 5.4.1, the system

experiences more perturbations as new consumers are introduced and thus the resource

market is required to adaptively respond to dynamically occurring demand changes.

For all experiments, the experiment duration is set to last 3600 simulation seconds and

the model configuration is presented in Table 7.1.

7.3.1 Resource Market Adaptation During Consumer Turnover

Figure 7.2 illustrates mean system throughput for three different models in which there

exists: adaptive information flow (AF), no information flow (NF) and unconstrained

information flow (FF) between system peers. The consumer turnover probability in all

experiments remains fixed and is set to the χ parameter value depicted on the X axis.

The horizontal dotted line at 695 on the Y axis denotes the best achievable performance

for the model in which there is no influx of new agents and where resource provision

stabilises such that all tasks are allocated successfully.

The experimental results show that the worst performance is achieved by the FF model

that is unable to cope not only with the increasing system dynamics but also with the

configuration in which there exists no consumer turnover (χ = 0). This poor perfor-

mance follows from an unrestricted flow of information among agents. In this configura-

tion, consumer agents communicate their local knowledge about providers’ availability

to randomly chosen peers and by doing this attract the others towards efficient providers.

However, different consumers demand different service types and thus the resource mar-

ket becomes frustrated and providers continually reconfigure to adjust to disorganised

demand imposed by consumers that are confused which provider to select. In this config-

uration, even for χ = 0, a large number of providers continually reconfigures thus locking

Chapter 7 Adaptive Service Provisioning 133

almost half of the system resources and reinforcing the competition for the remaining

ones. Consequently, consumers experience more allocative failures than successful task

allocations and thus the overall system throughput is close to zero. The inefficiency of

the FF model is supported by the measure of rejected consumer queries illustrated in

Figure 7.3, showing that the model with unconstrained information flow experiences high

(near 1800) job rejects during each sampling period, irrespective of dynamics imposed

by the consumer turnover mechanism.

An increase in performance can be observed for the NF model configuration. Here, for

conditions in which the system is closed and thus there is no consumer turnover (χ = 0)

the system achieves high throughput (around 500 allocations). However, as soon as

the turnover probability increases, and thus the system is stressed and pushed from

stable allocation conditions, the performance of this model quickly degrades, reaching

zero throughput at χ = 0.25. This inefficiency is also reflected in Figure 7.3 showing

that the number of rejected queries increases until it reaches 1800 rejected queries that

characterise the disorganised and chaotic performance of FF model.

The best response and adaptation to increasing system dynamics is achieved by the AF

model. In this configuration the system is capable of achieving close to the optimal (695)

allocative throughput in conditions where there is no inflow of new consumer agents.

In conditions where turnover is introduced and the probability of new agent arrival

increases, the system is still capable of achieving high performance up to a point where

χ = 0.3. During this time a decrease in performance is observed but, as compared to the

previous two models, it is a graceful degradation that prevents the system from moving

into a chaotic and disorganised state. These observations are confirmed by the smooth

and gradual increase of rejected allocation queries that is shown in Figure 7.3.

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
um

be
r

of
 e

xt
ra

ct
ed

 a
ge

nt
 c

om
m

un
iti

es

Consumer agent turnover probability

Figure 7.4: Mean number of ex-
tracted communities as a function of
increasing consumer agent turnover
probability for two system model
configurations: AF model (line with
rectangles) and FF model (line with

triangles).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
ea

n
co

m
m

un
ity

 h
om

og
en

ei
ty

Consumer agent turnover probability

Figure 7.5: Mean community ho-
mogeneity as a function of increasing
consumer agent turnover probability
for two system model configurations:
AF model (line with rectangles) and
FF model (line with triangles).

134 Chapter 7 Adaptive Service Provisioning

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
um

be
r

of
 e

xt
ra

ct
ed

 a
ge

nt
 c

om
m

un
iti

es

Consumer agent turnover probability

Figure 7.6: Mean community coverage
as a function of increasing consumer agent
turnover probability for two system model
configurations: AF model (line with rect-
angles) and NF model (line with triangles).

7.3.2 Consumer Agent Communities

The regulatory response of the AF model to the increasing dynamics of the resource

environment, is supported by the community analysis presented in Figures 7.4 and 7.5.

Here, communities of information exchanging agents have been extracted and analysed

for the AF and FF models that employ information exchange. The first figure shows

that for a low enough consumer agent turnover probability (χ < 0.1) consumer agents

form close to the maximum in size (depicted by the dotted line in Figure 7.4) communi-

ties that are characterised by high homogeneity (as indicated by homogeneity measure

illustrated in Figure 7.5). However, as the dynamics increases (χ > 0.1) the system

organises into smaller (but still homogeneous) groups of agents. Such smaller commu-

nities arise as a result of reaction of consumers to increasing stress they perceive. To

prevent the resource market from moving into an unstable state, they limit the flow of

information to a smaller subset of peers. Such smaller collectives turn out to be more

resilient to the dynamism and preserve more stability as it becomes much easier for them

to collectively maintain their current configuration through local information exchange.

The observed regulatory response for the AF model configuration stems from mecha-

nisms regulating how much and to what peers the local information should be communi-

cated. The community analysis for the FF model that lacks such regulatory mechanisms

reveals that not only is the system unable to establish correct size communities, but also

the homogeneity of these communities is low (below 0.6 for most of χ values).

Another important community property that changes in response to increasing system

dynamism is community coverage provided in Figure 7.6 that illustrates the proportion of

consumer agents that do not belong to any community during the community extraction

Chapter 7 Adaptive Service Provisioning 135

Figure 7.7: Correctly organised consumer agent communities extracted from AF
model for conditions where consumer turnover probability is equal zero (χ = 0). Edges
between nodes represent information exchanges between consumer agents where node
shapes correspond to specific (denoted by node label) service type the consumer is
required to allocate. The size of each node indicates the amount of resource capacity

that is currently demanded by the task.

process. The figure shows that with the increasing consumer agent turnover probability

(χ) the fraction of non-community members grows for both the AF and FF models. This

is partially due to the fact that there exists a fraction of new agents being continually

introduced to the system that are new and thus do not form any community in their

initial state and, partially, because certain consumers choose to ‘leave’ communities and

act individually due to the high stress they experience (in the AF model configuration).

Example graphs showing communities for the AF and FF models are provided in Figure

7.7, Figure 7.8 and Figure 7.9.

7.4 Adaptive Service Provisioning with Discrete Environ-

mental Change

In the previous section we made an implicit assumption that the demand imposed by

consumers allocating eight unique service types and thus providers being capable of

configuring themselves to offer the same number of service types (|Capabilityαp| = 8)

remained unchanged over the simulation time. In these conditions, the dynamics and

demand change was influenced only through consumer turnover mechanism.

136 Chapter 7 Adaptive Service Provisioning

Figure 7.8: Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal zero (χ = 0). Edges between
nodes represent information exchanges between consumer agents where node shapes
correspond to specific (denoted by node label) service type the consumer is required
to allocate. The size of each node indicates the amount of resource capacity that is

currently demanded by the task.

In this section we relax this assumption by introducing a discrete function responsible

for service type demand changes during the experiment duration. To do so, we set

the experiments such that in specific simulation time intervals (every 2000 simulation

seconds) the demand for unique service types imposed by the population of consumer

agents changes according to the model setup provided in Table 7.2. Such change causes

the consumer population to be divided into sub-populations, each requiring a unique

service type during task allocation. The number of such distinguishable consumer sub-

population changes over the simulation time according to the function presented in

Figure 7.10. Change in demand achieved in this manner triggers the resource market

adaptation within the system as providers need to reconfigure and readjust to the new

demand conditions.

Apart from this discrete demand change function we also allow for an influx of new

consumer agents during the experiment that is regulated through the consumer agent

turnover mechanism as in the previous section. Since now each simulation is divided into

time intervals within which a different number of unique service types is demanded, the

service type for each consumer arriving to the system during the turnover is randomly

selected from the |Capabilityαp| set that represents the current number of uniquely

demanded services within the system. Given this, below we present our experimental

Chapter 7 Adaptive Service Provisioning 137

Figure 7.9: Correctly organised consumer agent communities extracted from AF
model for conditions where consumer turnover probability is equal 0.15 (χ = 0.15).
Edges between nodes represent information exchanges between consumer agents where
node shapes correspond to specific service type the consumer is required to allocate. The
size of each node indicates the amount of resource capacity that is currently demanded

by the task.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1000 2000 3000 4000 5000

D
em

an
de

d
se

rv
ic

e
ty

pe
s

Simulation time (s)

Figure 7.10: Figure illustrates step function according to which demand for a number
of unique service types (represented on Y axis) undergoes rapid change at simulation

periods indicated on X axis.

138 Chapter 7 Adaptive Service Provisioning

|Capabilityαp| Set of service types Number of Number of
(Capabilityαp) Consumers Providers

4 {A,B,C,D} 250 60
8 {A,B,C,D, F,G,H, I} 250 60
6 {A,B,C,E, F,G} 250 60

Table 7.2: The change in the number of demanded service types (|Capabilityαp|) for
subsequent steps in the step demand function.

evaluation of adaptive service provisioning.

7.4.1 Resource Market Adaptation in Discretely Changing Environ-

ment

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 0 1000 2000 3000 4000 5000 6000

T
hr

ou
gh

pu
t

Simulation time (s)

Figure 7.11: Mean system through-
put as a function of simulation
time for AF model (rectangles), NF
model (circles) and FF model (tri-
angles). For all models consumer
turnover probability is set to zero

(χ = 0).

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 0 1000 2000 3000 4000 5000 6000

T
hr

ou
gh

pu
t

Simulation time (s)

Figure 7.12: Mean system through-
put as a function of simulation
time for AF model (rectangles), NF
model (circles) and FF model (tri-
angles). For all models consumer
turnover probability is set to 0.1 (χ =

0.1).

The mean system throughput for the AF , NF and FF models in conditions when no

consumer turnover takes place (χ = 0) is illustrated in Figure 7.11, whereas Figure 7.4.1

shows the response of the three aforementioned models when the system is open and

there is an inflow of new consumer agents controlled through a turnover probability

equal to 0.1 (χ = 0.1).

The best throughput in each of these configurations is achieved by the AF model. De-

spite the fact that in the Figure the system remains open and thus prone to demand

deviations influenced by new consumer agent turnover, the system is still capable of

reconfiguring and regain stability after each discrete demand reconfiguration period tak-

ing place every 2000 simulation seconds. Although consumer agent turnover affects the

maximum system throughput (as compared to a closed system), the system is capable of

reorganising resource provision and gaining maximum affordable efficiency. During the

Chapter 7 Adaptive Service Provisioning 139

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T
hr

ou
gh

pu
t

Consumer agent turnover probability

Figure 7.13: Mean system through-
put as a function of increasing con-
sumer agent turnover. Three model
configurations are presented: AF
(solid line with rectangles), NF (dot-
ted line with circles) and FF (dashed

line with triangles).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
ej

ec
te

d
co

ns
um

er
 r

eq
ue

st
s

Consumer agent turnover probability

Figure 7.14: Mean number of re-
jected consumer allocation queries
for three model configurations: AF
(solid line with rectangles), NF (dot-
ted line with circles) and FF (dashed

line with triangles).

discrete and rapid demand changes occurring every 2000 simulation seconds, the system

performance drops for a short while (reflected in both Figure 7.11 and Figure 7.4.1 as a

peak in performance drop) and after this short period of disorganisation moves back to

its stable efficiency.

 0

 4

 8

 12

 16

 20

 24

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
um

be
r

of
 e

xt
ra

ct
ed

 a
ge

nt
 c

om
m

un
iti

es

Simulation time (s)

Figure 7.15: Mean number of ex-
tracted communities as a function of
increasing consumer agent turnover
probability for two system model
configurations: AF model (line with
rectangles) and FF model (line with

triangles).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
ea

n
co

m
m

un
ity

 h
om

og
en

ei
ty

Simulation time (s)

Figure 7.16: Mean community ho-
mogeneity as a function of increasing
consumer agent turnover probability
for two system model configurations:
AF model (line with rectangles) and
FF model (line with triangles).

Such adaptive behaviour does not arise in the NF and FF model configurations.

Whereas the NF model achieves reasonably good and stable performance in closed

system configuration (Figure 7.11), it fails to do so once the system is open (Figure

7.4.1). The worst performing FF model is unable to achieve stability in neither the

open nor closed system configurations and thus is unable to adapt to changing service

140 Chapter 7 Adaptive Service Provisioning

Figure 7.17: Correctly organised consumer agent communities extracted from AF
model for conditions where consumer turnover probability is equal zero (χ = 0) and
there exists demand for four unique service types. Edges between nodes represent infor-
mation exchanges between consumer agents where node shapes correspond to specific
(denoted by node label) service type the consumer is required to allocate. The size of
each node indicates the amount of resource capacity that is currently demanded by the

task.

demand. In this configuration (the FF model), the slight but counterintuitive improve-

ment in performance for open system configuration stems only from the fact that newly

introduced consumer agents are initially co-located with providers that offer the service

types they demand. However, the unconstrained flow of information across these agents

eventually destabilises the resource market and pushes the system into an inefficient

state.

The mean system throughput results achieved by the three models (AF ,NF and FF)

for different consumer turnover configurations are presented in Figure 7.13. The cor-

responding accuracy of provider selection conducted by consumer agents during their

individual resource allocation is illustrated in Figure 7.14 showing the mean number of

task allocation rejects. The dotted horizontal line at the value of 695 that is presented

in Figure 7.13 corresponds to the optimal allocation throughput achieved by the closed

system, where no reconfiguration was required and thus there was no dynamic demand

fluctuation requiring provider agents to reconfigure their provision and consumer agents

to track these changes.

Chapter 7 Adaptive Service Provisioning 141

Figure 7.18: Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal zero (χ = 0) and there exists
demand for four unique service types. Edges between nodes represent information
exchanges between consumer agents where node shapes correspond to specific (denoted
by node label) service type the consumer is required to allocate. The size of each node
indicates the amount of resource capacity that is currently demanded by the task.

7.4.2 Consumer Agent Communities

The results reported in the previous section show that the best performance is achieved

by the AF model configuration in which agents communicate information. Given the

poor performance of the FF model within which agents also communicate information,

this implies that only under certain conditions can such information exchange facilitate

system adaptation and efficiency. The community analysis presented in Figures 7.15

and 7.16 that shows the mean number of extracted communities (Figure 7.15) and

their homogeneity (Figure 7.16) for the AF and FF models supports the hypothesis

that organisation of agents into coherent and stable collectives plays a crucial role in

achieving system adaptation in dynamic conditions. Here, the inefficiency of the FF

model in all experiments is complemented by its inability to establish a sufficient set of

communities (with respect to the number of uniquely demanded services, the lower limit

of which is presented in the figure as a dotted horizontal line) that in turn results in low

homogeneity of extracted communities. In contrast, the AF model, achieving the best

response of all models, is characterised by a sufficient number of communities required to

fulfill heterogeneous service demand as well as high homogeneity of these communities,

implying that agents forming them share knowledge in a manner that supports service

provisioning with minimal resource competition and market destabilisation.

Example graphs showing communities for the AF and FF models are provided in Figure

142 Chapter 7 Adaptive Service Provisioning

Figure 7.19: Correctly organised consumer agent communities extracted from AF
model for conditions where consumer turnover probability is equal 0.1 (χ = 0.1) and
there exists demand for four unique service types. Edges between nodes represent infor-
mation exchanges between consumer agents where node shapes correspond to specific
service type the consumer is required to allocate. The size of each node indicates the

amount of resource capacity that is currently demanded by the task.

7.17, Figure 7.18 and Figure 7.19.

7.5 Adaptive Service Provisioning with Continuous Envi-

ronmental Change

The previous experiments assumed that the demand for different service types was varied

only at certain simulation periods, predefined by the discrete demand function. In

between rapid demand changes influenced by this function, the resource market was

perturbed only through the influx of new consumer agents to the extent regulated by χ.

In this section we explore the validity of Hypothesis 2 in conditions where the demand

change is not discrete but continuous thus requiring ongoing system adaptation over its

life-time.

To achieve this, the change in service type demand is set up with the help of a sinusoidal

function that models the gradual turnover of consumer agents and thus the service types

they are required to allocate. In all considered in this Section experiments the model is

initialised in conditions where consumer population is divided into eight equal subsets,

each demanding unique service type, as defined in Table 7.3. Provider agents are, in turn,

Chapter 7 Adaptive Service Provisioning 143

|Capabilityαp| Set of service types Number of Number of
(Capabilityαp) Consumers Providers

8 {A,B,C,D,E, F,G,H} 250 60

Table 7.3: The number of demanded service types (|Capabilityαp|) for the sinusoidal
demand function.

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018
 0.02

 0.022
 0.024
 0.026
 0.028
 0.03

 0 800 1600 2400 3200

S
er

vi
ce

 ty
pe

 d
em

an
d

in
cr

ea
se

 p
ro

ba
bi

lit
y

Simulation time (s)

Figure 7.20: Figure illustrates sinusoidal function according to which demand for
the subset of service types in phase (dotted line) and service types in the anti-phase
(solid line) increases proportionately to the probability defined on Y axis. In here, the
function period is set to Ξ = 4.4 where the maximum probability value the function

achieves is Θ = 0.03.

allowed to configure themselves to offer one of the eight services ((|Capabilityαp| = 8).

After the initial 400 simulation seconds, within which the demand for each unique ser-

vice type remains unchanged and proportional to each other, a sinusoidal function is

initialised that gradually and continually influences the change in demand for particular

subsets of service types. These subsets are determined by dividing the total number of

system service types offered by the into equal sizeed subsets: d1 = {A,B,C,D} and

d2 = {E,F,G,H}. Given these two subsets, we assume that the demand intensity for

each varies over simulation time according to sinusoidal functions illustrated in Figure

7.20. Here, the solid line defines the probability that consumers allocating services from

d1 deviate from this configuration and pursue the allocation of randomly selected ser-

vices from d2. Correspondingly, the dotted line in the figure illustrates the opposite

situation where consumers become influenced to abandon service type allocation from

d2 in favour of a randomly selected service from d1. Since both sinusoidal functions

are in anti-phase, the system is thus allowed to continually and gradually leap between

extreme configurations in which all consumers allocate services from d1 or d2.

The characteristics of this sinusoidal demand function is determined by two parameters:

the sinusoidal function period (Ξ) that defines the function phase duration (in Figure

7.20 Ξ = 2.2 and lasts 800 simulation seconds) and the maximum probability of consumer

service type demand change (Θ) that influences the transition between d1 and d2 (in the

144 Chapter 7 Adaptive Service Provisioning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600

Figure 7.21: Demand change for
d1 = {A,B,C,D} services sub-
set (dotted line) and correspond-
ing supply of resources constituting
s1 subset for AF model configura-
tion. Figures, in a clockwise direc-
tion (starting from a top left one),
illustrate demand-supply match for
following sinusoidal function periods
Ξ ∈ {1.1, 2.2, 4.4, 8.8}. In all exper-
iments the maximum probability of
consumer changing their service type
preferences is equal to 0.03 (Θ =

0.03).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600

Figure 7.22: Demand change for
d1 = {A,B,C,D} services sub-
set (dotted line) and correspond-
ing supply of resources constituting
s1 subset for NF model configura-
tion. Figures, in a clockwise direc-
tion (starting from a top left one)
illustrate demand-supply match for
following sinusoidal function periods
Ξ ∈ {1.1, 2.2, 4.4, 8.8}. In all exper-
iments the maximum probability of
consumer changing their service type
preferences is equal to 0.03 (Θ =

0.03).

figure this is set to 0.03). Both parameters are varied during experimental evaluation

and their impact on system performance investigated.

During sinusoidal demand change it is assumed that consumer agents evaluate their

intention to deviate from the current service type demand at each task allocation ac-

cording to the current Θ probability that changes accordingly to the sinusoidal function.

Once the probability is sufficiently high and the agent decides to change its service type

preference, it is being removed from the system and substituted by the new agent. This

substitution is based on the consumer turnover mechanism discussed in Section 5.4.1.

Apart from the sinusoidal demand oscillations between d1 and d2, the experiments below

also assume the existence of ‘noise’ provided through a consumer turnover mechanism

that introduces demand change fluctuations, the degree of which is controlled through

consumer turnover probability (χ parameter).

7.5.1 Resource Market Adaptation in Continuously Changing Envi-

ronment

The demand change influenced by the sinusoidal function for the AF and NF models is

presented in Figure 7.21 (for the AF model) and Figure 7.22 (for the NF model). The

results show how the demand change for d1 = {A,B,C,D} services subset (dotted line)

Chapter 7 Adaptive Service Provisioning 145

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600

Figure 7.23: Demand change for
s1 = {A,B,C,D} services subset
(dotted line) and corresponding sup-
ply of resources constituting s1 sub-
set for AF model configuration. Fig-
ures, in a clockwise direction (start-
ing from a top left one), illustrate
demand-supply match for following
consumer agent turnover probabili-
ties: χ ∈ {0.0, 0.1, 0.2, 0.3}. In all ex-
periments the the sinusoidal function
period Ξ remains set to 2.2 (Ξ = 2.2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1200 2400 3600

Figure 7.24: Demand change for
s1 = {A,B,C,D} services subset
(dotted line) and corresponding sup-
ply of resources constituting s1 sub-
set for NF model configuration. Fig-
ures, in a clockwise direction (start-
ing from a top left one), illustrate
demand-supply match for following
consumer agent turnover probabili-
ties: χ ∈ {0.0, 0.1, 0.2, 0.3}. In all ex-
periments the the sinusoidal function
period Ξ remains set to 2.2 (Ξ = 2.2).

is accompanied by the reconfiguration of the system resource market (solid line). In all

figures, the demand (and supply) for d1 is captured as the proportion of d1 demand

with respect to the total demand imposed by all system agents.

For the initial conditions (up to 400 simulation seconds) during which the sinusoidal

demand is not activated, the demand for both service type subsets d1 and d2 is equal

and thus each subset consumes half of the total system demand as indicated in the figures

by the dotted line near 0.5 value on Y axis. However, after the initial 400 simulation

seconds the sinusoidal function triggers the demand change, requiring thus the provider

agent reconfiguration and adjustment to changing consumer interests.

Whereas the performance of the FF model (not shown in the figures) in every sinusoidal

function period is poor and unstable, Figures 7.21 and 7.22 show that both AF (former

figure) and NF (latter figure) respond to demand change appropriately in all sinusoidal

function period settings. Whereas the results for conditions in which the sinusoidal

function period is very short (Ξ = 1.1) and lasts only 400 simulation seconds (top

left sub-figures for each model) show that the system may not adjust its configuration

perfectly as the demand configuration changes sufficiently fast for the system to be able

to compensate it optimally, the longer sinusoidal periods provide enough time for smooth

and efficient adaptation for both the AF and NF models. It is also interesting to observe

that resources market adjustment for the NF model (Figure 7.22) represents a slightly

more accurate match to the changing system demand than the results observed by the

AF model (Figure 7.21) that shows more resilience to the demand changes, especially

146 Chapter 7 Adaptive Service Provisioning

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750

 0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8

M
ea

n
sy

st
em

 th
ro

ug
hp

ut

Sinusoidal function period

Figure 7.25: Mean system through-
put as a function of changing sinu-
soidal demand function period (Ξ)
depicted on X axis. Results sum-
marise performance of the three
model configurations: AF (solid rect-
angles), NF (solid circles) and FF
(solid triangles). In all experiments

Θ = 0.03 and chi = 0.1.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
hr

ou
gh

pu
t

Consumer agent turnover probability

Figure 7.26: Mean system through-
put as a function of consumer
turnover probability (χ). Results
summarise performance of the three
model configurations: AF (solid rect-
angles), NF (solid circles) and FF
(solid triangles). In all experiments

Ξ = 2.2 and Θ = 0.03.

for configurations in which the sinusoidal demand period is low and the system has to

reconfigure quickly. This slight impact on system adaptation speed for AF model stems

from the information flow regulatory mechanisms that prevent the system from moving

into an unstable and chaotic state due to perturbations inflicted by the demand change.

The advantage of information flow and its regulation is shown in Figures 7.23 and

7.24 that provide the same comparison between the AF model (Figure 7.23) and NF

model (Figure 7.24) but in conditions where the system is open and thus the influx of

new consumer agents is allowed during its life-time. In this configuration, the amount

of ‘noise’ inflicted by the introduction of new agents is regulated through consumer

turnover probability (χ). For this purpose, each sub-figure (starting from the top left and

descending in a clock-wise manner) for particular model performance represents results

where χ parameter values are incremented for each corresponding sub-figure according

to: χ = {0.0, 0.1, 0.2, 0.3}. The performance of the AF and NF models obtained in

this manner in an open environment show that the efficiency of smooth adaptation

to changing sinusoidal demand becomes negatively affected through the influx of new

consumer agents. However, whereas the AF model is capable of matching the supply of

resources to the current demand up to the configuration in which χ = 0.3 (bottom-right

sub-figure in Figure 7.23), the performance of the NF model degrades much earlier and

is observed even for conditions where turnover probability is low when χ = 0.1 (top-right

sub-figure in Figure 7.24). For this model, the inability to satisfy the demand stems from

resource market frustration that causes a substantial number of providers to continually

reconfigure and thus become unable to provide any resources.

Figures 7.25 and 7.26 summarise mean system throughputs achieved by the three dis-

Chapter 7 Adaptive Service Provisioning 147

cussed system models in configurations where the sinusoidal function period (Figure

7.25) and consumer turnover probability (Figure 7.26) were varied. The best perfor-

mance in every configuration was achieved by the AF model capable of sustaining sys-

tem organisation and degrading gracefully once environmental dynamics perturbs the

system. A model configuration (NF) in which agents did not communicate information

and thus relied only on their personal and local knowledge was capable of achieving high

throughput only when the system was closed and there was no instability introduced

through the arrival of new consumer agents. The worst performance was observed for

the FF model. In this configuration the resource market was frustrated and unstable

in every configuration due to unregulated information flow across agents.

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 0.05 0.1 0.15 0.2 0.25 0.3

N
um

be
r

of
 e

xt
ra

ct
ed

 a
ge

nt
 c

om
m

un
iti

es

Simulation time (s)

Figure 7.27: Mean number of ex-
tracted communities as a function of
increasing consumer agent turnover
probability for two system model
configurations: AF model (line with
rectangles) and FF model (line with

triangles).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

M
ea

n
co

m
m

un
ity

 h
om

og
en

ei
ty

Simulation time (s)

Figure 7.28: Mean community ho-
mogeneity as a function of increasing
consumer agent turnover probability
for two system model configurations:
AF model (line with rectangles) and
FF model (line with triangles).

7.5.2 Consumer Agent Communities

Similarly to load-balancing experiments conducted in the previous chapter, community

analysis reveals that the adaptive service provisioning evaluated in this chapter is also

dependent on the ability of system agents to organise into communities, each such com-

munity supporting in this context the provisioning of different service type. Figures

7.27 and 7.28 outline community characteristics extracted from the AF and FF mod-

els. The number of extracted communities for the AF model (Figure 7.27) satisfies the

lower limit (denoted in the figure as dotted horizontal line) on the number of unique

communities that need to be formed in order to satisfy demand for eight unique ser-

vice types demanded over the simulation time. This correct configuration is followed

by high homogeneity of extracted communities presented in Figure 7.28. Community

characteristics for the FF model show that not only it is unable to organise agents into

a minimal required number of communities but the communities it forms exhibit low

148 Chapter 7 Adaptive Service Provisioning

Figure 7.29: Correctly organised consumer agent communities extracted from AF
model for conditions where consumer turnover probability is equal zero (χ = 0) and
there exists demand for four unique service types. Edges between nodes represent infor-
mation exchanges between consumer agents where node shapes correspond to specific
(denoted by node label) service type the consumer is required to allocate. The size of
each node indicates the amount of resource capacity that is currently demanded by the

task.

level of homogeneity.

Example graphs showing communities for the AF and F models are provided in Figure

7.29, Figure 7.30 and Figure 7.31.

7.6 Conclusions

In this chapter we have continued our evaluation of bottom-up system organisation ef-

ficiency within conditions in which the resource market must adaptively reconfigure in

response to dynamic demand changes. To achieve this we employed stimulus-response

mechanisms inspired by a study of emergent behaviours within biological systems (insect

colonies) and evaluated their efficiency at regulating resource markets within a decen-

tralised autonomic system model.

The obtained results confirmed the observations obtained in the previous chapter and

supported the hypothesis that bottom-up adaptation is facilitated through the emer-

gence of stable but reconfigurable communities of agents that specialised themselves to

Chapter 7 Adaptive Service Provisioning 149

Figure 7.30: Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal zero (χ = 0) and there exists
demand for four unique service types. Edges between nodes represent information
exchanges between consumer agents where node shapes correspond to specific (denoted
by node label) service type the consumer is required to allocate. The size of each node
indicates the amount of resource capacity that is currently demanded by the task.

perform a specific role within the system (eg. provision of a particular service type).

Likewise in the results obtained during load-balancing, the role of the observed agent

communities is to restrict the flow of information about system resources only to a sub-

set of agents. These agents, in turn, learned to communicate information only to peers

forming the same community and thus supported individual agents with up-to-date and

community-level information about the system resource state that would not be possible

if agents were acting independently, as in the case of the NF model. The advantage of

agent organisation into communities is shown in Figure 7.32 illustrating the content of

local consumer agent registries for the first set of experiments reported in this chapter

(Section 7.3) in which consumer turnover probability equals 0.1 (χ = 0.1). Apart from

supporting individual consumers with up-to-date information about provider efficiency,

communities also restricted knowledge and thus attraction towards providers that are

not of interest for community members (eg. providers that offer other service types). By

doing so, the overall resource market was able to proliferate into smaller sub-markets

within which providers specialised at reliably offering demanded services and consumers

were able to establish attraction to a subset of such providers.

This research highlights a useful property: that of functional substitutability ; i.e. the

ability of a component to change its behaviour in response to changes in the need for

particular functionality. This is desirable with many scenarios where there is a risk

of failure in one component, such as within robotic rescue scenarios whereby a robot

150 Chapter 7 Adaptive Service Provisioning

Figure 7.31: Correctly organised consumer agent communities extracted from AF
model for conditions where consumer turnover probability is equal 0.1 (χ = 0.1) and
there exists demand for four unique service types. Edges between nodes represent infor-
mation exchanges between consumer agents where node shapes correspond to specific
service type the consumer is required to allocate. The size of each node indicates the

amount of resource capacity that is currently demanded by the task.

may be able to perform several different tasks (e.g. sensing, moving, performing actions

etc), but only a few of these are needed for any given scenario. However, changes in

the environment may necessitate corresponding changes in the roles (at runtime) that

these robots perform. Similar behaviours have been observed within biological systems.

In natural ant colonies, it has been observed that within what is often described as a

homogeneous community of ants sharing the same behavioural repertoire, there arise

leaders that strongly stimulate the actions of other ants by their more frequent activity

[18]. Such hyperactive ants stimulate the workload of the colony in every aspect (food

foraging, nest building, brood feeding, etc.). Thus, leader and follower roles arise under

certain conditions (rather than being inherent, programmed behavours). However, a

complete understanding of this social stimulation process is still unclear.

In what follows, we extend the model functionality by focusing on the power man-

agement problem in which not only are system elements required to perform efficient

load-balancing and service provisioning, but they also decide how much resource should

be kept on-line (or moved off-line) in order to appropriately match the changing intensity

of demand. As such dynamic power management demands more adaptation at the level

of autonomous system elements, we extend the model with novel algorithms facilitating

this.

Chapter 7 Adaptive Service Provisioning 151

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10 12 14 16 18 20

P
ro

vi
de

r
ev

al
ua

tio
n

sc
or

e

Unique provider agents

Figure 7.32: Provider evaluation scores kept within
local registries of consumer agents for: AF model (line
with rectangles), FF model (line with circles) and NF
model (line with triangles) for conditions in which con-

sumer turnover probability equals 0.1 (χ = 0.1)

Chapter 8

Power Management

8.1 Introduction

Within the autonomic system models explored in the previous two chapters, an implicit

assumption was made that demand is often proportional to the total supply of system

resources. Under these conditions, the ability of the system to balance the load across

available providers and their efficiency to reconfigure service type provision for changing

demand was evaluated.

However, within real autonomic systems it is likely that the changing patterns of user

activity will lead to changes in the intensity of resource demand. As a result, the demand

for system resources will no longer always be close to the maximum supply but will vary

over time. Thus, to preserve a high level of efficiency and low maintenance cost, the

system needs to appropriately adjust the level of resources supplied to match the current

demand.

Since the power consumed by the server delivering some computational resources is

proportional to the frequency of the CPU of the machine, Kandasamy et al. [76] propose

a control mechanism that adjusts the processor speed to the level that is characterised

by minimal power consumption but is still capable of delivering the required quality

of service. This is achieved with the help of a control mechanism that predicts job

request arrival rates for the processor and, based on these predictions, throttles the

regulated CPU speed such that expected efficiency (according to predicted workload) is

achieved. Experiments with only a single server node imply that optimal solutions for

such on-line control problems do not exist, particularly when the task arrival rates are

unpredictable and potentially unbounded. As a result, the system designer is required

to decide upon an acceptable controller configuration after sufficient experimentation.

Although a control mechanism for a single server is offered, the authors do not consider

a situation where a cluster of nodes need to coordinate adjustments of their internal

CPU speed configurations. This is a major drawback of the approach, as it only focuses

153

154 Chapter 8 Power Management

on power management of a single server node and does not consider the impact of its

regulation on a large scale, where possibly hundreds of servers offering various services

would be deployed.

Whereas the main focus of the work described above is to regulate power consumption

at the level of an individual server, Das et al. [98] present work aiming to control en-

ergy consumption of a group of servers. To preserve efficient power management within

a medium-sized server cluster housed in a single IBM BladeCenter chasis, the authors

employ a multi-agent system model. Agents are organised to form a hierarchical con-

trol topology (a so called ‘Unity architecture’), where a group of servers is managed by

application managers that, in turn, are controlled by a resource arbiter agent. Given

this model, the performance optimisation of servers is carried on in the following man-

ner. The information about resource needs (given the current workload) is sent by all

application managers to a resource arbiter. Based on this information, the resource

arbiter agent calculates the optimal allocation and instructs subordinate agents to ap-

propriately configure the state of servers managed by them. To optimise over multiple

competing criteria such as application performance and power consumption, two agents

are introduced: a performance agent (required to preserve expected level of system effi-

ciency) and Power agent (controlling power consumption and regulating which servers

should move into off-line mode). To optimise and align the decisions of both agents,

a coordination agent is introduced. This work, in contrast to the previously described

approach, focuses on power management within a cluster of servers, rather than a sin-

gle computational machine. As a result, the more realistic problem of coordinating the

configuration of a group of servers is considered and for this purpose multi-agent system

architecture is proposed. Furthermore, it is also observed that power management de-

cisions need to be aligned with the system efficiency optimisation task and thus cannot

be solved in isolation. However, despite the distributed nature of the proposed control

mechanism, Das et al. assume that agents within their model have access to the most

up-to-date state of all computational system nodes, such that optimal allocation of re-

sources and power management disposition by controller agents can be made. Whereas

this is plausible for small scale deployments, relying on overall system state information

to make optimal decisions may not be realisable within systems comprising hundreds of

such servers. It is thus unlikely that the proposed approach would be easily scaleable

and robust to increasing system scale and dynamism.

A remedy to this problem is proposed in [11]. In this work, Brueckner and Parunak

propose a system in the form of a mobile ad-hoc network of computational nodes that

have limited power and therefore are required to maintain a minimal energy consumption

level that still facilitates the level of service required from the system. Similar to the

above approach, the authors employ a multi-agent system architecture. However, in

contrast to the two previous examples, control over the state of individual nodes is

devolved to individual system elements and thus is fully decentralised. As a result,

Chapter 8 Power Management 155

there are no dedicated controller agents that require access to the state of subordinate

nodes. Rather, the individual system nodes adapt and adjust their current configuration

relying only on local information, employing for this purpose simple algorithms inspired

by the decentralised process of self-organisation within insect societies. As a consequence

of avoiding hierarchical distributed control design, the system is shown to be scaleable

and robust to changes in dynamism and failures of its individual elements, yet still

capable of preserving the expected level of efficiency and power usage. However, whilst

offering the required flexibility and bottom-up adaptation, the approach proposed by

Brueckner and Parunak does not consider the situation where individual nodes may

offer different services and thus the population of interacting agents has to adaptively

adjust its provision in dynamic conditions.

For this reason, sympathetic with a decentralised approach described above, in our

work we propose a model in which the system is required to efficiently manage power

consumption, at the same time preserving adaptive service provisioning. To achieve

this, we offer an extension of our decentralised multi-agent system model described in

Chapter 5. The extended architecture offers novel decision-making mechanisms that

rely on stimuli-response principles inspired by the division of labour within natural self-

organising systems that allow individual service providers to autonomously decide which

ones should be in an active state (on-line) and which should move into a passive mode

(off-line) thus saving power.

Using this model, we continue our hypothesis examination carried out in the last two

chapters, where we observed that both efficient load-balancing and adaptive service

provisioning functionalities depend on the ability of system agents to organise into com-

munities. In this chapter we examine this hypothesis within a more complex setup

where the decentralised multi-agent system, on top of the two above functionalities, has

to deliver efficient power management.

To this end, in Section 8.2 we describe power management issues raised by autonomic

computing and the relevance of agent communities in achieving it within a decentralised

system model. Following this, we introduce an extension to our autonomic system

model that features local decision-making mechanisms facilitating power management

functionality and performance measures that we will rely on during the experimental

evaluation. The power management efficiency achieved by our model is then evaluated in

the two following Sections, Section 8.4 and Section 8.3, each modeling different demand

conditions in which the system has to operate. Finally, the conclusions based on our

experimental work are presented in Section 8.5.

156 Chapter 8 Power Management

8.2 Power Management

8.2.1 Power Management Problem

As observed in [98] the rapidly rising cost and environmental impact of energy con-

sumption in data centres has become a multi-billion dollar concern globally. This is

attributable to several alarming trends [46, 62]:

• In 2005, data centre servers accounted for 1.2% of electricity use in the United

States, doubling since 2000.

• By 2008, 50% of existing data centres are assumed to have insufficient power and

cooling.

• By 2008, power are assumed be the second-highest operating cost in 70% of all

data centres

• Data centres are responsible for the emission of tens of millions of metric tons of

carbon dioxide emissions annually more than 5% of the total global emissions.

As a result, efficient power management has become a highly desirable, if not critical,

characteristic of any large scale IT infrastructure. However, to realise it, a number of

challenges need to be met. In particular, power management solutions that either idle

the CPU speed of individual data centre servers or turn whole servers into off-line mode

should not compromise the overall infrastructure performance or negatively affect the

availability of demanded resources. Ideally, the system is required to smoothly adjust

the proportion of on-line and off-line servers (or on-line available capacity) in a timely

response to changing demand intensity. At the same time, other system features such as

load-balancing and adaptive service provisioning should not be affected, thus achieving

high system throughput at a low maintenance and energy cost.

Achieving these cross-interest objectives within a dynamic environment is not a triv-

ial task and requires more intervention than human administration can offer. For this

reason, to facilitate resource management on top of load-balancing and adaptive ser-

vice provisioning features, most of the approaches described in the previous section

devolve control over these functions to autonomic mechanisms incorporated within a

computational system. Such an approach is implemented at various levels of the system

architecture and with the application of different control mechanisms.

In this thesis we address this problem on the level of provider agents that are allowed

to autonomously decide whether to go into an on-line or off-line state. Since these

decisions are made based only on the locally available information to provider agents, a

number of problems may arise during this decentralised decision-making that may affect

Chapter 8 Power Management 157

not only power management efficiency but also the overall performance of the system.

In particular, whilst power management aims to decrease the amount of available on-line

system resources, the insufficient number of such on-line resources may impact on the

performance of the system as it would not be able to respond to dynamically changing

demand. As a consequence, the system is required to continually adjust the level of the

resources that are kept in an on-line state such that the overall system efficiency as well

as power management are not compromised.

More importantly, the system cannot achieve a high level of power management efficiency

if it is unable to balance the load across available system providers and appropriately

configure resource market to provide services that satisfy consumer demand. As we

observed in the last chapter discussing adaptive service provisioning functionality, the

inability of the system to reliably maintain this function causes destabilisation of resource

market and leads to inefficient provider agent reconfigurations that spent most of their

time in an on-line state but are unable to offer any resources due to frequent and timely

reconfigurations.

Consequently, also in this chapter we assume that power management efficiency is di-

rectly related to the ability of system agents to organise into communities and, for this

reason, focus on the examination of the following hypothesis:

Hypothesis 3:

We hypothesise that only model configurations in which agents are able to organise into

communities are able to sustain a sufficient number of provider agents in an on-line

state such that efficient power management emerges on the global system scale and the

system resources supply matches consumer demand.

In the remainder of this chapter we examine this hypothesis in the same principled

manner as we did for load-balancing and adaptive service provisioning presented in the

last two chapters. To do so, we evaluate efficiency of power management in dynamic

resource allocation conditions using three model configurations, AF , NF and FF , that

differ between each other in mechanisms that agents employ for information communi-

cation among peers.

8.2.2 Extended Model for Service Providers

Whereas a detailed account of the provider agent architecture was presented in Chapter

5, the remainder of this section provides details regarding the extension of the provider

agent model aimed at facilitating power management. It is important to note that,

whilst focusing on power management, the mechanisms employed for this are required

to function in concert with the previously described load-balancing and adaptive service

158 Chapter 8 Power Management

provisioning techniques. As a consequence, the system is required to adjust and optimise

its functioning over all three competing criteria: power, performance and robustness.

Power management involving shut-down of computational resources is determined by

the stimulus-response mechanism inspired by the division of labour within insect soci-

eties [7, 120] and is analogous to the decision-making algorithms (described in Section

8.2.2) responsible for adaptive service provisioning. However, here, rather than choosing

between various service types, the provider is required to decide whether to move into

an on-line and off-line state.

To make these decisions the provider uses the locally available information about its

current utilisation level (U) and the maximal demand estimate (sm) representing the

highest stimulus (s) value within its internal service type registry (Rp) experienced

from interacting consumer agents with it. Based on these values, the agent calculates

the probability of staying on-line (po). This is done according to the formula below,

derived from the self-organising model of an ant society, found in [7, 120] to adequately

model the division of labour within that decentralised natural system:

po =
s2m

s2m + κ2

Analogously to the algorithm governing the adaptive service provisioning described in

Chapter 5, here the probability of staying on-line is also dependent on the agent per-

sistence to remain at the current state. Such persistence is represented by the response

threshold (κ), the value of which has an impact on the calculated probability po.

To align the response threshold with the chracteristics of autonomic system computing,

we extended the original response threshold functions (introduced in [7, 120]) by making

them responsive to the current provider agent utilisation level (U). For this purpose the

response threshold value (κ), associated with a provider on-line state, becomes updated

every decision cycle (every simulation second) in the following manner:

κ→ κ− 2× (U + 0.5),

if the provider is currently on-line and

κ→ κ− U + 0.5

otherwise. Based on the calculated probability, the provider determines (every deci-

sion cycle) the current power management mode in a probabilistic manner by applying

roulette wheel selection. The values of κ are allowed to reside in 〈0, .., 10〉 (0 ≤ κ ≤ 10),

such that whenever the current κ parameter value moves beyond this range, it is set to

Chapter 8 Power Management 159

its maximum (when being too large) or minimum (when being too low) 1.

If the provider was on-line and decides to move into an off-line state, it will cease to

accept new allocation requests, finish the current allocations and after time To become

inactive. Moving from an off-line state into an on-line one will consume the same To

time, after which the provider will offer one of the most demanded services, determined

by the adaptive service provisioning mechanism.

The algorithm, including power management functionality, used by a provider agent

remains identical to the one presented in Section 5.3.2, with one exception. Before

deciding which service type to offer, the provider employs presented in this section

algorithm to evaluate whether it should go into off-line (or on-line) state.

8.2.3 Power Management Efficiency Analysis Measures

Throughout experiments conducted in this chapter we rely on the default model config-

uration presented in Chapter 5, and its experimental setup (Section 5.4). If any param-

eters in this section change this is explicitly stated. Apart from the system throughput

and network analysis measures, described in Section 5.5, the power management effi-

ciency analysis is extended by two additional measures: total on-line resource capacity

and available on-line resource capacity. Both are described below.

8.2.3.1 Total On-line Resources Capacity

The total on-line resource capacity defines the total amount of capacity offered by the

whole population of provider agents that are in an on-line state. This measure is cal-

culated in the same sampling time intervals as system throughput (described in Section

5.5). For the mean value of total on-line resource capacity, we average the sum of ob-

tained measurements (taken from distinct sampling periods) by the total number of

obtained samples within that period.

8.2.3.2 Available On-line Resources Capacity

Whereas the total on-line resource capacity defines the total capacity that is on-line, the

available on-line resource capacity identifies how much on-line resource can be employed

for task allocation. The difference between them results from the fact that some of

the configured on-line provider agents may be reconfiguring their service provision, thus

being unable to offer resources at that time despite being in an on-line state.

1The upper and lower limits on the κ parameter values were determined through experimental eval-
uation. During this process, the best parameter range was selected that allowed for responsive provider
on-line and off-line reconfiguration in a wide range of experiments.

