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SUMMARY

This report is the sixth in the Topic Report series concerning the Sizewell- -
Dunwich Banks area of East Anglia. It falls into two sections: the first out-
lines and discusses observed wave data while the second examines the results of

computed wave refraction and ray tracking programs.

Observed wave data demonstrate that under most circumstances there is little
difference in the energy reaching the coastline south of, opposite to, or north
of, the Sizewell-Dunwich Banks. However, under severe storm conditions, large
waves break on the banks so that there is then a substantial difference between
offshore and inshore wave height thus demonstrating the sheltering effects of

the banks under such circumstances.

There is a clear relationship between onshore wind velocities and wave heights
and also between the volumes of beach material moved and the mean monthly wave

height.

Wave refraction and wave energy computations demonstrate a marked wave focussing
effect along the shoréline (notably at Sizewell-Thorpeness) when waves come from
the direction of maximum fetch (heading 210°), but that where the wave approach
is normal to the banks, refraction is minor, with energy being fairly uniformly

distributed alongshore.

At the 'inshore' Waverider site waves computed as exceeding approximately 2.3 m
are substantially overpredicted. This can be attributed to inadequacies in the

computer program which fails to allow for wave breaking on the Sizewell-Dunwich

Banks.



1. INTRODUCTION

Earlier reports in this series have discussed observed and residual tidal
currents (Heathershaw and Lees, 1980b)and offshore sediment movement in

relation to both tidal currents and wave data (Lees and Heathershaw, 1981). This
report completes the series by examining wave aspects in greater detail. The
report falls into two broad divisions. The first describes and discusses the
observed wave data, some aspects of which have been reported elsewhere (Fortnum
and Hardcastle, 1979a;Lees and Heathershaw, 1981). Thereafter, the computed wave
climate is examined both visually by means of a series of computed wave refrac-
tion diagrams and through the calculations of wave energy reaching a number of

targets relative to the specified energy input at the seaward boundary.

2. OBSERVED WAVE DATA

2.1 Wave Measurements

Wave data were obtained over a four-year period from January 1975 to May 1979.
Initially all the data were derived from 3 frequency modulated (FM) pressure
recorders situated on the sea bed some 400 m seawards of the beach off Aldeburgh,
Dunwich and Southwold in a mean depth of water of approximately 8 m. However,

in July 1977, these recorders were supplemented by a Waverider buoy seawards of
the banks off Dunwich while a further Waverider was deployed in October 1978
between the other two Dunwich wave recording instruments. All FM units were
cabled to cassette recorders located in buildings near the beach while data from
the Waveriders were telemetered ashore to a similar recording system. Tables 1
to 3 list the wave records available and the various deployment dates of the

instruments in more detail; Figure 2 shows the locations.

Waverider and sea bed pressure wave recorder data were logged using frequency
modulation on magnetic tapes. The recordings were of 1350 seconds duration from
the Waverider buoys and 675 seconds for the sea bed recorders. 1In both cases
records were taken at intervals of 3 hours. These were replayed to give signifi-
cant wave height Hs (from mean rectified wave height) and the mean zero crossing
period Tz. It should be mentioned that due to the attenuation of pressure
variation with depth, the pressure recorders respond less to short period waves

than the Waverider buoy. To reduce this discrepancy, appropriate correction



factors were calculated from an empirical formula (Draper, 1957), using the

actual depth and measured TZ.

Records between June 1975 and May 1977 were fully analysed and form the basis of
the Wave Data Report by Fortnum and Hardcastle (1979a). A number of figures
from Fortnum and Hardcastle's report are included here, often in a slightly
altered form, as part of the section on observed wave climate. After

December 1977 only selected parts of the wave records were analysed, notably

the FM data for Dunwich where the mean highest significant waves (ﬁs) between
March 1978 and April 1979 were compared with the volumes of beach material

moved (Blackley, 1979), and the 'offshore'/'inshore' Waverider comparison of

February 1979. Both these aspects are discussed below.

2.2 Wave climate

During the 2-year period 1975-1977 mean monthly wave height at both Aldeburgh and
Dunwich varied between approximately 0.2 and 0.3 m for the months of May, June
and July and 0.4 to 0.65 m for the August-April period. A similar picture was

also shown for the more restricted data for Southwold (Figure 3).

Figures 4, 5 and 6 show the percentage exceedance of HS and Hmax for the summer
and winter seasons for Aldeburgh, Dunwich and Southwold, respectively. Figures 7
to 9 depict the corresponding frequency histograms for wave period. The fol-
lowing three figures '(Figures 10-12) record the duration over which given wave
heights were exceeded. It is noteworthy that storms were relatively short-lived
with, for instance, waves exceeding 2 m only likely to occur on average for a
duration of 6 hours. Waves of 2 m or above were likely to occur about once a

month.

Figures 13a, b show the mean and standard deviation of the average value of the
onshore wind speed and the significant wave height, respectively. TFigure 13a is
based on data from the meteorological station at Gorleston, some 25 km north of
Southwold; Figure 13b on the 5 site-years of FM wave data compiled between 1975
and 1977 (2 at Aldeburgh and Dunwich, 1 at Southwold). Figures 14 and 15 depict
this information in a different form. Thus Figure 14 superimposes these wind

and wave data while Figure 15 is a graph of onshore wind speed (W) against



wave height (as ﬁs). The significance level for the correlation coefficient
exceeds .001, ie better than 99.9%. The relationship shown here is a linear one
but it is customary to assume that wave heightil‘g and this relationship is

used in the effective fetch calculations (Tables 5 and 6).

It had been anticipated that the waves recorded at the Dunwich beach site would

be smaller than those at Aldeburgh to the S and Southwold to the N since Dunwich
appears to be sheltered by the Sizewell-Dunwich banks (Figure 2). However, a
statistical analysis showed no significant differences between any of the three
locations. Because of this negative result this analysis is not discussed

further although Figure 16 represents the same point visually. It is clear from
the figure that there is little difference in mean monthly significant wave

height (ﬁs) and that such variations as do occur are not systematic. Subsequently
it was decided to examine the relationship further using 2 Waverider buoys located
seaward and inshore of the Sizewell-Dunwich banks (Figure 2). It was found that
under most circumstances wave heights recorded at each location were identical but
this relationship did not hold under extreme conditions. Figure 17 is a graph

of offshore significant wave height (HSO) plotted against imshore significant

wave height (Hsi) for the month of February 1979. It is apparent that for
offshore significant wave heights exceeding approximately 2.6 m the corresponding
inshore value is less. This may be attributed to such waves breaking on the

offshore banks while smaller waves are unaffected.

