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The role of wood in the formation and maintenance of complex dynamic floodplain surfaces is important and
to date has received relatively limited attention compared to in-channel habitat processes. This paper
explores the role of logjams as important agents of channel:floodplain interaction. We draw on a specific
case study as well as examples from the literature to show that although the processes of interaction differ,
the resulting dynamic floodplain patchwork is a common feature of rivers with logjams. In addition, we
contend that the presence of logjams is an important factor in the evolution and maintenance of multiple
channel patterns in both montane and lowland river environments. These observations have important
implications for the definition of reference targets for river restoration.
The specific results of this research show:

1) The presence of a range of types of multiple channel network dissecting the floodplains of low order
channels that are strongly associated with the presence of logjams.

2) The relatively rapid formation of floodplain channels following logjam formation.
3) The dynamic nature of logjams within headwater channels on both seasonal and annual timescales that

lead to a highly dynamic habitat mosaic on the floodplain surface.
4) An increased frequency of overbank flooding and high rates of floodplain sediment accumulation

upstream of logjams and along floodplain channel networks that create the complex topography
observed in the case study forested floodplains.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In-channel logjams are a key mechanism by which the channel and
floodplain environments are connected at the reach scale. In small,
temperate, lowland forest floodplain systems the ratio of bankfull
channel width to large wood length is small, typically 0.6 (Piégay and
Gurnell, 1997), so wood within the channel tends to form assemblages
or complete jams that alter channel morphology (Gregory et al., 1985;
Piégay and Gurnell, 1997; Gurnell and Sweet, 1998). Largewoodwithin
the channel increases flow resistance (Gippel, 1995; Abbe and
Montgomery, 1996; Montgomery and Buffington, 1997; Manners and
Doyle, 2008) resulting in local accumulations of inorganic and organic
matter that influence channel capacity (Jeffries et al., 2003). Logjams
trap large wood as it is transported downstream (Millington and Sear,
2007), causing accumulations that dam the river and produce hydraulic
steps in the long profile (Curran and Wohl, 2003). The increased flow

resistance and reduced channel capacity caused by logjams can lead to a
significant increase in the frequency and duration of overbank flows
(Gregory et al., 1985; Brown, 1997; Jeffries et al., 2003) and an increase
in the residence times of organic and inorganic material in the channel
(e.g. Nakamura and Swanson, 1994; Smith et al., 1993; Keller et al.,
1995; Millington and Sear, 2007).

Once on the floodplain, overbank flow is concentrated by
topography and by obstacles created by vegetation and dead wood,
leading to complex floodplain scour and deposition. This has been
shown to result in the creation of diverse floodplain geomorphology
(Brown, 1997; Piégay, 1997; Jeffries et al., 2003). This, together with
long residence times of organic and inorganicmaterial, forms amosaic
of physical habitats supporting diverse vegetation and ecology (e.g.
Amoros and Petts, 1993; Naiman et al., 1993; Marston et al., 1995;
Ward et al., 2001), which in turn promotes geomorphological
diversity. A number of studies have described channel avulsions
triggered by wood accumulations in a variety of environments
(Harwood and Brown, 1993; McKenny et al., 1995; Piégay and
Marston, 1998; Piégay et al., 1998; Collins and Montgomery, 2002;
Abbe andMontgomery, 2003; Jeffries et al., 2003). In forested regions,
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the formation of stable logjams promotes the evolution of an
anastomosing channel morphology (Harwood and Brown, 1993;
Collins and Montgomery, 2002; Montgomery et al., 2003; O'Connor et
al., 2003), though these are characterized by active bedload transport
and unconfined channels. Finally, local coarse sediment deposition
upstream of logjams can form alluvial surfaces (Montgomery and
Abbe, 2006) several meters higher than the active floodplain and
hence contribute directly to floodplain formation.

The aim of the paper is to define the processes and resulting
morphology associated with the role of logjams in the formation and
maintenance offloodplain surfaces. Todo thiswedrawon a specific case
study, before extending the discussion using published examples from
other river types to show that although the processes of interaction
differ, the resulting dynamic floodplain patchwork is a common feature
of rivers with logjams. In addition, we contend that the presence of
logjams is an important factor in the evolution and maintenance of
multiple channel patterns in both montane and lowland river environ-
ments. These observations have important implications for the
definition of reference targets for river restoration.

2. Regional and site setting

We use a case study site to explore in some detail the processes
associated with logjam forced channel:floodplain interaction. The

choice of case study is designed to contrast existing studies of logjam
mediated channel:floodplain interaction (e.g. Brummer et al., 2006;
Montgomery and Abbe, 2006), and thus raise the wider question of
the role of logjams in the evolution of floodplain:channel systems.

The case study sites lie in two third-order tributaries of the
Lymington River, located in the New Forest, southern England (Fig. 1;
Table 1). The sites are characterized by Tertiary marine lithology
(clays) and a flashy hydrological regime (Piégay and Gurnell, 1997;
Gurnell and Sweet, 1998). The floodplain sediment sequences range
from b0.5 m in the headwaters up to 1.2 m in the lower catchment.
Thin humous rich forest soils overlie silty-sand and silty-clay
alluvium. The alluvium overlies fluvial gravels which in turn overlie
weathered clay parent material. The shallow soils restrict the rooting
depths of trees, forcing root networks to spread horizontally. Shallow
rooting on floodplains, makes the trees sensitive to wind-throw
(Brown, 1997); the major process of wood recruitment in the study
rivers.

Peterken et al. (1996) defined the woodland adjacent to the study
rivers as National Vegetation Classification (NVC) type W7b Alnus
glutinosa–Fraxinus excelsior–Lysimachia nemorum community (Rodwell,
1991). This type of woodland fundamentally depends on hydrological
processes and is normally found on valley slopes atmineral-rich flushes
such as springs or seepage lines, but it is also supported by the fluvial
and hydrological processes that occur on thefloodplains of theHighland

Fig. 1. Study site showing location of specific study reaches (1–4). The River network has been classified into reaches according to whether or not floodplain channels were present.
Those where floodplain channels were absent were also channelised resulting in reduced channel:floodplain connectivity.
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Water and Blackwater. The physical habitat of type W7b Alnus–
Fraxinus–Lysimachia woodland is controlled by the relationship be-
tween weathered parent rock (regolith) and hydrology. Frequent
overbank flow physically redistributes allocthonous material — such
as wood and leaves — across the floodplain, and as much as 13% of
sediment deposited during overbank flow is organic (Jeffries et al.,
2003).

