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Abstract

A new algorithm to generate the geoid surface is
presented. It can use tesseral harmonic coefficients
from any model such as GEM 10B or GEM 10C. The As-
sociated Legendre functions involved in the corputation
are evaluated by simple recurrence relatiounships which
are convergent and fast, thus the efficiency of reducing
altimeter data to extract tides and surface geostrophic

currents 1s increased.
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Introduction

The precision of measuring range by altimeter has 1increased from
+ 0.6m in the case of GE0S-3 and SKYLAR to + 0.06m in case of SFASAT.
This improvement has established satellite altimetry as a powerful tool
in the field of global oceanography; in studying the spatial and tem-
poral variations of ocean circulation,tides and waves. The accuracy of
the altimeter height cannot serve a useful purpose unless supported by
equally precise measurements of its orbital elevations, and some pur-
poses also require a detailed knowledge of the gravimetric geoid (Wunsch
& Gaposchkin, 1980). It is the purpose of this work to develop an al-
gorithm to compute the low-wave number part of the geoid from the tes-
seral harmonic coefficients of any chosen model, such as GEM 10R or £EM
10C.

Mathematical backgound

The Earth’s potential at a point rotating with it and situated a
distance r from the centre, geocentric co-latitude 8 and east longitude
) is given by

12 2 2
U(r,G,X)= —wrsiné
2 o¢ 4 E
Z T a - .
+ GM [1 + Lo (=) ?(l'gcose) {C[mcosmA+S(msinmX}'\’(m] (D
r f=2 m=0 T
where w is the sidereal angular velocity of rotation
-6
of the Earth (72.92115 x 10  radians/s),
G is the gravitational constant,
M is the mass of the Farth
3 =2
(GM = 30RA00.44 km s ),
a is the mean equatorial radius (6378.138 km),
T m,§'m are the normalised tesseral harmonic coefficients,
P(cos8) is the Associated Lengendre function
£m
of degree /( and order m,
sz is the normalising factor defined as
2 ' (n-m)!
Ngn™ (%m) 2L- 1 oy )

and where 5 = 1 when m = 0, otherwise & =0.
Om Om
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P =P N is the fully normalised Associated Legengre function.
fm  Pm fm ;

The potential of the Earth’s gravity field, as given 1in equation
(1), 1is due to two forces: centrifugal force represented by the first
term and the gravitational force represented by the second term. For
mathematical convenience equation (1) can be reduced to a non-
dimensional form by dividing it by (ﬂﬂ to give
a

2 2
v(fie, ) = 0('0 sin @
-1

x £
+p [1+€£_2 > F}},,(‘COSQ) {-ij cosz+§( sinm} }1  (3)

m==() m m
where V = Ua/GM (4)
P =r/a (5)
2 3
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w a /2GM = 0.00173070 (6)

The mean potential Vb at the ellipsoid’s equator (8=90 and fL= 1) 1is
given by

o
Vo= 1 + L 4+ P,(0) C 7
” 7. 28 %o @

The geoid is the surface on which the potential of the Farth is strictly
constant, chosen arbitrarily to be V, - Consider the potential at a
general point on the the mean ellipsoid as a reference surface. To com-
pute the geoid we require the anomaly §t in r which would account
for the potential difference (V =~ Wz). That is, for a given geographical
latitude ¢,

fr(¢.)) = Er(FBA) = -a (v-vy)/(2V/3p) (8)

2
h VP = 2 Psin ® - z2[1+ 3 P A ¢ 9
where ‘of {05 n [D FQ 2(gcos ) 20] (9

The approximation (9) can be justified because the contribution of high
degree and high order terms to '3V/af’ is less than 0.001 per cent.
This will have neglipible effect on the accuracy of Er . The relation
between geographical latitude p and the smeocentric 8 and f9 can be
computed from the following equations (Torge (1980),p.49):



cosgf/[cosz¢ + (1-£)s1n"g] (10a)
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where f is the flattening parameter of the reference
ellipsoid, in this case

(l—f)2 sin¢/[c032¢ + (l—f)zsin?¢] (10h)

£ = 1/298.257 (1)

Thus equation (8) with equations (10), (11) can be used to estimate &r
for any geographical latitude ¢ and longitude ,A.

