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Abstract  

 
Knowledge of historical fire activity tends to be focused at local to landscape scales with 
few attempts to examine how local patterns of fire activity scale to global patterns. 
Generally, fire activity varied globally and continuously since the last glacial maximum 
(LGM) in response to long-term changes in global climate and shorter-term regional 
changes in climate, vegetation, and human land use.  We have synthesised sedimentary 
charcoal records of biomass burning since the LGM and present global maps showing 
changes in fire activity for time slices during the past 21,000 years (as differences in 
charcoal accumulation values compared to pre-industrial). There is strong broad-scale 
coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases 
thereafter.  In eastern and western North America and western Europe and southern South 
America, charcoal records indicate less-than-present fire activity from 21,000 to ~11,000 
cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-
than-present fire activity from ~19,000 to ~17,000 cal yr BP whereas most sites from 
Indochina and Australia show greater-than-present fire activity from 16,000 to ~13,000 
cal yr BP.  Many sites indicate greater-than-present or near-present activity during the 
Holocene with the exception of eastern North America and eastern Asia from 8000 to 
~2000 cal yr BP, Indonesia from 11,000 to 4000 cal yr BP, and southern South America 
from 6000 to 3000 cal yr BP where fire activity was less than present. Regional 
coherence in the patterns of change in fire activity was evident throughout the post-
glacial period. These complex patterns can be explained in terms of large-scale climate 
controls modulated by local changes in vegetation and fuel load. 
 
 
Keywords: palaeoenvironmental reconstruction; biomass burning; palaeofire regimes; 
charcoal; data-model comparisons 
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1. Introduction 

Fire has direct and important effects on the global carbon cycle, atmospheric 

chemistry, and in regulating terrestrial ecosystems and biodiversity (Cofer et al. 1997; 

van der Werf et al. 2004).  Uncertainty over the effects of future climate change upon fire 

regimes, and the importance of vegetation-climate-atmosphere feedbacks has fostered an 

increasing effort to develop coupled models of vegetation and fire (Prentice et al. 2007) 

to understand these future changes. 

Changes in late-Quaternary fire activity inferred from sedimentary charcoal 

records provide insights into the coupling and feedbacks between fire and major changes 

in climate and its boundary conditions or controls (orbital forcing, greenhouse gas 

concentrations), vegetation and fuel (type and amount), and human activity.  Two 

pioneering charcoal-data syntheses (Haberle and Ledru 2001; Carcaillet et al. 2002) have 

established that there are inter-hemispheric linkages in palaeo-fire activity on millennial 

timescales. There has been no attempt, however, to synthesise the palaeo-charcoal 

records in order to examine the spatial patterns of fire activity at a global scale.  

The aim of this paper is therefore to map global patterns of fire activity at key 

times since the Last Glacial Maximum (LGM, conventionally centred at 21,000 cal yr 

BP).  The global charcoal database used to make these maps constitutes a first step in 

providing the necessary empirical data for testing the validity of fire models under 

markedly differing biological and physical conditions than present (Marlon et al. in prep).  

Specifically, we hypothesize that during times when large-scale climate is the dominant 

control of fire activity, more spatially coherent patterns in fire activity should emerge, at 

regional or continental scales, overriding the finer scale heterogeneity one might expect 



pre-publication version 5 

from localised anthropogenic influences.   Similarly, at times when the large-scale 

controls (e.g., glacial ice volume and insolation) are less important and anthropogenic fire 

activity has increased, such as during the middle and late Holocene, we would expect 

increased spatial heterogeneity in regional to continental scale fire activity.   However, 

this paper does not attempt to assign specific climatic or anthropogenic mechanisms that 

have controlled fire activity since the LGM, but instead describes for the first time the 

global patterns of fire activity and offers insights into the dominant large-scale controls. 

 

1.1 Controls on Fire and Charcoal Abundance 

The incidence of fire over space and time is influenced by complex interactions 

between climate (over many scales of variability), fuels (type, amount, and arrangement), 

and ignition (whether anthropogenic or lightning).  At the scale of biomes, the dominant 

role of climate on fire is demonstrated by e.g., the marked difference in fire frequency 

between ecosystems of highly humid climates of northern Europe or western Amazonia 

and climates marked by a prolonged and severe dry season of chaparral or maquis scrub 

of California or the Mediterranean, savanna regions of subtropical Africa and subtropical 

South America.  Within biomes or ecosystems, fire activity (a reflection of both fire 

frequency and the amount of biomass burned), varies temporally with changing climate, 

fuel, and ignition (Pyne et al. 1996). 

The fire regime – the frequency, intensity, seasonality, extent and type of fires 

(Gill 1977) – in a particular region is registered in sedimentary charcoal records as both 

the total charcoal abundance (which is proportional to the total biomass burned and 

depositional environment), and when sampling resolution permits, as individual fires that 
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produce peaks in charcoal accumulation or datable fire-related alluvial deposits.  Two 

examples illustrate the utility of charcoal abundance as an indicator of fire activity.  In the 

northwestern USA, a region where fires have remained relatively frequent through time, 

palaeoecological data show that variations in charcoal abundance are closely associated 

with changes in the relative abundance of forest (as opposed to tundra and grassland), 

demonstrating a strong positive relationship between fire as sensed by charcoal 

abundance and biomass (i.e. fuel load) in this region (Marlon et al. 2006).  In the 

rainforest-savanna ecotone regions, which have experienced a decrease in fire activity 

since the early Holocene (e.g., Burbridge et al. 2004), fossil charcoal data reveal a 

negative relationship between fire (i.e. charcoal abundance) and biomass.  The 

contrasting relationship between fire activity and biomass reflects the marked differences 

in the specific influence of climate and vegetation on fire between these two ecosystems.  

In both cases, however, total biomass burned is reflected by the overall charcoal 

abundance.  These examples show that fire activity, or the level of biomass burning, is 

not simply related to a particular vegetation type.  Thus, it is necessary to summarize fire 

activity over time explicitly, which we do here by focusing on overall charcoal 

abundance. 