Since the 1840s, a large proportion of the streams in the forest
(particularly those flowing through the inclosures) have been
periodically straightened and dredged in order to improve drainage
(Tuckfield, 1980; Tubbs, 2001) and allow conifers to be planted
(Gurnell and Sweet, 1998). Straightening and dredging has resulted in
habitat fragmentation, reduced ecological and geomorphological
diversity in the streams, and has triggered further downcutting of
bed levels and headward erosion of streams into the mires (Tubbs,
2001; Sear et al., 2006). The presence of both channelized and semi-
natural river reaches created an opportunity to distinguish the
processes and features that are specific to coupled channel:flood-
plains with logjams.

3. Methods

A suite of field-based methods and techniques were used in order
to characterize the nature of the channel:floodplain interaction and to
quantify the processes of erosion and deposition on the floodplain. At
the catchment scale, walk-through surveys were undertaken to
characterize and document the channel and floodplain features
observed in 100 m reaches along the study streams. Transects were
walked at 100 m intervals across the floodplain and the frequency of
features recorded on a standard proforma derived from a pilot study.
In addition, LiDAR (Light Detection And Ranging) data were used to
map the positions of the main and floodplain channels along both
study streams. These were augmented by cross-sections surveyed at
100 m intervals along the channels and that extended across the
floodplain. Field mapping of specific reaches was undertaken to
ground truth the LiDAR mapping, and to provide additional detail of
the floodplain morphology. This included long-profile surveys of
floodplain channels.

Gurnell and Sweet (1998) reported the dynamics of wood and pool
habitats within a 5 km reach of the Highland Water study stream.
Their study was based on field mapping the features along the main
channel network. This study adopts a similar approach in order to
quantify the more recent logjam dynamics within both study streams.
The locations of logjam centre points weremapped in the field using a
hand-held GPS linked via wireless connection to ARCPAD GIS
mounted on a PDA palm top computer. This enabled direct mapping
onto digital base maps and provided two modes of position
verification — first the GPS (accurate to within +/−10 m on average
under partial tree cover) and secondly the base map channel
morphology and geographic information layers on the PDA. Assessment
of the positional accuracy was checked against known immobile

features such as bridges, fords and boundary locations. Fifty measure-
ments were made throughout the study reaches. The resulting
positional accuracy was precise to within +/−1.5 m (σ=1.04 m) of
a centre point. All subsequent analysis has therefore been adjusted to
account for the positional error with change in the location of features
only being accepted if they are larger than 2 m in either up or
downstream direction. Lateral channel change is limited in the study
streams (Gregory, 1992; Davis and Gregory, 1994; Jeffries, 2002) except
where channelization or restoration has changed the position of the
main river. The surveys were undertaken during low flows in October
2002, repeated in June 2006 and again in October 2007. The main trunk
streams of both the Highland Water and Blackwater were surveyed
from the confluence of the two rivers up to where a major road crosses
at the A31 (see Fig. 1).

The flow resistance of reaches with single logjams was measured
over a distance 10 channel widths (typically 30 m) with the logjam at
the centre of the reach. Discharge, water surface slope and cross-
section area were measured across a range of flows including
floodplain inundation. Over 30 measurements were made for each
logjam type. Roughness partitioning was applied using the grain
resistance equation of Hey (1979); bend resistance was approximated
using head loss coefficients, and a methodology suggested by Gippel
(1995) was implemented in order to predict the resistance offered by
the LWDwithin the reach. The Darcy–Weisbach friction factor (f) was
used as it is dimensionally correct and has a sound physical basis
when compared to other commonly used roughness coefficients (Hey,
1979), however, these values were converted into Manning's
roughness (n) equivalent, since this is more widely used.

Logjams were classified according to the system devised by
Gregory et al. (1985) in which ‘Active dams’ refer to logjams that
are hydraulically effective, physically block the channel and have
average measured Manning's roughness values n of 1.420 (range
0.475–2.329). Active dams pond water behind them during low to
medium flows and create a step in the water surface profile at low
flows, elevating the water surface by up to 89% of bank height. During
higher discharges, Jeffries et al. (2003) and Sear et al. (2006) report
increases in overbank flood duration upstream of Active dams of
between 200 and 500% (5 days) relative to reaches without dams
(1 day); and an increase in overbank flood frequency of 300%.
‘Complete dams’ span the channel but do not influence low flow
hydraulics due to under-scour, (n=0.25; range 0.159–0.505) whilst
‘Partial dams’ occupy up to 75% of the channel (n=0.32; range 0.141–
0.609). ‘High water dams’ refer to trees that have fallen across the
channel but are suspended on the bank tops. These do not affect flood
flows in all but bankfull events, when they may act to locally deflect
water out onto the floodplain.

To quantify the influence of logjams on rates of overbank
sedimentation and erosion, a set of four sites were selected that
represented a range of process domains. Site 1 is a headwater semi-
natural site with a central Complete logjam (stream order 3); site 2 is
a restored fourth order channel with an Active logjam. Site 3 is on a
channelized reach within a coniferous plantation. Site 4 is a lower
order (Strahler stream order 4) semi-natural reach with a central
Active logjam. At each site, two transects of 0.25 m2 Astroturf™ mats
were set up across the floodplain to measure sedimentation rates
(Nicholas and Walling, 1995; Steiger et al., 2001). Mats were spaced
across the floodplain at specific points designed to quantify processes
associated with specific features of the floodplain geomorphology
(e.g. in a floodplain channel, on a floodplain surface). These were
sampled after every flood event during the period 2004–2006. The
mats were placed in polythene bags and returned to the lab for
particle size analysis and loss on ignition for organic content. New
mats were replaced at each sample site.

A series of techniques were also used to measure the rates of
incision on the floodplain surface. These were: 1) a network of plastic
erosion pin transects (Lawler et al., 1997) located upstream and

Table 1
Summary details for the Lymington River headwater study catchments HighlandWater
and Blackwater.

Characteristic Highland Water Blackwater

Catchment area (km2) 25.23 25.52
Total stream length (km) 44.33 30.17
Drainage density (km/km2) 1.76 1.18
Length of main stream (km) 10.59 12.11
Relief (max to min) 97 (105 to 15) 80 (95 to 15)
Slope (m/m) 0.0092 0.0066
Solid geology Barton clay and sand Barton clay and sand
Drift geology Alluvial silt and gravels Alluvial silt and gravels
Valley soils Wet alluvial brown earth Wet alluvial brown earth
Land cover Forest/heathland Forest/heathland
Land management Forestry/commoning Forestry/commoning
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downstream of Active logjams at the four sites that sampled
floodplain channels and adjacent floodplain surfaces; 2) topographic
measurements of floodplain channel incision below the floodplain
surface where the date of incision was known from root analysis (see
below) and; 3) measurement of new floodplain channel incision
where the date of incision was known. A total of 296 erosion rate
measurements were collected using these techniques. For the erosion
pins, sampling frequency was initially after each flood event, but was
reduced to after each flood season. Exposure lengths were converted
into rates based on the measured duration of inundation during
floods. The latter information was captured by calibrated pressure
transducers located in the study reaches (Sear et al., 2006; Millington,
2007).

The longevity of logjams and the age of floodplain channels were
required in order to estimate large wood jam dynamics and to
quantify the rates of floodplain erosion. Large wood jams were dated
in twoways; first by dating tilt sprouts on keystone logs, using growth
ring counts (Hupp, 1990) and secondly, by reference to the position of
the dams on surveys dating back to 1982 for the Highland Water, and
1991 for the Blackwater. Ages were established for dams that existed
in the same location (see accuracy criteria above) on subsequent
surveys (1982, 1983, 1990, 1996, 2000, 2002, 2004, and 2007) up to a
maximum date of 26 years.

The age of floodplain channel formation was determined by dating
exposed roots. Dendro-geomorphological analysis of tree stems and
roots has been widely used to date both erosion and aggradation (e.g.
Strunk, 1997; Vandekerckhove et al., 2001; Bodoque et al., 2005;
Friedman et al., 2005; Malik, 2006; Mizugakia et al., 2006; Gärtner,
2007). When roots are exposed, they start to put on growth rings.
Development of floodplain channels exposes tree roots. Two samples
of root from each floodplain channel were analyzed; one from the
exposed root and one from the same root but where it was still buried.
The difference between the two identified the growth post-exposure
(further details are available from Millington, 2007). Three roots per
floodplain channel were sampled. However, since the study catch-
ments are locatedwithin a designated Site of Special Scientific Interest
and AncientWoodland, the number of sites sampled had to be limited
to six.

4. Results

4.1. Floodplain features

The range of features associated with overbank flooding within a
forested floodplain is differentiated between reaches that have been
channelized and those that are still connected to the floodplain
(Fig. 2). Overbank flood processes create a suite of depositional
features, including sand and silt splays on the floodplain surface
within meander bends, and sediment shadows downstream of
obstacles (trees, logs, and shrubs). These depositional features are
also found within and adjacent to the network of floodplain channels
that dissect the floodplain surface. Sediment shadows are reported
from a range of environments and result from the rapid drop in
velocity and resulting low pressure zone found downstream of
obstacles (Brayshaw et al., 1983; Richards and Clifford, 1991). On
the floodplain sediment shadows reached widths of up to 1 m, and
lengths of 2.5 m, with local elevations up to 0.25 m (average 0.12 m)
above the surrounding floodplain surface. Sediment shadow width is
strongly correlated with obstacle width which is frequently a living
tree, whilst length and height are less clearly associated with obstacle
dimensions. Sediment shadows are aligned in the direction of flow,
and are therefore useful indicators of floodplain flow direction.

Other depositional floodplain features include organic matter
accumulations that are composed of material rafted on to the
floodplain from the channel and/or floodplain material which has
been re-distributed by overbank flows. These deposits are composed

of a complex matrix of large to fine particulate organic matter, fine
sand, silt and clay. They also contain seeds and are important
germination sites for trees and shrubs. Rafts of organic detritus
arrange themselves into complex accumulations that are mobilized
only when another overbank flood of similar or greater magnitude
occurs (Piégay, 1997). Hence the longevity of these features is a
function of flood hydrology, local factors that influence overbank
flooding (see Jeffries et al., 2003), and the decay rate of the organic
material. In some cases these rafts form floodplain jams with large
wood trapped against standing trees which influence the direction of
subsequent overbank flows. These jamsmay also act as deposition foci
for more organic matter, prompting further growth.

Alongside the depositional features, the floodplain surface exhibits
erosional features including areas of scour exposing a meshwork of
tree roots, and networks of ephemeral channels. These erosional
floodplain features are associated with advected flow on the
floodplain during overbank floods. Deeper scoured reaches of
floodplain channels create temporary floodplain pools that contain
water in all but the driest months. In a few cases, these channels can
become permanent flowing sections of the river network (Millington,
2007).

The abandoned course of the former channel dominates the
floodplain features in channelized reaches. This is unsurprising since
the old channels in this river have simply been left abandoned on the
floodplain under the coniferous plantations. Such channels are less
frequent in the semi-natural reaches which is in accordance with the
limited lateral mobility reported for these streams (Gregory, 1992;
Davis and Gregory, 1994; Jeffries, 2002).

The surface of the forested floodplain is complex. A vegetated
surface is dissected by incised channels and by a network of tree roots
and large wood (trees and fallen wood). Fig. 3a and b shows cross-
sections through a floodplain surface (see Fig. 1 for location).
Topographic high points are strongly associated with the presence
of trees and root systems. Close to themain channels, where sediment
deposition rates are relatively high (Jeffries et al., 2003), trees and
associated root systems form low pressure areas in which fine
suspended sediment and organic matter and seeds accumulate. Hence
the presence of trees leads to local aggradation, the build up of the
floodplain surface, and its extension in the direction of overbank flow.

Fig. 2. Frequency of floodplain features on semi-natural and channelised reaches within
the study streams. Channelised reaches exhibit few active erosional or depositional
features on the floodplain commensurate with loss of channel:floodplain connectivity.
In contrast semi-natural reaches show very similar suites of floodplain features with the
formation of floodplain pond habitats associated with the evolution of floodplain
channels.
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In contrast, the floodplain channels form topographic low points in
the floodplain, often with localized areas of scour downstream of
larger roots (Fig. 4).

4.2. Floodplain channel pattern and morphology

The network of the main channel and floodplain channels create a
complex branching pattern (Fig. 5) that dissects the floodplain
throughout the study streams. The contribution of floodplain channels
to the total length of channeled flows in the floodplain varies
downstream in no predictable pattern, but tends to be lower in the
headwaters compared to higher order reaches. The resulting channel
pattern is best described as branching, with intervening vegetated

floodplain islands, although the main river planform is an incised,
single meandering channel. Individual floodplain channels are
sinuous with some bends; meandering is generally not present, and
lateral erosion processes are only evident in isolated deeper sections.
Lateral migration is, like the main channel, constrained by cohesive
floodplain soils and tree roots (Davis and Gregory, 1994; Jeffries et al.,
2003).

