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Introduction

This report describes a set of three quasi-geostrophic models designed
for oceanographic use. 1In the vertical variables are expanded in terms of the
normal modes of a linearized flat bottom and unforced ocean. In the horizontal
spectral techniques are employed using Fourier or Chebyshev functions. The
three model oceans which are considered are:

(a) A doubly periodic ocean in the E-W and N-S directions.

(b) A channel ocean periodic in the E-W direction.

(c) A basin ocean.

Each model is designed to run with an arbitrary number of vertical modes and a
number of degrees of freedom in the horizontal equal to 2% (n integer). The
number of degrees of freedom in the N-S and E-W directions may be chosen
independently. All three models have been coded in as similar a way as
possible consistent with their inherent differences and are implemented to run
on the CRAY-1 Computer System.

The representation of the quasi-geostrophic dynamics in terms of vertical
normal modes and spectral expansions has a number of advantages over
alternative and more conventional approaches. First the choice of a vertical
normal mode representation has the advantage that a basic state with continuous
density stratification can be efficiently treated. Moreover, the modal
representation offers the advantage of being optimally calibrated in situations
in which two or more physical processes are operating (e.g. bottom topography
and nonlinearity) (Flierl, 1978).

The use of spectral expansions for representing the horizontal variation
of variables relies mainly on the substantial improved accuracy that such
techniques offer over finite difference or finite element methods of comparable
number of degrees of freedom. The remarkable accuracy of spectral methods is a

result of the rapid convergence one obtains with expansions of smooth



functions in series of smooth orthogonal functions. The remainder of such'
series after N terms in general goes to zero more rapidly than any power of
1/N as N»» (Gottlieb & Orszag, 1977). In contrast the error associated
with a finite difference representation with the same number of degrees of
freedom goes like 1/N2 for central difference schemes.

A further aspect makes the use of Chebyshev polynomials attractive for
non-periodic ocean domains. The representation of the planetary vorticity
effect (8-term) by Chebyshev polynomials is a more accurate procedure owing to
the absence of the Gibbs phenomena at the boundaries (Haidvogel 1978). The use
of Chebyshev polynomials has the further advantage of providing enhanced
resolution at the boundaries where the resolution of narrow boundary currents
is often required in oceanographic applications.

The above techniques must however, in order to be useful, be as efficient
as finite difference methods of similar degrees of freedom. This aspect is
ensured for our applications by the use of Fast Fourier transform algorithms
which may also be used to construct Fast Chebyshev transforms (Fast cosine
transforms). The solution of the associated Helmholtz equations in the basin
and channel models may also be performed competitively in comparison with

alternative techniques of equivalent accuracy (Haidvogel & Zang, 1979).



Dynamical Equations

The quasi-geostrophic ocean models considered in this report are based on
the quasi-geostrophic equations which are an approximate set of equations
derived from the primitive equations of geophysical fluid dynamics. They share
with the primitive equations the assumption of hydrostatic balance but in
addition further restrict the allowed characteristic velocity scale U and the
length scale L. Indeed the quasi-geostrophic equations may be derived from the
primitive equations as a first-order approximation in a formal expansion in
small Rossby number, R = U/‘,L<< 1. Consistently the time-scales of motion
are assumed to be slow relative to the inertial period fo'1 and the aspect
ratio of the motion 6=H/I‘ &« 1 is regarded as a small quantity (Pedlosky,
1979). Furthermore, the latitudinal extent of the ocean models considered here
are restricted to be less than fully global L/a { 1. Hence, the so-called
f-plane approximation may be made in which only the first order change in the
Coriolis term with latitude is retained. A number of derivations of the
quasi-geostrophic equations are available in the literature and those to be
found in the Evolution of Physical Oceanography (Edited by Warren and Wunsch
1981) are recommended. We present below the quasi-geostrophic equations in
order to establish our notation.

The quasi-geostrophic equations are a set of coupled equations for the
dynamic geostrophic pressure 1> , density fluctuations g' and the vertical
velocity W . In standard depth coordinates and f-plane geometry the horizontal

velocities are simply

(1)

and the density fluctuation are described by the hydrostatic equation
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where go is the mean density of the ocean. The vorticity and conservation of

density equations are
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operator describing horizontal advection; and V¥V~ is the horizontal Laplacian
t - L3

relating the dynamic pressure to the vorticity V¢ . ? =g(;) is the density

stratification of the motionless mean state about which the fluctuations take

place. Elimination of the vertical velocity between the equations (3) and (4)

produces the standard quasi-geostrophic potential vorticity equation
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In the absence of forcing and dissipation this equation simply expresses the
congservation of potential vorticity following the two-dimensional geostrophic

motion 1i.e.
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Normal Mode Representation

In the standard form of the quasi-geostrophic equation, eq.(5), N, the
Brunt-Vaisald frequency, is a function of depth only. Normal modes describing
the vertical structure arise from linearising the equations, since the equation
then admits a solution of separable form, ‘P = of (X,j,t') F’(-,!,) , Where the
boundary condition p%t =0 at 2 =0, -H translates into Fz =0 at Z =0, - H.
The equation for the vertical structure functions F(z) is a Sturm-Liouville

type equation,

(7)
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Here A\ and F; are the ith eigenvalue (separation constant) and eigenfunction
of the system. These functions form a complete orthonormal set of functions
for all reasonable density structures. In terms of these functions the general
solution to the nonlinear problem (as well as the forced problem if the

right-hand side 1s also expanded in the same set of functions) may be

represented by
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The precise form of the modes and values of the separation constants depends on
the assumed form of the density structure. As an example, the modes for a
simple analytic form of the density structure are given in Appendix F. This
appendix also contains a numerical scheme for calculating the modes of a more
general density profile. In all cases the set of modes consist of one

barotropic mode ( FD =1, X\ =0) and an infinite set of baroclinic modes

(-]
(F , 2 )i) 0 alli)o) with increasing values of A, and increasing numbers of
crossing points between 2 =0 and -H . Substitution of (8) directly into (5)

results in the equation below;

v
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for the horizontal part of each vertical mode. Note that {( V1' - )«K )e(K glves

the vorticity field of the kth mode. The constants E V}K are the vertical

structure constants defined as
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The inclusion of boundary conditions specifying W at 2 =0 or ¥ = -w requires
speclial care (Flierl 1978). These will, however, be dealt with in greater
detail at a later stage. Equation (9) forms the basis of each of the three

models; doubly periodiec, channel and basin. The solution procedure differs



between the three models only because of the different lateral boundary
conditions. Before discussing the vertical and horizontal structure problems

in greater detail, the constants of motion of the model system of equations

will be presented.