Figures 18 and 19 depict the relationship between the total volume of material
moved as recorded by successive monthly levelling of a series of beach transects,
and the corresponding mean monthly ﬁs value (Blackley, 1979). It is clear from
Figure 19 there is good agreement with the significance level for the correlation
coefficient better than 99.9%. 1In this context it is interesting to note that,
firstly, no such correlation exists between erosion (or accretion)rseparately
against ﬁs for the Sizewell-Dunwich area. Secondly, the relationship which
appears to exist here was less apparent in comparable studies along the E shore
of Swansea Bay on the S coast of Wales. At Swansea it was concluded that beach
volume changes were too great and wave parameters too variable over a one-month
period for any meaningful relationship to be detected (Heathershaw et al, 1980a).

It is therefore surprising that on the East Coast site with its much greater

range of angles of wave approach, its more variable coastal alignment and its



increasing scope for longshore transport of beach material, that a relationship
can be recognised. One possible explanation is that storm events are substant-
ially less frequent and shorter-lived (see Figures 10-12) in the Aldeburgh-
Southwold area than is the case in Swansea Bay (Fortnum and Hardcastle, 1979b).
Fortnum and Hardcastle show, in their Figure 18, 3 times as many occurrences of
waves exceeding 2 m at Swansea compared with the East Coast site. As a result
topographic changes at Sizewell-Dunwich may be more readily associated with

specific storm events.

3. COMPUTED WAVE CLIMATE
3.1 Fetch and duration characteristics

The range of wave heights present in a locally generated sea will be a function of
the wind speed, fetch and duration. If either fetch or duration are limited then
the sea will not reach a fully developed state. Clearly at a site in a coastal
embayment, the range of fetch direction will be narrower than on a more open
coastline. Furthermore, it is not sufficient to consider the geometric fetch
alone (ie the distance that the wind blows over the sea surface) as

being a true measure of the wind'seffectiveness in generating a sea. This is
because the wind transfers energy to the sea over a range of angles up to 45°

on either side of the direction in which it is blowing, and thus open ocean
fetches are a measure of the wave energy arriving at a point from a similar

range of angles 45° on either side of the wind. In effect this assumes a

fetch of infinite width whereas on an irregular coastline, or in estuaries,
rivers and lakes, the fetch width may limit contributions from the full range of
angles. Under these conditions wave height prediction is normally carried out

in terms of effective fetch.

For the Sizewell-Dunwich area we have calculated the effective fetch character-
istics at Aldeburgh, Dunwich and Southwold using the method given by the US
Coastal Engineering Research Center (CERC, 1973) and outlined in Appendix A.
Effective and geometric fetch characteristics are shown in Table 4 and Figure 20.
Figure 20 illustrates that for most wave approach directions there is little
difference between effective and geometric fetch although effective fetch is

larger when directions of wave approach are sub-parallel to the shoreline.



The effective fetch characteristics (Table 4) have been used to predict wave
heights at Dunwich and Southwold using the method given by Darbyshire and Draper
(1963) (Figure 21). TFor typical wind speeds (Table 5 a, b) significant wave
heights (HS) of the order of 1.8 m are predicted and during storms (Table 64, b )

HS is predicted to be of the order of 5.2 m. During the period of
relatively severe storms in February 1979 observed wave heights (HS)
off Dunwich Banks reached 4.55 m with local mean wind speeds of the order

of 18 ms—1.

3.2 Wave refraction

In this study wave refraction analyses have been carried out to elucidate the

following points:

(a) the possibility of wave energy focussing by the offshore banks;

(b) the onshore and alongshore variations in wave energy.

In the following section a brief review of the salient features of wave refraction
theory is given to familiarise the reader with the underlying physical processes.
This description is taken from Heathershaw, Carr and King (1980a)and is based

upon that given in Goldsmith et al (1974).

3.2.1 General principles

The process whereby waves are slowed, shortened and steepened as they travel into
progressively shallower water is called shoaling. Typically this will not occur
uniformly along a wave front and as the wave speed (or celerity) decreases in
accordance with its shortest wavelength, the wave front bends as a result of the
variations in celerity along the front. The combination of shoaling and wave

front bending is known as refraction.

The celerity € of a progressive surface water wave is given by linear wave theory

as

ct= gL . tanh 2nh
27 L QD



where § is the acceleration due to gravity, | is the wavelength and h

is the water depth.

Rearrangement of equation (1), with € = EA% where T 1is the wave period,

gives

L= gT* tanh 2wh
o L (2)

For deep water tanh 2mh /L - 1 and so the wavelength L is a function
of wave period only. The deep water assumption is valid to within 0.5%7 for depths

greater than one-half of the wavelength.

The effects of shoaling and refraction can be estimated by linear wave theory.
For example, the propagation of surface waves into shallow water may be analysed
by consideration of the wave energy between vertical planes which are orthogonal
to the wave crests and which intersect with the surface to produce wave rays.
Energy is assumed to be transmitted between these planes, that is it does not
travel along wave crests or cross wave rays. If it is further assumed that the
wave period is constant and that there is no net gain or loss of energy by
reflection, percolation or bottom friction, then linear wave theory provides the

result,

'tL = K;*KS
Ho (3)

where }40 is the deep water wave height, H is the inshore wave height and K,

and l(s are the refraction and shoaling coefficients respectively, given by,

<o (b



and

)

K. - 2 cosh® kh )1
s ( 2kh +sinh 2kh

(5)

Here, Lo and b are the deep water and shallow water wave ray separations

respectively (see Figure 22).

As a surface wave travels into shallower water the sea bottom exerts an influence
on it, because of the effect of depth in determining the wave celerity (equation 1).
When the crests of a train of waves are not parallel to the bottom contours

(lines of constant depth) the section in shallow water decreases in speed in

such a way that the wave crests tend to become parallel to the bathymetry. Wave
refraction diagrams are used to illustrate the way in which a wave of a given
period responds to the bottom topography and are constructed in accordance with

the principles outlined previously, using Snell's law to determine the direction

and celerity along a wave ray. Consequently it is assumed that

S(n o(q' = C2
Sif\°<| C| (6)

which by optical analogy gives the angles of incidence <, and ©¢, and the
speeds ¢ and C, of a wave ray passing from one refractive medium into

another, in this case at two different depths.

One of the major difficulties with wave refraction analyses has been due to
crossed rays, or caustics, where the energy conservation principles outlined
previously indicate infinite amounts of energy as the ray separation b-» QO .
However this is not now thought to be the problem that it once was (see

Goldsmith, 1974) since wave rays have been found to emerge from caustic regions on
the continued ray path, the wave conditions being determined by the wave ray
separation more or less as if the caustic had not been there. However, there
should be a phase shift which according to Goldsmith is not observable due to the

randomness of the waves in nature.



Wave refraction diagrams, incorporating the above principles, have been used
extensively in this study to elucidate features of the wave climate in the
Sizewell-Dunwich area. Such calculations, based onlinear wave theory, can be
used to predict inshore wave climates from the corresponding measured or
predicted offshore climate (eg Abernethy and Gilbert, 1974). However, the
calculations make certain assumptions so that they are practicable in terms of

computer run-time and cost. For example:

(a) the seabed topography is approximated by a mesh of finite size which

excludes the small scale features;

(b) the energy losses through breaking waves and bottom and surface stress are

neglected.

3.2.2 Methods
The wave refraction calculations described here were carried out using methods
developed by the Hydraulics Research Station (HRS, 1974). Details of the theory

behind the computations are given in Appendix B.

In particular these computer based techniques have been used for:

(a) ray tracking (see Appendix B1) and
(b) energy calculations (see Appendix B2).

The energy calculations are done in three stages:

(a) Firstly, the sea bed topography information is used to determine energy
transfer functions for the directional wave spectrum S ({,e) at inshore
target points where wave height (or energy) estimates are required. Here §

is the wave frequency and O the direction of wave propagation.

Starting at a target point ray paths are tracked outwards, in a seaward direction,
for a discrete set of equally spaced frequencies. The rays are started at equally
spaced angular increments suitable for the frequency. HRS found that it was
possible to use larger increments for the upper end of their frequency band than
for the lower (see HRS, 1974). The rays halt at 'obstacles' or on the grid
boundary. Since the paths are reversible, only the rays which reach the deep
water boundary are of interest, but their exact position is immaterial since the

spectrum is assumed constant along the deep water boundary.



Longuet-Higgins (1957) has shown that CCg‘S(F:e) is constant along a ray
path. Here C 1is the wave celerity and €gq is its group speed. Thus it is
possible to calculate transfer functions which give the inshore frequency

spectrum from an offshore directional spectrum.

(b) An offshore ('deep-water') directional spectrum can be determined from
measured wave data either by assuming some form of distribution for both
frequency and direction, or the frequency distribution form may be replaced by

a frequency spectrum obtained directly from the wave data.

In the present study boundary conditions for the refraction model were specified
using Hs and Tz values calculated from Fast Fourier Transform (FFT) spectra of
the February 1979 'offshore' Waverider buoy data. Wave directions associated
with particular HS and Tz values were inferred from wind speed and direction
measurements at Gorleston. Hs and Tz values so obtained were used to para-
meterize a Pierson-Moskowitz (PM) spectrum (HRS, 1974; Pierson and Moskowitz,
1964) at the boundary and, for each wave heading studied, waves were given a

cos? O directional dependence about that particular heading.

The offshore spectral matrix is obtained by evaluating the directional spectrum
at each frequency and angular segment. These segments are distinct from the
angular increments mentioned in (a) and may be several orders of magnitude larger.

The segment’s size is chosen so that S (f:e) is approximately independent

of 8 in each segment.

(c) The inshore predictions of significant wave height and mean zero crossing
period can be calculated from the inshore frequency spectrum for each target

point (see later).

For the wave refraction and energy transfer function calculations the sea bed
topography was described by depths relative to Chart Datum (LAT) taken from

I0S bathymetry and Admiralty charts. The bathymetry was digitised on a grid
having overall dimensions of approximately 30 x 10 km and made up of 61 x 40
elements 0.5 x 0.25 km in size. Over the banks and shoreward of them a computer-
generated sub-grid was used with spacing of 0.25 x 0.125 km in order to improve
accuracy. The size and orientation of the grid (Figure 23) was chosen to include
the offshore banks, to minimise the land area, and to make the x—-axis roughly

normal to the shore. Wave recorders and ray target sites are also marked on this
figure.
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3.2.3 Wave refraction diagrams

Table 7 lists the various wave refraction plots which have been calculated u51ng
water depths of 0.5 and 2.5 m, ie approximately low and high water tide level,
spring tides, and wave periods of 6.0 and 7.5s. These periods correspond fairly
closely to those typical for the area and those occurring during storms,
respectively. Representative plots, illustrating specific points, are shown as
Figures 24-30, with the remainder included in Appendix C as Figures C1-C21.

The former group shows that while waves heading roughly normal to the shore

(at approximately 270°) are only slightly affected by refraction (Figures 26

and 27) those from oblique angles (eg on a heading of 210° which is the
generalised direction of maximum fetch) are considerably modified (Figures 24 and
25). This applies to both the 6.0 and 7.5s wave periods and both water levels.

A similar phenomenon applies to oblique waves from a southerly quarter (Figure 30).
Figures 28 and 29, which depict 6s period waves with a heading of 330°, show

marked focussing at certain points along the foreshore.

Figure 31a-c provides a comparison of wave refraction plots based on bathymetry
in 1867, 1965 and 1977. Figure 31a, b is derived from Robinson (1980) while
Figure 31c was produced for the present study. In all cases the wave heading is
247° 30' (ie from ENE), the period is 8s and the water level 2 m above chart
datum. It is interesting to observe the marked similarity between 1867 and 1977

plots.

3.2.4 Wave energy calculations

The offshore boundary conditions were inferred from actual waves observed at the
'offshore' Waverider buoy in February 1979. Because the North Sea is relatively
shallow, and because the bathymetry seawards of the Sizewell-Dunwich Banks is
irregular, some attenuation had already taken place outside the offshore grid
boundary and also between this boundary and the Waverider site. Boundary
conditions were therefore effectively scaled up to obtain the best agreement

possible at the location of the 'offshore' Waverider (Figures 32 and 33).

It should be noted in Table 8, that in order to obtain the best agreement between
observed and predicted wave heights and wave periods at the offshore Waverider
buoy, values of Tz specified at the boundary are considerably shorter than those
at any of the targets (including the offshore Waverider buoy itself). This

difference, which is of the order of 1.5s is believed to be due to the method of

1



parameterizing a Pierson-Moskowitz (PM) spectrum at the boundary with HS and T,
values derived from FFT spectra of actual wave records. In particular Tz values
derived in this way are biased towards higher frequencies in the PM spectrum.
This was illustrated in some of the spectra from the Swansea Bay study
(Heathershaw et al, 1980) although on the East Coast such a trend is less
apparent. Figure 34 indicates that, in individual cases there can be good
agreement between FFT and PM spectra from the East Coast data. New values of

HS and TZ obtained from the model again reflect this shift to higher frequencies.

Data were grouped for each of 4 octants (wave headings from 180° to 360°) and 2
water levels (0-1 m and 2-3 m above Admiralty Chart Datum). There were insuf-
ficient observations for the group 270°-315° (Table 8a). However, more
information is available for 180°-225° and 225°-270° (Tables 8b and 8c). (It is
for this reason that the regression line on Figure 32 is restricted to data
between 180° and 270°.) Each Table lists the input data (as HS, Tz and the mean
direction of wave heading, € ); observed and predicted comparison for Targets 1
(‘offshore’) and 2 ('inshore' Waveriders); and predicted values of HS, Tz and
wave headings for Targets 3, 4 and 5. These latter targets correspond to
Southwold Pier, Dunwich beach and Sizewell Nuclear Power Station, respectively.
It had been planned to have a further target, number 6, at Aldeburgh, but because
Aldeburgh was near the southern limit of the bathymetric grid and the bathymetry
is both shallow and particularly complex offshore, it was concluded that results
were unlikely to be realistic. Comparisons of observed against predicted wave
data are restricted to Targets 1 and 2. For the period in question the Southwold
pier wave recorder was no longer operational and, in any event, the instrumental
response characteristics of the FM recorders located at Southwold and Dunwich are

not directly comparable with those of the Waverider buoys.

Figure 35 provides a comparison between the predicted and observed wave heights at
the 'inshore' Waverider site, Target 2 (Table 8, Figure 23). All the data points
for both water levels and all four directional groupings have been included, but
the regression lines are based on values between 180° and 270° only, where there
is a larger data set. The effect shown here is the inability of the computer
program to model wave breaking and shoaling (Compare Figure 17). For the
predicted wave heights less than approximately 2.3 m there is good agreement with
observed values. However, above this height predicted and observed wave heights

are only poorly correlated. This can be attributed to the susceptibility of the

12



larger waves to breaking on the offshore banks (Bascom, 1960). It must be
remembered in this context that H_S represents the mean of the highest one-third

of the waves and that the highest individual waves within this group would be
disproportionately affected by shoaling. It is clear, therefore, that predicted
wave heights are likely to be an over-estimate of those actually recorded.
Nevertheless observed waves over approximately 2.2 m are rare taking the year as

a whole (see Figures 4-6).

The wave attenuation indicated in Figures 17, 35 and Table 8 may be compared with
that calculated from the empirical formula for re-formed wave height (ie wave

height after breaking) of Keady and Coleman (1980).
-0of
Hr=H°(o-58(Ho4) ) (7)

where Hr and H are the re-formed and offshore wave heights, respectively, and d

is the water depth. The breaking height criterion of 0.78 d should be appropriate
here (Kishi and Saeki, 1967) since the seawards slope of the Sizewell-Dunwich
banks is only of the order of 1:200. The minimum still water dépth over the
banks is 4.0 m and the maximum breaker height therefore 3.12 m. Using Equation 7,
and ignoring refraction effects, the re-formed wave height would be 2.21 m.
Corresponding sets of values for the more typical still water depths of 5 and 6 m
would be 3.90 and 4.68 m for breaking wave height and 2.76 and 3.31 m for re-formed
wave height, respectively. These values are not dissimilar from those observed in

the field.

Table 9 lists the predicted wave height (Hc) and wave energy (EC) coefficients

for Targets 1-5, classed according to the mean input direction (wave heading) at
the offshore grid boundary. This information is summarized in Table 10. Values
of Hc are ratios between the spectral input value of HS at the offshore boundary

and that at the respective target. The energy coefficient (EC), is defined as

£ - [si(6)af
T [se (At
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where j.Si represents the total energy inshore and ﬁ[So the total energy

offshore for the respective wave headings.

Although the data on which the computations were made had a substantial proportion
of large waves, it was interesting to note that the predicted relative wave energy
for the directions of maximum fetch (200°-270°) is very similar for both Southwold
and Dunwich. This agrees well with the conclusions from the 1975-77 FM data (see

Section 2.2). Maximum wave energy for the 200°-260° directions occurs at Sizewell

(see Figures 24-5 and Appendix C1-7,9). Table 9 suggests that higher wave energy

reaches the coastline at the shallow water level (0-1 m above Chart Datum) as com—
pared with the 2-3 m level, but this is likely to be an artifact based on the fact
that the highest observed 'offshore' wave heights all happened to occur during low
tide periods. Partly for this reason and partly because of the limited comparisons

available the two water levels are not differentiated in Table 10.

Table 10 indicates that although linear wave theory is inadequate to deal with the
breaking waves on the Sizewell-Dunwich banks (Figure 35) it nevertheless produces
a drop in the wave energy coefficients for all the wave headings listed between
200° and 260° inclusive, ie those oblique to the alignment of the offshore banks.
This fall is substantial for directions between 200° and 230° where rays are
initiated sub-parallel to the coastline and hence particularly subject to the
nearshore bathymetry. There is a similar, but slightly less marked loss in EC
for rays between 200° and 230° from the input boundary and the 'offshore'

Waverider, target 1.

In the quadrant 180°-270° (Tables 8b and 8c) there was, not surprisingly, excel-
lent agreement between observed and predicted wave period (Tz) at the 'offshore'
Waverider target, but at the 'inshore' site there were 29 out of 41 instances
where the predicted wave period was longer than observed. The mean diserepancy
was 0.58s, or 11.2 percent of the mean observed Tz; this appeared to have no
direct relation either to recorded wave height at the site or to the offshore
boundary conditions input. In work at Start Bay, S Devon, King and Hardcastle
(personal communication) noted that observed wave data lost height and waves
increased their period as they travelled inshore. King and Hardcastle attributed
this to differences in instrumentation. 1In the present case the difference
between observed and predicted Tz may reflect the sensitivity of Waverider buoys

to short period waves, possibly in excess of the theory used in the computations.

14



4. CONCLUSIONS

There is widespread agreement between the observed and the computed wave climates.
For example, long-term wave data from Aldeburgh, Dunwich and Southwold suggest
little difference in the wave regime at any of these sites. Computations for
predicted wave energy levels at Dunwich and Southwold agree with this view. This
should not be taken to mean that wave energy coefficients are constant along this
whole length of coast. Indeed, they suggest a concentration of energy in the
Sizewell area, especially for wave headings between 230° and 300°. Wave refrac-
tion calculations also suggest that, particularly where waves come from the
direction of maximum fetch (heading 210°), there are energy foci along the coast,

notably between Sizewell and Thorpe Ness.

Only when wave heights exceed a certain threshold (observed mean ~ 2.4 m;
predicted mean ~ 2.3 m) do observed and predicted values disagree with observed
values being smaller. This is attributed to the filtering effect of the offshore
Sizewell-Dunwich banks and it means that under atypically severe conditions the
Dunwich coastline benefits from a degree of sheltering which would not occur in

the absence of the banks themselves.

Vincent (1979) noted that the Dunwich area was one of two locations where his
longshore sediment transport model of the East Anglian coast did not agree with
the prototype. It may well be that the 'filtering effect' under extreme wave

conditions is, at least in part, the explanation of this.
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DATE SITE SITE

Aldeburgh Dunwich Southwold Dunwich Inshore Dunwich Offshore
FM Pressure Recorders Waverider Buoys

1977 Jan
Feb 6
March
April

June
July 15
Aug
Sept
Oct
Nov
Dec

1978 Jan
Feb 15
March b
April
May
June
July -
Aug
Sept .
Oct 26
Nov
Dec -

1979 Jan
Feb c
March
April b
May 25 25 25 2

=]
0

a

This table omits minor gaps in the records obtained, eg due to tape faults,

power failures, etc. Numbers represent start and end dates of records, in

respective months.

a: Records used for Wave Data Report (IOS Report No 65; by Fortnum and Hardcastle,
1979a). June 1975 to May 1977 inclusive.

b: Records from 7 March 1978 to 25 April 1979 at Dunwich used for beach volume
change comparison

c: Records for February 1979 used for offshore/inshore wave comparison.

TABLE 2: Available wave data: 1 January 1977 to 25 May 1979.
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OFFSHORE

Date
15.7.77-11.4.78
11.4.78-26.10.78
26.10.78-early 12.78

2.2.79-24.5.79

INSHORE

26.10.78-25.5.79

Buoy No
6851
67041
67144

67041

6489

TABLE 3: Waverider deployments: Sizewell-Dunwich.
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Bearing From Effective Wave Height HS (m)

Dunwich (°T) Fetch (km) 6 hours Duration 12 hours
340 2.2 [0.17 0.17
350 2.7 0.18 0.18

0 192.1 1.50 1.75
10 256.3 1.50 1.80
20 297.6 1.50 1.80
30 301.6 1.50 1.80
40 297.0 1.50 1.80
50 285.3 1.50 1.80
60 267.2 1.50 1.80
70 264, 1 1.50 1.80
80 250.0 1.50 1.80
90 186.3 1.50 [1.75
100 152.6 1.50 1.70

110 127.1 1.50 1.60
120 120.1 1.50 1.60
130 115.0 1.50 1.55
140 111.7 1.50 1.55
150 101.3 1.50 1.50
160 98.5 1.50 1.50
170 95.1 [1.45 1.45
180 89.9 1.40 1.40
190 83.5 1.35 1.35
200 74.9 1.30 1.30
210 63.5 1.20 1.20
220 45.8 0.95 0.95
230 1.7 [ 0.15 0.15

Values of HS bracketed are

TABLE 5a: Predicted wave heights (HS) at Dunwich for a 10 ms'1

for 6 and 12 hours.

fetch limited.
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Bearing From Effective Wave Height H (m)

Southwold (°T) Fetch (km) 6 hours Duration 12 hours
320 0.8 0.00 0.00
330 1.2 [0.05 [0.05
340 149.1 1.50 1.70

50 243.7 1.50 . 1.80

0 338.4 1.50 1.80
10 378.0 1.50 1.80
20 402.5 1.50 1.80
30 397.1 1.50 1.80
40 381.0 1.50 1.80
50 384.4 1.50 1.80
60 369.8 1.50 1.80
70 307.3 1.50 1.80
80 248.2 1.50 1.80
90 186.0 1.50 [1.75
00 153.5 1.50 1.70
110 129.1 1.50 1.60
120 123.3 1.50 1.60
130 118.8 1.50 1.55
140 115.8 1.50 1.55
150 111.2 1.50 1.55
160 101.5 1.50 1.50
170 89.1 [ 1.45 1.45
180 75.2 1.30 1.30
190 67.1 1.25 1.25
200 57.6 1.10 1.10
210 46.5 0.85 0.85
220 33.6 0.80 0.80
230 17.6 0.50 0.50
240 3.8 0.22 0.22
250 1.2 0.05 0.05
260 0.8 . 0.00 L 0.00

Values of HS bracketed are fetch limited.

TABLE 5b: Predicted wave heights (HS) at Southwold for a 10 ms—1 wind blowing
for 6 and 12 hours.
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Bearing From Effective Wave Height HS (m)
Dunwich (°T) Fetch (km) 6 hours Duration 12 hours
340 2.2 0.50 0.50
350 2.7 0.55 0.55

0 192.1 4,70 4.85
10 256.3 4.70 5.00
20 297.6 4.70 5.20
30 301.6 4.70 5.20
40 297.0 4.70 5.20
50 285.3 4.70 [ 5.15
60 267.2 4.70 5.10
70 264.1 4.70 5.10
80 250.0 4.70 5.00
90 186.3 4.70 4,85

100 152.6 4.70 4.70
110 127.1 [4.50 4,50
120 120.1 4.40 4.40
130 115.0 4.35 4.35
140 111.7 4.35 4.35
150 101.3 4.25 4.25
160 98.5 4.25 4.25
170 95.1 4.20 4,20
180 89.9 4.00 4.00
190 83.5 3.95 3.95
200 74.9 3.70 3.70
210 63.5 3.35 3.35
220 45.8 2.75 2.75
230 1.7 [ 0.40 | 0.40

Values of Hs bracketed are fetch limited.

TABLE 6a: Predicted wave heights (HS) at Dunwich for a 20 ms | wind blowing

for 6 and 12 hours.
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Bearing From Effective Wave Height Hs(m)
Southwold (°T) Fetch (km) 6 hours Duration 12 hours
20 0.8 0.42 0.42
30 1.2 - 0.44 C.44
40 149.1 4.70 4,70
50 243.7 4.70 5.00

0 338.4 4.70 5.20
10 378.0 4,70 5.20
20 402.5 4.70 5.20
30 397 .1 4.70 5.20
40 381.0 4,70 5.20
50 384.4 4.70 5.20
60 369.8 4,70 5.20
70 307.3 4.70 [ 5.10
80 248.2 4.70 5.00
90 186.0 4.70 4.80

100 153.5 4.70 4.70
110 129.1 [4.50 4.50
120 123.3 4.40 4.40
130 118.8 4.40 4.40
140 115.8 4.40 4.40
150 111.2 4.30 4.30
160 101.5 4.25 4,25
170 89.1 4.05 4,05
180 75.2 3.80 3.80
190 67.1 3.50 3.50
200 57.6 3.10 3.10
210 46.5 2.80 2.80
220 33.6 2.30 2.30
230 17.6 1.25 1.25
240 3.8 0.66 0.66
250 1.2 0.44 0.44
260 0.8 .0.42 L. 0.42

Values of Hs bracketed are fetch limited.

