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Abstract. A metric space can be naturally endowed with both a topol-

ogy and a coarse structure. We examine the converse to this. Given a

topology and a coarse structure we give necessary and sufficient con-

ditions for the existence of a metric giving rise to both of these. We

conclude with an application to the construction of the coarse assembly

map.

Introduction

A metric on a set X naturally gives rise to both a topology and a coarse

structure. These are to a large extent independent; indeed, given a metric

d on X, one can define a metric dt by dt(x, y) = min{d(x, y), 1}, which pro-

duces the same topology as d but contains no coarse geometric information.

Alternatively if one defines dc by dc(x, y) = dd(x, y)e, where dse denotes

the smallest integer greater than or equal to s, then it is straightforward

to verify that this again defines a metric. In this case the metric produces

the same coarse structure as d, and indeed it is quasi-isometric to d, while

topologically this metric is discrete.

We will address the converse of this: under what conditions does there

exist a metric on a set X which simultaneously produces a given topology

and coarse structure. Certainly the topology and coarse structure must

each independently by metrizable, given say by metrics dt and dc. Given

a metric on X, the set {(x, y) : d(x, y) < 1} is both open and controlled,

thus the topology and coarse structure cannot be completely independent:

there must exist a controlled open neighbourhood of the diagonal. When
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this condition holds we say that the coarse structure is compatible with the

topology. Remarkably, this is the only obstruction. The topology imposes

no other constraints on the coarse structure and vice versa. Indeed we prove

the following.

Theorem 2.5. Let X be equipped with metrics dt, dc with the coarse struc-

ture of dc compatible with the topology of dt. Then there exists a metric d

on X producing the same topology as dt, and quasi-isometric to dc.

Corollary 2.6. A set X equipped with both a coarse structure and a topology

is simultaneously metrizable if and only if the coarse structure is unital,

weakly connected and countably generated, the topology is regular, Hausdorff

and has a σ-locally finite base, and the coarse structure is compatible with

the topology.

As an application of this we examine the construction of the coarse assem-

bly map. The left hand side of the assembly map is the coarse K-homology

KX∗(X). This is constructed from K-homology using a sequence of simpli-

cial complexes Ni that in some sense approximate X. There is a subtlety

here: the simplicial complexes, given their usual metric, need not be coarsely

equivalent to X. We apply the metrizability theorem to rectify this problem,

thus obtaining the coarse assembly map as the direct limit of maps

K∗(Ni) → K∗(C∗(Ni)) ∼= K∗(C∗(X)).

1. Coarse structures

The notion of a coarse structure was introduced in [1]; see also [3] chapter

6, and [7].

Definition 1.1. A coarse structure on a set X is a collection E of subsets

of X ×X satisfying the following axioms.

(i) If A ∈ E then AT = {(y, x) : (x, y) ∈ A} is in E.
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(ii) If A ∈ E and B ∈ E then

A ◦B = {(x, y) : ∃z (x, z) ∈ A, (z, y) ∈ B} is in E.

(iii) If A ∈ E and B ∈ E then A ∪B is in E.

(iv) If A ∈ E and B ⊂ A then B ∈ E.

Elements of E are referred to as controlled sets or entourages.

Definition 1.2. A coarse structure on a set X is unital if the diagonal

{(x, x) : x ∈ X} is an entourage, and is weakly connected if all singletons

are entourages.

Given a metric space (X, d), there is a canonically associated coarse

structure whose entourages are sets E ⊆ X × X with d(x, y) bounded for

(x, y) ∈ E.

Definition 1.3. Two metric spaces (X, d), (X ′, d′) are quasi-isometric, if

for some A,B, R > 0 there is a map f : X → X ′ such that

1
A

d′(f(x), f(y))−B ≤ d(x, y) ≤ Ad′(f(x), f(y)) + B

and every point of X ′ lies within distance R of the image of f . The map f

is called a quasi-isometry.

Two metrics d, d′ on a single space X are said to be quasi-isometric if the

identity map from (X, d) to (X, d′) is a quasi-isometry.

We note that if d and d′ are quasi-isometric, then they induce the same

coarse structure on X.

Definition 1.4. A coarse structure E is said to be generated by S ⊂ E if E

is the smallest coarse structure containing S. Equivalently, every element

of E is contained in a set produced by finitely many unions, compositions

and transpositions of elements in S.

The following result was proven in [7], Theorem 2.55.

Theorem 1.5. A coarse structure on X arises from a metric if and only if

it is unital, weakly connected and countably generated.
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We will give a brief outline of the proof. The fact that metrics produce

such coarse structures is completely elementary – the coarse structure is

generated by the sets An = {(x, y) : d(x, y) < n}. To show that such a

coarse structure arises from a metric, take the given countable generating

set A1, A2, . . . , let B0 be the diagonal, B1 = A1 ∪ AT
1 ∪B0, and recursively

define Bn = An ∪AT
n ∪

⋃n−1
i=1 Bi ◦Bn−i for n > 1. It can then be shown that

d(x, y) = min{n : (x, y) ∈ Bn} is a metric, and that it produces the given

coarse structure.

2. Simultaneous metrizability

As well as producing a coarse structure, a metric also gives rise to a

topology. The question of whether a given topology arises from a metric

is now well understood; see [4] section 5 for a full discussion of metrization

theorems.

Definition 2.1. A collection of subsets of X is σ-locally finite if it is a

countable union of locally finite collections of subsets.

The following theorem was proved independently in [5, 8].

Theorem 2.2 (Nagata-Smirnov metrization theorem). A topological space

X is metrizable if and only if it is regular and Hausdorff, and the topology

admits a σ-locally finite base.

We now make the following definition.

Definition 2.3. A set X equipped with a topology and coarse structure is

simultaneously metrizable if there exists a metric on X giving rise to both

the topology and the coarse structure.

If X is a metric space then the topology and coarse structure on X satisfy

a certain compatibility condition, viz. there exists an entourage which is an
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open neighbourhood of the diagonal. For instance the set of pairs (x, y) with

d(x, y) < 1 is both an open neighbourhood of the diagonal and an entourage.

Note that the existence of an open entourage containing the diagonal

implies that every entourage is contained in an open one: pre- and post-

composing any entourage A with an open entourage containing the diagonal

will produce an open entourage containing A. Conversely, if every entourage

is contained in an open one, and additionally the coarse structure is unital,

then there is an open entourage containing the diagonal.

Definition 2.4. A coarse structure E on a topological space X is compatible

with the topology if every entourage is contained in an open entourage.

Remark. This is one of the two axioms required for a coarse structure to

be proper. The second axiom is that any subset K of X for which K ×K

is an entourage must be relatively compact. We however will only require

compatibility: our theorem applies whether or not the coarse structure is

proper.

For a set X equipped with a topology and coarse structure we now have

certain obvious necessary conditions for X to be simultaneously metrizable.

Firstly both the metric and the topology must each independently be metriz-

able and secondly the coarse structure must be compatible with the topology.

We shall prove that these necessary conditions are in fact sufficient.

Theorem 2.5. Let X be equipped with metrics dt, dc with the coarse struc-

ture of dc compatible with the topology of dt. Then there exists a metric d

on X producing the same topology as dt, and quasi-isometric to dc.

The theorem allows us to give necessary and sufficient conditions for si-

multaneous metrizability.

Corollary 2.6. A set X equipped with both a coarse structure and a topology

is simultaneously metrizable if and only if the coarse structure is unital,
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weakly connected and countably generated, the topology is regular, Hausdorff

and has a σ-locally finite base, and the coarse structure is compatible with

the topology.

Proof. The ‘only if’ direction is clear. For the converse, the hypotheses,

along with Theorems 1.5 and 2.2, provide metrics dt and dc giving rise to

the topology and coarse structure respectively. Now by Theorem 2.5 there

is another metric d giving rise to the same topology, and which is quasi-

isometric to dc. Since it is quasi-isometric to dc, it gives rise to the same

coarse structure on X, hence X is simultaneously metrizable. �

Before proving the theorem we give a lemma which is useful for the con-

struction of metrics.

Lemma 2.7. If w(x, y) is a symmetric function on X×X and there exists a

metric d on X with d(x, y) ≤ w(x, y) for all x, y, then there exists a maximal

such metric. The maximal metric is given by the formula

d′(x, y) = inf

{
n∑

i=1

w(xi−1, xi) : n ∈ N, x0, . . . xn ∈ X, x0 = x, xn = y

}
.

