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Abstract. The boundary element methodology is applied to the analysis of non-linear viscoelastic solids. The 
adopted non-linear model uses the same relaxation moduli as the respective linear relations but with a time shift 
depending on the volumetric strain. Nonlinearity introduces an irreducible domain integral into the original 
integral equation derived for linear viscoelastic solids. This necessitates the evaluation of domain strains, which 
relies on proper differentiation of an integral with a strong kernel singularity. A time domain formulation is 
implemented through a numerical integration algorithm. The effectiveness of the developed numerical tool is 
demonstrated through the analysis of a plate with a central crack. The results are compared with respective 
predictions by the finite element method. 

Introduction 

Many polymers exhibit highly nonlinear viscoelastic behaviour in areas of stress or strain concentrations such as 
those arising from the presence of cracks. Material non-linearity manifests itself as considerable strain softening 
near the crack tip. The development of numerical techniques for the implementation of relevant constitutive 
models describing such behaviour has been an important research objective. Non-linear viscoelastic solutions, 
based on the finite element method (FEM), have been formulated and tested for efficiency and stability [1]. 

The boundary element method (BEM) has been extensively and very effectively used in modelling linear 
viscoelastic behaviour [2]. It has, in particular, been found a reliable tool for the analysis of viscoelastic fracture 
mechanics problems [3]. It seems, however, that there has not been any previous attempt to extend such 
formulations to modelling the nonlinear behaviour of polymers. 

Various constitutive models have been proposed for representing nonlinear viscoelasticity in polymers [4]. 
Schapery [5] proposed a quite general and frequently applied model, which includes the principle of time-stress 
superposition. The latter is accounted for through the definition of ‘reduced time’, a concept originally introduced 
to account for temperature variation [6]. Based on experimental studies, Knauss and Emri [7, 8] linked the time-
stress superposition model to the concept of free volume. This constitutive model has been applied to various 
problems [9, 10] and found to be a very effective analysis tool for assessing the effect of nonlinearity on the 
behaviour of polymer materials. 

The non-linear visco-elastic model employed in the present BEM formulation is based on the reduced time 
concept, which is, in turn, considered as a function of mechanical free-volume changes. The relaxation moduli of 
linear visco-elasticity are thus employed in the Boltzmann constitutive equations with a time shift depending on 
the volumetric strain. The difference between the actual stress tensor and its linear counterpart generates an 
irreducible domain integral into the original integral equation derived for linear viscoelastic solids. Domain strains 
are obtained by differentiation of a domain integral with a strong kernel singularity resulting in a singular integral 
and a regular free term. A time domain formulation is implemented through a numerical integration algorithm. 
The effectiveness of the developed numerical tool is demonstrated through the analysis of a plate with a central 
crack subjected to remote tension. The results are compared with respective predictions by the finite element 
method. 

Background theory 

The linear viscoelastic model adopted in earlier BEM formulations [11] is, in accordance with Boltzmann's 
principle, of hereditary integral type 
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where σij, εij are the stress and small strain tensors, respectively, and Gijkl(t) the relaxation moduli in the general 
case of an anisotropic medium. The problem is described relative to a Cartesian frame of reference xi, i =1,2,3, 
adopting the summation convention for repeated indices. Introducing the notation for the Stieltjes convolution of 
two functions [12], eq (1) can be more concisely written as 

σij = Gijkl ∗ dεkl (2) 

The nonlinear constitutive equations adopted here are [9] 
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where ζ(t) is the reduced or intrinsic time, which may account for the effect of temperature [6], moisture and 
pressure variations on the relaxation moduli. A general definition of ζ(t) is 
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0
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and φ is a shift factor, which depends on the fractional free volume v. Here, only the influence of mechanically 
induced aging is considered, thus v is expressed only in terms of volumetric strain by 

v = v0 + Cεkk  (5) 

where v0 is the fractional free volume at some reference state and C is a material parameter which, in many cases, 
may be taken equal to unity. A possible expression for φ is [7] 
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where b is another material parameter. 

