Internal shock model for microquasars
Internal shock model for microquasars
We present a model for the radio outbursts of microquasars based on the assumption of quasi-continuous jet ejection. The jets are 'lit up' by shock fronts traveling along the jets during outbursts. The shocks accelerate relativistic particles which emit the observed synchrotron radiation. The observed comparatively flat decay light curves combined with gradually steepening spectral slopes are explained by a superposition of the radiation of the aging relativistic particle population left behind by the shocks. This scenario is the low energy, time-resolved equivalent to the internal shock model for GRBs. We show that this model predicts energy contents of the radiating plasma similar to the plasmon model. At the same time, the jet model relaxes the severe requirements on the central source in terms of the rate at which this energy must be supplied to the jet. Observations of 'mini-bursts' with flat spectral slopes and of infrared emission far from the source centre suggest two different states of jet ejections: (i) A 'mini-burst' mode with relatively stable jet production and weak radio emission with flat spectra and (ii) an outburst mode with strong variations in the jet bulk velocities coupled with strong radio emission with steeper spectra. We also show that the continuous jets in microquasars should terminate in strong shocks and possibly inflate radio lobes similar to extragalactic jet sources. We investigate the possibility of testing the predictions of this model with resolved radio observations. Finally, we suggest that Doppler-shifted X-ray iron lines, and possibly H-alpha lines, may be emitted by the jet flow of microquasars if thermal instabilities analogous to those in SS433 exist in their jets.
975-988
Kaiser, C.R.
a486973d-799c-401e-aa99-47dddd3972f7
Sunyaev, R.
7649f5dd-a776-4dd5-87e8-d13f8755c760
Spruit, H.C.
99aaf9cb-15d9-43da-ba7c-097bad4f78ae
2000
Kaiser, C.R.
a486973d-799c-401e-aa99-47dddd3972f7
Sunyaev, R.
7649f5dd-a776-4dd5-87e8-d13f8755c760
Spruit, H.C.
99aaf9cb-15d9-43da-ba7c-097bad4f78ae
Kaiser, C.R., Sunyaev, R. and Spruit, H.C.
(2000)
Internal shock model for microquasars.
Astronomy & Astrophysics, 356, .
Abstract
We present a model for the radio outbursts of microquasars based on the assumption of quasi-continuous jet ejection. The jets are 'lit up' by shock fronts traveling along the jets during outbursts. The shocks accelerate relativistic particles which emit the observed synchrotron radiation. The observed comparatively flat decay light curves combined with gradually steepening spectral slopes are explained by a superposition of the radiation of the aging relativistic particle population left behind by the shocks. This scenario is the low energy, time-resolved equivalent to the internal shock model for GRBs. We show that this model predicts energy contents of the radiating plasma similar to the plasmon model. At the same time, the jet model relaxes the severe requirements on the central source in terms of the rate at which this energy must be supplied to the jet. Observations of 'mini-bursts' with flat spectral slopes and of infrared emission far from the source centre suggest two different states of jet ejections: (i) A 'mini-burst' mode with relatively stable jet production and weak radio emission with flat spectra and (ii) an outburst mode with strong variations in the jet bulk velocities coupled with strong radio emission with steeper spectra. We also show that the continuous jets in microquasars should terminate in strong shocks and possibly inflate radio lobes similar to extragalactic jet sources. We investigate the possibility of testing the predictions of this model with resolved radio observations. Finally, we suggest that Doppler-shifted X-ray iron lines, and possibly H-alpha lines, may be emitted by the jet flow of microquasars if thermal instabilities analogous to those in SS433 exist in their jets.
Text
Kaiser_internal_shock.pdf
- Other
More information
Published date: 2000
Identifiers
Local EPrints ID: 14769
URI: http://eprints.soton.ac.uk/id/eprint/14769
PURE UUID: 56eb7d20-8bdd-4ab6-81d5-43d577d8b342
Catalogue record
Date deposited: 04 Mar 2005
Last modified: 15 Mar 2024 05:31
Export record
Contributors
Author:
C.R. Kaiser
Author:
R. Sunyaev
Author:
H.C. Spruit
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics