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SUMMARY

This is the final report in a series concerning the Sizewell-Dunwich Field
Study. Besides summarising the significant results of the earlier reports, it
attempts to show how various aspects of the work are drawn together into a final,

multi~disciplinary whole. The study is examined in a regional context and also

in the wider one of general scientific and coastal engineering applications.

The data base for these wide-ranging conclusions comprises the results of
geophysical and coring surveys, 23;766 hours of useful current meter data from

23 stations, wave measurements from 5 stations, 3 of them through a 4 year period,
sediment transport measurements of both suspended and bedload, and over a year

of monthly beach profile measurements.

The regional work has increased the understanding of nearshore dynamic processes
involved in the inception, growth and maintenance of an offshore sandbank. The
history of the bank is described from its initial stages as two separate banks
during the early part of the last century, to their elongation and amalgamation
and the reculting bank's movement westwards closer to the shore. The pattern of
coastal erosion has left a slight headland at Thorpe Ness and it is shown that
even a small headland such as this may modify the tidal flow. A mechanism would
then exist to initiate and maintain a sandbank associated with the headland.
Although the growth of the bank is in the opposite direction to the bedload
transport residuals, a consideration of éuspended sediment transport processes
shows that they may be responsible. The documented shoreward movement of the

banks, on the other hand, is likely to be related to wave activity.

Important points of wider relevance include firstly demonstrating the necessity of
choosing the correct bedload transport equation to apply in a particular situation,
reinforcing results from work carried out earlier in Swansea Bay. Secondly it is
shown that in the Sizewell-Dunwich Bank area the suspended sediment transport rate
varies as the friction velocity to the power 2.8. Furthermore it is seen that
the nearbed velocity profile hardly deviates from the Karman-Prandtl logarithmic
profile, in spite of the high concentration of suspended sediment. The
relationship between the eddy diffusivity of suspended sand particles and the

eddy viscosity of the fluid has been defined. The sheltering effect of the

elongated bank on a shoreline formerly suffering severe erosion is demonstrated



both empirically and theoretically. Further support is given to theories of
bank maintenance involving vorticity and advective effects in the residual
currents. Finally, the success of a relatively inexpensive method, using

fluorescent tracer, of measuring bedload transport rates and directions is noted.



SIZEWELL-DUNWICH FIELD STUDY FINAL REPORT : A STUDY OF NEARSHORE SEDIMENT
TRANSPORT PROCESSES

1 INTRODUCTION

This is the final report in a series of seven Topic Reports concerning the
Sizewell-Dunwich Field Study. Besides summarising the important conclusions of
the earlier reports, it attempts to draw them together as a unified whole, and
highlight the particular aspects which are of wider scientific and practical

interest.

For further details of the individual aspects summarised below, reference may be

made to the separate Topic Reports, which are listed in Appendix A.

The work began in 1975 in the Sizewell-Dunwich Banks area off Suffolk, East Anglia
(Figure 1) as a regional multi-disciplinary study to evaluate the relationship
between an offshore bank and the shoreline. It was also envisaged as an attempt
to understand the mechanism by which banks are formed, and the way in which some

banks reach overall stability and others do not.

The project developed through 1976 in response to the interest taken by the
Department of the Environment as an examination of a relatively simple and stable
offshore sandbank,with the short term aim of resolving its sediment transport
system. The long term objective was to use the understanding gained for
predictive purposes. Part of this aim was to be able to provide useful
information to those concerned with environmental problems such as the effects

of offshore dredging, costal erosion and the design of sea defences. Closely
allied with the work in the early stages was a project to construct a finite-
difference numerical model, firstly of the water flow, and later with the
intention of incorporating sediment transport terms and equations. The Sizewell-
Dunwich Banks with their fairly simple geometric form were to be used as a
prototype for the validation of the model, and hence initially, data acquisition

was considerably influenced by the model's requirements.

As the project developed further, from 1977 onwards, there was a change of
emphasis away from the regional aspect towards problem solving of a more general
nature. The Institute of Oceanographic Sciences had been working since April

1974 on a question related to coastal erosion in Swansea Bay, South Wales, a



project also largely funded by the Department of the Environment. In addition
to comprising a study of the immediate area and its specific problems, this work
was seen in the wider context of the general interrelation of the coastline

and the offshore zone. (Swansea Bay (Sker) Project series of Topic Reports,
Appendix B). In particular, as the Swansea Bay and Sizewell-Dunwich projects
progressed, it became apparent that the two widely contrasting coastal areas
should be used to enhance the broader goal. Sediment transport studies became
increasingly important because of the need to compare measured with predicted
rates of transport under different conditions of bathymetry, shoreline geometry,
tidal regime and wave climate. Further factors requiring investigation have
included assessing the influence of meteorological forcing on currents and

therefore on sediment transport, and the effect of waves in shallow water areas.

2 RESEARCH PROGRAMME

The measurements began with a sedimentological survey, using sidescan sonar, and
boomer and pinger continuous seismic profiling equipment. These data were
calibrated with grab samples, box and vibrocores. The survey was undertaken

in winter (February, Figure 2a) and was partially repeated in the summer (August,
Figure 2b) to identify differences which could be due to different meteorological
conditions and associated parameters. A bathymetric survey, to be used in

wave refraction computations, was also part of this programme.

An analysis of the tidal dynamics of the area was undertaken. The data base was
provided by records mainly from Plessey MO21 self-recording current meters.
Current meter stations were selected for short term (2 month) moorings, with good
data being obtained from 22 locations, and with one long term mooring providing
data over a period of 2! years. Tidal elevations were obtained from the
Institute of Oceanographic Sciences' (I0S) (Bidston) tide gauge at Lowestoft, with
supplementary data from the CEGB gauge at Sizewell, although the latter was

in place for one week only. 10S (Taunton) data were also available from three
seabed pressure transducers, at Southwold, Dunwich and Aldeburgh, which were set
to record continuously for a two week period in order to provide tidal height
correction data for the bathymetric survey. Velocity profiles were measured

by various methods, enabling predictions to be made of bedload sediment transport

rates and directions from the mid-water current meter data.



A comprehensive set of wave measurements is also available, from the three
frequency modulated pressure transducers already mentioned, which were on site
for 4} years. Further data came from two Waverider buoys located one on each
side of the Dunwich Bank, specifically to measure wave height attenuation by the

bank.

Progress towards the understanding of ongoing sediment transport processes has
been achieved by measuring both bedload and suspended load in the field. It has
been possible to calibrate various commonly used bedload sediment transport
equations using a fluorescent tracer technique. Suspended sediment concentration
and velocity profiles were measured with a pumped sampling rig. Understanding
the relationship of the bank to the shoreline has also been an integral part of
the study, and therefore beach profiles at approximately | km spacing were
surveyed at monthly intervals for over a year. The development and maintenance
of the bank has been further understood by reference to its evolution as shown
in hydrographic surveys carried out during the past century. Assessment of
their accuracy and that of other relevant historical documents has been part of

the work.

3 RESULTS IN A REGIONAL CONTEXT

3.1 General topography

The coastline in the study area curves inland very gently from a slight headland
or ness at Southwold in the N to a similar, but more prominent feature at Thorpe
Ness in the S (Figure 1). A small river, the Blyth, flows into the sea
immediately S of Southwold. Offshore there is a gently sloping platform
reaching a mean depth of 15 m below Chart Datum approximately 4 km offshore.
Lying on this platform is a linear sandbank with its long axis parallel to the
coastline and about 2 km from it. There is a central col separating the Dunwich
Bank to the N from the Sizewell Bank to the S. The two together are approximately
11 km long and | km wide, with mean slopes of 1 in 60 to the W, and | in 200 to
the E. Inshore from the bank is a channel, again elongated parallel to the
coastline and reaching a mean depth of just over 9 m below Chart Datum. There
is a 6 m to 8 m deep channel between Thorpe Ness and the southern end of the

Sizewell Bank.



3.2 Geology : sedimentary sequence and Quaternary history

The coastline, which forms the western boundary of the research area, is

composed mainly of relatively unconsolidated rocks of the Norwich Crag Series, of
preglacial Pleistocene age (Funnell and West, 1977). The only pre-Quaternary
rock identified offshore is the Pliocene Coralline Crag, a ridge of shelly,
iron-stained sand outcropping in the SW of the area as an ENE-WSW continuation

of Thorpe Ness (Figure 2a).

Schematic sections, one parallel to the shore and two normal to it comprise
Figure 3, clarifying the interrelationships of the Quaternary sediments. The
sections show the shelly clays, sands and gravels of the Norwich Crag Series
lying unconformably against the Coralline Crag ridge and underlying the Holocene
sediments covering the remainder of the study area. The erosion surface of
these beds dips to the E, but there is no evidence for the direction of dip
within the Crag strata. Both the Crags have been identified by their

macrofossil content.

The recognition of the alluvium from its microfossil content as being probably

of Holocene age, together with the infilling and burial of channels SE of
Southwold, is evidence of a post Pleistocene marine transgression. The erosion

of the Norwich Crag Series referred to above could have occurred at least

partially during this transgression. However Carr and Baker (1968) and Carr
(1971) who worked in the Orford and Shingle Street area immediately S of Aldeburgh,
considered that the evidence there indicated a Pleistocene planation of a

similar surface. The buried channels, mentioned above, could have been

initiated during the late Pleistocene. Alluvial clay has been recognised

onshore (Figure 2a) and it is reasonable to suppose that it is part of the same
deposit as that offshore and that the transgression reached inland to where the
present deposits of alluvium are found. As far as the author is aware, there

has been no investigation of these clays for dating, either from peat horizoms,

or microfossil content, but they may be similar to estuarine clays both to the

N and S of the area. Carr and Baker (1968) gave radiocarbon dates of 8460 + 145 y
BP and 3460 + 100 y BP for peat samples occurring within estuarine clays in the
Orford area. This is of the same order as evidence given by Coles and Funnell (1981)

for two marine incursions, ¢ 7500 y BP and c¢ 2000 y BP in the Broadland valley of
east Norfolk.,



At the time of the transgression, the relatively resistant Minsmere and Dunwich
cliffs extended further E than now, so separating the two river valleys which

suffered incursion from the sea.

Following a relative lowering of sea-level, the sea withdrew to at least a
shoreline near the present coastline in the S, and probably further E in the N,
allowing the river Blyth to form several estuarine channels. Perhaps these were
superimposed on the earlier drainage pattern postulated above. This could
account for geophysical evidence which shows two channels lying closely together
(Lees, 1980). The mineral vivianite, a hydrated iron phosphate, identified in
the alluvium 2 km SSE of Southwold, is often associated with clays deposited in
estuarine channels because a source of phosphate is provided by fossil bones and
shells (Read, 1972). Also flowing into what was the same broad estuary would
be rivers from the Walberswick and the present Minsmere Nature Reserve areas.
There were probably sand and gravel ridges further offshore, perhaps forming a

barrier beach.

A relative sea-level rise then resulted in an advance of the sea, probably
carrying material from the ridges shorewards. This infilled the estuarine
channels and may have provided a source of material for the formation of sand
and shingle ridges across the valleys, ie the beach ridge at Walberswick, the
sand and shingle barrier ridge immediately N of Dunwich, and the ridges and
subsequent sand dunes dividing the Minsmere Nature Reserve and the Sizewell

power station property from the sea.

During the time of transgression, because of the unconsolidated nature of the

land, coastal erosion continued and is continuing intermittently.

3.3 Historical changes in the coastline and offshore banks

Documentary evidence is available in the form of legal records and court rolls
from the seventh century AD, but it concentrates on the former city of Dunwich.
From 1836 onwards there is a greater number of specific measurements at points
along the coast. They highlight firstly the variability of erosion over time,
which ranges from zero to 18.3 m yr—l, and secondly the often simultaneous
erosive events at different sites in the Aldeburgh to Easton Bavents area

(Figure 1).



The hydrographic charts cover the period 1824 - 1965. They show initially two
small banks, opposite Sizewell and Dunwich respectively. The Sizewell Bank grew
northwards and the Dunwich Bank declined until it was incorporated into the
elongating Sizewell Bank, about 1921/2. Between 1824 and 1965 this northerly
progression averaged 49 m yr_]. The Sizewell-Dunwich system also moved
landwards with a maximum rate of 10.7 m yr_1 between 1867 and 1965. Thus in
1965 the banks were only two thirds of the distance they had been from the coast

near Minsmere in 1867 (Figure 4).

Calculations suggest that the volume of sediment lost from the coast between
Easton Bavents and Thorpe Ness during the century prior to 1965 is similar to
that gained by the offshore banks. However, it would be too simplistic to
argue for a simple transference of material between the two. Some of the

complexities involved will be discussed below.

3.4 Tidal currents : observed and residual circulations

The tidal movements and residual circulation depend on the astronomical tides.
The principal lunar, or My tide enters the North Sea from the Atlantic and
propagates southwards as a progressive wave. It becomes modified in various
ways due to the shape and structure of the North Sea itself and the more local
perturbations of the coastline and seabed in the area under consideration.

At Sizewell-Dunwich these effects can be represented by describing the tide as
a combination of progressive and standing wave oscillations, and harmonic

constituents of astronomic and shallow water origins.

The current meter data have confirmed that the tidal currents are essentially
rectilinear, with ellipticities of the order of 5% and less, and with mid-water

tidal stream maxima in the order of 1.00 m s_1

The residual flow pattern in the area is complex (Figure 5) although there is
evidence of an anticlockwise eddy in the mean circulation, which is situated
over the Sizewell Bank. Mean current residuals of up to 0.13 m s~] occur
inshore from the Sizewell Bank. These are largely due to the eddy formed north
of Thorpe Ness, causing the southerly current to flow for approximately 7

hours during each tidal cycle. A similar phenomenon is shown more markedly in
Start Bay, Devon (Pingree and Maddock, 1979) where Start Point, a more prominent

headland than Thorpe Ness, affects the flow in such a way that the inshore



current flows southwards for 10 hours per tidal cycle.

The tidal residuals also show a complex variety of flow directions at the
northern end of the Dunwich Bank, near Southwold, although existing data are not

clearly indicative of an eddy there.

The eddy patterns in the flow may have developed during the retreat of the Dunwich
and Minsmere coastline through erosion, leaving the relatively consolidated
Coralline Crag of Thorpe Ness more prominent. Heathershaw and Hammond (1980)

refer to various workers in rivers -and the sea who have shown that such eddies

can form on either side of a promontory. The eddies may rotate in a clockwise

or anticlockwise direction, depending on which side they occur. The subsequent
growth of the banks indicates there was a plentiful sediment supply. A major source

would be from the soft cliffs already mentioned.

Current measurements from a long term current meter mooring have confirmed that
the residual circulation is also influenced by meteorological forcing. During
stormy periods good correlations are shown between the alongshore components of
the residual flow and the wind stress. Work is in progress to evaluate this

phenomenon further.

Density currents are not considered to be significant in the Sizewell-Dunwich

area because the freshwater input is minimal.

3.5 Sediment transport

Velocity profile measurements have enabled sediment transport predictions to

be made from the midwater current meter readings. Comparisons with the results
from a fluorescent tracer experiment have shown that of 5 widely used sediment
transport formulae, Yalin's (1963) equation gives the closest agreement with
observed values at Sizewell-Dunwich. The expression predicts rates which vary
typically from 0.003 g cm—1 s_] offshore to 0.069 g cm—1 s_] inshore. The
increased rates nearshore may be partly due to the increased effects of waves

on tidal residuals and sediment transport in shallow water.

A schematic representation of the sediment transport paths is shown in Figure 6.
An apparent bedload parting seaward of Dunwich may be compared with the bedload

parting further offshore which has been identified by Stride (1973) from



sedimentological data. The latter feature appears to be related to the presence
of the amphidromic point in the southern Bight of the North Sea and is also
revealed in bed shear stress distributions from a numerical model of the tidal

circulation in this area (Pingree and Griffiths, 1979).

This study shows that the predicted directions of net bedload transport are
opposite to the direction of the banks' trend from their point of attachment to
the coast. Only in the area north of the bedload parting is the direction of
predicted net bedload movement similar to the trend of the banks, which Carr (1979)
has shown have extended in a northerly direction. An explanation for this

behaviour will be offered below when suspended sediment transport is discussed.

The southerly residuals suggest the possibility of sediment transfer from the
banks to the shore at Thorpe Ness, a hypothesis strongly supported by Robinson
(1980). A contrary view is held by McCave (1978) and for an analysis of these
opposing ideas, reference may be made to Carr (1981). The last author, partly
on grounds of the availability of specific sediment sizes, tends towards the
view of McCave, that sediment moves from Thorpe Ness to the offshore bank.
Evidence for the removal of sediment from the foreshore at Thorpe Ness during
stormy weather, as suggested by McCave (1978), and its replacement in calmer times,
is provided by Blackley (1979). He describes the development and landward
migration of intertidal bars at Thorpe Ness after storms, which may provide the
necessary mechanism. It is not known what proportion of the eroded sediment

is subsequently replaced. Any transfer of sediment between the ness and the
bank is likely to be reduced by the strong flushing action to the SE between the
two. If sand moves from the ness to the bank, sand deposition might be
expected in the direction of the flushing. A southerly tongue to the Sizewell
Bank is recorded as having been present earlier this century and may be a

frequently occurring short lived feature (Carr, 1979).

An explanation for the apparent contradiction between bedload measurements

and predictions indicating transport to the S, and the trend and elongation of
the banks northwards from the coastline, is offered by considering suspended
sediment transport processes. The suspended mode is dominant over that of the
bedload by at least 2 orders of magnitude. At spring tides the net, depth-
integrated suspended sediment transport rate, based on near bottom velocity and
concentration profile measurements, was as much as 5.66 g o::m“1 s_l. The neap

rate, however, is likely to be only one fifth of this. The available evidence



from 5 stations where suspended sediment transport rates were estimated,

(Figure 1) shows an overall transport rate to the N.

3.6 Wave climate

Observed wave data demonstrate that under most circumstances there is little
difference in the energy reaching the coastline S of, opposite to or N of the
Sizewell-Dunwich Banks. However, under severe storm conditions large waves
break on the banks so that there is then a substantial difference between
offshore and inshore wave height, tﬁus demonstrating the sheltering effect of the
banks. The critical wave height above which the attenuation takes effect is in

the region of 2.46 m at high water, and 2.07 m at low water.

Wave refraction, ray tracking and wave energy programs demonstrate a marked
wave focussing effect along the shoreline, particularly in the Sizewell- Thorpe
Ness region, for waves approaching from 30°, the direction of maximum fetch.
When the wave approach is normal to the banks, refraction is minor, with energy

being fairly uniformly distributed alongshore.

The interactions between wave and tidal currents are still poorly understood

and the prediction, using existing theories of sediment transport under a
combination of the two can be grossly in error. In particular, none of the
sediment transport equations mentioned above accounts intrinsically for the
effects of waves. In this study the approach used has been that due to

Bijker (1967) who developed an expression for the enhancement of the bed shear
stress due to wave activity. Figure 7a shows how the enhancement under

typical significant wave heights affect the actual transport rates, using
Yalin's equation. Even moderate wave conditions (HS = 1 m, period = 6 s) in 12 m
water would increase transport rates by a factor of about 2 at peak tidal flows,
and by more with decreasing flow speed. Figure 7b shows exceedance curves for
wave induced and tidally induced currents for the Sizewell-Dunwich area, showing

the likelihood of the above effects.

It should be remembered that although wave activity may enhance the bed shear
stress, once the particles are in suspension they are moved mainly by tidal
currents. However, a net movement of sediment in the direction of wave

propagation may occur in shallow water as a result of wave particle orbits

11



being not quite closed. It has been calculated that during periods of
prevailing wave activity from the NE this would give a shoreward drift at the
base of the water column of 0.35 m s_l, of the same order of magnitude as the
tidal residuals. Historical and fluorescent tracer evidence does point to a
westward movement of the bank during stormy conditions. The latter data in
particular indicate that wave action may have been responsible for this shoreward

movement.

3.7 Beach changes

After 12 months (1978/1979) losses were concentrated over the 7 northern sections
which extended from Sizewell to Southwold. Gains were confined to the

southern sections ie Aldeburgh, and Thorpe Ness to Sizewell, and to the section
furthest N, Maximum sectional gains or losses in volume over the 15 month
period, equivalent to an increase in height of 0.52 m and a fall of 0.37 m, were
at Sizewell (gain) and Minsmere Cliffs (loss). The greatest volume changes
occurred at the Thorpe Ness section. When all 10 sections were taken together
there appeared to be no obvious trend in volume change during the summer, but

over the winter accretion was dominant.

The wind pattern for the survey period followed that of previous years with a
dominant NE wind direction. Mean winter wind speeds were higher than in

. . -1
typical years, averaging some 6.8 m s .

Over the year 1978/1979 the mean summer significant wave height (ﬁs), measured
by the inshore frequency modulated pressure transducer at Dunwich (Figure 1),
was 0.34 m compared with a mean winter value of 0.61 m. In December 1978, 407

of waves measured had a significant wave height in excess of 1 m.,

There is a clear relationship between the total volumes, for all sections, of
beach material moved and ﬁs (Figure 8). The greatest volume change occurred
in February 1979, which coincided with a period of strong northeasterly winds
and associated high waves. It is interesting to note that there is no

correlation between erosion or accretion values separately and H_.

The formation and migration of the intertidal bars at Thorpe Ness mentioned

above provides a mechanism for the particularly large changes at this section.

12




4 REGIONAL CONCLUSIONS

Measurements of bedload and suspended load sediment transport rates, together
with records from a network of current meter stations, have indicated some
processes which may be involved in the inception, growth and maintenance of an

offshore sandbank.

Five sediment transport equations, three relating to bedload only, and two to
total load, have been calibrated for this particular area. Yalin's (1963)
bedload relationship gave the best estimates. It was therefore used in
conjunction with the current meter data to predict the overall bedload transport
circulation pattern. The data demonstrate that the main transport is to the S,
although the banks trend northwards from the coastline and have elongated in the

same direction.

An explanation for this apparent contradiction is offered by considering
suspended sediment transport processes. The suspended mode is dominant over
that of the bedload by two orders of maghitude and the available evidence,

albeit limited, shows an overall transport to the N.

The evolution of Thorpe Ness, resulting in a small promontory, and the coastal
recession S of Southwold, could have set up tidal residual eddies which were
then responsible for the inception of the Sizewell-Dunwich Banks. Historical
data show the presence of two small banks opposite Sizewell and Dunwich (south
of Southwold) in 1824 (Carr, 1979). Work by Pingree and Maddock (1979) at
Start Bay, Devon, has shown how vorticity and advective effects in the tidal

currents can maintain such structures.

Historical and fluorescent tracer evidence point to a slow westward mass
movement of the banks during stormy conditionms. The latter data in particular
indicate wave action to be responsible. However it is not clear why the
Sizewell tidal residual eddy still forms in its original location, now slightly

seaward of the bank.

The fact that long term erosion has become considerably reduced at Dunwich
has been shown to be due to the elongation of the banks, giving them a
protective rSle under extreme conditions. The sand and shingle barrier at

Walberswick, further N, is under increasing attack during storms. As the

13



very slow (in civil engineering terms) relative rise of mean sea-level continues,
the frequency of it being breached must increase. At Sizewell the presence
of the bank offshore, and the wide, duned foreshore give the area reasonable

protection,

5 CONCLUSIONS OF WIDER SCIENTIFIC INTEREST AND ENGINEERING APPLICATION

5.1 Applicability of commonly used sediment transport equations,

The ultimate aim of much work on sediment transport is to understand the
processes involved well enough to be able to predict accurate rates and directiomns
from the minimum data possible. To this end various sediment transport equations
have been developed, but almost entirely in flumes and rivers. The present
project has provided a much-needed input by calibrating 5 such expressions in the
sea, continuing the work of Gadd et al (1978) in the New York Bight, and
Heathershaw et al (198!1) in Swansea Bay, South Wales. The latter group of
workers found that Bagnold's (1963) approach, when modified to remove its
dependence on the excess shear stress (Gadd et al, 1978) gave the best estimates.
In contrast this expression was found to overpredict by 2 orders of magnitude

in Sizewell-Dunwich and the equation giving the best results was that due to
Yalin (1963) (Figure 9). Bagnold's (1963), Einstein's (1950) and Yalin's (1963)
expressions were used by Gadd et al (1978) in the New York Bight. They found
that Bagnold's (1963) equation gave transport rates 1 order of magnitude

greater than that of Yalin (1963). Gadd et al used radioisotope tracer
experiments carried out nearby (Lavell et al, 1977) as a rough check on the
validity of the formulae employed. The tracer experiments were of short

duration (13 and 9 days) and may well have had insufficient time for the marked
sand to have reached equilibrium with the background material. Their results

of the comparisons with the 3 different formulae are inconclusive, and have

been used as guides to orders of magnitude only.

Amongst the difficulties encountered when attempting to apply these relationships
to real situations in the sea is the specification of values for the various
parameters. This problem is discussed in detail by Heathershaw (1981) showing
how each of the 5 equations under consideration is sensitive to various parameters

such as water depth, mean particle size, and roughness length (Zo).
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Swansea Bay and Sizewell-Dunwich differ from one another in coastal geometry,

fresh water and sediment input, mean grain size of mobile material, tidal range,
fetch characteristics and tidal dynamics. One result of this is that in

Swansea Bay the dominant mode of sand transport is by bedload rather than suspended
load, whereas the opposite is true in Sizewell-Dunwich, with suspended load

transport exceeding bedload by 2 orders of magnitude.

It is clear that any one or more of the above characteristics may effectively
determine the most suitable expression to use. Consequently, rather than base
predictions on a knowledge of the mean grain size of the substrate and the water
flow behaviour alone, it is better to calibrate possible transport equations in
the field in order to choose the one which is the most appropriate. It may also
be noted that because of the non-linear relationship between tidal currents and
bedload sediment transport, the predicted directions of sediment movement do not

necessarily coincide with residual tidal current directions.

A particularly important point to remember when measuring bedload transport using
tracers is to allow adequate time for the tracer to reach equilibrium with the
background sediment. Failure to do this could result in overprediction of

transport rates.

5.2 The relationship of suspended sediment transport to friction velocity,
Prediction of suspended sediment transport rates and directions is far more
difficult, largely due to the difficulty of sampling under severe environmental
conditions and to the extreme non-linearity of their relationship to water

velocities.

Suspended sediment transport (qss) is dynamically related to the friction
velocity (U,) to a power which may be greater than unity, times the excess

shear stress. The excess shear stress is directly proportional to the friction
velocity squared, which means that dgg is proportional to U*n+2, where n = 1 at
least. Bagnold (1963) and Yalin (1972) both suggested that the rates vary

as U*B, but more recent work by Dyer (1980) indicates that in certain cases

A varies as U, to a power between four and seven. Analysis of the relevant
Sizewell-Dunwich data shows that in this particular area dgq varies typically

as U*2'8, which is only slightly less than U*3 (Figure 10). Again, predictions

should be based on field measurements since there is no clear general relationship.
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5.3 Roughness lengths and the modification of the logarithmic velocity profile.
A parameterisation of the seabed roughness is required in sediment transport
equations in order to calculate the bed shear stress and hence the transport
rates and directions. There is a paucity of data from the British continental
shelf referring to this roughness and the boundary layer velocity measurements
in the Sizewell-Dunwich area have contributed to our knowledge in this field.
Roughness length (ZO) values have been calculated from velocity measurements for
sandy to clayey substrates. The optimum values appear to be 0.0008 m for a
clay substrate, 0.0039 m for the sand, silt and clay admixtures, 0.0029 m for
fine sand and 0.0083 m for medium sand. Both sand grades are likely to be rippled.
The unexpectedly high value for the admixtures is almost certainly due to the

presence of a high density of the tube worm Owenia fusiformis. The top of the

tube and the feeding parts of the animal project slightly from the seabed,

giving additional roughness.

One perhaps surprising discovery has been the behaviour of the very high
concentrations of suspended sediment, up to 1.892 g 1-] of mainly very fine to
fine sand (10 cm above the seabed) and a mean depth concentration of silt and
clay in 10 m water of 0.230 g 1_]. These suspensions do not appear to modify
the velocity profiles significantly from the logarithmic structure, at least

in the bottom 2 m. This may be because the mainly sand suspension comprises
discrete particles. In contrast, in Swansea Bay, where the velocity profiles
are significantly modified, the suspended sediment is predominantly silt and
clay. Nevertheless, the precaution was taken of only using the profiles which
fitted the Karman-Prandtl equation above a 997 significance level, to calculate

the roughness lengths.

5.4 Calculation of transport rates of separate grain sizes

A further problem in the prediction of suspended sediment transport rates is
that engendered by the differential transport of different grain sizes.
Progress has been made in developing techniques for the analysis of suspended

sediment transport data with regard to the different size fractions.

A factor of proportionality (B) can be defined relating the eddy diffusivity
of the sediment to the eddy viscosity of the surrounding fluid. This factor
has been calculated from the slopes of the regression lines obtained by

fitting the velocity and concentration profiles to the Karman-Prandtl and
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Rouse equations respectively, Although many workers find such a factor to be
less than ome, in general B > 1 in Sizewell-Dunwich (Figure 11). Whereas it is
not difficult to envisage 'damping' effects which high concentrations of suspended
sediment may have on the near-bed velocity profile, a particle accelerating
effect is more difficult to explain. Jobson and Sayre (1970) suggest that the
diffusion of larger sediment particles, at least up to the medium sand range, 1s
enhanced by centrifugal force arising from the curvature of fluid particle

path lines, particularly in flows with strong vortex activity. Wave effects

are not likely to play a major part in this instance as significant wave heights

and wave periods were small at the time of the experiments.

Suspension of sediments is further complicated by the hysteresis effect, where
there is a time lag between a change in velocity and that in the actual
suspension or deposition of particles (Thorn, 1975). It is clear that
measurements of sand concentration at a specific site will include material
advected into the area by tidal currents and that not all sediment will be

locally derived.

5.5 Wave attenuation by an offshore bank

The sheltering effect of an offshore bank sub-parallel to a neighbouring
coastline is well known, and has been used in coastal protection work by the
construction of artificial underwater banks (CERC, 1973). The placing of
two Waverider buoys, one each side of the Dunwich Bank (Figure 1) has not
only highlighted this protective capability by demonstrating that high waves
break on the bank, but has also shown that the effect can be predicted

theoretically.

The offshore Waverider buoy was installed in approximately 16 m of water, and
the inshore one in approximately 11 m. Simultaneous records were obtained for
periods between November 1978 and May 1979. Negligible attenuation was shown
for the small waves, but as the offshore height (HSO) increased, the

inshore significant wave height (Hsi) did not increase above about 3 m. These
data were reported by Carr et al (1982) and the plot they gave of measured
inshore wave height against offshore wave height was sufficiently striking to
warrant further work (Tucker et al, in press). These authors show that the

critical wave height, at which such breaking occurs, varies between 2.46 m (high
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water) and 2.07 m (low water) for this area. The mean depth of water over the

bank at high water is 5.1 m, and is 3.9 m at low water.

The expression

1 - exp [ - —— (1

represents the relationships, where BW is the ratio Hsi for small waves (= 0.974)

so
and HC is the critical height. Figure 12 shows the plot of all inshore and

offshore data together with the statistically fitted curve.

5.6 Formation and maintenance of a sandbank in the lee of a headland

Many banks appear to be tied to headlands, but it is not clear how large a
headland has to be to produce the flow effects leading to the generation of a
bank. Many attempts at modelling the residual currents resulting from flow
past a headland have been made (eg Tee, 1976; Maddock and Pingree, 1978).

Tee (1976) in particular demonstrated the importance of the advective terms in
his numerical model based on the solution of the two dimensional non-linear
shallow water equation. Such effects are clearly seen in the neighbourhood

of Portland Bill, Dorset, U.K.; Sker Point, Swansea Bay, South Wales (Heathershaw
and Hammond, 1980) and to lesser extent in Start Bay, Devon, U.K. Thorpe Ness,
despite its very limited topographic effect, is yet one more area underlining

the importance of vorticity and advective effects.

5.7 Measurement of bedload transport in the field

There is only a limited number of techniques available for the measurement of
bedload transport. This study has added a method previously restricted to the
beach and nearshore zone, to those available for the measurement of offshore
bedload transport. It has been shown that quantitative results for transport
rates and directions can be relatively easily obtained using a fluorescent
tracer. This has advantages of considerably reduced cost and the absence of

potential health hazards over the more commonly employed radiocactive tracers.
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In the Sizewell-Dunwich area it was possible to measure the tracer dispersion
for seven and a half months, a useful attribute, as offshore injected material
typically appears to take 10 to 20 days to attain equilibrium with the indigenous
sediment (Heathershaw and Carr, 1977). Bedload sediment transport calculations
also require a knowledge of the depth to which the labelled material has become
buried. This is straightforward to measure for fluorescent tracer by using

coring techniques.

6 GENERAL CONCLUSIONS

The multidisciplinary study of the Sizewell-Dunwich Banks area is the second
such project commissioned by the Department of the Environment and undertaken

by the Institute of Oceanographic Sciences (Taunton). An important part of

the Final Report for the earlier Swansea Bay study is a comprehensive discussion
of methodology and analytical techniques, emphasising their strengths and
weaknesses. The conclusions resulting from the discussion are also highly
relevant to the Sizewell-Dunwich work and therefore the summarising tables are

included in this report (Tables | - 3).

In Sizewell-Dunwich as well as Swansea Bay there has been an attempt to assess
as many of the physical factors involved as possible, and to look at their
overall importance in terms of the sediment budget of the particular area. As
a result further understanding of the processes involved in the formation and
development of an offshore bank have been achieved and the important rdle of the
bank in protecting the adjacent coastline determined. However, more specific

results, having implications for studies in other areas, have also been obtained.

Of particular interest are

1 The necessity of choosing the correct sediment transport formula to apply

in a particular situation.

2 The variation of the suspended sediment transportrate as the friction

velocity to the power 2.8.

3 The occurrence of logarithmic near-bottom velocity profiles, in spite of
the high concentration of suspended sediment. This is probably because
the suspension is mainly very fine sand, ie discrete particles, unlike

Swansea Bay, where the suspended solids are largely clay-sized.
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The ratio of the eddy diffusivity of suspended grains to the eddy viscosity
of the fluid, which was found to be greater than one. This means that the
sediment particles, mainly of very fine sand, actually diffuse faster than
the particles of containing fluid. The whole process does take place, of

course, in turbulent conditions.

The demonstration of wave height attenuation by a bank above an HS critical
for specific water depths, and in particular the ability to predict this

theoretically.

Further support for theories of sandbank formation and maintenance in the

lee of a headland, due to vorticity and advective effects in the currents.

The justification for using relatively inexpensive and harmless fluorescently

labelled tracer for bedload sediment transport measurements.