Individual floodplain channels typically exit from the main
channel at a meander bend, and most frequently at the downstream
end of a meander bend where this cuts normal to the floodplain axis.
The floodplain channels may be single and re-enter the main river
across the neck of the meander (14% of all floodplain channels in the
Blackwater (BW) and 26% in the Highland Water (HW)) or may

Fig. 3. Cross-sections through site 2 and site 4, showing the different vegetated surfaces and floodplain channels that characterize the forested floodplains within the study sites. The
position of trees and root systems influence the development of topography. Variability in the elevation of floodplain surfaces ranges from 0.019 to 0.310. In contrast the elevation
differences due to floodplain channel formation range from 0.012 to 0.690 m.

Fig. 4. Floodplain channels showing the network of exposed roots in the long profile that form locally intense regions of scour, but which also prevents head wards erosion until the
roots are undermined.
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bifurcate and re-enter in more than one location across the neck of a
meander (17% BW, 18% HW). These are similar to other meander neck
cutoff channels (Howard, 1996; Gay et al., 1998; Thompson, 2003).
The dominant type of floodplain channel pattern exits the main river
at a meander bend and circumvents several bends before re-entering
the channel. These can be single channels (32% BW, 26% HW) or
multiple branching channels (36% BW, 31% HW). Fig. 6 shows a
provisional typology of floodplain channels based on the study sites.
Type 1 is the single channel meander bend cut off; Type 2 is similar
but has multiple branching channels. Type 3 contains either single or
multiple branching channels that may or may not exit at a meander
bend.

The long profiles of floodplain surface and floodplain channels are
shown in Fig. 7. Topographic high points in the floodplain channels
are associated with localized increases in root density which in turn
relates to the proximity to trees. Once a larger root is exposed (Fig. 4),
it behaves like a grade control, locally increasing the energy grade line
over the step, resulting in increased scour and in some cases the
development of plunge pools. The long profiles are characterized by a
series of disconnected scour pools, areas of surface scour, and, at the
downstream re-entry point, zones of head cutting. The head cutting
process is at a maximum during the rising and falling limb of the flood
before the water elevation in the main channel drowns out the lower
floodplain channel (Fig. 7), and in locations where hydraulically active

Fig. 5. Multiple channel pattern of floodplain channels and main meandering river from semi-natural sites on the Highland Water and Backwater.

Fig. 6. A typology of floodplain channels. Type 1 is analogous with a meander neck cutoff. Type 2 is a more complex neck cutoff with multiple channels. Type 3 is the most complex
and includes neck cutoff and avulsion driven channels that from in the absence of meanders.
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wood dams force water into a floodplain channel during lower
magnitude floods.

The capacity of floodplain channels relative to the main channel
defines the proportion of channeled flow within the floodplain cross-
section. Although individual floodplain channels can attain widths
that are comparable to the main channel, their depths are typically
much shallower (0.20 m) than main channels (0.87 m). The shallow
depths reduce total floodplain cross-section capacity (on average
164% smaller than main channel capacity) even in the presence of
multiple channels. However, in two cases within the study reaches
floodplain channels have formed perennial secondary channels.

4.3. Logjams and floodplain channels

The location of floodplain channels and depositional features are
clearly associated with reaches with floodplain connectivity. Howev-
er, not all reaches have floodplain channel development or ephemeral
pools. Fig. 8 shows the location of logjams in relation to the floodplain
channel networks. Large wood dams increase flow resistance (Sear
et al., 2006), physically block the channel and increase water surface
elevation upstream of the dams (Jeffries et al., 2003). However, unlike
more active bedload transporting rivers, stream bed aggradation
upstream of active logjams is not widespread and does not force
overbank flooding and lateral channel migration (Brummer et al.,
2006). Rather it is the water surface elevation changes resulting from
the physical blocking and flow resistance created by a logjam that
elevates the upstream water surface in the study streams.

We hypothesized that the important factors for initiating flood-
plain erosion and deposition processes would include the presence of
Active logjams in shallow channel cross-sections (those with low
banks) and secondly, highly sinuous channel planforms that result in
super-elevation of the water surface and advection of flows onto the
floodplain at the meander bend apex (Bathurst et al., 1977). To test
this hypothesis, data on channel sinuosity, bank height and Active
logjams, were collected from locations with and without floodplain
channels. Local height of the banks relative to bed level, wasmeasured
on either side of any existing floodplain channel exit point, and is thus
assumed to be independent of the presence of a floodplain channel.
Student's t-tests were run (p=0.05) in order to test if the observed
differences in the characteristics between reaches where floodplain
channels were present and where they were absent were significantly
different. For those reaches with floodplain channels, channel
sinuosity was significantly higher, bank height channel was signifi-
cantly lower, and there were significantlymore Active logjams/100 m.
Furthermore, the more complex networks of floodplain channels
were always associated with hydraulically active wood jams, whereas
single-channel meander neck cut-offs were most often associated
with tight bends with low bank points at the downstream end of the
bend where it cut back across the floodplain.

4.4. Logjam dynamics and floodplain channel formation

Wood structures in the study streams have been shown to
influence the frequency and duration of overbank flooding, floodplain

Fig. 7. Long profiles of floodplain channels in relation to the floodplain surface and bank full elevations. Head cutting at the point of re-entry into themain channel is shown by rapidly
steepening gradients. The role of transverse tree roots in preventing incision and in promoting downstream scour is clearly evident.
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deposition and wood retention (Gregory et al., 1985; Jeffries et al.,
2003; Millington and Sear, 2007). Furthermore, in semi-natural
reaches of the study streams, Millington and Sear (2007) showed
that up to 11% of small wood was transferred onto the floodplain,
leading to wood accumulations such as those observed in the feature
surveys. It was hypothesized that the type and location of logjams
would be an important control on the development of the floodplain
morphology, and therefore the dynamics of logjams would be an
important measure in relation to understanding floodplain evolution
within the study streams. Two measures of logjam dynamics were
quantified; changes in logjam type which relates to flow resistance
(essentially changes in drag and porosity over time, Manners and
Doyle (2008)), and the location of logjams in the river.

The four main logjam types within the study streams show
variability in their frequency over time (Fig. 9a). The changes result
from natural recruitment processes together with management
(removal) in 1990–96. The distribution of dam types has changed
from a dominance of partial dams and few high water dam types prior
to 2002, to one in which fallen trees (highwater dams) are growing in
number in the absence of management, and partial and complete
dams are increasing. Active dam types have reduced in frequency
since 2002. Active logjams typically change into complete jam types
by scouring under or to the side, resulting in an increase in logjam
porosity and a decrease in flow resistance. In 82% of the cases the
change in Active logjams was to Complete logjam types in the period

1982–2008, with the remaining 18% to Partial logjams. In contrast,
80% of Complete logjams remained the same or changed to Partial
logjams. In addition to the processes of wood recruitment and
management, logjam types can change over the longer term through
the decay and collapse of largewood structures. This process results in
a change in high water logjams into Partial or Complete structures
through collapse into the channel and the subsequent accumulation of
smaller mobile wood against the keystone log (Millington and Sear,
2007).

Within temperate deciduous forests such as the study streams, the
dam dynamics are also seasonal, with changes in type resulting from
two main processes; seasonal accumulations of leaf packs on dams
following leaf fall in the autumn, and the action of flood events. The
latter mobilizes wood within the channel and dam structures,
resulting in changes from partial to complete/active, and from
active/complete to partial. The leaf fall in autumn decreases the
porosity of existing dam structures and increases flow resistance
leading to changes from complete to active dam types. However, leaf
packs rapidly breakdown and mobilize, so this seasonal affect is most
marked in October to December, coinciding with the onset of the
winter flood season.

A key aspect of logjam dynamics is the mobility of the jams
themselves since the location of the jam will influence channel
forming processes (e.g. pool creation Montgomery et al., 1995;
Montgomery and Buffington, 1997) and the point of connectivity
with the floodplain (Jeffries et al., 2003). Gregory et al (1993)
calculated that the study streams trap 65% of all wood recruited to the
channel and exports only 35% to downstream reaches. Thus the
mobility of logjams was initially thought to be minor. In the event, the
distance logjams move is typically short, with mean logjam
movement between years ranging from 6.9 to 8.8 m. Fig. 9b docu-
ments logjam positions over the past 23 years within the Highland
Water semi-natural study reaches. Loss and gain of logjams from a site
dominate, with logjam movement accounting for between 5 and 23%
of dynamics in semi-natural reaches. Persistence at a site typically
accounts for 14% of logjams, falling to 10% in years with wood
management. In total only 14% of logjams remain in position between
surveys, and of these only 4% persisted across all 23 years; 86% of
logjams changed location between surveys. In addition, of those
logjams that persisted at a site, 69% changed logjam type between
surveys. Only 3% of logjams retained type and position across all
23 years of survey in semi-natural reaches, though where they
retained position they tended to retain type. In these cases,
persistence resulted from the presence of either a living or particularly
large (diameterN0.8b1.5 m) keystone log that was immobile during
floods and presumably too large for debris management.

4.5. Rates of floodplain channel formation

In order to identify if floodplain channel initiation coincided with
logjam establishment, the highest exposed tree roots in floodplain
channels were analyzed to establish when they were first exposed,
and therefore a minimum period since the floodplain channels first
started to form (assuming the surface was eroded first to expose the
root).

Table 2 collates the results from logjam ageing and from dating
exposed roots in floodplain channels. Since tilt sprouts grow after a
tree becomes horizontal but remains alive — they therefore give a
minimum age for a logjam, but not necessarily when it started to be
hydraulically effective. In addition, previous logjam surveys were
used to identify date bands for when a given logjam had been
hydraulically effective.

Table 2 indicates that, although floodplain channels of Types 1 and
2 formed in the absence of logjams, they were more frequently
associated with logjams (of any type). The development of Type 1 or
Type 2 floodplain channels does not appear to be related to the type or

Fig. 8. Location of logjams in relation to the floodplain channel network. Although not
all floodplain channels are associated with logjams, the total number of logjams shown
is considered to be lower than historically unmanaged levels.
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the longevity of logjams. However, Type 3 floodplain channels
occurred in association with hydraulically effective logjams, and
developed relatively rapidly (b15 years). The length of time since root
exposure roughly correspondedwith logjam age bands, and roots that
had been exposed for longer tended to be associated with Type 3
floodplain channels. More recently exposed roots were associated
with Types 1 and 2 (although note the large variability in the period of
root exposure from different root samples within the same floodplain
channel, Table 2). From the data it is not possible to determine how
long a logjam needs to remain in the same location in order for
floodplain channels to develop, however, the data do indicate that
Type 3 floodplain channels only developed where hydraulically
effective logjams had been present in the main channel for more
than 6 years.

In addition to the dating, a series of floodplain erosion measure-
ments were made to quantify the rates of incision in floodplain
channels. Incision rates were calculated on the basis of the duration of
overbank flooding. The modal rate of incision in floodplain channels
based on all three sources of evidence is 0.036 m yr−1 with a mean
value of 0.040 m yr−1. The value for erosion pin and for recent
floodplain channel formation is similar at 0.025 m yr−1 and
0.024 m yr−1 respectively. These values mask a variance about the
mean of 0.011 m yr−1. Rates of incision tend to be largest down-
stream of large channel-spanning roots, where plunge-pool scour
holes form in the bed of the floodplain channels, or where head

cutting processes operate at re-entry points into the main channel. In
these locations rates of incision can be an order of magnitude higher
(0.204 m yr−1). Extrapolating these erosion rates over the typical
lifespan of an active wood dam of 6 years, results in a maximum
modal depth of incision of between 0.150 and 0.210 m, which
corresponds to the modal depth of floodplain channels within the
study reaches.

Incision rates in floodplain channels are only 15% faster than those
on adjacent floodplain surfaces over the two flood seasons for which
measurements were available. This appears to result from the
differential operation of erosion and deposition, which over time
creates a net incision rate in the floodplain channel. Floodplain
channel infilling was also observed throughout the two study
catchments. The main processes involved being deposition within
former re-entry points as a result of subsequent ponding upstream of
a logjam. In these locations accumulation rates can be rapid (up to
0.3 m in one flood season) and equivalent to the rates of incision at re-
entry points.

