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The transmembrane permeation of eight small (molecular weight <100) organic molecules across a phospholipid
bilayer is investigated by multiscale molecular dynamics simulation. The bilayer and hydrating water are
represented by simplified, efficient coarse-grain models, whereas the permeating molecules are described by
a standard atomic-level force-field. Permeability properties are obtained through a refined version of the
z-constraint algorithm. By constraining each permeant at selected depths inside the bilayer, we have sampled
free energy differences and diffusion coefficients across the membrane. These data have been combined,
according to the inhomogeneous solubility-diffusion model, to yield the permeability coefficients. The results
are generally consistent with previous atomic-level calculations and available experimental data. Computa-
tionally, our multiscale approach proves 2 orders of magnitude faster than traditional atomic-level methods.

Introduction and Background

Transport phenomena across biomembranes are fundamental
processes in cellular biology. They are also becoming increas-
ingly important in many medical, pharmaceutical, and environ-
mental technologies.1 For example, drug permeation is crucial
to bioavailability, and is at the basis of the technology of
liposomal transport systems.2 Although important permeation
mechanisms, such as those responsible for the translocation of
sugars and amino acids, are actively controlled by proteins,
passiVe permeation is the most common way by which solutes
cross cell membranes. Most small molecules (such as water)
and drugs are passively transported. While experiment can
measure permeability coefficients, the exact mechanism of
unassisted transmembrane transport is still not fully understood,
as local membrane-solute interactions are difficult to probe.
In fact, the current understanding of membrane permeability is
still influenced by the theories developed over a century ago
by Overton, who proposed that the membrane permeability
coefficient of a solute can be simply correlated to its oil/water
partition coefficient.3 This observation led to the crude repre-
sentation of the membrane as a homogeneous oil slab; on this
basis, the simple bulk solubility-diffusion model of membrane
permeability was proposed.4 In more recent years, experiments
have clearly established that lipid membranes are highly
heterogeneous systems, very different from uniform oil phases;
for instance, density distributions, order parameters, and diffu-
sion in lipid membranes show characteristic properties that are
not present in bulk oil systems. Moreover, lipid bilayers
comprise highly polar moieties, such as the headgroup and the
glycerol/ester regions, that do not have any counterpart in oil
solvents. The heterogeneity present inside membranes is in-
cluded in the inhomogeneous solubility-diffusion model,5-7

which relates the permeability coefficient to the variations of
local properties across the membrane; these properties, such as
partitioning and diffusion of a solute as a function of its position

inside the membrane, are extremely difficult to measure
experimentally.

Particle-based simulations can provide insights into the
understanding of transport phenomena across bilayers with the
necessary resolution. In recent years, standard atomic-level (AL)
molecular dynamics simulations have indeed been successfully
employed to predict permeability coefficients and to investigate
the general mechanism of passive transport across membranes.2,8,9

These investigations have been extremely useful in understand-
ing many aspects of bilayer permeation with atomic resolution.
However, the huge computational cost of simulating AL
membrane models causes a number of problems. For example,
obtaining well-converged data can be difficult, as series of long
simulations are required for every solute. Also, bilayer sizes
must be rather small to be computationally amenable; this can
induce artifacts, especially when large drugs are inserted into
the membrane. Furthermore, the number of different permeants
that can be investigated in a reasonable amount of time is
extremely limited; this seriously hinders potential applications
in the context of drug design, where the screening of large sets
of candidate compounds is normally required. It is therefore
highly desirable to develop techniques that can improve the
efficiency of simulation.

A possible way to alleviate the AL computational cost
involves simplifying the representation of the system via coarse-
grain (CG) techniques. CG approaches generally involve group-
ing together entire clusters of atoms into single macro-sites, to
significantly reduce the number of interactions calculated, and
hence also the computational cost. CG methods can increase
simulation speed by several orders of magnitude with respect
to corresponding AL methods, while still retaining the most
important physical features of the systems and phenomena
represented.10-12 However, membrane permeability is known
to be extremely sensitive to the chemical identity of the
permeating species; minor variations in the solute atomic
structures can lead to differences of many orders of magnitude
in the permeability coefficients.13 In the context of transmem-
brane permeability, standard CG models are therefore unlikely
to provide accurate descriptions. A natural compromise would
involve combining the accuracy of AL force-fields to the

* To whom correspondence should be addressed. Tel.: +44 (0)23 8059
2794. Fax: +44 (0)23 8059 3781. E-mail: j.w.essex@soton.ac.uk.

† University of Southampton.
‡ Johnson & Johnson PRD.

J. Phys. Chem. B 2009, 113, 12019–12029 12019

10.1021/jp903248s CCC: $40.75  2009 American Chemical Society
Published on Web 08/10/2009



efficiency of CG models in a multiscale fashion.14-16 This can
be done by multiresolution models,14 also called concurrent
schemes,16 where the “chemically sensitive” parts of the system
(for example, the solutes in membrane permeation studies) are
modeled atomistically, while the surrounding environment is
simplified with CG representations. It would be particularly
advantageous for such multiscale methods to be compatible with
standard AL force-fields, which have been developed, tested,
and successfully used for decades now. Several multiresolution
approaches have been reported in the literature.17-24 While these
methods are generally promising, a number of issues can be
noted. Most of the multiresolution schemes developed so far
are characterized by the use of rather complex algorithms to
specifically model the interfacial region between the AL and
CG parts of the system. None of these techniques has been used
to simulate transmembrane permeation processes. In fact,
applications to biological systems have been so far limited to
the modeling of basic structural and dynamical properties of
proteins,18,19 and to the study of the structure of a preassembled
membrane-protein system.20 In these approaches, problems
arise whenever molecules diffuse across regions of different
representations, as the models for the AL and CG particles are
not compatible. Adaptive techniques, which address this issue
by allowing changes of resolution across a predefined interface
between the AL and CG regions, have been proposed only
recently, and thus far have been applied to rather simple systems,
such as idealized tetrahedral solvent particles,22 liquid methane,17,21

water,24 and a generic solvated bead-spring polymer.23 General
problems involve the preservation of realistic dynamics and the
consistency of relative dynamics across the different representa-
tion levels.14

In this study, we present multiscale simulations based on a
simple and direct AL-CG coupling, where the different
representations interact through compatible potentials. In par-
ticular, AL models of solute molecules are embedded in a bilayer
represented at the CG level; mixed AL-CG interactions are
treated “naturally” using standard mixing rules, without the need
to carry out extensive parametrizations or to define interface
regions. Such a straightforward multiresolution coupling is
possible thanks to the characteristics of our CG membrane
model,25 which retains compatibility with AL force-fields,
particularly with respect to the electrostatics. We have recently
presented a proof of principle for the validity of our multiscale
methodology by calculating water-octane partition coefficients
for a set of AL amino acid side chains embedded into CG
solvent representations.26 In the study presented here, we extend
and apply this multiscale approach to molecular dynamics
simulation of the permeability of small AL solutes in a CG lipid
membrane. In the next section, the models we employ, as well
as the multiscale strategy, are summarized. Moreover, we present
the theory underlying our permeability calculations. Data
obtained from the multiscale permeability simulations are then
presented and compared to standard AL simulation results and
available experimental data. We then discuss our findings, along
with advantages, limitations, and issues of our multiscale
methodology. Ongoing work and future possible extensions are
also mentioned.

Simulation Methodology

Coarse-Grain Models of Membrane and Water. The
simulated bilayer membrane is represented by our recently
developed CG model for dimyristoylphosphatidylcholine (DMPC)
lipid bilayers.25 In this simplified model, each lipid molecule,
in reality comprising more than one hundred atoms, is reduced