160 Chapter 8 Power Management

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000

D
em

an
de

d
re

so
ur

ce
 c

ap
ac

ity

Simulation time (s)

Figure 8.1: Figure illustrates the demand intensity step function according to which
the demand level (represented on Y axis) for system resources undergoes rapid change
at simulation periods indicated on X axis. Here, the value of 1 on the Y axis indicates
conditions at which demand-supply proportion is equal and the system operates at its

full capacity.

The available on-line resource capacity is calculated in the same sampling time intervals

as system throughput. For the mean value of available on-line resource capacity, we

divide the sum of obtained measurements (taken from distinct sampling periods) by the

total number of obtained samples.

8.3 Power Management with Discrete Environmental Change

In this analysis, the system’s ability to preserve adaptive power management was exam-

ined over a range of scenarios in which the demand intensity as well as the numbers of

service types demanded changed at run-time, thus requiring the system to dynamically

adjust to the new conditions. To model the dynamic service demand environment, a

step-based function (illustrated in Figure 8.1) was provided.

This function modeled the particular case of an open system where periods of system

stability, in which the number of agents, and thus system’s composition, remained un-

changed, were punctured by a rapid removal or introduction of new consumer agents,

requiring the provider population to adapt to changing levels of demand. Similarly to

the experiments in the previous chapter, the discrete demand intensity function was

coupled with a consumer turnover mechanism that allowed us to regulate the degree

to which the system is open, and thus perturbed, through the influx of new consumer

agents.

Based on the perceived service demand, providers can choose to offer a single service

selected from the set Capabilityαp , as defined in Table 8.1. Given the variety of different

service types that are introduced during demand intensity changes (illustrated in Table

8.1 for each configuration change), apart from power management, the efficiency of

Chapter 8 Power Management 161

Demanded service Set of demanded Demand-supply Number of Number of
types service types ratio Consumers Providers

8 {A,B,C,D,E, F,G,H} 1.0 250 60
2 {A,B} 0.25 62 60
4 {A,B,C,D} 0.5 125 60
8 {A,B,C,D,E, F,G,H} 1.0 250 60

Table 8.1: The change in the demand intensity (and the number of demanded service
types for subsequent steps in the step demand intensity function.

the system is also predetermined by its ability to preserve a balanced usage of on-line

configured provider agents as well as their adaptive service type configuration.

Considering these performance criteria, the evaluation of system performance in chang-

ing demand intensity conditions is presented below.

8.3.1 On-line Resource Market Adaptation in Discretely Changing En-

vironment

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500 3000 3500 4000

S
ys

te
m

 R
es

ou
rc

es
 C

ap
ac

ity

Simulation time

Figure 8.2: Figure illustrates the
total amount of capacity demanded
by consumer agents (empty circles),
available on-line capacity offered by
provider agents (solid circles) and
total on-line capacity (triangles) for
the AF model configuration in condi-
tions where system is open and con-
sumer turnover probability equals 0.1

(χ = 0.1)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500 3000 3500 4000

S
ys

te
m

 R
es

ou
rc

es
 C

ap
ac

ity

Simulation time

Figure 8.3: Figure illustrates the
total amount of capacity demanded
by consumer agents (empty circles),
available on-line capacity offered by
provider agents (solid circles) and to-
tal on-line capacity (triangles) for the
NF model configuration in condi-
tions where system is open and con-
sumer turnover probability equals 0.1

(χ = 0.1).

The power management efficiency for a single run of AF and NF model configurations

is illustrated in Figure 8.2 (for the AF model) and Figure 8.3 (for the NF model) 2.

In both figures the power management performance is represented by two measures:

2The power management efficiency for the FF model is not represented for this particular case
because of its poor adaptation and is presented using comparative analysis in the remainder of this
section.

162 Chapter 8 Power Management

the total on-line capacity offered by the system (triangles) and the amount of available

on-line capacity that is ready for consumption (solid circles).

Given the results illustrated in both figures, we distinguish two important conditions that

should be considered when analysing and judging the efficiency of power management

control. Firstly, in optimal circumstances the total supply of resources provided by

the system should match the demand imposed by consumers, and secondly, the supply

of on-line resources that are ready for use should be as close to the total amount of

available on-line resources as possible. The second condition stems from the fact that

whilst provider agents may be in an on-line state, it is not guaranteed that they will be

capable of offering resources as they may spend their on-line time continually switching

and adapting, thus ‘wasting’ the resources they could offer otherwise.

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 r

ej
ec

te
d

al
lo

ca
tio

n
re

qu
es

ts

Simulation time

Figure 8.4: Mean number of re-
jected consumer allocation queries as
a function of simulation time for two
model configurations: AF (solid line)
and NF (dotted line). Both models
are run in conditions where system is
open and consumer turnover proba-

bility equals 0.1 (χ = 0.1).

 0

 200

 400

 600

 800

 1000

 1200

 0 0.05 0.1 0.15 0.2 0.25 0.3

R
ej

ec
te

d
co

ns
um

er
 r

eq
ue

st
s

Consumer agent turnover probability

Figure 8.5: Mean number of re-
jected consumer allocation queries
for three model configurations: AF
(line with rectangles), NF (line with
circles) and FF (line with triangles).

The analysis of performance of both models under these assumptions shows that the

closest match between the total and available on-line resource capacity is achieved by

the AF model. This can be observed in every demand intensity change influenced by

the step function that not only requires the resources market reconfiguration during

which subsets of providers move into an on-line or off-line state but also are required to

reconfigure their specialisation to satisfy the step changing function period of service type

demand (defined in Table 8.1). Moreover, this efficient power management adjustment

is carried out in open system conditions (turnover probability is equal to 0.1) in which

there is a continual influx of new agents that require the resource market to continually

readjust and adapt.

Considering the NF model efficiency in adjusting the level of offered resources to the

demand intensity (Figure 8.3), a clear disparity between the total amount of offered

Chapter 8 Power Management 163

capacity (line with triangles) and its available on-line subset (line with solid circles) can

be observed. Furthermore, the adjustment of the on-line offered resources is not adequate

to the demand imposed by consumer agents (empty circles). This results from the

inability of provider agents to adjust and reconfigure to changing service type demand.

In conditions when the system is required to operate at full throttle (0−1000 simulation

time) the resource market is unstable and providers experience a lot of reconfiguration,

thus wasting on-line resources. On the other hand, in conditions when the demand

intensity (as well as demanded service type variety) is smaller (1000 − 3000 simulation

time) the surplus of offered resources to the demand imposed on the system contributes

negatively to the power usage.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
hr

ou
gh

pu
t

Consumer agent turnover probability

Figure 8.6: Mean system through-
put as a function of increasing con-
sumer agent turnover. Three model
configurations are presented: AF
(line with rectangles), NF (line with
circles) and FF (line with triangles).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.05 0.1 0.15 0.2 0.25 0.3

P
er

ce
nt

ag
e

of
 s

av
ed

 e
ne

rg
y

Consumer agent turnover probability

Figure 8.7: Power management ef-
ficiency for three model configura-
tions: AF (line with rectangles), NF
(line with circles) and FF (line with
triangles). Lines illustrate percent-
age of energy that has been saved by
provider agents that moved into off-

line state.

It is interesting to observe that whilst for the NF model the offered resource capacity is

mostly of the time greater than the volume of resources demanded by consumer agents,

the supply of resources within the AF model configuration is slightly smaller than the

demand, and the system regulates itself towards the least amount of on-line resources.

Before we analyse mean system throughput achieved in the different configurations, let us

consider the number of rejected task allocation queries for both. This is shown in Figure

8.4, where the number of rejected task allocation queries for the AF model is indicated

by a solid line and for the NF model by a dotted line. Considering these results, we

can observe that despite the lower amount of on-line offered resource capacity, the AF

model configuration effectively minimises the amount of rejected queries in all demand

configurations to its minimal achievable value, residing near 250. For the NF model,

on the other hand, we can observe certain periods within which the increased difficulty

of resource allocation conditions affects the efficiency of consumer agents in identifying

resource providers capable of satisfying their requests.

164 Chapter 8 Power Management

These results suggest that the AF model not only exhibits much better power manage-

ment features than the NF model but is capable to achieve high allocative throughput

at the same time. Consider Figure 8.6, showing mean system throughput achievable by

three model configurations (AF , NF and FF) in increasing consumer agent influx con-

ditions. The corresponding analysis of rejected allocation queries for these configurations

is illustrated in Figure 8.5.

The performance results depicted in Figure 8.6 suggest that for conditions when con-

sumer turnover probability is equal to 0 and thus the system is closed, the NF model

achieves slightly better performance throughput than the AF one. However, as the

power management efficiency analysis in Figure 8.7 shows, this happens at the cost of

less efficient energy saving as it involves more on-line provider agents. The percentage

of saved energy is calculated by measuring the proportion of providers that moved into

an off-line state in comparison to the model configuration in which all providers are

configured to all remain in an on-line state.

Considering this power management efficiency, in conjunction with system’s throughput

performance, we can observe that the NF model achieved greater throughput perfor-

mance at the expense of less efficient power usage. During these conditions a lower

utilisation imposed on a greater number of provider agents allowed them to offer ser-

vices in a quicker time and eventually contribute to a slightly better throughput than

in the AF model case. Within the AF model, on the other hand, consumers tend to

employ the least amount of required resources that can still satisfy their task allocation,

which results in the slightly longer service provisioning (that still satisfies stringent task

time limit properties) thus resulting in a slightly worse throughput than achieved by the

NF model.

For conditions where the system is open (turnover probability is greater than 0) the

best throughput as well as power management efficiency is achieved by the AF model,

followed by the NF one. The worst allocative performance with almost no energy saved

is experienced by the FF model. In this configuration the resource market was frustrated

to the point where it become impossible to preserve high throughput and efficient power

management.

8.3.2 Consumer Agent Communities

Efficient allocative performance of the AF model and the corresponding poor and un-

stable behaviour of the FF model are confirmed by the community analysis illustrated

in Figure 8.8, showing the number of extracted communities, and Figure 8.9, showing

the mean community homogeneity values achieved by both models as a function of con-

sumer agent turnover. In the first figure, it is shown that only agents within AF model

are able to reorganise adaptively into appropriely sizeed (as denoted by dashed line)

Chapter 8 Power Management 165

 0

 4

 8

 12

 16

 0 0.05 0.1 0.15 0.2 0.25 0.3

N
um

be
r

of
 e

xt
ra

ct
ed

 a
ge

nt
 c

om
m

un
iti

es

Simulation time (s)

Figure 8.8: Mean number of ex-
tracted communities as a function of
increasing consumer agent turnover
probability for two system model
configurations: AF model (line with
rectangles) and FF model (line with

triangles).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

M
ea

n
co

m
m

un
ity

 h
om

og
en

ei
ty

Simulation time (s)

Figure 8.9: Mean community ho-
mogeneity as a function of increasing
consumer agent turnover probability
for two system model configurations:
AF model (line with rectangles) and
FF model (line with triangles).

communities that reflect the current service type demand situation. Also, as the second

figure illustrates, only communities formed by the AF agents are characterised by high

homogeneity, suggesting that most agents established beneficial information exchange in-

teractions among peers of the same ‘kind’. During this analysis, the counterintuitive and

gradual increase in community homogeneity for the FF model results from the greater

influx of consumer agents that were initially co-located with correct (with respect to

offered service type) provider agents. However, this initial configuration was quickly

lost due to the disorganised flow of information, giving rise to very poor throughput and

power management performance reported in all FF configurations.

Exemple graphs showing communities for the AF and FF models captured at simulation

time equal to 800 seconds are provided in Figure 8.10 and Figure 8.11.

8.4 Power Management with Continuous Environmental

Change

The previous experiments assumed that the demand intensity was varied only at certain

simulation periods between which it remained static and fixed. This allowed agents to

converge into the organisation that was predefined by the step function and was per-

turbed only through new consumer agent before another demand change was introduced.

In this section, we explore the efficiency of decentralised power management in condi-

tions where the transition between different demand configurations occurs in a smoother

and more continuous fashion and is based on a sinusoidal function that facilitates the

gradual turnover of consumer agents and thus the dynamic demand intensity change.

166 Chapter 8 Power Management

Figure 8.10: Correctly organised consumer agent communities extracted from AF
model for conditions where consumer turnover probability is equal 0.1 (χ = 0.1). Edges
between nodes represent information exchanges between consumer agents where node
shapes correspond to specific service type the consumer is required to allocate. The
size of each node indicates the amount of resource capacity that is currently demanded

by the task.

|Capabilityαp| Set of service types Demand-supply Number of Number of
(Capabilityαp) ratio Consumers Providers

8 {A,B,C,D,E, F,G,H} varies 250 60

Table 8.2: The demand intensity configuration for the sinusoidal demand function. In
here, depending on the sinusoidal demand function configuration, the demand intensity

oscillates between 0− 1 demand-supply ratio range.

The detailed explanation of how turnover of consumer agents is regulated by the sinu-

soidal function is provided in Section 7.5.1, where the sinusoidal function was applied to

define the dynamic service type environment. Since in this chapter we are investigating

power management, the sinusoidal function has been adapted towards this purpose in

the following manner.

Throughput the simulation time, the key role of the sinusoidal function is to probabilis-

tically influence the number of consumer agents that actively allocate services within

the system, such that the overall system demand varies in a continuous manner over

the simulation time. During this gradual change in demand intensity, it is assumed that

the set of unique service types (|Capabilityαp|) demanded by consumer agents remains

unchanged over the simulation time and the system is perturbed through the consumer

Chapter 8 Power Management 167

Figure 8.11: Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal 0.1 (χ = 0.1). Edges between
nodes represent information exchanges between consumer agents where node shapes
correspond to specific (denoted by node label) service type the consumer is required
to allocate. The size of each node indicates the amount of resource capacity that is

currently demanded by the task.

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018
 0.02

 0.022
 0.024
 0.026
 0.028
 0.03

 0 400 800 1200 1600 2000 2400 2800 3200 3600

S
er

vi
ce

 ty
pe

 d
em

an
d

in
cr

ea
se

 p
ro

ba
bi

lit
y

Simulation time (s)

Figure 8.12: Figure illustrates sinusoidal function according to which demand inten-
sity within the system varies proportionately to the probability defined on Y axis. Here,
the function period is set to Ξ = 2.2 where the maximum probability value the function

achieves is Θ = 0.03.

168 Chapter 8 Power Management

turnover mechanism that introduces local demand perturbations.

As in the experiments applying the sinusoidal function to influence the change of service

type demand (Section 7.5.1), here we also assume that in each experiment the system

experiences a period of stability for the first 400 simulation seconds. In this period

there is no demand influence from a sinusoidal function, demand-supply ratio remains

unchanged at 0.5, and the system is prone only to perturbations introduced by con-

sumer agent influx. However, after the initial 400s, the sinusoidal function triggers a

change in the number of resource-allocating consumer agents that lead to the demand

intensity variation and thus require the population of providers to respond appropriately

by adjusting the amount of on-line offered resources. An example sinusoidal function

according to which such change is triggered is illustrated in Figure 8.12, whereas the

general model configuration for this set of experiments is outlined in Table 8.2.

Given such a demand setup, the behaviour of the AF , NF and FF models was evaluated

under conditions in which the sinusoidal function period (Ξ) is varied (thus defining the

length in time of each phase duration) along with consumer turnover probability (χ),

defining the degree of system openness to the introduction of new agents.

8.4.1 On-line Resource Market Adaptation in Continuously Changing

Environment

The power management efficiency for single runs of the AF and NF models in different

sinusoidal function period configurations are presented in Figure 8.13 (for AF model)

and Figure 8.14 (for NF model). Each figure presents four sub-figures, each for a differ-

ent sinusoidal function period configuration. The X axis on every sub-figure denotes the

simulation time that lasts 3600 simulation seconds in total, whereas the Y axis defines

the amount of resource capacity offered (and demanded) by the system. The power man-

agement efficiency in every sub-figure is represented by the analysis of three measures:

sinusoidally varying consumer demand (dotted line), total on-line capacity offered by

providers (bold dashed line) and the available on-line resource capacity (solid line). The

periods according to which the demand changes in each sub-figure are incremented in a

clock-wise manner, starting from the top-left sub-figure, and have the following values:

Ξ = 1.1, 2.2, 4.4, 8.8.

The results show that the best resource market adaptation to the changing demand

intensity is achieved by AF model configurations. However, as can be seen, for rela-

tively small periods (Ξ = 1.1), the system has a tendency to equilibrate between small

but frequent demand intensity changes. As the demand intensity varies to the greater

extremes (for Ξ > 2.2) the resource market reconfigures its on-line resources in a more

accurate and efficient manner that almost perfectly matches the changes within the

demand intensity imposed by consumer agents.

Chapter 8 Power Management 169

Figure 8.13: Figures (organised in
a clockwise manner, starting from a
top-left corner) illustrate power man-
agement efficiency for AF model for
model configuration where sinusoidal
function period (Ξ) has following val-
ues: 1.1, 2.2, 4.4, 8.8. Each figure il-
lustrates the total amount of capacity
demanded by consumer agents (dot-
ted line), available on-line capacity
offered by provider agents (solid line)
and the total on-line capacity (bold
dashed line). All results are obtained
from open system model where con-
sumer turnover probability equals 0.1

(χ = 0.1)

Figure 8.14: Figures (organised in
a clockwise manner, starting from a
top-left corner) illustrate power man-
agement efficiency for NF model for
model configuration where sinusoidal
function period (Ξ) has following val-
ues: 1.1, 2.2, 4.4, 8.8. Each figure il-
lustrates the total amount of capacity
demanded by consumer agents (dot-
ted line), available on-line capacity
offered by provider agents (solid line)
and the total on-line capacity (bold
dashed line). All results are obtained
from open system model where con-
sumer turnover probability equals 0.1

(χ = 0.1)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8

M
ea

n
sy

st
em

 th
ro

ug
hp

ut

Sinusoidal function period

Figure 8.15: Mean system through-
put as a function of changing sinu-
soidal demand function period (Ξ).
Results summarise performance of
three model configurations: AF
(rectangles), NF (circles) and FF
(triangles). In all experiments the
maximum consumer turnover proba-

bility is set to 0.1 (χ = 0.1).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8

P
er

ce
nt

ag
e

of
 s

av
ed

 e
ne

rg
y

Consumer agent turnover probability

Figure 8.16: Percentage of saved
energy by providers in off-line mode
(as compared to the system config-
uration where all providers are on-
line) as a function of increasing si-
nusoidal function period (Ξ). Re-
sults summarise performance of three
model configurations: AF (rectan-
gles), NF (circles) and FF (trian-
gles). In all experiments the maxi-
mum consumer turnover probability

is set to 0.1 (χ = 0.1).

170 Chapter 8 Power Management

As Figure 8.14 shows, the inefficiency of the NF model in achieving proper power

management stems from two reasons. Firstly, the resource market becomes frustrated

(especially for conditions in which demand intensity varies to a greater extent (Ξ > 2.2))

and the amount of offered resources is insufficient to satisfy consumer demand. As a

result of this, consumers that are unable to identify the available providers tend to

encourage most of the providers to remain on-line and thus prevent efficient power

management. Unfortunately, even this surplus of providers that are kept on-line is unable

to offer demanded services as they become frustrated by consumers and continually

reconfigure to offer different services types. These observations are confirmed by mean

system throughput and power management efficiency analyses for the three models in

conditions where the sinusoidal function period was varied and the system was open.

Both results are presented in Figure 8.15 (showing mean system throughput) and Figure

8.16 (providing mean power management efficiency results).

The results show that the best performance is obtained by the AF model, followed by

the NF model and finally the FF model, exhibiting very poor behaviour in every ex-

periment. The highest allocative throughput for the AF model is obtained in situations

where demand does not oscillate but is kept constant at the highest level (demand-supply

equals 1) and is illustrated in Figure 8.15 for Ξ = 0. This results simply from the fact

that throughout the whole experiment duration, demand intensity does not change and

is kept at maximum, so the system operates at a full throttle, resulting in the highest

allocative throughput. The performance of the NF model, for the same demand condi-

tions (Ξ = 0) is degraded as a result of consumer agents being unable (relying only on

their personal knowledge) to fully stabilise the resource market.

The analogous analysis of individual system runs for the AF and NF models to the one

that has been presented at the beginning of this section, but now focusing on the power

management efficiency in conditions where the system ‘openness’ is varied, is presented in

Figure 8.17 (for AF model) and Figure 8.18 (for NF model). Here, the same superiority

of the AF power management performance over the NF response is observed where the

more accurate and responsive adaptation of on-line resources is observed for the former.

These results are also confirmed by a more general analysis of mean system throughput

(Figure 8.19) and power management efficiency (Figure 8.20) for increasing consumer

turnover probabilities.

These results suggest the existence of a certain trade-off between power management

efficiency and the overall system allocative throughput. A system that encourages more

resources to be on-line is capable of providing resources in a quicker fashion. However,

at the same time it introduces additional power management costs involving increased

power consumption costs by maintaining a greater number of on-line provider agents

than necessary.

Given this consideration, it is interesting to observe that only the AF model is capable to

Chapter 8 Power Management 171

Figure 8.17: Figures (organised in
a clockwise manner, starting from a
top-left corner) illustrate power man-
agement efficiency for AF model for
model configuration where consumer
turnover probability (χ) has follow-
ing values: 0.0, 0.1, 0.2, 0.3. Each fig-
ure illustrates the total amount of
capacity demanded by consumer ag-
ents (dotted line), available on-line
capacity offered by provider agents
(solid line) and the total on-line ca-
pacity (bold dashed line). All results
are obtained from open system model
where sinusoidal function period is

set to 4.4 (Ξ = 4.4).

Figure 8.18: Figures (organised in
a clockwise manner, starting from a
top-left corner) illustrate power man-
agement efficiency for NF model for
model configuration where consumer
turnover probability (χ) has follow-
ing values: 0.0, 0.1, 0.2, 0.3. Each fig-
ure illustrates the total amount of
capacity demanded by consumer ag-
ents (dotted line), available on-line
capacity offered by provider agents
(solid line) and the total on-line ca-
pacity (bold dashed line). All results
are obtained from open system model
where sinusoidal function period is

set to 4.4 (Ξ = 4.4).

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
hr

ou
gh

pu
t

Consumer agent turnover probability

Figure 8.19: Mean system through-
put as a function of increasing con-
sumer turnover probability (χ). Re-
sults summarise performance of three
model configurations: AF (rectan-
gles), NF (circles) and FF (trian-
gles). In all experiments sinusoidal
function period is set to 4.4 (Ξ =

4.4).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.05 0.1 0.15 0.2 0.25 0.3

P
er

ce
nt

ag
e

of
 s

av
ed

 e
ne

rg
y

Consumer agent turnover probability

Figure 8.20: Percentage of saved
energy by providers in off-line mode
(as compared to the system config-
uration where all providers are on-
line) as a function of increasing con-
sumer turnover probability (χ). Re-
sults summarise performance of three
model configurations: AF (rectan-
gles), NF (circles) and FF (trian-
gles). In all experiments sinusoidal
function period is set to 4.4 (Ξ =

4.4).