4.6. The role of logjams and floodplain channels in overbank deposition

Once on the floodplain, the water, sediment and organic matter
interact with the existing network of trees, shrubs, topography and
floodplain sediments, to create a complex erosional and deposition
environment (Piégay and Gurnell, 1997; Jeffries et al., 2003). This is

Fig. 9. a: Wood dam dynamics in semi-natural reaches of the Highland Water study stream. Changes in the frequency of wood dam types for semi-natural reaches within the
HighlandWater study stream based on field surveys. Flow resistance increases from highwater-active dam types. b:Wood dam dynamics illustrating the dominance of gain and loss
of dams from a site compared to those that move or remain in-situ. Loss between 1990 and 1996 results from management activity in the streams.
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shown clearly in Fig. 10 for transects of sediment traps across a Type 3
floodplain. In both cases, the typical diffusion-based model for
floodplain deposition that envisages an exponential reduction in
overbank sedimentation with increasing distance from the main
channel (Pizzuto, 1987; Walling et al., 1996) does not fully apply.
Instead the presence of complex topography, hydraulically active
dams and the network of floodplain channels creates a mosaic of
depositional sites (Jeffries et al., 2003). Floodplain channels create
routes for sediment laden water and through floodplain erosion,
create new sources of sediment fromwithin the floodplain. As a result
floodplain channels are conduits for sediment, resulting in higher
rates of deposition at sites distant from the main channel (Fig. 10). In
these situations, overbank flooding may not occur but the transmis-
sion of water and sediment from the backwater upstream of the
logjam, advects water and sediment down the floodplain channel
network resulting in localized floodplain deposition.

Measured annual rates of floodplain sedimentation in this study
were calculated by summing all the trap data for each transect and
dividing by the total area of traps. This assumes that the traps are
representative of the floodplain surface and that no change in trap
efficiency occurs between sampling dates. Annual deposition rates
upstream of logjams were always higher (1.2–8.2 times) than on the
floodplain downstream of the dams.We converted themeasured total
annual deposition at individual traps into vertical accretion rates
using the density of overbank deposits (1855 kg m−3). This yields
values of annual floodplain vertical accretion of between 0.01 and
0.16 m at sites upstream of active logjams and 0–0.11 m downstream
of them. Downstream of trees and other obstacles on the floodplain,
rates of deposition are increased and average floodplain elevations are
0.12 m to 0.25 m above the local floodplain elevation. These values
correspond with the vertical differences in floodplain surfaces across
the floodplain. Variability in the elevation of floodplain surfaces
shown in Fig. 3 ranges between 0.019 and 0.310 m. In comparison the
elevation differences due to floodplain channel formation range from
0.012 to 0.690 m. The measured rates of vertical accretion, extrapo-
lated over the typical age of active logjams can therefore explain the

scales of floodplain topography, while the measured rates of
floodplain erosion is generally of the same range.

5. Discussion

5.1. Logjams and floodplain dynamics

Logjams are important features that alter the local hydraulics and
transport of sediment and wood within river systems. The processes
associated with logjams vary according to the sediment transport
regime and scale of river relative to logjam size. Moreover, the case
study reported in this paper highlights the importance of logjam
dynamics in mediating the location, duration and persistence of
erosion and deposition on the floodplain surface.

In larger alluvial rivers logjams are important for blocking off
secondary channels; deflecting flows into existing secondary channels
and for maintaining floodplain dynamics via secondary channel
processes (Abbe and Montgomery, 1996; Beechie et al., 2006). In
addition, the formation of stable logjams within the main channel
initiates sediment deposition and the development of islands (Gurnell
et al., 2001; Montgomery and Piegay, 2003).

In smaller floodplain rivers, our observations show that logjam-
mediated processes provide a mechanism of floodplain development
that is distinct from those typically considered for humid temperate
floodplains (Walling et al., 1996; Howard, 1996), but shares
similarities with the logjam mediated patchwork floodplain model
described byMontgomery and Abbe (2006). In theirmodel, floodplain
surfaces are formed from coarse bedload driven aggradation upstream
of stable logjams. These surfaces are elevated above normal flood
levels by the scale of the logjam, and as a result are relatively stable
surfaces on which large trees can develop which in turn sustain
logjam formation. The integrated effects of stable logjam formation
result in morphologically complex floodplains that create a diverse
range of physical habitats including side-channels. Brummer et al.
(2006) go further and suggest that such logjammediated aggradation

Table 2
Chronology of logjam and floodplain channels derived from dendrochronology and sequential logjam surveys.

Location Floodplain
channel
distribution
type

Age of tilt
sprouts
(years)

Wood dams present in surveys Chronology of
Logjams (years)

Minimum age of floodplain channels
from exposed, damaged roots

1983 1991 1998 2002 2006 2008 Sample 1 Sample 2 Sample 3

HW SU 270 077 3 15 Partial Partial Active Active Active Active PresentN23
ActiveN8 but b15

11 8 6

OW SU 287 039 3 6 ns Partial ns ns Active Active PresentN6
Activeb15

8 x 5

OW SU 287 039 2 5 ns Partial ns ns Active Active PresentN5
Activeb15

2 2 n/a

BW SU 257 046 2 n/a ns None ns Active Active Comp. ActiveN4 but b15 ud ud n/a
BW SU 237 066 1 or 2 n/a ns Comp. ns Active Active Comp. ActiveN4 but b15 x 3 n/a
BW SU 231 091 2 23 ns Comp. ns Active Active Active PresentN23

ActiveN4 but b15
8 15 7

HW SU 246 111 1 ns None None None Comp. None None present ns
HW SU 247 111 1 None Partial None None Partial Partialb4
HW SU 246 110 1 None None None None Comp. Completeb4
HW SU 246 110 1 Active Partial None None None None present
HW SU 246 110 2 None None None None Comp. Completeb4
HW SU 287 044 1 None None None None None None present
HW SU 289 042 1 None None None Comp. None None present
BW SU 232 091 2 ns Comp. None None None None present
BW SU 232 089 2 ns None None Partial Partial PartialN4 but b8
BW SU 232 088 1 ns None None Partial Comp. PresentN8 but b15

Completeb4
BW SU 232 085 1 ns Comp. None None Partial Partialb4
BW SU 235 081 2 ns Partial None None Partial Partialb4
BW SU 256 046 2 ns None None Active Comp. PresentN4 but b8

Completeb4

ns = not surveyed; ud = only undamaged exposed roots present; x = not possible to identify individual growth rings.
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promotes lateral channel adjustment in unconfined rivers and the re-
occupation of former river channels.

