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Computations of channel flow with rough walls comprising staggered arrays of cubes
having various plan area densities are presented and discussed. The cube height h is
12.5 % of the channel half-depth and Reynolds numbers (uτh/ν) are typically around
700 – well into the fully rough regime. A direct numerical simulation technique, using
an immersed boundary method for the obstacles, was employed with typically 35
million cells. It is shown that the surface drag is predominantly form drag, which is
greatest at an area coverage around 15 %. The height variation of the axial pressure
force across the obstacles weakens significantly as the area coverage decreases, but is
always largest near the top of the obstacles. Mean flow velocity and pressure data
allow precise determination of the zero-plane displacement (defined as the height
at which the axial surface drag force acts) and this leads to noticeably better fits
to the log-law region than can be obtained by using the zero-plane displacement
merely as a fitting parameter. There are consequent implications for the value of
von Kármán’s constant. As the effective roughness of the surface increases, it is
also shown that there are significant changes to the structure of the turbulence
field around the bottom boundary of the inertial sublayer. In distinct contrast to two-
dimensional roughness (longitudinal or transverse bars), increasing the area density of
this three-dimensional roughness leads to a monotonic decrease in normalized vertical
stress around the top of the roughness elements. Normalized turbulence stresses in
the outer part of the flows are nonetheless very similar to those in smooth-wall
flows.

1. Introduction
Despite increased attention over recent years, the nature of the atmospheric flow

over heterogeneous collections of buildings and other man-made structures remains
incompletely understood. Even for neutral atmospheres a number of basic questions
are still unresolved. For example, although data from a number of field studies over
medium-to-large cities have been analysed in order to determine the relationships
between surface morphology and total surface drag there is still uncertainty regarding
such relationships. In their comprehensive survey of available field data, Grimmond &
Oke (1999) stated that ‘the lack of a sizable and authoritative body of measured values
means that there is no credible standard against which to validate morphometric
formulae’, a claim based on their conclusion that ‘there are few credible estimates of
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urban yo’. (yo is the surface roughness parameter defined through the usual log-law
mean flow profile). Field studies undertaken since then would not lead to markedly
different conclusions. One of the simplest questions (at least to ask) concerns the plan
area density of the building array which yields maximum surface drag. The answer
must naturally depend on the specific building shapes and orientations, but even for
the arguably simplest case of uniformly staggered arrays of cubes there remains some
uncertainty. Santiago et al. (2008) recently addressed this problem computationally,
using classical Reynolds-averaged Navier–Stokes (RANS) computations. Their results
were, overall, not dissimilar to those deduced on the basis of the rather limited
laboratory measurements available. However, as they admitted, the results suffer
from the inevitable uncertainties arising from using RANS for what is a highly
complex three-dimensional flow with regions of strong local pressure gradients, mean
flow strains, reversed flow and high-turbulence intensities (see § 4).

With the increasing levels of computer power now available, a number of authors
have employed direct numerical simulation (DNS) and large eddy simulation (LES)
to explore flows over arrays of sharp-edged elements – Stoesser et al. (2003), Kanda,
Moriwaki & Kasamatsu (2004), Coceal et al. (2006, 2007b), Coceal, Thomas & Belcher
(2007a), Xie & Castro (2006), Xie, Coceal & Castro (2008) and Orlandi & Leonardi
(2006) provide the majority of such studies, but see also Bhaganagar, Kim & Coleman
(2004) for DNS over roughness characterized by elements not having sharp edges.
These have all been of single (or sometimes two) specific roughness arrays but they
have shown unequivocally that such approaches are far superior to RANS methods
and can be used successfully to explore the detailed nature of the flow within and
above the canopy region. (The study by Coceal et al. 2006 for a staggered cube array
provided the benchmark DNS that Santiago et al. 2008 used to assess the accuracy
of their RANS computations.) In this paper we report results of a set of DNS
computations for staggered cube arrays having λp , the plan area coverage density,
varying from 0.04 to 0.25. Unlike the method used by Coceal et al. (2006), the code
employed here is of the immersed boundary variety; this allows non-uniform grids
to be used more easily so that mesh resolution within the canopy, especially close to
all solid surfaces, is significantly higher than anything used previously for these kind
of flows. Since it was anticipated that the frictional drag contribution to the total
drag might be non-negligible at the lower values of λp (unlike at higher values where
the form drag dominates overwhelmingly), such resolution was thought likely to be
particularly important.

Attention is concentrated in this paper on the mean flow field. We discuss both
how the surface drag components vary with λp and the implications of the data for
the mean velocity log law. The usual definition of a fully rough-wall condition is
that frictional contributions to the wall drag are negligible – all the wall drag arises
from pressure forces acting on the roughness elements. This, incidentally, means that
the viscous length scale (ν/uτ ) is not a relevant near-wall scale and such flows are
therefore much less dependent on Reynolds numbers, like the momentum thickness
Reynolds number Reθ , than are smooth-wall flows (Castro 2007). An immediate
consequence is that the high Reynolds numbers usually thought necessary before one
can expect a substantial log law might, for fully rough-wall flows, be rather lower. In
any case, rough-wall flows of the type considered here require careful consideration of
the effective origin of the wall-normal coordinate. It was perhaps Perry, Schofield &
Joubert (1969) who first emphasized the complications posed by roughness because
of the shift in the effective y = 0 location. For most of their roughnesses, as for
all cases when the roughness height is very small compared with the boundary layer
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depth, there was no chance of making measurements within the roughness array itself,
whereas for the larger roughness (comprising sharp-edged rectangular blocks) as in
the present case, it was possible to determine the pressure drag forces by obtaining
pressure fields around the obstacles.

There has been considerable discussion, particularly over the last decade or so,
concerning the value of von Kármán’s coefficient κ both in smooth-wall (engineering
type) flows and the atmospheric boundary layer, where the surface is almost invariably
fully rough. There is controversy in both camps. For the former, Nagib & Chauhan
(2008) review some of the recent data and conclude that κ is not universal but
rather is flow dependent. In the atmospheric surface layer, there is evidence that κ

falls with increasing roughness Reynolds number (uτyo/ν). Frenzen & Vogel (1995),
for example, in reviewing the half-century history of evaluation of κ from such
measurements conclude that it varies ‘from a maximum of 0.41 in light winds over
open water and smooth land surfaces to a minimum of 0.37 in stronger winds over
forests and cities’. (This range brackets the continuous range of values suggested
by Nagib & Chauhan (2008) for smooth-wall flows of different types.) Likewise,
Oncley et al. (1996) found that κ falls slowly with increasing roughness Reynolds
number. However, field measurements are bedeviled by relatively large scatter, the
possible influences of thermal stability and, for large roughness elements, uncertain
but definitely non-zero offsets in the effective surface height (usually termed the
‘zero-plane displacement’). Some authors therefore go no further than stating that
there is no compelling evidence that κ is independent of roughness Reynolds number
(Andreas & Trevino 2000). More recently, Andreas et al. (2006) have argued that the
apparent fall in κ with uτyo/ν cannot be distinguished statistically from an ‘artificial
fall’ inherent in the log-law relationship. In any case, there does seem to be a consensus
that in the atmospheric boundary layer (almost always fully rough) κ is measurably
lower than the classical smooth-wall value around 0.4; as a very recent example, Li,
Zimmerman & Princevac (2008) find a value of 0.36 for neutral flow over a site in
Washington State (USA), where the surface ‘was covered by sparse sagebrush and
grass, with no fully vegetated canopy present’. In that case, there can be little doubt
about the essentially zero value for the zero-plane displacement d . Another example
of a wall flow apparently yielding lower values of κ is the DNS study of Breugrem,
Boersma & Uittenbogaard (2006), who considered wall permeability in channel flow.
Because of the porous wall condition they too had to consider shifts in the vertical
origin and they obtained values of κ down to as low as 0.31. In the present paper,
we suggest that because DNS of very rough surface flows (in a channel) allows
precise determination of a physically based zero-plane displacement as well as the
total wall drag, conclusions about the log law are less susceptible to ‘measurement’
uncertainties. The present data certainly have implications for the log law and von
Kármán’s coefficient, as we demonstrate.

Some features of the basic turbulence fields are also explored briefly in this paper,
not least because they allow one to assess the adequacy of the hypothesis (usually
attributed to Townsend) that surface roughness merely changes the wall stress but not
the structure of the boundary layer. There is contradictory evidence in the literature,
particularly in the context of boundary layers (e.g. Krogstad & Antonia 1999). Some
comments about the turbulence within the canopy region (i.e. below the top of
the roughness) are also made, with reference to the dispersive stresses which arise
because of the strong inhomogeneities in the flow there. A more comprehensive study
of the nature of the turbulence both within and above the canopy will be presented
in a subsequent paper.
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The numerical method is outlined in the following section, § 3 presents results for
global quantities like the drag components, yo, d and the log law, and some brief
discussion of the turbulence characteristics is given in § 4. Conclusions are summarized
in § 5.

2. Numerical procedures
The non-dimensional Navier–Stokes and continuity equations for incompressible,

neutrally stable flows can be expressed as

∂Ui

∂t
+

∂UiUj

∂xj

= −∂P

∂xi

+
1

Re

∂2Ui

∂x2
j

+ �δi1, ∇ · U = 0, (2.1)

where Re is the Reynolds number based on the cube height h and the bulk velocity

(Ub = 1/H
∫ H

0
Udy), which is held constant in time, δij is the Kronecker delta, Ui

is the component of the velocity vector in the i direction and P is the pressure
per unit mass. The quantity � is the pressure gradient required to maintain the
constant flow rate and thus varies with time. This method of forcing the flow is
different from, but entirely equivalent to, that used by, for example, Coceal et al.
(2006), who imposed a fixed pressure gradient so that the flow rate (rather than
the overall pressure gradient) varied with time. The Navier–Stokes equations were
discretized in an orthogonal coordinate system using the staggered central second-
order finite difference approximation. Advancement in time was achieved with a
hybrid low-storage third-order Runge–Kutta scheme, using a fractional-step method
with viscous terms treated implicitly and convective terms explicitly. The large sparse
matrix resulting from the implicit terms was inverted by an approximate factorization
technique and, at each time step, the momentum equations were advanced with
the pressure from the previous time step, yielding an intermediate non-solenoidal
velocity field (û), which was corrected to the required divergence-free solution by
using a scalar quantity to project it onto a solenoidal field (see Kim & Moin 1985).
As noted earlier, the surface roughness (arrays of cubes in this case) was treated
using an efficient immersed boundary technique, which allows solution over complex
geometries without the need for intensive body-fitted grids. This consists of imposing
Ui = 0 on the body surface, which does not necessarily coincide with the grid. To
avoid the geometry being described in a stepwise way, at the first point outside the
body the second derivatives in the Navier–Stokes equations are discretized using the
distance between the velocity points and the boundary of the body rather than using
the mesh size. Full details of the numerical schemes can be found in Orlandi (2000)
and Orlandi & Leonardi (2006).

Figure 1 shows the x–z computational domain for (two of) the surfaces. The plan
area density λp is defined as the plan area of the cubes divided by the total plan area.
The figure shows the cases λp = 0.25, the subject of considerable earlier experimental
and numerical work (e.g. Cheng & Castro 2002: Coceal et al. 2006) and λp =0.11.
Note that in every case the cubes are lined up in the spanwise direction, but staggered
in the axial direction and with each cube positioned centrally between the two nearest
upstream cubes. There are, of course, numerous other possible arrangements of
staggered patterns which would yield the same λp , but this one is the most symmetric.
Note also that the cube size is the same in each case and, because they are cubes,
the frontal area density λf (frontal area divided by total plan area) is the same as λp .
Only use of non-cubic blocks would allow λf �= λp , but the parameter space would
then become very large. The minimal ‘repeating unit’ is identified in the figure; the



Channel flow over large cube roughness 5

(a) (b)

Figure 1. Geometrical configuration. Each cube has the same size; the differences in the
figures are due to the different extent of the computational boxes. (a) Plan density λp = 0.25
(1:4); (b) λp =0.11 (1:9). The thick line denotes the minimal repeating unit of which there are
12 in each case.