Computational scheme

It is evident from equation (8) that computation of the geoid sur-
face 1is heavily 1loaded with calculations of the Associated Legendre
functions. 1If e summations in equation (3) are truncated at £ = L, we
need at least L7 /2 functions to estimate peoid height at each position.
An Associated Legendre function of degree n and order m may be defined
as:

m

d
P (cosf) = si$19 ——x— [ P (cosB) ] (12)
nm d(cosA) n0

n

where P({cose) =P (cosf)= n(coszﬂ—l)t1 (13)
n n

2nn! d(cosh)

is the Legendre Polynomial of degree n.

Only functions of low degree can easily be derived by expanding
the above expressions: expansions become very long and numerically
unstable for functions of high desree, and the use of recurrence
relationships becomes a necessity. A comhination of suitable recurrence
relationships is:

P (cosB8) = (2n+1) sin0 P (cos9) (14A)
n+i n+i nn
P (cosB) = (2n+1) cosO P (cos8) (14R)
n+in nn
(n-m+1)P  (cos9)=(2n+l)cos® P (cosB)-(n+m)P (cos() (14C)
n+ym nm n={m

If a function R“W is stored as an element of a matrix, the ap-
propriate order of evaluating these functions 1s shown in Figure 1.



The main advantages of using these recurrence relations are:
(a) they are simple and economical to use.
(b) they are always convergent, and
(¢) 1t is easy to take care of the normalising factor
N for each function because only neighbouring
functions are used.

The order of processing functions,shown in Figure 1,
suggests that a function of degree n and order m
(m<n) requires only n intermediate functions. Whereas
other relations need all functions of degree less
than n and order less than m. This aspect may prove
very beneficial in jobs where only a single function
is used.

Conclusions

The computer program is tested with tesseral harmonic coefficients
from the GEM 10B model, as tabulated in Lerch et al. (1981). The GEM
10B field is complete in harmonics to degree 36 and dimensions in the
program are adjusted accordingly. The geoid surface for 0 g A 51802
computed using the above method, as shown in Figure 2, agrees very well
with published diagrams of the GEM 10B Geoid. A high resolution geoid
covering the region of Ireland and Great Britain is also computed, see
Figure 4. Three dimensional projections of these surfaces are obtained
(Figures 3,5) to get a clear picture of variations in the geoid.

Computer program

SUBROUTINE GEOID( NLG, GLAT,GLONG,C,S, ODR)
IMPLICIT REAL*8(A-H,P-Z)

DIMENSION P(37,37), PR(37,37)

DIMENSION C(37,37), S(37,37)

DIMENSION ERD(40), RSUM(40), GLONG(1)
DIMENSION ODR(1)

DATA ISKIP/1/
C ******************************************************

C **xx* INPUTS TO THE SUBROUTINE *%%x *
C 1 NLG , NUMBER OF POINTS ON THE SAME LATITUDE *
C FOR WHICH GEOID IS TO BE CALCULATED. *
C 2 GLAT, LATITUDE OF POINTS *
C *
C 3 GLONG, AN ARRAY WITH LONGITUDES (=NLG) CORRESPONDING
C TO EACH POINT ON THE ABOVE LATITUDE (GLAT).*
C 4 C AND S, NORMALISED TESSERAL HARMONIC COEFFICIENTS*
C IN THIS PROGRAM ARRAYS C(I,J), S(I,J), P(I,J) *
Cc CORRESPOND TO C(I-1,J-1), S(I-1,J-1), P(I-1,J-1) *
c REPECTIVELY IN THE TEXT (EQUATION 1). *
C SET c(1,1),c(2,1),c(2,2),s(1,1),5(2,1),5(2,2) *
C TO ZERO HERE. *
C *%kkkkx OUTPUTS kkxkkkk *




C 1 ODR AN ARRAY RETURNS WITH GEOID VALUES (=NLG) *
c CORRESPONDING TO GLAT, GLONG(I), I=1,NLG *
c 2 LATITUDE , LONGITUGE AND GEOID ARE PRINTED *
G Fedededededododededede gk e de ok ok e dede e ok e e e ok e e sk de e e e e e e e ok ke ok ok ok ok ok e de ok ke e e

IPR = 6

ICR = 5

N =37

M =37

Nl = N-1

Ml = M-1

RAD = 3.14159265359D0/180.0D0
IF (ISKIP .EQ. 0) GO TO 9
CALL LGNDR3 (N,M,0.0D0, ROH,TH,P)
PSUM = 0.0DO
DOB8TI=3,N
8 PSUM = PSUM + C(I,1)*P(I,1)
ALPH = 0.00173070D0
VDZ = 1.0D0 + ALPH + PSUM
ISKIP = 0
WRITE (IPR,150) VDZ
150 FORMAT (‘1 VDZ =‘, F14.10)
C VDZ = 1.0022728546D0 FROM GEMLOB .
9 CONTINUE
CALL LGNDR3(N,M,GLAT,ROH,TH, P)
THR = TH*RAD
X = DCOS(THR)
Y = DSIN(THR)
RHS= ROH*ROH
AA = 3.0DO*P(3,1)*C(3,1) /RHS
DVDR = 2.0DO*ROH*ALPH*Y*Y-(1.DO+AA)/RHS
CALL RDIUSP (ROH,ERD)

c .
DO 20 KK = 1, NLG
GLKK = GLONG (KK)
CALL COEFF(M,N,GLKK,C,S,RSUM,P,PR )
C

SUMB =1.0D0
DO 19 I = 3, N
19 SUMB = SUMB + RSUM(I)/ERD(I)
CC = ALPH*RHS*Y*Y
VD = CC+ SUMB/ROH
ODR(KK) = -6378.138D03* (VD-VDZ)/DVDR
WRITE (IPR,650) GLAT,GLKK,ROH,VD,DVDR,ODR(KK)
650 FORMAT (0 LAT=",F9.4,° LONG=",F9.4,” ROH=",F12.8,° VD=",F12.8,
& ° DVDR=",Fl12.8,° DR=",F9.2)
20  CONTINUE
RETURN
END
SUBROUTINE COEFF (M,N,FLEM,C,S,RSUM,P,PR)
IMPLICIT REAL*8(A-H,P-Z)
DIMENSION P(N,M), PR(N,M),RSUM(N)
DIMENSION C(37,37),S(37,37)
RAD = 3.14159265359D0/180.0D0



eNeoNeoNeNe]

20

26

30

44

46

48

50

PSUM = 0.0DO
J=1

DO 20 I
PR(I,J)
CONTINUE

3,N
C(I,J)*P(1,J)

J =2

Js =3

CONTINUE

AT = J-1

ANG = AJ*FLEM
JT = ANG/360.0D0

ANG =(ANG- JT*360.0D0) *RAD
ANC = DCOS (ANG)
ANS = DSIN(ANG)

DO 30 I = JS,N
PR(I,J) = (C(I,J)*ANC + S(I,J)*ANS )*P(I,J)
CONTINUE

J=J+1
JS =J
IF ( J-M) 26,26, 44

CONTINUE
IR =3

RSUM(IR) = 0.0DO

DO 48 J =1, IR

RSUM(IR)= RSUM(IR) + PR(IR,J)
IR = IR +1

IF(IR -N)46,46,50

CONTINUE

RETURN

END

SUBROUTINE LGNDR3 (N,M,GLAT,ROH, TH,P )

IMPLICIT REAL*8(A-H,P-Z)

DIMENSION P(N,M)
COMPUTATION OF NORMALISED FUNCTIONS P (N,M)*N(N,M).
FIRST A FEW FUNCTIONS ARE GENERATED BY THE DEFINITION.
THEN IT COMPUTES ALL FUNCTIONS FOR N=M.
AFTER THAT ALL THOSE FOR N= M, M+l...36 FOR M =0,1...35.
ARE GENERATED.

RAD = 3.14159265359D0/180.D0

CALL ROHNTH (GLAT,ROH,TH )

THR = TH#*RAD

X = DCOS(THR)

P(1,1) = 1.0D0

P(2,1) = X

P(3,1) = 1.50D0*X*X —-0.50D0

P(4,1) = ((5.00D0*X*X-3.00D0)*X)/2.00D0

P(5,1) = (7.00DO*X*P(4,1) -3.00D0*P(3,1) )/4.00DO0

AN = DSIN(THR)
ANB =AN*AN
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36

38

42
44

52
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ANC = ANB*ANB

P(2,2) = AN

P(3,2) = 3.00D0*X*AN

P(4,2) = 1.50D0%(5.00D0*X*X -1.0D0)*AN
P(5,2) = 2.50D0%(7.00D0*X*X-3.00D0) *X*AN
P(3,3) = 3.00DO*ANB

P(4,3) = 15.00D0*X*ANB

P(5,3) = 7.50D0*ANB*(7.00D0*X*X-1.0D0)
P(4,4) = 15.00D0*AN*ANB

P(5,4) = 105.0DO*X*AN*ANB

P(5,5) = 105.0D0*ANC

DO 44 J = 1,5

JA = J-1

DO 42 I = J,5

IA = I-1

FCTR =1.0D0

IF (JA) 38,38,34
KP = 2%JA

1JS= IA+ JA

KIM =1

DO 36 KK = 1, KP

KIM = KIM*IJS

1JS= 1JS-1

CONTINUE

FCTR = KIM

FCTR =DSQRT(FCTR)
CONTINUE

P(I,J) = P(I,J)/FCTR
CONTINUE

CONTINUE

IF (N .LE. 5) GO TO 80
DO 52 J =6, M

Jl = J-1

CC = 2*J1-1

AA = (2%J1-1)*(2*J1-2)
BB = 2%J1*(2*%J1-1)