Formulation 

The derivation of an integral equation for non-linear viscoelastic problems begins with the reciprocal theorem of 
linear viscoelasticity [12]. Given two linear viscoelastic states (εij, σij) and ( ,ij ijε σɶ ɶ ), satisfying the constitutive 

eq (2) in the viscoelastic domain Ω , then 
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In a non-linearly deformed viscoelastic material, it is possible to define the notional stress field L
ijσ  related to the 

actual strain components by 

L
ijσ = Gijkl ∗ dεkl  (8) 

Then, the actual stress developing in the non-linear material can be written as 



σij = L
ijσ + NL

ijσ  (9) 

where NL
ijσ  represents the effect of material non-linearity on stress, that is, the stress difference resulting from 

using constitutive eq (3) rather than eq (2). The reciprocity relation (7) is only valid for L
ijσ ; hence, for the non-

linear problem, it should take the form 
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Substitution of the small strains-displacement relations into eq (10), integration by parts and the application of 
divergence theorem, gives 
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where Γ is the boundary of Ω while ui, pi and fi are, respectively, the components of the displacement, traction and 

body force corresponding to the actual, nonlinear problem while ,  and i i iu p fɶɶ ɶ  are the respective quantities for a 
second hypothetical linear field. The latter is assumed due to the body force 

kifɶ  = δkiδ( x–ξξξξ)H(t) (12)  

acting on an infinite isotropic linearly viscoelastic domain, where δki is the Kronecker delta, δ( x–ξξξξ) the delta 
function and H(t) the Heaviside step function. Then, eq (11) is transformed to 
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where kiuɶ (x–ξξξξ,t) is the time-dependent fundamental solution while ijkεɶ  and ijpɶ  are the corresponding strain and 

edge traction components. In eq (13), κij = δij for interior source points and κij = (1/2)δij for points on a smooth 
boundary.  

The Laplace transform of ijuɶ  can be derived from the fundamental solution of the respective elastic problem 

via the correspondence principle. Inversion from the transform to the real time domain leads to the general form 
[11] 

( , , ) ( ) ( ) ( ) ( )ij ij iju t A t g B t h= − + −x ξ x ξ x ξɶ  (14) 

where the time functions A(t) and B(t) also depend implicitly on the relaxation moduli of the material while the 
spatial functions gij(x – ξξξξ) and hij(x – ξξξξ) also depend on the dimensionality of the problem. 

Eq (13) is not a true boundary integral equation because of the presence of an irreducible domain integral 
dependent on material non-linearity. An iterative scheme accounting for that integral complements an existing 
time-stepping boundary element formulation [11] for solving the linear part of eq (13). The scheme relies on the 

evaluation of NL
ijσ  at internal points using eq (9) and the constitutive relations (1) and (3). The strains are given in 

terms of the displacement gradients, which are obtained from eq (13) with κij = δij: 
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Differentiation of the singular domain integral. The strong singularity of the kernel /ijk lε ξ∂ ∂ɶ , whose 

behaviour is of order O(r–2), does not allow differentiation under the domain integral sign in the third term on the 
right-hand side of eq (15).  The correct expression for that gradient is derived using a method proposed by Bui 
[13]. Thus, the irreducible domain integral is separated into two parts, 
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where ΩR is a small circle of radius R, centred at the source point ξξξξ. 
It can be shown that the second volume integral on the right-hand side of eq (16) is of the order O(R2). The 

proof requires that NL
ijσ  as well its first and second derivatives to be continuous functions of x in the 

neighbourhood of ξξξξ. Then, a Taylor’s series expansion of NL
ijσ  around ξξξξ leads to 

2( , , ) d ( , )d ( ) d , ( , )
R

NL NL
ijk jk ijkm jk m

Ω

ε t σ t Ω R D t σ t∗ = ∗∫ x ξ x ξɶ  (17) 

where Dijkm(t) are linear combinations of A(t) and B(t), independent of ξξξξ. Hence the gradient of the right-hand side 

of eq (17) involves second derivatives of NL
ijσ  and therefore vanishes as R → 0. 

Since ΩR depends on ξξξξ, differentiation of the first domain integral on the right-hand side of eq (16) produces 
an additional convective term. Thus 
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where ΓR is the periphery of the circle with radius R and n is the outward unit normal to that circle. Using the 
formulas [14] 
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where r = |x – ξξξξ|,    the last term on the right-hand side of eq (18) is reduced to a sum of simple convolution 
integrals. 

As R → 0, the first integral on the right-hand side of eq (18) becomes the Cauchy principal value of the 
singular integral, whose existence has been proved and the methods to evaluate is presented below. The strain 
components corresponding to ijuɶ  and their gradients are obtained by successive differentiation of Eq. (14). 

Evaluation of the Cauchy principal value. The domain integral on the right-hand side of eq (18) is evaluated 
by dividing the domain into cells, that is, two-dimensional subdomains Ωc bounded by contours Γc. The 

integration is performed over each cell using an approximate model for the unknown NL
ijσ . The radial integration 

method [14] was used to evaluate the Cauchy principal value of that integral over the cell containing the source 
point. The integration over all other cells was performed using numerical quadrature. 

The domain integral on the right-hand side of eq (18) can be expressed as 
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The second integral on the right-hand side of eq (20) can be shown to be regular and therefore evaluated by 
standard numerical schemes; the strong singularity remains in the first integral. A polar coordinate system (r, θ) is 
defined with the origin at the source point ξξξξ. It can be shown that, relative to this system, the singular integral on 
the right-hand side of eq (20) can be transformed to 
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Since the integration is carried out in the Cauchy principal value sense, a small circle of radius R around the 
singular point ξξξξ can be cut off. Thus, eq (21) becomes, 
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where ∂r/∂n = –1 has been used in the second integral along the circle ΓR. Using relations (19), it can be shown 
that the last integral on the right-hand side of eq (22) is identical to zero; this is an intrinsic property of ψijkl. 
Hence, as R → 0, eq (22) becomes 
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Now the strongly singular domain integral has been transformed into a boundary integral. Since the source point 
is located inside the domain, no singularity occurs and standard Gaussian quadrature formulas can be used to 
calculate this integral. 

 
Figure 1 Triangular cell (a) and polar coordinate system with origin at the singular point ξξξξ (b) 
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The domain was divided into small triangular cells, such as the one shown in Figure 1(a), with the source point 
ξξξξ at the centre of the triangle. Relative to a polar frame of reference with origin at the centre of the triangle, the 

equation of side A(1ˆix )-B( 2ˆix ) of the triangle, shown in Fig. 1(b), can be expressed in terms of the local corner co-

ordinates ̂ j j
i i ix x ξ= − , where j

ix  are the co-ordinates of corner j. 
Thus, in this case, the contour integral on the right-hand side of eq (23) is evaluated along each side of the 

triangle. Adopting a ‘constant’ cell model for NL
jkσ , the stress difference in eq (20) vanishes and therefore  
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The integrals on the right-hand side of eq (24) can be calculated by the standard Gaussian quadrature formulas. 

Numerical algorithm 

Constant boundary elements were used in the present numerical implementation of BEM formulation based on 
integral eq (13), which also requires modelling in the time dimension. If the boundary surface Γ is discretised in E 
elements Γe, the following representation can be adopted, 
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where ( )e
ju t  and ( )e

jp t  are the time dependent nodal values of displacement and traction, respectively. Over a 

cell, strain was modelled as uniform and, as a consequence of eqs (1), (3), (5) and (6), the shift factor as well as 
both linear and non-linear contributions to the stress are also constant within each cell. 

It was assumed that the boundary variables ui(x,t) and pi(x,t) as well as the nonlinear part of total stress 
NL
jkσ (x,t) in the domain are linear with respect to time t within a small time step ∆tκ = tκ – tκ–1. With the 

viscoelastic fundamental solutions in the general form: 
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the discretised form of eq (13) was obtained as 
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where, for simplicity, the body force was assumed to be zero and 
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An iterative scheme is proposed for solving eq (27) since the current values of the stresses NL
jkσ are not known at 

the beginning of a time step. At the first iteration, the boundary displacements and tractions are determined at 