172 Chapter 8 Power Management

 0

 4

 8

 12

 16

 20

 24

 0 0.05 0.1 0.15 0.2 0.25 0.3

N
um

be
r

of
 e

xt
ra

ct
ed

 a
ge

nt
 c

om
m

un
iti

es

Simulation time (s)

Figure 8.21: Mean community ho-
mogeneity for AF model configura-
tion (solid line) and FF model con-
figuration (dotted line) as a function
of increasing consumer turnover (χ).
In all experiments the value of sinu-
soidal function period is equal to 4.4

(Ξ = 4.4).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

M
ea

n
co

m
m

un
ity

 h
om

og
en

ei
ty

Simulation time (s)

Figure 8.22: Mean community ho-
mogeneity for AF model configura-
tion (solid line) and FF model con-
figuration (dotted line) as a func-
tion of increasing consumer agent
turnover probability (Θ). In all
experiments the value of sinusoidal
function period is equal to 4.4 (Ξ =

4.4).

achieve an efficient, equilibrating properties that tend to regulate the amount of on-line

resources appropriately to the changing demand conditions and without the negative

impact on the system performance.

8.4.2 Consumer Agent Communities

The efficiency of the AF model is also confirmed by the community analysis illustrated

in Figure 8.21, showing the number of extracted communities as a function of consumer

turnover probability, and Figure 8.22 showing the homogeneity value for these communi-

ties. Both figures show that only the AF model of these involving information exchange

is capable of organising into distinct communities characterised by high homogeneity,

and thus represent collectives of agents that reliably and cooperatively allocate and

provide distinct types of resources.

Exemple graphs showing communities for the AF and FF models captured at simulation

time equal to 2040 seconds, and where Ξ = 4.4, are provided in Figure 8.23 and Figure

8.24.

8.5 Conclusions

In this chapter we have proposed a set of local decision-making algorithms tasked to

facilitate power management functionality within a system comprising a population of

resource-consuming and resource-providing agents. The efficiency of these mechanisms

Chapter 8 Power Management 173

Figure 8.23: Correctly organised consumer agent communities extracted from AF
model for conditions where consumer turnover probability is equal 0.1 (χ = 0.1). Edges
between nodes represent information exchanges between consumer agents where node
shapes correspond to specific service type the consumer is required to allocate. The
size of each node indicates the amount of resource capacity that is currently demanded

by the task.

was then evaluated in a range of dynamic demand intensity conditions including step and

sinusoidal demand functions. The results obtained show that the system is capable of

achieving adaptive power management despite having no central or hierarchical control

nor access to the full information about providers state and current system demand.

These results suggest also that load-balancing, adaptive service provisioning and power

management are interrelated and may affect each other’s performance in a complex and

difficult to predict manner. For example, the FF model performance was poor as a

result of the inability of agents to establish coherent and homogeneous communities

due to a disorganised flow of information. As a result, not only is the model unable to

perform adaptive service provision (as observed in a series of experiments in Chapter 7)

but it also incurs an excessive (almost maximal in the case of experiments where the step

function was applied) use of system resources when this could be avoided, thus incurring

the additional power management cost. For this as well as the NF model in open system

conditions, the inability to perform adaptive service provisioning functionality is a direct

cause that prevents the system from achieving adaptive power management.

The interrelation between the efficiency of load-balancing, adaptive service provisioning

and power management implies that their adaptive maintenance cannot be considered

174 Chapter 8 Power Management

Figure 8.24: Disorganised consumer agent communities extracted from FF model for
conditions where consumer turnover probability is equal 0.1 (χ = 0.1). Edges between
nodes represent information exchanges between consumer agents where node shapes
correspond to specific (denoted by node label) service type the consumer is required
to allocate. The size of each node indicates the amount of resource capacity that is

currently demanded by the task.

as a set of distinct, unrelated, problems but requires a coherent and integral solution.

Consequently, preserving these three functions within a large and dynamic system may

become challenging and require to an understanding of the complexity of interdepen-

dencies between each such function and system dynamics. Although the experimental

evaluation provided in this chapter does not explore this problem to a great extent, it

shows that the proposed local decision-making mechanisms offer potential in facilitat-

ing an integral, yet scaleable and robust, solution that achieves both adaptive service

provisioning (with load-balancing) and power management at the same time. However,

more experimental evaluation is required to identify to what degree distinct system

level functions affect each other and how varying demand conditions impact on such a

relationship.

8.6 Summary

Throughout the last three chapters we have focused on the provision of three different

functionalities that are expected from large scale computational systems: load-balancing,

adaptive service provision and power management. With decentralised multi-agent sys-

tem models and simple local decision-making algorithms, we have shown that, for each

Chapter 8 Power Management 175

such functionality, a stable and adaptive system response can be facilitated with no re-

course to centralised control nor access to global information about the current system

state.

The efficiency of such a decentralised approach is the result of a collective response

of locally interacting agents that, under certain model parametrisations, exhibit self-

organising properties. These model configurations enable agents to establish self-sustaining

flows of information (captured as distinct communities) that influence their future inter-

actions such that a resource market is able to adaptively adjust to the changing demand

intensity level.

So far, in all evaluated model configurations we assumed that agents were implicitly

cooperating by willingly revealing (if employing AF or FF strategy) information to

other peers. Whilst in this work we assumed that the whole infrastructure is maintained

by the single provider and thus agent cooperation is a rational strategy, there may

exist open computational environments where agents are no longer under the control

of a single entity. In these situations one of the possible extensions to the empirical

experiments conducted in this work would be to have agents that do not cooperate eg.,

lie or provide incorrect information to others and to analyse impact of such defective

behaviour on the stability of the system and performance of individual agents.

Whilst in the last three chapters we considered load-balancing, adaptive service provi-

sioning and power management as three separate challenges, the obtained experimental

results show clear relationship between these tasks. This suggests that decision-control

mechanisms that we have applied in separate chapters can be combined in the form

of a single utility function. Such an approach would allow us to constuct a single but

multi-objective function within which different aspects of resource management could be

integrated and considered as a single decision-making mechanism, thus simplifying the

engineering process of the system. To give an example, in order to achieve adaptive ser-

vice provisioning and power management we have provided two similar threshold based

functions and considered them as separate solutions to a particular problem. However,

in principle, these functions can be easily integrated such that ‘off-line’ movement of

the node is yet another ‘service type’. Although moving off-line is regulated through

slightly different threshold adjusting function than switching to a different service type,

both actions could be merged to form a multi-objective function.

As in the absence of any central ‘intelligence’ governing and regulating the behaviour of

the system, it is mandatory to understand how stability and adaptation arises within a

population of autonomously interacting agents. So far, the last three chapters identified

which model parametrisations were efficient at achieving expected system functionalities.

However, as our main goal is to be able to engineer these kinds of systems in a princi-

pled manner, in the next chapter we focus explicitly on understanding conditions and

properties of local decision-making mechanisms that achieve this. This analysis will be

176 Chapter 8 Power Management

provided within the thermodynamic framework, primarily used for understanding and

exploiting self-organisation within natural systems that we will extend to comprehend

socio-technological systems as well.

Chapter 9

Thermodynamic Interpretation

9.1 Introduction

Engineering of systems that exploit laws of physics and extract work based on thermody-

namic principles that underly the phenomenon of self-organisation has been approached

almost 200 hundred years ago when Nicolas Sadi Carnot (in 1824) developed the model

of a heat engine [52]. Initiated by him understanding how energy flow through a physical

system can be transformed into a useful work allowed for the construction of man-made

systems such as thermodynamic engines that underpin the supply of most of the world’s

electric power and almost all motor vehicles nowadays.

Considering the impact of these findings on the development of human society, it is not

surprising that the principles derived from thermodynamics of self-organisation have

become increasingly important in studying and understanding complex self-organising

phenomena observed both in physical as well as biological world.

Whilst much is still to be understood in relation to the role the thermodynamics plays

at producing order and life in particular [54], initial models how it may be applied

to study and understand the self-organising properties of biological, decentralised and

information-driven systems have already been provided [24, 29]. However, as these

studies show, the problem of engineering computational systems that exploit laws of

physics is much harder than the one addressed by Nicolas Sadi Carnot and his followers.

In particular, much remains to be understood as to what exact conditions are needed for

self-organisation to arise and what decentralised mechanisms are required for its effective

stabilisation in a bottom-up manner.

In this chapter we will focus our attention on these problems and suggest means how

they may be approached whilst engineering self-organising computational systems. To

this end, in Section 9.2 we provide a set of design principles that we consider relevant

whilst addressing the autonomic system control that is inspired by the phenomenon of

177

178 Chapter 9 Thermodynamic Interpretation

natural self-organisation, whereas Section 9.3 offers a thermodynamic interpretation of

such a model functioning.

9.2 Design Principles

As stated earlier in this chapter, systems that exploit thermodynamics to extract work

are not novelty and have been engineered since Sadi Carnot provided the first heat

engine model in 1824. However, there exist certain differences between these artifacts

and modern computational systems that need to be addressed in the first place, before

we start applying self-organisation for the purpose of controlling modern IT systems. To

this end, we identified two general problems that underly the design of self-organising

software systems.

Firstly, Sadi and his followers had a much simpler task at engineering their thermo-

dynamic systems because these artifacts operated in a real world and for this reason

conformed to certain physical laws specifying the behaviour of the system (and its ele-

ments). These laws and, in particular, the second law of thermodynamics, as we have

discussed in Chapter 2.5, play the key role in achieving self-organisation and work ex-

traction from energy driven system.

Unfortunately, the software engineers have no such privilege of relying on the already

existing laws, as it is up to them to define individual system behaviours and interactions

through algorithm-based rules or policies. This leaves software engineers with a much

greater freedom of creating their own rules of the game that are tailored for their own

design specifics. We find that care must be taken on this level of development as, whilst

some of these ad-hoc rules may be consistent with thermodynamics and facilitate self-

organisation at the global system level, the others may not.

The second issue is that Sadi and his followers did not have to bother with constructing

systems that comprise vast number of elements which need to, somehow, self-organise in

order to work efficiently. Rather, he built rigid and mechanistic systems the operation of

which was deterministic and had only one purpose: to regulate the energy flow through

the system such that a useful work can be extracted from it. During this process, the

system structure and possible configurations were pre-imposed at a design time and never

required reconfiguration during its life-time. For example, there are no such engines

that modify their internal structure such as displacement or piston size as the engine

operates. With respect to this, such thermodynamic engines are crude and simplistic

artifacts when compared to the highly dynamic and sophisticated software systems.

This makes life harder for software engineers aiming to build their systems relying on

thermodynamic principles as here the thermodynamics becomes intertwined with the

extensive understanding and application of self-organising processes. As a consequence,

Chapter 9 Thermodynamic Interpretation 179

the engineers of technological systems are faced with the problem of designing models

that do not rely on static and non-changing configuration of their elements but, in con-

trast, are required to reconfigure their interactions in order to autonomously discover

the ones that maximise the system efficiency given the current system functioning con-

ditions. For this purpose, more in depth analysis of natural systems and processes they

employ for self-organisation is needed.

In what follows, based on the study of our self-organising system model, we present one of

the possible ways one can undertake in order to engineer a self-organising computational

system that is based on thermodynamic principles of self-organisation. In doing so, we

will organise the remaining content into two separate parts, each addressing one of the

problems that we have breifly outlined above. In the first part, we will start by sharing

our experiences of what features of the physical world need to be represented within a

computational system, thus forming universal ‘rules of the game’ that all system elements

need to comply with. Here we will present these features and explain how they were

incorporated into our model with the help of specific algorithms and decision-making

mechanisms.

Once these rules are laid out, we will then move on to the second issue that is how can we

engineer system elements that, by following these rules, self-organise their interactions

such that a useful work, in accordance to the system objectives, is extracted from the

model. Here we will explain the role of self-organising processes observed within natural

systems and our local decision-making mechanisms that we applied to incorporate them

within our computational system.

9.2.1 Conditions for Self-organisation

Recall the classical self-organisation experiment conducted by Benard over 100 years

ago that we briefly described in Chapter 2.5. Here, Benard observed that heating up a

viscose fluid contained in a reservoir gave rise to spontaneous organisation of initially

disorganised system elements into coherent and self-sustaining columns, referred from

then as Benard Cells.

As thermodynamics shows there is nothing ‘magical’ about such spontaneous organi-

sation and, whilst arising in a complex and emergent manner, it is a consequence of

certain conditions that influence the way in which the system responds to the energy or

information flows across its constituents [116, 56].

To explain the role of these conditions, consider a general model of a self-organising

system illustrated in Figure 9.1. Here, three different levels at which the system can be

analysed are provided: micro, meso and macro. Typically, on the micro-level we distin-

guish individual system elements and their interactions, whereas meso-level illustrates

organisation of these elements into certain structures, be they hexagonal cells within

180 Chapter 9 Thermodynamic Interpretation

micro
level

meso
level

macro
level

PRESSURE

FUNCTION

agitation

spatial
embeddedness

gradient
following

openness

Figure 9.1: Self-organisation in natural open systems arises as a result of following
conditions: openness, agitation, spatial embeddedness and gradient following. Bottom-
up organisation in decentralised software systems is dependent on re-interpretation and

engineering of these features within a computational environment.

Benard Cells example or foraging trails formed by an ant colony. Finally, at the macro-

level we consider the global outcome (or function) of system self-organisation. Within

insect society this corresponds to the adaptive division of labour during which different

collectives of ants (identified as organised structures at the meso-level) carry out vari-

ous system level functions (eg., food foraging, brood feeding, nest construction). In the

Benard Cells example, on the other hand, it is the most efficient heat transportation to

the system surroundings that is achieved through convection.

Given this model, consider its features illustrated in the figure as: openness, agita-

tion, spatial embeddedness and gradient following. In what follows we explain their

role in achieving natural self-organisation and then provide means how they can be

re-interpreted and realised within a software system.

9.2.1.1 Openness and energy flow

According to thermodynamics, self-organisation is directly linked with energy and its

flow across an open system. As observed by the Nobel prize winner Ilya Prigogine

[56], one of the preconditions for achieving self-organisation within a physical system is

openness manifested by the ability of the system to accept energy from its surroundings

as well as dissipate it outside its boundaries.

Consider the effects of energy inflow observed in the physical system explored by Be-

Chapter 9 Thermodynamic Interpretation 181

nard. Here, its supply in the form of a heat agitates system elements such that the

overall system becomes more dynamic. Once the inflow of energy stops, its remaining

surplus becomes dissipated from the system that eventually moves back to its initial,

low-energy state. Similar pattern of behaviour is observed within a more sophisticated

living self-organising system such as ant society. Here, rather than directly sensing

physical ‘energy’, ants react to chemical information (pheromones) deposited by their

peers within the environment. Once the concentration of such information becomes suf-

ficiently high, ants become agitated and stimulated to perform certain activities, eg.,

food foraging or nest defense. Accordingly, once such chemical information disappears,

the ants become less agitated and either rest or pursue other activity.

Unsurprisingly, openness and information flow have analogous consequences in a com-

putational system and thus do not require additional mechanisms or thermodynamic

re-interpretation. Here, we assume that the system is open and fed by allocation re-

quests that originate from users. These requests have the same effect as a supply of heat

in a physical system or the perception of a pheromone substance in an ant society, that

is, they agitate agents and initialise their resource allocation process where the overall

system dynamics increases proportionally to the amount of task requests fed into it.

Similar to physical systems, the return of the system back into the less dynamic state

takes place when there is no inflow of new tasks and the successful or failed ones become

dissipated from the system. At this state, individual agents, alike elements of a physical

system, move back to a settled state.

9.2.1.2 Agitation

Self-organisation within Benard Cells example arises as a result of local interactions

between system elements. The frequency and extent to which these elements interact is

proportional to the agitation level they perceive as a result of heat supply to the system.

The more heat is pumped into it, the more frequent and dynamic such interactions

become and the more stressed the system becomes as a result of surplus of energy that

is injected into it.

Consequently, this suggests that the system elements are provided with mechanisms

that allow them to perceive and respond to the stress manifested by the inflow of energy.

This, as discussed in Chapter 2.4, has an important role in achieving system organisation

since the increasing level of stress facilitates faster exploration of possible system element

configurations, once the most efficient ones (given system objective) are discovered and

sustained.

To reflect this within our computational model, we provided each software agent with a

local measure of stress that, for consumer agents defined how quickly they could allocate

requested tasks and for provider agents how reliably they were offering demanded services

182 Chapter 9 Thermodynamic Interpretation

types. In both cases, the increase in stress level indicated that the system element

become more agitated (eg., consumers experienced more unsuccessful interactions with

providers whereas providers reconfigured their service provision frequently). Defined in

this manner level of stress was then shared among peers and was used by consumers to

prevent interaction and information flow between highly stressed providers. As a result

of this, the agents were able to detect arising system instability in the form of highly

stressed agents and to reorganise their interactions. During this process, new and more

efficient system elements configurations were explored until the most efficient one was

found.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
ea

n
sy

st
em

 th
ro

ug
hp

ut

Allocative pressure

Figure 9.2: Mean system through-
put as a function of increasing al-
locative pressure (ν) applied to the
model. The pressure is reflected
by the shorter ω time intervals that
define probabilistic (Poisson based)
task time arrival to the system. For
presented results ω ∈ 〈40s, .., 5s〉.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
on

st
ra

in
t l

ev
el

Allocative pressure

Figure 9.3: Level of mean con-
straint measured for consumer pop-
ulation (empty rectangles) and pro-
vider population (solid rectangles) as
a function of increasing allocative
pressure. The pressure is reflected
by the shorter ω time intervals that
define probabilistic (Poisson based)
task time arrival to the system. For
presented results ω ∈ 〈40s, .., 5s〉.

As suggested earlier, the level of stress that the individual system elements experience

is dependent on both its ability to discover efficient organisation that allows them to

‘dissipate’ successful tasks from the system at a faster rate, and the pressure the system

has to cope against, here represented by the amount of arriving to the system tasks

in a given time interval. Results showing the self-organising response to such systemic

pressure is illustrated in Figure 9.2. Here, the frequency of tasks arrival (depicted on

X axis) to the system is gradually increased. In situations when it is equal 1, the

state where demand-supply ration is equal 1 : 1, whereas further increase generates

conditions in which demand outstrips supply, eventually reaching demand-supply ratio

equal 2 : 1. Interestingly, as the level of agent constraint illustrated in Figure 9.3 shows,

the system self-organises only once the systemic pressure is high enough (greater than

0.3) 1. This can be understood by the fact that for low demand intensity there is no

1Provider constraint level defines how reliably provider agents offer the same service type over a
period of time. Where constraint equal 1 suggests that providers will never deviate from offering the

Chapter 9 Thermodynamic Interpretation 183

need for organisation of agents into communities, as there are enough resources to satisfy

the small quantity of demanded tasks in a timely manner. For conditions when demand

outstrips supply, on the other hand, the system is unable to maintain self-organised state

as the level of stress experienced by agents is too high and there exists no configuration

able to suppress it.

9.2.1.3 Spatial Embeddedness

The interactions between system constituents in natural systems are defined by spa-

tial proximity that exists between them. As a result, elements that are closer to each

other are more likely to interact and affect each other behaviour than the elements that

are located at a greater distance. Consequently, any local differences in the energy or

information that arise within a certan system region become gradually diffused to the

neighbouring system elements before they have a chance to impact on the further regions

of the system.

Existence of such spatial embeddedness is considered as another property of natural

systems that plays important role during their self-organisation. In particular, it has

been observed that the ability to affect the state of only neighbouring system elements

facilitates the necessary conditions for the emergence of element organisations that are

resistant to perturbations and instabilities occurring within other system regions. For

example, the studies focusing on the division of labour within insect societies [29] suggest

that deposition of pheromones within a certain locations of the system (eg., foraging

trail) and their gradual decay in other system regions allow for sufficient amount of ants

to be attracted to carry out food transportation, but prevent destabilisation of tasks

performed by other ants that are at distant locations from pheromones that attract for

food foraging task. As these models show, the removal of such spatial situatedness,

allowing thus all system elements to perceive pheromones that are propagated to the

environment, prevents the system organisation to take place as the system elements

become confused and distracted which tasks to carry on.

Whilst natural systems have spatial embeddedness incorporated ‘by default’, no univer-

sal law or principle exists within software systems that defines spatial proximity between

individual agents. As a consequence, there are no restrictions imposed on what system

elements are allowed to interact or how the outcome of such interactions propagates

through the system. This, as suggested by Guerin in [29], may prevent any system or-

ganisation to take place. Consequently, we consider decision-making mechanisms that

facilitate spatial embeddedness as an important part of self-organising software systems

design.

same service, 0 means that no constraint exists and the provider will choose to offer any service type
with equal probability. The mechanism for calculating constraint level is discussed in Section 5.5.2.1.

184 Chapter 9 Thermodynamic Interpretation

For this purpose we introduced affinity algorithm the role of which was to facilitate such

spatial embeddedness in the form of interaction topologies allowing agents to distinguish

their local neighbours from further located peers. Formed in this manner topologies

provided a ‘virtual’ proximity between other peers and incentivised the agents to interact

with the ones that are within their close vicinity. As a result of this, within a system

of interacting agents we were able to observe emergence of distinct agent communities

that were sustained through local interactions and information exchanges.

As the experimental model evaluation provided in Chapters 6, 7 and 8 showed both

interaction topologies as well as formed on top of them agent communities were critical

for achieving organised and stable system response.

9.2.1.4 Gradient Following

As provided in Chapter 2.5 discussing the thermodynamics of self-organisation, all phys-

ical systems obey the second law of thermodynamics. This means that all differences

and disparities (eg., temperature, pressure, chemical or electrical potential) that arise

between the system and its environment or among the system elements become extin-

guished over time, thus bringing the system back to the state of equilibrium.

In natural systems such equilibrating force is ‘given for free’. However, within the

software system environment there is no such property and it is up to the system engineer

to incorporate it. How is this realised in our computational, information driven system?

Recall that all consumer agents are designed to perceive, process and communicate in-

formation based on which they conduct their local actions such as provider selection

(consumer agents) or service type configuration (provider agents). In the case of con-

sumer agents, the information that is communicated between them is represented within

each agent in the form of a local registry maintaining the list of known providers and eval-

uation scores reflecting their efficiency at providing services. Such locally maintained

knowledge is employed by each consumer during provider selection, where a roulette

wheel mechanism is used in order to select the best (according to the evaluation score)

provider. We can consider such registry as an informational gradient, where providers

with higher evaluations have a greater chance of being selected than the ones with lower

scores.

