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ABSTRACT 15 

 The horizontal and vertical distribution of light transmittance was evaluated as a function of foliage 16 

distribution using LiDAR (Light Detection and Ranging) observations for a sugar maple (Acer 17 

Saccharum) stand in the Turkey Lakes Watershed.  Along the vertical profile of vegetation horizontal 18 

slices of probability of light transmittance were derived from an Optech ALTM 1225 instrument's return 19 

pulses (two discrete, 15 cm diameter returns) using indicator kriging.  These predictions were compared 20 

with (1) below canopy (1 cm spatial resolution) transect measurements of photosynthetically-active 21 

radiation (PAR) using hand-held quantum sensors and (2) a traditional forest inventory of tree height.  22 

Local minimum and maximum filters were applied to the raw ground and vegetation returns to reduce 23 

bias and a first-order trend was removed to ensure stationarity.  The vertical distribution of vegetation 24 

height was sliced into ten percentiles and indicator variograms were fitted to them.  Variogram parameters 25 

varied as a function of foliage thickness and height above ground.  Ground measurements of PAR showed 26 

high correlation with kriged light transmittance probabilities and this relationship becomes tighter with 27 

coarser spatial resolution.  Three-dimensional maps of foliage distribution were computed as stacks of the 28 

percentile probability surfaces (i.e., probability of a LiDAR pulse being returned from foliage at a given 29 

height within the canopy).  These probability surfaces showed good correspondence with individual tree-30 

based observations and provide a much more detailed characterization of quasi-continuous foliage 31 

distribution.  These results suggest that discrete-return LiDAR provides a promising technology to 32 

capture variations of foliage characteristics in forests, providing functional linkages between biophysical 33 

and ecological studies. 34 

 35 

KEYWORDS 36 

LiDAR, PAR, forest structure, vegetation height, indicator kriging 37 

38 



Three-Dimensional Mapping of Light Transmittance and Foliage Distribution using LiDAR          2     

 
Todd, Csillag and Atkinson  

INTRODUCTION 38 

As part of recent sustainable forestry initiatives in Canada, forest ecosystem models are required to 39 

evaluate spatial and temporal changes in both forest structure and carbon and nitrogen cycling.  Several 40 

research programs have focused on implementing policy (IPCC, 2001) and alternative forestry practices 41 

(CCFM, 1997) to enhance biomass production and reduce atmospheric carbon.  Forest biophysical 42 

variables, such as leaf area index (LAI) and net primary productivity (NPP), are used directly to monitor 43 

changes in carbon and nitrogen within forest environments.  LAI has been found to control levels of 44 

carbon dioxide, water and energy exchanged between the biosphere and atmosphere (Waring and 45 

Running, 1998).  NPP provides a measure of the amount of carbon absorption by plants, allowing carbon 46 

sinks to be identified.  Predictions of LAI and NPP have been created recently for international (Goodale 47 

et al., 2002) and national extents (Chen et al., 1999; Chen et al., 2000).  While coarse spatial resolution 48 

predictions of NPP and LAI are traditionally validated using stand-level clippings of vegetation, more 49 

detailed information on vegetation volume and structure would facilitate greater accuracy assessment 50 

(Lieth and Whittaker, 1975; Chen et al., 1999).   51 

 52 

The provision of fine resolution remotely-sensed information on forest structure is made difficult by 53 

several factors.  The three-dimensional characteristics of forest canopy environments prevent optical 54 

remote sensing instruments from providing structural information in areas of dense vegetation cover 55 

(Chen, 1996).  Further, the majority of remote sensing instruments operate at spatial resolutions that are 56 

too coarse to capture individual forest structural components.  Fine spatial resolution remote sensing data 57 

are required that can be aggregated spatially to produce a spatial resolution sensitive to the forest 58 

attributes under investigation (Treitz and Howarth, 1996; Treitz, 2001).   59 

  60 

Knowledge on the three-dimensional light regime within forest canopies is requisite for accurate 61 

predictions of both LAI and NPP and evaluation of forest stand development.  For example, Farquhar's 62 

photosynthesis model requires information on sunlit and shaded leaf groups or on the layering of canopy 63 



Three-Dimensional Mapping of Light Transmittance and Foliage Distribution using LiDAR          3     

 
Todd, Csillag and Atkinson  

vegetation to provide greater accuracy in predictions of regional plant growth and the carbon budget 64 

(Chen et al., 1999).  Many factors influence the dynamics of light within a forest canopy environment.  65 

The horizontal and vertical distribution of light and foliage occur in a complementary fashion, with light 66 

transmittance being dependent on the presence, size and arrangement of canopy gaps (Parker, 1995).  67 

Currently, several hand-held optical instruments are available for determining light transmittance. 68 

However, several constraints restrict the sampling process: (i) temporal implications of solar angle and 69 

atmospheric interference, (ii) lack of access to measurements along the entire vertical forest profile, and 70 

(iii) lack of high density observations over larger forested areas.   71 

 72 

Forest growth and yield have traditionally been monitored using allometric measurements of forest 73 

structure (e.g., diameter at breast height (DBH), tree height and tree volume).  Allometric measurements 74 

provide a valuable description of forest structure with the limitation that observations are often available 75 

only for harvested areas and developed from volume tables and standardized equations.  While traditional 76 

allometric measurements can be used to quantify forest structure for individual trees, plots or stands (with 77 

spatial resolution ranging from square metres to hectares), ground observations for larger forested 78 

landscapes are not feasible due to the density of samples required.  Future directions for monitoring forest 79 

growth and yield will require more detailed samples of vegetation structure to address local changes 80 

occurring by species, age and site condition.    81 

 82 

LiDAR (Light Detection And Ranging) remote sensing has generated great interest recently because 83 

of its potential to provide forest biophysical variables with greater spatial detail and accuracy.  LiDAR is 84 

an active remote sensing instrument operating similarly to a laser ranger by obtaining multiple 85 

measurements of distance and energy on a path between the laser instrument and a reflective surface.  86 