 A number of issues could influence the fidelity of overall charcoal abundance as 

an indicator of fire activity.  Charcoal taphonomy and basin morphometry can have 

important influences upon charcoal deposition within lake or mire basins (Whitlock and 

Millspaugh 1996; Marlon et al. 2006).  Several studies have suggested that macroscopic 

charcoal reflects local fires while microscopic charcoal reflects fires on a more regional 

scale (Clark 1998; Long et al. 1998; Tinner et al. 1998; Carcaillet et al. 2001). Peaks in 
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abundance of macroscopic charcoal could reflect higher energy sediment inputs to a basin 

(e.g., sudden inwash of coarse, clastic material rather than any change in fire regime: see 

Thevenon et al. 2003), or rare instances of long-distance transport (Tinner et al. 2006).  

Comparisons of the age of charcoal peaks with those of known fires and the overall 

charcoal input with estimates of area burned suggests that despite these issues charcoal 

deposition in lakes or bogs provides a useful index of overall fire activity (Tinner et al. 

1998; Gardiner and Whitlock 2001; Whitlock and Bartlein 2004). For alluvial charcoal 

records, which are much less common, summed probability distributions for a large (n = 

~50-100) sample of radiocarbon dates on fire-related deposits indicate changes in relative 

fire activity, and the charcoal content, thickness, and depositional processes of these 

deposits allow inferences on general fire severity (e.g., Meyer et al. 1995; Pierce et al. 

2004).  Although these various controls on charcoal deposition cannot be ignored when 

making inter-site comparisons at local or regional scales (e.g., Carcaillet et al. 2002), the 

dominance of variations in large-scale climate and biome type in controlling the fire 

regime at a regional- to continental-scale should lead to coherency in observed changes in 

charcoal abundance on millennial timescales among locations with similar climate, 

vegetation and human impact.  

 

2. The Global Charcoal Database 

The Global Charcoal Database (GCD) contains information about palaeofire 

regimes in the form of sedimentary charcoal records from sites across the globe since the 

LGM.  Published and unpublished charcoal data were acquired from a network of sites 

between 70° N and 70° S (http://www.bridge.bris.ac.uk/projects/QUEST_IGBP_Global_Palaeofire_WG/index.html). 



pre-publication version 8 

Many methods were used for recording changes in charcoal abundance in a sedimentary 

context, and the database therefore contains a variety of different types of records (e.g., 

both macroscopic and microscopic charcoal, the latter mostly from pollen-slides) from a 

variety of site types (e.g., lake, mire, and alluvial-fan sediment records), and with varying 

temporal resolution and dating control.  Therefore, the database includes a large amount 

of descriptive data (metadata) about both the sites and the charcoal samples.  It also 

contains detailed information on site chronology: the radiocarbon dating technique (AMS 

or conventional), the sample size, standard deviations, and calibrated ages.   

 The database currently contains charcoal records from 467 sites (Figure 1), 351 of 

which are used in this analysis and 30 of which have records back to the LGM (here 

defined as 21,000 ± 500 calendar yr BP).  Records of the mean charcoal value at a site 

over a 1000-year long interval were extracted for seven time-slices (i.e. 3000, 6000, 9000, 

12,000, 15,000, 18,000, and 21,000 cal yr BP); thus fire activity is represented by mean 

charcoal accumulation over the mapped intervals 3000±500, 6000±500, 9000±500, 

12,000±500, 15,000±500, 18,000±500, and 21,000±500 cal yr BP.  These values were 

compared with an estimate of the modern (pre-industrial) fire regime, based on the mean 

charcoal value for the period 100-1000 cal yr BP.  The choice of a 1000-year window to 

characterize the charcoal record for each time slice reflects the fact that charcoal 

deposition and accumulation in sediments is intrinsically highly variable (Carcaillet and 

Richard, 2000) and it was necessary to select a period that would avoid single, anomalous 

fire events in order to elucidate longer-term (in this case millennial-scale) trends. The 

1000-year window technique also allowed us to make use of sites with low sampling 

resolution and few radiocarbon dates.   
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2.1 Data Acquisition and Age Models 

Charcoal data were provided by the original author or came from the individual 

charcoal analyst as unpublished data, or from the published literature.  Data were 

extracted from the literature by digitizing the original published figures and using the 

plotted values to produce tables of charcoal values by depth or by age.   

As a consequence of using both published and unpublished data, some of which 

were produced more than a decade ago, age models based on a consistent calibration had 

to be developed for each site.  Over 3900 radiocarbon dates, calibrated and uncalibrated, 

from 467 sites were entered into the charcoal database. All radiocarbon dates that were 

uncalibrated were converted to calibrated years BP using the Fairbanks et al. (2006) 

calibration curve and program (http://radiocarbon.Ideo.columbia.edu/research/radcarbcal.htm).  The mean 

calibrated age, at one standard deviation, was selected for each radiocarbon date.  In 

many cases, individual charcoal samples were expressed by depth or radiocarbon years 

and required new calibrated age models.  Age calibration and the creation of age models 

were performed only for records with at least two radiocarbon dates.  When the surface 

samples from sediment cores or soil profiles was established as modern, an age of -50 cal 

yr BP (2000 AD) was assigned.  Considering the multi-centennial resolution used to 

analyze these records, assigning ages to the surface samples for creating age models had 

little impact on the final result.  In cases where the date of core collection could be 

established, that date was assigned to the uppermost sample, for example, a core collected 

in 2003 AD was assigned a core top age of -53 cal yr BP.  Age models were constructed 

using all available calibrated ages, including dated tephra layers, and pollen stratigraphic 
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ages, and were based on four possible age model styles; (1) linear interpolation, (2) a 

polynomial constrained to pass through zero, (3) an unconstrained polynomial fit, and (4) 

a cubic smoothing spline (Ripley and Maechler, 2006).  The “best fit” age model was 

selected for each record, based on goodness-of-fit statistics and the appearance of the 

resulting curve. 

 

2.2 Standardizing Charcoal Data and calculating Anomalies 

Charcoal values (e.g., influx, concentration, charcoal/pollen ratios, gravimetrics) can vary 

by over 10 orders of magnitude among and within sites (Figure 2) because of the broad 

range of record types, site characteristics, and methodological or analytical techniques.  It 

was therefore necessary to standardise the records to facilitate comparisons between sites 

and through time.  The standardization procedure involves three calculations applied to 

each site record (see Figure 3): (1) rescaling values using a minimax transformation, (2) 

homogenisation of variance using the Box-Cox transformation, and (3) rescaling values 

once more using Z-scores.  The minimax transformation rescales charcoal values from a 

given site record to between 0 and 1 by subtracting the minimum charcoal value found 

during the record from each charcoal value, and dividing by the range of values: 

( ) ( )min max min/i ic c c c c′ = − −  

where ic′  is the minimax-transformed value of the i-th sample in a particular record, ,ic  

and maxc and minc are the maximum and minimum values of the 'sic .  The rescaled 

values were transformed using the Box-Cox transformation:  

 

* 0(( ) 1)
    

0log( )
i

i
i

c
c

c

λ λα λ
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 ≠′ + −
= 
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where *
ic  is the transformed value,λ is the Box-Cox transformation parameter andα is a 

small positive constant (here, 0.01) added to avoid problems when ic′  and λ are both zero.  

The transformation parameter λ is estimated by maximum likelihood using the procedure 

described by Venables and Ripley (2002).  The transformed data were rescaled once 

more, as Z-scores, so all sites have a common mean and variance (Figure 3e)  

* * *
(4ka) (4ka)( ) /i i cz c c s= −  

where, *
(4ka)c  is the mean charcoal value over the interval 4000 to 100 cal yr BP, and 

*
(4ka)cs is the standard deviation over the same interval.   

There is considerable variation in the length of the charcoal records in the 

database, so a common base period (100-4000 cal yr BP) was used to calculate the mean 

and standard deviation for each site.  The choice of the last 4000 years as a base period 

represents a compromise between a period long enough to not be dominated by sample-

to-sample variability within an individual record while short enough to not exclude a 

large number of database records from the subsequent analyses. Most of the records in 

the database (95%) are at least 4000-years long.  The base period does not include the last 

100 years (i.e. the post-industrial period) because of the intensification of most modern 

human activities during this part of the fire record.  Mean charcoal values, expressed as 

average Z-scores for a 1000-year window, were calculated for each site at 500-year 

intervals.  Changes in charcoal values through time are expressed as Z-score anomalies 

(i.e. the difference between the mean Z-score for each 1000-year window and the mean 

Z-score for the “present”, where “present” is defined as the interval 1000 to 100 cal yr 

BP). 
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2.3 Creation of 3000-year steps of time-slice maps (1000-year window) 

Time-slice anomaly maps of modern (1000 to 100 cal yr BP) mean Z-score minus palaeo 

mean Z-score were created at 3000-year intervals (Figure 4a-g) from 21,000 cal yr BP to 

present.  The anomalies range from >+1.15, a strong positive anomaly (i.e., significantly 

more charcoal than at present) to <-1.15, a strong negative anomaly (i.e., significantly 

less charcoal than at present) and are colour-coded (grey = -0.375 to +0.375, red = > 

+0.375, blue = <-0.375) to show the strength of the anomaly at each 1000-year time slice.   

 

3.0 Results: Changes in Fire Regimes between LGM and Present 

Charcoal records of changes in fire regime during part or all of the past 21,000 

years are available from 351 sites (Figure 1). There are relatively few charcoal records 

available for the LGM and the early phase of the deglaciation. Although there are >200 

sites with records for the past 10,000 years (i.e., the Holocene), some regions (e.g., the 

boreal forest zone of Russia and most arid regions) are only represented by a few sites 

even in the Holocene epoch.  As a result, the interpretation of regional patterns presented 

here should be considered preliminary. Nevertheless, the maps show broad-scale changes 

in charcoal abundance through time that can be interpreted as reflecting changes in 

biomass burning. Here we discuss the spatial patterns of charcoal anomalies at each time 

step relative to present (Figure 4a) in terms of a spatial hierarchy from global through 

broad-scale regional to local or landscape-scale patterns. 

Interpretations of fire activity at the LGM are constrained by the small number of 

sites (n=30), although South America, southeast Australia, Europe, and Indonesia are 
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represented.  Globally, 57% of charcoal records show less-than-present fire activity.  

Sites from the mid and high latitudes of South America record lower–than-present fire 

activity during the LGM, but greater-than-present fire activity is recorded in the southern 

latitudes of Australia and tropical latitudes of Southeast Asia (Figure 4b). Within these 

broad regions, however, there is spatial heterogeneity in the change in fire regimes. For 

example, sites in southern Australia and Tasmania record greater-than-present fire 

activity whereas adjacent sites to the north reveal less-than-present fire activity.  Charcoal 

records (n = 4) from Indonesia and Papua New Guinea, show both similar-to-modern and 

strong negative anomalies, or less-than-present fire activity. 

There was little change in spatial patterns of fire activity between 21,000 and 

18,000 cal yr BP, with 60% of all records showing less than present fire activity (n = 40, 

global average Z-score anomaly = -1.19) at 18,000 cal yr BP.  Charcoal records from 

Australia and Indonesia indicate that fire activity was generally less than present (Figure 

4c).  In South America fire activity was less than present in the high and mid latitudes 

and greater than present at lower latitudes.  The relatively few sites in North America, 

Europe and Africa suggest less-than or similar-to present fire activity. 