The exemplary representation of such a gradient obtained from three different model

configurations (AF , NF and FF) are illustrated in Figure 9.4. Here, the figure il-

lustrates values of preferences associated with selection of 20 providers (sorted in a

descending evaluation score order) for three different model configurations: AF model

(solid line), NF model (dotted line) and FF model (dashed line). The best gradient

presented in this figure is achieved by agents exchanging information amongst their local

neighbours and thus utilising for this purpose interaction network topology. In this case,

Chapter 9 Thermodynamic Interpretation 185

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16 18 20

P
ro

vi
de

r
ev

al
ua

tio
n

sc
or

e

Unique provider agents

Figure 9.4: Informational gradient formed by the evaluation scores associated with
selection of particular provider agents. In here 20 agents are illustrated in a descending

evaluation scores order.

the gradient correctly identifies six provider agents that are available and configured ap-

propriately for the service type these agents require. The most inefficient informational

gradient configuration is obtained by FF model where lack of underlying interaction

topology and thus the free flow of information across the system confuses provider agent

population and thus consumers are unable to sustain and concentrate their selection

towards a particular subset of resources. Consequently, the arising gradient is flat and

does not guide consumer agent selection process in any efficient way.

Given such a gradient, we can interpret it as a local indicator that reflects how far the

agent is displaced from equilibrium and, depending on this, how its behaviour becomes

affected by such displacement. In this context, the disorganised and equilibrated state

is reflected when the informational gradient is flat and thus agent has no constraint

imposed on the selection of any provider. Under these conditions the selection of any

provider is equally probable and we assume that the agent behaves analogously to the

agitated particle within Benard Cells example that tends to get rid of the excessive

heat (allocative task in our case) through inefficient and chaotic collisions with other

particles (provider agents in our model). However, if the shape of such informational

gradient is non-uniform, meaning that some providers have a greater chance of being

selected, we consider the agent to be displaced from equilibrium as the constraint on

the selection of particular providers has been imposed. In this situation the agent aims

to ‘dissipate’ such gradient by probabilistically selecting the best provider for its task

allocation. During this process the agent successfully employs the provider and, by doing

so, consumes its resources for a limited period of time. At this state the level of agent

stress (or otherwise agitation) decreases as a result of successful allocation during which

useful work was extracted from the system.

186 Chapter 9 Thermodynamic Interpretation

micro
level

mezo
level

macro
level

interactions

positive feedback

agent communities

negative feedback

system functionality

coupling

Figure 9.5: Facilitation of global system functionality such as load-balancing, adap-
tive service provisioning or power management is achieved through self-organising agent
communities. Formation and stabilisation of these communities is achieved through lo-
cal decision-making mechanisms that give rise to coupling, positive feedback and negative

feedback.

9.2.2 Mechanisms for Self-organisation

Bottom-up self-organisation arises and is sustained as a result of local interactions. Using

network analysis tools, we captured these interactions as distinct agent communities that

represent organised global system structures.

As throughout experimental evaluation we have already observed that there exists only

a subset of interactions (and decision-control mechansims) contributing towards the

system organisation into the agent communities, in what follows we will outline key pro-

cesses responsible for the formation, maintenance and reconfiguration of such dynamic

structures. Whilst keeping this description on an abstract level, we will exemplify the

role and realisation of these processes within a computational system by referring to our

multi-agent system model design.

Chapter 9 Thermodynamic Interpretation 187

9.2.2.1 Interactions

The first precondition to achieve self-organisation is the existence of interacting and

autonomous processes. Autonomy in this context allows individual elements to diver-

sify and adjust their possible set of actions in response to changing system conditions

that would not be possible if simple software objects were considered. Interactions,

on the other hand, allow single processes to influence the behaviour of other elements.

Given these requirements, decentralised multi-agent systems comprising a population of

autonomous and interacting agents are suitable models for this kind of computation.

In Figure 9.5 we illustrate such autonomous processes at micro-level of the system as

empty circles and interactions between them as one-directed arrows drawn between the

circles.

9.2.2.2 Agent Co-adaptation Through Coupling

Achieving organised and coherent state within a population of interacting and au-

tonomous elements requires their individual behaviour adjustment, often redescribed

in terms of a co-adaptation process. For this to take place, individual elements need to

be able to sense and respond to changes occurring within their local environment that

are inflicted by other elements. Ability to do so requires system individuals to exhibit

coupling.

Coupling here is an emergent property and arises when the behaviour of a subset of

unrelated system elements becomes interdependent to each other, such that a change in

one elements’ behaviour inflicts the change in the other one (or others). For example,

in our model the coupling can be captured by the co-adaptation between consumer and

provider agents arising as a result of persistent interactions between each other. The

provider, as a result of consumer interactions reconfigures to offer the service that is

demanded by the consumer. The consumer, on the other hand, establishes a preference

towards that provider and thus continues to exploit its resources. As a consequence, the

configuration of both agents becomes interdependent: provider keeps its current config-

uration and consumer sustains the current attraction towards that provider. However,

as soon as this coupling is broken (eg. provider has not enough resources) the consumer

will seek for another provider, whereas the current provider (no longer stimulated by

the consumer) will either move into a sleep state or offer different service type. At this

state both agents are no longer coupled as they do not influence each other behaviour

any more.

The coupling within a multi-agent system can be realised through local decision-making

mechanisms that allow agents to detect the interactions that are mutually beneficial

and persist at such configurations as long as they contribute towards the welfare of

188 Chapter 9 Thermodynamic Interpretation

the involved agents. In our model this local co-adaptation was facilitated through the

application of stimulus-response mechanisms (described in Chapter 5) that are employed

by natural self-organising systems such as insect societies. In Figure 9.5 the coupling

between pairs of system elements is illustrated on the micro-level in the form of two-

directional arrows drawn between pairs of agents.

9.2.2.3 Community Formation Through Positive Feedback

As discussed in Chapter 2.4, the dynamics of a natural self-organising system is typically

non-linear because of circular or feedback relations between the components. Such non-

linearity can be understood from the relation of feedback that holds between the system’s

components, where each component affects other components, but these components in

turn affect the first component. Thus the cause-and-effect relation is circular and any

change in the first component is fed back via its effects on the other components to the

first component itself. Such behaviour is often re-described in terms of autocatalytic

potential suggesting the ability of the system to facilitate explosive growth of particular

system configurations [11, 91].

This progressive aspect of self-organising systems has been identified by cybernetics in

one of their fundamental principles [36] referred to as ‘The Principle of Autocatalytic

Growth’ which states that ‘stable configurations that facilitate the appearance of con-

figurations similar to themselves will become more numerous’.

In our model the positive feedback is employed during agent community formation pro-

cess that arises not as a result of sophisticated AI planning but non-linear interactions

between system peers. To realise this, a combination of the following mechanisms is

employed: affinity algorithm (described in Section 5.3.3.6), information exchange (de-

scribed in Section 5.3.3) and stimulus-response learning (described in Section 5.3.1)

influencing the emergence of coupling.

To understand how agent community arises out of responses of individual agents, con-

sider example community formation scenario. Here, emergence of the community and

the relevance of the above defined mechanisms is illustrated based on the four following

figures, Figure 9.6, Figure 9.7, Figure 9.8 and Figure 9.9.

The first figure (Figure 9.6) illustrates system configuration in which three consumer

agents (C1,C2 and C3), all interested in the allocation in the same service type, con-

sume resources offered by three provider agents (P1,P2 and P3). Initially neither of

consumers belongs to a community and each allocates resources independently. At this

state we assume that consumer-provider pairs are coupled, meaning that each consumer

established attraction towards a single provider agent (reflected in the provider evalua-

tion score maintained by consumer within its local registry) and each provider learned

to offer the currently demanded service type.

Chapter 9 Thermodynamic Interpretation 189

C1

P1

C3

P3

C2

P2

Figure 9.6: Community for-
mation through positive feed-
back. Here, three distinct pairs
of consumer-provider agents are
identified. Each pair is repre-
sented as a coupled set of con-
sumer and provider agents that re-
liably offer and consume (as de-
noted by solid arrow) resources.

C1

P1

C3

P3

C2

P2

Figure 9.7: Community forma-
tion through positive feedback.
Here, C1 consumer allocation re-
quest is rejected by P1 provider.
In response, the consumer iden-
tifies and employs P2 provider
agent. The dashed arrow between
C2 and C1 consumers illustrates
information sharing that is medi-
ated between both agents through
P2 provider agent (for simplicity

not shown).

To understand how feedback relation arises between independently acting consumer

agents, recall that the life-cycle of every consumer (described in Chapter 5) is followed

by two main activities: information exchange (information pull and information push)

and resource allocation. During the information pull (preceding resource allocation) the

consumer interacts with the provider it is currently co-located with and queries personal

registry information from co-located with this agent consumer agents. This action, in the

example presented in Figure 9.6, has no result as there exist no other consumers utilising

the same provider. During information push, rather than obtaining information from

the provider, the consumer reveals its local knowledge to a subset of provider agents

that, in turn, disseminate this information to co-located with them consumers. The

subset of provider agents to which this information is sent is determined by the affinity

scores contained within consumer registry. In the example considered in Figure 9.6 we

assume that consumer agents have positive affinity scores only for provider agents they

are currently employing and thus, at this stage, the information is communicated only

to these agents and reaches no consumer recipients, as there are none co-located with

the same provider.

If the system was functioning in deterministic conditions in which consumers would

never need to reconfigure their provider selection, described above organisation would

190 Chapter 9 Thermodynamic Interpretation

C1

P1

C3

P3

C2

P2

Figure 9.8: Community formation
through positive feedback. Here, a
causal and circular relationship is es-
tablished between C1 and C2 con-
sumer agents that both start to share
their local provider evaluations be-
tween each other (as illustrated by
the two-directed dashed arrow). The
shaded area represents a subset of
consumer agents that form a com-
munity as well as resources that are
shared and employed by the commu-

nity members.

C1

P1

C3

P3

C2

P2

Figure 9.9: Community formation
through positive feedback. Here,
the two-agent community incorpo-
rates another consumer agent (C3) as
well as another resource (P3). The
dashed arrows illustrate the informa-
tion flow that is collectively sustained
by the community members, whereas
the shaded area represents consumer
agents that form the community as
well as resources that are shared and
employed by the community mem-

bers.

reflect the optimal system configuration. However, the system is dynamic and there are

situations where either provider agents may occasionally become unavailable (eg., for

short, maintenance period of time) or consumers may be requested to allocate resource

capacity that is greater than the previously employed provider could offer.

A situation reflecting this short term instability is illustrated in the next figure (Figure

9.7), where P1 provider denies service provision to C1 consumer agent. In response

to rejected allocation request C1 consumer performs random search for other provider

agent available to satisfy its request 2 and eventually obtains a positive response from P2

provider. Consequently, C1 consumer employs P2 provider with whom it becomes co-

located with as a result of the successful allocation. At this moment C2 agent, which is

also co-located with P2 provider, gossips its local knowledge to P2 provider that passes

this information to C1 agent. In response, C1 agent decides whether to accept foreign

information (using stress measure defined in Chapter 5.3, Section 5.3.3) and, assuming

2Recall that up to this moment C1 consumer agent was relying only on P1 provider thus all remaining
provider agents kept in its local registry had evaluation scores equal 0. As a consequence, after P1’s
unavailability, the probability of selecting any other provider using roulette selection mechanism was
equal.

Chapter 9 Thermodynamic Interpretation 191

that provider exhibits low stress, merges the foreign information with its local registry.

As an outcome of the information merge process, C1 agent updates its evaluation score

about P2 provider as well as increases affinity score for P2 provider in order to reflect

inflow of external information from a reliable (non-stressed) source of information.

As a result of P2 provider allocation and the information exchange that followed this, C1

consumer extended its local knowledge about existing providers (now it has evaluation

scores for P1 and P2) as well as established affinity score to P2 provider, meaning that

in the next information sharing procedure it will reveal its local registry to both P1 and

P2 agents.

This next step in community formation through positive feedback is illustrated in Figure

9.8. Here, C1 consumer after successful resource allocation shares its local provider

estimates with providers that have high affinity scores within its local registry (P1

and P2). Since this information is communicated to P2 provider, C2 consumer that

is co-located with this agent becomes a recipient of this information and follows the

same procedure of new information merging as C1 agent did in the previous allocation

round when obtaining knowledge from C2 agent. Assuming that P1 agent has low

stress estimate and thus C2 consumer decides to accept information originating from

this agent, the outcome of information exchange and its incorporation in C2’s registry is

reflected by the appearance of evaluation score for P1 provider that is higher than 0, as

well as the positive affinity score for P1 provider from which this valuable information

originated.

After such information exchange an important change takes place that affects the future

causal relation between C1 and C2 agents. Recall that now both consumers have affin-

ity scores for the pair of P1 and P2 providers and, motivated by these scores, continue

to share their local knowledge to these agents and thus indirectly to each other. Here,

each information sharing activity performed by one of the consumer catalyses the same

reciprocative action by the other consumer. As a result of this self-reinforcing feedback,

both agents establish a collective knowledge about provider agents they know about (P1

and P2) that improves their future service allocation since now, even the occasional fail-

ure of one provider would attract them to the second, available and properly configured

provider.

From now on, we consider that actions of both C1 and C2 consumer agents become inter-

dependent as they establish a feedback relation between each other through the indirectly

communicated information about resources they know about. Such self-reinforcing flow

of information establishes the existence of a community comprising C1 and C2 consumer

agents together with employed by them resources (P1 and P2) the availability of which

is now shared across the community members.

The established flow of information among community members not only sustains the

achieved organisation but also has a positive effect on its growth as other consumer

192 Chapter 9 Thermodynamic Interpretation

agents that are alike (interested in the allocation of the same service type), and which

occasionally employ providers that belong to the established community, become at-

tracted towards this community in the same manner as C2 consumer agent was in the

previous step. This ‘autocatalytic growth’ of structure is illustrated in the last figure

(Figure 9.9), where C3 agent employs P2 provider and, as a result, obtains local registry

information shared by C1 and C2 agents. As a consequence, its local registry knowl-

edge becomes extended by additional evaluation scores of P1 and P2 providers, followed

by positive affinity scores update for these agents. Eventually, another agent becomes

added to the community together with additional resource (P3) that is introduced to

the pool of currently shared ones (P1 and P2).

The above presented community formation process achieved through the positive feed-

back underlies the formation of all agent communities that we identified during our

autonomic system model evaluation in the previous three chapters focusing on the pro-

vision of load-balancing (Chapter 6), adaptive service provisioning (Chapter 7) and

power management (Chapter 8).

Recall that whilst stimulus-response learning techniques allow consumer and provider

agents to establish coupling that improves their informed decision-making, it is the infor-

mation exchange and affinity algorithm that enforces stability of such coupled agents and

thus eventual community formation observed within our model. Here, affinity algorithm

facilitates growth of communities and their maintenance by ‘consuming’ and ‘drawing’

additional system resources and incorporating them into the pool that is shared among

community members only. The demand pressure imposed by such community members

minimises the risk of provider agents to deviate from offering the service type that is

different from the one demanded by the community. On the other hand, the attraction

towards the pool of such providers that is continually shared among community mem-

bers prevents them from attempting to interact with providers that do not belong to

this community and thus destablilise their provisioning.

9.2.2.4 Community Stabilisaton Through Negative Feedback

Recall self-organisation process overview described in Chapter 2.4 where we suggested

that the overall system organisation is stabilised by positive and negative feedback loops.

Whereas positive feedback, that we discussed in the previous section, is used to enforce

structure formation through non-linear causal relations that arise between system ele-

ments, the role of the negative feedback is to suppress such dynamic growth before it

consumes all system resources and destabilises system functioning.

Such negative effects of applying only positive feedback are exemplified in Figure 9.10

where a system comprising two distinct agent communities (A and B) is shown. Here,

each community demands different service type but requires the amount of system re-

Chapter 9 Thermodynamic Interpretation 193

positive
feedback

resource
competition

system

community
 A

community
 B

Figure 9.10: System configuration
where only positive feedback exists.
Here, two consumer sub-populations
that are equal in demanded resource
capacity exist, each requiring differ-
ent service type for allocation. The
unbalanced size of both communities
(reflecting the amount of resources
they consume) shows negative ef-
fect of positive feedback (denoted for
both communities as an arc) that
causes one community to grow at the
expense of resources shortage for the
latter community. This leads to the4
unstable system functioning due to
resource competition reflected by the

dotted arrow.

positive
feedback negative

feedback

community
 A

community
 B

system

Figure 9.11: System configuration
where positive and negative feed-
back exist. Here, two consumer sub-
populations that are equal in de-
manded resource capacity exist, each
requiring different service type for al-
location. As a result of negative feed-
back (dotted arc), the system is ca-
pable to regulate the growth of both
communities such that they consume
equal resource capacity and the ef-
fects of resource competition are min-

imal.

sources that is equal in size. Given this configuration, for an optimal system configura-

tion we should observe the emergence of two communities that are equal in size, meaning

that the system resources were equally distributed among both communities.

However, as Figure 9.10 shows, the reliance of consumer agents only on mechanisms

reinforcing positive feedback causes the disproportional growth of the stronger and larger

A community at the cost of limited amount of resources left for the smaller B community.

Such uneven distribution of system resources across the two different communities brings

about negative effect in the form of resource competition, during which consumer agents

from the B community encourage provider agents from the A community to reconfigure

and offer demanded by them service. Such reconfiguration generates opposite conditions

to the ones presented in Figure 9.10, in which most of the resources are consumed by the

B community at the cost of resource shortage for the A community. This uncontrolled

community growth leads to a pathological and continuous competition that destabilises

resource market and degenerates system performance.

194 Chapter 9 Thermodynamic Interpretation

A stabilising effect of negative feedback for the identical system configuration but now

employing mechanisms generating both positive and negative feedback is illustrated in

Figure 9.11. Here, the positive feedback allows communities to be formed, however, their

growth is no longer unlimited but becomes inhibited as soon as enough resources are

drawn by the community to preserve its efficient functioning. As a result of this, both

communities are of the equal size meaning that the system resources were fairly divided

among the agents requiring two different service types. As a result of this, the negative

effect of resource competition is avoided and the minimal competition (showed by the

slightly overlapping communities) allows for run-time reconfiguration of a small quantity

of resources in situations when the demand for one community is slightly greater than

for the other.

Given the exemplary description of the stabilising effects of the negative feedback, let

us now present how such feature was provided within our multi-agent system model.

In the previous section we outlined that the emergence of the positive feedback that

arises among a group of system agents is facilitated through the continuous flow of

information across consumer agents that, by sustaining positive affinity scores for pro-

vider agents which act as intermediaries during such information exchange, influence

reciprocal knowledge sharing among a subset of community members.

As stated, such cooperative information sharing, whilst supporting agent communities,

may also destabilise resource market once too much resources become ‘consumed’ by such

a community. Therefore, one possible way of inhibiting negative effects of the positive

feedback, which we apply in our model, is to limit the information flow across community

members once the destabilising effects of such community growth are perceived. Such

information flow regulatory process is conducted on a local basis and aims at excluding

from the information flow provider agents that become unstable at offering resource type

that is required by the community members. Once information flow from such agents

becomes blocked, the affinity scores kept by consumer agents for these providers decay

(as discussed in Section 5.3.3.6) and thus consumer agents are no longer incentivised to

share their personal evaluation scores with these agents.

In our model the above described information flow regulation stems from two important

mechanisms. First, each consumer and provider agent maintains its personal measure of

performance (described in Section 5.3.1 for consumers and in Section 5.3.2 for providers)

that indicates how stressed (and thus inefficient) it is. Whereas for consumers such

measure indicates difficulty in allocating requested tasks, the provider level of stress

increases as a result of more frequent or probable service type reconfiguration. Provided

these two simple measures, consumers rely on simple function (discussed in Section

5.3.3.7) based on which they decide to accept information from providers that exhibit

low stress and under circumstances when their personal stress level is sufficiently low.

The application of such mechanism not only prevents negative effects of community

Chapter 9 Thermodynamic Interpretation 195

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750

 0 1000 2000 3000 4000 5000

S
ys

te
m

 th
ro

ug
hp

ut

Simulation time

Figure 9.12: System throughput
achieved by two model configura-
tions. The configuration in which ag-
ents are provided with mechanisms
that facilitated both positive and
negative feedback is illustrated by
the solid line. Poor performance
shown by dotted line corresponds to
model configuration in which agents
are equipped with positive feedback

mechanisms only.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1000 2000 3000 4000 5000

N
um

be
r

of
 e

xt
ra

ct
ed

 a
ge

nt
 c

om
m

un
ite

s

Simulation time

Figure 9.13: Number of extracted
agent communities for two model
configurations. The configuration
in which agents are provided with
mechanisms that facilitated both
positive and negative feedback is il-
lustrated by the solid line. Poor per-
formance shown by dotted line cor-
responds to model configuration in
which agents are equipped with pos-

itive feedback mechanisms only.

growth but also avoids inflow of information from provider agents that exist at the

outset of the two communities and thus may lead to propagation of information that is

circulated within other community and thus could frustrate resource market stability.

The stabilising role of this information flow regulatory technique is presented based on

the experimental results provided in Figure 9.12. Here, the performance of the two

identical system models is illustrated that both employ positive feedback mechanisms

enforcing community formation, but only one (illustrated in the figure by solid line)

relies on the information flow regulatory mechanism that acts as a negative, stabilising,

feedback. As illustrated in Figure 9.13, only the latter model configuration is capable to

organise into the proper (for this particular model configuration equal to eight) number

of highly homogeneous consumer agent communities.

9.3 Thermodynamic Interpretation

9.3.1 Autonomic system self-organisation process overview

Given conditions and mechanisms for self-organisation that we outlined in the two pre-

vious sections, let us explain in detail how both combine in order to facilitate self-

organisation in our decentralised computational system model.

For this purpose consider Figure 9.14 that illustrates autonomic system model viewed

196 Chapter 9 Thermodynamic Interpretation

allocation queries

throughput

agitation

spatial
embeddedness

gradient
following

openness

negative
feedback

positive
feedback

coupling

Figure 9.14: Delivery of global system functionality such as load-balancing, adaptive
service provisioning or power management is facilitated through self-organising agent
communities. Formation and stabilisation of these communities is achieved through
local decision-making mechanisms that give rise to coupling, positive feedback and neg-

ative feedback.

from three distinct levels: micro, meso and macro. As in the general self-organising

system model illustrated in section discussing conditions for self-organisation (Section

9.2.1), also in here we assume micro-level to be the level at which individual agents and

their interactions are considered. The outcome of these interactions, in the form of agent

communities, is presented on the meso-level. Finally, the global system functionality

(load-balancing, adaptive service provisioning and power management) that arises from

the organisation of system into the agent communities is illustrated on the macro-level.