Constants of motion

For the adiabatic and unforced system (9) the equations conserve total
energy if appropriate boundary conditions are imposed. Multiplying equation

(9) by o, and integrating over the model domain one can show that for the kth

mode,

3y [[dedy Coa, Tu, + 23] -Egaua%gmr(«hxgnfo an

provided d“ is periodic or spatially constant along the boundary (at most a
function of time). The terms involving divergencies then vanish. The Jacobian
terms represent the energy exchanges between modes. The total energy, obtained
after summing over all modes K , is conserved because g‘&n and 3 (“k ,di)

have opposite symmetry. Thus,

kY
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In a similar manner the modal enstrophy equation is found by multiplying

1 .
equation (9) by 'l'\( = (V—X‘)o(“and integrating over the domain.
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if the boundary conditions on %X, are as already employed. If “K 1s periodic

in the east-west direction this divergence term vanishes and after summing over

all modes the enstrophy of the system is conserved i.e.

(14)
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However, for a bounded domain in the east-west direction enstrophy 1is not
conserved. This arises because a Rossby wave packet reflected from a
meridional boundary preserves its energy but increases its total wave number,

thereby increasing its enstrophy.

Spectral Methods

As already mentioned in the introduction, equation (9) is solved using
spectral methods. In these methods the dependent variable, in our case
«“('l,ls & ), 1s represented as a truncated series of known functions of the
independent variables ¥ and 3 . In general one may choose either a set of
functions which satisfy the boundary conditions individually (Galerkin method)
or apply the boundary conditions as constraints on the expansion coefficients
(Tau method). For the doubly periodic ocean the periodic boundary conditions
are most conveniently imposed by the <choice of a Fourler series
representation. This provides an example of the former method. However, our
use of Chebyshev polynomials in the channel and basin oceans provides an

example of the latter method. Here the individual Chebyshev polynomials do not



- 10 -

satisfy the boundary conditions imposed on the problem (typically %, = 0 on the
boundary). Instead the boundary conditions are represented by constraints on
the expansion coefficients of the representation. These differences will be
seen more clearly in the next sections which describe the methods in greater

detail.

Doubly Periodic Ocean

For the doubly periodic ocean the streamfunction of the ith mode (eq. 9)
is represented as a truncated Fourier series. Dropping the i suffix the

expression for d‘( x,~3) is

A vk \Qa
Z‘ 2 ®,. e e (15)

A {x,9y,0) =
Wkn X nengy
on the domain c¢ » (AW
04 3 $ aAw
A \ N
where X and Q are integers and [13"3)) 4 \< implies -K, £ \(( \ﬁ .h(“

represent the Fourier coefficients in the transform space. If %x and 3

are determined on the uniform grid =, = Q_T_T_n , \3“ = A0 m then to conform

K R
with FFT transform algorithms a computational set of Fourier coefficients th
~
is introduced. The relationship between Q(Kt and @& is described in more
X

detail in appendix G.

NN AW Ka AT Om
of = of (X ) = t—l)n'm Z Q e N e ™ (16)
“m— ﬁ;%'\ - k t K! .
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A .
where N= 1% and °k~\¢.l+\<‘, - % . Since o(“m is real the

expansion coefficients qu satisfy the conjugate relation.

— (17)
q\(c - QN—\(,N-Q

1
This property reassures us that only N  variables need be stored.
In the doubly periodic ocean model the spectral functions diagonalise the
Laplacion operator. Hence employing a leapfrog time scheme the transform space

form of eq. (9) becomes

(A na ' h-n) AN N on
{2, p2 - p 1
(ke ety o ) ¥ ifkXy, + T =0 0B
2at
A‘\
Here <xn° represents the value of the streamfunction at the nth time-step and
Ao
3;. represents the total nonlinear transform space contribution. We may
~
consequently step—-forward in time given N,“ at two previous time levels
a An )
provided T; is known from &, . We discuss the determination of 3“‘ ,
t

together with the time-stepping procedure in greater detail at a later stage.

Chebyshev Channel Model

For a channel ocean model in which the flow is bounded in the N-§S
direction by impenetrable walls we need to impose the boundary condition
o = 0 along the zonal boundaries. The flow is assumed to be periodic in the
E-W direction. A possible choice of spectral functions in this case is a

truncated mixed Fourier-Chebyshev expansion of the form

N YR
A(x,4) = 2 Z < e Tm(ﬁ) (19)

X
UKW K, mao
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on the domain: -1 £ 4 £
o £ xg AW

If a mixed spatial grid is introduced

X, o= ATn n= o1 ... 2X -\
ax
(20)
4, = ces ('ﬂ'd) J= °on N
N

we may make use of the important relation between Chebyshev polynomials and

cosine functions.

N-1 21'_.“"
" N
“n:‘: 0((*“,‘33\ = (=N 'Z:o};- aum € Cos (‘L,_M) (21)
=0 N

ol . is real the expansion coefficlents o satisfy

Since
"Q L0

* (22)
ke N=K

Although this representation possesses advantages for representing

baroclinic modes the spectral functions no longer diagonalise the Laplacian
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operator. To solve this problem we represent the potential vorticity in the ith

mode by M = (V‘—)\)u( , and substitute into eq. (9). Approximating the time

derivative by a leap-frog scheme

An An
Nkm — Mkm + 1K@ e T ) = 0 (23)

Ko

A A n
where W 1is the spectral expansion coefficient of V| . Hence knowing ", q"'

[, " n A " N

) . n

and &" ; and assuming we may determine J from ® and " we may step-forward
Al ANYL

in time if ® can be found from W . Substitution of eq (19) and its

equivalent for WM into the above Helmholtz equation relating «& and ¥] gives,

N
~ ~ A
(-x*=2) oy, + L 2 p(pt-mY) Ay o = N, (24)
Cn P22
P even

o¢mg¢ N-L ; Wkwg¢X

where (g, =2, C, =1 for n)ll. We have made use of the properties of Chebyshev
polynomials collected in appendix A to represent the 2nd derivative in the
y-direction. Note that although there are 2 x(N +1) coefficients in (19) we
only have 2 K.;(N -1) equations in (24). The other *K equations are provided
A
by the boundary condition o = 0 on 3 =+1. The property T“(tl\ :(:I)

implies,

N “ .
~ ~
Z Anp = Z dy, =0 kil & K (25)
P=o p=i
P aven p odd
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When the boundary conditions are combined with equation (24) the 2k&(N+l)
coefficients &“P are completely determined. This method of dropping the
equations for the highest modes and determining them directly from the boundary
conditions is equivalent to the tau method.

The solution of the set of equations (24) is straightforward although it
is best to first transform the system to a quasitridiagonal form (see Appendix
D). The system can be decomposed into N independent systems of equations, one
for each value of K . Furthermore, for fixed X each system can be written as

(Gottlieb & Orszag (1977), Haidvogel (1978)),

'S
.3 ~N N
%Q“ ﬂ“‘_l *(I—q,d,‘\ﬂ(u“-i- %uan“’l:-c (26)

& kl\
where

LE&ng N

l = Ca-a
Galn-1)

= el\¥1
2( 2=

[
rd
"

ea+ﬁ
Tnlnagt)

5 ¢, A >
£ = n*lk’“_‘ - '\TL + 4, "M

K,n X,nel

and q' - -(Kl'i')\)
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The even and odd terms in this system of equations decouple and thus may
be treated separately. Each of these subsystems consists of a tridiagonal set
of equations accompanied by a row of 1l's arising from the boundary conditions.
These quasitridiagonal cystems can be solved by a Gaussian elimination and

further details are contained in Appendix C.

Barotropic Sine Channel Model

For some purposes in which only a barotropic model is required a sine
expansion in the N-S direction provides an economical alternative to the
Chebyshev model already described. It also provides better resolution in the
middle of the channel which may be an advantage for some applications. For
baroclinic applications, however, the streamfunction is not necessarily zero on
the boundaries. The stream function represented as a sine expansion will
always be zero on the channel walls and although this may be overcome using a
mixed sine/cosine representation the uniformity of approach is lost (White,
1978). For the barotropic case, the sine representation does possess, however,
the advantage of requiring no solution of a Poisson equation. The barotropic

streamfunction is then represented as a mixed Fourier-Sine expansion of the

form
N N 1 Kn
% (x,4) = 2 2 % on e $in (w\a) (27)
nkng g, ™=e
on the domain (o)

Y
csF
~
= |
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The spatial grid is now uniform in both directions

x, = AMn Nz ol... AK-\
R
(28)
$0= T dTen N
N
The values of the stream function on this grid are:
N-l N aﬁif“
y :( e " ’ 29
*“3 = “(""‘33\ = (=) Yon Sin (mJT\‘) (29)
K=o ™M=o —

N

and the coefficients are also conjugate symmetric as in previous cases. As in
the doubly periodic model the Laplacian is diagonal in this representation and
we may employ a leapfrog time scheme directly on the streamfunction.
Derivative operations on the streamfunction may also be found easily in the E-W
direction but those in the N-S direction require extra care. These are
required for the evaluation of the non-linear Jacobian terms and as the
derivative in the N-S direction converts the representation into a cosine
series a cosine transform algorithm is required to determine physical space
values of the arrays. These are already available for the Chebyshev models and

may be employed in the determination of the Jacobian advective terms.

Basin Model

For a basin ocean model we bound the flow with impenetrable meridional as
well as zonal walls. In order to impose these constraints we have employed an
extension of the Chebyshev channel model. We chose in this case to represent

the streamfunction as a double Chebyshev expansion of the form
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N L
O((x,\a) = Z 2 :\“m—r“(x) AN (‘j) (30)

on the domain I SO

For the non—uniform spacial grid

x -

"
n
]
w
—~
=
~—
1
(o]
>4

\3) = co$ (TL)) \i=01\"'N (31)
N

This representation is equivalent to a double cosine-transform

L] N
U\;-\ s e((x;\h) = 2 2 &h“ COS(-“-_.L:\) cos(ﬂ'nb) (32)

Az 0 mzo N N

N
Consequently we may use FFT transforms to determine &

LY

In this representation the f-term and non-linear advection terms may be
calculated by making use of the derivative algorithms for Chebyshev series (see

Appendix A). Like the Chebyshev channel model the Laplacian operator

associated with the solution of the Helmholtz equation

(33)
(Vm— )) ®X =M , A =0 on the boundaries
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is not diagonalised by this choice of spectral functions. Furthermore, the
spectral functions 1in the x-direction are no longer eigenfunctions of
a:—operator. To overcome this latter difficulty we follow Haidvogel (1978)
and first introduce discrete eigenfunctions of the a: —operator which satisfy
homogeneous boundary conditions. It should be noted that the discrete
eigenfunctions may be introduced in either the E-W or N-S directions. The
analysis described below assumes discrete eigenfunctions in the E-W
direction. To obtain N-S discrete eigenfunctions it is sufficient to transpose
the matrices F and A in equations (36) and (38). It has generally been found
preferable to use N-S discrete eigenfunctions as errors associated with the
discrete representation propagate 1less readily as linear Rossby waves.
Although this procedure incurs extra processing it need only be performed once

and so is well suited to the situation of repeated solution of equation (33).

The eigenvalue problem of the 3: —operator is

s
9 Uy = ALuy oou, e =o (34)
N
1f UYL*) = 2 e“vT“ (*)
nzo
T
there are (N-1) non-zero eigenvalues and eignvectors ey =

( e, ew yeoos @ ').The determination of the €

and kv is described in
N

Ny
greater detail in Appendix (E). The eigenfunctions u~( X ) are now used to

partially diagonalise the Laplacian operator. To do this the streamfunction «

and the vorticity ¥ are expanded in the modified double spectral functions

N=-2 N

U‘(‘,'ﬁ\ = 2 ‘of\m uﬂ(-*) Tm(a)

Azo ~

N-2 N (35)
1oy = IR Tam el T ly)
Azo Mmoo
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A
The coefficients Y and -qm( O{n¢N-1, 0¢m{n ) are related by

G = E'F (36)

G F n E™
where and are the matrices of gﬂm and Yl'\m and is the (N-1)x(N-1)
inverse of E (the coefficients ev\m minus its last two rows). With this

representation equations analogous to the Chebyshev channel model are obtained

N
LX“ )\\\)“M i-é 2 q,(c\, M)b“‘lr - %r\m (37)
" zmyl
*ra QUEA
Y o ng N-2
and oc{ mg{ N~
N N
wa - Z bra = O © &N ¢ N=2
3= ¢ q=1
4 tven 9, cdd
These equations can be handled as described 1in that section. We can,

therefore, obtain b, (0<n<N-2, O< m<N) by the same quasitridiagonal solution
n
algorithm. The Chebyshev coefficients o, can be recovered by performing the

matrix multiplication

A= EB (35)

~
where A 1is the matrix oL“M(0<n<N-2, 0< m<N). To obtain the remaining terms
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[
and o for O<e <N the boundary condition relationships are used.

N o N=)

>

Boundary conditions

Associated with the spectral methods discussed in the previous sections
further consideration mwmust be given to the appropriate 1lateral boundary
conditions. In addition, the boundary conditions on W at 2 =oorl1=~H
in forced applications must also be examined.

Including the possibility of Ekman pumping forced by wind stress the top

boundary condition is,

W= We (!,3,?) = 1 .t.ur_!\ T at Z =0 (39)
foby

At the bottom of the ocean topography and Ekman layer friction are included

with the specification

2
w= L L T(,0) » /j_f_ Vp] at  2=-m (40)
L, TR

Here b ( y,a) is the deviation of the bottom from level (i.e. the true bottom
is at 2 =-W+b) and v is the eddy viscosity appropriate to the bottom Ekman
layer. As shown by Flierl (1978) the 1inclusion of these forcing effects

modifies equation (9) in the following manner:

(3, 0927+ A9, | +i.°§ T(ot; L' ).J'hd-)i‘.i&

(41)

= 'L: FK(O) WE - £° FK ("’H) 2 [3- (N'. ,b) * [g; Vl"“\j F‘(“H)

" H

We shall now consider the appropriate lateral boundary conditions for the

streamfunction. It is only 1lateral friction parameterizations such as



Laplacian friction or biharmonic friction which require additional boundar&
conditions. For the case of a doubly periodic ocean periodicity in the E-W and
N-S directions for each mode is sufficient. For models with impenetrable
boundaries the streamfunction must be spatially constant in order that the
normal geostrophic velocity vanishes on the boundary. Hence to lst order in

the Rossby number

o

% s )

50u«lao%

S ) K=o, ... M-y (42)

For the barotropic mode this constant may be set to zero without loss of

generality (Pedlosky, 1979). For the remaining baroclinic modes Ck , K o=\

,
McWilliams (1977) has shown that the time-varying functions must be chosen to
satisfy that there be no vertical mass flux through the ocean. The mass

continuity equation to 1lst order in the Rossby number implies

“ A,‘&_s W =0 for all ¢

If w is expressed in normal modes we obtain
[ = for all baroclinic modes
].[ d!% \w“ (o

Equation (4) further implies that

’3!:' &X d"&z d\( = 0 for all b

or

H dedy o = constant g H clul._3 «u\ (43)
Fze
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This constant is zero if \(kis zero at £ =0 . That is the initial state of the
ocean is at rest.

The full solution for the baroclinic modes may be written as a sum of a

P

particular solution o(f (with o = © on the boundary) and a homogeneous

LN
solution (with °‘K =1 on the boundary). The actual baroclinic solution is
then

W

Uy = o] o+ ®, (44)

where
P . _
C, = - SS Agdn o assuming = at bt=o (45)

IS &1% M:

The homogeneous solutions satisfy
) n
2 X
(¥ ...).‘J Ay = O with %, =\ on the boundary (46)
. )
These solutions, ™, , need be determined only once as a preprocessing step at

the beginning of a simulation. They may be determined by first subtracting one

n
from the solution i.e. o = % +1 and solving
¥

2
- - ith - the b d 47
(v )~,D ¢ K = )\K wi ¢k—° on the boundary (47)

The solution algorithms for the Helmholtz equation are used to solve this

problem.

Lateral Dissipation

Lateral dissipation mechanisms are often required in highly turbulent

flows or flows with significant non-linear transfers in order to dissipate the
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enstrophy that inevitably builds up at small scales or large horizontal mode
numbers. We may adopt two approaches to this problem. Scale-selective
parameterizations may be introduced into the dynamical equations themselves or
a filter procedure may be applied to the vorticity field, thereby removing the
smaller scales of motion. For the doubly periodic ocean the introduction of
Laplacian friction ( V.’ o, ) or biharmonic friction ( V‘mk ) incurs very
little 1increased computational cost since the Fourier representation
diagonalises these operators. However, for the Basin or channel ocean models
each new power of ‘72 implies an extra Helmholtz solution at each time-step.
Furthermore, the inclusion of explicit dissipation increases the order of the
dynamical equations. Consequently additional ill-defined boundary conditions
must be imposed (Marshall 1982). Consequently for the ocean models described
in this report a compromise has been made. For the basin ocean model Laplacian
friction 1s explicitly included and further implicit dissipation is provided by
applying a filter to the vorticity field. Basin ocean models are available
with a choice of zero vorticity or zero gradient vorticity boundary conditions

i.e.

le\ = O zero vorticity (48)
Boo Adat‘a
zero gradient vorticity
34“‘ = o
In B.oﬂlurd

Modifications to the Helmholtz solution algorithm have been made to accommodate
the zero gradient boundary condition.
We have adopted the filtering procedure successfully applied by

Haidvogel, Robinson and Schulman (1980) to the vorticity field.

A A
n_(filtered) = £f.n

- LYY

where the spectral filter
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£, = 1 - expl-kxDnt-ml) (49)

"

and ¥ = 2.3 gives 10% reduction of the A _ mode.

Q0
2% 18
[w?- r\%]

Non-linear advection

The non-linear advection of each mode receives contributions from all
other modes coupled through the vertical density structure. In equation (9)

this means that each modal equation contains the contribution

L T(x,m)) &, (50)

i)
where L. 1_ . . and JT(;.n V=2« i .
Yla - (-v )\)3 x) (* )QJ> ax'(l a&"a ")3“.3,'10

The Jacobian T ( Ry QS ) is calculated at each time-step for each mode in
spectral space. In order to determine the contribution for each mode the
Jacobian terms are evaluated from the spectral space components of nd and
o{:. The arrays are transformed to real space where the nonlinear products are
evaluated locally. Finally a transformation back to spectral space is
performed. An algorithm such as this to evaluate non-linear contributions is
known as a pseudo-spectral approximation. The evaluation of the nonlinear
products in real space introduces aliassing errors into the Jacobians which may
lead to aliassing instability. We may adopt two approaches to overcome this
problem; either we remove the aliassing errors completely or constrain them so
that an instability does not develop. The former, however, may only be done at
the cost of using twice as many transform operations. Furthermore, the method
of de-aliassing assumes a uniform grid in real space. We have consequently

implemented a fully alias-free Jacobian only for the doubly periodic ocean.

The second approach makes use of the analogy with the well-known Arakawa
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finite-difference forms of the Jacobian (Arakawa, 1966). We may construct a
set of pseudo-spectral nonlinear approximations to the Jacobian which conserve
either energy, enstrophy or both for orthonormal spectral functions with

respect to unit weight. For example, the form:

Tlv,n) = 'an(axq) - 'D‘( u\aq) (51)

may be used to construct an aliassed approximation to the Jacobian which
conserves energy. The aliassing errors have been shown to be small for the
case of 2-D turbulence (Fox and Orszag, 1973). Strict energy conservation is
guaranteed only for orthonormal functions with unit weight. The weight
a -~
function for Chebyshev polynomials is quite different — wi{x)= (v-x .) and
energy will no longer be conserved. However, non-conservation associated with
Chebyshev spectral techniques rarely exceeds one part in 107 (Haidvogel,

1977).
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The nondimensional equations

The complete quasi-geostrophic potential vorticity equation, eq (41), is
scaled with length scales Ly and L

y’

and the time scale, T = (L y~1L,
Laplacian lateral friction is

included for completeuness.
dimensional variables.

Asterisks denote

3('-':\.!)(':"-\_)(
v = L
o by R (L) by
bx
¥
E" = Tve
The non—-dimensional potential vorticity

equation may be written:

{%E VAR W 9;& ¢K + R Z T(, LV-31 Q;\giik
')

FK(") Luf\!":

+ LF. V"ctx

- R(—\-\)z LG T (4;, k) + BF Vzcb;] F. ()

(52)
where \'T - ~Y _ L X
curlT 9, 7 :&\) D\'ST
3
d 2 - % 2 i
an V= o  + (\_,) ’c)a

by

The non-dimensional constants and scaling factors are given below:



- 27 -

p.H
T 2 T, T (xy)
P D

A
i
-
——
—
J-l*
~——~~"

Q
|
+
4]
—
-
x
~

r
M
1

The computational domain for the basin model is (-1,+1)2; for the

doubly periodic model (0,21{)2 and for the Chebyshev channel model

(-1,+1)x(0,2n). Table I gives typical values of the non-dimensional constants
for a square basin of depth H = 5 km and wind stress T, = 10" 1Nm™2.  The

horizontal velocities are scaled with the Sverdrup velocities

U =(E‘E;7_ and V :(L)(LE)
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TABLE I

Non-dimensional constants for a square

basin
Constants L=500 km L=1000 km
R 0.4x10 2 | 0.5x10™"
BF(e=10"'s 1) 1072 0.5x10"2
LF(A,=100 w%s™ %y | 4x10™ 0.5x10"°
e 10.0 5.0
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Time differencing techniques

The ocean models described in this report generally use a 'leap-frog'

approximation to represent the rate of change of relative vorticity in eq (52):

'an a - rl'\ﬁ-'_ Q'\" (53)
5-&) 24t

which is accurate to second order. An explicit forward step is performed at
the beginning of an integration or on commencement of a further integration.
Additional forward steps may be taken, when necessary, in order to suppress the
computational mode associated with the 'leap-frog' approximation.

The bottom frictional term is treated semi-implicitly for barotropic
ocean models, although for baroclinic models a lagged procedure is considered
easier to implement. Unlike finite difference methods lateral frictional terms
in spectral models must be treated semi-implicitly in order to correctly
implement the higher order boundary conditions. All other contributions to the
potential vorticity equation are treated explicitly. Examples of the
time-differencing procedures for basin or channel oceans are given below. For
the doubly periodic ocean the time-stepping may be expressed directly in terms
of the streamfunction. The examples below are expressed in real space and are
derived from eq (52), whereas computationally the time-step procedure is

applied in transform space.

(a) A barotropic ocean with bottom friction ‘
a n-y
{ - At. BF n A
G (_____F)z oo_2ae (9,45 +RT(4),T)
| +at. 8 L+ ac.BF)

Foeurlt - G T (), b))
? oy
Nt T oAt
. = V ¢ (54)
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(b) A barotropic ocean with bottom and lateral friction.

A+l -1 " "
Yoo =¥ w1 (98] v RTCGLI)s conr -G T4, 0))
LF
7‘;\“ _ vigv\*l < (\ i At‘.RF\) I:\-H (55)
LF. At

LY 2. nxl
C. Vg,

A Helmholtz equation is first solved to determine § from the time-step
variable Y and finally Poisson's equation is solved to determine the stream

function.

(c) General case

Since the bottom frictional contribution to the K th vertical mode
equation, eq (45), involves a sum over all vertical modes the semi—-implicit
treatment of this term is less straightforward for the general baroclinic
case. Treating this contribution lagged by one time-step avoids this
difficulty and maintains computational stability. The higher order 1lateral

friction, however, must still be treated semi-implicitly.

X2 L 3d}

| " I\
y;_ = = %. = %F( Q‘QZ + QTL;.' E“-“TQQ; ,YL)'\ - F‘((o\cw;\t

(56)

ReAL el ) 38 T8 1R )

h
where .

'x.‘_ = V ¢K > S U Vzd)u pre X\( . d)

- At LF &ETLF

L
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To regain the streamfunction at the new time level the solution of two

Helmholtz equations involving the auxiliary field © is required. Thus,

Nei 2 nel

Mo et - we

%n‘n - V‘L¢"‘*‘ _ A¢“H

134 "3

where
A = 1-Vi-aatlFae o 2+ O(aeLF)
LAt . LF
ES = A - A
At.LF
LY ay !
determines the streamfunction 4)K . The vorticity W , required for the

A+
non-linear advection, is approximately given by ) « It may, however, be

Ayl
determined exactly once 4' has been found.

(d) Time-step constraints

The time differencing techniques described above are subject to certain
stability restrictions. The most important, the so called CFL-constraint
(Courtant, Friedrich, Levy) restricts the ratio of &X / At to be greater than
the fastest velocity in the ocean. This might be, for example, the advective
velocity or a phase velocity. For ocean models with variable effective grid
spacing increased resolution may increase the severity of this constraint. The
fastest velocity in the basin ocean model may be the phase velocity of the
basin modes or for significantly non-linear flows the advective velocity. We
present below estimates of the CFL-constraint for various basin model

parameters.

(i) Rossby basin modes

The Rossby basin modes are solutions to the linear problem
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%V =) % + 2, ¢ =0 (57)

with 4) = 0 on the boundaries -1 & g s \ . Non-dimensional coordinates

are assumed in this section. The solution is easily constructed

4)“" = S'n aw (.'n.-r\) Sin Ml (‘.&*\} cos( X & wm_\k) (58)
Y PR Aw
L
where
Wim = ‘

'y 2
LA+ T (area)]
and the phase velocity is M

& - - \

A
10N« Yf(n‘wm\)]
4

The fastest mode corresponds to the barotropic (l,1)-mode with phase

velocity

implying the CFL-constraint:

In terms of dimensional variables
% *
At ¢ Ax' W
L Lp
For the Chebyshev basin ocean with (N +1 ) Chebyshev polynomials in each
direction the smallest QAwx is

1

Arxr ~ "\i(«“)
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The corresponding largest time-step QA t* for a 1000 km basin and 33
Chebyshev polynomials is 1.32 hrs. Table II gives a comparison of
largest allowed time-step for various sized oceans and number of degrees
of freedom. It should be emphasised that this is only a constraint if

the basin modes are excited.

(ii) Advective velocity

In performing integrations in which significant non-linear flows develop
advective velocities may become sufficiently large as to exceed the
CFL-constraint. For the non-dimensional scaling described in the

previous section the velocities are scaled with the Sverdrup velocity.

)

Furthermore, the CFL-constraint implies

Wap < A
ac?

or in non-dimensional form

R 9,4 < bx

Av

The strength of the advective velocities that actually develop in an
integration will, of course, depend on the strength of the wind forcing
or other forcing mechanism together with the strength of the dissipative
mechanisms. It may be possible to make estimates of these velocities
from linear solutions to the problem in hand. Table III indicates,
however, that excessive resolution in the boundary 1layer severely
restricts the permissible time-step for advective velocities ‘of 1-2
m s, Consequently care must be exercised in the choice of number of

Chebyshev polynomials for a given basin size in order that the boundary

layers are not over resolved.
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TABLE II

Basin mode-CFL constraint

Basin 17 33 65 129
size
-2 -3 -3 -4
(km) Ax=1.9x10 Ax=4.8x10 Ax=1.2x10 ~ ] Ax=3.0x10
1000 5.28 1.32 0.33 0.08
2000 2.64 0.66 0.17 0.04
4000 1.32 0.33 0.08 0.02
TABLE III
Largest At* (hrs) for a given advective velocity
Advective —_ 2.5 km | 5.0 km |10.0 km |20.0 km
velocity (ms )
-1
0 6.95 13.90 27.8 55.6
1.0 0.70 1.39 2.78 5.56
2.0 0.35 0.70 1.39 2.78
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Conclusion

This report describes the theoretical background to a set of three
quasi-geostrophic ocean models which use spectral methods to represent the
horizontal variation of the dynamic pressure. In addition the depth variation
is represented in terms of the normal modes of a linearized flat bottom and
unforced ocean. The modal vorticity equations, eq (11) or eq (52) form the
basic dynamical equations describing the evolution of the ocean systems. The
full three dimensional structure 1s regained by summing over all the
contributing normal modes.

A further report will describe applications of the models and their

implementation on the CRAY-1 computer system.
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APPENDIX A

Properties of Chebyshev Polynomial Expansions

The Chebyshev polynomial of degree a , -r;(:) , is defined by

(Al) T“(cos@) = cosn®
Thus, — a N . ,
Tzl Tz x, T,00= 2t Til) = 63 =3x T, 00=8x"-344)

and so on. The Chebyshev polynomials are the solutions of the differential

equation
VI ‘/&
(A2) G-x" d GL-x0"4aT, « M Th =o0
dx ax
that are bounded at X =+1. They satisfy the orthogonality relation

-V
(a3) S T T, (-x) 2dx = @ <, 5,
2

-1

where C°=2, c,. =1 for n)O. Some properties of Chebyshev polynomials are

(a4) Tap G = 2T, 00 =T, &)
(45) 1T, 001 ¢ ; 1T (0O} ¢ w?
) Ayl p-t

(46) & T (£N = @ (=% /(2x+)

;;’ K=o

' P 2p .
(A7) | o T, 0O = 0(n ) ny x p Fled 1xig)
ax P
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T.(£) = (;:l)'\ , T, ) = Q-\)ﬂ ,T:M‘(O) = ©

(A8) , ' "
T =0 ) T, () = )

The following formulae relate the expansion coefficients

Qa in the
"
series

(%Y
fay = 3 6, T W Il ¢y
nNzo
to the expansion coefficients B“ of

od

LE = 2 b T, 0 Vxlg
LT

for various linear operators L . We use the constants c'\and d“ defined by

=1 (wHe) AN

Co = 2 , Cn

= 0 (V\(o)
dp

(a%0) , d, =0 (n(o)

Some formulae are:

od
(49) L‘C‘ = ‘;'(i) L C“k“ = L 2 P Qp
p=n+!
p+n odd
w0
(A10) L‘- - -F"(X) . C“L“ = 2 P(P‘L_n"l) QP
p=nsl

Ptn @uen

(all) L = xFW

= .\i ( C,\_.Q,\_‘ + Q“.‘_B
(A12)
LE = &y b

( R N
t Camy Cl“_z*- (e C,\_.\ a,+Q, ..,
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(a13)) £ - x* {6 2 b, = ili,(lc“'*q““**. (Cpoy + Cpiq + 2¢0y ) a0
v (Cnig + sy + ot 40 Qv (Coiy + Cu + Cupt Cned)a, ¥ Qe
(Al14)
® (p-n-/2
LE = £6) - £y Cob, = 2 2 @) ap
X pP=wn+)
p-\-n .GlJ
(Al5) o0
(p-n=2)/2
LE = (60 -5 - lyn Caboa= li: (p-nY(-) a,
at P24l
pen even
(Al6)

Lf

-]
' -4+ ¢ 6, = & z P a,

X P=ned
PNE Lmod &

L = £'6G -§(a -£"(o) x

(Al17) x?
© o
Cohy e ).z (P-n-.-\\pqp _2 (P_“_‘)Pq
P
Parn+d p=n+S
PN EY mede P=nt | wiod e
(A18) %
Lf = «xf'n : Cb, = nqn+—22 Pap
p=n+l
Prn Guen

(a19) LE = LEGD b, = {.{ (h=tda,_ + (Mh(.\«-d,\_,A-c“_,\q_“'

(-]
+ O 2 Pqp }
p=nsd
Panodd
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ol
(A20) "
L = o f (x) c b, = 20 (na) Ay +2 P(p"--n"-\y ap
P=n+d
pan odd
(A21)
vy
“
LE = 22 f (% Caby, = nln-Da, + 2 p(pl—ﬂl-l)qf
Pan+l
pan 2van
(A22)
o0
L+ = £ with  £(x0) =0 Cab, = -22 (p-mday
V- x P=ast
p+nevea
4)
Also, if we expand L (X) as in
o
W)
(o = %, a, Va0
N=o
then
(W\ (‘\l\ (”"\\
(A23) Camy Qo Ay = na, , N 2



- 40 -

APPENDIX B

Transform Techniques

The transform techniques employed by the spectral methods are based on
the existence of algorithms for Fast Fourier Transforms and assume that such
subroutines are readily available. Such subprogrammes are available on the
CRAY-1 Computer System and are written in the Cray Assembly Language (CAL) for

operation under the Cray Operating System (COS). The subroutines are addressed

by a conventional FORTRAN call statement. Three subroutines are available,
namely
Nt
CFFT2 Complex to Complex 3“ - ‘T. ‘!v.-), e'x.p(t\ 7w JK) XK= o'...N-\
J=9 vy
( % 4%) N
N~
CRFFT2 Complex to Real %K - z Xy exp(t'l AW J\O =0, N-|
Jzo e
(x\\- 2 W) N ¥
3\( tea\ ) XS = -)("":)
N}
RCFFT2 Real to Complex ‘3\( - 2 2 ‘Jc_s . C)LP (t.l aw QK\ K= O,...N/l
=0 ~
(xs - \a\g\ N N

xi ceal 3 Ok = Ya-x

Further details may be found in the CRAY-1 Library reference manual. TFor the
doubly periodic model these subroutines may be used immediately to define
2-dimensional transforms. For spectral expansions employing sine, Chebyshev or
cosine functions pre-and post-processing is required. A summary of the steps
required is given below and further details are provided by Cooley, Lewis and

Welch (1970).
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For the oceanographic applications described in this report the
transforms required are two-dimensional. Two—-dimensional transforms based on
the repreated application of the above subroutines are available although it
has been found possible to obtain improved efficiency using the Fast Fourier
Transform routine developed by Clive Temperton (1983). This routine called
FFT77 provides wuseful time savings of between 2 and 3. Double cosine,
cosine-Fourier and double Fourier transforms have been developed and are

incorporated into each of the ocean models.
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Finite Chebyshev Transform and Inverse

N
[,
The finite Chebyshev series is Yix) = z \/“ T,\(x) SV g g
N=o
If collocation points )(\S = COo% ('\T‘m ) =9, ... N are introduced

A=o

N
N
Y = YG) = 2 "/\,\ tos(“_n"\,) j= o1 .. N
N

Formally Y(ﬂ is made into a real even sequence over twice the range

Y(j),3=°)""’ 2N-1 using Y(ﬂ= v (QN-:)) .

To compute the cosine transform

(a) Form the complex conjugate even sequence X(\)\ where

XGY = Y(23) « L ‘/(25-\-\) -Y(lj-u)ji

for J = 0,)...N-1 (only J = 0,1,... N/q terms need be formed). Only \I(o)

e+« Y(W) need be given.
¥
(b) Input X Q) to the CRFFT2 routine

N
Output is the real sequence A(n), n=0,...N.

() Form Y() - 4 i CAM + AT =L ALY -AENT] /(hinhrs\)}
N

n=l,... N=I A-n) = A (N=n)
(d) Determine N
Y(b\ - _g: (““*’ A,ﬁ
Yoo = L (A -8
from ' A\ = A(e)
N=-| L
A, = L% Yajd=2L Yage)
N J=o N y=o
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Inverse
nN
given Y (w) n = o,i... N

(a) Determine

= ‘7(9) + ‘?(lﬂ = Ao

A,

(b) Form

A = [ C/(M > ;(N-n)] -[‘7(-\\ -?(u-nﬂ(’lsinhg\
n

(c) Input A (n) L, A= 01, ... N=|\ to the RCFFT2 routine. Output i

the complex even sequence X‘(S) .

N

()  Form Y() jzeo,...N from X(}) | j=o,...N/
Yy Real X (i) J= 0... N
and

\/(25*\\ = Y('ls-h + T X()\ jt \ ...NI-|

) ] 'Y
assuming  Y(,) 1s given

\I,‘-|
Y(\) is determined from, YY) = A‘_ - 2 Z' I XK (N _i)
l:l 1= 2

Finite Sine Transform and Inverse

(a) sine transform
(i) Form the complex conjugate odd sequence X(s‘ where
X() = =L Y@js) =¥0j-00 + Yi3):

JmY N

X = =~72VY) A

X = 2 Y (n-)

and

- _
(ii) Input X to the CRFFT2 routine. Output is the real sequenc:

A\ n=96,1,... N

)
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(14) Form G\ _ 3 { CAM - ACDT ST AW + A/ hs.‘nmﬂ}
N

n A
Y = Y(NY =0 A=), ... N-\
(b) Inverse
given 9('\\ , N= ©,), ... N

y
(1) Al =0
(1) Forn p ) o [ Fra) - YN-m)T =L Vi) + Y(u=m] (251 (Ta))
n= )L N )
(111) Tnpst  A() n zo0, ... N-1 to the RCFFT2 routine. Output

is the complex odd sequence X‘(i)

(iv) Form Y(S\. J=0,1... N from x(j)
Y(‘L5\ = Iwm X(S) ‘ j= oo Ni
Y{35+1) = Y(a5-1) ~ Real X (}) Y =1,... N/

given
YO = -4 X()
2
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APPENDIX C

Quasi-Tridiagonal Solver

The solution of a quasitridiagonal system of linear equations is required
for models involving Chebyshev spectral functions. The quasi-tridiagonal set

of N linear equations take the form

7, E \ V.. oo \ X, fB‘\

c

D E

N =} Ne=}

Cn D xNJ B, |

where D =E =1 and B, =0

Assuming all C: are non-zero, we first perform an elimination step for K=1,N-1
KPL = K+l
T = = Dy / Cxoy
DK9I= Tx DKD\ N EK
Exor= Tx Exp, ¥
BKD\ = T BKN ¥ B\(

where '=' 1s 1interpreted as replace. After elimination we obtain the

triangular matrix
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I
| Y E, \ \ ' I T
/ /
o D, ! ‘ oy
o o D E I b

Back-substitution may then be performed for KK = 1,N-1

Z
1]

B/v,

UM = O

®
n

N -K¥

o
=
"

(R - Eyx v B, ~Sumd)/D,

Sum = Sum + BB

The output vector 1s B

% If any <C5 =0 all are zero and the input vector
31 ,L=2, ... N is the solution vector and

N
Bl = - : BI
T=2
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APPENDIX D

Quasi-Tridiagonal Transformation

It is a simple algebraic exercise to show that the system of equations
represented by (24) or (37) may be put into quasi-tridiagonal form. It is

sufficient for our purposes to consider only one index i.e.

N
A 2. p (*=ray + w a, = . O ¢ nIN-1
Ca P=0®2

pPan Qven

For simplicity consider only the even terms and define

N
Sq' - Z ? (Pl“f\") a P

P=o
peven
then for 2€¢{n § N=-&
(i)
|
\ S“n - 4-(:\\ z Pap + o Qyyy = Fora
Cf\"]. c P=ﬂf~
LY XY
P even
(11)

L S, * 4(-0 2 Pap + da,
p=n
-2 pevan

-1 = n=1

n-1

We have also

t
z‘ Pap = 0a, (“*l\qf\«-m* 2 P ap

PN

P =Are
pevan P tuan
Sn = S“*t = 4(Ae)Cav) Qapr  * S“*~

and S

S Ln =~ & a, Cq

>

+

P
1
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Adding (i) and (ii) in suitable combinations to remove the middle sum leads

quite simply to

% Cua Gaaa + () = & Ch YA, + % Casp Qng

& n(net) i(nl-\) &n(n-1)
= Cunsa ‘cvn-'c - <, '(‘v\ + Cn-a £ Y
G nalne) 2(a*-V) &n(n-1)

This system of equations is valid for 2<n<N-4 and to obtain the appropriate

equations for n=N-2 and N the original equation is used. We obtain finally,

!(e“*q, Q"\-'I. * ( - o e“-\.;) C\“ -+ & A, CV\-I

2 (nto) 4nln1)
= _e'\-ﬂ- 'Cn-n. - Cnsa 'Ca + Ca-a $n-1_
& alnat) 2 (nt-) & n(n-1)

1]

Here €, 1 for n<N, @,=06¢ for n) N. In combination with the boundary
condition constraints we arrive at the quasi-tridiagonal system described in

the main text.
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APPENDIX E

2
Discrete 9y - eigenvalue problem

The basin Chebyshev spectral model utilises the discrete eigenvalues and

eigenfunctions of the coatinuous problem

2 Wy = Ay U, , Q»Ltﬂ=o

X
N
obtained by setting U, () = 2 € T*(l) . This assumption implies
Az
N
-\.. 2 P (91““1) epv = Ay e“\’ (o] \( a) {N-?.
Cn Panid

3+ntvtn
and the boundary conditions are

Z‘ epv = 2 epv = ©

P even f’°"‘~‘l

The same quasitridiagonal transformation may be applied to the above
problem as has already been described for the Helmholtz equation system. We

obtain the system of equations:

e, = ML L e,, -d,e, + use,,3
2 a< N
together with the accompanying boundary conditions, Q‘“ and Q" may be
-\

eliminated from the above equations by use of the boundary conditions and the
equations represent a standard eigenvalue problem of order N-1 with eigenvalues

A,' . Consequently we have a set of N-1 eigenvalues and eigenfunctions

N
U, (x) = 2 evw T“()g\ Y =0,l...N=21
f=o
The matrix [ o { e ““1 AY = 01 . .. N=2 and its inverse may then be used

to perform the transformation described in the main body of the text. It
should be noted that the transformation is not orthogonal since the Chebyshev
functions are not orthonormal with wunit weight. Since the discrete

eigenfunctions possess definite parity wunder <co-ordinate transforwmation



- 50 -

X 5 «x the matrices E and E =1 contain elements which are alternatingly
zero and nonzero. This property can be used to speed up the matrix

multiplications by a factor of 2.
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APPENDIX F

Vertical Structure Functions

The vertical structure functions and constants for a simple analytic
Brunt-Vaisi1¥ frequency N2 is given below. Finally the numerical procedure

for more realistic vertical variations of N2 is given.

(a) Constant Brunt-Vaisala frequency N2

F@® = A, cos (nT)z
N
A= 01, ... M-)
where
)\,\ - Ln_r\ﬂ'
N " A, =
and
Aﬁ: f{‘f\:\....m'\

The vertical structure constants between baroclinic modes are

|3 = L L 3§

\‘\ . . +* .. ...M-‘
\)K J-i K.‘*’J K,\I-)\ )

Cr -
=
]
-

{(b) Numerical vertical Structure Determination

The second-order differential equation describing the vertical structure

is expressed in finite-difference form on the grid

Z, = _;(_u_) ! Moo N
N

1
0

and ¥l; is the Brunt-Vaisala frequency on the finite difference grid. With

S; = E;. , A; = 5:\ ) Bq = - 1 ‘<iS;
I ! T

the difference equation is



- 52 -

C A o 8 JF, - 248 F o LA - BIF +)\F =0
(a) 208 a2 (a)' 222

V= O 1,.. N
4

The above difference equation is expressed as a tri-diagonal (NxN) matrix with

the derivative boundary conditions

F

: F, Fou = F

) Nel = N=|

determining the end-point values. A standard NAG eigenvalue subroutine is used
to determine the first eigenvalues between 0< A <Aand their associated
Max

eigenvectors. The vertical structure constants are determined by simple

numerical quadrature.
(c) Vertical Structure Constants

The total number of non-trivial vertical structure constants for M-modes
is 4(M~1)+(M-1)(M-2) + 1/6(M—1)(M—2)(M—3); this aumber is 4, 10, 19, 32, ..
for M= 2, 3, 4, 5, ... However, a number of these constants are unity so that
the number of constants to be determined is reduced considerably for small

values of M. For the M-mode problem we have M matrices each (MxM) of the form:

\
o <e.fEy = ' O

K=\ {FEFED> 2]0 1 o \
! gu\E\I.I
?!“‘iuu
: |
K=2 (F;FJ.;‘> =[]o © 1
o E\lx Eml"'
‘ gut gaxz-”

|
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where the symmetry of E;jk has been employed. The elements which are neittl
zero or one consist of the (M-1) vectors of diagonal elements E;;K and i
(M-1) upper halves of the symmetric matrices EU“ (g2y ). The latter eleme:
can be arranged into (M-1) vectors for convenience. Although this grouping
the vertical structure constants does not exploit their full symme:

completely it does separate the coupling into diagonal and non-diago:

contributions.
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APPENDIX G

Physical and computational modes

In the report we often need to evaluate discrete Fourier transforms such

as

Ko
3
Uy = 2 uix) e j= o .. 1K=
Nk K

where Wk \< K 1is defined as -K<k¢K and %; =2n:‘/(2K).

On the other hand, fast Fourier transform codes are usually written to evaluate
N=-| R

aminy
A = Y. a, € " =0, ... N=1

) Az O
The correspondence 1s stated explicitly below and it 1is these coefficients

which are employed in the computations. Set N=2K and define the computational

wavenumber k' by k'=k+K. Setting QA= u (k) ,llk||$ K i.e.

°2K-| = w (K-l)

P

it follows that

) ALK
VW: = L"‘\ a, e N
J . x
K=o
Ne=\
Conversely _..‘).1\‘.\3\("
wixy = 1 u- € N~
N iz 3
J—O
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where k'' = k if O¢k<K

k"' k+N if -K<kgO

»
Note also a = Q@ = (0KCk¢N), Q.= aF
X N-K
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