In rivers with limited bedload transport like the case study
streams, the floodplain surface evolves through the mediation of
hydraulically effective logjams and the advection of suspended
sediment laden flows over an otherwise stable forested floodplain
surface. Locally high rates of deposition at the point of exit onto the
floodplain build surfaces above the bankfull elevation close to the
main channel, and above the general floodplain elevation along the
margins of floodplain channels and downstream of obstacles on the
floodplain. Flow concentration processes result in floodplain erosion
and the progressive incision and the development of networks of
floodplain channels. Thus sediment and particularly bedload trans-
port regime represent an important control on logjam mediated
channel:floodplain interaction. However, an additional control on this
interaction is the dynamics of the logjams themselves. In the
patchwork floodplain model of Montgomery and Abbe (2006) an
important feature is the persistence and stability of the logjams (up to
1400 years) which promotes sediment accumulation and stability of
the resulting floodplain surface. In contrast, the dynamics of the
logjams in the case study stream are measured in less than 30 years in
terms of location, and less than one year in terms of hydraulic
effectiveness. Where logjams do persist, we observe the highest rates

of floodplain vertical accretion (Jeffries et al., 2003; this study), and
the formation of terraces and floodplain building in bedload
dominated systems (Gurnell et al., 2001; Montgomery and Abbe,
2006). Similarly, stable logjams promote channel avulsion (Mon-
tgomery and Piegay, 2003), multiple channel patterns (Beechie et al.,
2006; Montgomery and Abbe, 2006) and higher rates of floodplain
incision within floodplain channels (this study). In contrast, dynamic
logjams coupled with the mobility of organic materials on the
floodplain result in spatial and temporal floodplain surface complex-
ity, high rates of turnover, and the formation of complex surface
topography. However, logjam dynamics coupled with the presence of
root structures and cohesive sediments, mitigates against the
formation of perennial floodplain secondary channels (Jones, 2006).
Thus we consider logjam dynamics to be a fundamental control over
the development of floodplain and channel geomorphology and
associated physical habitat.

Logjam dynamics vary according to the size of the keystone logs
(Abbe and Montgomery, 1996), the scale of the channel relative to log
size, and hence stream order (Piégay and Gurnell, 1997), but also on
the basis of wood decomposition rates and breakdown. The power of
the channel relative to the mobility of the wood, and the mode of
transport (congested or not — Braudrick et al., 1997) also determine
the tendency for logjam formation and persistence. Therefore the

Fig. 10. Floodplain deposition for transects upstream and downstream of a hydraulically effective logjam, showing enhanced rats of deposition at sites distant from the main channel
that result from advection of sediment laden water via floodplain channels.
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ecology of the riparian forest is important since this controls the scale
and type of large wood delivered to the river, and in deciduous forests
such as the study streams, the seasonal delivery of leaves. Finally, the
recruitment mechanism controls the location and volume of wood
delivered to the channel. Stable logjams are most likely in old
(N500 years), coniferous forests located on lower order streams.
Dynamic logjams are most likely in low order, young (b100 years)
deciduous woodlands with channel widths larger than maximum
wood length. Logjam dynamics and associated floodplain and channel
morphology will therefore be influenced by the management and
composition of the riparian forest and the scale and bedload regime of
the river.

5.2. Logjams and the formation and maintenance of multiple channel
patterns

Multi-channel systems in European and North American land-
scapes are known to have been more widespread in the past (Brown,
2002; Walter and Merritts, 2008; Francis et al., 2008). The presence of
multiple floodplain channel systems has been reported in other river
types including island-braided (Collins and Montgomery, 2002;
Montgomery and Abbe 2006), and meandering gravel-bed rivers
(Piégay and Gurnell, 1997; Jones, 2006). Collins and Montgomery
(2002) report that logjams are integral to maintaining channel
pattern in a steep montane island-braided river with substantial
bedload transport. In contrast, this study has identified the role of
logjams and trees on the floodplain in the formation of a multi-
channel pattern template.We hypothesized that this processmight be
a potential mechanism, in the absence of substantial bed aggradation
(see Brummer et al., 2006 model), for the formation of perennial
multi-channel patterns. To test this hypothesis we assembled channel
pattern data from a range of multi-channel river types (Table 3) and
derived a suite of metrics that described the resulting planform.
Examples were drawn from humid temperate hydroclimates.We then
compared these to the pattern produced by the ephemeral channel
network in the study streams. Reference to Table 3 shows differences
between the planform characteristics of the study streams relative to
other river types. Dynamic logjams in the case study rivers create
more secondary channels and islands relative to other river pattern
types. This is reflected in the large number of channel junctions and
numbers of islands per unit valley length. If one assumes that the
development from floodplain channel into a perennial channel would
only occur in a few cases, rather than for all floodplain channels
present, then the total number of islands, junctions and length-based
metrics would be lower for the study streams (Table 3 — 2/3 channel
model). We modeled this by randomly sampling the total set of
floodplain channels in both case study rivers to create a two and

three-channel pattern. The resulting metrics are similar to those of
island-braided systems. Despite this similarity, the process of channel
bifurcation in multiple channel patterns can be quite different. A
metric that distinguishes between active bed material driven channel
branching and those created by overbank processes is the aspect ratio
of islands and bars. Komar (1983, 1998) discusses the minimization of
flow resistance of stream lined shapes with L/W ratios of 3–4. These
are typical of bars or islands formed by sediment transport processes.
We hypothesized that the aspect ratio (L/W) of islands or bars formed
by bedload driven processes would more closely approximate to
streamlined bars or islands, than those driven by overbank flood
processes or avulsion. This hypothesis is supported by the data
derived from the streams in Table 3 and represented in Fig. 11. The
bars and islands of braided rivers tend to plot above a L/W of 2, with
the majority plotting above a L/W of 3. In contrast island-braided and
anastomosed channels tend to plot below the L/W threshold of 3. The
“islands” between channels in the Lymington river basin, plot below
the L/W threshold of 3 and despite differences in scale, overlap with
anastomosed, island-braided and other floodplain channel multi-
channel planforms. Those of the two and three-channel model have
aspect ratio's equivalent to island-braided and anastomosed channel
patterns (Table 3).

We conclude that logjam mediated mechanisms can result in the
formation of perennial multiple channel patterns. Based on the
processes reported at the study sites, we identify the conditions
required in the absence of high rates of bedload transport as; 1)
position stable, hydraulically effective logjams and 2) longer and/or
more frequent flood duration. The first criteria relates to the size and
decomposition of large wood, which in the study streams is smaller
than would naturally occur without management of the woodland
and logjams. The second criteria controls the duration of overbank
processes, and is controlled by geology, location in the basin and the
proportion of precipitation falling as snow.

5.3. Implications for river management and setting targets for floodplain
restoration

Wood and wood dynamics are an important control on channel
and floodplain habitat influencing flood inundation frequency, extent
and duration. In turn this influences opportunities for seed dispersal
and vegetation colonization and succession (Gurnell et al., 2008). Rare
invertebrate and amphibian communities occupy the temporary
pools found in floodplain channels and pools resulting in high
biodiversity (Nicolet, 1997; Davis et al., 2007), whilst perennial
secondary channels are important nursery habitat for juvenile
salmonids (Beechie et al., 2005). The resulting dynamic floodplain
patchwork is analogous to the Shifting Habitat Mosaic that

Table 3
Comparisons between different metrics of channel pattern. Study river floodplain channel networks tend to have more channels per unit length. However when the ephemeral river
network is simplified to 2–3 channels then metrics show overlap with anastomosed and island-braided pattern types.