The study has shown that there is still a need for further understanding of large

and small scale sediment transport processes. In particular the mechanisms

affecting suspended sediment transport are not well understood.

is difficult at present with comprehensive measurements of velocities and

concentrations still being necessary.

to emerge from the research is that the careful and accurate field measurement of

Probably one of the most important points

parameters is shown to be an essential part of any predictive work. Although

general conclusions can be drawn, details of particular processes are all too

often site-specific.
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Isopleths of erosion and accretion from 1867 to 1965.
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Fig.5 Summary of mid~depth tidally induced residuals. Residual flow

data have been presented in the manner suggested by Ramster
et al (1978) and each set of figures shows: the residual flow
speed in m s~1; the steadiness factor as a percentage; the
length of the record in days (in that order).

NB: These data are not synoptic.
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Fig.8 Comparison between total monthly volume of beach material moved

in cubic metres and mean monthly significant wave height (Hg)
at Dunwich. Standard deviations for Hg are also shown.
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Fig.9 Comparisons of measured and predicted net transport rates: (Tsb).
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Fig.10 Variation of total suspended sediment tramnsport rate (qgg) with friction
velocity (U,). Linear regression analysis shows qgg o U*2'8
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the eddy diffusivity of the suspended particles, plotted against
the reference concentration ie that at a level 1 m above the seabed.
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47T SIZEWELL - DUNWICH BANKS:
Inshore - Offshore Wave Heights Comparison. November 1978 - May 1979
H. for all Waverider records obtained when wind
| direction blowing from between 20° & 120°N
3— +
3 +
+ +
- ++ +h *
~ 1 + +
Eé + e ! * #
++ N
— L f +j‘ Wt +
:E‘-” 2—T R s +
3 + . '
> . N
()] - + t
a oo v
&
O by : 4
l ' i
—r A
+ 1 & +
++ # ot
#43 +
B 4 4+
0 1 i i i 1 i i i 1 i
0 1 2 3 4

Observed Hgg (m)

Fig.12 Significant wave heights for the inshore Waverider buoy plotted against
those for the offshore buoy. The fitted curve has the equation

2Hc?
Hgi? = By* Hgo? D - exp (- Hso“]

For further explanation see text.
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APPENDIX A

List of IOS Topic Reportsdescribing the Sizewell-Dunwich work

i Sizewell-Dunwich Banks Field Study: a) Introduction

b) Geological Background No 88, 1980

2  Sizewell-Dunwich Banks Field Study: Long-term changes in the coastline

and offshore banks. No 89,

3 Sizewell-Dunwich Banks Field Study: Beach changes between Aldeburgh
and Southwold March 1978 to May 1979 No 90,

4  Sizewell-Dunwich Banks Field Study: Tidal currents: Observed tidal

and residual circulations. No 104,

5 Sizewell-Dunwich Banks Field Study: ‘Offshore sediment movement and

its relation to observed tidal current and wave data. No 123,

6  Sizewell-Dunwich Banks Field Study: Wave data: observed and computed

climates. No 128,

7  Sizewell-Dunwich Banks Field Study: Final report: a study of

nearshore sediment transport processes No 146,

41

1979

1979

1980

1981

1981

1982



APPENDIX B

List of I0S Topic Reports describing work in Swansea Bay

| Swansea
2 Swansea
3 Swansea
4 Swansea
5 Swansea
6 Swansea
7 Swansea

7a Swansea

8 Swansea

Bay:

Bay:

Bay:

Bay:

Bay:

Bay:

Bay:

Bay:

Bay:

(a) Introduction

(b) Long-term changes of the coastline

Evidence of beach stability:

Photogrammetric and topographic measurements
Geophysical interpretation and sediment
characteristics of the offshore and
foreshore areas

Tidal currents: observed tidal and residual
circulations and their response to
meteorological conditions

Wave data: observed and computed wave climate

Offshore sediment movement and its relation

to observed tidal current and wave data

Foreshore sediment movement and its relation

to observed tidal current and wave climate

Beach fluorescent tracer experiments

Final Report: a study of foreshore and

of fshore sedimentation processes

*Additional to original Topic Report series.
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No

No

No

No

No

No

No

No

No

42,

51,

60,

92,

99,

93,

98,

105,

118,

1977

1977

1978

1979

1980

1979

1980

1981%*

1981



APPENDIX C

List of published research papers to July 1982, using Sizewell-Dunwich data

1 A new technique for injecting fluorescent sand tracer in sediment transport
experiments in a shallow water marine environment. B J Lees. Marine

Geology, 33, M95-M98, (1979).

2 Evidence for the sediment circulation along the coast of East Anglia.

A P Carr. Marine Geology, 40, M9-M22, (1981).

3 Sediment transport measurements in the Sizewell-Dunwich Banks area, East

Anglia, UK. B J Lees. Special Publication of the International

Association of Sedimentologists, 5, 269-281, (1981).

4 Spatial and seasonal aspects of beach stability. A P Carr, M W L Blackley
and H L King. Earth Surface Processes and Landforms, 7, 267-282, (1982).

5 Quatevnary sedimentation in the Sizewell-Dunwich Banks area, Suffolk.
B J Lees. Bulletin of the Geological Society of Norfolk (in press).

6 Relationship between eddy viscosity of seawater and eddy diffusivity of
suspended particles. B J Lees. (Geo-Marine Letters (in press).

7 The effect of an offshore bank in attenuating waves. M J Tucker,
A P Carr and E G Pitt. Coastal Engineering (in press).
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