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Abstract

This paper explores the effect of different forms of representation and different forms of
genetic operations on the performance of a Genetic Programming (GP) system. The GP
system is based on a Genetic Algorithm (GA) that evolves software agents, represented
by tree structures, which are then applied to some problems in robotics. In their evolved
form, the trees are not well-formed, and many of them include a considerable amount of
intronic material that plays no part in the performance of the underlying agent. We
introduce an alternative way of representing the agent, which eliminates the intronic
material and reflects more clearly the decisions that the agent needs to make in different
situations as it attempts to solve problems in spatial awareness. We use the term
canonical to refer to this alternative tree structure. We then extend the standard GP
crossover operator to perform canonical crossover, in which the parents exchange
canonical sub-trees.

The paper shows that using canonical evolution alongside conventional evolution can
result in substantial improvements in the performance of the GP system and thus the
resulting agents, the level of improvement being dependent on the mix of canonical and
non-canonical members of the population, and on the rates and types of crossover.

1. Background

Algorithms to model natural evolutionary processes were developed in the early 1970s
by Holland and his co-workers [Holland 1975]. Holland originally used the term
adaptive plan for the process whereby a structure is progressively modified to improve
performance within a particular environment. The importance of epistatic sets of alleles
was reflected in this early work by Holland’s definition of schemata. A schema is an
interacting co-adapted set of feature values that results in significant gains in
performance. The concept of a schema recognises the fact that highly fit structures have
common components with particular alleles at particular feature positions in the
structure. In Holland’s view an important aspect of an adaptive plan is the identification
and profitable use of schemata.

Holland also emphasised the need for an adaptive plan to be efficient in the sense that it
should produce structures with acceptable fitness in a reasonable time, where
‘reasonable’ depends on the nature of the problem and on the environment. He uses the
term enumerative plan to describe an adaptive plan that systematically identifies and
tests every structure in the search space. An enumerative plan is out of the question for
all but the simplest problems and a major part of any study of the adaptive process must
be the discovery of factors that improve efficiency.

The term adaptive plan was soon replaced by the term genetic algorithm and
evolutionary computation was born. The field has developed since that time to the point



where genetic algorithms are applied to a wide range of problems in a variety of
disciplines [Chambers 1995, Davis 1991].

In the early 1990s, Koza applied genetic algorithms to the evolution of computer
programs and founded the discipline of genetic programming [Koza 1992]. The
automatic production of computer programs is a long-held goal in computer science that,
if it were to be reached, would have a significant impact on the world economy. Genetic
programming (GP) has made a small step in the right direction. In our view the most
important impact of genetic programming lies in extending the use of genetic algorithms
to evolve structures of increased complexity which demand more sophisticated means of
representing the structures and more sophisticated adaptive plans to improve their
performance.

Koza follows Holland in recognising the importance of epistatic sets of feature values in
adaptive systems. He further recognises the need to preserve these sets by protecting
them against disruption by genetic operators. One of the main effects of genetic
operators is to redistribute alleles within the population — a process that can destroy the
benefits of hard-won sets of interactive feature values.

Koza defines an encapsulation operation by taking a component of a structure and
defining it as a new indivisible feature that can be protected against disruption [Koza
1992: p.110]. The protected feature also becomes available for use in subsequent stages
of evolution. Koza also introduces the concept of Automatically Defined Functions
(ADFs). These are functions defined automatically during a run of a GP system and
evolved in parallel with the evolution of the main population [Koza 1992: p.534]. These
functions are added to the function set of the main population for use in the later stages
of evolution. A second work by Koza fully explores and exploits the ADF concept [Koza
1994]. Angeline and Pollack describe module acquisition in which a structural
component-is chosen and a part of the component selected as a module [Angeline 1993].
Those parts of the component below the module are considered arguments to the
module. The new module is placed in a library where it can be referenced by individuals
in the population. Banzhaf et al. review these and other modularization techniques and
point out that they have in common the protection of modules of code against the
potentially disruptive effect of crossover [Banzhaf 1998]. The present work focuses on a
different means of providing such protection which is both effective and intuitively
meaningful.