Given this description, the conditions that are necessary for system self-organisation are

indicated on the right-hand side of Figure 9.14, whereas the mechanisms that influence

system organisation are depicted on the left-hand side of the figure.

The triggering event that initiates self-organisation is the inflow of resource allocation

queries that are denoted as arrows at the bottom of the figure. These queries become

intercepted by consumer agents that start interacting with provider agents. As individual

agents become agitated, the system is put under allocative pressure that is proportional

to the amount of inflowing queries.

During these conditions the system is in flux, where both consumers and provider agents

are not organised for efficient delivery of requested resources and thus experience high

Chapter 9 Thermodynamic Interpretation 197

degree of pressure. Such pressure is perceived by individual agents in the form of stress

the estimate of which is calculated by each agent based on its personal efficiency and

then communicated to other agents. As described in Section 9.2.2.4 discussing negative

feedback mechanisms, consumer agents react to high stress by cutting the information

flow from highly stressed peers and thus preventing growth of the community structures

that are inefficient at suppressing their locally sensed stress.

Facilitated in this manner reorganisation of agent interactions explores the ones that

allow individual agents to minimise their stress. This takes place once efficient coupling

between consumer-provider pairs is established as a result of which providers learn to

reliably offer required service types and consumers become attracted to such providers.

Once such locally stable configurations emerge, the consumer agents become encouraged

by the low stress to disseminate their local provider evaluation scores to other agents that

are co-located on the provider agents to which this information is sent. Such information

flow catalyses formation of positive feedback (discussed in Section 9.2.2.3), where agents

receiving such information become incentivised to reveal their own personal provider

evaluations to the information sender. As a result of such reciprocal acts, a network

topology is build within agent’s local memories (based on affinity scores) that defines

which peers are neighbouring and thus should be considered as a members of community

to which information should be disseminated.

As a result of these local adjustments, the underlying topology of preferred interactions

starts to emerge between interacting agents and is manifested by the organisation of

system agents into communities (illustrated in Figure 9.14 at meso-level). Guided by the

underlying interaction topology, the community members consider interactions between

other members of the same community more frequently than the other, external to the

community agents. Consequently, they enforce reciprocity and up-to-date information

flow about the state of the system resources that are relevant for consumer agents forming

such a community.

Such collectively maintained knowledge that is circulated within the boundaries of the

community acts on community members as a ‘force’ that, in thermodynamic terms,

displaces them from equilibrium through the formation of non-uniform informational

gradient, example of which we illustrated in Section 9.2.1.4. Given such a gradient,

agents act in a manner that tends to dissipate it and thus continue selection of resource

providers with the highest evaluation scores. During this process useful work is extracted

from the system as agents, guided by the collectively established knowledge, contribute

towards the system throughput.

The more detailed explanation of the role that agent communities play in achieving high

system throughput is presented in the following section.

198 Chapter 9 Thermodynamic Interpretation

9.3.2 Agent Communities as Computational Thermodynamic Engines

In this section we propose one of the possible interpretations of the role that agent

communities play at achieving high system efficiency. In doing so, we suggest that these

dynamic structures can be viewed as computational ‘thermodynamic engines’ that, when

supplied with information, transform it into a usable work. More importantly, such work

extraction is conducted through constraint formation and its gradual release that underly

the operation of any thermodynamic engine.

To draw on these assumptions, we first provide two models of such engines: mechanical

heat engine and a living organism. Relying on these two examples we then provide one

of the possible interpretations of agent communities and their role in extracting work

that is analogous to thermodynamic engine operation.

According to thermodynamics, work can be extracted from the system only when sup-

plied to it energy becomes constrained, thus preventing its free flow within the system.

At these conditions, it is said that the system is pushed from equilibrium state, man-

ifested by the formation of the strong enough gradient that is visible on the level of

individual system elements as a constraint on their possible actions. The gradual and

controlled removal of such constraints constitutes then the period at which work can be

extracted from the system. This universal feature is exemplified in Figure 9.15 illustrat-

ing the diagram of a heat engine. Here, the system is located in between two reservoirs

(hot and cold). The hot reservoir is the heat source that provides energy (in the form

of a heat denoted as QH) to the engine, whereas the cold reservoir is the ‘heat sink’ to

which the waste energy 3 (QC) is dissipated from the system. Given this diagram, once

the flow of energy between both reservoirs is allowed, the second law of thermodynamics

acts so as to equilibrate the temperature of both, with the strength proportional to the

the difference between TH and TC that defines the temperature gradient. Work (illus-

trated in the figure by W) is thus achieved by placing an artifact capable to exploit such

directed energy flow between the two reservoirs. Below we illustrate two examples of

such artifacts, a mechanical one and organic.

9.3.2.1 Mechanical thermodynamic engine

A human realisation of a thermodynamic engine is provided based on the steam engine

the main architectural components are illustrated in Figure 9.16 where, similar to the

heat engine model described above, we distinguish heat source (TH) on the left of the

engine and the cooling source (TC) on its right. Since the purpose of any heat engine

is to convert heat into mechanical work, in between heat and cool sources we have an

3Waste energy refers to the energy that dissipates from the system and cannot be used for work
extraction by the same system.

Chapter 9 Thermodynamic Interpretation 199

T T
Q Q

W

H C

H C

Figure 9.15: Heat engine diagram. Here, the engine
(illustrated by the circle) is situated between the heat
source (TH) and the cold sink (TC). QH is the heat
flowing into the engine whereas QC is waste heat going
into the cold sink. W is the useful work coming out of

the engine.

engine consisting of cylinder head, piston and crankshaft. How work is extracted from

such a mechanical device?

The engine operation begins with the piston at the top of its stroke and located near

the cylinder head. The working gas is all contained in the cylinder space between the

piston face and the cylinder head. The heat source is now applied to the outside of the

engine cylinder, heat transfers to the cylinder and into the gas, and the gas temperature

and pressure begin to rise. After some period of time, the temperature and pressure in

the working gas reach a maximum. The piston is now allowed to travel downward until

it reaches it most downward position. As the piston moves downward the gas begins to

expand. Normally, an expanding gas would cool but heat is continually transferred into

the working gas from the heat source and the hot cylinder wall keeping the gas at its

maximum temperature. Since the pressure force on the piston is acting downward and

the piston is traveling downward, work is being done by the gas. In simple terms, the

gas is forcing the piston downward, is twisting the crankshaft, and is doing work in the

process.

When the piston reaches the most downward position, the next step in the cycle begins.

The heating source is removed from the cylinder and the cooling source is applied to the

cylinder while the piston remains at this position. As heat is transferred from the gas

to the cooling source the gas temperature and the gas pressure both fall. After some

amount of time the lowest gas temperature is attained. The next step in this engine

thermodynamic cycle is to push the piston back in to the starting position. As the

piston is pushed in the gas is being compressed and the gas temperature would normally

begin to rise. However, the cooling source is still applied to the cylinder and prevents

this temperature rise. The next and final step is to remove the cooling source, apply the

heating source, and heat the gas back up to the starting high temperature.

200 Chapter 9 Thermodynamic Interpretation

TH TC piston

cylinder head

crankshaft

cylinder

Figure 9.16: Mechanical thermo-
dynamic engine. Here, the sys-
tem comprises following mechani-
cal elements: cylinder, piston and
crankshaft. The mechanical work is
extracted by heating up the cylin-
der (using provided TH) that causes
the gas, which is located between the
cylinder head and the piston, to ex-
pand and thus to move piston dow-
nards. This propels the crankshaft as
a result of which mechanical work is

extracted.

Figure 9.17: Organic thermody-
namic engine. Here, a model of an
ant colony is presented and the pro-
cess of ants self-organisation into a
foraging trail re-described in terms of
thermodynamic work extraction in-
volving four key steps: (a) Gradient
creation; (b) Structure formation; (c)
Structure maintenance and; (d) Re-

exploration.

Above described process constitutes a single thermodynamic work cycle that conducted

repetitively underpins the supply of most of the world’s electric power and almost all

motor vehicles.

9.3.2.2 Organic thermodynamic engine

It is suggested that the thermodynamic principles that mankind has harnessed for me-

chanical work extraction underly the existence of all living structures that, according to

Kauffman [55], employ thermodynamics for work extraction that is then used for main-

taining their internal metabolism and thus existence. However, when compared with

mechanistic engines, there are several important for us differences that distinguish such

natural thermodynamic systems from their man-made artifacts. Firstly, living systems

do not comprise of a static and pre-imposed configuration in the form of a piston, cylin-

der and crankshaft but consist of a number of autonomous and interacting elements.

Secondly, whereas the existence of hot and cold reservoirs that define gradient from

which work can be extracted in man-made thermodynamic engine is provided as a part

Chapter 9 Thermodynamic Interpretation 201

of the engine design, natural systems need to discover such gradients autonomously.

As suggested by Kauffman, a thermodynamic work-cycle of natural systems requires

them to: (1) measure useful displacements from equilibrium from which work can be

extracted; (2) discover the devices to couple to those energy sources such that work can

be extracted; and (3) apply work to develop constraints to extract further work.

An example of a thermodynamic work extraction conducted by an organic system that

comprises a population of autonomous system elements is provided by Gambhir et al.

in [24]. Here, the authors suggest that the typical evolution of the ant system that

self-organises to efficiently transport food to the nest can be re-described in terms of a

thermodynamic work-cycle. As illustrated in Figure 9.17, four steps can be distinguished

during this process.

1. Gradient Creation — Ants move randomly out from the nest, creating a gradient

of nest pheromones.

2. Structure Formation — Some ants find the food and begin following the nest

pheromones while dropping food pheromones that food-seeking ants begin to fol-

low.

3. Structure Maintenance — A stable path of both food and nest pheromones is

established. As shown in the upper-right corner, cycles that do not transport food

can also form.

4. Re-exploration — Once all of the food has been transported to the nest the

pheromones begin to evaporate and the ants disperse.

As illustrated by this example, the realisation of a thermodynamic work-cycle within

such systems is inherently dependent on their organisational adaptation that facilitates

the most efficient transfer of energy across the system such that a usable work is pro-

duced. To achieve this, living systems often employ decision-making involving local

information exchange and co-adaptation of individual system elements to each other. In

such a setting, an ‘organic’ artifact that extracts work in an analogous manner to the

mechanical steam engine described above, is the organisation of ants into a collective

that forms a foraging trail. This dynamic structure and the information propagated

through its constituents imposes a constraint on their behavioural repertoire which, in

turn, achieves organised and efficient food transportation.

9.3.2.3 Computational thermodynamic engine

Given the fact that we designed our model based on thermodynamic principles of self-

organisation, it is instructive to attempt to interpret its functioning analogously to the

operation of thermodynamic engines. For this reason, in what follows we re-describe

202 Chapter 9 Thermodynamic Interpretation

I

I

W

c

U
u I e

E

Figure 9.18: Computational thermodynamic engine diagram. Here, the ‘heat’ source
(U) represents a group of infrastructure users from which a stream of information (Iu)
(representing service allocation requests) is fed to the agent community (denoted by
the circle). The information that is considered by the community as a ‘waste’ (Ie) is
dissipated outside its boundaries to the environment (E). Task allocation and thus work
extraction (W) by the community is achieved through organised transfer of information

Ic across community members

agent communities as artifacts which act analogously to thermodynamic engines but in

stead of energy are fed with information that they transform into informational gradients

from which useful work can be extracted.

Figure 9.18 illustrates the diagram of a computational thermodynamic engine. Anal-

ogously to the heat engine diagram illustrated in Figure 9.15, we assume that agent

community (depicted as the circle) is situated in between ‘energy’ source (U) and the

‘energy’ sink (E). However, whilst in the steam engine example ‘energy’ defines a heat

flowing through the system, we assume that our computational model operates based

on the organised flow of information and thus both the source and the sink distinguish

endpoints from and to which information flows. More specifically, the information source

is a group of infrastructure users (U) that send out a stream of information (Iu) in the

form of allocative requests. These requests, once received by the agent community, agi-

tate its members and catalyse their interactions aimed at delivering the requested tasks.

As an outcome of this, useful work is performed by the community (W), and the waste

product during this process (Ie) is disseminated to the information sink (E) represented

by the environment 4. The new feature that the traditional heat engine lacks and that

underlies the function of agent communities is the existence of information Ic that is

propagated within the community boundaries in a circular fashion. As this information

is the motive force for achieving work by the community, we discuss it in a greater detail

below.

4The waste product is defined as a set of evaluation scores identifying provider agents that no longer
are employed by the community and thus their evaluation scores gradually dissipate from the memories
of individual community members.

Chapter 9 Thermodynamic Interpretation 203

I

I

A*

c

U
u

A

W

I*c

1

2

3 4

I
E

e

4

Figure 9.19: Single agent thermodynamic work-cycle. Step 1: Inflowing allocation
request (Iu) agitates consumer agent (denoted by A∗). Step 2: Constraint required for a
useful work extraction is established as a result of Ic information inflow from community
members (A). Step 3: Work is extracted by following the informational gradient. Step
4: Constraints are released as a result of local information dissemination to other agents

as well as its dissipation (Ie) to the environment (E).

Given this general overview, let us focus on the re-interpretation of a thermodynamic

work-cycle within an engine represented by an agent community. For this purpose con-

sider Figure 9.19 that details the inner workings of such an engine. Here, we take a

perspective where a consumer agent (depicted in the figure as A∗) is required to allocate

a single task. In what follows we re-describe such a task allocation as a thermody-

namic work-cycle consisting of four general steps that are illustrated in Figure 9.19 and

explained below.

Step 1: Agent agitation

To operate, thermodynamic engine requires supply of energy. In the case of a steam en-

gine such energy inflow takes place as a result of heat transfer from the heat source. The

analogous triggering event in a computational model illustrated in Figure 9.19 is repre-

sented by the inflow of information (Iu) that represents allocation requests originating

from the information source (U).

Step 2: Gradient formation

Recall that work extraction from a thermodynamic engine is possible only when the

system is able to establish a thermodynamic gradient. This, in the case of the steam

204 Chapter 9 Thermodynamic Interpretation

engine, requires engine pre-set, during which piston is set to reside at the upward position

and the heat source is set into the contact with the cylinder. At this stage, the heat

is transferred inside the cylinder and by increasing gas temperature causes the gas to

expand, generating the gradient reflected by the increasing gas pressure.

The emergence of an analogous informational gradient within a computational model

is represented by the inflow of Ic information to A∗ agent before it starts its allocation

(depicted in Figure 9.19 as step 2). Since the communicated information originates from

other consumer agents and represents their provider evaluation scores, such information,

once accepted by the consumer, imposes a constraint on its behavioural repertoire as it

attracts the agent towards a subset of available provider agents 5.

Step 3: Work extraction

Work extraction in the heat engine takes place once the gradient reflected by the gas

pressure is strong enough to push the piston downwards such that it perpetuates the

crankshaft and thus generates useful work. In a computational system work extraction

(depicted in the figure as W) follows from the selection of provider agent capable to

satisfy the demanded allocation task. Because the A∗ consumer agent employs for this

purpose informational gradient, the selection is based on recent knowledge about the

resources state and thus increases the chance of task allocation success in the smallest

amount of requests. Analogously to the steam engine, where some quantity of the energy

is being used to push the piston, here the provider allocation consumes its computational

resources and thus renders the information about its availability stale and outdated.

Step 4: Gradient dissipation

To finalise the thermodynamic work-cycle, the piston within the steam engine needs

to be shifted to its upward state. To realise this, the waste heat inside the cylinder is

removed to the heat sink thus allowing the piston to move upwards by compressing the

cold air. Finally, the engine is ready for another work cycle to be performed.

How can we interpret this step within a computational system? Recall that once A∗

agent successfully allocates the task, it updates the evaluation score of the employed

provider and disseminates its personal provider evaluation scores in the form of Ic in-

formation to A agents that represent the information sink. The exposure of personal

evaluations to other agents has two consequences. Firstly, the information sender propa-

gates the constraint to other agents, as such information will impose (or sustain) gradient

within the memories of these agents in the same manner as it did for this agent at the

beginning of its allocation cycle. Secondly, as other consumer agents become informed

5In this example we are assuming that community is stable and organised to effectively allocate
demanded tasks.

Chapter 9 Thermodynamic Interpretation 205

about the up-to-date availability of a particular provider, the consumer that revealed

this information lowers its chance of employing the same provider in the next round. Al-

though such information reflects the equilibrating tendency, during which informational

gradient becomes less efficient, recall that it is precisely such flow of information that

displaced the consumer in the first place and allowed it to perform useful work. It is

important to note that whilst in the steam engine example the heat that has remained

in the cylinder after work extraction is considered as a waste heat that is not re-applied

for work extraction, the ‘waste’ product of resource allocation in the form of useful in-

formation about providers state is not dissipated from the system but circulated among

community members 6. Such continually updated and re-cycled information constitutes

the main driving force for generating and maintaining up-to-date informational gradient.

The provided above interpretation suggests that each individual agent can be consid-

ered as computational engine that performs work on behalf of the infrastructure user.

However, as we also suggested, work extraction within such a system is possible only

when the constraint is imposed on the consumer agent at the beginning of its allocation

process. Whilst single agent is unable to achieve such constraint alone, as we explained

above, it is the collective information sharing performed by the group of agents that

not only establishes informational gradient but also, by disseminating it, propagates the

constraint to the system.

As such development of constraints is critical for further work extraction, the role of

agent community viewed from this perspective is to establish information flow topology

that maximises the propagation of constraints between its members. The community

analysis results suggested that the precondition for such collective gradient emergence

is the formation of highly homogeneous community in which the locally communicated

information is continually recycled and flows only within the community boundaries.

Only within such a subset of interdependent agents the positive feedback can arise and

agents start propagating constraints that are, as a result of circular relations, fed back

to them thus allowing useful work extraction in subsequent allocations.

9.4 Conclusions

Engineering of systems that exploit thermodynamics of self-organisation opens an ex-

citing area of research in which novel and nature inspired control mechanisms can be

provided. These do not rely on pre-programmed plans or solutions that are prone to

failure in dynamic and harsh conditions but, in stead, exploit run-time reconfiguration

and adaptation capabilities that stem from their decentralised and autonomous nature.

6The only information that is dissipated as a waste (depicted in Figure 9.19 as Ie) are the evaluation
scores of provider agents that have been identified by individual consumer agents as configured to offer
different service types than the ones required by the community and thus are no longer of the interest
for the community

206 Chapter 9 Thermodynamic Interpretation

Whilst such systems are assumed to continually seek to improve their organisation, and

do so in a wide range of unexpected conditions, it is assumed that one of their main

strengths lies in the ability to minimise operation costs involved with the regulation of

vital system functions such as the ones discussed in this thesis.

As the ability to deal with such complex settings is far beyond human administration

and the highest profit can be achieved from large scale deployments, control mechanisms

that are scaleable, dependable and cheap are of critical importance.

Considering the still increasing ubiquity of complex software systems and their growing

management costs, the development of autonomic control mechanisms that preserve low

operation and maintenance costs of such infrastructures may turn out as important as

the development of the first thermodynamic engine almost 200 years ago.

To address this autonomic computing challenge, in this chapter we have provided a

thermodynamic interpretation of our computational model functioning. In doing so,

we suggested that the design of self-organising computational systems should take into

account both, conditions that allow self-organisation to take place and mechanisms that

facilitate it. Following this, we presented a set of design principles that aid in con-

struction of computational systems that exploit thermodynamics of self-organisation

and proposed an interpretation of agent communities as dynamic structures which max-

imise system throughput in a manner that is analogous to work extraction performed

by thermodynamic engines.

As a result of this work, a number of practical pointers can be provided to software

engineers aiming to deliver control mechanisms that are scaleable and robust to dynamic

system functioning conditions. First of all, engineers should focus their attention on

the design of systems that act in accordance to thermodynamic laws. As we have

showed in this chapter, there are several rules that need to be incorporated within a

computational system in order to facilitate this. In particular, attention to the role of

local information flow and its effects on the efficiency of the system should be paid. From

the thermodynamic viewpoint, it is assumed that the information flow should give rise

to informational gradients that constrain the behavioural degree of freedom of individual

system elements and thus give rise to self-sustainable system organisation, reflected in

our model by agent communities. Such organisation can be then employed for efficient

work extraction from the system. For example, agent communities that were identified in

our model as structural organisaitons were exploited for load-balancing, adaptive service

provisoining and power management as they allowed individual agents belonging to a

community to effectively regulate the access to required system resources through the

collective pressure exerted by the community.

Whilst thermodynamics provides a basis for understanding how such organisation is

achieved through self-sustaining flows of information, the theory of self-organisation

provides a practical pointers to processes that need to be incorporated within the system

Chapter 9 Thermodynamic Interpretation 207

in order to achieve the self-perpetuating information flow in the first place. Relevant

in achieving this processes such as coupling, positive and negative feedback loops are

described in Section 9.2.2.

Whilst this provides a promising potential for engineering computational self-organising

systems, the thermodynamic account of self-organisation provided in this chapter should

be considered as a preliminary work. With respect to this, identified principles should be

considered as rules of the thumb, where much work is still required at understanding how

bottom-up system organisation can be effectively regulated within this kind of systems.

The limitations of provided interpretation as well as future work directions aiming to

extend the work discussed in this thesis are provided in the following final chapter.

Chapter 10

Conclusions and Future Work

Having described a bottom-up approach to control resource provision within autonomic

systems, the aim of this chapter is to summarise our work by outlining both what we

have achieved and what questions remain unanswered. For this purpose, in Section 10.1,

we first outline what we have achieved so far by providing a brief summary of each of the

chapters presented in this thesis. In Section 10.2 we provide a more detailed overview

of contributions we have made in this work, whereas Section 10.3 discusses the main

limitations of our work. The main direction in which our work could be extended in

order to address existing limitations as well as make further advances is provided in

Section 10.4. Finally, Section 10.5 draws the main conclusions from the thesis.

10.1 Thesis Summary

Efficient resource management is one of key problems associated with large-scale dis-

tributed computational systems. Taking into account their increasing complexity, in-

herent distribution and dynamism, such systems are required to adjust and adapt their

resource markets at run-time and with minimal cost. However, as observed by major IT

vendors such as IBM, SUN or HP, the very nature of such systems prevents any reliable

and efficient control over their functioning through human administration.

For this reason, autonomic system architectures capable of regulating their own func-

tioning are suggested as an alternative solution to the looming software complexity

crisis. Here, large-scale infrastructures are assumed to comprise myriads of autonomic

elements, each acting, learning or evolving separately in response to interactions in its

local environment. The self-regulation of the whole system, in turn, becomes a product

of local adaptations and interactions between system elements.

Although many researchers suggest the application of multi-agent systems that are suit-

able for realising this vision, not much is known about regulatory mechanisms that are

209

210 Chapter 10 Conclusions and Future Work

capable of influencing efficient organisation within a system comprising a population of

locally and autonomously interacting agents.