P(J,J1)= (CC*AN*P(J1,J1-1))/DSQRT(AA)
P(J,J) = (CC*AN*P(J1,J1))/DSQRT(BB)
CONTINUE

M2 = M-2
DO 60 J = 1,M2
JA = J-1
IL = J+2

DO 56 I =IL,N

IA = I-1

AA = (2%IA-1)*X*P(I-1,J)
BB = (IA+JA-1)*P(I-2,J)
CC = IA-JA

DD=1.0D0

EE = DD
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IF (J .EQ. 1) GO TO 54

AT = I-J

BJ = I+J-2

DD = DSQRT(AJ/BJ)

AJ = (AJ*(AJ-1.0D0))/(BJ*(BJ-1.0D0))

EE = DSQRT(AJ)

P(I,J) = ( AA*DD -BB*EE)/CC
CONTINUE

CONTINUE

CONTINUE

DO 86 I = 2,N
AT = 2%(I-1) +1
P(I,1) = DSQRT(AI)*P(I,1)
CONTINUE
IR = 2
CONTINUE
AT = 2% (2*(IR-1) +1)
AT = DSQRT(AI)
DO 96 J =2, IR
P(IR,J) = AI*P(IR,J)
IR = IR +1
IF( IR-N) 92,92,98
CONTINUE
RETURN
END
SUBROUTINE ROHNTH (GLAT,ROH,TH)
IMPLICIT REAL*8 (A-H,P-Z)
COMPUTES ROH (=R/A) AND CO-LATITUDE (TH)
FOR A GIVEN LATITUDE (GLAT).
RAD= 3.14159265359D0/180.0D0
THA = GLAT*RAD
F = 1.0D0/298.257D0
PF = 1.0DO-F
PF = PF*PF
CY = DCOS(THA)
SY = DSIN(THA)
R = DSQRT(CY*CY + PF*SY*SY)
X = CY/R
Z = PF*SY/R
ROH = DSQRT(X*X + Z*Z)
CT = Z/ROH
ST = X/ROH
X = ST/CT
TH = DATAN(X)
TH= TH/RAD
IF (X .LT. 0.0D0 ) TH
IF (ST .LT. 0.0D0O) TH
RETURN
END
SUBROUTINE RDIUSP (ROH,AR)
IMPLICIT REAL*8(A-H,P-Z)
DIMENSION AR(40)

TH+180.0D0
TH+180.0D0



c COMPUTES (R/A)**L OR ROH**L (L=0,1..40), VALUES ARFE
C STORED IN AN ARRAY AR.

BB = ROH*ROH

AR(1) = 1.0DO

AR(2) = ROH

AR(3) = BB

AR(4) = ROH*BB
AR(5) = BB*BB

AR(6) = BB*AR(4)
AR(7) =BB*AR(5)
AR(8) = AR(4)*AR(5)
AR(9) = AR(5)*AR(5)

AR(10) = ROH*AR(9)

DO 10 J =11, 20

AR(J) = AR(J-9) *AR(10)
AR(J+10)=AR(J)*AR(11)
AR(J+20) =AR(J+10) *AR(11)

10 CONTINUE
c WRITE (6,200) AR
200 FORMAT (5X,F12.8)
RETURN
END
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Figure captions

Figure

Figure

Figure

Figure

Figure

1.

2.

Order of computing Associated Legendre functions:
I, initialised by expanding Equation (12); A, B
and C indicate recurrence relations in Equation
(14) used to derive function P . Pecked 1line
shows the order to compute function P .

Geoid surface for 0 <A< 180 constructed by using
tesseral harmonic coefficients from GEM10B model.
Heights are in metres above the mean ellipsoid.
Contour interval is 5 metres.

Three dimensional projection of the geoid surface
in Figure 2

High resolution (0.5 metres) geoid surface around
Great Britain and Ireland.

Three dimensional projection of the geoid surface
in Figure 4
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