This paper is laid out as follows: in section two we introduce the basic ideas of how GP
systems work, noting the traditional representation scheme we start from and the class of
problem being tackled. In section three we provide some illustrative results and
introduce the concept of the canonical representation. We then provide detailed results of
the use of canonical representations in section four and discussion in section five before
drawing our conclusions in section six. ‘

2. Introduction

A Genetic Algorithm (GA) evolves data structures that may be applied to solve problems
in a number of fields. The GA uses techniques based on the natural evolution of living
species to gradually improve the quality of the data structures that it produces until an
optimal solution is found, or the run is terminated. Generally, an initial set of possible
solutions is chosen randomly to form the first generation in the evolutionary process.



The GA performs genetic operations on the population, to produce another generation,
and the process is repeated for a number of generations. The principle genetic operations
are those of selection and crossover. The selection process measures the success of each
member of the population in performing the allotted task, and selects the better members
as candidates for a mating pool, here of the same size as the population. High-scoring
members of the population appear multiple times in the mating pool, while low-scoring
members are not selected. Consequently the average quality of the population increases
with each generation. A new generation is evolved by the crossover operation using the
concepts of sexual reproduction. Two parents from the mating pool produce two children
by exchanging genetic material extracted from randomly chosen positions in their
representative structure. Further genetic operations may be performed, particularly
mutation, in which randomly chosen genetic material is removed from a child and
randomly generated material inserted in its place.

In a GP system the data structures are computer algorithms, normally represented as
trees in which the nodes are function nodes, representing a sub-routine in the algorithm,
or terminal nodes, representing constants or variables defined by the algorithm. A simple
example is shown in Figure 1.

IF (X AND Y) THEN
IF Z THEN

CALL XYZ IF 1
ELSE

CALL XY

ENDIF
ELSE

RETURN
ENDIF /f>\\f s RETURN 9

X3 YaZ'6 XYZ7 XY 8

Figure 1 — a simple tree

The algorithm is ‘executed’ by a depth-first traverse of the tree, starting from the root
node, searching for function nodes and their operands. An examination of nodes 2, 3 and
4 yields the logical value frue or the logical value false. A frue result causes the traverse
to continue by examining node 5 and its operands. A true value for Z calls the sub-
routine XYZ while a false value calls the sub-routine XY. In the case where the
expression X AND Y is false, the algorithm relinquishes control.

Our GP system evolves algorithms that enable a software agent to solve some problems
in spatial exploration. An example is shown in Figure 2. An enclosed & by & space has an
internal pillar occupying cells (8,5), (8,6), (9,5) and (9,6). A software robot is required to
circumnavigate the space, visiting all cells marked x, starting from any cell and from any
of four starting directions, represented by integers 1 (north), 2 (east), 3 (south) and 4
(west). In the example shown in Figure 2, the position of the agent (represented by an



arrow) is identified by the triplet (5,6,4) i.e. (row, column, direction) and referred to as a
starting gate. There are 240 starting gates (60 cells x 4 directions). One point is scored
each time a robot visits a cell marked x, of which there 30. The maximum score is
consequently 7200 (240 x30).
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Figure 2 — the Pillar problem

The purpose of the GP system used here is to supply each robot in the population with an
algorithm to guide it in solving the problem. The fitness of the algorithm is measured by
the score achieved by the robot. Selection for the mating pool that will produce the next
generation is based on fitness so the better robots survive and may breed with other
robots. Each such process produces two children who may or may not be fitter than their
parents. The tools that the GP system has at its disposal are the logical operators IF,
AND, OR and NOT, and eight sensors with which a robot is able to detect an obstacle in
an adjacent cell. The eight sensors (front, front-right, right, back-right, back, back-left,
left and front-left) are shown in Figure 3 for a robot at (5,4,4). Finally there are four
actions MOVE, RIGHT, LEFT and WAIT. The MOVE action would take the robot in
Figures 2 and 3 to (5,3,4), the RIGHT action would rotate it to (5,4,1), the LEFT action
would rotate it to (5,4,3) and WAIT would do nothing except use fuel.