Vertical height measurements of forest canopy and ground surfaces can be obtained by setting 87 

appropriately the reflection threshold values for the laser return pulse.   88 

 89 
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Two types of LiDAR devices are currently in use: (i) small-footprint, discrete-return LiDAR, and (ii) 90 

large-footprint, full-waveform LiDAR.  Large-footprint, full-waveform LiDAR instruments operate with 91 

a footprint diameter of = 10 m ground area.  An associated reflectance waveform is created for each 92 

footprint to monitor changes in the characteristics of the reflectance surface.  Large-footprint, full-93 

waveform LiDAR has been used recently to accurately predict forest biophysical variables (Lefsky, 1997; 94 

Lefsky et al., 1999a; Lefsky et al., 1999b; Means et al., 1999).  A study by Parker et al. (2001) recently 95 

explored the association between light transmittance in forest canopies and the digitized waveform return 96 

from large-footprint, full-waveform LiDAR.  The spatial variation in light transmittance was found to 97 

vary as a function of canopy height and could be replicated using digitized waveform data.  However, 98 

large-footprint, full-waveform LiDAR is used exclusively for research purposes due to provision costs 99 

and data storage limitations (Flood, 2002).   100 

 101 

 The density of three-dimensional measurements provided by small-footprint, discrete-return LiDAR 102 

may facilitate accurate prediction of forest structural variables for several reasons.  First, with footprint 103 

return densities of up to 2 – 3 returns/m2 and footprint diameters of 15 cm, detailed structural components 104 

of a forest canopy (e.g., gaps, crown edges, and inner-crown vegetation) may be captured.  Second, due to 105 

this high density of laser returns, observations can be spatially aggregated to correspond with the spatial 106 

character of the forest environment.   107 

 108 

Alternative methods of deriving forest structural variables must also be explored with respect to the 109 

characteristics of small-footprint, discrete-return LiDAR.  Since LiDAR vegetation-returns are not located 110 

continuously along the vertical profile of a forest canopy (Lim et al., 2001) an extreme range of height 111 

measurements will occur over short spatial distances.  Further, Harding (2002) suggests that although 112 

discrete-return systems achieve a high density of spatial observations, the ground and vegetation returns 113 

suffer from leading-edge ranging bias, where the peak in the backscatter return energy is not measured 114 

consistently for the leading-edge return due to differences in vegetation structure (Harding et al., 2001).  115 
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The ability to obtain a return from the outer canopy surface is dependent on the geometry, degree of 116 

clumping and the reflective characteristics of the foliage.  The implication is that direct interpolation of 117 

the LiDAR discrete-return information will not provide an accurate prediction of the canopy surface or 118 

the internal canopy structure due to this bias.  However, spatial filtering techniques may be used to 119 

remove this bias. 120 

 121 

The goal of this research was to obtain spatially explicit vertical and horizontal distributions of 122 

foliage and light transmittance.  Two main objectives were proposed to achieve this goal: (i) to identify an 123 

interpolation and mapping technique for developing three-dimensional models of forest structure from 124 

LiDAR data and (ii) to determine the accuracy of the interpolation technique using ground measures of 125 

forest structure.  Two specific ground measures of forest structure were selected to assess the accuracy of 126 

the interpolated surfaces from LiDAR: (i) the distribution of canopy gaps (open space) obtained from 127 

light transmittance measurements and (ii) maximum tree height measured on a per-stem basis.  A 128 

systematic approach was taken based on the characteristics of the LiDAR data.  First, we used a filtering 129 

technique to limit the effects of the ranging bias from the leading-edge return pulses.  Global trends in the 130 

ground observations were removed, after which ordinary kriging was used to interpolate the digital 131 

elevation model (DEM).  Next, vegetation height was determined from vegetation first-return pulses by 132 

subtracting the interpolated ground elevation from each vegetation first-return pulse.  Vegetation 133 

probability surfaces were then interpolated using indicator kriging for a series of thresholds defined using 134 

the nine percentiles of vegetation height.  Each threshold surface provides a continuous measure of 135 

vegetation probability (i.e., the probability of a LiDAR pulse being returned from foliage at the associated 136 

threshold height).  Finally, we assessed the accuracy of the predicted vegetation probability surfaces using 137 

ground-based observations of tree height and light transmittance.  138 

 139 

140 
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METHODS 140 

Study Site 141 

The study site for this paper is the Turkey Lakes Watershed (TLW), located in the Algoma District of 142 

northern Ontario, Canada, approximately 60 km north of the city of Sault Ste. Marie and 13 km inland 143 

from Lake Superior’s shoreline.  Since 1997, the Canadian Forest Service has been conducting the Turkey 144 

Lakes Harvesting Impacts Project (TLHIP) in the watershed.  Variation in silvicultural practices are 145 

monitored within several harvest blocks where single-tree selection, shelterwood, and clear-cut harvesting 146 

has been performed (see Morrison et al. 1999).  The focus of this study is a one hectare shelterwood site 147 

where shelterwood cutting was performed in 1997 (Figure 1).  Shelterwood cutting is the practice of 148 

removing lower-strata trees to allow regeneration of lower vegetation for future harvesting purposes 149 

(Oliver, 1990).  The site is occupied by 733 trees that are primarily remnant, uneven-aged sugar maple 150 