Channel type Reach length
(m)

Total
sinuosity

Confinement No.
islands

No. islands/
valley length

Mean L/W
ratio

Braiding Index
(Brice, 1960)

No.
junctions

BW reach Meandering FPC 995 3.20 22.6 28 0.028 1.7 1.67 56
HW reach Meandering FPC 861 4.50 26.7 25 0.029 1.7 1.75 64
BW reach (2–3 channel model) Meandering FPC 995 2.40 22.6 10 0.011 2.02 1.41 20
HW reach (2–3 channel model) Meandering FPC 861 3.06 26.7 10 0.012 2.40 1.59 20
Dosewallips (Jones (2006)) Sinuous FPC 2852 3.63 9.8 24 0.008 2.2 2.13 39
Gearagh Island-braided 1050 12.0 16 134 0.128 2.98 3.18 130
Hoh Island-braided 4971 2.92 7.3 17 0.003 2.36 1.36 41
Queets Abbe and Montgomery (2003) Island-braided 1030 6.72 8.7 25 0.024 2.77 4.27 68
Skagit Island-braided 8188 3.75 6.2 13 0.002 1.85 1.46 20
Rakaia Braided 11,600 3.02 8.3 24 0.002 2.94 1.58 23
Tagliamento Braided 5962 2.43 6.6 22 0.004 3.17 1.67 54
Culm Anastomosed 3348 3.80 64.8 6 0.002 1.98 1.46 10
Hvita Anastomosed 10,362 2.89 5.6 22 0.002 2.16 1.03 48

Total sinuosity (Richards, 1982)=total channel length/valley length, Confinement=Valley width/channel bankfull width, Brice (1960) Braiding Index=2 (Length of all bars and
islands) /Centreline length.
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characterizes large piedmont alluvial floodplains and is associated
with high biodiversity (Stanford et al., 2005; Davis et al., 2007).
Similarly, Beechie et al. (2006) have associated laterally stable
channels with low biodiversity as a result of the low turnover rates
of floodplain material. The presence of logjams in alluvial bedload
sufficient channels creates stable hardpoints that force channel
migration but also create stable elevated floodplain surfaces. In
bedload limited channels with mature forest, logjams create foci for
flow and suspended sediment avulsion, resulting in highly dynamic
floodplain surfaces yet a canopy that is relatively old. This model of
smaller floodplain rivers differs from contemporary models of single-
threaded laterally stable meandering rivers that are typically the
target selected for river restoration (Kondolf, 2006). Instead, this
study accords with Brown (2002) and Walter and Merritts (2008) in
calling for reconsideration of the assumptions underpinning lowland
headwater river restoration and to recognize the role of logjams in
controlling both in-channel as well as floodplain habitat dynamics.

5.3.1. Long term dynamics and floodplain evolution
The role of logjams in the development of floodplain surfaces and

river channel pattern presents challenges for the interpretation of
alluvial sedimentary sequences. Rapid localized alluviation and
avulsion are associated with stable logjams in the presence of
sediment loads. Thus periods of increased wood loading (and in
particular large wood recruitment) and increased sediment loads can
be expected to result in dynamic channel and floodplain processes,
characterized by secondary/floodplain channel formation and flood-
plain accretion. Under these conditions, channel blocking and infilling
would be rapid, resulting in a shifting habitat mosaic (sensu Stanford
et al., 2005) across the floodplain. In contrast, periods of low wood
recruitment and supply limited transport result in channel incision,
relatively stable floodplain surfaces, low rates of vertical accretion and
simplification of channel pattern. Brown (2002), Gregory (2003) and
more recently, Francis et al. (2008) have highlighted how the role of
wood in rivers has changed in response to human modification of the
riparian corridor and channel form. Similarly, Coulthard and Macklin
(2001) have demonstrated how substantial increases in sediment
load occurs in response to both human landscape disturbance and
climate change (though without the inclusion of wood in rivers).
Therefore the evolution of floodplain surfaces over the Holocene is
likely to have been mediated not only by vegetation processes
(colonization and clearance of riparian and exposed sedimentary

surfaces) and sediment supply, but also by the formation and
dynamics of logjams and their interaction with phases of increasing
and decreasing wood and sediment transport.

6. Conclusion

This study has demonstrated the important role of wood in the
evolution of complex floodplain topography. Important differences
are evident between bedload and suspended load driven floodplain:
channel systems. In bedload systems, aggradation upstream of log
jams elevates the channel and can build floodplain surfaces.
Aggradation behind wood dams also drives lateral migration and
the formation of multiple channels through channel blocking and
avulsion. In channels with limited bedload supply and transport,
floodplain development is controlled by vertical accretion and
incision on the floodplain surface. Wood in these rivers creates local
points of flow avulsion and enhanced overbank sedimentation.
Interaction with floodplain vegetation creates a dynamic patchwork
of depositional surfaces and zones of floodplain scour. Channelization
of flows between vegetation, deposits and tree roots systems creates
localized concentration of overbank flows. In turn these lead to scour
and the evolution of floodplain channels. The network of floodplain
channels acts to distribute water, fine sediment and organic matter
over the wider floodplain, and creates routes for floodplain organic
matter back into the main river. The dynamics of these systems is
strongly controlled by the formation, development and collapse of
channel-spanning logjams, and by the mobility of large wood and
organic matter accumulations on the floodplain surface. In the study
streams, lack of bed aggradation and the mobility of debris, coupled
with the protection afforded by extensive root systems limit the
development of perennial floodplain channels. However, the resulting
channel pattern overlapswith other avulsion driven river systems and
is therefore considered to be a mechanism for the formation of
multiple channel patterns. The influence of logjams on floodplain
geomorphology and physical habitat in rivers with and without large
bedload transport presents different targets for restoration, and
demonstrates that management of riparian woodland and wood
within the channel is an important mechanism for re-establishing
dynamic channel:floodplain interactions. The longer term role of
logjams in mediating floodplain processes and channel evolution over
the Holocene requires further research particularly in relation to the
prevalence of logjams, the characteristics of the stratigraphic record
associated with logjams, and their relationship with multiple channel
patterns.
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