TABLE 6b: Predicted wave heights (HS) at Southwold for a 20 ms-1 wind

blowing for 6 and 12 hours.
27



Wave heading at offshore grid boundary
Wave period 210°  225°  240° 270° 300° 330°  360°
6.5s * * & * * * *
7.5s * * * * * * *

TABLE 7: Ray tracking: Range of wave periods and offshore wave directions.

(A1l sets of computations were carried out at both Chart Datum

(CD) + 0.5 mand CD + 2.5 m.) 1In addition, in order to provide

comparisons with Robinson (1980) the program was run at a water

level of CD + 2.0 m, wave period 8s and heading of 247}°
(ie from the ENE).
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Input Target 1 Target 2 Target 3 Target &4 Target 5 Water
Of fshore Of fshore w/r Inshore w/r Southwold Dunwich Sizewell Level
o HS TZ ] o e < Y (m)
e, @ ()| & H E. 6, H E, & H Eo| O H E. | B H E,
180 0.85 3.55 225 .379 .222 241 .21 .069 257 . 124 .024 261 .097 .015 247 .244 092 2-3
190 1.49 3.88 228  .489 .325 244,322 . 140 260 .309 . 130 264 291 115 252 475 307 0-1
200 1.59 3.28 332 .483 425 247 .337 .207 262 .327 . 195 265 305 170 254 475 410 0-1
4,79 5.33 232 .644 .452 247 U474 245 261 .428 .200 265 .388 164 252 .626 427 2-3
5.43 5.87 232 .663 466 248 .490 .254 263 .538 .307 267 530 .298 257 AR 536 0-1
210 1.21 3.28 235 .540 .532 250  .395 .285 264 .326 .193 268 288 151 255 448 366 2-3
1.67 3.55 235 .556 .537 251 416 . 301 264 L4627 .316 268 403 .282 257 576 577 0-1
2.09 3.1 235 .502 .530 250 .365 .281 264 .297 . 185 268 .261 143 255 .409 352 2-3
4,82 5.48 236 .729 574 251 .576 .359 264 L334 .356 267 288 .517 255 614 754 2~3
5.06 5.47 236,729 574 251 .576 .359 264 .334 .556 267 .288 .516 255 .613 753 2-3
5.22 6.90 236 766 .606 252 .622 L400 266 L715 .528 270 708 .518 260 .888 815 0~1
5.80 7.06 236 768 .608 252 .626 404 266 719 .533 270 713 .524 260 .893 .822 0-1
220 0.90 3.21 240 .577 .640 254 450 .390 267 .392 .295 270 356 .244 258 .505 491 2-3
1.70 4.01 240 713 .665 255  .580 b4 267 .638 .532 271 613 L491 260 .804 845 0-1
1.74  3.25 240,586 .641 254,458 .391 267 L400 .298 270 364 .246 258 .516 496 2-3
1.91 2.78 240 . 445 .636 254  .343 .378 267 .289 .268 271 261 .218 258 .375 450 2-3
1.96 3.12 240  .554 .639 254 .43 .387 267 .289 .372 270 338 .238 258 L481 482 2-3
2.37 4.50 240 .758 .680 256  .626 464 267 .702 .583 271 677 .543 260 .873 903 0-1
3.00 &4.22 240 .729 .661 254 .592 .436 266 .378 .551 270 511 .325 258 .629 711 2-3
4.60 6.29 240 .833 L724 257 .720 .541 268 .834 727 272 .823 707 262 1.004 1.053 0-1
4.07 5.00 240 .781 .682 255  .651 L4773 266 .635 450 270 .596 .397 258 .817 745 2-3
230 1.12 3.15 244,604 . 740 258 .499 .505 269 .453 .415 273 421 .359 261 .554 621 2-3
3.04 4.89 254 ,835 .786 259  .734 . 609 269 .733 .606 273 .556 .702 261 .899 912 2-3
3.99 5.68 245 .870 .809 259 .781 .653 269 .694 . 806 273 .648 .779 261 .985 1.037 2-3
240 1.12  3.40 250 .706 .839 264 .631 .669 272 .690 .801 275 .673 .762 264 .806 1.093 0-1
2.86 5.57 250  .925 .920 266 .890 .851 272 1.029 1.139 276 1.022 1.122 266 1.166 1.462 0-1
3.00 4.21 250 .828 .854 263 .700 .749 272 .686 742 276 .644 .719 263 .871 .946 2-3
3.40 5.32 250 .914 L9111 266 .873 .832 272 1.007 1.106 276 .997 1.804 266 1,145 1.429 0-1
3.41 5.37 250 .907 .895 264 .853 791 271 .847 .883 276 .867 .817 263 1,036 1.168 2-3
3.91 6.63 250 .958 .952 266 .942 .921 272 1.103 1.260 276 1,104 1.262 266 1.236 1.582 0-1
250 2.80 4.05 256 .843 .920 1 269 .794 .816 275 .797 .823 279 .784 .795 266 .896 1.039 2-3
2.94 4.82 256 .922 .966 270 .912 . 945 274 1.043 1,238 278 1.043 1.237 267 1.151 1.506 0-1
2.99 4.59 256 .904 .956 270 .887 .921 274 1.011 1,196 278 1.009 1.190 267 1.119 1.464 0-1
260 1.28 4.48 263 .912 .988 274  .909 . 982 278 .939 1,047 282 L9422 1.055 269 1.014 1.222 2-3
1.30 4.05 263 .867 .972 274 .850 .936 278 .866 .970 282 .862 .962 269 .933 1.126 2-3
1.38 3.0t 263 .639 L9511 275 .612 .875] 278 .670  1.046 281 .671  1.049 269 722 1,216 | 0-1
1.41 2.56 263  .431 .942] 273 401 .815] 280 .385 .752 283 .372 .704 269 .409 .847 2-3
1.44 2.72 264 .514 .943] 273 .480 .823] 279 464 .769 282 .450 .723 269 .493 868 2-3
2,20 3.23 263 .708 .950) 274 .673 .8581 279 .665 .837 282 .650 .799 269 .709 .953 2-3
2.38 4.25 263 .897 .995] 275 .906 1.015} 277 1.026 1.302 281 1.037 1.330 269 1.094 1.481 0-1
2.78 4.43 263  .907 .9861 274 .903 L9771 278 .931 1.038 282 934 1.044 269 1.006 1.211 2-3
2.95 4.46 263 .910 .987] 274 .907 .980| 278 936 1.043 282 .939 1.051 269 1.011 1.217 2-3
270 0.68 3.30 272 743 .991] 281 .746 1.001} 281 .825 1.223 284 .B40 1.266 21 .852 1.304 0-1
280 0.54 2.39 280 .341 .9921 287 .341 .990] 285 .366  1.141 288 .374  1.190 275 .367  1.146 0-1
0.70 3.83 280 .862 1.026§ 293 .908 1.139] 288 1.054 1.535 274 1,002 1.386 293 .908 1.139 0-1
1.31 2,22 280 .235 9911 287 .234 .983] 285 .250 1.2 288 .255 1.166 275 .251 1.129 0-1
290 1.17 3.79 290 .852 1.015) 293 .891 1.111] 289 .905  1.147 291 .915 1.173 278 .861 1.038 2-3
300 1.21 2,68 299 .507 .993] 300 .519 1.038] 291 .555 1.188 294 .579 1.293 281 515 1,025 0-1
320 1.05 3.29 316,724 .948f 311 .733 .971] 298 .786 1.118 300 841 1.279 286 672 818 0-1
2.19 5.13 316 .949 .996) 310 .995 1.093F 298 1.042 1.201% 299 1.075 1.278 288 .851 .877 2-3
330 0.42 1.94 323 .077 .8811 318 .073 L7871 302 .063 .579 302 .063 .586 29 .049 .355 2-3
0.47 2.04 323 .123 .882f 318 .117 .800] 303 116 .783 303 .123 .881 291 .098 .560 0-1
350 1.54 4.33 334 744 .782) 326 .716 .624] 309 .687 .575 308 .677 .558 297 .507 313 2-3
1.59 4.54 334 .804 760} 325 .754 .670] 306 .848 847 307 .921 .998 295 .608 436 0-1

TABLE 9: Predicted wave height (Hc) and wave energy (E ) coefficients for Waverider and coastal targets.
c

refer to wave headings.
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Input values are based on datacollected during February 1979.
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Figure 1: Location of study area.
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Figure 13:

Mean and standard deviation of: a) mean monthly wind speed, ﬁ,at Gorleston

b) mean monthly significant wave hei

at Aldeburgh, Dunwich and Southwold.
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Mean monthly wave height Hg. (m)
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Corr(p)=0.8266 n=(N-2) =10
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Figure 15: Relationship between mean monthly wind speed (W) at Gorleston and

mean monthly significant wave height (H_ ) for Aldeburgh, Dunwich
and Southwold. All site years 1975-77.°
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Inshore wave height,HSi

Figure 17:

w
|

Lower Upper

element element

HSi< 2.3m Hg;> 2.3m
Corr.(p) 0.9247 0.5853
Signif. level 0.001 0.01
Slope 0.8629 0.2435
Intercept 0.0455 1.6736

Relationship of offshore to inshore observed significant wave

The intercept for HSi<2'3 m is not
significantly different from zero at the 5% level; the broken
lines represent the point of intersection of the regression lines.
For details, including the derivation of the 2.3 m 'cut-off', see
p12 and Figure 35.

height (H ).

February 1979.
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cubic metres and mean monthly significant wave height (H ) at Dunwich.
For details see text.
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Relationship between monthly significant wave height (H ) at Dunwich
and total monthly volume of beach material moved (V) in®cubic metres.

For details see text. The regression line has been forced through the
origin.
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targets for wave energy
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EAST COAST

WAVE PERIOD 3.5 SECS

WATER LEUEL + 2:5 METRES
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Figure 25
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EAST CODAST

WAUE PERICD 6. SECS

WATER LEVEL + 0a5 METRES

WAVE HEADING 270. DEG

GRID SIZE 250« X 500 METRES

Figure 26
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EAST COAST

WAUE PERIOD 6. SECS

WATER LEUEL + 2«5 METRES
WAVE HEADING 270. DEG
GRID S1ZE 250, X 500 METRES
Figure 27
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EAST COAST

WAVE PERIOD 6. SECS

WATER LEVEL + 2.5 METRES
WAVE HEADING 33Qn DEG

GRID SIZE 250. X 500. METRES

Figure 29
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Figure 33: Observed v predicted wave periods (T ) for
site a) Wave heading of 180°-225°

'of fshore' Waverider buoy
b) Wave heading of 225°-270°.
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- U FFT

7] —— PM with FFT derived
~ 157 Hg and T, values
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Figure 34: Fast Fourier Transform (FFT) of actual wave record for 1630 hrs on

14 February 1979. Hg = 4.43 m; T, =7.78 s. The Pierson-Moskowitz
(PM) spectrum with FFT derived Hg and T, is shown. Note the close
agreement between the two in this instance.
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APPENDIX A

CALCULATION OF EFFECTIVE FETCH .

Effective fetches given in Table 1 were calculated using the method
given by CERC (1973).

Consider waves arriving at Point A in Figure A1. The wave height for
a particular wind speed W blowing from the direction shown is some function
of the sum of all the wind energy components acting along the radial fetches
X") out to + 1,5° either side of the wind direction multiplied by the radial
fetch. Thus -

ol 2

wave height at A ¢ & (W cox &) X;
cz/

This wave he‘ight is equivalent to that which would be given by radial
fetches X.‘ 3 corresponding to an effective geometric fetch in deep

water of Xe# where

X¢ cos < :X% . (4.1)
Thus ~ 2 ~ 2
E(Wem o] X = & (weas o) X

“.I =/ (A.2)

which from equation (A.1) gives

ix,' cos4x;
S cox x¢

The values of Xeﬁc shown in Table 1 were calculated using measured geometric

fetches [X‘) and for angles out to L;O°, in steps of 10°, on both sides

(4.3)

Xey

of the assumed wind direction. Effective fetch bearings were taken in

10° intervals from 0° to 350° .
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APPENDIX B

DETAILS OF WAVE REFRACTION CALCULATIONS

The following description of the wave refraction analysis program is
taken from King and Hardcastle (1980). TFor full details see Abernethy
and Gilbert (197L).

B.1 Ray Tracking
Linear wave theory gives the result that

o¢c= gronh of (B.1)
c

where G~  is the angular frequency of the wave N
c is the phase speed (or celerity) of the wave .
A is the water depth ani

9 is the acceleration due to gravity .