(Acer saccharum, 88 %) and yellow birch (Betula alleghaniensis, 6 %) with smaller percentages of iron 151 

wood (Ostrya Virginiana, 4 %), white birch (Betula papyrifera, 1 %) and white spruce (Picea glauca, 1 152 

%).  Evidence of shelterwood harvesting can be noted with the presence of higher vegetation density in 153 

unharvested areas in comparison to areas where thinning has occurred.   154 

 155 

[INSERT FIGURE 1]  156 

 157 

DATA 158 

LiDAR Observations 159 

 An Optech ALTM 1225 LiDAR instrument was flown over the study site in August 24 of 2000.  160 

Mounted on a Piper Navajo aircraft, the instrument was flown at a speed of 60 m/s and at an altitude of 161 

750 m above ground with a pulse repetition rate of 20 kHz.  The scanning frequency was 15 Hz with a 162 

scan range of ±15o over a 400 m swath distance resulting in a footprint diameter of 15 cm.  Elevation 163 

return measurements were calibrated using ground control points established with a survey-grade GPS 164 
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instrument across the study site.  A 25% overlap of flight lines was obtained during the data acquisition in 165 

order to increase the density of LiDAR returns.  REALM proprietary classification software (Optech Inc., 166 

2000), designed to isolate LiDAR vegetation and ground return pulses, allowed for four discrete datasets 167 

of vegetation-first, vegetation-last, ground-first and ground-last returns to be classified.  Within the one 168 

hectare study site, a total of 8662 laser pulse returns were obtained.  169 

 170 

Six attributes were associated with each LiDAR return in the classified datasets: 1) a UTM Easting 171 

location, 2) a UTM Northing location, 3) the elevation of the return, 4) a unique flight line number 172 

corresponding to the flight pass being made, 5) the scan angle at which the LiDAR return was acquired, 173 

and 6) an intensity or amplitude for each detected return.  Within this study, the first four attributes were 174 

used to evaluate ground and vegetation height.   175 

 176 

Ground Observations 177 

Tree Inventory 178 

Due to previous intensive ground surveys conducted by the Canadian Forest Service – Great Lakes 179 

Forestry Centre, several stem-level datasets were made available for the one hectare shelterwood site.  180 

Within the study site, all 733 tree locations were referenced to benchmarks established over a 20 m grid 181 

using an electronic Sokkia DT6 theodolite.  Tree locations were then geo-referenced to the UTM 182 

projection by establishing coordinate locations for the four corners of the study site using a survey-grade 183 

GPS receiver.  Species identification and DBH were surveyed for all trees in the summer of July 1999.  A 184 

second measurement of DBH was taken in November 1999 to confirm DBH values; maximum 185 

differences between measures were –1.2 cm and +1.7 cm.   186 

 187 

Tree height and crown radius measurements were obtained using a vertex hypsometer for all trees 188 

identified as contributing to the upper-canopy.  Where stems angled away from nadir, the offset angle 189 
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from nadir was measured.  Two separate crown radius measurements were taken for all upper-canopy 190 

trees: (i) the distance to crown edge in the four cardinal directions at the crown base, and (ii) the distance 191 

to crown edge at the height of maximum crown radius.  Using the crown radius measurements, crown 192 

ellipses were constructed as vector features within ArcInfo (Version 7.1.2, ArcEdit module) using 193 

coordinate geometry (COGO) functions.  The upper-canopy of the study site is primarily dominated by 194 

mature trees with an average height of 18.73 m; 37% of these trees are below the average tree height.  195 

Visual description of upper-canopy vegetation cover can be obtained from the crown ellipses (Figure 2).   196 

 197 

[INSERT FIGURE 2] 198 

 199 

Optical Measurements of Radiation 200 

The interaction of light within a forest canopy can be evaluated by measuring the amount of 201 

transmitted radiation.  When solar radiation is transmitted through a canopy, the majority of incident 202 

short-wave radiation (> 700 nm) is absorbed by leaves while the remaining portions of radiation are 203 

transmitted or reflected within the canopy (Gates, 1980; Canham, 1999).  A larger portion of longer 204 

wavelength radiation (< 700 nm ) penetrates through the leaf structure.  Photosynthetically-active 205 

radiation (PAR, 400 – 700 nm) represents the portion of the light spectrum which is used during 206 

photosynthesis.   207 

 208 

Two optical instruments were used to measure radiation within the study site: a TRAC instrument 209 

(Tracing Radiation and Architecture of Canopies; Chen and Cihlar, 1995), and a Decagon AccuPAR 210 

Sunfleck Ceptometer (Model PAR–80, Version 3.0).  The TRAC instrument allows continuous PAR 211 

sampling at ~ 1 cm intervals along straight transects perpendicular to the solar azimuth.  Using a walking 212 

speed of 0.33 m/s and a sampling rate of 32 Hz, a sample density of ± 100 readings/m can be achieved.  213 
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The Ceptometer is a straight probe designed with 80 photodiodes spaced 1 cm apart allowing PAR 214 

measurements to be taken at a specific spatial resolution. 215 

 216 

A total of eleven 100 m transects were established across the study site.  To obtain measurements 217 

perpendicular to the Sun, five transects were measured at an azimuth of 1700 South between 10:00 am and 218 

11:00 am.  An additional six transects were measured at an azimuth of 800 East between 1:00 pm and 3:30 219 

pm.  All measurements using the TRAC instrument were made during cloudless skies between 8-13 July 220 

2002.   221 

 222 

The TRAC instrument is designed to sample below-canopy PAR in one specific direction along a 223 

transect perpendicular to the Sun.  Given that PAR transmittance is subject to scattering within a 224 

forest canopy (Canham, 1999), a bias may result from sampling PAR in a single direction.  At each 225 

10 m interval along each 100 m transect, PAR measurements were taken with the Ceptometer in the 226 

four cardinal directions (North, South, East and West).  The 80 m probe was segmented into four 227 

sections allowing four sets of measurements to be taken at a spatial resolution of 20 cm.  Due to the 228 

consistency of PAR observations from the Ceptometer and TRAC instruments, it was determined that 229 

the TRAC instrument accounted for multi-directional sources of transmitted radiation within the 230 

forest canopy (Figure 3).   231 

 232 

Light transmittance was calculated for individual below-canopy PAR observations along each 100 m 233 

transect using the following equation: 234 

 235 

100×=
above

below

P
P

LT          (Eq. 1) 236 

 237 
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where LT is the percentage of light transmittance below the canopy, Pbelow is a PAR measurement made 238 

below the canopy using the TRAC instrument, and Pabove is a PAR measurement made in an open area 239 

within 100 m of the study site using a Li-Cor Point Quantum sensor (LI-190SA, LICOR, Lincoln, Neb.).  240 

The Pabove sensor was positioned 3 m above the ground and attached to a datalogger (LI-1400, LICOR, 241 

Lincoln, Neb.) measuring incoming PAR at 15 second intervals. 242 

 243 

[INSERT FIGURE 3] 244 

 245 

Predicting Light Transmittance and Foliage Distribution 246 

Spatial Variation and Geostatistics 247 

A variety of techniques can be used to interpolate geo-spatial data (Bailey and Gatrell, 1998; 248 

Burrough and McDonnell, 1998).  However, few techniques are based on an underlying model fitted to 249 

the spatial data.  Geostatistics permits the modelling of spatial pattern by taking into account the spatial 250 

covariance during the interpolation process.  Although other traditional point interpolation techniques 251 

such as inverse distance weighting can, in limited circumstances, provide predictions that are as accurate 252 

and less computationally intensive than kriging (Webster and Oliver, 1988; Isaaks and Srivastava, 1989), 253 

kriging can provide other benefits.  It is known as a Best Linear Unbiased Predictor (BLUP); 'linear' in 254 

that predictions are weighted as a linear combination of the available data, and 'unbiased' with respect to 255 

the reduction of the mean residual error towards zero (Isaaks and Srivastava, 1989).  Where traditional 256 

interpolation techniques use only distance-weighting independent of the data itself, kriging uses weights 257 

obtained by modelling the spatial dependence of the available data.  Furthermore, residual and kriging 258 

variance surfaces provide information on the accuracy for the interpolated surfaces.   259 

 260 

Spatial dependence is modelled for use in the kriging process using a semi-variogram.  For 261 

continuous variables, such as elevation, the experimental semi-variance is defined as half the average 262 
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squared difference between values separated by a given lag h, where h is a vector in both distance and 263 

direction (Eq. 2).  Thus, the experimental semi-variogram γv(h) may be obtained from α=1,2,…,P(h) pairs 264 

of observations {zv(xα), zv(xα+h)} defined on a support v at locations {x, x+h} separated by a fixed lag h: 265 

 266 

         267 

(Eq. 2) 268 

 269 

The spatial dependence between point locations is characterized by estimating three parameters of the 270 

semi-variogram model: (i) the range a, (ii) the sill variance c1 , and (iii) the nugget variance, c0.  These 271 

parameters are applied to the final kriging function to allow the modelling of spatial dependence in the 272 

interpolated surface.  The range provides a measure of the spatial arrangement of points based on their 273 

distance and direction vector of separation.  The sill variance provides a measure of spatial dependence. 274 

The nugget variance provides a measure of spatially not autocorrelated noise within the dataset.  It is 275 

generally expected, based on Matheron's (1965) theory of regionalization, that as distance increases 276 

features will become less related while features separated by shorter distances remain more closely 277 

related. 278 

 279 

Minimum/Maximum Bias Removal 280 

A bias is known to occur in the leading-edge pulse returns for discrete-return LiDAR.  Where 281 

clumping of vegetation occurs at the top of the canopy, returns will provide a robust prediction of 282 

vegetation height.  However, where vegetation is more pervious with the presence of small gaps, the 283 

leading-edge return will underpredict maximum vegetation height (Harding, 2002). Recent studies 284 

support the use of interactive and low-pass filtering on the complete point cloud (Lim et al., 2001) or 285 

discrete-returns (Hyyppa et al., 2001) to isolate maximum vegetation height within a specified distance of 286 

each return.   287 
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A local filter was applied to isolate the two structural characteristics of interest in this study: canopy 288 

gaps and maximum vegetation height.  Filtering was first applied to the leading-edge return pulses to 289 

isolate maximum vegetation height by assigning to each pulse return the maximum height within a given 290 

radius.  Using a similar method, canopy gaps were discretized by assigning each LiDAR vegetation 291 

height return the minimum value within a given radius of each return.  A range of filter radius values 292 

(0.25 m, 1.0 m, 2.5 m) was used to evaluate the effects of filtering on predictions of maximum height and 293 

canopy gaps. If the leading-edge bias is removed effectively, greater correspondence should be evident 294 

between ground observations of tree height and the percentage of transmitted light.   295 

 296 

Trend Removal 297 

One of the underlying assumptions of geostatistics is that all observations can be modelled as 298 

realizations of a stationary process (Isaaks and Srivistava, 1989).  To make a prediction of the semi-299 

variance between values at locations across a given area, it must be assumed that the behaviour of the 300 

process will be similar across space.  An intrinsic stationary dataset must meet the requirement of  having 301 

a constant mean and variance changing only as a function of distance.  Anisotropy exists where either the 302 

amount or scale of variation changes with direction (Isaaks and Sravistava, 1989).  A non-stationary, 303 

anisotropic surface can sometimes be made stationary by removing a global trend.   304 

 305 

At each location u at which interpolation is required, Gooverts (1997) suggests first removing any 306 

global trend )(ˆ um  and then interpolating the residual values )(ˆ ur using kriging and the respective semi-307 

variogram of the residuals.  The final predicted surface is obtained by adding back the global trend )(ˆ um  308 

to the interpolated residuals.  If, as in our case, elevation observations are made on a linearly sloping 309 

surface, a linear trend is sufficient (Gooverts, 1997). 310 

 311 

         (Eq. 3) 312 )(ˆ)()(ˆ umuzur −=
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 Following the removal of a first-order trend from the ground-last LiDAR returns (Figure 4a), the 313 

first-order residuals were interpolated using ordinary kriging (Figure 4b).  The first-order trend surface 314 

was then added back to the interpolated residuals to produce a final ground DEM (Figure 4c).  The 315 

performance assessment of the prediction was carried out using stratified (or M-fold) cross-validation 316 

(Ripley, 1996).  Each location u in the dataset is repredicted using all the data except for M randomly 317 

selected point.  Repeating this process several (maximum 
N
M

 

 
 

 

 
 ) times allows the characterization of 318 

prediction uncertainty by collecting the distribution of errors. We found a high level of correlation (R2 = 319 

0.96) between observed and cross-validated predictions of ground elevation supporting that an accurate 320 

ground elevation had been achieved (Figure 5).  Further analysis suggests that this unbiased performance 321 

assessment provides a robust measure of the quality of the predictor as M varies between 20% and 80% 322 

(Lim et al., unpublished).   323 

 324 

[INSERT FIGURE 4] 325 

[INSERT FIGURE 5] 326 

 327 

Indicator Semi-variograms 328 

The height of each LiDAR vegetation-first return above the ground surface was determined by 329 

subtracting each vegetation-first return from the interpolated ground surface.  A cross-section of this 330 

LiDAR-derived vegetation height dataset (Vht, the height of LiDAR vegetation returns above ground 331 

elevation) can be viewed in Figure 6a.   332 

 333 

Due to the pervious characteristics of the forest canopy surface and the footprint size and density of 334 

small-footprint discrete-return LiDAR, two vegetation returns can occur in close spatial proximity and 335 

provide an extreme range in vegetation height measurements.  The result is a bimodal distribution of 336 

vegetation height across the study area which is a product of the intensity of small-footprint, discrete-337 
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return LiDAR sampling and the vegetation structure.  Interpolating the Vht distribution directly using 338 

ordinary kriging will not provide an accurate prediction as such algorithms rely on assumptions of 339 

normality (Gooverts, 1997).  To account for the bimodal characteristics in the Vht distribution, indicator 340 

kriging was performed.  Indicator kriging allows the evaluation of the Vht distribution over a series of 341 

selected thresholds (Isaaks and Srivistava, 1989; Gooverts, 1997).  The available continuous data z(xα) 342 

may be transformed into an indicator variable iv(xα; zk) defined as 343 

 344 

     345 

 (Eq. 4) 346 

 347 

for a given threshold (or cut-off) zk. Then it is possible to obtain experimental indicator functions from 348 

these indicator data.  The experimental indicator semi-variogram γvI(h; zk) (where, h; zk is read as lag h 349 

given the threshold zk) may be obtained from indicator data iv(xα; zk) as: 350 

 351 

    352 

(Eq. 5) 353 

 354 

Generally, k thresholds will be defined resulting in k indicator semi-variograms. Often, the nine 355 

percentiles of the cumulative distribution function (CDF) are chosen as the indicator thresholds resulting 356 

in nine indicator semi-variograms.  However, the choice of number of cut-offs clearly depends on the 357 

number of available data amongst other considerations.  This non-parametric approach has been applied 358 

previously to characterize the probability of soil contamination (Meirvenne and Goovaerts, 2001) and 359 

water temperature (Fabri, 2001) where an accurate interpolation of non-normally distributed 360 

environmental attributes was required. 361 

 362 
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Since the experimental semi-variogram provides only discrete values of the semivariance γ at a set of 363 

discrete lags h1, h2,... it is necessary to fit a continuous mathematical model for statistical inference.  Not 364 

any mathematical function will do. Specifically, the semi-variogram γ(h) of the random function (RF) 365 

must be conditional negative semi definite (CNSD). Semi-variogram models with the CNSD property are 366 

called permissable or ‘authorized’.  Practitioners usually choose from the set of known authorized 367 

functions.  Four of the most common functions in general use are the nugget effect, spherical, exponential 368 

and Gaussian models.  Each can be described according to its characteristic shape.  All four models are 369 

bounded (transitive) because they include a maximum value of semi-variance known as the sill. For the 370 

spherical model the sill is reached within a finite lag known as the range a.  For the exponential and 371 

Gaussian models the sill is approached asymptotically.  Since the exponential and Gaussian models never 372 

reach the sill, it is necessary to define a practical range a’=3r in place of the definite range. The nugget 373 

effect model is a ‘flat’ model representing a constant positive semi-variance at all lags; thus, it too has a 374 

sill.  Further, whereas the other models intercept the ordinate at the origin, the nugget effect model 375 

represents a discontinuity at the origin. 376 

 377 

There are many different ways to fit models to experimental semi-variograms, including completely 378 

automatic fitting and fitting by eye.  The best solution is often a compromise between these two (semi-379 

automatic fitting) where the user chooses a type of semi-variogram model (based partly on the sample 380 

function and partly on a priori knowledge), decides whether an anisotropic model is required, and then 381 

obtains a fit for these choices using weighted least sum of squares (WWS) approximation given by: 382 

 383 

  384 

(Eq. 6) 385 

 386 
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The Vht dataset was reclassified into nine indicator variables using the nine percentiles zk1-9 of the 387 

distribution.  Each indicator threshold zk essentially represents a different height within the foliage 388 

(Figure 6a).  Indicator semi-variograms were created for each binary variable allowing the spatial 389 

structure at each height threshold to be modelled (Figure 6b).  The best least-squared fit in each case was 390 

provided by the spherical model, which in theory, is an appropriate model for deciduous canopy structure 391 

due to the size, shape and density of tree crowns and intercrown spaces (Treitz, 2001).  Smaller values of 392 

semi-variance occurred at the upper and lower indicator threshold heights zk1-3,8-9.  As expected, the largest 393 

values of semi-variance occurred at intermediate threshold heights zk4-7.  The ranges at upper indicator 394 

thresholds zk3-9 maintained a similar value of ~13 m with the exception of lower thresholds zk1-2, which 395 

varied between18 – 20 m. 396 

 397 

[INSERT FIGURE 6] 398 

 399 

Indicator Probability Maps 400 

The public domain geostatistics software package GSLIB (Deutsch and Journel, 1998) was used to 401 

perform indicator kriging.  Using the series of binary indicator variables classified from Vht and their 402 

respective semi-variograms, a series of indicator probability maps were created.  At each indicator 403 

threshold zk, a conditional probability was predicted at all unsampled locations by applying ordinary 404 

kriging (Bierkens and Burrough, 1993).  Probability values for each threshold surface represent the 405 

likelihood of exceeding the threshold zk within each cell.  As a result, each threshold surface provides a 406 

continuous measure of vegetation probability (i.e., the probability of a LiDAR pulse being returned from 407 

foliage at the associated indicator threshold height zk, hereafter referred to as PVzk) characterizing the 408 

probability of being vegetated or non-vegetated (open gap space) at that given threshold.  A final 409 

cumulative PVzk  surface can then be constructed by obtaining a total of all zk1-9 threshold surfaces on a 410 

per cell basis.  In theory, this final cumulative PVzk surface will provide a description of light 411 



Three-Dimensional Mapping of Light Transmittance and Foliage Distribution using LiDAR          17     

 
Todd, Csillag and Atkinson  

transmittance probability by taking into account the probability of gap and vegetation structure along both 412 

the vertical and horizontal profiles of the canopy.     413 

 414 

Comparing Ground and LiDAR Observations 415 

The accuracy of the indicator kriging predictions can be assessed using ground observations of tree 416 

height and light transmittance.  A non-linear relationship is expected between light transmittance and 417 

vegetation height since the distribution of light transmittance is typically non-uniform at different heights 418 

within a forest canopy environment (Parker, 1995).  Observed light transmittance measurements and 419 

predicted PVzk surfaces were then aggregated over a range of spatial resolutions (0.25 m, 1.0 m and 2.5 420 

m) and their correlations calculated.  PVzk surfaces were aggregated spatially by performing indicator 421 

kriging at coarser spatial resolutions.  Ground observations of light transmittance were aggregated to the 422 

same spatial resolutions by spatial filtering.  It is expected that the probability of light transmittance will 423 

vary as a function of vegetation density.  Specifically, the probability of light transmittance is expected to 424 

be high where canopy gaps are present and low where vegetation density is high.   425 

 426 

A similar technique was used to compare ground observations of tree height to each filtered and non-427 

filtered PVzk surface.  Each PVzk surface was evaluated for the correspondence between the location of 428 

observed tree heights exceeding each indicator threshold zk and the PVzk value predicted for each tree 429 

location.   430 

 431 

It was found after initial attempts to relate predictions of  vegetation probability from LiDAR to 432 

ground-based measures of tree height that tree crowns and the maximum height of each tree were not 433 

necessarily located directly above each stem location.  To account for the offset of maximum vegetation 434 

height from the stem location, the maximum PVzk value was obtained within a 2.5 m radius of each stem.   435 

436 
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RESULTS AND DISCUSSION 436 

Filtering to Remove Bias in LiDAR Returns 437 

 Minimum and maximum filtering applied to the Vht dataset did not result in an observable change in 438 

the relationship between ground observations of light transmittance and tree height.  It is expected that the 439 

leading-edge ranging bias was removed during the aggregation of the LiDAR data to spatial resolutions 440 

greater than the nominal footprint diameter.   441 

 442 

A Three-Dimensional Representation of Foliage Distribution 443 

 Figure 7 presents a three-dimensional representation of the indicator probability surfaces based on 444 

the nine percentiles of the LiDAR Vht dataset.  Variation in the probability of vegetation height can be 445 

noted over the nine indicator threshold surfaces.  At smaller threshold heights zk1-2, the boundaries of 446 

lower canopy gaps are apparent which then increase in size when evaluated at larger thresholds zk3-9.  447 

Detailed canopy characteristics are captured using a fine spatial resolution of 0.25 m.   448 