To address this problem, our aim was to develop local decision control mechanisms that

are capable of preserving efficient resource management in dynamic and unpredictable

systems and where the control over this process is fully decentralised and arises in a

bottom-up manner. To do so, we have identified complex natural systems and their

self-organising properties as an area that may deliver novel control solutions within the

context of autonomic computing.

In such a setting, a central challenge for the construction of distributed computational

systems was to develop an engineering methodology that can exploit self-organising

principles observed in natural systems. This, in particular, required the identification of

conditions and local mechanisms that give rise to useful self-organisation of interacting

elements into structures that support the required system functionality. To achieve

this, we proposed an autonomic system model exploiting self-organising algorithms and

its thermodynamic interpretation, providing a general understanding of self-organising

processes that need to be taken into account within artificial systems exploiting self-

organisation.

Before addressing these aims directly, in Chapter 2 we reviewed important character-

istics of natural complex systems and presented existing approaches in applying self-

organisation to control artificial systems. Here, various techniques and local decision-

making mechanisms have been applied such as evolutionary algorithms or stimuli-response

mechanisms inspired by self-organisation phenomenon observed in insect societies. De-

spite these advancements, the main difficulty in achieving reliable and decentralised

control in most reviewed approaches was associated with the unpredictability resulting

from emergent system properties that are difficult to analyse and interpret analytically.

As a consequence, although the reviewed complex system models showed interesting self-

organising capabilities, they are achieved at the cost of large amount of experimentation

and model tinkering.

Whilst the attempt to engineer reliable complex systems was not the main issue within

discussed works, the application of such complex systems to preserve control over auto-

nomic computing infrastructures requires more principled and methodological approach.

In particular, given the fact that complex systems exhibit emergent behaviour that, as

we have seen, is the motive force for achieving organised (or chaotic) system response, a

careful understanding of such phenomenon is required if we are to utilise it for system’s

control. For this purpose, our aim was not only to provide adaptive decision-making

mechanisms but, more importantly, to understand why and under what conditions such

mechanisms lead to increased system efficiency.

To advance the current state of research in this direction, we considered a study of ther-

modynamics and self-organisation as key investigation areas. According to the thermo-

Chapter 10 Conclusions and Future Work 211

dynamics of self-organisation, the increase in system organisation could be understood

as the emergence of constraint imposed on individual system elements that arises as a

result of energy (or information) flow across the system’s boundary. If properly reg-

ulated, such flow displaces the system from equilibrium and allows useful work to be

extracted from the system.

We began to explore this property in Chapter 4, where a simple autonomic model was

proposed and its self-organising characteristics analysed based on thermodynamic con-

cepts of constraint, work and equilibrium. Building on this, Chapter 5 introduced a

more realistic and fully decentralised autonomic system model. Here, local decision

making mechanisms inspired by the behaviour of insect societies were employed, and

two novel regulatory mechanisms introduced: affinity algorithm and information flow

regulatory mechanism. Whereas the first mechanism influences and catalyses the for-

mation of agent communities, the second is responsible for the regulation of how much

information is communicated between interacting agents such that the system stability is

preserved. Finally, after evaluating the performance of the model in the three following

chapters (Chapter 6, Chapter 7 and Chapter 8), in Chapter 9 we offered a thermody-

namic interpretation of our model functioning and provided a set of design principles

helpful in engineering artificial self-organising systems employing thermodynamics of

self-organisation.

10.2 Research Contributions

The main research contributions arise from the specification of the general framework for

engineering self-organising computational systems based on thermodynamic principles

of self-organisation and the development of autonomic system model employing these

principles for adaptive resource management. Both of these show how open, decen-

tralised autonomic systems may be constructed and applied in a bottom-up manner to

control the dynamic and indeterministic process of service provisioning.

In addition, the computational models provide a basis of understanding and analysing

the impact of three features that are often neglected and avoided in exemplary models

of autonomic systems. First, we considered open and dynamic system environments

where agents may enter or leave the system and where the demand for particular re-

source types may undergo change at run-time. In particular, we applied and combined

demand functions that simulate influx of new agents and varying demand conditions.

This allowed us to analyse both the efficiency of self-organisation in conditions where the

system is required to adapt and adjust to dynamic conditions together with a testbed

for investigating system stability and resilience to external perturbations.

Second, we did not study each system-level function (load-balancing, adaptive service

provisioning and power management) in isolation but incrementally introduced one after

212 Chapter 10 Conclusions and Future Work

another to the model. This gradually increased the difficulty and realism of resource

management, where the system was required to preserve efficient distribution of requests,

resource market adaptation and power management efficiency at the same time.

Third, we provided a fully decentralised model where no central or distributed informa-

tion repository existed within the system that agents could employ in order to increase

their awareness about the current resources or demand state. Rather, agents employed

local information communication and their awareness was the direct result of emergent

organisation into communities preserving up-to-date information flow about the system

state.

More significantly, we contribute to the state-of-the art in following areas: understanding

the means of achieving bottom-up control in dynamic and open autonomic systems; pro-

vision of decentralised techniques that achieve this relying on self-organisation process;

and interpretation of this process as arising from certain laws and conditions existent in

natural self-organising systems. We discuss each of these in the subsections that follow.

10.2.1 Decentralised Autonomic System Model

We offer a decentralised autonomic system model that is tasked to control resource man-

agement in dynamic and open environments. Using this model, we study how adaptive

system-level response arises out of local interactions of individual system elements that

employ for this purpose only simple stimuli-response mechanisms and local information

exchange.

10.2.2 Self-organising Agent Communities

Understanding how local interactions between system elements give rise to certain global

system dynamics becomes one of the major difficulties whilst engineering decentralised

systems. In this thesis we address this problem by extending the system analysis to

include an intermediary level (meso-level), residing between the level at which the be-

haviour of individual agents is analysed (micro-level) and the level at which the collective

response of the whole system is considered (macro-level).

At this intermediary level we identify system organisation into agent communities that

are the key structures that support adaptive and efficient maintenance of the three

system functions: load-balancing, adaptive service provisioning and power management.

10.2.3 Importance of Spatial Embeddedness for Self-organisation

We show the relevance of spatial embeddedness for achieving system self-organisation.

To achieve such spatial property, the system agents are instructed to establish interaction

Chapter 10 Conclusions and Future Work 213

topology according to which the peers that are closer to each other are more likely to

interact and affect each other behaviour than the elements that are located at a greater

distance. Only when such underlying interaction topology arises, can system components

organise into globally efficient collective structures referred to as communities.

To realise such topology in our model we propose an affinity algorithm (described in

detail in Section 5.3.3.6) the role of which during community formation is discussed in

Section 9.2.2.3.

10.2.4 Thermodynamics in Computational System

Whilst thermodynamics is mostly related to the study of heat engines and provides basis

for understanding how mechanical work can be extracted from the supplied energy, we

stress the relevance of this discipline in achieving computational system self-organisation.

More specifically, we show that natural self-organising systems employ the same work ex-

traction principles for achieving adaptive respnose and that understanding of conditions

and mechanisms influencing such process will contribute towards principled engineering

of adaptive and decentralised autonomic systems.

For this purpose we propose a set of design principles which, when incorporated into our

model, based on exemplary mechanisms, achieve system organisation that is analogous

to the one existent in the natural systems. As such bottom-up organisation is driven by

thermodynamic principles of self-organisation, we provide a thermodynamic interpreta-

tion of agent communities as artifacts which act analogously to thermodynamic engines

but in stead of energy are fed with information that they transform into informational

gradients from which useful work can be extracted.

10.2.5 System stabilisation through positive and negative feedback

A system in which its constituents employ only locally available information whilst con-

ducting resource allocation decisions is prone to instablilities or even chaotic response

resulting from resource competition. In this study not only we show that organised sys-

tem structures in the form of agent communities are critical in suppressing this patho-

logical behaviour within a model where no central or hierarchical control is imposed, but

also suggest how reliable control over the system can be provided based on positive and

negative feedback loops that stabilise the formation and operation of such communities.

In particular, affinity algorithm (discussed in Section 5.3.3.6) is proposed that gives

rise to a positive feedback responsible for triggering the agent community formation,

whereas agent stress-based information inflow regulatory mechanism (discussed in Sec-

tion 5.3.3.7) is introduced to facilitate negative feedback that preserves stable operation

of such communities.

214 Chapter 10 Conclusions and Future Work

10.3 Limitations

Although we outlined principles of engineering decentralised systems that possess self-

regulatory properties allowing them to achieve efficient resource management in a bottom-

up manner, there are several open issues that were not considered within this work. In

particular, we have identified following limitations.

10.3.1 Model realism

Although we paid careful attention to simulate realistic and dynamic resource allocation

conditions within which self-organising system properties could be evaluated, we made

an assumption that all allocation tasks involve only a single service provision.

This is not realistic as in real autonomic deployments a single allocation task may

involve a number of sub-tasks that may be satisfied by different service providers. As a

consequence, the overall task accomplishment is dependent on successful completion of

an ordered allocation of individual services that conform to the workflow specification.

In our work only the first and simplest autonomic model (introduced in Chapter 4) was

designed to take into account service workflows. As introducing workflows to a more ad-

vanced model would introduce additional complexity and require additional mechanisms

responsible for achieving reliable workflow completion, we decided not to introduce this

feature. By doing this, we simplified the analysis of arising agent communities and con-

centrated on our main objective of preserving adaptive system response in a bottom-up

manner.

In practice, introducing workflows to the autonomic system proposed in this thesis would

introduce more complicated system organisation, where distinct agent communities (cur-

rently homogeneous with service type demand) would overlap and form complex inter-

relations through which agents could affect each other’s behaviour and thus influence

the system dynamics.

10.3.2 Thermodynamic Work-cycle

The thermodynamic interpretation of self-organisation within computational systems

provided in this thesis lays the groundwork for further investigation. In particular, an

interpretation of the thermodynamic work-cycle within an information driven system

would provide us with more accurate system organisation measures and local decision-

making mechanisms that could directly contribute to the engineering of this kind of

system.

Chapter 10 Conclusions and Future Work 215

In this context, the concept of a thermodynamic work-cycle can be understood as a

repetitive and self-sustaining set of coherent actions performed by a collective of agents.

Whereas in physical systems such a work-cycle is constituted through energy flow across

the system that, if properly steered, establishes constraints that are further released

during work extraction, we have observed that the same pattern of behaviour arises in

our autonomic system model as a result of organised information flow.

However, the current analysis focused only on the global system properties and did

not provide detailed analysis of individual agent communities. As these communities

constitute the primary collectives of agents that we assume to be the motive force for

performing thermodynamic work-cycles, a closer investigation into their inner workings

would facilitate a better understanding of this phenomenon, followed by an improved

efficiency of the system that employs thermodynamic engineering principles.

10.3.3 Formal Models for Maximal System Efficiency

Drawing on the thermodynamic analysis, the current model lacks a formal analysis of

how beneficial the application of proposed thermodynamics-inspired design may become

in comparison to the existing centralised and distributed approaches. In particular, the

current model lacks any formal analysis of the maximal performance it could achieve,

considering its functioning conditions and the allocation process difficulty.

Although providing this in a general manner may become difficult, we consider ad-

dressing this issue as an important step towards application of self-organisation inspired

mechanisms into the design of artificial systems.

10.3.4 Model Complexity

Addressing load-balancing, adaptive service provisioning and power management through

local decision-making mechanisms was not a trivial task and resulted in additional model

complexity. Such a complexity was manifested by a number of parameters and constants

that were involved during operation of local decision-making mechanisms and that re-

quired correct setup in order to facilitate global system self-organisation.

10.4 Future Work

To address the limitations introduced above, we identify the following two areas in which

further research could be continued.

216 Chapter 10 Conclusions and Future Work

10.4.1 Towards Complex Computational Ecologies

Despite the careful consideration of the environmental dynamics and system openness,

the advanced model proposed in this thesis did not consider cases where individual

tasks require allocation of more than a single service. Addressing this problem requires

little change within the existing architecture and may provide an interesting interplay

between agents that would give rise to multi-level organisations not observed within

the existing simulations. For example, in the existing model we experienced resource

market segregation that gave rise to a proliferation of distinct agent communities. From

a consumer perspective, each such community specialised at allocating one distinct type

of a service and did not interact with communities allocating other kinds of resources.

Introducing workflows and thus requiring consumers to employ different providers during

single task allocation can be facilitated by enabling consumers to hold more than a single

service type registry (for each unique service type the agent is required to allocate) and

thus become responsive to information flows related to these service types. Under these

assumptions, each consumer would maintain a separate informational gradient for a

distinct group of known service providers that specialise to offer a unique service type.

Consequently, consumer agent communities that allocate different tasks, but whose

workflows are overlap, would no longer be isolated but establish interesting interdepen-

dencies and relations through which information would flow between both organisations.

The stability of each such community would, in turn, depend on the performance of other

interlinked communities, giving rise to even more complex computational ecologies.

10.4.2 Identifying Thermodynamic Work-cycles

Further advancements in applying a thermodynamic interpretation to the phenomenon

of self-organisation within artificial systems would concentrate on the identification and

interpretation of thermodynamic work-cycles. These repetitive cycles of periodic system

behaviour underly the design of any thermodynamic system from which work is ex-

tracted and should gain consideration within autonomic systems relying on bottom-up

organisation mechanisms.

Addressing this area of research would first require the development of system analysis

tools based on which thermodynamic work-cycles could be identified within a population

of interacting agents, and then, experimentation with local decision-making mechanisms

responsible for gain in work extracted during such cycle. Addressing the first step

can be done through a community and information flow analysis that would reveal

groups of agents that collectively communicate information within the scope of such

community. Given the fact that each thermodynamic work-cycle consists of two stages,

that is constraint formation (during which gradient arises and the system is shifted from

Chapter 10 Conclusions and Future Work 217

equilibrium) and constraint release (during which work is extracted and the gradient

dissipated), both stages could be identified within each captured community through

measures of order from statistical mechanics that we have already applied to identify

the level of system constraint.

Both, information which agents comprise local community and how far each commu-

nity is being displaced from equilibrium in between both thermodynamic work-cycle

stages could offer a means of identifying how efficient such community is. This informa-

tion could then be passed as a local performance indicator to individual system agents

comprising the community and thus offer a more efficient information flow regulatory

mechanism aimed at maximising the displacement from equilibrium.

During this regulatory process, agents that are aware of being a part of the collective

performing a thermodynamic work-cycle could direct the flow of information across other

community members such that the maximal information gradient is formed and thus the

system is shifted from equilibrium. Then, once the system is shifted sufficiently far from

equilibrium, these agents could release constraints that were imposed by the arising in-

formation gradient by performing resource consumption. During this process, currently

available resource providers would become utilised and thus information contained within

the formed gradient would become stale and dissipated. This step of thermodynamic

work-cycle, during which the information gradient becomes dissipated and and work is

performed by the collective, would finalise single thermodynamic work-cycle.

10.5 Conclusions

Efficient resource management is becoming increasingly important in computer science

as a result of emergence of open and large-scale computational infrastructures. In our

work we have considered autonomic system models in which a large quantity of system re-

sources is offered to users requesting them. Achieving efficient resource provision within

such environments becomes a challenging problem due to the inherent dynamism asso-

ciated with the availability of offered resources and the resource requirements imposed

by the infrastructure users. As a result, many approaches aiming to deliver efficient

resource management suggest the application of techniques from the field of multi-agent

systems in order to introduce a certain amount of flexibility and adaptation into such

systems.

For such an approach to be effective, control mechanisms must be developed that would

preserve a stable and efficient global system response out of the local interactions between

autonomous system elements. One way to achieve this is to rely on existing centralised

or distributed control approaches that either impose central or hierarchical control over

the actions of individual agents or assume that each agent operates on full information

218 Chapter 10 Conclusions and Future Work

about the system state and coordinates its decisions with others such that a globally

efficient system response is attained.

However, most proposed mechanisms have been developed for small scale systems that

are closed and operate in conditions where system dynamics is sufficiently low to pre-

serve a timely response and adaptation to changing conditions. As a consequence, their

application to modern and large scale open environments is less straightforward and

may introduce scalability bottlenecks, brittleness and high maintenance cost that may

impede further progress in the engineering and deployment of autonomic systems.

To address this, many approaches point to the decentralised control mechanisms that

exist within natural distributed systems and suggest them as a source of inspiration

for the design of self-organising computational systems. Before this can be realised, a

sufficient understanding of natural self-organising processes needs to be obtained and

computational frameworks employing them studied.

To this end, we have approached this problem by offering a thermodynamic account of

self-organisation within artificial computational systems and introducing novel bottom-

up control mechanisms preserving adaptive resource management within a dynamic

and open autonomic system. The efficiency of this approach was empirically evalu-

ated against three system level functions: load-balancing, adaptive service provisioning

and power management with the application of decentralised multi-agent system models.

Both the models and the thermodynamic account of self-organisation within autonomic

systems contribute to the state-of-the-art in the autonomic system design, and constitute

a significant step toward practical autonomic management of large and open resource

provisioning systems.

Appendix 1 Simulator design

Empirical results that were presented in this thesis were provided on the basis of an

autonomic system model architecture described in Chapter 5.

Since the aim of the model was to simulate decentralised software system, the underlying

simulation model reflects this through the lack of any central components, asynchronous

interactions between agents and autonomous thread of control provided to each such

element.

To realise this, each agent (consumer and provider) were created as separate software

threads written in Java language, each having its own thread of control over its actions.

Furthermore, decisions performed by individual agents are independent of other agents,

meaning that agents interact asynchronously as they are driven by their own decision-

making mechanisms.

Chapter 10 Conclusions and Future Work 219

During service provisioning process the provider spawns a (limited by total service ca-

pacity) number of service instances, where each such instance can be considered as an

individual service instance that is offered to requesting it consumer agent. Within the

model each such service instance is provided as a separate thread which is created by

the service provider agent and maintained only for the service allocation period.

As a result of object and multi-threaded oriented design, the software platform offers a

number of reusable components in the form of consumer and provider agents. Whilst

these componenets are the main building blocks of the model, their internal behaviour

can be easily extended through the addition of new decision-making strategies.

Furthermore, the model offers a three dimensional visualisation allowing the viewer to

observe allocation and information exchange interaction among agents as the simulation

runs. This offers an interesting insight into both the pattern of local interactions among

agents as well as the global system organisation into communities that can be easily

observed and tracked through visual output. As the visualisation is interactive and allows

the viewer to modify the system state (add/remove agents, change resource demand) the

viewer is provided with the visual tool allowing it to influence and observe system self-

organisation process that would be difficult to comprehend through analytically analysis

only. Apart from such a pedagogical contribution, the visualisation offers a novel way

of supporting human administration tasks as it allows the potential administrator to

observe effects of his system adjustments on the global system level.

Bibliography

[1] K.R. Abbott and D.R. McCarthy. Administration and autonomy in a replication-

transparent distributed dbms. In François Bancilhon and David J. DeWitt, edi-

tors, Fourteenth International Conference on Very Large Data Bases, August 29

- September 1, 1988, Los Angeles, California, USA, Proceedings, pages 195–205.

Morgan Kaufmann, 1988.

[2] W. B. Arthur. Inductive reasoning and bounded rationality. American Economic

Review, 84:406–411, 1994.

[3] Sujata Banerjee, Sujoy Basu, Shishir Garg, Sukesh Garg, Sung-Ju Lee, Pramila

Mullan, and Puneet Sharma. Scalable grid service discovery based on uddi. In

MGC ’05: Proceedings of the 3rd international workshop on Middleware for grid

computing, pages 1–6, New York, NY, USA, 2005. ACM Press.

[4] N. Bertschinger and T. Natschlager. Real-time computation at the edge of chaos

in recurrent neural networks. In Neural Computation, volume 16, pages 1413 –

1436, 2004.

[5] U. Bhatti, S. Youcef, L. Mokdad, and V. Monfort. Simulation-based response-

time analysis of composite web services. In Proceedings 10th IEEE international

Multitopic conference, INMIC’06, pages 1–6, 2006.

[6] E. Bonabeau. Predicting the unpredictable. Harvard Business Review, 80:1–9,

March 2002.

[7] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J. Deneubourg. Adaptive task

allocation inspired by a model of division of labor in social insects. In Dan Lundh,

Bjorn Olsson, and Ajit Narayanan, editors, Biocomputing and Emergent Compu-

tation, pages 36–45. World Scientific, 1997.

[8] F. Boschetti, J. Finnigan, P. Valencia, I. Enting, G German, and D Newth. Does

anything emerge? 2005.

[9] Craig Boutilier, Rajarshi Das, Jeffrey Kephart, Gerald Tesauro, and William

Walsh. Cooperative negotiation in autonomic systems using incremental utility

221

222 BIBLIOGRAPHY

elicitation. In Proceedings of the 19th Annual Conference on Uncertainty in Arti-

ficial Intelligence (UAI-03), pages 89–97, San Francisco, CA, 2003. Morgan Kauf-

mann.

[10] F. M. T. Brazier, M. van Steen, and N. J. E. Wijngaards. On MAS scalability. In

T. Wagner and O. Rana, editors, Proceedings of Second International Workshop

on Infrastructure for Agents, MAS, and Scalable MAS, pages 121–126, 2001.

[11] S. Brueckner and H. V. D. Parunak. Self-organizing MANET management. In

G. Di Marzo, A. Karageorgos, O. F. Rana, and F. Zambonelli, editors, Engineering

Self-Organising Systems, pages 1–16. Springer, 2003.

[12] S. A. Brueckner and H. V. D. Parunak. Information-driven phase changes in multi-

agent coordination. In Proceedings of the second international joint conference

on Autonomous Agents and Multiagent Systems, pages 950–951, NY, USA, 2003.

ACM Press.

[13] M. Jacyno S. Bullock. Energy, entropy and work in computational ecosystems:

A thermodynamic account. In In Artificial Life XI: Proceedings of the Eleventh

International Conference on the Simulation and Synthesis of Living Systems, pages

274–281. MIT Press, Cambridge, MA., 2008.

[14] S. Bullock and D. Cliff. Complexity and emergent behaviour in ICT systems.

Technical Report HP-2004-187, Hewlett-Packard, 2004.

[15] C. Castelfranchi. Engineering social order. In Lecture notess In Computer Science,

volume 1972 of Proceedings of the First International Workshop on Engineering

Societies in the Agent World: Revised Papers, pages 1–18, 2000.

[16] V. Cicirello and S. Smith. Ant colony control for autonomous decentralized shop

floor routing. In ISADS-2001: Fifth International Symposium on Autonomous

Decentralized Systems, pages 383 – 390. IEEE Computer Society, March 2001.

[17] T. Czerwinski. Coping with the bounds. Speculations on nonlinearity in military

affairs. Institute for National Strategic Studies at the National Defense University

(NDU), 1998.