time t = tK assuming NL
jkσ (tκ) = NL

jkσ (tκ–1). Then displacement gradients are determined from eq (15) leading to 

initial estimates of domain strains and subsequently of stresses through constitutive eqs (1) and (3). The value of 
the domain integral can thus be revised and the procedure repeated until results from two successive iterations 
agree within an acceptable tolerance. Convergence of boundary displacements was the adopted criterion for 
terminating the iteration. It should be noted that, at t = 0 all unknown boundary values can be calculated when the 
integral eq (13) governs only the initial elastic response due to any non-zero initial values of the boundary or 
loading conditions. At the following time t = t1 (step κ = 1), the respective unknown boundary values can be 
obtained from eq (27) with the current boundary conditions and the additional terms depending on the solution at 
the initial step as well as the non-linear contribution of the current step. The solution progresses to the next time 
step κ = 2 in a similar manner and a step-wise procedure is thus established which advances the solution until the 
final time step is reached. A suite of FORTRAN programs was developed for implementing this formulation. 

Numerical results 

Specimen geometry and material model. As a numerical test, the developed non-linear analysis was applied to a 
plate with a central crack under constant tension. The input data are approximately the same as those used by 
Moran and Knauss [9] who solved this problem using FEM. Due to symmetry relative to two orthogonal axes, 
only a quarter of the plate was modelled. The plate half-width was 13.44 mm, half-height 12 mm, and the crack 
half-length a = 1 mm. The material behaviour was represented by a standard linear solid model in shear 

µ(t) = µ0[λ + (1 – λ)e–ηt] 

with µ0 = 4800 MPa, λ = 0.1, η = 0.4 and a constant Poisson’s ratio ν = 1/3. In order to simplify the evaluation of 
the volumetric strain, plane strain conditions were applied. 

In order to calculate φ using eq (6), v0 was assumed to be 0.01, and b was chosen equal to 0.05 [9]. A remote 
tension σ0 = 0.001E(0) was applied, where E(0) is the initial value of the tensile relaxation modulus. 

Boundary and domain meshing. ‘Constant’ boundary elements with variable element length were adopted. 
The two smallest elements, located on either side of the crack tip, were 0.005 mm long, the largest element at the 
loading edge of the plate was 3 mm long. In conformity with the boundary mesh, the domain mesh was arranged 
to be much denser near the crack tip, where the stress concentration and high nonlinearity occur.  

Nonlinear stress field. Fig. 2 shows the normalized nonlinear stress field near the crack tip. For a linear 
viscoelastic plate with a constant Poisson’s ratio under constant tensile loading, the stress field is constant over 
the time history. For nonlinear viscoelastic problems, the material undergoes considerable strain softening around 
the crack tip, where the high stress and strain occur. From Fig. 2 it is very clear that the stress field drops with 
time due to the strain softening, and this drop slows down with time becoming less significant as the strain itself 
changes more slowly. The stresses far from the crack tip were increased in order that overall equilibrium is 
satisfied. This response is similar to that predicted by FEM [9]. 

The program was also run with the parameter λ changed to 0.001 implying a more pronounced material time-
dependace than originally assumed. From the respective results, it was clear that the effect of nonlinearity was 
higher than previously under the same loading conditions, though not as significant as predicted by FEM [9]. One 
possible reason for this is that an initial region of K-dominance is assumed in their paper, inside this region the 
strains are assumed to be infinite and the time-shift factor reduces to a constant value. 

Concluding remarks 

An initial attempt was made to validate the developed formulation and the resulting software through their 
application to a fracture problem. Although the cell size distribution around the crack tip was not ideal for 
capturing the local stress concentration, this mesh was considered acceptable for an initial assessment of the 
performance of the proposed method. The numerical results obtained confirmed the expected effect of non-
linearity on the stress time history, which is highest in the neighbourhood of the crack tip. Compared however 
with those reported in a previous FEM study [9], significant discrepancy was noted. There was also a degree of 



inconsistency between the calculated boundary tractions and domain stresses. Further numerical test are required 
to assess the sensitivity of the solution to mesh refinements as well as other input and control parameters. 
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Figure 2. Normalized nonlinear stress field near the crack tip (λ = 0.1) 
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