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Perturbative estimates of the eigenfunctions of the non-forward BFKL kernel
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We discuss, within the context of first order perturbation theory, the correction to the NLO BFKL
wavefunction for scattering processes with non-zero momentum transfer, arising from the fact that in
NLO the kernel is not covariant under conformal transformations.
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Recently the BFKL kernel at NLO has been presented in the dipole form [1]. To this order, we may write the kernel as

K(r1, r2; r3, r4) = ᾱs K0(r1, r2; r3, r4) + ᾱ2
s K1(r1, r2; r3, r4)

(
ᾱs = 3αs

π

)
, (1)

where the kernel interpolates between a dipole with transverse coordinates r1, r2 and a dipole with transverse coordinates r3, r4. The
rapidity dependence of a colour singlet amplitude to NLO in rapidity, Y is therefore given by the BFKL equation [3,4]

∂

∂Y
f (r1, r2, Y ) =

∫
d2r3 d2r4 K(r1, r2; r3, r4) f (r3, r4, Y ). (2)

It was pointed out in [2] that the leading order kernel K0({ri}) possesses the following properties

1. K0
({ri − r0}

) = K0
({ri}

)
,

2. K0
({Λri}

) = Λ−4 K0
({ri}

)
,

3. K0
({1/ri}

) = |r3|4|r4|4 K0
({ri}

)
.

The covariance of the kernel under two-dimensional conformal transformations permits one to write the eigenfunctions of the kernel K0,
with eigenvalues χ0(ν), in terms of representations of the conformal group labeled by a real index ν1 and a transverse “centre-of-mass”,
r0, which we write as

φν(r1, r2; r0) ≡ √
2

ν

π2

[ |r12|
|r10||r20|

]1+2iν

, (3)

where we use the notation ri j = ri − r j . These functions are normalized as

〈ν ′, r′
0|ν, r0〉 ≡

∫
d2r1 d2r2

|r12|4 φν ′∗(r1, r2; r′
0

)
φν(r1, r2; r0) = δ(ν − ν ′)δ2(r00′ ) + 2ν

π

η(ν)

|r00′ |2+4iν
δ(ν + ν ′), (4)

where η is a pure phase given by

η(ν) = −i24iν �(iν)�(1/2 − iν)

�(−iν)�(1/2 + iν)
.

These eigenfunctions have been exploited in Ref. [5,6] to determine the exact solution to the non-forward BFKL equation at leading order.
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Provided the terms in the NLO kernel, K1({ri}), which depend on the renormalization scale, μ, are absorbed into the running of the
coupling ᾱs in front of the leading term, then the NLO kernel also obeys the first two properties listed above. However, as was pointed
out in [1], the NLO kernel does not obey the third property and is therefore not fully conformal invariant so that the eigenfunctions of the
kernel cannot be set equal to the functions defined in (3) and are consequently unknown.2

It is, however, sufficient to ascertain the solutions to the NLO BFKL equation (2) up to order ᾱs (relative to the leading order) and
this can be achieved by treating K1 as a perturbation and using first-order “rapidity dependent” perturbation theory. Thus we impose an
initial condition at Y = 0

f ν(r1, r2; r0,0) = φν(r1, r2; r0), (5)

and using the fact that the functions φν(r1, r2; r0) form a complete set of functions on the space r1, r2 we may expand the solution for
non-zero rapidity as

f ν(r1, r2; r0, Y ) = aD(ν, Y )φν(r1, r2; r0) + ᾱs

∫
dν ′ d2r′

0 a
(
ν,ν ′, r0, r′

0, Y
)
φν ′(

r1, r2; r′
0

)
. (6)

Using the translation properties of φν and dimensional analysis we can deduce that the coefficient a(ν, ν ′, r0, r′
0, Y ) is of the form

a
(
ν,ν ′, r0, r′

0, Y
) = ã(ν, ν ′, Y )

[|r00′ |−(2+2i(ν−ν ′)) − (
2π2)δ2(r00′ )δ(ν − ν ′)

]
, (7)

where the δ-function subtraction has been included to ensure that the diagonal term from the conformally-invariant part of the kernel is
included in the coefficient of the first term, aD(ν, Y ).

We therefore rewrite (6) as

f ν(r1, r2; r0, Y ) = aD(ν, Y )φν(r1, r2; r0) + ᾱs

∫
dν ′ d2r′

0 ã(ν, ν ′, Y )
[|r00′ |−(2+2i(ν−ν ′)) − (

2π2)δ2(r00′ )δ(ν − ν ′)
]
φν ′(

r1, r2; r′
0

)
. (8)

Furthermore, we can exploit the translation invariance and scaling covariance of K1 to write the off-diagonal matrix-elements of this
kernel as

〈ν ′, r′
0|K1|ν, r0〉 ≡

∫
d2r1 d2r2

|r4
12

d2r3 d2r4 φν ′∗(r1, r2; r′
0

)
KNC

1 (r1, r2; r3, r4)φ
ν(r3, r4; r0) = χNC(ν, ν ′)

2π2
|r00′ |−(2+2i(ν−ν ′)), (9)

where the superscript NC refers to that part of the kernel, K1 which is not fully conformal-invariant and therefore admits off-diagonal
matrix-elements.

Inserting the expansion (8) into (2) and performing the usual projections, we find the following expressions for the coefficients aD(ν, Y )

and ā(ν, ν ′, Y ) up to order ᾱs:

aD(ν, Y ) = e(ᾱsχ0(ν)+ᾱ2
s χ1(ν))Y , (10)

ã(ν, ν ′, Y ) = 1

2π2

ᾱs

[1 − h(ν, ν ′)h(ν,−ν ′)]
[
χNC(ν, ν ′) − h(ν, ν ′)χNC(ν,−ν ′)

] [eᾱsχ0(ν)Y − eᾱsχ0(ν ′)Y ]
[χ0(ν) − χ0(ν ′)] (11)

where

h(ν, ν ′) = 2ν(ν − ν ′)η∗(ν ′) B(−i(ν + ν ′),2iν ′)
B(i(ν + ν ′),−2iν ′)

with B(α,β) being the Euler β-function,

B(α,β) ≡ �(α)�(β)

�(α + β)
.

The terms involving h arise owing to the fact that the functions φν are not strictly orthonormal and their norm contains a contributions
proportional to δ(ν + ν ′).

At first sight it would appear that in order to make progress, it is necessary to determine the matrix-elements of the non-conformal
operator K1 between different conformal eigenfunctions in order to obtain the matrix χ(ν,ν ′). This is indeed a daunting prospect!
However, we see that there is a significant simplification if we return to the expansion (6) and attempt the integration over the “centre-
of-mass” d2r′

0. Before doing this we note that this integral has an ultraviolet divergence at r0 = r′
0, which we must regulate by performing

the integral in 2 + 2ε dimensions and taking the limit ε → 0+ . The sign of ε will turn out to be crucial to this analysis.
In terms of Feynman parameters ρ , ω, we have

∫
d2+2εr′

0
1

|r00′ |2+2i(ν−ν ′) φ
ν ′(

r1, r2; r′
0

)

=
√

2ν ′

π
|r12|1+2iν ′ �(1 + i(ν + ν ′))

�(1 + i(ν − ν ′))�2(1/2 + iν ′)

1∫
0

dρ dω(1 − ρ)ρ−1+i(ν ′−ν)+ε [ω(1 − ω)]−1/2+iν ′

[(1 − ρ)(r2
10ω + r2

20(1 − ω)) + r2
12ρω(1 − ω)]1+i(ν+ν ′)−ε

(12)

(where we set ε to zero everywhere where it does not affect the ultraviolet singularity).

2 It has been suggested in Ref. [1] that it may be possible to absorb the terms which are not fully conformally invariant into redefinitions of the impact factors, but so far
this has not been achieved.
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Examination of the integrand in (12) near ρ = 0 shows that the integration over ρ gives rise to a pole at ν ′ = ν + iε . This can be used
to perform the integral in (8) over ν ′ .

At this stage it is more convenient to switch to the mixed representation with momentum transfer Q . Exploiting translation invariance
and omitting an irrelevant phase, we can write the LO eigenfunctions in mixed representation as

φ̃ν
Q(r12) =

√
2π

|r12|
∫

d2r0 eiQ·r0φν(r1, r2; r0), (13)

which can be written in terms of Bessel functions of complex order (see Ref. [5]), as

φ̃ν
Q(r) = 2η∗(ν)�2(1 − 2iν)2−6iν	m

{
J iν(Q r) J−iν(Q r)

}
, (14)

where Q r = Q · r + i|Q × r|.
Taking the Fourier transform of (8) we find

f̃ ν
Q (r, Y ) = aD(ν, Y )φ̃ν

Q(r) + ᾱs

∫
dν ′ d2r00′ ã(ν, ν ′, Y )eiQ·r00′ [|r00′ |−(2+2i(ν−ν ′)) − (

2π2)δ2(r00′ )δ(ν − ν ′)
]
φ̃ν ′

Q (r). (15)

Once again, we can perform the integral over r00′ , first promoting it to 2 + 2ε dimensions in order to regularize the ultraviolet
singularity, to get

f̃ ν
Q (r, Y ) = aD(ν, Y )φ̃ν

Q(r) + ᾱs

∫
dν ′ ã(ν, ν ′, Y )

�(1 + i(ν ′ − ν))

�(1 − i(ν ′ − ν))

( |Q|
2

)2i(ν−ν ′)[
−iπ

1

(ν ′ − ν − iε)
− δ(ν − ν ′)

]
φ̃ν ′

Q (r), (16)

and note the pole at ν ′ = ν + iε .3

We now split the function φ̃ν ′
Q (r) into two parts

φ̃ν ′
Q (r) = φ̃ν ′

Q (r)[1] + φ̃ν ′
Q (r)[2], (17)

where

φ̃ν ′
Q (r)[1] =

√
2ν ′

π2

∫
R1

d2R
[ |r|

|R + r/2||R − r/2|
]1+2iν ′

(18)

where the region indicated by R1 is the region of R for which

|Q| > 2|r|
|R + r/2||R − r/2|

and φ̃ν ′
Q (r)[2] is the integral over the remaining region, R2.

In region R1, the integral over ν ′ is performed by closing the contour in the upper-half plane, thereby picking up the pole, whereas in
region R2, the contour is closed in the lower half-plane, thereby missing the pole. Accounting for the δ-function subtraction we arrive at
the final result

f̃ ν
Q (r, Y ) = aD(ν, Y )φ̃ν

Q(r) − (2π)2ᾱsã(ν, ν, Y )φ̃ν
Q(r)[2] = e(ᾱsχ0(ν)+ᾱs

2χ1(ν))Y φ̃ν
Q(r) − ᾱ2

s YχNC(ν, ν)φ̃ν
Q(r)[2]. (19)

The problem is therefore reduced to the determination of the diagonal matrix-elements of that part of the NLO kernel which is not
covariant under the full set of Möbius transformations. We can extract this part of the kernel by writing

KNC
1

({ri}
) = 1

2

{
K1

({ri}
) − 1

|r3|4|r4|4 K1
({1/ri}

)}
. (20)

We see immediately that this expression vanishes for any part of the kernel which is covariant under inversions. We can furthermore
project the diagonal term χNC(ν, ν), from Eq. (9) by integrating both sides over r0, which leads to

χNC(ν, ν) = −iπ2 η∗(ν)

ν
lim

ν→ν ′(ν
′ − ν)

∫
d2r1 d2r2 d2r3 d2r4

|r12|4
(|r1|r2|

)1+2iν ′
φν ′

(r1, r2;0)KNC
1 (r1, r2, r3, r4)φ

ν(r3, r4;0). (21)

After applying a suitable change of variables for the subtraction term in (20), this may be rewritten as

χNC(ν, ν) = −i
π2

2

η∗(ν)

ν
lim

ν→ν ′(ν
′ − ν)

∫
d2r1 d2r2 d2r3 d2r4

|r12|4
[(|r1|r2|

)1+2iν ′ − (|r3|r4|
)1+2iν]

× φν ′
(r1, r2;0)K1(r1, r2, r3, r4)φ

ν(r3, r4;0). (22)

As an example, we take

K1(r1, r2, r3, r4) = 1

(4π2)

r24 · r12

(|r13||r24||r34|)2
ln

(
r2

14

r2
34

)
, (23)

3 There are other poles in the upper plane where ν ′ = ν + in for integer n. These correspond to contributions from conformal wavefunctions with higher conformal
spin, which we are neglecting since the rapidity dependence is substantially reduced for these eigenfunctions. They can be consistently eliminated by integrating over the
azimuthal angle between Q and r.
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Fig. 1. Plots of the wavefunction φ̃ν
Q(r)[2] from region R2 and the total wavefunction, φ̃ν

Q(r), against Q · r for different values of ν . In these and subsequent plots, a factor of

|r|−2iν has been factored out.

Fig. 2. Plots of the wavefunction φ̃ν
Q(r)[2] from region R2 and the total wavefunction, φ̃ν

Q(r), against ν for low, medium and high, values of Q · r.

which is one of the terms of K1 given in [1]. The integrations over ri may be performed by employing a judicious ordering for the
integrations, yielding

χNC(ν, ν) = 2ν

(1 + 4ν2)
	m

{
Ψ ′(1/2 + iν)

}
. (24)

A great deal of work is still required in order to determine this quantity for all the other terms of K1 in [1]. Nevertheless we have now
shown that the problem is, at least in principle, tractable.

Analytic approximations for φ̃ν
Q(r)[2] can be obtained for the limits of very large or very small momentum transfer, Q .

For Q · r 
 1, in the region R2, we have |R| � |r| so that

φ̃ν
Q(r)[2] ≈ 2

√
2ν

π
16iν |r|−2iν(Q · r)4iν

∞∫
1

dz

z2+2iν
J0(

√
2Q · rz ), (25)

and if Q · r is sufficiently small this becomes

φ̃ν
Q(r)[2] ≈ 2

√
2ν

π
16iν |r|−2iν(Q · r)4iν . (26)

This does not vanish as |Q| → 0, but oscillates very rapidly as ν is varied over a small range, so that its effect on any realistic amplitude,
which involves an integral over ν will vanish. However, caveat lector, for small ν , there is a very small range, �ν , of ν over which the
eigenvalues, χ0, χ1 do not vary substantially, which means that in order for these oscillations to lead to a negligible correction we need
to go to sufficiently small Q such that

|Q| 
 |r|e−1/δν .

On the other hand, if Q · r � 1, then the region R2 dominates region R1 in the Fourier transform of φν , so that in this case we have

φ̃ν
Q(r)[2] ≈ φ̃ν

Q(r). (27)

For intermediate values of momentum transfer, where Q · r ∼ 1, we need to resort to numerical approximations for the integral in
region R2. In Fig. 1, we show the real parts of the wavefunctions φ̃ν

Q(r)[2] and φ̃ν
Q(r) against Q · r in this region for three different values

of ν , and in Fig. 2 we show the same quantities against ν in the region 0 < ν < 1 for three different values of Q · r. We see from these
that as explained above the two functions almost coincide for sufficiently large |Q| and that for small values of |Q|, there are more rapid
oscillations with ν .

In summary, we have developed an algorithm for calculating the non-forward BFKL wavefunction up to corrections of order ᾱs allowing
for an NLO kernel which is not covariant under the full Möbius transformations.
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