[18] J. Dobrzanski and J. Dobrzanska. About the joint action by ants: collaboration

or participation? Panstwowe Wydawnictwo Naukowe, 36:61–75, 1987.

[19] E. H. Durfee. Scaling up agent coordination strategies. IEEE Computer, 34(7):1–8,

2001.

[20] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the physical world

with pervasive networks. IEEE Pervasive Computing, 1(1):59–69, 2002.

BIBLIOGRAPHY 223

[21] S. Forrest, J. Balthrop, and M. Glickman. Internet as a Large - Scale Complex

System, chapter Computation in the Wild, pages 203–227. Oxford University

Press, 2003.

[22] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer systems.

Sixth Workshop on Hot Topics in Operating Systems, 1997.

[23] I. Foster, N. R. Jennings, and C. Kesselman. Brain meets brawn: Why grid and

agents need each other. In Proceeding of the 3rd International Conference on

Autonomous Agents and Multi-Agent Systems, pages 8–15, New York, USA, 2004.

[24] M. Gambhir, S. Guerin, S. Kauffman, and D. Kunkle. Steps toward a possible the-

ory of organization. In Y. Bar-Yam A. Minai, editor, Proceedings of International

Conference on Complex Systems, page 9. W. H. Freeman, 2004.

[25] C. Gershenson and F. Heylighen. How can we think the complex?, volume 1 of

Managing Organizational Complexity: Philosophy, Theory and Application, chap-

ter 3, pages 1–14. Information Age Publishing, 2005.

[26] N. Glance, T. Hogg, and B.A. Huberman. Computational ecosystems in a changing

environment. International Journal of Modern Physics, 2:735–753, 1991.

[27] D. Goldin and D. Keil. Toward domain-independent formalization of indirect in-

teraction interaction. In Proceedings of the 13th IEEE International Workshops

on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-

ICE’04), volume 0, page 1, Washington, DC, USA, 2004. IEEE Computer Society.

[28] D.M. Gordon. The organization of work in social insect colonies. Complex.,

8(1):43–46, 2002.

[29] S. Guerin and D. Kunkle. Emergence of constraint in self-organizing systems.

Journal of Nonlinear Dynamics, Psychology, and Life Sciences, 8:2:131–146, 2004.

[30] D. Hales. Cooperation without space or memory:tags, groups and the prisoner’s

dilemma. In I.M. Davidsson, editor, Multi-Agent-Based Simulation, page 9, Berlin,

2000. LNAI.

[31] I. Harvey and T. Bossomaier. Time out of joint: Attractors in asynchronous

random Boolean networks. In P. Husbands and I. Harvey, editors, Proceedings

of the Fourth European Conference on Articial Life, pages 67–75. MIT Press,

Camrbidge, MA., 1997.

[32] C. Hewitt. Offices are open systems. In ACM Transactions on Information Systems

(TOIS), volume 4, pages 271–287, 1986.

[33] F. Heylighen. Self-organization, emergence and the architecture of complexity. In

Proceedings of the 1st European Conference on System Science (AFCET), pages

23–32, Paris, 1989.

224 BIBLIOGRAPHY

[34] F. Heylighen. Cognitive levels of evolution: from pre-rational to meta-rational. In

F. Geyer, editor, The Cybernetics of Complex Systems - Self-organization, Evolu-

tion and Social Change, pages 75–91, Intersystems, California, 1991.

[35] F. Heylighen. Modelling emergence. World Futures: the Journal of General Evo-

lution, special issue on creative evolution, pages 1–10, 1991.

[36] F. Heylighen. Principles of systems and cybernetics: an evolutionary perspective.

Cybernetics and Systems, 1992.

[37] F. Heylighen. The Science Of Self-Organization And Adaptivity, volume 5, chap-

ter The Encyclopedia of Life Support Systems Heylighen F. (1999): Collective

Intelligence and its Implementation on the Web: algorithms to develop a collec-

tive mental map, Computational and Mathematical Theory of Organizations 5(3),

253-280.”,, pages 253–280. 1999.

[38] F. Heylighen and C. Gershenson. The meaning of self-organization in computing.

IEEE Intelligent Systems, pages 1–6, 2003.

[39] F. Heylighen and C. Joslyn. Cybernetics and second-order cybernetics. In R. Mey-

ers, editor, Encyclopedia of Physical Science and Technology, volume 4, pages

155–170. Academic Press, New York, 2001.

[40] T. Hogg and B. A. Huberman. Controlling chaos in distributed systems. IEEE

Transactions on Systems, Man and Cybernetics, 21:1325–1332, 1991.

[41] T. Hogg and B. A. Huberman. Dynamics of large computational ecosystems. Tech-

nical Report HPL-2002-77, Information Dynamics Laboratory, Hewlett-Packard,

Palo Alto, 2002.

[42] P. Horn. Autonomic computing manifesto. Technical report, IBM,

http://www.research.ibm.com/autonomic/manifesto/, 2001.

[43] B. A. Huberman and N. S. Glance. Evolutionary games and computer simulations.

Proc. Natl. Acad. Sci, USA, 90:7716–7718, 1993.

[44] B. A. Huberman and T. Hogg. In Lynn Nadel and Daniel Stein, editors, Lectures

in Complex Systems, chapter The Emergence of Computational Ecologies, pages

185–205. Addison-Wesley, 1993.

[45] B. A. Huberman and J. O. Ledyard. Information dynamics in the networked world.

volume 5, pages 7–8, Hingham, MA, USA, 2003. Kluwer Academic Publishers.

[46] Gartner Inc. Gartner says 50 percent of data centers will have insufficient power

and cooling capacity by 2008. Press Release, November 29,2006.

BIBLIOGRAPHY 225

[47] M. Jacyno, S. Bullock, M. Luck, and T. Payne. Understanding decentralized

control of resource allocation in a minimal multi-agent system. In In Proceedings

of the International Conference on Autonomous Agents and Multi-Agent Systems.,

2007.

[48] S. Jain and S. Krishna. Emergence and Growth of Complex Networks in Adaptive

Systems. In eprint arXiv:adap-org/9810005, pages 10005–+, October 1998.

[49] S. Jaina and S. Krishna. Graph theory and the evolution of autocatalytic networks.

2002.

[50] E. T. Jaynes. Gibbs vs Boltzmann entropies. American Journal of Physics,

33(5):620–630, 1965.

[51] E. T. Jaynes. Where do we stand on maximum entropy? In R. D. Levine and

M. Tribus, editors, The Maximum Entropy Formalism, pages 15–127. MIT Press,

1979.

[52] E. T. Jaynes. The evolution of Carnot’s principle. In G. J. Erickson and C. R.

Smith, editors, Maximum-Entropy and Bayesian Methods in Science and Engi-

neering, pages 267–284. Kluwer, 1988.

[53] N. R. Jennings. An agent-based approach for building complex software systems.

Communications of the ACM, 44(4):35–41, 2001.

[54] S. Kauffman. At Home in the Universe: The Search for the Laws of Self-

Organization and Complexity. Oxford University Press, 1995.

[55] S. Kauffman. Investigations. Oxford University Press, 2000.

[56] J. J. Kay. Self-Organization In Living Systems. PhD thesis, Deparment of Systems

Design Engineering, University of Waterloo, 1984.

[57] D. Keil and D. Goldin. Modelling indirect interaction in open computational

systems. In Workshop on Enabling Technologies: Infrastructure for Collaborative

Enterprises, pages 1–6, 2004.

[58] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEE Com-

puter, 36(1):41–50, 2003.

[59] J. O. Kephart and R. Das. Achieving self-management via utility functions. IEEE

Internet Computing, 11(1):40–48, 2007.

[60] J. O. Kephart, T. Hogg, and B. A. Huberman. Dynamics of computational ecosys-

tems. Physical Review, 40(1):1–18, 1989.

226 BIBLIOGRAPHY

[61] J.O. Kephart, H. Chan, R. Das, D.W. Levine, G.Tesauro, F. Rawson, and C. Le-

furgy. Coordinating multiple autonomic managers to achieve specified power-

performance tradeoffs. In ICAC ’07: Proceedings of the Fourth International Con-

ference on Autonomic Computing, page 24, Washington, DC, USA, 2007. IEEE

Computer Society.

[62] J. G. Koomey. Estimating total power consumption by servers in the u.s. and the

world. http://enterprise.amd.com/Downloads/svrpwrusecompletefinal.pdf, 2006.

[63] A. J. Lotka. Contribution to the energetics of evolution. PNAS USA, 8:145–151,

1922.

[64] A. J. Lotka. Natural selection as a physical principle. PNAS USA, 8:151–154,

1922.

[65] M. Luck M. Jacyno, S. Bullock and T.R. Payne. Emergent service provisioning and

demand estimation through self-organizing agent communities. In In The Eighth

International Conference on Autonomous Agents and Multiagent Systems, 2009.

[66] T.R. Payne N. Geard M. Jacyno, S. Bullock and M. Luck. Autonomic resource

management through self-organising agent communities. In In Second IEEE In-

ternational Conference on Self-Adaptive and Self-Organizing Systems, 2008.

[67] C. M. MacKenzie, K. Laskey, F. McCabe, P.F. Brown, and R. Metz. Ref-

erence model for service oriented architecture 1.0. Technical report, OASIS,

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html, 2006.

[68] T. W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM

Computing Surveys, 26(1):87–119, 1994.

[69] M. Mamei, A. Roli, and F. Zambonelli. Emergence and control of macro spatial

structures in perturbed cellular automata, and implications for pervasive comput-

ing systems. In IEEE Transactions on Systems, Man, and Cybernetics - Part A,

volume 35, pages 337–348. 2005.

[70] M. Mamei, M. Vasirani, and F. Zambonelli. Experiments of morphogenesis in

swarms of simple mobile robots. Journal of Applied Artificial Intelligence, 18(9-

10):21, October 2004.

[71] M. Mamei and F. Zambonelli. Self-* Approaches to Distributed Computing, chapter

Spatial Computing: the TOTA Approach, page 17. LNCS Hot Topics Series.

Springer Verlag, 2005.

[72] F. Marinescu. Ejb Design Patterns: Advanced Patterns, Processes, and Idioms

with Poster. John Wiley & Sons, Inc., New York, NY, USA, 2002.

BIBLIOGRAPHY 227

[73] D. Merkle and M. Middendorf. Dynamic polyethism and competition for tasks

in threshold reinforcement models of social insects. Adaptive Behavior - Animals,

Animats, Software Agents, Robots, Adaptive Systems, 12(3-4):251–262, 2004.

[74] M.D. Mesarovic, S.N. Sreenath, and J.D. Keene. Search for organizing principles:

understanding in systems biology. The IIE Systems Biology, 1(1):19–27, June

2004.

[75] C. Mohan. Dynamic e-business: Trends in web services. In TES ’02: Proceedings

of the Third International Workshop on Technologies for E-Services, pages 1–5,

London, UK, 2002. Springer-Verlag.

[76] S. Abdelwahed N. Kandasamy and J. Hayes. Self-optimization in computer sys-

tems via on-line control: Application to power management. In ICAC ’04: Pro-

ceedings of the First International Conference on Autonomic Computing, pages

54–61, Washington, DC, USA, 2004. IEEE Computer Society.

[77] R. Nagpal. Programmable self-assembly using biologically-inspired multiagent con-

trol. In Proceedings of the first international joint conference on Autonomous age-

nts and multiagent systems (AAMAS), pages 418–425, New York, NY, USA, 2002.

ACM Press.

[78] P. Nelson. Biological Physics: Energy, Information, Life. W. H. Freeman, 2004.

[79] M.E.J. Newman. Modularity and community structure in networks. In Proceedings

of the National Academy of Science, page 23, 2006.

[80] G. Nicolis and I. Prigogine. Self-organization in Non-equilibrium Systems: From

Dissipative Structures to Order Through Fluctuations. J. Wiley & Sons, 1977.

[81] A. Omicini. Soda: Societies and infrastructures in the analysis and design of

agent-based systems. In SODA: Societies and Infrastructures in the Analysis and

Design of Agent-Based Systems, pages 185–193, New York, 2000. SODA: Societies

and Infrastructures in the Analysis and Design of Agent-Based Systems.

[82] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination

artifacts: Environment-based coordination for intelligent agents. In 3rd Interna-

tional Joint Conference on Autonomous Agents and Multiagent Systems, pages

286–293, New York, 2004. IEEE Computer Society.

[83] A. Omicini, A. Ricci, M. Viroli, and G. Rimassa. Integrating objective and sub-

jective coordination in mult-agent systems. In Proceedings of the 2004 ACM sym-

posium on Applied computing, pages 449–455. ACM Press, 2004.

[84] A. Omicini and F. Zambonelli. MAS as complex systems: A view on the role

of declarative approaches. In L. Sterling J. Leite, A. Omicini, editor, Declarative

Agent Languages and Technologies: First International Workshop, DALT, volume

228 BIBLIOGRAPHY

2990 of Lecture notess in Computer Science, pages 1–16. Springer-Verlag GmbH,

July 2003.

[85] N. H. Packard. Adaptation toward the edge of chaos. In A.J. Mandell J.A. Kelso

and M.F. Shlesinger, editors, Dynamic patterns in complex systems, pages 293–

301. World Scientific, 1988.

[86] P. Panzarasa and N. R. Jennings. The organisation of sociality: a manifesto for a

new science of multi-agent systems. In Proceedings of the 10th European Workshop

on Multi-Agent Systems, 2001.

[87] M. P. Papazoglou and Willem-Jan Heuvel. Service oriented architectures: ap-

proaches, technologies and research issues. The VLDB Journal, 16(3):389–415,

2007.

[88] H. Van Dyke Parunak. Go to the ant: Engineering principles from natural multi-

agent systems. Annals of Operations Research, page 27, 1997.

[89] H. Van Dyke Parunak. The process-interface-topology mode overlooked issues in

modeling social systems. In MASHO Workshop at ECAI, pages 1–7, 2000.

[90] H. Van Dyke Parunak and S. Brueckner. Entropy and self-organization in multi-

agent systems. In S. Sen C. Frasson J. Müller, E. Andre, editor, Proceedings of the

fifth international conference on Autonomous agents, pages 124–130. ACM Press,

2001.

[91] H. Van Dyke Parunak and S. A. Brueckner. Engineering swarming systems. In

F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software

Engineering for Agent Systems, pages 341–376. Kluwer, 2004.

[92] H. Van Dyke Parunak, S. A. Brueckner, and J. Sauter. ERIMs approach to

fine-grained agents. In NASA Workshop on Radical Agent Concepts, pages 1–10,

Greenbelt, MD, USA, September19-21 2002.

[93] H. Van Dyke Parunak, S.A. Brueckner, J.A. Sauter, and M. Robert. Global

convergence of local agent behaviours. In Submitted to the Fourth International

Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS05),

Utrecht, Netherlands, 2005.

[94] H. Van Dyke Parunak and Sven A. Brueckner. Analyzing stigmergic learning for

self-organizing mobile ad-hoc networks (manets). In Engineering Self-Organising

Systems, 2004.

[95] H. Van Dyke Parunak, Robert Savit, Sven A. Brueckner, and John Sauter. Exper-

iments in indirect negotiation. In AAAI Fall Symposium on Negotiation Methods

for Autonomous Cooperative Systems, page 9, 2001.

BIBLIOGRAPHY 229

[96] F. Polack and S. Stepney. Emergent properties do not refine. In REFINE workshop,

Electronic notes in Theoretical Computer Science, pages 1–17, Guildford, UK,

April 2005. Elsevier.

[97] D. Pynadath and M. Tambe. The communicative multiagent team decision prob-

lem: analyzing teamwork theories and models. Journal of Artificial Intelligence

Research, 16(1):389–423, 2002.

[98] C. Lefurgy G. Tesauro D. Levine R. Das, J. Kephart and C. Hoi. Autonomic

multi-agent management of power and performance in data centers. In The Seventh

International Conference of Autonomic Agents and Multiagent Systems, May 2008.

[99] G E Robinson. Regulation of division of labor in insect societies. In Annual Review

of Entomology, volume 37, pages 637–665, 1992.

[100] E. Roman, S. W. Ambler, and F. Marinescu. Mastering Enterprise Javabeans.

John Wiley & Sons, Inc., New York, NY, USA, 2001.

[101] D. De Roure. On self-organization and the semantic grid. IEEE Intelligent Sys-

tems, 18:77–79, 2003.

[102] E. Sanchis. Systemions: a model for open agents. In 13th IEEE International

Workshops on Enabling Technologies (WETICE 2004), Infrastructure for Collab-

orative Enterprises, Modena, Italy, 14-16 June 2004. IEEE Computer Society.

[103] E. D. Schneider and J. J. Kay. Order from disorder: The thermodynamics of

complexity in biology. In M. P. Murphy and L. O’Neill, editors, What Is Life: The

Next Fifty Years. Reflections on the Future of Biology, pages 161–172. Cambridge

University Press, 1995.

[104] F. Schurmann, K. Meier, and J. Schemmel. Edge of chaos computation in mixed-

mode vlsi - a hard liquid. In Neural Information Processing Systems Conference,

2004.

[105] T. D. Seeley. When is self-organization used in biological systems? Biological

Bulletin, 202:314–318, 2002.

[106] S. Sen, S. Roychowdhury, and N. Arora. Effects of local information on group

behavior. In Proceedings of the Second International Conference on Multi-Agent

Systems, pages 315–321. AAAI Press, Menlo Park, CA, 1996.

[107] C. R. Shalizi. Causal Architecture, Complexity and Self-organization in Time

Series and Cellular Automata. PhD thesis, University of Wisconsin, Physics Dep-

tartment, 2001.

[108] C. E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27:379–423 and 623–656, 1948.

230 BIBLIOGRAPHY

[109] O. Shehory and S. Kraus. Methods for task allocation via agent coalition forma-

tion. Artificial Intelligence, 101:165–200, 1998.

[110] Y. Oono S.N. Beshers, Z.Y. Huang and G.E. Robinson. Social inhibition and the

regulation of temporal polyethism in honey bees. In Journal of Theoretical Biology,

volume 213, pages 461–479(19). Academic Press, 2001.

[111] K. Sreekala and N.J. Vriend. Is the study of complex adaptive systems going to

solve the mystery of adam smith’s ”invisible hand”? The Independent Review,

3(1):53–66, 1998.

[112] S. Staab, F. Heylighen, C. Gershenson, G. W.Flake, D. M. Pennock, D. C. Fain,

D. De Roure, K. Aberer, W. Shen, O. Dousse, and P. Thiran. Neurons, viscose

fluids, freshwater polyp hydra-and self-organizing information systems. IEEE In-

telligent Systems, 18(04):72–86, 2003.

[113] S. Stepney. Critical critical systems. In Steve Schenider Ali E. Abdallah, Pe-

ter Ryan, editor, Formal Aspects of Security: FASec, volume 2629 of Lecture

notess in Computer Science. Springer, 2003.

[114] P. Stone and M. Veloso. Layered learning and flexible teamwork in robocup sim-

ulation agents. Lecture Notes In Computer Science, 1856:495 – 508, 2000.

[115] G.J. Sussman. Robust design through diversity. In Workshop on Amorphous

Computing, page 3, Cambridge, MA, September 13-14 1999.

[116] R. Swenson. Autocatakinetics, evolution, and the law of maximum entropy pro-

duction: A principled foundation towards the study of human ecology. Advances

in Human Ecology, 6:1–47, 1997.

[117] R. Swenson and M.T Turvey. Thermodynamic reasons for perception-action cycles.

Ecological Psychology, 3(4):317–348, 1991.

[118] A.S. Tanenbaum and R. Van Renesse. Distributed operating systems. ACM Com-

put. Surv., 17(4):419–470, 1985.

[119] G. Tesauro. Reinforcement learning in autonomic computing: A manifesto and

case studies. IEEE Internet Computing, 11(1):22–30, 2007.

[120] G. Theraulaz, E. Bonabeau, and J. Deneubourg. Response threshold reinforcement

and division of labour in insect societies. In Proceeding of the Royal Society of

London, pages 327–332, 1998.

[121] G. Theraulaz and E. Bonbeau. A brief history of stigmergy. Artificial Life, 5(2):97–

116, 1999.

[122] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. Schiller. Performance impact

of web services on internet servers. 2003.

BIBLIOGRAPHY 231

[123] P. J. Turner and N. R. Jennings. Improving the scalability of multi-agent systems.

In 1st International Workshop on Infrastructure for Scalable Multi-Agent Systems,

Barcelona, Spain, 2000.

[124] C. Vawter and E. Roman. J2ee vs. microsoft.net: A comparison of building xml-

based web services. Technical report, Sun Microsystems, Inc., 2001.

[125] M. Wang, N. Kandasamy, A. Guez, and M. Kam. Distributed cooperative control

for adaptive performance management. IEEE Internet Computing, 11(1):31–39,

2007.

[126] H.F. Wedde and M. Lischka. Cooperative role-based administration. In SACMAT

’03: Proceedings of the eighth ACM symposium on Access control models and

technologies, pages 21–32, New York, NY, USA, 2003. ACM.

[127] J. S. Wicken. Evolution, thermodynamics, and information: Extending the dar-

winian program. The Quarterly Review of Biology, 63(1):84–85, 1988.

[128] J. S. Wicken. Evolution and thermodynamics: The new paradigm. Systems Re-

search and Behavioral Science, 6(3):181–186, 1989.

[129] T. De Wolf and T. Holvoet. Emergence and self-organisation: a statement of simi-

larities and differences. In S. Brueckner, G. Di Marzo Serugendo, A. Karageorgos,

and R. Nagpal, editors, Proceedings of the International Workshop on Engineering

Self-Organising Applications, pages 96–110, 2004.

[130] M. Wooldridge, N.R. Jennings, and D. Kinny. The Gaia methodology for agent-

oriented analysis and design. Autonomous Agents and Multi-Agent Systems,

3(3):285–312, 2000.

[131] F. Zambonelli, M. Mamei, and A. Roli. What can cellular automata tell us about

the behavior of large multi-agent systems? In A. F. Garcia, C. J. P. de Lucena,

F. Zambonelli, A. Omicini, and J. Castro, editors, Software Engineering for Large-

Scale Multi-Agent Systems, Research Issues and Practical Applications, volume

2603 of Lecture notess in Computer Science, pages 216–231. Springer, 2002.

[132] F. Zambonelli and A. Omicini. Challenges and research directions in agent-oriented

software engineering. Autonomous Agents and Multi-Agent Systems, 9(3):253–283,

2004.

[133] F. Zambonelli and H. Van Dyke Parunak. Signs of a revolution in computer science

and software engineering. In 2 nd Italian Workshop on Objects and Agents, pages

1–12, 2001.

[134] F. Zambonelli and H. Van Dyke Parunak. Towards a paradigm change in computer

science and software engineering: A synthesis. The Knowledge Engineering Review,

18(4):329–342, 2004.