At 15,000 cal yr BP global fire activity was lower-than-present with 62% of 

charcoal records (n = 78, global average Z-score anomaly = -0.60) showing less-than-

present fire activity (Figure 4d).  The northern mid-latitudes (30-60° N) of North America 

(n = 16) show a consistent pattern of less-than-present fire activity while sites in Europe 

and Asia show spatial heterogeneity.  Sites in Central and South America (n = 25) 

indicate lower-than present fire activity with the exception of those near the equator and 

in eastern Brazil, which show greater-than-present fire activity.  In Africa, Australia, 
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Indonesia, and Southeast Asia most records (n = 19) indicate similar-to or greater-than-

present fire activity.  In contrast, sites from New Zealand and two sites from New Guinea 

show less-than-present fire activity.   

There is a significant increase in the number of charcoal records between 15,000 

and 12,000 cal yr BP (n = 136 sites).  A global pattern of less-than-present fire activity 

continues at 12,000 cal yr BP for 58% of all records.  There are changes in the fire regime 

between these time intervals in several regions, including e.g., a reduction in fire activity 

in southeastern Australia (to levels less than present) and an increase in fire activity in 

extra-tropical latitudes of South America (to levels greater than present).  In general, the 

mapped patterns show more spatial heterogeneity than during earlier periods (Figure 4e), 

but the globally averaged Z-score anomaly remains lower than present (-0.50). In the low 

latitudes of South America, areas of eastern Brazil continue to indicate greater-than-

present fire activity whereas charcoal records west of the Amazon basin suggest less-

than-present fire activity (with the exception of the Lake Titicaca record: Paduano et al., 

2003).  Positive charcoal anomalies from Indonesia (and eastern Brazil) suggest fire 

activity was greater than present at 12,000 cal yr BP. Tropical charcoal records from both 

sides of the Pacific, however, including records from eastern New Guinea, northeastern 

Australia and from western Colombia, Ecuador and Peru, show less-than-present fire 

activity. In southeastern Australia, a shift to less-than-present fire activity occurred at 

most mainland sites, although Tasmanian records continue to indicate greater-than-

present fire activity and sites in New Zealand show lower-than-present fire activity.  Fire 

activity in the mid-latitudes of Europe and North America, although increased relative to 

15,000 cal yr BP, remained less than present (n = 56, -0.81 average Z-score anomaly).  At 
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regional scales, fire activity increased from glacial times at sites in northeastern and in 

western North America. 

The interval between 12,000 and 9000 cal yr BP is marked by a significant change 

in fire regimes. Broadly considered, the northern extra-tropics and western tropics show 

increased fire activity and the southern extra-tropics and eastern tropics show a reduction 

in fire activity between these two intervals. By 9000 cal yr BP, however, the charcoal 

records (n = 200, -0.01 average Z-score anomaly) indicate a highly heterogeneous pattern 

of fire activity with 48% of all records showing less-than-present fire activity.  Regional 

summaries of fire activity (Figure 5a and 5b) show greater-than-present fire activity 

throughout South America and in eastern North America.  Mapped patterns of fire 

activity show spatial heterogeneity in fire activity in western North America and Europe 

at the sub-continental scale, but at regional scales the records are spatially coherent 

(Figure 4f).  For example, predominantly greater-than-present fire activity occurred in 

northeastern North America, while lower-than or similar-to present fire activity occurred 

at sites in central North America.  Similarly, greater-than-present fire activity occurred in 

southern Brazil and lower-than-present fire activity occurred at sites within the Amazon 

basin.  Coherent patterns of less-than-present fire activity also can be seen at larger, sub-

continental, scales in Australia and New Zealand at 9000 cal yr BP.  Sites in the northern 

mid-latitudes of Europe show a heterogeneous pattern of fire activity at 9000 cal yr BP. 

At 6000 cal yr BP, the charcoal records (n = 266) show continued spatial 

heterogeneity of fire activity, with 50% of all records showing less-than-present fire 

activity, but regionally coherent patterns emerge (Figure 4g).  In the Northern 

Hemisphere, regional summaries show greater-than-present fire activity in Central and 
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Sorth America, less-than-present fire activity in eastern North America, and 

heterogeneous conditions similar to modern across Europe (Figure 5b).  At regional-to-

landscape spatial scales, however, positive and negative anomalies in fire activity relative 

to present appear more spatially coherent.   For example, regional patterns of fire across 

low latitudes (<30°S) of South and Central America indicate greater-than-present fire 

activity (n = 33, 0.53 average Z-score anomaly) in the neotropics.  In the mid and high 

latitudes of South America (>30°S), fire activity was less than present along the Pacific 

coast but greater than present east of the Andes.  Throughout the eastern tropics, 

including the low latitudes of Indonesia and eastern New Guinea, fire activity was similar 

to or less than present at 6000 cal yr BP.  In southeastern Australia and New Zealand, fire 

activity was mostly less than present, similar to conditions at 9000 cal yr BP. 

  By 3000 cal yr BP, global fire activity was heterogeneous with 46% of all records 

showing less-than-present fire activity.  In general, fire activity was greater than present 

in the neotropics, central and eastern Europe and less than present in Australia. The mid-

latitudes of the Northern Hemisphere suggest a highly heterogeneous pattern of fire 

activity for 3000 cal yr BP but with generally greater-than-present fire activity in the low 

latitudes (~10-50°S) of Central and South America and a more heterogeneous pattern in 

the mid and high latitudes of Patagonia.  Less-than-present fire activity is evident from 

the Eastern Hemisphere, including eastern New Guinea, New Zealand and eastern 

Australia.  Sites in Indonesia and central Asia show increasing heterogeneity by 3000 cal 

yr BP.   Sites throughout the mid- and high-latitudes of North and South America 

generally indicate a heterogeneous pattern of fire activity, and fewer sites show 

significant anomalies compared to modern.  Examination of the individual charcoal time 
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series suggests that this pattern is related more to the slow rate underlying climatic 

controls of vegetation and fire than to the particular way in which the data were analyzed 

(see below).   

 

4.0 Discussion: The Climatic Control of Observed Changes in Fire Regimes 

Changes in regional climate have direct effects on fire regimes, through 

controlling the incidence of ignitions and the likelihood that fires will spread, and indirect 

effects through changing vegetation type and productivity, and hence available fuel load 

(Pyne et al. 1996). The major factors governing regional climate changes since the LGM 

are changes in the seasonal and latitudinal distribution of insolation, the disappearance of 

the Northern-Hemisphere ice sheets (and concomitant changes in land-sea geography), 

southern-hemisphere ice caps, changes in sea-surface temperature patterns and variability, 

and changes in atmospheric composition.  All of these factors directly or indirectly (or 

both) influence regional-scale atmospheric circulation patterns. The LGM, ca 21,000 cal 

yr BP, represents the global (though not regional) maximum of the extent of the ice 

sheets (Peltier 2004) and a time when sea level was ca 120m lower than at present and 

tropical land areas were more extensive than today. Greenhouse gas concentrations 

(compared to pre-industrial) were low (Raynaud et al. 2003) and atmospheric aerosol 

loadings were high (Kohfeld and Harrison 2001). Ocean temperatures were, in general, 

lower than today with the largest changes occurring in high northern latitudes (Schäfer-

Neth and Paul 2003). The transition from glacial to interglacial conditions was marked by 

asynchronous warming in the two hemispheres (Schaefer et al. 2006; Smith et al. 2005), 

with the Southern Hemisphere leading the Northern Hemisphere by up to two millennia 
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(Labeyrie et al. 2003). Insolation changes became the major driver by the early Holocene, 

with regional climates responding to the increased seasonal contrast in insolation in the 

Northern Hemisphere and the correspondingly decreased seasonal contrast in insolation 

in the Southern Hemisphere (Berger 1978; Liu et al. 2004). These insolation anomalies 

changed towards reduced seasonal contrasts in the Northern Hemisphere and stronger 

seasonal contrasts in the Southern Hemisphere in the last 6000 years. These broad-scale 

changes in climate forcing can be used to explain much of the observed change in 

regional fire regimes at orbital timescales (the 21,000 yr precession cycle).   

Superimposed on these orbital-time scale changes were millennial- and shorter time-scale 

climate that typically were associated with smaller (spatial) scale anomaly patterns.   

Additional time-slice maps at 500-yr intervals that supplement those in Figure 4 

(not shown) and the individual charcoal Z-score anomaly time series (not shown) were 

used to divide the records into continental and regional groups of records with similar 

histories (Figure 5a).  Comparison of  these grouped time series with time series of large-

scale climate controls (Figure 5b) suggest that the global charcoal record since 21,000 cal 

yrs ago can be divided into four relatively distinct intervals:  1) a glacial interval (21,000 

through 16,000 cal yr BP) when global temperatures were low, it was generally drier than 

present, and terrestrial biomass was relatively low; 2) a late-glacial interval (15,000 

through 12,000 years ago) when global (and particularly Northern Hemisphere) 

temperature increased, pronounced millennial climate variations were registered, and 

vegetation exhibited dramatic changes on a global scale (Williams et al. 2004); 3) an 

early- Holocene interval (from 11,000 through 7000 years ago), when monsoonal regions 

in both hemispheres were wetter than at present and regions under the influence of the 
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subtropical high pressure system were drier, and 4) a mid-to-late Holocene interval when 

global climate approached that of the present, and ENSO and human influences on fire 

regimes became important. 

 

4.1 Interpretation of fire activity patterns during the glacial interval (21,000 through 

16,000 cal yrs BP) 

Although there are relatively few charcoal records for the LGM and subsequent 

millennia, they show a consistent pattern of low fire activity (Figure 4b). Indeed the 

glacial interval is the period of lowest fire activity in the last 21,000 years. This is 

consistent with the fact that the global climate was generally (but not universally) colder 

and drier than present, leading to an overall reduction in terrestrial biomass (Francois et al. 

2000) and thus a decrease in fuel availability. 

At a regional scale, less-than-present fire activity in Patagonia at 21,000 cal yr BP 

is consistent with reconstructions of regional climates cooler than present (Markgraf 1993; 

Markgraf et al. 2002).  Pollen and lake-level data from the Amazon basin suggests cooler 

climates during the LGM with average temperatures roughly 4.5-5°C less than present 

(see Anhuf et al. 2006).  Increased ice volume, lowered sea levels, cooler sea-surface 

temperatures, and decreased atmospheric carbon dioxide, combined with weakened 

subtropical-high pressure and intensified westerlies, would have contributed to 

widespread aridity in middle latitudes.  In contrast, evidence from the high latitudes of 

Patagonia (Moreno et al. 1999) suggests the intensification of westerlies resulted in 

greater-than-present humidity during the LGM.  Therefore, cold and wet conditions may 

have reduced fire activity in the middle and high latitudes of South America.     
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The charcoal-abundance records from southeastern Australia show a north-south 

gradient in anomalies of fire activity at 21,000 cal yr BP (Figure 4b), with greater-than-

present fire activity to the south and less-than-present fire activity in the north.  At the 

landscape scale, the high fire activity could reflect human activity (Kershaw and Nanson 

1993). However, this gradient may also reflect latitudinal gradients in the seasonal cycle 

of insolation. Average January (austral summer) insolation values at 65°S were similar to 

present (455 watts m-2) during the LGM (Figure 5b), which promoted greater seasonality 

in the Southern Hemisphere than during early-Holocene times.  High summer insolation 

may have contributed to relatively dry and warm conditions across the middle latitudes of 

the Southern Hemisphere.  Alternatively, high summer insolation at 65°S (Figure 5b) 

may have resulted in aridity limiting fuel load and thus contributed to reduced fire 

activity.   

The globally cooler- and drier-than-present climates at 21,000 cal yr BP limited 

fire activity across the middle and high latitudes of both hemispheres until after 16,000 

cal yr BP.  The main changes in fire activity after the LGM occurred in the low latitudes 

of South America and in southeastern Australia.  In South America, fire activity increased 

at sites in southern Brazil while remaining low in western and southern South America. 