DNS domain contains four of these in the axial and (with one exception) three in
the spanwise directions, although some computations were also done with larger
spanwise and/or axial domains. In terms of cube height h the axial and spanwise
domain widths therefore varied between Lx =8h, Lz = 6h, respectively, for λp = 0.25,
to Lx = 12h, Lz = 9h for λp =0.11. For the case of the smallest λp (0.04), the domain
width covered only two repeating units (Lx = 10h, Lz = 10h). It should be emphasized
that the domain length is not sufficient to allow development of single identifiable
structures of very long axial extent. Typical spatial correlation coefficients of the
axial fluctuating velocity did not always fall below about 0.3 over half the length of
the (periodic) domain. However, Coceal et al. (2006) showed for the λ=0.25 case
that even restricting the axial length to 4h rather than (the present) 8h led to no
discernible changes in the mean flow statistics, or even the second-order quantities like
the turbulence stresses. The present domain lengths (8h � Lx � 12h) are thus adequate
for our purposes.

As in Coceal et al. (2006) periodic conditions were applied in the streamwise and
spanwise directions and a free-slip condition (∂u/∂y = v = 0) was imposed at the upper
boundary, which was at y =H = 8h where y = 0 is at the bottom wall. This allowed
us to compute a ‘half-channel’ with fewer computational resources, but note that the
flow near the upper boundary is not strictly identical with that on the symmetry
axis of a full channel (with cubes on both walls), because in that case symmetry
only occurs in the mean. No-slip conditions were applied on all solid surfaces. The
Reynolds number was Re =Ubh/ν =7000 which led to typical Reynolds numbers
based on the friction velocity uτ of around 600 (i.e. uτH/ν ≈ 4800), similar to the
500 imposed by Coceal et al. (2006) in their computations. As indicated in § 1 the
dependence on Reynolds number in these flows is weak – largely because the surface
drag is predominantly form drag (see Xie & Castro 2006 for further discussion of
this point). In their boundary layer laboratory experiments, Cheng & Castro (2002)
found little variation in the drag for Re between about 5000 and 12 000. Most of
their measurements had δ/h= 7.5, where δ is the boundary layer thickness. Coceal
et al. (2006) showed that their own more limited domain height (H = 4h) did not
constrain the flow below about z =3.5h, with data in the canopy and roughness
sublayer regions agreeing well with experimental data obtained in a boundary layer.
The present computations might therefore be expected to yield flows in these regions
very close to those that would occur in a developing boundary layer, provided the
boundary layer depth is not too different from 8h.
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Figure 2. (a) Pressure gradient histories; traces shifted vertically for clarity; legend identifies
values of λp and the vertical offsets of the time traces. (b) Dispersive stresses for the axial
component; legend shows λp and the corresponding number of cubes per repeating unit plan
area. Both figures show raw (unnormalized) data.

Three hundred and twenty grid nodes were used in the vertical, with 100 uniformly
spaced nodes over the height of the cubes. Mesh sizes in the other two directions were
always h/32, yielding typically about 35 million nodes within the domain. Ratios
of the vertical grid size to the Kolmogorov length scale nowhere exceeded about
five. The grid corresponds to even better (vertical) resolution than that used by
the simulations of Coceal et al. (2006) at similar Re – they demonstrated that in
their computations the major part of the dissipation spectrum was resolved. We are
therefore confident that the present simulations are well resolved, not least in terms of
obtaining reasonably accurate estimates of the frictional drag, which requires accurate
determination of the wall-normal velocity gradients on all solid surfaces.

All computations were initiated with uniform velocity everywhere and had start-up
run periods of at least 500T , where T is a global time scale given by T = h/Ub.
Subsequent averaging times were at least 2000T in nearly all cases. These times are
both a little smaller than used by Coceal et al. (2006) but generally turned out to
be adequate for obtaining converged statistics. A major issue, however, concerns the
presence in some cases of spanwise inhomogeneities caused by large-scale longitudinal
‘rolls’, which could periodically appear and disappear over quite long time scales. If
the averaging time is too short (or does not capture an integral number of these
periodicities) dispersive stresses arising from spatial inhomogeneities caused by the
rolls are significant in the region above the canopy layer, as shown also by Coceal
et al. (2006). The relatively large time-scale variations in the flow can be seen in,
for example, the time traces of the overall pressure gradient, which are shown in
figure 2(a). Only for the smallest plan area density (λp = 0.04) are, arguably, such
variations absent. They seem to be most evident in the λp = 0.13 case, but there is
no obvious reason why this should be so. Typically, the oscillation time periods are
between about 200 and 500 non-dimensional time units; this is large and it is clear
that too short an averaging time would lead to inadequate statistics. In the absence
(on average) of large longitudinal rolls, one expects the dispersive turbulence stresses –
i.e. those that arise from spatial inhomogeneities in the mean flow – to be small above
the canopy region, as discussed by Coceal et al. (2006). Figure 2(b) shows, as an
example, vertical profiles of the (un-normalized) axial dispersive stress and in most
cases it is indeed very small for y/h > 1. Within the canopy, dispersive stresses are



Channel flow over large cube roughness 7

–0.01

0

0.01

0.02

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

S
tr

es
s 

er
ro

r

0.25, 1:4
0.20, 16:81
0.16, 4:25
0.13, 16:121
0.11, 1:9
0.04, 1:25

0.2

0.4

0.6

0.8

1.0

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

y/h y/h

–
uυ

/u
τ
2

(a) (b)

Figure 3. Spatially averaged turbulence shear stress: (a) normalized by total wall stress, with
all six cases undistinguished and the bold straight line showing the expected total stress;
(b) the difference between the computed turbulence stress and the expected (linear total) stress,
with each case distinguished using a single symbol placed on the profile. Normalization is the
same as in (a).

inevitably significant and are discussed briefly in § 4. As a further demonstration that
the averaging times were in all cases sufficient, figure 3 presents the spatially averaged
Reynolds shear stress (−uv) profiles for all cases, normalized by the total wall stress
which was computed as explained in § 3.1.1. One expects the usual turbulence shear
stress, −uv, to be close to the total shear stress, which must vary linearly (compare
the straight bold line in figure 3a). It is clear that in all six cases the computational
data have the expected behaviour and, in figure 3(b), the difference between the sum
of the turbulence and viscous stresses and the expected linear total stress is shown.
(The viscous shear stress was found to be below 0.5 % of the Reynolds stress over
the bulk of the flow above the canopy.) In no case do the differences exceed about
1.2 % (for y/h > 1.0). Too short an averaging time would, however, lead to much
larger errors than those shown in figure 3(b).

3. Results and discussion
3.1. The mean flow

3.1.1. Deductions from mean velocity profiles

The two common ways of writing the mean velocity log-law profile for a fully
rough surface are

U+ ≡ U

uτ

=
1

κ
ln y+ + B − 	U+ =

1

κ
ln

(
y

yo

)
, (3.1)

where 	U+ is usually termed the roughness function. This is zero for a smooth surface
but generally increases with increasing roughness. Note that 	U+ = f (youτ/ν) only
(strictly, f (youτ/ν, B, κ)) and that yo, the roughness length, essentially encapsulates
all the various geometrical details of the roughness geometry. Note also that in (3.1),
and henceforth, it is to be understood that y has been reduced by the zero-plane
displacement d . This was initially determined for every case in the usual way, i.e. by
assuming there would be a logarithmic region in the spatially averaged mean velocity
profiles and adjusting d to yield a straight line in the log-linear plot of U versus y

whose slope (uτ/κ) matched the value expected from the wall stress and a given value
of κ (0.41). The wall stress was obtained independently of mean velocity profiles by
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Figure 4. Spatially averaged mean velocity profiles. Plotted against y+ (a) and y/y0 (b). The
symbols are located near the end of each curve to which they refer. In (a) the usual log-law
line, U+ = (1/κ)lny+ + B has B (normally 5) reduced by 12, for clarity.

computing the sum of the time-averaged form drag on all cubes in the domain and
the total frictional drag on all horizontal surfaces; it could also be computed directly
from the time-averaged longitudinal pressure gradient and, for all cases, the difference
in uτ obtained from these two methods was below 1 %.

We consider first the way in which changes in λp affect the spatially averaged
mean velocity profiles. These are shown in figure 4. With the usual inner layer
scaling (figure 4a) the profiles all fall well below the standard log-law line, as
expected, with values of 	U+ reaching a peak of around 14.5. Note that to
emphasize the variations in roughness function from case to case, B in figure 4(a)
has been taken (arbitrarily) as −7, rather than the usual 5, moving the dashed line
conveniently close to the computed profiles. For λp = 0.04, d is very small and any
possible log-law region occurs well above the cube’s crest plane (around y+ = 500)
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but 	U+ is still in excess of 12. Individual profiles at particular (x, z) locations do
not, of course, necessarily have a log-law shape inside the roughness sublayer – the
region within which the mean flow is spatially inhomogeneous in the horizontal. The
top of this region is around y/h= 1.5, judged by the approximate convergence of
individual turbulence stress profiles, and all log-law fits have taken this height as a
lower limit. It should be emphasized that there is no a priori reason to expect the
appearance of a log-law region in the ‘spatially averaged’ profiles below this height,
unless one accepts that the usual matching or mixing length arguments hold in a
spatially averaged sense. The particular, rather extreme case – of just one cube in
an area equal to 25 times its own plan area (λp = 0.04) – might more properly be
regarded as flow over an isolated bluff body, rather than a genuine rough-surface flow.
There are much more convincing log-law regions in all other cases, as emphasized in
figure 4(b), which shows the profiles plotted using the more appropriate yo scaling
(the far right-hand side of (3.1)). Close inspection of figure 4(a) indicates that 	U+

rises to a maximum as λp increases before falling again; the corresponding variation
in yo which produces the collapse in figure 4(b) is shown in figure 5. This figure also
includes the variations in zero-plane displacement, which are discussed in due course.

Figure 5 suggests that the area density leading to the peak yo is around 15 %.
It could be argued that the ‘roughest’ surface is the one that produces the highest
wall stress (thus requiring the largest axial pressure gradient) for a given bulk flow
rate. The figure includes the friction velocity data and shows that their variation is
broadly similar to that of yo. Leonardi et al. (2003) found a similar correspondence
between uτ and 	U+. (Recall that the bulk velocity Ub is kept fixed throughout the
computations; variations in ρu2

τ from case to case correspond to variations in the
time-averaged pressure gradient.) Only if the log law were obeyed all the way between
y = yo and y = H would uτ/Ub be expected to change monotonically with yo/h. As
in a smooth-wall channel flow, the log-law region does not in fact cover the entire
domain height, so it would not be surprising if there were a small mismatch between
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the λp values for maximum yo and maximum uτ (although in fact figure 5 suggests
that this is insignificant). We can conclude that the plan area density which yields
maximum surface stress (and thus drag and, roughly, yo/h) is around 15 %; in the
context of boundary layer flows it seems unlikely that this result will vary significantly
with, say, δ/h where δ is the boundary layer depth.

This range of λp for maximum roughness effect is very close to that found by
Kanda et al. (2004) for a square array of cubes, using LES. It is also similar to the
range deduced from the predictions of Santiago et al. (2008) (see figure 5), who used a
standard RANS model. However, the latter showed that the values of some quantities
(like the sectional drag coefficient, see below) when computed using RANS are larger
than the DNS results by around a factor of 2, which must be largely a result of the
inadequacies in the standard k-ε turbulence model used for the RANS computations,
some of which were noted by Santiago et al. Figure 5 also includes experimental data
obtained by Cheng et al. (2007) in a boundary layer. The agreement is satisfyingly
close to the present results, especially given the well-known uncertainties in the fitting
procedures required to obtain both quantities – particularly in boundary layers for
which uτ has also to be obtained in some independent way.

Hagishima et al. (2009), in wind tunnel boundary layer experiments over various
surfaces, found for the staggered cube array with λp = 0.25 a value of yo/h similar
to the present value. Like Cheng et al. (2007) they obtained the surface drag directly
using a force balance, which should provide a more accurate measure of uτ and in that
sense is equivalent to channel calculations in which uτ is also known independently.
On the other hand, Macdonald (2000) reported yo/h values from boundary layer
experiments over the same surface and his results (not shown here) are higher than
the present data (and those of Cheng et al. 2007) and they also suggest a peak
yo/h at a rather higher value of λp (about 0.18). However, although he used a more
sophisticated method of estimating the three parameters (yo/h, d/h, uτ ) from the
velocity profiles, as discussed in Macdonald, Griffiths & Hall (1998), he used neither
an independent estimate of uτ nor spatially averaged velocity profiles – both of which
are available only in the experiments of Cheng et al. (2007) and the present DNS (and
Coceal et al. 2006). The differences are therefore perhaps not surprising, although it
is interesting that the resulting values of yo/h are about a factor of 2 higher than
those in figure 5 (see below).

As mentioned earlier, the zero-plane displacement d was found in the usual way by
optimizing the fit of the spatially averaged mean velocity to the log-linear profile (2),
assuming κ =0.41 and using the known wall stress to compute uτ . As expected, it rises
with increasing λp , as evident in figure 5. For large enough λp it would eventually
reach a value near unity, of course, since once λp = 1 the flow would revert to a
smooth wall channel of half-depth 7h. Coceal et al. (2006) argued that in a channel
the proper friction velocity to be used in the log law (u∗, say) should be reduced from
uτ by the factor

√
1 − h/H , accounting for the expected linear variation in stress from

y = d to the centreline (see figure 3a). More consistently, one should use the factor√
1 − d/H . In the present case the difference between u∗ and uτ is less than 4 %;

the consequent changes in yo (around a 15 % decrease) do not change the trends
shown in figure 5 and, in addition, the log-law fit was not significantly improved. The
resulting d/h values, like those of Hagishima et al. (2009) and Cheng et al. (2007),
are significantly higher than those of Macdonald’s measurements (Macdonald 2000)
or his model (Macdonald et al. 1998); as in the case of yo/h this must be a result of
uncertainties in trying to estimate all three parameters – uτ , yo and d . Constraining
uτ by obtaining it independently of mean velocity profiles is inherently a much more
satisfactory procedure.
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However, we do not believe that the zero-plane displacement height d should be
viewed merely as an additional fitting constant. Like yo, it must clearly depend on
(probably all) the various geometric features of the roughness and it is surely better
to seek a physically based definition for it, even though it is probably not possible
to relate it in some analytic way to these various features, which some authors in
the meteorological field have sought to do. In fact, Jackson (1981) demonstrated
rigorously that the zero-plane displacement should properly be thought of as the
height at which the total drag acts or, equivalently, the mean level of momentum
absorption by the surface. This can be expressed by

d ′ =

∫ h

0

yD(y)dy

/ ∫ h

0

D(y)dy, (3.2)

where D(y) is the sum of all forces acting at height y. The denominator in (3.2) is
thus the sum of all forces, whether from axial pressure differences across the cube or
frictional forces on the cube faces and the bottom surface. So, in principle, d ′ is a
fluid dynamical property of the surface, which must satisfy dimensional constraints
similar to those on yo. (Note that, unlike d or d ′, yo does not influence the velocity
gradient.) For the present case, it is thus of interest to compute the height as defined
above and compare it with the value of d necessary to achieve a good log-law fit
given the usual value of κ . Figure 5 includes the resulting d ′ data and, except at the
lowest λp , they are a little below the values of d . Although not very large (typically
about 20 %), the difference is very significant; using d ′ in the log-law expression does
not yield a sensible fit to the mean velocity data. Jackson’s arguments (Jackson 1981)
depend crucially on the reasonable assumption that the inertial sublayer does not
depend on the detailed morphology of the surface except for the height at which the
(axial) drag force acts. A possible implication of the present results would thus be
that this assumption does not hold. An alternative possibility, however, is that von
Kármán’s coefficient is not universal, but depends on the nature of the surface, as
discussed in § 1. Pursuing this possibility for the λp =0.25 case as an example, using
d ′ instead of d and

√
1 − d ′/H )uτ instead of uτ (see above), the value of κ required

to produce a good log-law fit is 0.36. The fit is then in fact marginally (and in some
of the other cases significantly) better than that shown in figure 4(b). Doing the same
analysis for all cases leads to the data shown in figure 6(a), which suggests that values
of κ vary between 0.41 and 0.36 as λp increases. The values of yo are now about a
factor of 2 higher than previously and the peak in yo occurs around λp =0.17 – a
little higher than suggested by the data in figure 5.

The present data are almost unique for cases in which d is certainly ‘not’ zero,
in that they supply accurate determination of d on the basis of Jackson’s physically
appealing definition (Jackson 1981). They seem to confirm that, indeed, κ varies
depending on the nature of the surface, as suggested by some of the atmospheric
data mentioned in § 1. Some additional evidence for surfaces of the present kind can
be adduced from the work of Kanda et al. (2004), who undertook LES of flow over
square in-line (rather than staggered) arrays of cubes. They found that use of d ′ –
which, like the present data, was significantly lower than d – led to ‘no acceptable
fitting log-law region’ for any λp . The same conclusion was reached by Cheng et al.
(2007), who deduced surface drag from both a floating balance and surface pressure
data, for boundary layers over staggered cube arrays (λp = 0.0625 and 0.25). But both
these authors used a fixed value of κ and their data would have been well fitted by
a log law if κ had been chosen appropriately. Indeed, the Cheng et al. (2007) data,
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line).

reworked using d ′, is included in figure 6(a) and is seen to be entirely consistent with
the present DNS data.

Figure 6(b) shows the resulting values for κB ′ (with B ′ = B − 	U+) in the form
presented by Nagib & Chauhan (2008). They claim that κ in zero-pressure-gradient
boundary layers (at sufficiently high Reynolds number) is 0.384 whereas in planar
channels and in pipes it is ≈0.37 and 0.41, respectively. They collected a whole
range of smooth-wall high-quality high-Reynolds-number data from pipes, channels
and boundary layers, including those under various favourable or adverse pressure
gradients, and showed that the product κB does not vary linearly with B , the additive
constant in the log-law relation, as it would if κ were constant. Rather, κB varies
nonlinearly with B; the zero-pressure-gradient boundary layer, the two-dimensional
channel and the pipe cases appear as single but separate points on the curve, with
other points coming from variable pressure gradient cases. Figure 6(b) includes data
from the Cheng et al. (2007) experiments and the LES of Xie et al. (2008) for channel
flow over roughness elements of random height. It is evident that the data are fitted
best by a polynomial rather than linear curve and that this curve provides a reasonable
continuation of (much of) Nagib and Chauhan’s curve fit (Nagib & Chauhan 2008)
for smooth-wall data – with the exception of the high adverse pressure gradient data
which provides values of B between about −1 and −4. (For smooth walls, 	U+ =0,
of course.)

