Optimal design for additive partially nonlinear models

Biedermann, S., Dette, H. and Woods, D.C. (2011) Optimal design for additive partially nonlinear models Biometrika, 98, (2), pp. 449-458. (doi:10.1093/biomet/asr001).


[img] PDF s3ri-workingpaper-M10-02.pdf - Other
Download (283kB)


We develop optimal design theory for additive partially nonlinear regression models, showing that Bayesian and standardized maximin D-optimal designs can be found as the products of the corresponding optimal designs in one dimension. A sufficient condition under which analogous results hold for Ds-optimality is derived to accommodate situations in which only a subset of the model parameters is of interest. To facilitate prediction of the response at unobserved locations, we prove similar results for Q-optimality in the class of all product designs. The usefulness of this approach is demonstrated through an application from the automotive industry, where optimal designs for least squares regression splines are determined and compared with designs commonly used in practice.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1093/biomet/asr001
ISSNs: 0006-3444 (print)
Related URLs:
Keywords: additive model, bayesian d-optimality, partially nonlinear model, product design, q-optimality, standardised maximin d-optimality
Organisations: Statistics
ePrint ID: 144481
Date :
Date Event
June 2011Published
Date Deposited: 14 Apr 2010 14:49
Last Modified: 18 Apr 2017 20:01
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/144481

Actions (login required)

View Item View Item