 449 

Modelled semi-variance parameters from the Vht dataset were found to provide a description of the 450 

vertical and horizontal forest canopy with semi-variance changing as a function of the vegetation structure 451 

at the nine threshold heights.  Lower semi-variance values occurred at the lower and upper threshold 452 

heights zk1-2,8-9 within the canopy corresponding with the presence of smaller variability in foliage 453 

distribution around the top of the canopy and close to the ground (i.e., understory), respectively.  Semi-454 

variance increased at the middle thresholds of the canopy zk3-7 where the canopy is structurally more 455 

complex. 456 

 457 

The range of the semi-variograms remained fairly consistent over the series of indicator thresholds 458 

with the exception of lower threshold heights zk1-2.  It is apparent from the probability surfaces for each 459 

indicator threshold that open areas in the forest canopy are separated by larger distances at smaller 460 
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thresholds zk1-2.  At larger thresholds zk3-9, range values vary less between thresholds indicating a more 461 

consistent spatial pattern of features in the mid-canopy and the over-story.  This lack of variation in the 462 

range may be attributed to the study site being dominated by a single-species, sugar maple forest canopy.   463 

 464 

The above results demonstrate typical characteristics of a deciduous forest canopy where vegetation 465 

complexity is lower in the sub-canopy with increasing structural complexity in the mid-canopy (Oliver, 466 

1990).  A recent study by Parker et al. (2001) found similar results using large-footprint, full-waveform 467 

LiDAR where the spatial variation of vegetation structure was found to change as a function of height 468 

within the forest canopy.   469 

 470 

[INSERT FIGURE 7] 471 

 472 

Ground Measured PAR and Gap Probability 473 

The relationships between observed light transmittance values and the cumulative  PVzk surface were 474 

evaluated for three spatial resolutions.  Ground measurements of PAR provided greater correspondence to 475 

the LiDAR-based prediction of cumulative PVzk as the data were spatially aggregated from a spatial 476 

resolution of 0.25 m to 2.5 m (Figure 8).  We found a negative log-linear relationship between percentage 477 

of light transmittance and cumulative PVzk.  Since the optimal spatial resolution for analysis is related, 478 

among other things, to the characteristics of the objects being analyzed (Jupp et al., 1988; Atkinson and 479 

Curran, 1995) and the locational accuracy of ground observations, the results of this analysis suggest that 480 

vegetation structure and light transmittance should be evaluated at spatial resolutions of 2.5 m.  481 

 482 

[INSERT FIGURE 8] 483 

 484 

485 



Three-Dimensional Mapping of Light Transmittance and Foliage Distribution using LiDAR          20     

 
Todd, Csillag and Atkinson  

Ground Measured Tree Height and Foliage Distribution 485 

 The PVzk surfaces were further assessed by comparing observed tree heights exceeding each indicator 486 

threshold.  Theoretically, all observed tree heights greater than each indicator threshold should correspond 487 

with areas of high vegetation probability at the same threshold height.  PVzk surfaces at lower threshold 488 

heights were found to correspond with observed tree heights exceeding the respective threshold.  At the 489 

4th height threshold (Figure 9a) it was apparent that all trees with heights greater than 13.83 m correspond 490 

well with areas of high vegetation probability.  This high level of correspondence between observed tree 491 

heights and predicted vegetation probability is maintained up to the 7th threshold height of 18.73 m.  492 

Above the 7th threshold height (Figure 9b), the correspondence between observed and expected 493 

vegetation height decreases to less than 70%.   494 

  495 

Several sources of error may be associated with the low correspondence above the 7th threshold 496 

height.  First, a random elevation error of 30 to 50 cm occurred with the Timing Interval Measurement 497 

(TIM) unit when the data were acquired.  The TIM unit allows  the time interval between the laser pulse 498 

leaving the aircraft and the return of the reflected pulse back to the sensor to be measured precisely.  This 499 

error applied only to the LiDAR last-return datasets.  Secondly, measuring tree height from the ground 500 

using a vertex hypsometer becomes more difficult as tree height increases due to overlapping vegetation 501 

and the angle at which measurements are taken.  This may add uncertainty to the ground observations and 502 

result in the lack of correspondence with PVzk surfaces for the upper threshold heights zk7-9. 503 

  504 

[INSERT FIGURE 9] 505 

 506 

CONCLUSIONS 507 

This study suggests that interpolations of the vegetation-return from small-footprint, discrete-return 508 

LiDAR can provide fine spatial resolution information on the probability of vegetation within deciduous 509 
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canopy environments.  Through the use of indicator kriging, horizontal slices of vegetation probability are 510 

obtained over a series of canopy threshold heights.  The high correlation between these vegetation 511 

probability surfaces and observed measurements of light transmittance suggest that light transmittance 512 

can also be predicted based on gap and non-gap space.  The correlation between observed and LiDAR-513 

based predictions of light transmittance increased as the data were spatially aggregated to a spatial 514 

resolution of 2.5 m.  Evaluating semi-variance at specific threshold heights within the forest canopy 515 

provided a description of the horizontal pattern of vegetation structure.   516 

 517 

While this work has served as a feasibility assessment to evaluate methods for mapping the 518 

vegetation-return from small-footprint, discrete-return LiDAR, several management and research 519 

incentives are offered.  As a predictive tool, small-footprint LiDAR can be used to obtain information on 520 

the horizontal and vertical distribution of foliage and light transmittance within forest canopies. 521 

 522 

Operating as a diagnostic tool, these indicator probability surfaces can be used to obtain detailed 523 

information about the distribution of light, structure, health and habitat in forests for management.  524 

Further, by evaluating semi-variogram model parameters over a series of threshold heights within the 525 

forest canopy additional information is obtained on the spatial characteristics of forest structure at each 526 

threshold.  Recent studies suggest that evaluating the spatial variation in fine spatial resolution data over a 527 

range of spatial resolutions can provide information on forest health, such as chlorophyll content and 528 

other physiological conditions (Sampson et al., 2002).  529 

 530 

Additional research may consider applying the methodology of this study over larger spatial extents 531 

and in areas with other and/or variable vegetation cover.  Extending our findings to larger areas is 532 

challenging due to the requirement of stationarity and consideration of multiple species/multiple 533 

architecture effects. 534 

 535 
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Future research will also make use of fine spatial resolution light transmittance surfaces generated 536 

from LiDAR to explore light dynamics within forest canopies.  The detailed information within the 537 

vegetation probability surfaces may allow vegetation clumping and the size and distribution of canopy 538 

gaps to be evaluated.  Recent studies on light dynamics within forests have focused on the spatial location 539 

and size of gaps within forest canopies (Chen et al., 1997, Canham et al., 1999).  These studies have 540 

suggested that measures of vegetation clumping will provide greater accuracy in predictions of light 541 

transmittance within closed-forest environments.  By characterizing the spatial distribution of vegetation 542 

clumping and indirect paths of light penetration through geometrical optical modelling, greater 543 

correspondence may be obtained between fine spatial resolution predictions of forest structure from 544 

LiDAR.   545 

 546 

Advances in current small-footprint LiDAR instruments may also provide additional information for 547 

determining forest structure.  Future small-footprint, discrete-return LiDAR instruments may provide full-548 

waveform information for a small percentage of measured returns (Flood, 2002).  While full-waveform 549 

information cannot feasibly be acquired for all small-footprint LiDAR returns due to data storage 550 

limitations, the detailed information from the complete waveform could be used to determine the 551 

accuracy of predictions of  foliage structure.  Recent research on interpreting full-waveform LiDAR 552 

(Lefsky et al., 1999a; Lefsky et al., 1999b; Harding et al., 2001; Parker et al., 2001) could be integrated 553 

with the density of small-footprint, discrete-return LiDAR measurements and provide greater accuracy in 554 

predictions of forest structural variables moving from individual-based observations to quasi-continuous 555 

fields.  556 

  557 

558 
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FIGURE 1.   705 

The location of the study site with respect to the harvest blocks for the Harvest Impact Study within the 706 

Turkey Lakes Watershed.  The  inset shows the location of the study area within Ontario, Canada. 707 
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FIGURE 2.   711 

Tree heights and crown ellipses for all upper-canopy trees (n = 186) within the one hectare study site.  All 712 

trees and crown edges have been georeferenced to a local coordinate system using surveying and GPS 713 

measurements. 714 
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FIGURE 3.  718 

PAR measurements acquired at ~1 cm intervals along a 100 m transect using the TRAC instrument. 719 

Boxes represent 10 m observations of PAR from the AccuPAR Ceptometer measured in the four cardinal 720 

directions (North, South, East, West). 721 
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FIGURE 4.   725 

Interpolations used to generate the final ground surface using the LiDAR ground-last returns where (a) is 726 

the first-order polynomial trend, (b) is the ordinary kriging interpolation of the first-order residuals, (c) is 727 

the final ground surface, and (d) is the kriging variance of the first-order residuals. 728 
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FIGURE 5.   732 

A cross-validation plot between LiDAR ground-last return elevations and predicted ground elevations 733 

using ordinary kriging.  The dashed line represents a 1:1 relationship (0 intercept, slope 1).  The solid line 734 

represents a least-squared fit between observed and predicted elevations. 735 
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FIGURE 6. 738 

Plots of (a) LiDAR vegetation-returns in an easterly direction across the study site with indicator 739 

thresholds marked at the nine percentiles of the distribution, and (b) semi-variograms modelled for the 740 

binary datasets created for each indicator height threshold. 741 
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FIGURE 7. 745 

Indicator probability surfaces for nine percentiles of vegetation height within the study area.  Probability 746 

values for each threshold surface represent the probability of exceeding the indicator threshold height. 747 

0.00 (green) being low probability and 1.00 (beige) being high probability.  The plot depicts semi-748 

variance and the cumulative distribution function corresponding to each indicator height threshold. 749 
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FIGURE 8. 752 

Relationships between observed light transmittance and indicator vegetation probability for the first 753 

percentile surface and a cumulation of the nine percentile surfaces over three spatial resolutions:  0.25 m, 754 

1.0 m and 2.5 m.   755 

 756 

 757 

 758 

759 



Three-Dimensional Mapping of Light Transmittance and Foliage Distribution using LiDAR          38     

 
Todd, Csillag and Atkinson  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

0

5

20

25

30
0.25 m

m
 

1.0  
2.5  m

1In
di

ca
to

r 
Th

re
sh

ol
d 

(m
)

Proportion of Tree Height (observed/expected)

1.0

0.0

Vegetation Probability(a)

1.0

0.0

Vegetation Probability

(b)

Tree Heights > 13.83 m

Tree Heights > 20.73 m

(c)

N

0 10 20

metres

N

0 10 20

metres

FIGURE 9.   759 

Observed tree heights exceeding 760 

the indicator threshold in 761 

association to the  indicator 762 

probability surface, where (a) 763 

illustrates the 4th indicator 764 

threshold of 13.83 m and (b) 765 

illustrates the 8th indicator 766 

threshold of 20.73 m.  The plot (c) 767 

depicts the relationship between 768 

accurately predicted vegetation 769 

heights (observed vs. expected) for 770 

each indicator threshold over three 771 

spatial resolutions.  Dashed lines 772 

after the 7th threshold value note 773 

where a marked decrease occurs in 774 

the proportion of accurately 775 

predicted vegetation heights. 776 


