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ESTIMATING RETURN VALUES OF WAVE HEIGHT

1. INTRODUCTION

The N-year return value of wave height is a statistic which is
frequently used by design engineers concerned with coastal and
offshore structures as a measure of severe wave climate - generally
with N equal to 50 or 100. Extremes of other environmental
parameters are also frequently described by return values; for
example 50-year return value of wind speed and 100-year return value
of sea level.

Estimates of 50-year return values in waters around the UK have
been provided to the Department of Energy, since 1972 by the
Institute of Oceanographic Sciences, for inclusion in the
Department’s guidance notes on the design and construction of
of fshore installations.

These estimates have been amended over the years as wave data at
different sites have become available and to take account of changes
in the estimates, by the Meteorological Office, of 50-year return
values of wind speed over waters around the UK - which are also
included in the Department of Energy’s guidance notes.

The method of estimating the 50-year return value of wave height
was devised to produce results from very little data - a few series

of measurements each obtained for about a year - and this method has
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been altered very little since its introduction. With the passage of
vears, longer series of wave data are becoming available and other
methods can be considered - methods which do not depend so much upon
unjustified assumptions as that in present use, and which give some
estimates of confidence limits for the 50-year return values.

This report discusses the present method of estimation and the
problems associated with it, and suggests other methods which might
be used.

There are other aspects of extreme waves, of comparable .
importance to the offshore industry as their height, which require
further research, such as wave period and steepness, and the
distribution and structure of breaking waves. However, only extreme
wave height is dealt with in this report.

The methods of analysing wave height discussed in this report
assume that the underlying distribution of wave height does not vary
from year to year. Little research has been carried out 1into the
effect upon extreme wave height estimation of long-term, or secular,
variations of climate. However, Rye(1976) estimates, using visual
wave height data from ‘Famita’, that the 100-year return value of
wave height in the northern North Sea is increasing by 3% - 4% per
annurm: and concludes that '"future research should be strongly

intensified on this subject".
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The methods of analysis in this repért also assume that the very
large waves, which occur once in 50 years or once in 100 years, are
from the same statistical distribution as other, lower waves; sSo may
be estimated by extrapolation from a statistical analysis of lower
wave heights, and no new physical process is involved. If this
assumption is incorrect, then none of the methods is valid. However,
there is no known reason why the physics of very high waves should be
different from that of lower waves, provided that the water depth is

sufficient.
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2. DEFINITIONS

2.1 Return Value

The N-year return value is that which is exceeded on average
once in N years.

This definition of returrn value is in terms of events, so any
formula has to include the number of events which occur 1in a year,
and any reference to a return value should include the interval
between events - 3 hourly, or hourly etc. Suppose M values of wave
height are obtained each year from a population with a cumulative

probability distribution function P(h), so that:

Prob (H < h) = P(h)

Then the N-year return value, h_ , is given by:

N

P(hN) =1 -1/MN (2.1)

For example, if wave height is recorded at three-hourly intervals,
then assuming the heights are independent and taking an average year
as 365.25 days, the 50-year return value of three hourly events 1is

given by:

P( =1 - 1/(8%x365.25x50) = 0.9999932

hso)

Sometimes the N-year return value is defined slightly
differently, as that value which is exceeded on average during one

year in N. Thus multiple occasions of exceeding hN during a year are
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not taken dinto account. It is statistically very unlikely that the
50-year or 100-year return value will be exceeded more than once
during any particular year, so in practice the difference between the
two definitions is generally unimportant. For example, estimates of
50-year return value of significant wave height might differ by about
10 cm. But as N becomes smaller, so the difference between the two
definitions becomes larger, and 2-year or 3-year return values could
be quite different.

If the events defining the N-year return value are not
independent, then the definition of the N-year return value as the
height exceeded on average once in N years is still valid, but these
exceedances will no longer be random, and will therefore not have a
Poisson distribution; and the alternative detinition described above
as that value which is exceeded on average during one year in N will
be lower.

The N-year return value of wave height is sometimes defined in
terms of maxima occurring during storms (see Nolte 1974, pp 6-8).
This avoids the problem of dependence of successive waves, but the
estimated return value can depend upon the criterion used to denote a
storm. Such a definition of return value seems well-suited to the
"analysis of waves caused by tropical storms, but not so useful for
mid- and high-latitude storms which are often ﬁot so clearly

separated.
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2.2 Wave Height

Generally, 50-year return values of wave height are specified in
terms either of significant wave height, hs’ or of the most likely
maximum wave height (crest Fo trough of a zero-up-~crossing wave) in a
specified period such as three hours, h

max,3hr’

Significant wave height is defined as

b, = 4v&0 (2.2)

where my is the area under the energy-frequency spectrum, i.e. the
variance of the sea surface elevation. Originally significant wave
height was defined as the mean height of the highest 1/3 zero-up-
crossing waves, because this value appeared to be close to visual
estimates of the wave height. The two definitions are almost
identical for narrow hand waves, and in general appear to be in good
agreement. Note that the present definition is in terms of surface
elevation and not of crest to trough heights.

The most likely highest zero-up-crossing wave during a specified
time depends upon the number of waves and upon the distribution of
these waves. Assuming that the distribution is Rayleigh with root
mean square, rms, of hS/V@, and that the surface is statistically
stationary during the specified period, p, then the value of h

max,p

is given by

- 1/2
Boax,p  Bg(ln N, /2) (2.3)
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where Nz is the number of zero-up-crossing waves during the period p
(i.e. Nz = p/Tz where Tz is the zero-up-crossing wave period).

It should be remembered that hmax,p is not the largest wave
height that will occur, only the most likely highest. For example,

in a three-hour period, with Tz = 10 seconds, then from the above

equation

hmax,3hr = 1.87 hs

But there is a 10% probability of a wave height exceeding 2.15 hs
during any three-hour period. The method of calculating this and
similar values is given in Section 3, together with a more detailed
discussion of equation 2.3.

The design of offshore structures requires return values of
highest wave heights, which is why "Offshore Installations: Guidance
on design and construction” by the Department of Energy (1977) gives
estimates of 50-year return values of most 1likely highest wave
height. However, significant wave height is the more fundamental
property. The value of hmax,p can be determined from equation 2.3
for any p during which the waves are stationary, provided that the
'zero—up-crossing period and hence Nz can be estimated - and because

of the form of equation 2.3, only an approximate estimate is

required.
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3. PRESENT METHOD OF ESTIMATING RETURN VALUES -
SHORT TERM STATISTICS
The method consists of two stages: first estimating, from wave
measurements, the significant wave height, hs, and hence the most
likely maximum wave height in three hours, hmax,3hr’ using what might
be called ‘short-term statistics of waves’; then analysing these

values of h or of h to estimate 50-year return values - “long
s max,3hr

term statistics’, which are discussed in Section 4.

3.1 Fundamental Theory

The first stage is based upon the results obtained by Cartwright
and Longuet-Higgins (1956) and Cartwright (1958), for the
distribution of crest elevation in a record of a broad-band sea and
the distribution of maximum crest elevation. These distributions are

in terms of the spectral width parameter e, defined by

_ 2
€ =1 - m, /mom4 (3.1)

where
0

i
i ./} E(f)df
0

and E is the surface elevation spectrum.

=}
N

For a narrow band sea, i.e. € = 0, the crest elevations have a

Rayleigh distribution given by
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Prob(X<x) 1 - exp(-x2/2)

1/2
0

Cartwright and Longuet-Higgins (1956) show that, for € <1, the

crest elevation /m

where X

higher crests in a record are approximately as if from a Rayleigh
distribution, suggesting that the distribution of the maximum of N
crests can be approximated by a Rayleigh to the power N. Cartwright
(1958) shows graphically that this suggestion is justified for e
less than about 0.9, and that a close approximation to the
distribution of the maximum crest elevation of N mutually independent
crests is given for large N by

2)1/2

PN(x) = exp[-N(1-¢ exp(—x2/2)]

An analytical proof for all € 1is given by Walden and Prescott

(1980).

2

But N(1 - ¢ 2)L/2

is the number of zero-up-crossings, Nz, in the

record containing N crests, so

PN(x) = exp[-Nzexp(-XZ/Z)] (3.2)

Thus PN(x) may be described in terms of Nz (or the zero-up-
crossing period T = (m./m )1/2)
z 0’2
1/2

rather than in terms of N (or the
crest period TC =(m2/m4) ). This is fortunate because it 1is very
difficult to measure m, which is strongly affected by instrumental

high frequency cut-off (see Rye 1977). Similarly the number of crests

in an analogue record is dependent upon instrument response.
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The modal value of the distribution (3.2) is given by

X de = 21n NZ ‘ (3.3)

(See for example longuet-Higgins, 1952, pp 259-260.)

Note that equation 3.2 does not imply that zero-up-crossing
elevations have a Rayleigh distribution. Zero-up-crossing elevations
are a sub-set of crest elevations, generally including independent,
higher values of the set; so an assumption that the distribution of
zero-up-crossing crest elevations may be approximated by a Rayleigh
distribution is not unreasonable - but it has not been proved, except
for € = 0.

Expressions are derived by Cartwright (1958) for the moments of
this distribution, PN; in particular the first moment or expected

value is given by

_ 1/2 1 -1 1 -2 1 -3
M1 =(28) (1 + 2A19 8A29 + 16A39
5 =4 1 -5 _
- TEEAAQ + 256A59 cen) (3.4)
where 86 = 1n Nz
A1 =~ = (0.5772...
A2 = 1.9781
A3 = 5.4449
AA = 23.5615
A5 = 68.067
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Thus given a wave record with Nz zero-up-crossings and a maximum

1/2

crest elevation n, and equating n/mO with M. in equation 3.4 leads

1

to an estimate of mO.

Cartwright (1958) also derives the distribution of the second

1/

highest wvalue of x (where x is crest elevation/m0 2) and the mean,

Mi, of this distribution in terms of Nz, which may also be used to
estimate my given a wave record. Cartwright (1958 para 4) examines
the effect of correlation between grest elevations and shows that
unless N is very small or the spectrum particularly narrow the effect
is slight, provided that the second highest crest height is taken to
mean the highest except for the highest crest itself and m waves on
either side of it, where the crests have m-dependence. In practice
this condition is approximated by selecting the second highest crest

from all crests outside the zero-up-crossings wave containing the

highest crest.

3.2 Present I0S technique of estimating significant wave height

This technique, called the  “Tucker/Draper’ method, for
estimating m, and hence significant wave height is based upon the
above consideration of crest elevation distribution applied to an
analogue wave record covering about 15 minutes. (See Tucker 1961,
and Draper 1966, or Tann 1976 for a more detailed description.) This
method assumes that the analogue wave trace is statistically
symmetrical about the mean water surface, and it uses the average of

the highest crest and deepest trough - assumed independent - as an

estimate of the expected highest crest in the given record 1length
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from which to calculate My using equation 3.4, and hence tc make an
estimate of hS (=A~%0). A second estimate of hs is ohtained from the
average of the second highest crest and second deepest trough in the
record (outside the zero-up-crossing wave containing the highest and
deepest values): and the significant wave height is taken to be the
mean of the two estimates.

The Tucker/Draper method of estimating significant wave height
from the rtwo Thnighest and two lowest values on a wave trace was
devised to cope with analogue wave records. With the introduction of
digitally recording instruments, more efficient methods will replace

it.

3.3 Standard error of the Tucker/Draper estimate of significant wave
height

An advantage of the Tucker/Draper method is that the mean water
surface does not have to be determined. A disadvantage is that the
standard error of the estimated significant wave height has not been
derived, because of the difficulty of determining analytically the
covariance of the highest and second highest crest elevations; but an
estimate can be obtained using simulated data. (Standard errors of
estimates from one or two highest values or from one or two second
highest wvalues can be derived theoretica%ly, examples are given in
Table 3.1.)

Suppose that in a record with Nz zero—up—-crossing waves, A and C
are the maximum crest elevation and deepest trough depth, and B and D

are the second hizhest and second deepest values - all measured from

13
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1/2

0 . Then the

the mean water surface and normalised wusing m
Tucker/Draper estimate of significant wave height, hs’ is given by

o~

hs/hS =[(A+C)/M1 + (B+D)/Mi]/4 (3.5)

where M1 and Mi are the expected values of the highest and second
highest crests respectively, and are functions of the given NZ.

Therefore

S.E.(hs/hs ) = [(varA+varC)/M12 + (varB+varD)/Mi2

1/2

+ Zcov(AB)/MlM' + 2cov(CD)/M1Mi] (3.6)

1
The covariances (cov) of the other combination of A, B, C and D are
zero. The variances (var) are given by Cartwright (1958), the values
of cov (AB) and cov (CD) are equal and can be estimated from values

A, B, C and D obtained from simulated Rayleigh distributed crest

heights, and hence an estimate of S.E.(hs/hs) can be derived.

TABLE 3.1

Method of estimation  Number of zero-up-crossing waves

32 64 128 256
from A 0.152 0.130 0.114 0.101
from A+C 0.107 0.0922 0.0807 0.0710
from B 0.126 0.104 0.0883 0.0770
from B+D 0.0893 0.0735 0.0624 0.0544

Standard error of
estimated significant wave hf./significant wave ht.
(i.e. S.E.(hs/hs))

maximum crest elevation in the record

where A
B: elevation of second highest crest
C
D

deepest trough depth

¢+ depth of second deepest trough
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simulated values and equation 3.5. The efficiency of the
Tucker/Draper method can be obtained from the estimate of standard
error (see Appendix A). Results from a simulation of two sets of
8192 values are given in Table 3.2, the covariance and correlation
between the highest and second highest crests are given in Table 3.3.

The rather large differences in covariances estimated from the
two data sets, shown in Table 3.3, suggest that insufficient numbers
were simulated to give a good estimate of covariance and correlation,
but the covariance terms in the expression for the standard error are
only about half the variance terms, so the results in table 3.2 can
be expected to be more accurate. Table 3.2 shows that the standard
error of ﬁs/hS from the Tucker/Draper method is about 0.06, depending
upon Nz’ and is very close to the standard error obtained using only
the two second highest excursions (i.e. the mean of the second
highest crest and second deepest trough) which is given in Table 3.1.

This analysis assumes Nz is constant; in fact it 1is a random
variable. However, Tables 3.1-3.3 show that large changes in Nz give
quite small changes in the standard error of estimates, and the
assumption would seem to he justified.

A standard error of about 6% of hS seems generally acceptable if
these estimates of h are to be combined, for example into a

)

histogram of annual distribution, but when considering individual

estimates it 1is rather large, So the Institute of Oceanographic
Sciences, when processing a yvear’s records, usually takes the few
records with the highest Tucker/Draper estimate of hs and

recalculates hs by directly estimating the surface variance.
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TABLE 3.2

Method of Estimation Number of zero-up-crossing waves
32 64 128 256
from simulated data using (3.5) 0.0876 0.0719 0.0610 0.0533
frg?m&Eég%dwéggacov. from 0.0878 0.0732 0.0630 0.0553
Efficiency (%) 45 34 23 15

Standard error of Tucker/Draper estimates of hs/hS

TABLE 3.3
Number of zero-up-crossing waves (Nz)
32 64 128 256
Covariance

from simulated data set 1 0.0845 0.0645 0.0605 0.0491
" " " set 2 0.0722 0.0609 0.0454 0.0430

mean of two sets 0.0783 0.0627 0.0530 0.0461

Correlation coefficient
(mean of two sets) 0.63 0.66 0.65 0.74

Covariance and correlation between highest and
second highest crest elevation in Nz zero—-up-crossing waves,
estimated from simulated data.
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3.4 Wave height distribution

The analysis of wave records discussed so far, including the
estimation of significant wave height., has only been concerned with
the distributions of surface elevation and crest elevation about the
mean level. The distribution of wave height (crest to trough) poses
a more difficult problem. The distribution of crest elevation is
derived from a consideration at a random instant of zero first
derivative and negative second derivative of surface elevation: wave
height requires the introduction of a time scale or a period
distribution.

For example Cramer and Leadbetter (1967) derive the following
expression for the mean crest-to-trough height (FC):

2 1
hC = (27rm2 /m4)

/2

Taking zero-up-crossing wave period TZ = (rnolmz)l/2 and crest-to-

/2

trough wave period TC = (mZ/mA)l gives

~ 1/2
hC = (27) hs/4TCTZ
. . _ 2 1/2
or in terms of the spectral width parameter ¢ = (l—m2 /mOmA)
— 2
b= (27(l- e*)]1/2h3/4 (3.7)

Lindgren (1972) gives an expression for the distribution of hc’

but it is not in a closed form, including integrals that can only be

solved numerically: this distribution is not Rayleigh unless € = 0.
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The distribution of zero-up~crossing wave height (hz) has not
been determined. It 1is generally assumed that hz has a Rayleigh
distribution. There 1is no theoretical justification for this
assumption, except for the case of € = 0; but analysis of wave
records usually seem to give results in reasonable agreement with it.
For example: Longuet-Higgins (1952 para 5) compares the distribution
of waves from records with the Rayleigh distribution and finds
“surprisingly close" agreement; Goda (1970) analyses wave records
simulated from various spectral formulae and finds that zero-up-
crossing wave heights follow a Rayleigh distribution for ¢ in the
range 0.03 - 0.86 irrespective of the spectral shape and cut-off
frequency; Borgmann (1973) analyses the highest 19 waves in each 20
‘minute record obtained during Hurricane Carla in the Gulf of Mexico,
and finds these high waves fit a Rayleigh distribution.

So assuming a Rayleigh for zero-up-crossing wave height hz:

2

Prob(hz<h) =1 - exp[—(h/hrms) ] (3.8)

where h is the root mean square value of h .
rms z
Longuet-Higgins (1952) shows that for a narrow-band sea (e¢= 0)
the mean height of the highest one third zero-up~-crossing waves
(h1/3) is given by

h = 1.416.. h =J2 h

1/3

rms

(Longuet-Higgins (op cit) works in terms of crest height, but for

e=0 wave height 1is twice crest height). Equating h to

1/3

leads to:

hs = h(mo)
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h = hSAJZ = zvbmo (3.9)

rms

i.e.
2

Prob(hz<h) =1 - exp[—2(h/hs)”] (3.10)

Recently Forristall (1978) and others have found that wave data

from storms - notably Hurricane Camille - do not appear to fit the

Rayleigh distribution given by equation 3.10, and that using this
equation over-estimates wave heights in the wupper tail of the
distribution. Forristall suggests using a two-parameter Weibull
distribution; but Longuet-Higgins (1980) finds that the Rayleigh
distribution with a root mean square value of 0.925 hsﬁvQ appears to
fit about as well as the two-parameter Weibull. Normalised values of
hZ are analysed in these papers, but judging by the source of the
wave data, the discrepancy from the generally-used Rayleigh
distribution might only occur with high wvalues of hz and of h

However, Longuet-~Higgins (1980) shows that this reduction in rms

value is not due to finite wave steepness.

3.5 Estimating maximum wave height assuming stationarity
Assuming the distribution of individual zero-up~crossing wave
height hz is given by equation 3.10, then the distribution of the

highest in Nz waves is given by

N
P = Prob(h__ <h) = (I - exp[—Z(h/hS)Z]} 2 (3.11)
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Using the approximation for x/k small:

(1 - x/k)k T exp(-x)

then if exp[-Z(h/hS)z] is small and N, is large

~ 2
Prob(hmax<h) = exp{—Nzexp[-Z(h/hS) 1} (3.12)

From equation 3.11

) /8,1
hmax/hs = {=0.5 1n(1 - P )}

/2 (3.13)

from which the median, percentiles etc. can be calculated.
Longuet-Higgins (1952) gives the mean value of the maximum for

large NZ as

M, = tanw)/2t? /2,

1
/B + Y /{4100 N )/2]

(3-14)
where vy = 0.5772 ...

A more accurate solution for the expected maximum of multiple
samples from a Rayleigh distribution is derived by Cartwright (1958),
and given in equation 3.4

The mode of the distribution of hmax is shown by Longuet-Higgins

(1952) to be given by

/v = tann)/2t? 32

mode’ s + 0[(1ln NZ)/Z]

(3.15)
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For large NZ it can be shown (see Annex D) that

/2 -3/2

/b, = 1(a N )72

hmode . /16 (3.16)

+ [(1n Nz)/Z]

Thus the differences between mean and mode of the highest wave 1is

given, from equations 3.4 and 3.16 by

- 1/2
(h oy = hmode)/hs = [(1n Nz)/z] .

1

{0.1443 = 0.1243[(1n Nz)/zl' } (3.17)

The value of this expression wvaries from 0.055 to 0.060 for Nz

between 50 and R 000.

Note that the distribution of hmax (equation 3.12) and of

maximum crest height (equation 3.2) are similar, with the most likely

values given by equation 3.4 and .15, i.e.

~ 1/ /2
m

2 1
ode ~ 0 (21n Nz)

(crest max)m

= h (ln N )1/2/2~&
s 2

and

1

1/2
(h h(ln N ) A2

max)mode

Thus the assumption of equation 3.10 fbr the distribution of hZ
leads to the most 1likely wave height heing twice the most likelv
crest height. Similarly the expected maxinmum hz is twice the
expected crest height. This implies a very hisgh correlation between

a crest height and the following trousch depth, which sugeests that
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the distribution (3.10) over-estimates maximum wave heights -
supporting the contention of Longuet-Higgins (1980) that the Rayleigh
distribution for hz has a root mean square value less than the hs/v@
implied by (3.10). Longuet-Higgins (1980) estimates a value
corresponding to 0.925 hsﬁv@ from hurricane data. If generally
correct this implies - from equation 3.17 - that the wusually quoted
most likely highest wave height is in fact closer to the expected
value.

Generally the most likely maximum wave height during a three-
hour period, h is estimated - from equation 2.3 - and used

max,3hr’

for further, long-term analysis. The method of deriving hmax,3hr
assumes that hS is constant for the three hours. A method
introducing a varying hS has been proposed by Nolte'(1974). He
assumes that hS varies linearly between observations - but ignores
any change in wave period. This method should give better results
when the variation in hS during each three hour period is within the
bounds of the three hourly observations. Assuming independence of
hourly observations within a three hour period, on average 177 of the
three hour periods would have hS for the inner two hours within the
bounds of the outer two values. Correlation between the observations
would increase this percentage. Taking hourly data from a Shipborne
Wave Recorder on the Morecambe Bay Light Vessel, from 5th January to
the 22nd February 1957, the proportion was found to be 30%. So
Nolte’s method would show some improvement with roughly a third of
the data, but the extra effort is probably not worthwhile. Moreover,
the present method, assuming hS is constant, leads to conservative

- j.e. higher - estimates.
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3.6 Conclusions

Significant wave height, hs, is defined in terms of surface
elevation (equation 2.2), and not in terms of crest-to-trough wave
heights. Thus enabling an estimate of hs to be determined from a
15-20 minute record using the theory developed by Cartwright and
Longuet-Higgins for the distribution of the highest and second
highest crest elevation.

This ‘Tucker/Draper’ method, employed by the Institute of
Oceanographic Sciences, was developed to facilitate the manual
processing of analogue wave records. A simulation exercise indicates
that the standard error of the estimate of hS is about 6% and shows
that the method has a rather poor statistical efficiency (see Table
3.2). It is being replaced by more accurate methods with the
introduction of digitallyv recording instruments.

The distribution of crest-to-trough wave height is less
tractable than the distribution of crest elevations. Lindgren (1972)
has solved this problem, but the solution is not readily applicable;
even he has not tackled the theoretical distribution of zero-up-
crossing wave heights.

Generally zero-up-crossing wave heights, hz’ are assumed to have
a Rayleigh distribution with a root mean square value of hsAJQ.
During the last few vyears some doubt has been cast upon this
assumption, with data showing that this distribution over-estimates
wave heights in the upper tail. Forristall (1978) suggests that a

two-parameter Weibull distribution should be wused, 1instead of a

23 Section 3



Rayleigh, but Longuet-Higgins (1980) shows that a Rayleigh
distribution with a rms of O-925hsh/? fits Forristall’s data as
closely as a Weibull distribution.

The principal use of the Rayleigh distribution for hz seems to
be to derive from hS the most likely highest wave in three hours,
hmax,3hr' This modal value is about 6% less than the expected highest
wave, which 1is comparable to the reduction of wave height resulting
from Longuet-Higgins suggested value of rms. Thus if this suggestion

is correct, then the values derived for return values of hma e

x,3hr ar

the expected highest and not the most likely highest, the difference

for engineering purposes is perhaps not important.

Section 3 24

et AT R R AR < < 5 ot 1 e



4. PRESENT METHOD OF ESTIMATING RETURN VALUES -

LONG TERM STATISTICS

4.1 Basic Method

The Institute of Nceanographic Sciences normally records 15-20
minute wave traces at three hourly intervals, from which are
estimated the significant wave height (hg) and the most likely
highest wave in a three hour period (h ), obtained using the

max, 3hr

method described in Section 3. Given these estimates of hS and
h for a year or more, then N-year return values are determined
max, 3hr ’
by fitting a distribution to the data, and extrapolating into the
tail of the distribution to the height with a cumulative probability
corresponding to once in N years, from equation 2.1.

Sometimes the return value of h is obtained by first

max, 3hr

estimating the return value of hS and its associated value of zero-
up-crossing wave period. TZ, from which the number of waves in three
hours 1is obtained, and then using equation 2.3. The value of T 1is

4

determined either visually from a ‘scatter plot” of hS: Tz or by
assuming a wave steepness: because of the form of equation 2.3, the
choice of Tz is not critical.

The method was first described by Drager (1963) when a log-
normal distribution was proposed for the long-term distribution of
wave height. Since then, a three-parameter Weibull distribution has

generally been found to give a hetter fit, but Saetre (1974) decides

that a Fisher-Tippett Tyve I distribution is better than a Weibull

Section 4

™o
w

- o e P O s -




distribution for data from Famita (in the northern North Sea at
57.5°% 3°E), while Fortnum and Tann (1977) find a Fisher-Tippett Type
IITI distribution fits values of hmax,Bhr from the Seven Stones Light
Vessel (near SOON,60W). These distributions are defined in
Appendix C. There 1is no theoretical justification for choosing any
of these distributions; the one which appears to give the best
straight line when the data are plotted on appropriately scaled paper
is used. Thus the choice of distributions has been limited to those
for which plotting paper can be constructed.

The present method does not plot all the data. The cumulative.
probabilities of ‘data in half metre sets are evaluated - e.g. 0.79
less than 6 m, 0.82 less than 6.5 m... - and these values are
plotted. The straight line is fitted either by “least squares” or by
eye — often the points corresponding to the lower wave heights do not

appear to fall on a straight line, and a line is then fitted through

only the higher points.

4.2 Discussion of method

This method has a number of practical advantages: it is simple
to apply and it includes a visual representation of the data.
However, for wvarious reasons it is unsatisfactory. The major
drawback is the lack of justification for the choice of distribution;
how well the data appears to fit the chosen distribution, is no
criterion for how good a fit can be expected into the tail of the
distribution. Goodness-of-fit tests are too weak to be of any

practical wvalue. There can be no statistical justification for
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extrapolating from one year’s data to the fifty-year return value (as
is often done). However, if the result seems reasonable, compared for
example with an estimate derived from the fifty-year return value of
wind speed, then it suggests that the data offer no reason why the
estimate is wrong.

There are other statistical errors in the present method - but
they seem unimportant compared with the choice of distribution. They
include using the 0.5 metre cumulative values rather than the full
data set, and using a least squares fit when the data are neither
independent nor normally distributed - so confidence limits for the
regression line are also inappropriate. There is a further problem
of plotting position: Gumbel (1958 para 1.2.7) advocates that the
mth ranked value of n values should be fitted at a probability of
m/(n + 1); and that for grouped data the mean value of the mth to
(m + k)th observations should be plotted at m(m + k)/(n + 1). The
method used in the present method of plotting at fixed height

increments (of 0.5 m) gives undue weight to the higher values, even

resulting in a plotted value for a 0.5 m step with no observations.

4.3 Effect of correlation of three-hourly estimates of hs

Another statistical problem is raised by the possible
correlation of successive three-hourly values of significant wave
height. Even if they are correlated, the method of estimating the
N-year return value from the cumulative distribution function using a
probability from equation 2.1 is still applicable, i.e. the value

exceeded on average once in N years will be obtained, but the
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distribution of exceedances about this mean value of N-years will be
different. However, if the N-year return value is defined in terms
of that height which is exceeded on average during one storm or 1
year in N, then the effect of correlation is to change the N-year
return value.

Suppose, for sake of argument, that the larger values of
significant wave height always occur in pairs, then the 50-year
return value of 3-hourly hS is the 100-year return value for pairs,
the 50-year return value for pairs would be less. Similarly any
positive correlation between waves, causing bunching of the high
waves, will reduce fhe N-year return value of wave height in a bunch.
To derive the precise return value of wave height in a bunch or in a
storm requires a knowledge of the correlation of three-hourly values
of hs , and this is not known - it is not even known whether the
correlation Ais a function of wave height. Other methods such as
analysis of extremes (described in Section 7 ) or a ‘peaks over
threshold” model (see for example NERC, 1975, para 2.7) might be
used.

Tann (1976) examines the effect of grouping of three hourly
values of significant wave height during a 50-year storm upon the
estimate from those wave heights of the most 1likely highest wave
during the storm. Assuming that storms always last for D hours, and
that significant wave height is constant‘throughout, then the 50-year
return value of significant wave height in a storm, hD’ is given by
extrapolating the cumulative distribution of significant wave height

to a probability given by
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P =1 - Dhr/50vr (4.1)

The value of hD decreases as D increases. bhut the number of waves in
D hours increases; and these two effects tend to compensate when
h is estimated from equation 2.3 - assunin zZero-up—-crossin
max,Dhr 1 s P 8

period is constant during the storm. In Tann’s example - using Famita

data fitted to a 3-parameter Weibull - he finds h % .Dhr slowly
)]
decreases with increasing D, with h 3% = or 1.1 m -~ less than
max, l15hr
h . However, the assumptions that storms always last for D
max, 3hr l

hours and that siznificant wave height and wave period are constant
throughout seem too narrow to draw any general conclusions concerning

grouping, let alone correlation effects.

4.4 Correcting for hetween-year variations

Because the estimates of N-year return wave heights are based
upon so little data - usually only for one vear - the present method
includes an attempt to adjust the results, taking into account any
climatic variation during the year of recording which can he detected
from any nearby long series of wind measurements. The mean wind
speed for the vyear 1is often wused. For example in Draper (1976),
because the average of the hourly mean wind speed at the Dowsing
Light Vessel 1is estimated to be 7% lower during the year of wave
measurements than the long-term annual average, it is sugeested that
recorded wave heights would have been ahout 10% lower than average -
the relationship between wind speed and wave height is that proposed
by Darbyshire (1963). Sometimes the number of hours or days of gales

is used as a measure of climatic storminess.
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An analysis of 50-year return values of hmax,3hr for five years
of data from Seven Stones Light Vessel by Fortnum and Tann (1977)
shows a range in the estimates from each year’s data of 24.4 m to
28.8 m. Table 4.1 gives the five values together with estimates from
Fortnum and Tann of the corresponding mean wind speed and the maximum
wind speed each year at the nearby Isles of Scilly during the years
of recording (which did not all commence on Ist January) . No

correlation 1is evident between return wave height and either mean

wind speed or maximum wind speed.

TABLE 4.1
Seven Stones L.V. Isle of Scilly
50-yr return mean wind max wind

Year value hmax 3hr speed* speed*
(m) (m/s) (m/s)

1968 24.4 5.6 19.1
1969 24. 4 5.5 23.7
1971/72 27.5 5.6 19.1
1972/73 24.7 5.9 21.8
1973/74 28.8 5.4 23.2

Comparison of wind speed and wave height
(Values from Fortnum and Tann (1977))
*three hourly synoptic values (excluding winds from
050° to 100 ) except for 1972/73 when adjusted one
~hourly anemograph values were used.

Painting (1980) investigates the connection between wind speed
and high wave heights at Ocean Weather Station India. He compares
50-year return value of wind speed and of wave height for the vyears

1957-74 (obtained from three-parameter Weibull analyses of three

Section 4 30

b iy A R e e e



vears data, running through the series from 1954 to 1975: wave
heights from visual observations). Painting finds '"little
correlation" -as evidenced in Figures 4.1 and 4.2 which show plots of
5-year wave height against 50-vear wind speed and amainst annual
mean wind speed, using values taken from diagrams in his paper.
Therefore, whilst accepting the need to adjust estimates of
return wave heights to allow for climatic variations during the vears
ot recording, the present methnd of doine this seems unsatisfactory:

and further research is needed to try to improve upon it.

4.5 Tack of Confidence Limits

The present method does not include anv estimate of confidence
limits, and it seems most unlikely that any could »e produced for
this method of fitting cumulative half metre probability values by
least squares. However, assuming that the chosen distribution is
correct, then limits could be estimated if the distribution were

fitted to all the data, using maximum likelihoecd estimators.

31 Section 4



FIGURE 4.1
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Figures 4.1 & 4.2: From analysis of wind and visual wave data

at OWS "I’ for 1956-1975 by Painting(1980).

50-year return values: 3-parameter Weibull,
fitted to data for each 3-years running.
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L.4 Conclusions

The method of estimating low=-prohabilitv return values of wave
height "y fittine one or two vears” data to a distributinn is
unsatisfactory. Mainlv hecause there is no theoretical justification
for the choice of distributinn so that considerable error can occur
when extrapolating far into the tail of the distribution to determine
the 50-year or 100-vear return value.

Confidence limits are not produced for these estimates of return
value. These could he derived, with slight modification to the
method of fitting the distribution, bhut they would be conditional
upon the choice of distribution being correct, so would not take into
account the larmest source of error.

If it is necessary to derive estimates of return values from
only one vear’s data then it would anpear sensible to attempt to
relate the wave condition during that vear with wind conditions that
vear and thence with the wind climate. However, the data available -
such as that in Table 4.1- indicates that the vpresent method of
working with mean wind speed is unsatisfactory. The connection

£

between wind speed and wave height is far too complex for such a

simnlistic approach.
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5. ESTIMATING RETURN VALUES OF WAVE HEIGHT FROM

WIND SPEED

Because of the connection between wind speed and wave height and
because there are many more observations of wind speed than of wave
height, several methods have been developed for deriving return
values of wave height from wind speed data. There are various
formulae in the literature for estimating wave height given wind
speed together with its fetch and duration, e.g. Darbyshire and
Draper (1963); and a method frequently used to estimate return value
of wave height is to apply one of these formulae to an estimated
return value of wind speed. Another method, being developed by
N. Hogben at the National Maritime Institute, is to use the few joint
observations of wind speed and wave height that are available to
obtain a relationship between the distribution of these parameters
thus enabling the wave height distribution - and hence return values
- to be derived from any set of wind data. A third approach is to
use a wave model with meteorological storm data to generate hindcast

wave heights which are then analysed to give return values.

5.1 Estimating return values of wind speed

There are numerous sites in the U.K. at which anemograph records
have been obtained regularly for many years - often for more than 20
years, sometimes for 50 years; and various analyses have been carried
out to determine return values of wind speeds, notably analyses of

annual maxima by Hardman et al (1973) - using a Fisher-Tippett Type I
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d*stribution with parameters estimated by the method of moments.
(Extreme value analysis is described in Section 7.) The number of
years of records available at U.K. stations and the return values
estimated from them are given in Tables 3.8 and 3.10 of Shellard
(1976). There are problems in analysing wind speeds: anemometers
are at different heights above the ground, instruments have sometimes
been changed or moved over the years, the effects of topography can
be important but are difficult to quantify, the method of analysing
annual extremes ignores seasonal variations and possible differences‘
in wind speed distributions from different directions. However,
because of the many years of data and because some of the
inconsistencies in the data can be resolved by mapping the estimates
of return values, the accuracy of these estimates is undoubtedly
better than those for waves - although no confidence limits have been
produced.

Determining return values of wind speed over the sea is a more
dubious process. There are a few series of records from Ocean
Weather Stations and from Light Vessels, and in recent years frcm
of f-shore platforms, but the bulk of wind data are observations from
ships of opportunity. The U.K. Meteorological Office has used these
data to prepare a chart of the 50-year return value of hourly mean
wind speed over the North Sea and U.K. waters, published by the
Department of Fnergy (1977) - a revised version is due to be produced
shortly. The method of analysing the wind data to obtain this chart
has not been published, but the method used to produce the revised

version is based, according to D.J. Painting (private communication),
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upon fitting a three parameter Weibull to obtain the 5-year return
value, then using the ratio between 50-year and the 5-year return
values determined from coastal sites data.

The UK Meteorological Office finds, from anemograph records,
that there is a constant ratio during storms between return values of
the hourly mean wind and return values meaned over other periods; the

ratios are given, for periods up to 24 hours, in Department of Energy

(1977, Table 2.3).

5.2 Estimating wave height given return values of wind speed

The problem of calculating the return value of wave height from
the corresponding wind speed is two-fold: an estimate of fetch or
duration is required and a formula giving wave height from wind speed
has to be selected. The choice of formula can 1lead to quite
different answers for the high wind speeds associated with the
50-year or 100-year return value.

For example, Table 5.1 shows estimates of 50-year return value
of significant wave height deduced from a 50-year return value of
hourly mean wind speed of 35 ms_1 and a fetch of 120 km (appropriate
for example to deep water off Douglas, Isle of Man where the maximum
fetch is from the E.S.E.). Three formulae are used to estimate wave
heights in this table: that for '"coastal waters'" given by Darbyshire
and Draper (1963), one by Bretschmeider (1973), and that derived from
the JONSWAP results by Hasselmann et al (1976) and given by Carter
(1981). The 50-year return value of significant wave height is

9.2 my, 7.1 m or 5.6 m, depending upon the choice of formula.
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Results are given in Table 5.2 for a duration-limited wave with
a 50-year return value of hourly mean wind speed of 42 ms
(appropriate to 0.W.S. India at 59° N, 19° W) . Wind speeds meaned
beyond 24 hours were obtained by extrapolation of the figures given
in Table 2.3 of Department of Energy (1977). Table 5.2 indicates a
50-year return value of significant wave height of about 18.4 m using
the formula for "oceanic waters'" given by Darbyshire and Draper
(1963) and 16.4 m using Bretschneider, and 18.6 m using the JONSWAP
results - but the extrapolation required to obtain the mean wind
speeds for such long durations and the corresponding fetches - of
1000 - 2000 km - for'the Bretschneider and JONSWAP values makes them
questionable. A striking difference is seen in Table 5.2 between
wave heights from the three formulae for the same duration. In the
open ocean a wind of 42 ms—1 would not suddenly get up over a flat
calm sea, and-those differences for short durations must reflect the
allowance 1in the formulae for both the sea state prevailing at the
site at the initial time and the swell waves in the general vicinity.
The JONSWAP results give a significant wave height, for a wind Qf
42 ms_1 for one hour, initially over a calm sea, of only 1.8 m (A
measure of extrapolation is involved in the derivation of this value,
because the wind speed during the JONSWAP experiment never rose above

20 ms"l.)
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TABLE 5.1

50-year mean duration of Significant wave height (m)
wind speed mean wind Darbyshire & Bretschneider JONSWAP
(m/s) (hr) Draper(1963)+ (1973) (Carter,1981)
35.0 1 3.2% 3.2% 1.4%
33.6 3 8.8% 5.5% 2.9%
32.6 6 9.2 7.1 4.6%
31.4 9 8.7 6.8 5.6
30.5 12 8.3 6.6 5.4
+Formula for "coastal waters"
*Duration-limited, otherwise fetch-limited with fetch of 120 km
Estimates of 50-year wave height off Douglas,IOM.
TABLE 5.2
50-year mean duration of Significant wave height (m)
wind speed mean wind Darbyshire & Bretschneider JONSWAP
(m/s) (hr) Draper(1963)+ (1973) (Carter,1981)
42.0 1 9.6 4.1 1.8
40.3 3 17.4 7.1 3.7
39.1 6 18.4 9.9 5.6
37.7 9 17.4 11.5 7.5
36.5 12 16.8 12.7 8.8
35.0 18 15.7 14.5 11.1
33.6 24 14.6 15.6 13.0
32.3 30 13.5 16.1 14.5
31.2 36 12.6 16.4 15.7
30.1 42 11.8 . 16.4 16.8
29.1 48 11.0 16.3 17.7
28.3 54 10.5 16.2 18.6
27.4 60 9.8 15.8 18.0

+Formula for "oceanic waters"

Estimates of 50-year wave height at OWS India
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5.3 Method proposed by Hogben

Hogben and Miller (1980) outline a method of estimating wave
height distribution from wind data. The first step is to find
expressions - from available joint measurements of wave height and
wind speed - for the mean wave height h (either significant wave
height or visually observed values) and the variance of wave height
a 2 in terms of wind speed w. Wave height is separated into sea and
swell components (hSea and hswell)' They propose the following

numerical relationships:

h = aw"
sea
=2 _ T 2 2
h - (hsea) ( swell)
i.e.
= — 2 n,2.1/2
h [(hswell) + (aw )] (5.1)
and
G = hswell(b + cw) (5.2)
where h , a, b, ¢ and n are empirical coefficients
swell

Values for a, b, ¢, and n are given in Hogben (1979, Fig. 8b &
c¢) for (i) open ocean sites, from analysis of data from OWS India and
Seven Stones Light Vessel, and (ii) more sheltered sites, from
analysis of data from Shambles, Varne, Owers, and Mersey Bar Light

Vessels. Hogben and Miller (1980) suggest using a value for hswell
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of 2 mand 1 m, for (i) and (ii) respectively. These values for the
empirical coefficients - for wind speed w in knots, wave heights and

standard deviations in m - are given in Table 5.3.

TABLE 5.3
(i) Ocean (ii) More sheltered

Sites Sites
Swell(m) 2.0 1.0
a 0.033 0.023
b 0.5 0.75
c 0.0125 0.01875
n 1.46 1.38

Values for coefficients in equations 5.1 and 5.2
with wind speed w in knots and wave height and

standard deviation in metres.

The second step is to assume that the conditional distribution
of wave height ~-given wind speed - is a gamma distribution, and to

determine the two parameters of this distribution from the mean and
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variance (h and ¢ from equations 5.1 and 5.2).

The gamma distribution is given by:

b+l b
c

p(x) = x expl-cx]/ I'(b+1)

with the mean and variance given by:

[

mean (x) (b + 1)/c

M + 1)/c?

var(x)

Then, given an& histogram of wind speed distribution, the
distribution of wave height for each wind speed bracket is summed to
give a marginal wave height histogram.

Finally, this wave height histogram can be fitted to a
distribution,. for example by plotting on Weibull paper, and
extrapolated to determine the 50-year return value. Given regular
wind observations (e.g. three-hourly) then the usual formulae can be
used to determine plotting positions and the probability of the
50-year return value. If wind data are not at regular intervals and
possibly with spatial variation, such as observations from ships of
-opportunity in a 1° square, then the plotting positions and the
return probability cannot be accurately defined; and an estimate
would have to be made assuming a knowiedge of temporal and spatial
dependence of wave height. Hogben suggests that it is common
practice to assume uniform density of observations in time and space,

and to use for the return probability the reciprocal of the estimated
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number of observations during the return period. This requires the
observations to be independent. More information is needed about the
data set to judge whether this is satisfactory.

This method has been developed by Hogben wusing a considerable
quantity of measured wind and wave data. His results in general seem
to justify the use of equations 5.1 and 5.2 and of the gamma
distribution. However, there is 1little evidence that these
assumptions are valid at very high wind speeds and wave heights, so
the estimates derived of fifty-year return wave heights are of
questionable validity. Hogben and Miller (1980, para 4) admit that
"the reliability of such ‘extrapolation’ methods ... can only be
established by wvalidation against high quality data based on
measurements at fixed stations'". As indicated in Hogben(1980,para
3.1.2), investigations aimed at establishing such wvalidation are
being undertaken by NMI in collaboration with the Meteorological

Office.

5.4 Model methods

The use of formulae connecting significant wave height with wind
speed, fetch, and duration has been extended into the formulation of
significant wave models; but in recent years more emphasis has been
given to the development of spectral models, estimating the wave
energy in frequency bands: an early example was that by Darbyshire
(1961). With dincreasing sophistication of the models, the demands
upon the computer became too great, and led, in particular, to the

development of a parametric wave model for the northern North Sea.
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This North Sea Wave Model (NORSWAM) is described by Ewing et al
(1979). The wind fields over the North Sea and adjacent waters were
determined from synoptic weather charts during 42 storms, chosen as
representative of all storms in the North Sea between 1966 and 1976.
(Ref: Harding and Binding, 1978.) Wind waves were determined at grid
points using a parametric wave model derived by Hasselmann et al
(1976), while swell Qaves were advected along straight rays, using
energy transfer between sea and swell given by Gunther et al (1979).
The maximum values of significant wave heights thus determined at
each grid point during each of the 42 storms were analysed by Ewing
et al (1979), using a Fisher-Tippett Type I distribution, to derive
estimates of 50-year return values. Results, shown in Figure 5.1,
are about 1-2 m higher than significant wave heights corresponding to
the maximum wave heights given in Department of Energy (1977).

NORSWAM was a lengthy and expensive project, although not so
lengthy or nearly as expensive as obtaining real wave data throughout
the area for ten years! Some uncertainty was introduced into the
results by the selection of about one third of the storms that
occurred during the period 1966-1976. Further work with the m&del
could lead to improved results if the grid size for wind input
outside the North Sea were reduced from 300 km to the 100 km used
inside the North Sea; and the model could be extended to cover the
southern North Sea if refraction of swell waves and dissipation of
energy through bottom friction were included.

Considering the completely different approaches used to estimate

the 50-year return values given in Department of Energy (1977) and by
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NORSWAM. and the limitations of both methods, there is a surprisingly
good measure of agreement in the results for the northern North Sea.
Further estimates could be extracted from the NORSWAM' results,

for example return values from specific directions.

Figure 5.1 50-year return value of wave height

significant wave height, from NORSWAM study (Ewing,1979)
- - - most likely highest wave in a 12-hr storm (D.En.,1977)

(Copy of Ewing, 1979, Fig.8)
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Other wind/wave models might be used. A comparison 1is being
made by J.A. Ewing (personal communication) between the NORSWAM model
and that used by the Meteorological Office (described by Golding,
1978), using wave data measured during March 1980 at a number of
stations.

A review of models, including a discussion of the relative
merits of spectral models and parametric methods, 1is given by
Ewing(1980). He concludes that estimates of significant wave height
from models are generally adequate for engineering purposes, but
that, since both approaches are based on linear or weakly non-linear
assumptions, further work 1is necessary on the applicability of the

results to extreme sea conditions.

5.5 Conclusions

There is so much wind data available compared with the amount of
wave height data that estimating return wave heights from the wind
data would seem to be a reasonable method. However, in practice the
benefit of the quantity of wind data seems to be balanced out by
complexity of the wind speed/wave height relationship, with rafher
small errors in wind speed estimations giving large errors in wave
height. As expressed by Overland (1979): "The importance of
accurate winds on the final wave calculations is demonstrated by a
casual investigation of significant wave height tables. An 1increase
in wind speed from 10 to 13 ms_1 (i.e. 5 knots) results in an

increase in significant wave height from 2.5 to 4.0 m".
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The 50-year return wave height estimated from a 50-year return
value of wind speed depends critically upon the choice of formula -
none of which was derived from observations with such high wind
speeds. Moréover the estimates of 50-year return valué of wind speed
over the open ocean are themselves questionable - although it seems
reasonable to wuse the spatial distribution of these estimated wind
speeds as a guide to relative severity of storm conditions.

The method proposed by Hogben, involving the determination of
wave height distribution from wind speed data, is being evaluated at
the National Maritime Institute, with the co-operation of the
Meteorological Office. Hogben acknowledges that validation tests
against high quality data are required. It seems possible that the
method will be more useful for describing the general wave climate
than for estimating extremes.

The analysis of hindcast data from wave models - which
incorporates the physics of wind/wave and wave/wave interaction -
would seem to offer the best method - although the cost and effort

involved are considerable.
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6. RETURN VALUES OF ZERO-UP-CROSSING WAVE HEIGHT

The distribution of the maximum zero-up-crossing 'wave height,
which was discussed in Sections 3 and 4 - with modal value given by
equation 2.3 - assumes stationarity of the sea surface during the

time p, i.e. it is the distribution of hm given significant wave

ax,p
height hS. The present technique of recording wave data at three-
hourly 1intervals assumes that the sea surface may be regarded as
stationary for about three hours. The highest wave that might occur
during a longer period, for example during a year, is not necessarily
given by equation 2.3 with hS equal to the largest value of
significant wave height during the vear. Not only 1is there a
distinct probability of a larger wave occurring during the three
hours with this value of hs’ but higher individual waves could also
occur at other times, with lower values of hs.

Assuming that three-hourly value of hs are independent and that
the highest waves within a 3-hourly period have a Rayleigh
distribution, then the distribution of maximum wave height is given
by

N

Prob(hmax<h) = ]:r{l - exp[—Z(h/hsi)Z]} i (6.1)

where Ni is the number of waves during the period when the
significant wave height is hSi and may be estimated as 3hr/TZj where
sz is the zero-up-crossing wave period. Thus, given a ‘scatter

plot’ showing the joint distribution of hS and Tz during a year, then
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the median or other quantiles can be determined. Note that no
allowance is made for the distribution of hs during the years, so
these results only apply to the time at which the measurements were

made, and cannot be used to estimate N-year return values.

6.1 Battjes’” technique

Battjes (1970) derives the marginal distribution of individual
zero-up-crossing wave heights, hz, from the joint probability
distribution of significant wave height and zero-up-crossing period.

This marginal distribution is given by

P(h_<h) = fProb(hz<h|hs).p(hS).th

where p(hs) is the p.d.f. of hS associated with a random wave - not
at a random time.

In practice, the integration is replaced by a summation,
Prob(hz<h|hs) is taken to be a Rayleigh distribution, and p(hs) is
estimated from the scatter plot. An estimate of the number of waves
during a three-hour period 1is 3hr/Tz, so the number of waves
associated with a particular value of hSi and period sz in the
scatter plot is nij'3hr/sz where nij is the number of occurrences of

h, and T
z

i from the scatter plot so

h|

and
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9 ni.szl
T Al - expl-2(h/h_p"1) ¥
P(h_<h) = o (6.2)

Xn,,T Tl
] ijzj

This is the probability distribution of individual wave heights
compared with equation 6.1 which gives the distribution of maximum
wave height. It cannot be used directly to estimate 50-year return
values, any more than equation 6.1, because it ignores the variation
of hs that would be observed over the years - and if, for example,
there was one isolated very high value of hS in the observed year
this would essentially determine the tailrof the distribution given
in equation 6.2.

Battjes” method for deriving the 50-year return value is to
compute values for P(hz<h) from equation 6.2 for increments of h (he
uses increments of 4 ft) up to about twice the maximum value of hS
(which is roughly the Il-year return wave height). A Weibull
distribution is then fitted to these values of (P,h) by plotting them
on appropriately scaled probability paper and fitting a straight line
which is extrapolated to give the 50-year return value. The relevant
probability is obtained from an estimate of the total number of waves

in fifty years, N The formula for this depends upon the precise

50°
nature of the scatter plot. If this plot is derived from three
hourly observations but expressed in parts per thousand, so the total

of the numbers on the plot plus the number of calms per 1000

observations add up to 1000, then - assuming 365.25 days per year
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N50 = 50 x 2.922 ; ; niszj
i ]
-1
= 146.1 3 3 n,, T .
and
P —

50 = 1=1/Ng

Battjes (1970) applied his method to data from Ocean Weather
Stations India and Juliet and from five Light Vessels around the U.K.
He fits a two-parameter Weibull distribution to these data by eye,
and gets values for the shape parameter close to 1.0 - between 0.93
and 1.06 except for Morecambe Bay data for which he gets 0.85. "Thus
implying that in general the long-term distribution of individual
wave heights is nearly exponential (Battjes, op. cit.)

The three-parameter Weibull is given by
0 h<A

C (6.3)

Prob(h <h) = { l-exp[-((h=-A)/B) "] h>A

where B,C >0.
The two-parameter Weibull is obtained from this with A = 0.
If the shape parameter C = 1, then 6.1 reduces to the negative

exponential distribution:

0 h<A

l-exp(-(h-A)/B] h>A (6.4)

Prob(hz<h) = {

Carter and Draper (1979) apply Battjes’ method to wave data from
Ocean Weather Station Alpha (620N, 330W), but fit a three-parameter

Weibull distribution and obtain a value for the shape parameter C of
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0.998 (a two-parameter Weibull gives 0.90). Parameter A and B are
1.65 ft and 4.69 ft respectively. Clearly the negative exponential
distribution cannot fit wave heights less than A, and must become
increasingly inaccurate as wave height decreases towards A; but a
negative exponential distribution appears to fit extremely well wave
heights above about 4 feet at 0.W.S. Alpha.

The Morecambe Bay records have recently been re-analysed by
Draper and Carter (198l1). A particular problem with this data set is

that observations were obtained hourly during daylight only, thus

WETRULL (LOWER LIMIT= 6.20a)
15. —¢ 15,
16. -k 16,
5. _F s,
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n

lPFob

Figure 6.1 Distribution of zero-up-crossing wave height
(Weibull scale)
from Morecambe Bay Light Vessel data, 1957.
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giving a highly correlated data set. The result of applying Battjes”
method to the three-hourly measurements (at 0900, 1200, 1500 and
1800z) are shown in Figure 6.1, with cumulative probability plotted
up to a wave height of 11 m on a Weibull scale. The wvalue for
parameter A of 0.2 m was determined by maximising the correlation
coefficient; parameters B and C, found by linear regression, are
0.7470 and 1.0093 respectively. (Fitting a two-parameter Weibull

gave C = 1.0858.)

20 v - T T ; Y
16 } X 4
. K
Wave x
x
K 4

18 | <
H=ight —

(35 -

(m)/
= . , .
] € 1@ 15 28
Prob (Heg.exp scale = -1n(1-P))

Figure 6.2 Distribution of zero-up-crossing wave height

(negative exponential scale)

from Morecambe Bay Light Vessel data, 1957.

Section 6 54



Using the scatter plot in Draper and Carter (1981) derived from
hourly data gave quite similar results, with A = 0.2 m, B = 0.7454 m
and C = 1.0152.

Using the scatter plot in Draper (1968) - i.e. that analysed by
Battjes (1970) - gives a value for C of 0.79 with a two-parameter
Weibull (compared with Battjes” value of 0.85 determined by fitting a
line by eye) and of 0.72 with a three- parameter Weibull. Therefore,
the large difference found for C by Battjes with that from the more
recent analysis seems to be due to inadequacies in the original
analysis of the Morecambe Bay Wave records, and not to Battjes choice
of a two—parameter Weibull.

The result from a scatter plot of three-hourly Morecambe Bay
data plotted on negative exponential scales is shown in Figure 6.2.
The fit up to 10 m appears very good. (The maximum value of
significant wave height in the data was 5.5 m.) The effect of

limiting the height of the data for this analysis is shown in Table

6.1.
TABLE 6.1
Limiting height(m) 50-year return value(m)
5 14.4
6 14.5
7 14.5
8 14.5
9 l4.4
10 14.3
11 14.1
12 13.9
13 13.6
14 13.4
15 13.2

Variations in estimates of 50-year return value of
zero-up-crossing wave height with upper limit of regression
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Pickands (1975) shows that the upper tail of many distributions
tend to a negative exponential distribution (see Section 8 of this
report) . But the distribution of individual waves is derived in a
rather complicated way from two other distributions: the Rayleigh
distribution and the unknown distribution of significant wave height.
Whether Pickands’ theory is applicable requires further research.
The many thousands of waves involved ensure that the data extend well
into the upper tail of the distribution, so an asymptotic limit would
seem to be appropriate. However, in practice, even with Battjes” .
‘cut-off’ at twice the maximum observed significant wave height,
there is a tendency for the values in the extreme tail to be
dominated by this one observed maximum; thus giving a Rayleigh
distribution for 1individual wave heights - which would eventually
tend to its own negative exponential distribution.

The negative exponential distribution fits the wave data so well
that it might be supposed that any distribution combined with a
Rayleigh distribution must have this shape, but this is disproved by

the Morecambe Bay data used by Battjes.

6.2 Conclusions

Estimating return values of extreme wave using the technique
proposed by Battjes (1970) makes several assumptions, notably that
three-hourly estimates of significant wave height are independent and
persist for three hours, and that, for a given significant wave
height (or surface elevation variance), zero-up-crossing wave heights

have a Rayleigh distribution; the effects of these assumptions have
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not been quantified. Battjes fits a Weibull distribution to the wave
heights, but analysis of various sets of Shipborne Wave Recorder
records indicates that a negative exponential distribution could be
used . It is possible that the work of Pickands (1975) on asymptotic
distributions of upper tails could be extended to justify
theoretically the use of the negative exponential.

In practice there is the problem of deciding the height limit of
data to use when fitting the distribution; Battjes’ choice of twice
the maximum observed significant wave height seems to be about right;
but results from Morecambe Bay data indicate that using a higher

value could seriously underestimate the 50~year return value.
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7. THE ANALYSIS OF EXTREMES

Extreme value theory is frequently used to estimate return
values of environmental parameters, such as wind speed, rainfall, and
sea level. Usually one of the three asymptotic extreme value
distributions of Fisher and Tippett is fitted to annual maxima. An
advantage of the method is that the distribution of the population
from which the maxima arise does not have to be known - but several
years’ data are required. In recent years sufficient wave data for

this method have become available at a few sites around the U.K.

7.1 The Fisher-Tippett Limits

Consider an independent, identically distributed sample, Xi’
size n. If the distribution of X (=P(X<x)) 1is F(x) then the
distribution of the largest in this sample is Fn(x). Fisher and
Tippett (1928) show that if there is a limiting distribution for the

extreme values in a sample (as the sample size tends to infinity)

then it must satisfy the following stability postulate:
n
F (amx+bm) = F(amnx+bmn)

where a_ and bm are constants depending upon m but not x, 1i.e.
the distribution of the largest in a samplé size mn must be the same
as the distribution of the largest in n samples size m.

(The variable amx+bm is called the reduced variate).

Fisher and Tippett (1928) further show that there are only three

possible solutions to this equation.
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These solutions are:

The Fisher-Tippett Type I distribution:

P(X<x) = F(x) = exp - exp(-(x-A)/B) B>0 (7.1)

The Fisher-Tippett Type I1 distribution:

P(X<x) = F(x) =20 x<A
-k
= exp - ((x-A)/B) x>A (7.2)
The Fisher-Tippett Type III distribution:
P(X<x) = F(x) = exp - ((A—x)/B)k x<A (7-3)
=1 x>A

These distributions are known under a wide variety of names.
The Fisher-Tippett Type I (FT-I) 1is also known as the Gumbel
distribution, the double exponential distribution, the extreme value
distribution and the extreme value type I distribution. It is the
most common of the three extreme value distributions and the 1latter
half of this section will be concerned almost entirely with
inferences based upon it.

The FT-II is also known as the Frechet distribution. It is not
as widely used as the FT-I, although it has been applied to wave
heights by Thom (1971). The transformation log (X-A) transforms an
FT-11 variable into an FT-I, 1if A dis known. Similarly the
transformation - log (A-X) will produce an FT-I from an FT-III

variable. The FT-III is closely related to the Weibull distribution.
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When choosing which extreme value distribution to wuse in
practice it is useful to know which, theoretically, is the limit of
which distribution. Technically any distribution whose limit is a
particular extreme value distribution is said to be in the “domain of
attraction’ of that distribution. A lot of work has been done on the
domains of attraction of extreme distributions and various conditions
have been produced for them (for details see Johnson and Kotz (1970)
or Galambos (1978)). However, for our purposes the following
description should be sufficient. Distributions that are in the
domain of attraction of the FT-II are all unbounded above and have
“heavy tails’, the best example (apart from the FT-II itself) is the
Cauchy distribution. All distributions In the domain of attraction
of the FT-III are bounded above, but this 1is not a sufficient
condition, there are many distributions that are bounded above that
have the FT-I as limit. The domain of attraction of the FT-I
contains distributions with and without upper limits, it is by far
the largest and contains all the “well known” distributions such as
the Weibull, the log normal, the normal etc. For this reason all the
discussion in the remainder of this section will refer to the FT-I
alone. One of the more useful criteria for determining to which
domain of attraction a distribution belongs is in terms of “positive
moments” (these are similar to ordinary moments but defined only for
positive x). If all the positive moments exist then the distribution
has the FT-I as 1its 1limit, otherwise it belongs to the domain of
attraction of the FT-IT or FT-III according to whether or not it is

bounded above.
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7.2 The Fisher-Tippett Type I Distribution

As given above the FT-I distribution is

F(x) = exp (-exp (-(x-A)/B)

The probability density function is given by

-1
f(x) =B exp[-((x=A)/B + exp(-(x-A)/B))]
A plot of this pdf with A =0, B =1 is shown in Figure 7.1 The
distribution is wunbounded and unimodal with the mode at x = A; the

median ( = the 2 year return value if used with annual data) 1s given

by

X(SO) = A-Bloglog?2

The lOOpth percentile is given by
X(IOOp) = A-Blog log (1/p) (7-3)
All moments exist and the mean and variance are

u =A+~vB (v is Euler’s constant = 0.5772)

02 =7r2B2/6

The parameters, A and B, are location and scale parameters
respectively. This means that whatever the values of A and B the
shape of the distribution remains constant, varying A causing a

location shift and B a scale change along the X-axis.
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7.3 Methods of Estimation

If p is P(X<x) the distribution function can be written
p = exp(-exp(-(x-A)/B)
Rearranging this gives
x = A-B log-log(1l/p)

Thus FT-I probability paper can be constructed and estimates of A and
B obtained. (Plotting positions are discussed in Appendix A).
The likelihood equations are
n

z: exp(-(x.-A)/B) = n
j=1 ]

n
2: (xj—A) [l1-exp(-(x.-A)/B)}] = nB
3=1 ’

These cannot be solved analytically but an iterative scheme is
easily produced (for details see Johnson and Kotz (1970)).

The maximum 1likelihood estimates are biased. However,
simulations have shown that this bias is small and the mean square
error is smaller than that for estimates derived from probability
paper. (For details of these calculations see Carter and Challenor
(1978)). It is therefore recommended that the maximum likelihood
estimators are wused for practical applications, possibly with a
correction for bias. Alternative estimators are the moments
estimators and while these are useful for quick initial estimates

they are not entirely satisfactory.
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Once the parameters A and B have been estimated it is a simple
matter to 1insert the estimates into equation (7.3) and obtain
estimates of return values. If maximum 1likelihood estimators are
used then these estimators will also be biased (with Seven Stones
data Carter and Challenor (1978) found that the bias in HSO was of
the order of 4%).

In a series of papers Lawless (1972,1973a,1973b,1974,1978)
considers confidence intervals for the FT-I. Most of these papers
are concerned with confidence limits that are conditionmal on certain
“ancillary statistics’ (i.-e. on some functions of the data).
However, in one paper (Lawless, 1974) he gives an approximation for
unconditional intervals. This approximation has been tabulated by
Challenor (1979). Tables are given there of confidence limits for A,

B, and X (where X(p) is the pth percentile) and

X(50)* %(98) (99)
prediction limits of X2, XlO’ X50 and XIOO (where Xn is the largest

in a future sample size n).

7.4 Seasonal Variation

Fisher and Tippett (1928) obtain their stability postulate by
assuming that the original data are independently and identically
distributed. 1In practice, however, the data are neither independent
nor identically distributed. Galambos (1978) considers the theory of
both non-independent and non-identically distributed data. This
theory, however, requires that the distribution of the original data

is known, which is rarely the case in practice.
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The problems caused by dependence do not seem to have a very
great effect and if samples are taken at large enough intervals the
dependence should not be important. However, it should always be
borne in mind that the data are not independent and that this may
have an effect, even if it is believed to be minor.

The problems of the data being non-identically distributed have
been considered empiriéally by Carter and Challenor (1978, 1981).
They split the year up 1into months and assuming the data are
identically distributed within these months they analyse them-
separately. An ‘annual’ distribution is then found by combining the

monthly distributions thus
12
P(X<x) =HFi(x) (7.4)

where Fi(x) = P(X<x) in month i.

This eqﬁation assumes that the monthly extremes are independent,
this may be called in question, but as there is little evidence
either way it is not an unreasonable assumption to make. The return
values obtained in this way are consistently greater than those
calculated from annual maxima. (However, Dickinson (1977) seems to
get contrary results, see Carter and Challenor (1981) for possible
reasons for this.)

Why does analysing the data as monthly rather than annual maxima
raise the return values? Partly this is due to the theoretical
difference given in Carter and Challenor (1981) but also - as
explained 1in that paper - it is because of extreme value theory: if

the distributions fitted to the monthly extremes are one of the
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Fisher-Tippett distributions then the distribution of annual maxima
derived frém (7.4) cannot be one. Although this explains why we
cannot get the same answers it does not téll us whether the results
obtained from monthly extremes should be greater than or less than
those from annual extremes. To investigate this problem and either
confirm or reject the hypothesis obtained from analysing data, a
Monte Carlo experiment was performed. (N.B. In the above discussion
the year was referred to as broken down into months, this need not of
course be the case, any interval which is short enough for wave
height to be considered stationary and long enough to ensure
convergence to the Fisher-Tippett limits and independence of maxima
could be used. There is no need for these intervals even to be of
the same size, as long as the components in (7.4) are weighted
accordingly.)

The simulation experiment was performed with the original data
having an FT-I distribution so as to avoid any problem with the
asymptotic limits not being reached (the maxima from samples of any
size are distributed FT-I 1if the original data 1is FT-I). The
experiment was in two parts. In the first part all the data
generated were from the same distribution and the maxima for the
whole sample and for each half of the sample were taken. This
represents the case where the data are .distributed identically
throughout the year and are erroneously assumed to come from
“monthly” distributions, (the number of “months’ was taken to be two
here simply to reduce the cost). The second part was identical,

except that the data were produced from two distributions. This
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represents the case where the data have a different distribution in
each “month’. In each part samples size 200 were produced 6, 12 and
24 times, estimates produced and the whole process repeated one
hundred times. The results are given in Tables 7.1 and 7.2.

Table 7.1 shows little difference between the bias, variance,
and mean square error of the estimate of the 50-year return value

(h obtained by analysing the simulated values (from one

50)
distribution) as a single sample or as {f from two separate
distributions. Indicating that if data were identically distributed .
throughout the year, then no systematic error would be introduced
into the estimate of hSO if the data were wrongly assumed to be from
several distributions.

Table 7.2 shows that assuming an identically distributed
population, when there were two distinct populations, led to
considerably greater (negative) bias in the estimate of hSO' So
assuming an identically distributed population would be expected to
give a lower estimate for h50 than obtained by analysing the data

from each population separately. The variance of the single sample

estimates of h50 are less,but the mean square errors are greater.
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TABLE 7.1

Sample Single ©  Separate
Size Sample Halves
6
Bias -0.343 -0.163
Variance 0.906 0.883
MSE 1.024 0.909
12
Bias -0.252 -0.183
Variance 0.452 0.357
MSE 0.515 0.391
24
Bias -0.245 -0.287
Variance 0.087 0.097
MSE 0.147 0.179

Estimates of 50-year Return Value - Single Distribution

( A= 9.0, B= 0.75; h50= 11.9265 )
TABLE 7.2
Sample Single Separate
Size Sample Halves
6
Bias -1.816 -0.734
Variance 2.774 4.647
MSE 6.07 5.19
12
Bias -1.757 -0.722
Variance 1.058 1.979
MSE 4.14 2.50
24 )
Bias -1.752 -0.665
Variance 0.438 1.094
MSE 3.51 1.54

Estimates of 50-year Return Value - Two Distributions
(A= 8.0,B= 0.65 * A= 6.5,B= 1.8 ;h50= 13.542)
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7.5 Conclusions

The statistical theory of extreme values enables return values
to be calculated from a firm theoretical basis. There ‘is no need for
an arbitrary choice of distribution to fit the data, the choice is
restricted to three, with some theoretical guidelines as to which
should be used. It is necéssary to have several years’ wave data,
which are presently available from a few sites, and even there the
amount of data is so limited that confidence intervals are very broad
-~ but an added advantage of extreme value analysis is that a method
has been derived forvestimating confidence intervals.

Problems arise, in common with other methods, concerning the
dependence of observations and variation in the distribution of wave
height throughout the year. Nevertheless, extreme value analysis
would seem ﬁo offer the soundest statistical method of estimating

return wave heights, if sufficient data are available.
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8. FITTING THE TAIL OF WAVE HEIGHT DISTRIBUTIONS

In Section 7 the three limiting distributions for extreme values
were described, similar distributions exist as limiting
approximations to the upper tails of wave height distributions. If
one of these, chosen by some means, 1is fitted to the data then
estimates of return values can be obtained. Difficulties arise in
choosing which “tail distribution” to use and in estimating where the

“tail’ of the data begins.

8.1 The Limiting Tail Distributions

Pickands (1975) shows that there are three limiting shapes for
the upper tails of distribution functions of reduced variables (the
reduced variables are similar to those considered for extreme values
in Section 7), 1if such a limit exists. These limits are analogous
to, and by using the results of Resnick (1971) can be shown to be
equivalent to, the 1limiting distributions for extreme values

described above. These distributions are:

-x/a

F(x) = l-e x,a>0
= -1/c

F(x) = 1-(l+cx/a) . x,a,0>0

F(x) = 1-(l-lc|x/a) L/1cl c<0,a>0

0<X<a/lct

=1 x>a/|e]
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These distributions correspond to the FT-I , II and 1II
respectively. The Type I tail distribution 1is, of course, the
negative exponential distribution. Types II and III are examples of
“generalised” Pareto distributions (type I is a limiting case as ¢

tends to zero).
8.2 Methods of Estimation

8.2.1 Problems of Estimation

When analysing extreme values the problem of estimation can be
broken down into two parts: estimating which distribution 1is
appropriate and estimating the parameters of that distribution. Here
the problem is more complicated for, in addition to deciding which of
the three tail distributions to use and estimating its parameters, a
decision has to be made as to where in the “tail’ of the data the fit
is to be made. This latter problem is not trivial and so far has not
been solved completely. Several proposed solutions will now be

given.

8.2.2. Pickands® Solution

Pickands (1975) proposes the following solution.

Starting at the largest data point move backwards through the
ordered data fitting a generalised Pareto distribution at each point.
The Kolmogorov-Smirnov distance is calculated at each point and the
distribution used to calculate return values is the one fitted at the

point that gives the smallest Kolmogorov-Smirnov distance.
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(The Kolmogorov-Smirnov distance is defined as

Dn = sup|Sn—F(xn)|
where Sn is the empirical distribution fﬁnction and F(.) 1is the
distribution being fitted, evaulated at x).
The method used by Pickands to fit the generalised Pareto
distribution is based upon quartiles.
Consider the mth largest value, Zm (Zi’ i=l,n, represents the

data in descending order) then the parameters are estimated by

¢ = (log)™" log (22, )/ (2, -2, )]

log2
and a =(22m_ZAm)/ exp(cu)du
0
-— - C_ $
—c(sz Z4m)/(2 1) if ¢ £ 0
=(22m—24m)/log2 if c =0
(N.B. the tail is fitted up to Z4m not Zm).

The above procedure does not give good results in practice. The
method of , possibly, choosing a different form of the tail
distribution at each data point seems highly unstable and can give
wildly varying estimates of return values. Possibly an improved
method of estimating the parameters would help, but by using similar
arguments to those advanced in Section -7 the generalised Pareto
distribution can be dispensed with and the negative exponential

considered on its own.
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8.2.3 Fitting the Negative Exponential Tail

The simplest way to fit an exponential tail 1is to follow
Pickands” method above only estimating a by its maximum likelihood
estimator

m
a = Eéizi /m

This method appears to work quite well, only there is little
justification for wusing the minimum Kolmogorov-Smirnov distance as
the goodness-of-fit test for the tail distribution. In addition to
this it would be nice to be able to put some confidence level on the
fit. For these reasons it is suggested that an exact goodness-of-fit
test for the negative exponential distribution, of which there are
several available, should replace the Kolmogorov-Smirnov distance. A
good description of exact tests and tables of percentage points are
given in Stephens (1974), no specific goodness-of-fit test is
recommended here as any reasonably powerful test could be used. The
procedure is similar to Pickands’ except that instead of choosing the
fit that gives the smallest Kolmogorov-Smirnov distance, the
goodness-of-fit test is performed until, for a certain size of tail,
it is failed. The tail size chosen is the one used immediately
before failing the test. So far it has not been possible to put any

confidence limits on estimates produced by this method.
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8.3 Conclusions

At first sight the method described above holds certain
advantages over the other methods descibed in this report. The
distributions used have a firm theoretical basis and wunlike the
method of extremes one year’s data is sufficient. However the
problems of estimation, in particular from where the tail
distribution should be fitted, have not been finally solved. The
proposed solution given above has not yet been adequately tested and
only experience will tell if it gives reliable estimates. The method
of fitting tail distributions must be regarded,at present, as

experimental and in need of further research.
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9. EXAMPLES

9.1 Seven Stones Light Vessel

A Shipborne Wave Recorder was first fitted in the Seven Stones
Light Vessel (near 50°N, 6°W) in January 1962. A description of the
data obtained during 1962 is given by Draper and Fricker (1965), but
no estimate 1is made of return wave height. However, Battjes (1970)
gives the result of fitting a three-parameter Weibull to the 1962
data, and this can be used to obtain a 50-year return value.

The analysis of the records from 1963 to 1967 is now considered
to be unsatisfactory, and they are being re-analysed. Data for 1968
to 1974 have been reported on by Fortnum and Tann (1977), they derive
50-year return values by fitting various distributions to the data
and by the analysis of annual maxima. An analysis of monthly maxima
for the seven years of data obtained between 1968 and 1977 is given
by Carter and Challenor (1978).

Various estimates of the 50-year return value of significant
wave height from these papers are shown in Table 9.1, together with
that from the Department of Energy(1977) and estimates for March
obtained by the tail-fitting methods described in Section 8 - see
also Table 4.1. Table 9.1 shows the range of acceptable values from
12.3 m to 15.2 m; corresponding values of Bmax,3hr are approximately

23.4m and 28.9 m.
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TABLE 9.1

Source Height (m) Comment
Rattjes (1970) 13.5 Weibull to 1962 data
Nept. of Energy (1977) 13.2%
Fortnum & Tann (1977) 12.3% FT-II1 to all data 1968-74

(the best fit according to
Fortnum & Tann)

" 12.5% Weibull to all data 1968-74
" 13.2% FT-T to all " " "
" 12.8*%-15.2% FT-1 to each of 5 year’s data
" 13.7% Mean of FT-I to each of 5 year’s data
" 12.9% FT-IIT to 5 annual maxima
Carter & Challenor (1978) 12.4 FT-I to 7 annual max.

(not recommended by farter
and Challenor)

" 14.2 FT-1I to 7 March maxima
(highest result for an individual
month)

" 14.8 Product of monthly maxima analysis

(value recommended by Carter
and Challenor)

This report (Section 8) 8.6 Pickands method to March ‘73 data -
max poss. 8.8m (clearly unacceptable)
Neg. exponential fit to tail of
March “73 data:

" 14.3 a) Cramer-von Mises goodness-of-fit
Lest
" 13.8 b) Anderson-Darling g-o-f test

Various estimates of 50-year return value of
significant wave height at Seven Stones L.V.
(*derived from estimates of hmax by dividing by 1.9)
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9.2 Famita

A Shipborne Wave Recorder was fitte& in the Norwegian M.V.
Famita in 1969, and wave data have been obtained from the ship’s
station at 57° 30°N, 3° g during the winter months since then - but
with some considerable gaps when Famita was off-station replenishiﬁg
or on other duties, so that about a quarter of the potential data is
missing.

Draper and Driver (1971) give an analysis of the first winter’s
data. Saetre (1974) analyses three winters’ data, and decides that
an FT-I distribution fits the data better than a Weibull
distribution.

Fortnum (1978) analyses six winters® data, fitting Weibull,
FI-I, FT-III and 1log-normal distributions to the data to obtain

estimates of 50-year return value of h

max,3hr” Neither the Weibull

nor log-normal distribution gives a good fit over all the data, but
the FT-I and FT-III appear to fit well. (The parameter limiting the
height of the FT-III distribution is found to be very high, 193 m, so
there 1is little difference between the FT-I and FT-III.)

Ewing et al (1979) use the results of the NORSWAM project =
described in Section 5.4 - to obtain 4 50-year return value of
significant wave height at a grid point clode to Famita’s position.

Carter and Challenor (1978) derive 50-year return values by
extreme value analysis of monthly maxima for six winters: and have
since calculated the results including a seventh winter (1980,

unpublished). Carter and Challenor (1981) give estimates from
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extreme value analysis of each month”s data in the NORSWAM data set,
and from extreme value analysis of data for each storm type in the
MORSWAM data set, for the grid point close to Famita’s position.

A11 these estimates of return value are given in Table 9.2,

together with that from Department of Energy (1977). Values range

from 14.4 m to 18.1 m, corresponding to h of about 27.4 m to

max ,3hr

34.4 m.
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TABLE 9.2

Source height(m) _ Comment
Draper & Driver (1971) 14.4*%  log-normal fitted to 1969/70 data
Saetre (1974) 16.3 FT-I fitted to 3 year’s data

" "

15.2 Weibull " won
" 14.6 Storm model with FT-I

Dept. of Energy (1977) 14.7%
Fortnum (1978) 14.8% FT-I to 6 winters data
" 14.5% FT-I1II to " " "
" 14.9%  Weibull ™ " " (a poor fit)

" 16.1*  log-normal " nmon o ")

Fwing et al (1979) 16.2  NORSWAM result

Carter & Challenor (1981) 17.6 Product of monthly maximum
analyses for 6 years

" 14.5 FT-I to winter maxima (Not
recommended by Carter & Challenor)

" 18.1 Product of analyses of each month’s
data from NORSWAM

" 17.6 Product of analyses of each storm

from NORSWAM

Carter & Challenor (1980
Unpublished Manuscript) 16.7 Product of monthly maximum analyses
for 7 years (inc 1976/77)

Various estimates of 50-year return value of
significant wave height at, Famita
(*derived from estimates of hmax by dividing by 1.9)
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10. GENERAL CONCLUSIONS

The present method used by the Institute of Oceanographic
Sciences -~ and other organisations - to estimate the 50-year return
value of wave height from a few years’ wave data 1is 1in some ways
unsatisfactory. The method involves fitting a distribution for which
there is no theoretical justification, and moreover the amount of
data available is insufficient to provide any evidence of goodness-
of-fit around the probability of the 50-year return value.

0f the methods described in this report, the most satisfactory
is the analysis of extreme values. However, it is necessary to have
at least 5 years of data, which are available at very few sites; and
10-15 years of data are required to reduce the confidence limits to
reasonable proportions. The method is theoretically sound only if the
wave height values from which the maxima are derived are independent
and identically distributed - and they are neither; but the lack of
independence is probably not significant and the within-year
variation of wave height distribution can be allowed for by analysing
the maxima from each calendar month separately.

Two other methods which might be applied to only one year’s data
are described in this report, but neither hgs yet been developed to a
level at which it could be recommended. These are a modification of
the method of Battjes (Section 6) - fitting a negative exponential to
zero-up~crossing wave heights, and the tail-fitting method described

in Section 8. However, because of the between-year variation in wave
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distribution, it is highly doubtful if either of these methods will
ever give a satisfactory estimate of S0-year wave height from only
one vear’s data.

N. Hogben uses an empirical connection between the distributions
of wind speed and wave height to derive a wave height distribution
from wind data. His method - described in Section 5.3 - is being
developed at the National Maritime Institute with the co-operation of
the Meteorological Office. Careful validation will be required before
it 1is ‘possible to decide whether the method gives satisfactory
estimates of return value. Because the connection between the
distributions of wave height and wind speed is empirical, validation
will have to extend well into the tail of the distributions. If
successful, the method offers a possible means of investigating the
effects of climatic variation upon return wave height.

The best way of obtaining values for the S0-year return wave
height would be to make measurements for manv VeArs at numerous
sites. The nearest approach to this ideal is to analyse hindcast wave
heights from wind/wave models. Considerable progress has been made in
recent years, both in our understanding of wave generation and in the
development of models, but much remains to be done before these
results can be used confidently to estimate extreme wave heights.
For wvalidation purposes, at least one long—term measuring station is
necessary.

The principal conclusion of this report 1is that there 1is no
method of estimating low probability return values of wave height

that can be applied satisfactorily at present except at the few sites
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with some years of data. If it were not for the pressing needs of the
of fshore industry, one would not attempt to estimate these values.
It 1is important for offshore engineers to appreciate the limitations
of the estimates provided to them.

The range of significant wave heights shown in Tables 9.1 and
9.2, as estimates of 50-year return values, of about 3 m
(corresponding to a range in hmax,Bhr of about 6 m) gives an
optimistic rough indication of the accuracy of these estimates,
because of the lack of justification for the various methods. A more
realistic idea of the accuracy 1is given by the range of 90%
confidence limits of the 50-year return value each month estimated at
Seven Stones by Carter and Challenor (1978) using extreme value

analysis; the average range for the twelve months is 6 m, with errors

skewed towards the upper level.
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APPENDIX A

STATISTICAL METHODS OF ESTIMATION
Al Properties of Estimators

Before describing the most common methods of point estimation a
brief description will be given of those properties that it is
thought desirable, or undesirable, for an estimator to possess.

Because an estimator is a statistic, i.e. a function of the
sample values, it has a distribution and therefore possesses moments
etc. like any other random variable. The expectation of the
estimator need not be the true value of the parameter; N.B. this
does not rule out the estimator as a good estimator we could just as
well stipulate that the median or mode of the estimator should be the
true value as the expectation. The difference between the expected
value of the estimator and the true value of the parameter is defined
as the bias in the estimator. If the parameter is denoted by © and

~

its estimator by O then

bias = E (5)—9
A good example of a biased estimator is the maximum likelihood
estimator of ¢2 for a normal distribution (u,62?) with g unknown. The
M.L. estimator is ’

n

1 Z (xi-x)2

1=l

It 1is not only the expectation of an estimator that 1is

important, its variance must also he considered. There are
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theoretical lower limits on the variance of an unbiased estimator
(the Cramer-Rao lower bound). Few estimators achieve this bound, but
the ratio of the lower bound to the variance of an estimator given as
a percentage is called its efficiency. An estimator with no bias and
large variance is obviously unsatisfactory as is one with large bias
and small variance. A measure of combined bias and variance is the

mean square error (MSE). This is defined as
MSE = E[(a - 9)2]

It is easily shown that this is the same as
MSE = V(8) + (bias (8))°

Usually estimators are compared in terms of their MSE: and
minimum mean square error (MMSE) estimators are sought. Occasionally
only unbiased estimators are considered and minimum variance unbiased
estimators (MVUE) are required-

One thing that is essential for any estimator is that it should
become ‘better” as the sample size 1increases. This property is
referred to as consistency, i.e. if an estimator is mean square error
consistent then its MSE tends to zero as the sample size tends to
infinity.

A final property that is desirable for estimators to possess 1is
that they should be functions of the sufficient statistic(s). A
sufficient statistic is one that contains all the information in the
sample concerning the pvarameters of the distribution. Tor example in

the case of the normal distribution with both parameters unknown the
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; ‘e 2 .
sufficient statistics are 2:Xi and E:Xi. Estimators that are not
functions of the sufficient statistics do not extract the full

quantity of information from the data.

A2 Methods of Estimation

The methods of estimation considered here are the method of
moments (briefly), maximum likelihood, and the use of probability
paper. There are other estimators, e.g. best linear unbiased
estimators (BLUE) or minimum variance unbiased estimators (MVUE),
details of which may be found in statistical textbooks. Throughout
this discussion examples will be given from the Rayleigh

distribution:
f(x) = 2x exp(—xz/ez)/e2 x>0

=0 otherwise

A2.]1 The Method of Moments

The method of moments consists simply of equating sample and
population moments until there are as many equations as parameters
and then solving these equations. The method only works of course if
the population wmoments exist, for example the method cannot be used
for the Cauchy distribution. Because of the'nature of the method the
estimators are always functions of the sample moments, indeed for a
single parameter distribution the estimator will be a function of the

sample mean. Therefore in most cases the moments estimator is not a
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function of a sufficient statistic.

In the case of the Rayleigh distribution the population mean is

given by
E(x) = ©/2

equating this to the sample mean gives

Tl
8/2 = §:x,/n
i=1 *

therefore

o)
[]

n
2§:x./n
i=1 *

~

(Note if © is the unknown parameter 6 is normally used to represent
its estimator, however this usage is sometimes restricted to maximum

likelihood estimators.)

A2.2 Maximum Likelihood

Consider a sample x X from a distribution with pdf f(x),

1°°"

then the probability of obtaining this sample is

n
||f(X.)dx.
! i i
i=1

since f£(x)dx is the probability that X lies in the interval x, x+dx.
If the distribution contains one or more unknown parameters 8 it can

be denoted by f(x-8). The likelihood is defined as

o} -~
TT £x,:9
i=1 t
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i.e. the probability of the sample expressed as a function of 8,
ignoring any multiplicative constants. By maximising the likelihood
w.r. to 8 an estimator is obtained which is “most likely”’.

Because most p.d.f.”s contain exponential functions it is

usually easier to work with the log likelihood

n -
L =Z log f(xi;e)
i=1

The log transformation is monotonic and therefore the value of 8
giving the maximum log likelihood is equal to that giving the maximum
likelihood-

Maximum likelihood estimators (MLE) possess certain useful
properties: the MLE of g(8) is g(MLE(8)), they are mean square error
consistent (and hence asymptotically unbiased) and if a sufficient
estimator exists then it is a function of the maximum likelihood
estimator. Under certain regularity conditions MLE’s are
asymptotically normally distributed with mean equal to the parameter
being estimated and variance equal to the Cramer-Rao lower bound.
For large sample sizes they are therefore 100% efficient.

Returning to the example of the Rayleigh distribution; the
likelihood 1is
]2[2 xie-zexp(-xiz/ez)
i=1 ’

. _ 2,2
i.e. L =n log2 - 2n loge + z:{log(xi) X /67}

differentiating w.r. to 8 and setting the derivative to zero gives
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. 27 -
-2n0 ! +2 z:xi“Q 3 =0

i.e. n52 ==z:wiz

A2.3 The Use of Probabhility Paper

Consider the distribution function of a random variable X. If
this depends on not more than two parameters (91 and 92) then it may
be possible to express the relationship between F(x) (=P(X<x)) and x
as a linear function of 91 and 92. By using some estimate of F(x).
this relationship can be plotted. This plot has two uses; firstly,
the fit of a straight line to the data can be used as a measure of
“goodness-of-fit’; secondly by taking the slope and intercept of the
straight line estimates of & and 8, can be formed. An example will

1 2

make this clearer. Consider the Rayleigh distribution

f(x) = 2x072 exp(—x2/92)

X

P(X<x)=F(x) =29'2 ﬁ exp(—tz/ez)dt
0

l-exp(—xz/ 92)
Put F(x)=p

l-exp(—xz/ez)

H
o
.
el
il

then

%2 =6%1og[1/(1-p)]

So that if x2 is plotted against log[l/(l-p)] then data from a
Rayleigh distribution should lie on a straight line which will pass

through the origin and have slope equal to 92.
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There are certain problems associated with the above procedure.
One 1is the estimation of F(x), these estimates are normally called
plotting positions and are dealt with below. Another is the narrow
range of application of the method. Most distributions are such that
their distribution functions cannot be forced into a linear function
of the parameters and so suitable probability paper cannot be
produced. All distributions with three or more parameters, of
course, are in this set. It is possible to estimate three parameters
by using probability plotting: plot as if the third parameter were
known, and then vary this “known’ parameter until the ‘best fit’ is
achieved. If this is done the use of the plots for goodness-of-fit

testing is, of course,invalid.

A2.4 Plotting Positions

When plotting on probability paper, consideration has to be
given to the ’best” position in which to plot the data, i.e. the
estimate of F(x) to be used. The optimal plotting positions in
general vary with both the distribution being plotted and the use to
which the plot is to be put - whether a visual representation of the
data 1is required or a means of estimating parameters. Good general
descriptions of the problems and some suggested solutions are given
in Barnett (1975) and Gerson (1975).

The use of probability plotting was first suggested by Hazen
(1914), for the normal distribution. The plotting position for the
ith point he suggested was i/n. This has the great disadvantage that

the largest value has to be omitted (F(x)=1 being plotted at
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infinity) . Since that time numerous plotting positions have been
suggested. Simple, and robust, alternatives are: i/(n+l) (Weibull,

1939), and (i-1/2)/n (Hazen, 1930)

In the case of plotting to test the goodness-of-fit of a
statistical model, it seems sensible to plot xi against the
cumulative probability associated with the expected value of X, i.e.
F(E(xi)) - where X, is the ith ordered value of n from a density f(x)
and cumulative distribution F(x).

The distribution of X<y, 8, say, is given by

g (y) = "¢ (P IR 1" e () (A1)

(For proof see for example Gibbons, 1971 para 2.3)

So  E(y) =fy g, (y)dy (A2)

For example if F(x) is the uniform distribution, U(0,1) then it may

be shown that

E(xi) = i/(n+l) (A3)

i.e. the plotting position suggested by Weibull (1939). There is, in

general no analytical solution to equation A2, - although equation A3

is an approximate solution for any distribution, and 1is recommended

by Gumbel (1958, para 1.2.7). Numerous other approximations have
been suggested for various forms of F(x).

A good approximation for the normal distribution, according to

Blom (1958), is (i-3/8)/(n+1/4). Bernard and Bas-Levenbach (1953)

suggest using the median rather than the expectation and give

(1i-0-3)/(n+0.4).
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In the case of the FI-1, Gringorten (1963) recommends
(i-0.44)/(n+0.12) if n>20, and shows that equation A3 is not
satisfactory for this distribution. He deduces this plotting
position assuming an expression of thé form (i-a)/(n+1=2a) and
chooses the value of a so as to "place the largest observed value as
close as possible to the ideal straight 1line". NERC(1975:
para 1.3.2) advocates using Gringorten’s plotting position. However,
for the FT-1, the exact values can be derived, using the moment
generating function of 8 given by Gumbel (1958 para 6.1.4). This
leads to the expected value of ym=(xm-a)/b where Yo is the reduced

variate of the mth value from above (m=n+l-i):

m-1 k
Ck.(—l) .

m-1 n
zm=E(ym) = éé% { Cm—l :
(n-m#1) (n-mtk+1) "L [y+1n(n-m+k+1)] )
and the corresponding cumulative frequency
F(E(y )) = exp(-exp(-z ))

For example, for the largest value, m=l:

E(Yl) =v+ln n

F(E(Yl)) exp(-exp(-vy - 1ln n))

/n

I

1/(1.753)1

The criteria for “optimal” plotting positions that are to be
used in estimation are rather different. The theory is somewhat

complex; details are given in Chernoff and Lieberman (1954, 1956),
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Rarnett (1975) and Cran (1975). For example, Barmett (1975) gives
plotting positions which might be used in conjunction with linear
regression to obtain unbiassed estimates, that are ‘optimal’ in some
sense, for both the normal and FT-1 distributions. In our
experience, those for the FI-1 give similar results to maximum
likelihood, however we have not examined the MSE’s of these

estimators.
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APPENDIX B

CONFIDENCE AND PREDICTION LIMITS

Confidence intervals are an alternative means of estimating
parameters to the usual point estimator. 1Instead of giving a single
number as the estimate an interval is given, which has associated
with it a probability. If both point and interval estimates are
given the latter can be used as a measure of confidence in the
former. The probability associated with a confidence interval is
sometimes supposed to give the probability that the true value of the
parameter lies within the given interval. This is incorrect. What
the associated probability does give us 1is the proportion of
intervals, calculated from repeated sampling, that will cover the
true value of the parameter. It should always be borne in mind that
it is the ends of the interval that are random variables and the true
value of the parameter that is fixed.

An infinitude of, say, 90% confidence intervals can be produced
for any parameter. The definition does not state how the interval
should be aligned with the point estimate, it does not even have to
be continuous. However in practice the intervals given are usually
one of two types. The first type 1is centred wupon the point
estimator, 5, and are usually given as 5 + t where t is half the
length of the interval. The second, and more common, type 1is where
the interval is positioned such that there is an equal chance (p/2
for a 100 (1-p)% interval) that the confidence interval is either

entirely above or entirely below the true value of the parameter.
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For symmetric distributions these two types are of course identical.
All confidence intervals given in this report are of the latter type.

Prediction intervals are confidence intervals on a predicted
future observation, i.e. they give an indication of the precision of
predictions made from the data. They differ from confidence
intervals in that here both the ends of the interval and the point,

the future observation, are random variables.
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APPENDIX C
SUMMARY OF USEFUL DISTRIBUTIONS
For further details of these distributions, see either

NERC(1975) or Johnson & Kotz(1970).

Cl. Normal distribution

- Z
pdf: I(x) = W2mo) 1exp[-—(x -u)lo 2] - 00 <x<00
mean =p
. 2
variance =o¢

C2. Log Normal distribution

pdf: f(x) = [(x-8W27 o]_lexp[—{log(x-e) - {}2/ 0'2] (x>0)

[ Z=log(X-8) is normally distributed.]

mean exp( { + 02/2) + 8

variance exp(2¢ + 02) [exp( 02) - 1]

The two-parameter version is given by 8 =0

C3. Gamma distribution
pdf: f(x) = (x - @) )\_lexp[—(x-e)[a 1/a® T(X) (x>8)

mean =a A + ©

. 2
variance = )\ «

The two-parameter gamma distribution is given by 6 = 0
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C4. Cauchy distribution
pdf:  £(x) = 1/{x\ [l + ((x=0)/X )21} - 0 <x<

This distribution has no moments of order > 1, so it does not
possess a mean or variance.

median = mode = 6

C5. Weibull distribution

pdf:  £(x) =\ @ {(x8)/a} M lexpl-{(x-0)/a }*] x>0

P(X<x) = F(x) =1 - exp[-{(x-8)/a } ]

Vmean =a I'( A-l + 1)+ 60
1

variance az{ Fre2ax"+1) - I‘()\_1 + 1)]2}

The two-parameter version is given by 6 = 0

C6. Exponential distribution

pdf:  £(x) = a lexpl-(x-0)/a ] x>0

P(X<x) = F(x) 1 - exp[-(x-6)/a ]

8 + «

2
o

mean

variance

The expomential distribution is a special case of the gamma

distribution (A =1) and of the Weibull distribution (X =1).
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C7. Rayleigh distribution

2 a? (x-0)exp{-(x-8)2/a 2} x>0

pdf: f (%)

P(X<x) = F(x)

1 - exp{-(x—9)2/ « 2}

\/7r a+ 0
mean = 2
variance = (1 - %) az

The Rayleigh distribution is a special case of the Weibull

distribution (A =2).

C8. Fisher-Tippett Type I or Gumbel distribution

pdf: f(x) o _lexp{—(x—e)/a - exp[-(x-8)/a 1} - O<x<®

P(X<x) = F(x) exp{-exp[-(x-8)/ a1}

mean 8 +v« (v= 0.5772...)
2
a

e
6

variance

Further details are given in Section 7.2

C9. Fisher-Tippett Type II or Frechet distribution

o VN 3L gy~ (1+1/ 1) -1/x

pdf: f(x) exp[-{(x-8)/a } ]

x>68, A >0

P(X<x) = F(x) I

expl={(x-8)/a } 1M

I

mean al(l-A) + 6
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variance = (12{ I'(1-2x) - [ TQ1- k)]z}
Therefore the mean does not exist if A >]1 and the variance does
not exist if A >1/2
Y=10g(X-8) is distributed FT-I
Cl10. Fisher-Tippett Type III distribution
_ -1 A-1 A
pdf: f(x) =X a {(B-x)/a} exp[-{(@-x)/a }" ] X<

P(X<x) = F(x) = expl-{(6-x)/a }" ]

6 —aT(2"b 41y
1

mean

lrreat o - raon 4y

variance

Y=-X is distributed Weibull: Z=-log(8-X) is distributed FT-I.
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APPENDIX D

MOST LIKELY MAXIMUM OF n VALUES FROM A RAYLEIGH DISTRIBUTION

The cumulative distribution of n values from a Rayleigh

distribution is

2,...0 Dl
Prob(xmax<x) = F(x) = [1 - exp(-x"/2)]
The most likely value of x is given by
max
sz/dx2 =0
which reduces to:
1 -x2 + (nx2 - 1)exp[—(x2/2)] =0 D2
l.€.
x2/2 = Inl(nx® - 1)/(x*> - 1]
So
x2/2 = 1ln n + ln[(nxz—l)/(nxz—n)] D3
. 2
Putting X = 20

then equation D3 reduces to:

0 = 1n n + 1n{[(4n6-n-1)/(n-1)+11/[(4n6-n-1)/(n-1)-11}
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Tor |z]|>1

In{ (z+1) /(2=1)} = 2{(1/2) + (1/2)°/3 + (1/2)°/5 + ...}

Therefore

& =1nn+ 2{[(n-1)/(4n6-n-1)]

+ [(n-1)/(4n8-n-1)1° + ...} D4

For large n

1

(n-1)/(4n0-n-1) n/ (4n-n)

= 1/(48-1)
But Longuet-Higgins(1952,equation 67) shows that

In n + 0{(ln n) 1}

e =
l.8.
6 = 1nn N5
Therefore
1/146-11 = 1/[4(1n n) - 1] + 0{(1n "1}

Therefore, from equation D4

v 2]
|

= Inn+ 2/[4(1ln n) - 1)

1t

(In {1 + 1/[2(1n )21}

Comparing equations 3.10 and DI

6 = x2/2 = 2(h/hs)2

Appendix D 104



Therefore the most likely maximum value of h is given, for large

a, by
2(h/h )% = 1n {1 + 1/[2(1n 0)°])

i.e. Wb, = ((In /2 20+ 1/t 02

Therefore

/

i

h/h, = ((ln /2200 + 1/116((1n n)/2)27) D6

Although equation D6 is only true for large n, a comparison of
exact vélues of h (from a numerical solution of equation D2) with
those from equation D6 shows an error of 1less than 2% for n>4.
(Values are given 1in Table D1, which also gives values of h/hS
estimated from equation D5 showing very much larger errors,

particularly for small n.)

TABLE DI

n exact equation % equation %
solution D5 error D6 error
2 0.728 0.589 19.13 0.895 22.91
3 0.840 0.741 11.78 0.895 6.48
4 0.912 0.833 8.76 0.941 3.18
5 0.966 0.897 7.10 0.984 1.83
7 1.043 0.986 5.36 1.052 0.88
10 1.119 1.073 4.17 1.124 0.38
15 1.201 1.164 3.12 , 1.203 0.18
20 1.257 1.224 2.64 1.258 0.07
100 1.536 1.517 1.20 1.535 0.02

Comparison of approximate solutions for the most likely
maximum wave height of n values from a Rayleigh
distribution with the exact solution from equation D2.
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