By writing κy = u3
τ /(u

2
τ ∂U/∂y) (from the log law) it is possible to argue rather

loosely that any change in the ‘dissipation deficit’ – i.e. the amount by which the
dissipation does not balance the production of turbulence kinetic energy in the log-
law region – will inevitably change κ (Vogel & Frenzen 2002). It is known that large
roughness tends to make the turbulence more isotropic and this is quite likely to
change the production/dissipation ratio, as indeed do significant pressure gradient
effects in smooth-wall flows. We return to this point in § 4.

3.1.2. Pressure and frictional drag

It is of interest to consider how much of the surface stress is provided by frictional
drag on the y = 0 surface and on the cube tops (and sides), compared with the
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proportion arising from pressure (i.e. form) drag, not least because this would indicate
the likely Reynolds number sensitivity in the results (e.g. for uτ ). As mentioned
earlier, a common assumption is that the frictional components are negligible, at
least for sufficiently large λp . The frictional drag Df was obtained directly from the
present results by summing the usual expression for wall stress (μ(∂U/∂y)|

o
) over all

the y = 0 and y = h surfaces, and similarly for the side surfaces. Likewise, defining
	p(y) = 1

h

∫
span

[pf (y) − pb(y)]dz as the (time-averaged and) laterally integrated front-

to-back pressure difference across a cube at height y, the form drag Dp was found
by summing over the height of the cube, so that for the entire domain surface
Dp = (λp/h)

∫
	pdy. Note that Df + Dp = ρu2

τ . The frictional drag can be further
subdivided into three contributions: one arising from friction at y = 0, Db say, one
associated with the flow at the cube crests (y = h), Dc say, and one for the cube
sidewalls, Ds say, so Df = Db+Dc+Ds . Figure 7 shows how these various contributions
to the total drag force vary with λp . It is clear from figure 7(a) that the frictional
drag is a minimum at about 5 % of the form drag for λp ≈ 0.16, with roughly
equal contributions from bottom and crest friction (figure 7b). However, it naturally
becomes much larger for less dense arrays when, although the influence of crest
friction becomes negligible, there is a significant increase in bottom friction. On the
other hand, for much denser arrays, the crest friction (Dc) actually rises above the
total friction, because the recirculating regions between the cubes become a more
dominant feature of the inter-cube flow and make a negative contribution to the total
friction – see figure 7(b) at λp =0.25. For even larger λp , the magnitude of the bottom
friction must eventually fall again, with the crest friction providing all the surface
drag since the form drag must also tend to zero: i.e. as λp → 1, Df → Dc, Db → 0
and Dp → 0. Figure 7(b) suggests that the crest and side friction contributions may
become negative for small enough λp (lower than 0.04). This is entirely possible and
would be associated with the significantly larger reversed flow region on the top and
side surfaces of more isolated cubes.

It is worth emphasizing here that it would not be possible to obtain data of
the kind shown in figure 7 using RANS methods, for none of the current wall-law
formulations are appropriate for the flows near any of the solid surfaces. Likewise,
regular LES computations would in principle be problematic in this respect also,
unless very sophisticated near-wall treatments were implemented. On the other hand,
since the frictional contribution to total surface stress is below about 7 % provided
0.1 < λp < 0.25, inadequate wall treatments would not necessarily seriously degrade
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LES computations of the overall flows in this range of λp (as argued by Xie & Castro
2006).

A number of authors have discussed how best to normalize Dp to produce an
appropriate drag coefficient. This is particularly important for the class of urban
canopy models which treat the urban area as a porous medium modelled in terms of
a drag force distributed in height (as in, e.g. Coceal & Belcher 2004). In such models,
a ‘sectional’ drag coefficient, Cd(y) say, is needed. This requires knowledge of the
vertical distribution of both the drag force (	p(y)) and the spatially averaged flow
variables that can be used to provide an appropriate velocity scale – at least the mean
velocity and perhaps also other quantities, like the turbulence kinetic energy. These are
extremely difficult, if not impossible, to obtain from field or laboratory experiments
but it is straightforward to deduce them from computational data. Figure 8 shows
the variation with height of the laterally integrated pressure difference across the
cube, 	p(y), for all cases. In figure 8(a) the data are normalized using u2

τ /λp , so
that if frictional drag were zero the integral over the height of the cube would be
exactly unity. It is clear that as the areal density decreases the peak-to-peak variation
in the sectional pressure difference falls significantly. So, for example, whilst it is
1.3 for λp = 0.25 it is only about 0.2 for λp = 0.04; in the latter case the frictional
contribution is significant, so the integrated value of λp	p/u2

τ is only about 0.81.
In all cases the largest contribution to the form drag arises from the upper half of
the cubes, principally because the mean velocity is highest there. In fact, in every
case the spatially integrated mean axial velocity over 0.5 <y/h � 1.0 is around 80 %
of the value integrated over the whole cube height; it is interesting that this figure
is largely independent of λp . Note that these results are consistent with the finding
that for arrays of random (or at least multiple) height obstacles, the surface stress is
dominated by the form drag of the tallest obstacles (see Kanda 2006; Xie et al. 2008).

Figure 8(b) shows the sectional drag coefficient, defined by Cd(y) = 	p/(1/2)U (y)2,
as a function of height for each value of λp . The data emphasize the difficulty with
this definition, arising because U (y) becomes very small in the lower regions of the
flow and may even become negative. (Recall that U (y) is the horizontally averaged
velocity. For λp = 0.25 the recirculating flow behind each cube is sufficiently extensive
within the inter-cube regions to lead to a change of sign in U (y).) The consequent
difficulty of parameterization in the urban canopy models mentioned above has led
some authors to consider alternative normalizations. Martilli & Santiago (2007), for
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example, defined a modified drag coefficient as

Cd mod (y) =
2	p(y)

qtot (y)
, (3.3)

where qtot is twice the total kinetic energy in the flow, which includes the contributions
from the spatially averaged velocity, time fluctuations and spatial fluctuations from
it. So qtot (y) = U (y)2 + v2

tke(y) + v2
dke, where v2

tke is twice the usual turbulence kinetic
energy (i.e. the sum of mean squares of all three fluctuating velocity components)
and v2

dke, likewise, is twice the dispersive kinetic energy arising from the spatial
fluctuations in the time-averaged mean velocity field. This definition recognizes that
the mean velocity is not really an appropriate (or the only important) velocity scale
in regions of high-turbulence intensity. Although Cd mod (y) (not shown) varies much
less significantly with height than Cd(y), it would really only be a useful basis for
parameterization schemes if the spatially integrated variations with height of the
turbulence quantities were known a priori; this is not in practice ever the case
so we do not pursue discussion of Cd mod (y) here. It is worth noting, however, that
although the values of Cd(y) are seriously overpredicted by RANS methods (shown
by Santiago et al. 2008, for λ= 0.25), the present data suggest that height-averaged
values of Cd mod (y) are relatively close to those obtained by Santiago et al. using
RANS. This seems to be an example of how RANS can sometimes give reasonable
results but only because of the counterbalancing of large errors. These may arise,
in the k − ε model for example, from inadequate modelling of various terms in the
energy and/or dissipation equations, combined with inappropriate use of an eddy
viscosity model.

4. The turbulence field
We confine ourselves largely to consideration of the turbulence stresses. Figures 9(a)

and 9(b), respectively, show profiles of the spatially averaged normalized axial (u2
+
)

and vertical (v2
+
) normal Reynolds stresses for each case. The figures include the

smooth-wall channel flow data of Moser, Kim & Mansour (1999), for a Reynolds
number uτH/ν = 587, where H is the channel half-width. The wall distance for this
latter data has been scaled so that y/h= 1 corresponds to the smooth-wall location.
The first observation is that once y/h > 2 the present rough surface results neither
vary very much amongst themselves nor are significantly different from the smooth-
wall data. (Note, however, that since the present outer boundary condition – free
slip – differs from that of Moser et al., who computed the entire channel depth, the
vertical stress behaviour is necessarily different near that outer boundary.) Data from
a boundary layer at moderate Reynolds number are also included. These are plotted
at y/h= 2 and show the range of data obtained by Erm & Joubert (1991) for wall
distances within 0.1 <y/δ < 0.3 – i.e. roughly within the log-law region. Again, there
is little difference between these data and the present data a little above the top of
the canopy. Not surprisingly therefore the structural parameters v2/u2 and −uv/k,
where k is the total turbulence kinetic energy, are also very similar to those in the
smooth-wall flows (see figure 10 discussed below).

It thus seems that the roughness does not affect the basic turbulence features of the
outer flow, in conformity with Townsend’s hypothesis that the only effect of roughness
is to change the surface stress. Given the relatively large size of the roughness in
the present case, this is perhaps a little surprising. It is also in direct contrast to
the findings of Bhaganagar et al. (2004) who, from DNS of a channel flow with one
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from Erm & Joubert (1991).

smooth and one rough wall, showed that the appropriately normalized Reynolds
stresses in the outer flow were significantly smaller on the rough-wall side. These
computations used ‘egg carton’ type roughness, having smooth (three-dimensional)
sinusoidal shapes. In addition, the roughness heights were very low (with equivalent
sand grain roughness heights of k+

s < 70), so that the rough surfaces were in fact only
transitionally rough. One might on that basis have expected only small effects in the
outer flow. In contrast, and in agreement with the present data, Bakken et al. (2005)
have shown that normal stresses in the outer region of channel flows with rod-
roughened or mesh-roughened walls are very similar to smooth-wall data. But they
suggested that ‘levels of v2

+
are much more connected to Reynolds number effects

than to boundary conditions’. Computations for the present λp = 0.25 case at one
half and one quarter of the original Reynolds number (Re = Ubh/ν = 7000) showed
noticeably smaller stresses in the outer region so this may indeed be the reason for
the rather different behaviour found by Bhaganagar et al. (2004).
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Nearer the wall, there are of course very significant effects of surface morphology.
Figure 9 shows that the normal stresses reach a peak just above the roughness crests
(y = h) and these peaks fall with increasing roughness density. Likewise, within the
roughness canopy (y/h < 1) these two stress components (and the spanwise stress, w2

+
,

not shown) are increasingly reduced as λp increases. These changes are emphasized
in figure 10, which shows (in figure 10a) the ratio of Reynolds shear stress to total
turbulence kinetic energy, k = (1/2)(u2 + v2 + w2), and (in figure 10b) the ratio v2/u2,
within the lower half of the flow (y/h < 4). It is clear that with increasing λp the
turbulence within the canopy becomes increasingly isotropic, in that axial and vertical
normal stresses become more similar. On the other hand, the shear stress becomes
larger compared with the turbulence energy. This often suggests an increase in the
efficiency of turbulence production processes, but it should be remembered that in
this region mean flow gradients are generally small and dispersive stresses, i.e. those
which arise because of the spatial inhomogeneity, are significant (recall figure 2b);



18 S. Leonardi and I. P. Castro

0

5

10

15

0.5 1.0 1.5 2.0

v2+

�
U

+

0

0.05

0.10

0.15

y o
/h

Increasing λp

λp

(a) (b)

0.5

1.0

1.5

2.0

0 0.1 0.2 0.3

At y = h
At y = d ′

v
2
+

Figure 11. Variation of normal Reynolds stress at y = h with roughness. (a) Open symbols:

	U+ versus v2
+
; solid symbols: y0/h versus v2

+
. (b) v2

+
versus areal density λp .

typically the total dispersive kinetic energy is some 30 %–40 % of k. In view also of
the high degree of three-dimensionality in the canopy flow, along with large spatial
changes in mean flow direction, it would perhaps be better to consider principal
stresses in any full discussion of the nature of the turbulence within the canopy.

One finding apparent from figures 9 and 10 should be particularly noted, as it is
quite different from that found for two-dimensional roughness by Orlandi, Leonardi &
Antonia (2006). They showed that the (spatially averaged) vertical stress at the crest
plane increases monotonically with increasing roughness, both for longitudinal and
transverse roughness ribs. In the present case, the reverse is true: figure 11(a) shows
how v2

+
at the crest plane varies with the roughness function – measured by 	U+

or y0/h. It is clear that for these three-dimensional roughness arrays the normal
stress falls monotonically with increasing λp (figure 11b) although both the roughness

function and roughness length have peaks around v2
+

= 1.25 (figure 11a). Similar
plots of the normal stress at the zero-plane displacement height (d ′), included in
figure 11(b), or the peak value (just above the crest plane, not shown) have essentially
the same behaviour. So in this respect the effect of roughness is entirely opposite to
that found by Orlandi et al. for two-dimensional bar roughness. (Interestingly, they
also found that for transverse bars the increase in normal stress appeared in the outer
region too, whereas for flow-aligned bars it did not; the latter situation is in this
respect similar to the present three-dimensional roughness where, as discussed earlier,
the outer flow stresses are close to smooth-wall data.)

Finally, some comments on the ratio of production (P ) to dissipation (ε) of
turbulence kinetic energy are appropriate. Spatial averages of both P and ε were
calculated from the DNS data using the exact, full relations. The ratio |P/ε| is in
all cases significantly higher than unity within the log-law region. Just above the
cubes it is around 2.8 falling to about 1.6 at the bottom of the log-law region
(taken as y/h= 1.5) and then falling more slowly to a minimum between 1.1 and 1.4
(depending on λp). Average values within the log-law region and beyond thus vary
somewhat with λp and are unequivocally higher than unity. This is in contrast to, for
example, the data (at Reτ = 590) of Moser et al. (1999), which suggest |P/ε| values
nearer 0.85 at the bottom of the log-law region, rising slightly to about 1.05. Such a
significant excess of production over dissipation in the present cases is indicative of
relatively large turbulence transport providing a higher sink of kinetic energy in the
near-wall region than occurs in smooth-wall flows. Similar results have been found
recently in the context of channel flow with two-dimensional roughness (e.g. Ikeda &
Durbin 2007) and are well known in the context of atmospheric boundary layers (e.g.
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Raupach, Finnigan & Brunet 1996; Finnigan 2000; Poggi et al. 2004). Changes in the
kinetic energy balance, as suggested by Vengel & Frenzen (2002), may provide one of
the underlying causes of changes in von Kármán’s coefficient.

5. Concluding remarks
Mean flow and some basic turbulence parameters from direct simulations of channel

flow with very rough walls comprising staggered arrays of cubes have been presented.
Maximal surface drag (and thus wall roughness length) occurs when λp is around
15 %, in agreement with laboratory data from boundary layers growing over similar
surfaces and also with computations using RANS or LES techniques. The former,
however, significantly overpredict sectional drag forces on the roughness elements
when compared with the present DNS data or, indeed, previous DNS and LES data
for similar cases. In most cases studied here, the frictional component of the surface
drag is no larger than about 7%, consistent with the flows being only very weakly
dependent on Reynolds number, in contrast to comparable smooth-wall flows. The
sectional drag forces on the roughness have been shown to vary less as λp decreases
but in all cases the upper part of the roughness contributes most to the form drag.
RANS methods seriously overpredict sectional drag coefficients. In common with
earlier laboratory and computational studies by various authors, it is evident that
turbulent transport plays a significantly larger role in the surface layer than it does
in smooth-wall flows, but details of the precise structural mechanisms causing this in
the present cases remain to be explored. It is clear, however, that despite the relatively
large roughness of the present flows, the turbulence Reynolds stresses in the outer
layer are very similar to those in smooth-wall channel flows. This lends credence
to the Townsend hypothesis that roughness merely changes surface stress but not
the structure of the flow, at least in this channel flow and in agreement with the
conclusions of Coceal et al. (2006).

Profiles of the long-time spatial averages of the mean velocity display log-law
regions provided the area density of the cubical roughness (λp) exceeds about 10 %.
The best log-law fits are provided when using a zero-plane displacement height (d ′)
equal to the computed height at which the total surface drag force acts (Jackson 1981)
and it has been demonstrated that this requires a value of von Kármán’s coefficient κ

significantly lower than the classical value of 0.41. Values of the log-law parameters
are consistent with the implications of the results for smooth-wall flows of different
classes (Nagib & Chauhan 2008), suggesting that there is no sudden jump in the
nature of the near-wall flow as surface roughness increases from zero, which seems
intuitively reasonable. It would be useful, however, to study fully rough cases with
smaller roughness functions (and at high Reynolds number) to fill the gap between
the smooth-wall data and the present very-rough-wall results. Only by jettisoning the
definition of displacement height as the height at which the axial drag acts could (i)
κ = 0.41 (or thereabouts) be maintained and (ii) κ remain fixed over all λp . But then,
less satisfyingly, one would have to view d merely as a fitting coefficient, with no
separately identifiable physical meaning, and then studies of such very rough surface
flows could never be used to determine values of κ , whether in boundary layers or
channels. Alternatively, if Jackson’s assumptions are incorrect, some other physically-
based definition of d might be correct and yield κ = 0.41, but none has thus far been
proposed. Or, finally, one might argue that with such large roughness the expectation
of a classical log law is in fact unreasonable.

The idea that κ is flow dependent might suggest that the whole foundation of the
log law is fundamentally unsound, for it implies that (even at asymptotically high
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Reynolds numbers) u+ �= f (y+) alone. Even if one believes that Reynolds number
remained an influence in the various data assessed by Nagib & Chauhan (2008)
and that, in the atmosphere, the measurement uncertainties are sufficiently great to
preclude any reliable deductions about κ , the practical implications of flow-dependent
κ would be significant, not least because it would lead to questions about the adequacy
of commonly-accepted near-wall modelling approaches. This is partly why Spalart
(P. Spalart, private communication, 2008) has suggested that any philosophy which
admits that u+ = f (y+ and other things) is actually a ‘frontal attack on the log law’,
not simply a refinement of it. The results shown in this paper, whilst not perhaps
conclusive one way or the other, are nonetheless instructive.
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