We use the concept of fuel to refer to the fact that each robot is limited to a fixed number
of actions when it gets its turn on the proving ground. In the simplest version of the GP
system, each robot in the population has sole occupancy on the proving ground while its
fitness is measured. A different version of the model, not reported here, allows multiple
occupancy of the proving ground, and WAIT becomes more meaningful since it is then
often useful in avoiding other robots.
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Figure 3 — the sensors

Without the internal pillar, the problem is trivial. The tree

IF

f LEFT MOVE

will cause a robot to move in the direction in which it is facing until it reaches the wall
when it will turn left and follow the wall in an anticlockwise direction. The number of
actions needed, when the robot starts with its back to a wall, is 38. The robot scores one
point by virtue of its starting position, and then makes 7 moves to reach the opposite
wall and score a second point. It turns left at the wall and needs four more left turns at
the corners. Finally 26 further moves are needed to reach the remaining perimeter cells.

The addition of an internal pillar, as in Figures 2 and 3, significantly increases the
difficulty of evolving a successful solution. The cells marked ‘O’ require special
treatment involving a particular combination of two sensors. Figure 4 shows some
variants of the pillar problem (the outer walls are not shown except in the Steps problem
where the outer walls add to the complexity).
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Figure 4 — variants of the internal pillar problem with their maximum scores
3. Some illustrative results — the canonical representation

Each member of the population visits the proving ground once and is limited to a maximum
of 80 actions before it runs out of fuel and is removed. The upper tree in Figure 5 was the
fittest member in a population of 400 after five generations of the 2pillars problem. The
robot scored 3543 points against a maximum score of 7168, largely due to its inability to
handle internal corners. The lower tree in the figure is a canonical representation of the
upper tree. Both trees are logically identical and yield the same score. The canonical
representation consists of a chain of sub-trees each of which results in an action if the
associated condition is satisfied. Failing this, the next sub-tree is used. If none of the sub-
trees yields an action, the robot waits until its fuel is exhausted. It is apparent from Figure 5
that the canonical representation is much easier to comprehend, and that its form better
reflects the abilities of the robot as it tackles the different problems encountered in its
exploration. Essentially it is a model of a rule-based system: each rule tackles a problem
class faced by the robot.

The evolved tree has 30 nodes and the canonical version has 32 nodes. These are small
because after only five generations the growth in the size of data structures associated with
evolutionary computation has barely started. After 50 generations the average tree has
around 100 nodes. The run that produced the trees in Figure 5 continued until a successful
member was evolved, with a maximum score of 7168, in generation 41. The canonical form
of this member is shown in Figure 6.
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Figure 6 — a hit member

The solution shown in Figure 6 illustrates one of the interesting properties of the GP system.
It is able to produce robots that are disabled in some way but manage to overcome the
disability. To succeed in dealing with both internal corners and external corners a robot
ideally needs to be able to turn both right and left. In the example in Figure 6, the ability to
follow the wall at an external corner depends on the (BL and not L) construct in sub-tree B.
To take advantage of this combination of sensors, the robot needs to be moving around the
space in a clockwise direction and consequently needs a right turn when it reaches the wall.
The control tree does not have the ability to turn right.



The progress of the robot is shown by the line in Figure 6. Starting from gate (3,7,4) it
moves to the wall using sub-tree D. At the wall it turns left using sub-tree A. The robot is
now going the ‘wrong’ way round the space and will approach the external corners unable to
make use of sub-tree B. On reaching cell (9,2) it reverses direction by using sub-tree A
followed by sub-tree B: sub-tree C takes it back to (2,2) where it simulates a right turn by
successive use of A, A and B. This same ‘right’ turn is executed at each subsequent internal
corner while sub-tree B takes it round the external corners. This somewhat bizarre behaviour
is not an efficient use of fuel. Each robot is allowed 80 units of fuel, where each action
consumes one unit. The path traced in Figure 6 consumes 73 units which is close to the
available limit. For a robot to achieve the maximum score it needs to be successful from
every starting gate, and it may run out of fuel before completing its run.

4. The benefits of canonical representation — detailed results

We have already shown that a canonical representation is beneficial in understanding and
describing the way in which a GP system evolves the techniques needed to address problems
involving exploration of a complex space. It turns out that the exploitation of canonical
representation in the evolutionary process itself, can improve the performance of the system
by a significant amount. We make use of the alternative representation in two ways.

As each member of the population is evaluated by sending it out onto the proving ground,
the canonical representation of its control tree is built. We have the option of replacing any
member of the population with the canonical form of its control tree to produce a mixed
mode population. We have also introduced a form of crossover in which complete canonical
sub-trees are exchanged between members of the mating pool. Two parameters of the GP
system are the rates at which the crossover and mutation operators are applied in forming a
new generation. We supplement these parameters by two further rates — the rate at which
members of the population are replaced by their canonical forms, and the rate at which
canonical crossover is applied. Note that we use the canonical operators in a generation
sense, that is either the whole generation is put into canonical form or not, and all cross-over
operators within a generation are canonical or not — thus a canonical replacement rate of
75% implies that the whole population is transformed into canonical form in three out of
every four generations, while a canonical crossover rate of 25% means that this form of
crossover is used for one out of every four generations. It is of course, not possible in our
system to apply canonical crossover to non-canonical forms and so the crossover rate is
never greater than the replacement rate.

In order to reach statistically significant conclusions we find it necessary to do a set of 100
independent runs with a given set of parameters on a population of 200 designs for 50
generations. We measure the success of each set in two ways — by the average score of the
best members from each run, expressed as a percentage of the maximum score for the
particular problem under study, or by the number of runs in the set that achieve a maximum
score (a hit), i.e., a robot able to solve the complete problem set from any starting square and
facing in any direction. Note that the hit rate is indicative of a process able to complete the
task set as compared to the average best score which largely measures ability to reaches the
easy squares on the proving ground, and is thus a less significant measure of system
performance. Table 1 and Figure 7 show our results on the 2pillars problem and begin with
the results from a traditional, non-canonical system.



Crossover  Mutation Canonical Canonical Hits Average/Max
(%) (%) Replacement Crossover (%)
(% generations) (% generations)
90 10 0 0 10 64.2
40 13 66.9
50 17 68.0
60 15 68.0
70 28 73.9
80 22 72.4
90 19 69.9
90 10 25 25 41 78.4
50 50 31 74.7
75 75 37 76.8
100 50 33 74.9
100 100 28 72.2
90 40 25 25 74 90.9
50 50 79 94.8
75 75 84 94.2
100 50 83 94.4
100 100 83 94.8
90 50 25 25 88 96.2
50 50 94 98.5
75 75 89 96.2
100 50 88 97.0
100 100 84 95.2
90 60 25 25 84 95.9
50 50 90 96.7
75 75 93 98.2
100 50 95 98.5
100 100 89 96.8
90 70 25 ’ 25 90 96.5
50 50 95 98.4
75 75 93 97.7
100 50 97 98.9
100 100 94 97.9
90 80 25 25 92 97.3
50 50 98 99.3
100 50 99 99.6
75 75 94 98.4
100 100 99 99.6
90 90 25 25 91 97.5
50 50 96 98.9
75 75 96 98.5
100 50 100 100.0
100 100 98 99.4

Table 1 — use of canonical operators on the two pillars problem’

T The rates quoted for the crossover and mutation operators in Table 1 are maximum values
that are rarely achieved, moreover they refer to the % of robots affected, not the amount of
genetic material changed. The GP system has a maximum tree size of 400 nodes. If, during a
crossover or mutation operator, this limit would be exceeded, the operation is aborted and
tried again with changed random choices. Three retries are allowed before the operation is
permanently abandoned.
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The first seven rows of Table 1 represent a conventional GP system with various levels of
mutation. The best performance is the 28 hits and an average fitness of 73.9% of the
maximum with a mutation rate of 70% (note that this mutation rate means that there is a
70% chance that a member of the population is selected for possible mutation — the degree
of mutation being a single sub-tree in each case, and then only if the resulting design is not
too large — this is nothing like 70% of the available genetic material of course).

The remaining rows of the table result from runs with a fixed crossover rate of 90% and
various rates of mutation, from 10% to 90%, combined with increasing use of the canonical
operators. The results show that as soon as the canonical operators are introduced a dramatic
improvement takes place. The best set of results are those with a mutation rate of 90% where
the combination of 100% canonical formation combined with 50% canonical crossover leads
to 100 hits in 100 runs. All runs using the canonical operators with mutation of 40% or more
have average to maximum ratios over 90% with the worst performer achieving 74 hits, i.e.,
nearly three times that for the best base system.

We have also examined runs with larger and smaller populations and the results obtained are
broadly similar, in that the canonical transformation and crossover process always
significantly improves the system. Figure 8 shows the distribution of hit generations for all
rates of canonical operators as the population and mutation rates change. It is clear that with
a reduced population hits are delayed while with a larger one they atrive earlier. Moreover
the impact of increasing mutation is also to cause hits to arrive earlier. With the best
performing set-up and a population of 200 members many hits are occurring between
generations 15 and 25 with very few taking the full 50 generations to be located, while with
a population of only 100 members and moderate mutation many hits are still arriving in the
final generations of the search.

120
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60

number of hits

40

20

npop=400, mu=50
npop=200, mu=90
25 npop=200, mu=50

generation 35 40 45 npop=100, mu=50
50
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Figure 8 — hits per generation
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5. Discussion

When the fitness of a control program is being measured on the proving ground, the agent is
faced with a number of situations with which it needs to deal to be successful — internal
corners, external corners, getting to the wall and so on. Typically there are between five and
eight such situations which are described by the settings of the agent’s proximity sensors,
which are themselves represented by terminal nodes in the control tree. The control program
uses these terminal nodes as arguments to logical functions and identifies the action that the
agent should take. The terminal and function nodes that are visited during this process are
generally scattered throughout the tree. The purpose of generating a canonical version of the
control tree is to gather these nodes into a simple sub-tree with an IF operator at its root. The
operands of the IF function are a test of the terminal nodes that yields a true or false value,
an action in the case of a true result and a branch to the next IF sub-tree if the test is false. A
canonical member consists of a chain of canonical sub-trees each of which deals with a
particular situation in the agent’s journey. An agent which achieves a hit score has a set of
canonical sub-trees which match each of the situations that the agent will meet — in some
senses the format is that of a rule based system, with each sub-tree representing a rule that
can be used to solve a given problem within the overall task.

The canonical replacement operator replaces a non-canonical tree in the population with its
canonical equivalent, thus introducing canonical sub-trees into the gene pool. These valuable
building blocks are effectively encapsulated by the canonical crossover operator that ensures
that the canonical sub-trees are moved through the population in their entirety. The
combination of extracting building blocks and preserving them against corruption by
crossover accounts for the significant improvements seen as compared to the standard GP
system.

6. Conclusions

The trees evolved by a GP system are often large and difficult to interpret. We have shown
that transposing a tree into canonical form, as defined in this paper, makes it easier to
associate a path through the evolved tree with a particular feature of the problem under
study. These paths are followed during evaluation of the structure and it is relatively simple
to record the paths and to express then as canonical sub-trees. The concatenation of these
sub-trees is logically identical to the evolved tree. Only paths which lead to an action are
recorded as sub-trees, emphasising the fact that an incomplete solution to the problem, as
represented by an incomplete canonical sub-tree, is associated with a failure to deal with
particular circumstances arising as the robot makes its way round the course.

We have provided canonical sub-trees with protection in the form of canonical cross-over.
Canonical sub-trees, each rooted on an IF-node, are exchanged in their entirety and are
therefore immune to damage. Such damage may of course occur during mutation. As shown
in our results, the conventional, non-canonical, system produces an average of some 18 hits .
per set of 100 runs. Introducing the canonical operators alongside the conventional GP
operators (at 90% cross-over and 10% mutation) immediately increases the average hit rate
to 34%. Thereafter ramping up the mutation rate to 90% approaches, and in one set reaches,
a perfect score of 100 hits in 100 runs. One of the features of canonical representation is that
it removes intronic genes from individual members of the population. The removal of this
material increases the average value of the gene pool. High levels of mutation seem to be
needed to exploit this added value.
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