In southeastern Australia, lake level and pollen data suggest enhanced fluvial activity 

after the LGM (Nanson et al. 2003) and this may help to explain the further decrease in 

fire activity observed there.  

 

4.2 Interpretation of fire-activity patterns during the deglacial period (ca. 15,000 cal yr 

BP through 12,000 cal yr BP)  
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By 15,000 cal yr BP a prominent east-west gradient of charcoal anomalies 

developed across South America, and there was a significant increase in fire activity 

throughout Australia and Indonesia (although not Papua New Guinea).  In South America, 

evidence from Lake Titicaca (16-20°S) (Paduano et al. 2003) suggests a rapid climate 

shift in tropical climates after 17,700 cal yr BP, as fire first appeared but fuels remained 

limited around the Titicaca basin.  The precise timing of tropical climate change and 

subsequent deglaciation of the central Andes is unclear (Seltzer 2001), and, so the 

regional controls of fire activity from 11,500 to 21,000 cal yr BP in tropical South 

America are difficult to identify (Smith et al. 2005).  Regional controls of fire activity at 

15,000 cal yr BP in South America may be related to their proximity to the oceans and 

the role of the Andes in reducing moisture advection from the tropical Atlantic (Cook and 

Vizy 2006). In the mid and high latitudes, late-glacial patterns in fire activity have been 

attributed to shifts in the position of the westerlies and millennial-scale climate variability 

(Whitlock et al. 2007; Huber et al. 2003; Moreno 2000).  Cool and dry climates in the 

mid-latitudes likely reduced biomass production resulting in less-than-present fire activity.  

Lower-than-present sea surface temperatures in the southern Pacific (Lamy et al. 2004) as 

well as lowered sea level and expanded continental shelves throughout Australasia may 

have increased continentality and contributed to increased aridity and decreased annual 

average temperatures.   

Regional scale controls of fire activity in southeast Asia, Indonesia, and Australia 

at 15,000 cal yr BP may be related to lower sea levels (Peltier 1994; 2004)(Figure 5b).  

Exposed continental shelves were colonized by tropical lowland forest and palynological 

evidence (Kershaw et al, 2001) suggests greater aridity than during the LGM in the 



pre-publication version 22 

western part of Indonesia than near New Guinea (Hope et al. 2004).  Glaciers were likely 

still present on the highest mountains of New Guinea (Peterson et al. 2002), but increased 

moisture availability or decreased human activity may explain reduced burning at this 

time. Haberle and Ledru (2001) suggest that lower land temperatures and the increasing 

influence of the summer monsoon (Huang et al. 1997) may have contributed to reduced 

fire activity.  Greater-than-present biomass burning 15,000 cal yr BP in southeastern 

Australia contrasts with the lower-than-present burning in most of South America despite 

being at similar latitudes.  Treeless vegetation was promoted by drier and possibly 

windier conditions across southeastern Australia following the LGM (Hope et al. 2004).   

Increased fire activity in Australia 15,000 cal yr BP relative to earlier may have been 

related to both climate controls and human activity (Black and Mooney 2006; Haberle 

and David 2004).  Fire activity slightly increased in Europe between 15,000 and 12,000 

cal yr BP, but remained less than present.  Cooler climates and the presence of 

continental ice sheets in the high latitudes of the Northern Hemisphere may have limited 

fire activity in northern Europe, but the increasing role of anthropogenic fire for forest 

clearing may have contributed to increased fire activity at sites in southern Europe.  

 

4.3 Interpretation of fire activity patterns during the early Holocene interval (ca. 11,000 

cal yr BP through 7000 cal yr BP) 

Dominant influences on global fire activity leading into the early-Holocene 

interval include the rapidly changing boundary conditions (e.g., Kutzbach et al. 1998) of 

decreasing ice-sheet size, rising sea-surface temperature and sea level (Peltier 2004), and 

vegetation changes (Williams et al. 2004; Huntley and Birks 1983), including 
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reforestation of regions formerly covered by glacial ice. Greater-than-present summer 

insolation resulted in warmer and drier summers in regions of the Northern Hemisphere 

influenced by stronger-than-present subtropical high pressure.  Regional summaries of 

fire activity suggest increased spatial heterogeneity during this interval with marked shifts 

in all regions toward either stronger positive or negative anomalies in fire activity (Figure 

5a and 5b).  Records from North America, Europe and South America show shifts toward 

increased fire activity while records from Australia show shifts toward decreased burning 

culminating around 10,000 yr BP.  In southern South America and western North 

America, these patterns have been attributed to the regional changes caused by increased 

annual and summer insolation (in the North Hemisphere) and increased annual and winter 

insolation (in the Southern Hemisphere) in the early Holocene (Whitlock et al.,2007; 

Whitlock and Bartlein,2004).  These large-scale changes in the climate systems would 

have affected regional circulation patterns, including the strength and position of the 

westerlies, the strength of the monsoons and subtropical highs, and ultimately the 

duration of the fire season.  

In southern Europe, evidence from Lago Piccolo di Avigliana and Lago di Origlio 

suggests increased fire activity starting from ~10,500 cal yr BP (Finsinger et al. 2006). A 

non-linear response of vegetation to higher drought stress and fire activity resulted in the 

expansion of Corylus (hazel), which re-sprouts after fire events (Delarze et al. 1992; 

Tinner et al. 1999) and is more drought-tolerant than other deciduous trees (Huntley 1993; 

Finsinger et al. 2006). 

Increasing fire activity in the Northern Hemisphere and South America can also 

be compared with records of atmospheric carbon dioxide from Antarctica (Indermühle et 
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al. 1999) (Figure 5b).  Increased CO2 after 12,000 cal yr BP may be related to increasing 

fire activity in the tropics and high latitudes of South America as well as temperate and 

boreal ecosystems of the Northern Hemisphere.  Recent evidence suggests global fire 

activity may also contribute to atmospheric methane (van Aardenne et al. 2001; Andreae 

and Merlet 2001; van der Werf et al. 2007).  Methane records from the GISP2 ice core 

also reveal increased variability around 12,000 cal yr BP (Figure 5b), and have been 

partly explained by high latitude summer insolation forcing (Brook et al. 1996) and 

developing boreal peatlands (MacDonald et al. 2006) but there may also be linkages to 

increased fire activity.  In addition to these climate explanations, human populations were 

increasing in the Americas and may have locally contributed to the changing role of fire 

activity (Cook 1998). In tropical Central and southern South America, fire activity was 

also beginning to decrease by 9000 cal yr BP.  A record of decreasing atmospheric 

carbon dioxide from Taylor Dome, Antarctica (Monnin et al. 2001; Indermühle et al. 

