The University of Southampton
University of Southampton Institutional Repository

Metamaterial electro-optic switch of nanoscale thickness

Record type: Article

We demonstrate an innovative concept for nanoscale electro-optic switching. It exploits the frequency shift of a narrow-band Fano resonance mode in a plasmonic planar metamaterial induced by a change in the dielectric properties of an adjacent chalcogenide glass layer. An electrically stimulated transition between amorphous and crystalline forms of the glass brings about a 150 nm shift in the near-infrared resonance providing transmission modulation with a contrast ratio of 4:1 in a device of subwavelength thickness.

PDF samson_GLS_metamaterial.pdf - Version of Record
Download (198kB)

Citation

Sámson, Z.L., MacDonald, K.F., De Angelis, F., Gholipour, Behrad, Knight, K., Huang, C.C., Di Fabrizio, E., Hewak, D.W. and Zheludev, N.I. (2010) Metamaterial electro-optic switch of nanoscale thickness Applied Physics Letters, 96, (14), p. 143105. (doi:10.1063/1.3355544).

More information

Published date: 5 April 2010
Keywords: chalcogenide glasses, dielectric properties, electron spin polarisation, electro-optical switches, metamaterials, photoemission
Organisations: Optoelectronics Research Centre

Identifiers

Local EPrints ID: 148949
URI: http://eprints.soton.ac.uk/id/eprint/148949
ISSN: 0003-6951
PURE UUID: 21b1b6f3-fcf6-4b73-867a-d8ebabedd823
ORCID for K.F. MacDonald: ORCID iD orcid.org/0000-0002-3877-2976
ORCID for C.C. Huang: ORCID iD orcid.org/0000-0003-3471-2463
ORCID for D.W. Hewak: ORCID iD orcid.org/0000-0002-2093-5773

Catalogue record

Date deposited: 29 Apr 2010 11:24
Last modified: 18 Jul 2017 19:31

Export record

Altmetrics

Contributors

Author: Z.L. Sámson
Author: K.F. MacDonald ORCID iD
Author: F. De Angelis
Author: K. Knight
Author: C.C. Huang ORCID iD
Author: E. Di Fabrizio
Author: D.W. Hewak ORCID iD
Author: N.I. Zheludev

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×