Proof. For any metric d with d(x, y) ≤ w(x, y) for all x, y, and for n ∈

N, x0, . . . xn ∈ X, x0 = x, xn = y we have d(x, y) ≤
∑n

i=1 d(xi−1, xi) by the

triangle inequality. On the other hand d(xi−1, xi) ≤ w(xi−1, xi), hence we

deduce that d(x, y) ≤
∑n

i=1 w(xi−1, xi) for all such ‘paths’ x0, . . . , xn from x

to y. Thus for d′ as above and any metric d with d(x, y) ≤ w(x, y) we have

d(x, y) ≤ d′(x, y).

We must now show that d′ is a metric. Certainly it is non-negative and

symmetric. For three points x, y, z in X, we have

d′(x, y) + d′(y, z) = inf


n∑

i=1

w(xi−1, xi) :
k, n ∈ N, k < n, xi ∈ X

x0 = x, xk = y, xn = z

 .

This is greater than or equal to d′(x, z), thus we have the triangle inequality.

Finally we note that as there exists at least one metric d with d(x, y) ≤
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w(x, y), we know that there is some metric d with d(x, y) ≤ d′(x, y). Thus

whenever x 6= y we have d′(x, y) ≥ d(x, y) > 0. �

We now proceed with the proof of the theorem.

Proof of theorem 2.5. Without loss of generality we assume that the metric

dc is uniformly discrete with dc(x, y) ≥ 1 for all x 6= y (otherwise we can

replace dc(x, y) by the quasi-isometric metric ddc(x, y)e). By compatibility

of the coarse structure with the topology there exists U in X ×X which is

open with respect to dt, contains the diagonal and is a dc-entourage, i.e. for

some R we have dc(x, y) < R for all (x, y) ∈ U .

Claim. There exists a metric δ, topologically equivalent to dt, and for which

the 1-neighbourhood of the diagonal of X ×X is an entourage. Specifically

there exists δ with the property that δ(x, y) < 1 implies dc(x, y) < 2R.

Proof of claim. As U is open with respect to dt, for each x ∈ X there exists

ε > 0 such that if dt(x, y) < ε, then (x, y) ∈ U . Let εx be the supremum

of the set of such ε, if this is less than 1, and let εx = 1 otherwise. By

construction, if dt(x, y) < εx then (x, y) ∈ U hence dc(x, y) < R. We will

define δ to be the maximal metric such that δ(x, y) ≤ dt(x, y)
max{εx, εy}

for all

x, y. By Lemma 2.7 such a metric exists provided that there is at least one

metric satisfying this inequality, and we note that the inequality is satisfied

by dt since max{εx, εy} ≤ 1. As δ is the maximal such metric, we note that

for each x we have dt(x, y) ≤ δ(x, y) ≤ dt(x, y)/εx which shows that δ gives

rise to the same topology as dt.

Now suppose that δ(x, y) < 1. Then there must be a sequence x =

x0, x1, . . . xn = y such that
∑n

i=1
dt(xi−1,xi)

εi
< 1 where εi = max{εxi−1 , εxi},

as δ(x, y) is given by the infimum of these sums. Let i0 be the value of i for

which εi is greatest. Then

dt(x, xi0) ≤
i0∑

i=1

dt(xi−1, xi) ≤ εi0

i0∑
i=1

dt(xi−1, xi)
εi

< εi0 .

7



Similarly dt(xi0 , y) < εi0 , hence it follows that dc(x, xi0) < R, dc(xi0 , y) < R,

and so if δ(x, y) < 1 then dc(x, y) < 2R. This proves the claim. �

We now define a metric d which is topologically equivalent to dt and

quasi-isometric to dc. We define d to be the maximal metric such that

(i) d(x, y) ≤ dc(x, y)

(ii) d(x, y) ≤ δ(x, y) when δ(x, y) ≤ 1
2 .

As before the existence of this metric is guaranteed by Lemma 2.7 provided

that there exists one such metric, and we note that the metric min{δ(x, y), 1}

has this property, since dc(x, y) ≥ 1 whenever x 6= y. On small scales the

metric d agrees with δ: indeed d(x, y) = δ(x, y) whenever one of these is at

most 1
2 , which again follows from the observation that dc(x, y) ≥ 1 whenever

x 6= y. We deduce that d gives rise to the same topology as δ and hence dt.

Now suppose that x, y ∈ X with d(x, y) < k ∈ N. Then there exists

a sequence x = x0, x1, . . . xn = y such that
∑n

i=1 ci < k, where for each

i, either (i) ci = dc(xi−1, xi), or (ii) ci = δ(xi−1, xi) with ci < 1
2 . Let

I be the set of i for which (i) holds, and partition {1, 2, . . . , n} \ I into

maximal subsets of consecutive integers. For i ∈ I we have ci ≥ 1, so I has

cardinality at most k−1, and hence there are at most k sets in the partition.

Let J = {p + 1, . . . , q} be one such subset, and let cJ =
∑q

i=p+1 ci. We will

now make shortcuts in the ‘path’ xp, xp+1, . . . , xq. Each step d(xi−1, xi) is

at most 1
2 ; we will pick out a subsequence so that each step (except possibly

the last) has length between 1
2 and 1. Formally, we pick j0 = p, . . . , jm = q

an increasing sequence, such that for l = 1, . . . ,m we have δ(xjl−1
, xjl

) < 1,

and for l < m we have 1
2 ≤ δ(xjl−1

, xjl
); note that the final step may be less

than 1
2 . The sum

∑m−1
l=1 δ(xjl−1

, xjl
) is at most cJ and hence cJ ≥ 1

2(m− 1),

since each summand is at least 1
2 . Rearranging we have m ≤ 2cJ + 1. On

the other hand, for each l we have δ(xjl−1
, xjl

) < 1, so dc(xjl−1
, xjl

) < 2R.

Thus dc(xp, xq) < 2Rm ≤ 2R(2cJ + 1).
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Now we reassemble the path. For each i in I we have ci = dc(xi−1, xi), so∑
i∈I dc(xi−1, xi) < k. On the other hand for each set J = {p + 1, . . . , q} in

the partition of {1, 2, . . . , n}\ I we have dc(xp, xq) < 2R(2cJ +1). There are

at most k of these, and the sum of the terms cJ is at most k, hence the sum

of dc(xp, xq) over all sets in the partition is at most 6Rk. We thus conclude

that if d(x, y) < k then dc(x, y) < (6R + 1)k. This is true for all integers k,

thus we have d(x, y) ≤ dc(x, y) < (6R + 1)(d(x, y) + 1). These inequalities

show that d is quasi-isometric to dc, which completes the proof. �

3. The assembly map

We now discuss applications of simultaneous metrizability in the context

of the coarse assembly map, introduced in [2, 10].

Let X be a set equipped with a coarse structure. Then the assembly map

for X is a homomorphism

KX∗(X) → K∗(C∗(X))

where KX∗(X) is the coarse K-homology of X, and C∗(X) is the Roe

algebra of X. Coarse K-homology, the Roe algebra and the assembly map

are defined in [6], see also [3, 9].

Let (X, dX) be a metric space. Then there is a homomorphism K∗(X) →

K∗(C∗(X)) defined by the boundary map in a certain K-theory exact se-

quence (cf. [6, 3, 9]). This map is not an isomorphism in general since the

left hand side is a topological invariant, while the right hand side is a coarse

invariant. To define the assembly map one ‘coarsens’ the left hand side.

Let Ui be a sequence of covers of X, let Di denotes the supremum of the

diameters of U for U ∈ Ui, and let λi denotes the Lebesgue number1 of the

cover Ui. Suppose that Di → ∞, and for each i we have Di ≤ λi+1. This

ensures that Ui+1 coarsens Ui in the sense that for each U in Ui there exists

U ′ in Ui+1 such that U ⊆ U ′. A sequence Ui with these properties is called

1The Lebesgue number of a cover U is the supremum of d ∈ R such that every set of

diameter at most d is a subset of some U ∈ U .
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an anti-Čech sequence for X. It is straightforward to show that these exist,

indeed taking Ui to be the cover of X by all balls of radius 2i then one has

Di ≤ 2i+1 ≤ λi+1.

For each i define Ni to be the nerve of the cover Ui: this is the simplicial

complex with a vertex [U ] for each element U of Ui, and with [U0, U1, . . . Un]

defining an n-simplex when U0 ∩ · · · ∩ Un is non-empty. The simplicial

complex Ni is given the path metric which restricts on each simplex to the

standard spherical metric. For each U in Ui choose an element U ′ in Ui+1

such that U ⊆ U ′. The map taking the vertex [U ] in Ni to the vertex [U ′] in

Ni+1 is simplicial, since U0 ∩ · · · ∩ Un non-empty and U ′
i ⊇ Ui implies that

U ′
0 ∩ · · · ∩ U ′

n is non-empty.

Now for each i we have a homomorphism K∗(Ni) → K∗(C∗(Ni)) (the

boundary map as above). Using the simplicial maps Ni → Ni+1 one can

take the direct limits. By definition the coarse K-homology, KX∗(X) is the

direct limit lim−→K∗(Ni). Hence there is an assembly map

KX∗(X) → lim−→K∗(C∗(Ni)).

As the author observed in [9], the identification of the direct limit lim−→K∗(C∗(Ni))

with K∗(X) is nontrivial. In particular for Ni equipped with the spherical

path metric, it is not true in general that K∗(C∗(Ni)) is isomorphic to K∗(X)

for each i.

Making use of simultaneous metrizability it is possible to remedy this

problem. First we construct a metric on the nerves which is compatible

with the spherical metric, but which has the correct coarse geometry.

Proposition 3.1. Let U be a cover of X of diameter at most D, let N be

the nerve of U , and let ds denote the spherical path metric on N . For each

x ∈ X choose an element Ux of U such that x ∈ Ux. Then there is another

metric dc on N such that the map F : (X, dX) → (N, dc) defined by x 7→ [Ux]

is a coarse equivalence and the dc coarse structure is compatible with the ds

topology on N .
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Proof. Define G : N → X as follows. Given y ∈ N , let [U0, . . . , Un] be the

minimal simplex containing y. We note that U0 ∩ · · · ∩ Un is non-empty by

definition. Pick a point in U0 ∩ · · · ∩ Un, and define G(y) to be this point.

Then the map G has the property that dX(G(F (x)), x) ≤ D, since G(F (x))

must lie in Ux for each x. Hence G ◦ F is close to the identity on X.

Let ddisc denote the discrete metric on N , and define dc(y, y′) = dX(G(y), G(y′))+

ddisc(y, y′). We observe that dc is a metric. First note that the triangle in-

equality for the function dX(G(y), G(y′)) on N×N follows immediately from

the triangle inequality for the metric dX , and dc is obtained by adding the

discrete metric to this. Hence dc satisfies the triangle inequality. Positivity

and symmetry of dc are immediate.

We will now show that the maps F,G give a coarse equivalence between

X and N . For y, y′ in N we have dX(G(y), G(y′)) ≤ dc(y, y′) by definition,

while for x, x′ in X we have dc(F (x), F (x′)) ≤ dX(G(F (x)), G(F (x′))) + 1.

We have already noted that dX(G(F (x)), x) ≤ D for each x hence

dc(F (x), F (x′)) ≤ d(x, x′) + 2D + 1.

The maps F,G are thus bornologous. We have observed that G ◦ F is close

to the identity on X, thus it remains to check that F ◦ G is close to the

identity on N , as coarse properness for F will then follow from the fact that

G is bornologous and vice versa. We have

dc(F (G(y)), y) ≤ dX

(
G(F (G(y)), G(y)

)
+ 1 ≤ D + 1

hence F ◦ G is close to the identity and X, N are coarsely equivalent as

claimed.

To complete the proof, we must show that the dc coarse structure is

compatible with the ds topology. In other words we must find a subset E of

N ×N which is an open neighbourhood of the diagonal for the ds topology,

and on which dc is bounded. Define

E =
⋃
{S × S : S an open star in N}.
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Certainly this is an open neighbourhood of the diagonal. Now for any

(y, y′) ∈ E we have y, y′ ∈ S for S some open star of N . As y, y′ lie in

the same star, the minimal simplices containing y, y′ must have some com-

mon vertex [U ]. By definition of the map G we have G(y), G(y′) in U ,

hence

dc(y, y′) ≤ dX(G(y), G(y′)) + 1 ≤ D + 1.

Thus dc is bounded on E which completes the proof. �

Using Proposition 3.1 to construct a metric di
c on Ni which is compati-

ble with the spherical metric di
s, and applying Theorem 2.5 we obtain the

following.

Corollary 3.2. Let Ui be an anti-Čech sequence. Then each space Ni can

be equipped with a metric which gives rise to the usual topology on Ni and

such that Ni is coarsely equivalent to X. Using these metrics we have ho-

momorphisms

K∗(Ni) → K∗(C∗(Ni)) ∼= K∗(C∗(X)).

The direct limit of these defines the coarse assembly map

KX∗(X) → K∗(C∗(X)).
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