1999) during the early Holocene may be linked to the reduction in fire activity throughout 

the Americas, Africa, Indonesia and Australia. Low fire activity during the early 

Holocene in Indonesia and Papua New Guinea (Haberle and Ledru 2001) and eastern 

Australia (Black and Mooney 2006) has previously been attributed to a relatively stable 

climate at that time. Whereas the first agricultural activities, beginning around 10,000 cal 

yr BP, in the Near East (Gupta 2004) and possibly China may have influenced records of 

fire activity within those regions. 

 

4.4 Interpretation of fire activity patterns from 6000 cal yr BP to present 
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The middle to late Holocene was a period of changing large-scale controls of fire 

activity as summer insolation decreased in the Northern Hemisphere (but increased in the 

Southern Hemisphere) most glacial ice had disappeared, and sea levels were approaching 

near-modern position (Figure 5b).  The climate system was switching to modern 

boundary conditions and a shift in the predominant controls of fire activity.  In addition, 

increasing human populations may have had a localized role in modifying the fire 

regimes in certain locations. 

 Combined climatic and human controls may have shifted vegetation types (and 

thus fuel type) and disturbance regimes by 6000 cal yr BP.  For example, in Australia, a 

period of maximum precipitation between 7000 to 5000 cal yr BP (Harrison and Dodson 

1993) may have been responsible for reduced fire activity at 6000 cal yr BP.  Throughout 

Indonesia and New Guinea, Haberle and Ledru (2001) report increased fire activity 

related either to increased variability in El Nino/Southern Oscillation (ENSO) and the 

related Walker circulation or to the increased role of agricultural activities after 6000 cal 

yr BP.  Black and Mooney (2006) related similar increases to modern ENSO phenomena. 

Elsewhere, Tinner et al. (1999) report increased fire activities in the European Alps for 

the period 7000-5000 cal yr BP that resulted from combined effects of intensified land-

use activities and centennial-scale shifts to warmer and drier climatic conditions.  

By 3000 cal yr BP, dominant controls of fire activity were similar to modern.  

Despite similar-to-present climate, however, fire activity was greater than present in the 

mid-latitudes of Eurasia and summer-wet regions of the western United States (Whitlock 

and Bartlein 2004; Marlon et al. 2006).  Progressively decreasing summer insolation in 

the Northern Hemisphere through the Holocene apparently reduced fire activity by 3000 
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cal yr BP compared with that at 6000 cal yr BP, but in other regions weakening of early-

mid Holocene monsoons led to greater-than-present fire activity (Whitlock and Bartlein 

2004). Greater heterogeneity in fire patterns in mid and southern South America at 3000 

cal yr BP has been attributed to the onset or strengthening of ENSO and increased human 

populations (Whitlock et al. 2007).  Heavily populated regions of eastern New Guinea, 

eastern Australia and New Zealand show less-than-present fire activity, possibly a result 

of ENSO’s greater influence in recent millennia. In contrast, greater-than-present fire 

activity across Eurasia, where Bronze and Iron Age populations used fire as a tool for 

deforestation, may explain greater-than-present fire activity during the late Holocene. 

Most records from Indonesia and Australasia show near modern or less-than-present fire 

activity around 3000 cal yr BP.   

  

5.0 Conclusions  

Time-slice anomaly maps of fire activity from the LGM to present illustrate the 

changing importance of fire as a global phenomenon. These records can be interpreted in 

terms of changes in biomass burning and imply that climatically-determined changes in 

fire regimes could have had significant impacts on the global carbon budget through time. 

The two most important signals shown by the charcoal records, when considered globally, 

are (a) the monotonic increase in biomass burning between the LGM and present, and (b) 

the shift from low to high spatial heterogeneity in fire activity ca 12,000 cal yr BP. 

The relatively few charcoal records for the LGM show a consistent pattern of low 

fire activity (Figure 4), characterizing the glacial interval from 21,000 through 16,000 cal 

yr BP. This pattern is not surprising given that the climate was globally colder and drier 
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than at present resulting in an overall reduction in terrestrial biomass (Francois et al. 2000) 

and thus a decrease in fuel availability. With the waning of the Northern Hemisphere ice 

sheets, and the expansion of the terrestrial vegetation, our charcoal-based reconstructions 

show that fire activity generally increased towards the present (Figure 4a-h, 5a-b).   

The charcoal records show an apparent increase in the spatial heterogeneity of the 

charcoal deposition from the LGM towards the present. This can be explained to some 

extent by the increase in the number of records over time.  Examination of the patterns in 

regions with comparable densities of sites at 15,000 and 12,000 cal yr BP (i.e. 

northwestern North America, southern South America, southeastern Australia), however, 

suggests that the spatial patterns of charcoal anomalies were indeed more homogeneous 

in late-glacial times than later. The increased spatial heterogeneity may also reflect the 

transition away from the glacial state: during the glacial, the overall reduction in biomass 

was a severe constraint on fire regimes but during the later part of the deglaciation, as 

temperatures rose, regional responses to climate and climate-induced changes in 

vegetation cover overwhelmed the global signal and spatial heterogeneity increased. 

Despite the considerable spatial heterogeneity in fire regimes during the period 

since ca 12,000 cal yr BP (at the continental and global scales), there is nevertheless 

regional coherency at sub-continental and regional scales that appear to be explained by 

direct climate controls and the indirect effects of climate changes on vegetation cover and 

fuel loading. The dominant controls of fire activity are temporally variable and have been 

changing on millennial timescales since the LGM.  For example, widespread cool dry 

climatic conditions coupled with reduced biomass were important controls regulating fire 

activity in the LGM. In contrast, with respect to the Northern Hemisphere, increased 
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seasonality and biomass regulated early Holocene fire activity whereas decreased 

seasonality, coupled with increased human activity, were important regulators of fire in 

the late Holocene.  Thus, our original hypothesis that spatial coherency reflects large-

scale climate control of fire, whilst increased heterogeneity indicates more proximal 

controls of fire, both climatic and anthropogenic, has not been refuted.  

We have focused predominately on the role of climate rather than human 

intervention in modulating past fire activity, although studies of individual regions 

suggest that humans may have played a role, especially during the latter part of the 

Holocene (e.g., Horn 2007). There is a general positive relationship between human 

population and fire incidence during the late Holocene (Mouillot and Field 2005, and 

references therein). For example, frequent fires in parts of Scotland during the late 

Holocene have been attributed to human activity (Tipping and Milburn 2000) as well as 

to the expansion of fire-prone blanket mire vegetation (Froyd 2006). In southern 

Scandinavia, microscopic charcoal accumulation rates (Berglund et al.  1991) and macro-

charcoal under and within clearing cairns (Lagerås 2000) were related to forest clearings 

by humans from 6000 cal yr BP, but especially from 3000 cal yr BP. In central and 

southern Europe, fires were intentionally set to disrupt forests and gain open areas for 

arable and pastoral farming (Tinner et al. 2005). After disruption of forests by fire, 

controlled burning was used to maintain open areas for agricultural purposes. Similarly, 

in Central America, late Holocene fire activity has been closely tied to human activity 

(Horn 2007).  An analysis of the role of human activities, in causing and in suppressing 

fire during recent millennia, requires a better understanding of changes in fire regime and 

cultural development than is currently available for most regions of the world. 
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The palaeofire reconstructions presented here offer a unique opportunity to 

validate models of the coupled behaviour of vegetation and fire (Marlon et al., in prep). 

Successful simulation of past changes in fire regimes is an integral part of assessing 

whether we can predict future changes in biomass burning in a realistic way.  This, in 

turn, has implications for maintaining biodiversity, addressing issues of climate change, 

and assisting governmental agencies in developing appropriate fire management policies.  

Model-validation exercises necessarily depend on the quality and quantity of palaeodata 

available (Kohfeld and Harrison, 2000). While extensive, the current version of the 

charcoal database has marked spatial heterogeneity in sample site distribution. Some 

regions such as North America contain a relatively high number of sites whereas many 

Old World regions are generally less well represented. Additional sampling in regions 

inadequately represented is necessary to ensure that the spatio-temporal coverage of the 

current charcoal database is sufficient for meaningful data-model comparison. 
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Figure Captions: 

Figure 1:  Inventory of global charcoal records currently used in the analysis (gray dots) 
and regional delineations (black boxes) where sites were averaged together for regional 
summaries of fire activity (see Figure 5a). 
 
Figure 2:  Scatter diagram for all charcoal concentration (particles/cm-3) values contained 
within the database.  Three types of depositional environments are represented; gray 
circle represent lake sediment records, open diamonds are from bog sediment records, 
and dark triangles are from soil charcoal records.  All data are plotted by original 
charcoal units, illustrating the heterogeneity of analytical methods and laboratory 
techniques used to show charcoal-abundance variations through time.   The >10 orders of 
magnitude represented by charcoal concentration values illustrates the need for 
standardization of these data. 
 
Figure 3:  An example of charcoal standardization performed on all charcoal records 
contributing to the global paleofire database.  The original charcoal abundance (from 
Millspaugh et al., 2000) values (a) for each record were rescaled (b) to range from 0.0 to 
1.0 over the whole of the record, the rescaled values (c) were then transformed using the 
Box-Cox power transformation to approach normality (d) where possible, with the 
transformation parameter estimated using the maximum likelihood.  The transformed 
values were then standardized or converted to Z-scores (e) using the mean and standard 
deviation for each record over the interval (base period) from 4000 to 100 cal yr BP.  
Anomaly Z-scores, or differences in charcoal values between the “modern”, defined as 
between 1000 to 100 cal yr BP, and the base period (f) were then calculated for each 
record.  
 
Figure 4:  (a) Global map of mean Z-scores of charcoal values for 1000 to 100 cal yr BP 
illustrates sites that have higher (red) or lower (blue) average charcoal values during the 
last millennia when compared to the last four millennia.  The global anomaly maps (b-h) 
at 3000-yr time slices, beginning at 21,000 through 3000 cal yr BP, permit comparisons 
of change in charcoal accumulation relative to present (1000 to 100 cal yr BP).  The 
anomaly maps reveal both the considerable spatial heterogeneity as well as regional 
coherencies of global charcoal. 
 
Figure 5: Global and regional summaries of average anomaly Z-scores of charcoal values. 
(a) The number of sites (gray line) contributing to each regional summary (see Figure 1) 
are compared to the regional average anomaly Z-scores (black line), revealing the 
potential influence of increasing sites for each regionally averaged time series.  Periods 
within the time slices of positive charcoal anomalies relative to present are shaded gray.  
Large charcoal anomalies that extend beyond the +2 or -2 are indicated by circled arrows. 
(b) Regional summaries are grouped by similar latitudes and compared with summer 
insolation (gray line) at 65°N and S for the high latitude sites and average annual 
insolation for the circum-equatorial sites (Beger, 1991).  Atmospheric carbon dioxide 
concentrations are shown from Taylor Dome,Antarctica ice core records (Indermühle et 
al., 1999, 2000; Monnin et al., 2001) and a methane record from GISP2 (Brooks et al., 
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1996).  Contributions to eustatic sea-level rise (Peltier 2004, Ice-5G) are also shown for 
comparisons with global charcoal values.  
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