If the seabed is defined over a rectangular set of grid points and a
diagonal drawn across each rectangle, the depths ( A ) are defined
in terms of a series of triangles, in which the celerity (C) may be

interpolated using the formula

Cz px+9y+r (8.2)
where p , % and »+ are constants. This formula is continuous
across all triangle boundaries and furthermore by using the linear
representation of € in equation (B.2) and Snell's lLaw (equation 6) it
can be shown that the ray path through any triangle is an arc of a circle.
Thus given a wave frequency and initial direction, a wave ray may be
tracked from any starting point within the grid area, triangle by triangle,

until it reaches an end point.

B.2 Energy Transfer Functions

Let the directional wave spectrum be defined by S(f, 6) where -;[
is frequency and @ is direction. It can be shown (Longu.et—Higgins, 1957)
that, by making certain assumptions, S[k,) éz) is constant along a wave
ray path, where _é-" ['é” ‘z) is a two dimensional (vector) wave number.
Transforming from wave number space to frequency and direction space to

maintain volume elements of energy gives
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Sﬁ,é)#dé = 5(‘/:“&) ’“/ olh; (B. 3)

whence

Sk, 4,) = S(f e)et. A9 (B.1)
R =7 Y7

which since d‘, 0“2 =Rtk L6 ) where R = 'f ’ gives ,
R,) = S/#,6) L. . .

Since the group velocity of waves is by definition

Cq = do :
7 & (3-6)

where &J = 2"7‘ and since A& = c/.27r7£ then equation (B.5)

becomes

5/&,,‘2)-: C%'ZCQ . J‘/-)ZJ&): constant - (B.7)

Thus from Longuet-Higgins (1957) CC', .S#,G) is constant along a
ray path whenever -f is constant. Therefore by defining .S;[,[ ,9;)
and :o (1(, 90) as the inshore and offshore spectra then from (B.7)

(c cg)‘. S‘.G{,Ge)s[ccj)o $.(4,6,) (B.8)
&6‘)9&)"‘/“#) So[‘)[/go\ (39)
where
/*é‘) = ( C5)° . (B.10)
(c "5)!'
To obtain inshore values for HS and Tz, -f;_(,‘) is required where
6,
St =/ G, 6) £6¢ (B.11)
é;, 8,
‘/u[#)a:[&(ﬁ Ou) e (B.12)
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where et:, to 9{2 is the range of interest at the target point.
Assuming that Sa [7‘) 60) is sufficiently smooth then

g m H(© — r4,06)

(B.13)

L& 6,

where

Aoe is the angular segment of the offshore direction )
A/ is the number of segments ,
A,‘é()is the total energy at frequency 7£ in directional
segment N (ie NAO £ O, < (r+1)4, 6 ) s
Hfx) =1ir 0< x £ 4,0,

= 0 otherwise ,

Substituting for So (1“, ag) in the expression for S(#\ and
approximating the integral by a summation over the number of rays arriving

at the inshore target poin‘t(ray paths are reversed after tracking) gives

S‘ﬂ)-/“‘(#)a ° £ NMAH) - 5" (k)

°9 Az/
where
7;4’ =/A#J N, j'—t'? (B.15)
Y4

and d( e is the angle between rays arriving at the target point and
NA is the number of rays whose offshore direction eo is in the nth
directional segment.
The inshore HS and TZ values can be calculated from the zero and second

order moments of S[,C) (Cartwright and Longuet-Higgins, 1956). That is

He = 4—/‘40”2' and z’r(""o/"’z) (B.16)

where

X . 2
M= (SG)otf  ana My = T LBt (5.7)
o (o]

For the computations the integrals are replaced by summations, assuming
A-,f is sufficiently small. To obtain an estimate of the mean inshore
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wave direction 9/1() s the series approximation (B.13) for
is substituted in the definition of the mean vector at the target

point, namely

o..

2 "9‘.
/ S:-ﬁ/,@;)e oA
T;___ o, ) (B.18)
e,
S St 6i) w6
é
Thus
BG)= o S HAYE [S A 0lh)  rg)
where

A6 <8¢
M,\ﬂ)»‘- ¥ K(#)‘-‘/A/-‘)A— raysgif ) (B.20)

oY segment
n
Thus the transfer functions (see Section 3.2) 7. MA A are
calculated from
A6 !

n (7() = wml4) 2 g cosOd

U, =4 Do 278 in . (8.21)

V. : oY segment | SiA 8¢ )

n n
for the set of frequencies {#M Mz M and

stored in a file as the matrix elements TI:M = 7, /.,CM )) Upr= MA%)
and V,\M = Vp\(;‘m) . Once these functions are available it is a
relatively fast calculation to determine -(‘_'[7"“) and 5[7(,“} from
equations (B.14) and (B.19) and from the offshore spectral matrix

{A,\M'“' An ﬁ/m)} .

B.3 Offshore wave spectrum forms
The offshore wvalues {A,\M} can be estimated in a variety of ways.

Since it is usually the frequency spectrum J-/’L) that is studied rather
than f@[) é) » the directional distribution is assumed. Thus

-(0#)9): So/#) 4[9) (B.22)

where

Glo) = 2. cost/6-6m) (5.23)
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for ( 6 - 9”" £ 7\'/7— and where QM is the mean direction
(Hasselman, 1973).

Values of .ro ﬁ‘) can either be taken directly from a frequency
spectral analysis of the offshore wave data, or can be estimated using a
theoretical (empirical) approximation (eg Pierson-Moskowitz).

Since the available offshore wave data was mostly in the form of
HS and Tz values, the approximation used for this comparison was one
derived from the Pierson-Moskowitz spectrum to include the parameters Hs
and Tz. Thus

/
—  S— *
. 6‘) _ :Iz | 7v(TA) . ( |
e B.2
o é4. ¢ b

Thus values of {AAM } were calculated from the approximation

A = Anlha) s G£)6(0). 06 (5

where 9;\ is the direction representative of the A th offshore

directional segment.
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APPENDIX C

WAVE REFRACTION DIAGRAMS

Figure CI

Note:

c2
Cc3
C4
C5
C6
c7
c8
Cc9
Cl0
Cll
Ci2
C13
Cléd
C15
Cl6
C17
C18
C19
Cc20
C21

Water depth
(m)

NMOMNMNMNMNOMNMMNMNOONOMNMNOONNOONO
« e e e s 8 e ® s e ® ° e e v &
(SR, R Y, R, R, RV, RV R, I R R, T, R, R, R, R, I, R, R,

Wave period

(s)

NNONNNONOAN NN OONOINOION N
e e ® & & @ ® & e e e e & s & & »
LU OoOULULLULOUVLOLULULLOWLOWLOULO OWL

Wave heading
(°t)

210
210
225
225
225
225
240
240
240
240
270
270
300
300
300
300
330
330
360
360
360

Other wave refraction diagrams fall in the main text as

Figures 24-30.

Place names are shown on Figure 24 only.
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