Evidence for the discrete asymptotically-free BFKL Pomeron from HERA data
Evidence for the discrete asymptotically-free BFKL Pomeron from HERA data
We show that the next-to-leading-order renormalization-group-improved asymptotically-free BFKL Pomeron provides a good fit to HERA data on virtual photoproduction at small x and large Q2. The leading discrete Pomeron pole reproduces qualitatively the Q2 dependence of the HERA data for x10?3, and a fit using the three leading discrete singularities reproduces quantitatively the Q2 and x dependence of the HERA data for x<10?2. This fit fixes the phase for all the BFKL wavefunctions at a chosen infrared scale.
51-56
Ellis, J.
2dd4cce8-c2ae-44cd-8bda-6d877e371c2a
Kowalski, H.
36abd3ae-4d24-4630-884c-5a6d464e7a15
Ross, D.A.
eb79bbfe-fb97-4bb3-813c-98f278e5a55f
25 September 2008
Ellis, J.
2dd4cce8-c2ae-44cd-8bda-6d877e371c2a
Kowalski, H.
36abd3ae-4d24-4630-884c-5a6d464e7a15
Ross, D.A.
eb79bbfe-fb97-4bb3-813c-98f278e5a55f
Ellis, J., Kowalski, H. and Ross, D.A.
(2008)
Evidence for the discrete asymptotically-free BFKL Pomeron from HERA data.
Physics Letters B, 668 (1), .
(doi:10.1016/j.physletb.2008.08.007).
Abstract
We show that the next-to-leading-order renormalization-group-improved asymptotically-free BFKL Pomeron provides a good fit to HERA data on virtual photoproduction at small x and large Q2. The leading discrete Pomeron pole reproduces qualitatively the Q2 dependence of the HERA data for x10?3, and a fit using the three leading discrete singularities reproduces quantitatively the Q2 and x dependence of the HERA data for x<10?2. This fit fixes the phase for all the BFKL wavefunctions at a chosen infrared scale.
This record has no associated files available for download.
More information
e-pub ahead of print date: 7 August 2008
Published date: 25 September 2008
Identifiers
Local EPrints ID: 144573
URI: http://eprints.soton.ac.uk/id/eprint/144573
ISSN: 0370-2693
PURE UUID: 6df52aa5-9e23-4cbc-ac74-b42686159d2d
Catalogue record
Date deposited: 14 Apr 2010 12:56
Last modified: 14 Mar 2024 00:46
Export record
Altmetrics
Contributors
Author:
J. Ellis
Author:
H. Kowalski
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics