A boundary element model for nonlinear viscoelasticity
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Abstract. The boundary element methodology is applied toahalysis of non-linear viscoelastic solids. The
adopted non-linear model uses the same relaxatamulinas the respective linear relations but witlinee shift
depending on the volumetric strain. Nonlinearityroduces an irreducible domain integral into thegioal
integral equation derived for linear viscoelasttids. This necessitates the evaluation of domaairs, which
relies on proper differentiation of an integral wia strong kernel singularity. A time domain foratidn is
implemented through a numerical integration algpponit The effectiveness of the developed numericall i®
demonstrated through the analysis of a plate wittemtral crack. The results are compared with e
predictions by the finite element method.

I ntroduction

Many polymers exhibit highly nonlinear viscoeladtehaviour in areas of stress or strain conceatratsuch as
those arising from the presence of cracks. Matewallinearity manifests itself as considerablaistisoftening
near the crack tip. The development of nhumericahtégques for the implementation of relevant couostie
models describing such behaviour has been an iaoresearch objective. Non-linear viscoelastiaitsmhs,
based on the finite element method (FEM), have emnulated and tested for efficiency and stability

The boundary element method (BEM) has been extelysand very effectively used in modelling linear
viscoelastic behaviour [2]. It has, in particulbeen found a reliable tool for the analysis of e&astic fracture
mechanics problems [3]. It seems, however, thatettieas not been any previous attempt to extend such
formulations to modelling the nonlinear behaviofipolymers.

Various constitutive models have been proposeddpresenting nonlinear viscoelasticity in polympgtk
Schapery [5] proposed a quite general and frequeapilied model, which includes the principle ohéi-stress
superposition. The latter is accounted for throtighdefinition of ‘reduced time’, a concept oridigantroduced
to account for temperature variation [6]. Basederperimental studies, Knauss and Emri [7, 8] linkeal time-
stress superposition model to the concept of fidame. This constitutive model has been appliegdaoous
problems [9, 10] and found to be a very effectimalgsis tool for assessing the effect of nonlirtgaon the
behaviour of polymer materials.

The non-linear visco-elastic model employed in pnesent BEM formulation is based on the reducee tim
concept, which is, in turn, considered as a fumctibmechanical free-volume changes. The relaxatioduli of
linear visco-elasticity are thus employed in thdtBoann constitutive equations with a time shifpeleding on
the volumetric strain. The difference between thtua stress tensor and its linear counterpart rgée® an
irreducible domain integral into the original intabequation derived for linear viscoelastic salidsmain strains
are obtained by differentiation of a domain intégvith a strong kernel singularity resulting iniagular integral
and a regular free term. A time domain formulatisnmplemented through a numerical integration atgom.
The effectiveness of the developed numerical tsaemonstrated through the analysis of a plate avitkentral
crack subjected to remote tension. The resultscangpared with respective predictions by the firgtement
method.

Background theory

The linear viscoelastic model adopted in earliedvBEbrmulations [11] is, in accordance with Boltznmn
principle, of hereditary integral type
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wheregj, &; are the stress and small strain tensors, respgtandG;(t) the relaxation moduli in the general

case of an anisotropic medium. The problem is dwsgrrelative to a Cartesian frame of referencé =1,2,3,
adopting the summation convention for repeatedcesliIntroducing the notation for the Stieltjes\adation of
two functions [12], eq (1) can be more conciselittem as

g; = Gy Odsg (2)

The nonlinear constitutive equations adopted hex¢%
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where {(t) is the reduced or intrinsic time, which may aadofor the effect of temperature [6], moisture and
pressure variations on the relaxation moduli. Aggehdefinition of{{(t) is
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and gis a shift factor, which depends on the fractidinaé volumev. Here, only the influence of mechanically
induced aging is considered, thuss expressed only in terms of volumetric strain by

V=V + Cég (5)

wherey, is the fractional free volume at some referenatestindC is a material parameter which, in many cases,
may be taken equal to unity. A possible expres&iowis [7]

Y= exp{b[% —Viﬂ (6)
0

whereb is another material parameter.

Formulation

The derivation of an integral equation for non-in@iscoelastic problems begins with the reciprababrem of
linear viscoelasticity [12]. Given two linear visdastic statesg, ) and ;,J; ), satisfying the constitutive

eg (2) in the viscoelastic domaéR, then
j g Odoy d j g; 0dg; d2 )

In a non-linearly deformed viscoelastic materigls ipossible to define the notional stress fiajp related to the
actual strain components by

O'IIJ‘ = Gijkl Dd€k| (8)

Then, the actual stress developing in the nondingderial can be written as
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where aig\‘L represents the effect of material non-linearitystress, that is, the stress difference resultiog f

using constitutive eq (3) rather than eq (2). Téwprocity relation (7) is only valid fOUl'J-, hence, for the non-
linear problem, it should take the form

j g 0d(gy - o )d2 = j g; 0dg; d2 (10)

Substitution of the small strains-displacementtiefe into eq (10), integration by parts and thpliaption of
divergence theorem, gives

J& Cpd + [ d Odf;d@ = [u Odpy d + [y, Cdff,d2 + [ & Ddo-de (11)
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where/ is the boundary af2 while u;, p; andf; are, respectively, the components of the displacentraction and
body force corresponding to the actual, nonlingablem while G, p, andﬂ are the respective quantities for a
second hypothetical linear field. The latter isumsed due to the body force

fig = A x-EH() (12)

acting on an infinite isotropic linearly viscoelastiomain, where); is the Kronecker deltad{ x-) the delta
function andH(t) the Heaviside step function. Then, eq (11) isgfarmed to
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where U (x—¢,1) is the time-dependent fundamental solution wijje and p; are the corresponding strain and

edge traction components. In eq (18),= g; for interior source points anklj = (1/2)J; for points on a smooth
boundary.
The Laplace transform af; can be derived from the fundamental solution ef bspective elastic problem

via the correspondence principle. Inversion froe tfansform to the real time domain leads to theegd form
[11]

G; (x.&,t) = At)g;; (x —8) + B{OR; (x-&) (14)

where the time functiond(t) andB(t) also depend implicitly on the relaxation modulitee material while the
spatial functiong);(x —§&) andh;(x —&) also depend on the dimensionality of the problem.

Eq (13) is not a true boundary integral equationabse of the presence of an irreducible domairgiate
dependent on material non-linearity. An iteratieleame accounting for that integral complements astiag
time-stepping boundary element formulation [11] $otving the linear part of eq (13). The schemi&sebn the
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evaluation ofg;; at internal points using eq (9) and the constitutelations (1) and (3). The strains are given in

terms of the displacement gradients, which areiobtafrom eq (13) with; = J;:
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Differentiation of the singular domain integral. The strong singularity of the kernék; /9, whose

behaviour is of order ®@¢), does not allow differentiation under the domiaitegral sign in the third term on the
right-hand side of eq (15). The correct expres$mrthat gradient is derived using a method preposy Bui
[13]. Thus, the irreducible domain integral is s@ped into two parts,

agf jx oo = fim | —— 64‘ j 8”kEk:iajde+a je”dea L do (16)
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where is a small circle of radiuR, centred at the source pofit
It can be shown that the second volume integrahenright-hand side of eq (16) is of the ordeRE)(The

proof requires thatal'\“- as well its first and second derivatives to be tiomous functions ofx in the

neighbourhood of. Then, a Taylor’s series expansionaﬁfL aroundg leads to
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whereDjy(t) are linear combinations @f(t) andB(t), independent of. Hence the gradient of the right-hand side
of eq (17) involves second derivativesaﬁl"' and therefore vanishes s~ O.

Since (: depends og, differentiation of the first domain integral ametright-hand side of eq (16) produces
an additional convective term. Thus

0 0g;;
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where Iy is the periphery of the circle with radiésandn is the outward unit normal to that circle. Usiing t
formulas [14]
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wherer = [x — |, the last term on the right-hand side of eq (18jeduced to a sum of simple convolution
integrals.

As R - 0, the first integral on the right-hand side of @) becomes the Cauchy principal value of the
singular integral, whose existence has been prewvedthe methods to evaluate is presented below.sirae
components corresponding@ and their gradients are obtained by successitereiftiation of Eq. (14).

Evaluation of the Cauchy principal value. The domain integral on the right-hand side of E) {s evaluated
by dividing the domain into cells, that is, two-@insional subdomain®, bounded by contourg.. The

integration is performed over each cell using apraximate model for the unknowzlfﬂ-\'L . The radial integration

method [14] was used to evaluate the Cauchy prheiglue of that integral over the cell containthg source
point. The integration over all other cells wasfpened using numerical quadrature.
The domain integral on the right-hand side of &) ¢an be expressed as
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The second integral on the right-hand side of €) ¢an be shown to be regular and therefore eweduhy
standard numerical schemes; the strong singulamains in the first integral. A polar coordinaystem ¢, 6 is
defined with the origin at the source pogntit can be shown that, relative to this systera,dimgular integral on
the right-hand side of eq (20) can be transforroed t
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Since the integration is carried out in the Cauphipcipal value sense, a small circle of radRisround the
singular poing can be cut off. Thus, eq (21) becomes,
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wheredr/on = —1 has been used in the second integral alangitble /z. Using relations (19), it can be shown
that the last integral on the right-hand side of(22) is identical to zero; this is an intrinsicoperty of (.
Hence, aRk - 0, eq (22) becomes
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Now the strongly singular domain integral has b&ansformed into a boundary integral. Since thes®point
is located inside the domain, no singularity occamsl standard Gaussian quadrature formulas carsdxt to
calculate this integral.
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Figure 1 Triangular cell (a) and polar coordinatstem with origin at the singular poigtb)




The domain was divided into small triangular cedisch as the one shown in Figure 1(a), with thecgopoint
¢ at the centre of the triangle. Relative to a p&lame of reference with origin at the centre a& thHangle, the

equation of side A(q-l)-B(qu) of the triangle, shown in Fig. 1(b), can be esgpezl in terms of the local corner co-

ordinates%! =x/ - &, wherex) are the co-ordinates of corrjer
Thus, in this case, the contour integral on thatrtand side of eq (23) is evaluated along each sfdhe
triangle. Adopting a ‘constant’ cell model fowr}}iL , the stress difference in eq (20) vanishes anefine
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The integrals on the right-hand side of eq (24)lmawcalculated by the standard Gaussian quadria@iumelas.

Numerical algorithm

Constant boundary elements were used in the presen¢rical implementation of BEM formulation basad
integral eq (13), which also requires modellingha time dimension. If the boundary surfaCis discretised it
elements/, the following representation can be adopted,

u (x.t)=uit), p;(xt)=pi) (25)

where uf(t) and p;(t) are the time dependent nodal values of displactmeth traction, respectively. Over a

cell, strain was modelled as uniform and, as aeqmsnce of egs (1), (3), (5) and (6), the shiftdiaas well as
both linear and non-linear contributions to thessrare also constant within each cell.
It was assumed that the boundary variahi§¢st) and pi(x,t) as well as the nonlinear part of total stress

aj“,'(L (x,t) in the domain are linear with respect to titgithin a small time stegt, = t, — t,;. With the
viscoelastic fundamental solutions in the genevahf
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the discretised form of eq (13) was obtained as
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where, for simplicity, the body force was assuneebée zero and
A @) =] auidr, B @) =] bfpPdr, ¢ () = cloid

U2 =u (L), PP =R (XL, o) =g (xt,)



An iterative scheme is proposed for solving eq @mge the current values of the stressﬁ(% are not known at
the beginning of a time step. At the first iteratidhe boundary displacements and tractions arrmdeted at
time t = tx assumingo (t) = )¢ (tes). Then displacement gradients are determined £qgnil5) leading to

initial estimates of domain strains and subsequeftstresses through constitutive egs (1) andTBg value of

the domain integral can thus be revised and theepiure repeated until results from two successamtions
agree within an acceptable tolerance. Convergefidsoondary displacements was the adopted critefdon
terminating the iteration. It should be noted tlat,= O all unknown boundary values can be calculateen the
integral eq (13) governs only the initial elast@ésponse due to any non-zero initial values of thentary or
loading conditions. At the following time=t; (stepx = 1), the respective unknown boundary values can be
obtained from eq (27) with the current boundaryditions and the additional terms depending on thetisn at

the initial step as well as the non-linear conttitou of the current step. The solution progressethé next time
stepkx = 2 in a similar manner and a step-wise procedutbus established which advances the solutioh theti
final time step is reached. A suite of FORTRAN peogs was developed for implementing this formutatio

Numerical results

Specimen geometry and material model. As a numerical test, the developed non-lineanyaialvas applied to a
plate with a central crack under constant tensidre input data are approximately the same as thssd by
Moran and Knauss [9] who solved this problem udfiigv. Due to symmetry relative to two orthogonal sxe
only a quarter of the plate was modelled. The phatéwidth was 13.44 mm, half-height 12 mm, and tinack
half-lengtha = 1 mm. The material behaviour was representeal $tgndard linear solid model in shear

MO = oA+ (1 -]

with 14 = 4800 MPa/ = 0.1,7 = 0.4 and a constant Poisson’s ratie 1/3. In order to simplify the evaluation of
the volumetric strain, plane strain conditions wapelied.

In order to calculateusing eq (6)v, was assumed to be 0.01, dndas chosen equal to 0.05 [9]. A remote
tensiong, = 0.00E(0) was applied, wheig(0) is the initial value of the tensile relaxatimodulus.

Boundary and domain meshing. ‘Constant’ boundary elements with variable elemength were adopted.
The two smallest elements, located on either sidbeocrack tip, were 0.005 mm long, the largestrant at the
loading edge of the plate was 3 mm long. In conftyrmvith the boundary mesh, the domain mesh waanged
to be much denser near the crack tip, where thestroncentration and high nonlinearity occur.

Nonlinear stress field. Fig. 2 shows the normalized nonlinear stresd fredar the crack tip. For a linear
viscoelastic plate with a constant Poisson’s ratider constant tensile loading, the stress fielcbisstant over
the time history. For nonlinear viscoelastic protde the material undergoes considerable straieriofy around
the crack tip, where the high stress and straimmoderom Fig. 2 it is very clear that the stresddfidrops with
time due to the strain softening, and this dropvsldown with time becoming less significant as dtrain itself
changes more slowly. The stresses far from thekctipcwere increased in order that overall equilibr is
satisfied. This response is similar to that prextidty FEM [9].

The program was also run with the paramdtehanged to 0.001 implying a more pronounced naltéme-
dependace than originally assumed. From the ragpedsults, it was clear that the effect of nogdirity was
higher than previously under the same loading d¢mmdi, though not as significant as predicted biHE]. One
possible reason for this is that an initial regadrK-dominance is assumed in their paper, inside tg#on the
strains are assumed to be infinite and the timi-ftotor reduces to a constant value.

Concluding remarks

An initial attempt was made to validate the devebtbgormulation and the resulting software throughirt
application to a fracture problem. Although thel cgte distribution around the crack tip was notadfor
capturing the local stress concentration, this meah considered acceptable for an initial assedsofethe
performance of the proposed method. The numeresilts obtained confirmed the expected effect af-no
linearity on the stress time history, which is héghin the neighbourhood of the crack tip. Compdredever
with those reported in a previous FEM study [9@indicant discrepancy was noted. There was alsegues of



inconsistency between the calculated boundaryidraectand domain stresses. Further numerical testeguired
to assess the sensitivity of the solution to mesinements as well as other input and control patars.
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Figure 2. Normalized nonlinear stress field neardtack tip 4 = 0.1)
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