to ten macrounits. The lipid headgroup is coarse-grained into
two Lennard-Jones spherical units, describing the choline and
phosphate moieties. Headgroup electrostatics are represented
by a positive point-charge embedded in the choline group and
a negative one in the phosphate group. The glycerol and
hydrocarbon regions are modeled by soft uniaxial ellipsoids
through the Gay-Berne potential.27 The Gay-Berne potential
can be seen as an extension of the (isotropic) Lennard-Jones
potential, where extra terms are added to allow the modeling
of nonspherical (anisotropic) particles. In particular, the glycerol-
ester region is described by two Gay-Berne ellipsoidal units,
each embedded with a point-dipole to capture the dipolar charge
distribution in this region. Hydrocarbon tails are modeled by
chains of three neutral Gay-Berne ellipsoids; each ellipsoid
represents a segment of four consecutive methyl groups.
Intralipid bonds are modeled by the Hooke (harmonic) potential,
as is standard practice. No angle or torsional potentials are
present. Some of the force-field parameters have been recently
refined; the new parameter set, employed in the simulations
reported in this article, is described and tabulated in the
Supporting Information. A manuscript detailing the results
obtained with this new force-field, as well as its extension to
different lipid species, is in preparation.

Water molecules are represented by the soft sticky dipole
(SSD) model,28 with parameters optimized for electrostatic cutoff
simulations.29 The SSD water is a single-site model; the three
atoms of individual water molecules are coarse-grained into a
single interaction center, which comprises a Lennard-Jones core
providing excluded-volume, a point-dipole to model electrostat-
ics, and a tetrahedral “sticky” term to capture hydrogen bonding.
Detailed formulas of the SSD potential, and corresponding forces
and torques, can be found elsewhere.30 The SSD model is
computationally much cheaper than the traditional AL multisite
water models,31,32 yet it accurately reproduces structural,
thermodynamic, dielectric, dynamic, and temperature-dependent
properties of real water.28-30,33

Atomic-Level Models of Small Molecules. We have selected
the following solute candidates, representing common chemical
functional groups: acetamide, acetic acid, benzene, ethane,
methanol, methylacetate, methylamine, and water. We have
chosen this set of molecules because it will enable comparison
with the results obtained in a corresponding investigation carried
out by standard AL methods.34 Water is modeled by the SSD
potential,28,29 as described in the previous section. The other
solutes are described by all-atom models. The atomic-level
structures were produced with the program Molden.35 The
antechamber tool from the AMBER program36 was then used
to optimize the geometry, assign the Lennard-Jones parameters
from the GAFF force-field,37 and generate partial charges with
the AM1/BCC model.38 The solute models have no net charge;
this is consistent with the assumption that only the neutral
species diffuse across the bilayer.39 For simplicity, no intramo-
lecular degrees of freedom are taken into account, that is, solute
molecules are rigid. All solutes are small, relatively compact
molecules; it seems therefore reasonable to model them as rigid
bodies.

To optimize the stability of molecular dynamics numerical
integration, the atomic masses of some (typically, the lighter)
permeants, that is, ethane, methanol, methylacetate, and me-
thylamine, were redistributed. For these solutes, the mass of
the hydrogen atoms was increased, while reducing accordingly
the mass of the other atom types to roughly maintain the origi-
nal total molecule mass. Since hydrogens are normally located
on the periphery of molecules, this mass redistribution increases
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the principal moments of inertia. This stabilizes the rotational
motion, potentially allowing larger integration time steps to be
used.40 In fact, the procedure described has enabled us to
maintain the large integration time step (20 fs) employed for
the purely coarse-grain simulations,25 thus preserving the
efficiency of the method. Thermodynamic properties and center
of mass dynamics are not affected by such an alteration of the
principal moments of inertia, while rotational dynamics are
expected to slow down. Since the permeability coefficient
depends on the (linear) diffusion coefficient of the molecular
center of mass (see also the following eq 3), our permeability
calculations for these molecules will not be affected by the mass
redistribution. The SSD water model implemented represents a
special case, as the total mass has been substantially increased,
from 18 to 50 amu. However, in a previous test25 we observed
that the linear diffusion coefficient decreased by only 20%.
Hence, even in the case of our “heavy” SSD water model we
predict negligible effects on the overall permeability properties.
The remaining solutes (acetic acid, acetamide, benzene),
naturally characterized by sufficiently large principal moments
of inertia, did not present integration stability problems and
hence were assigned normal atomic masses. The specific values
of atomic masses and principal moments of inertia for all
molecules are reported in the Supporting Information.

Mixed AL-CG Interactions. All the potentials employed
to represent the various interacting sites in our multiresolution
membrane-water-solute systems are directly compatible with
each other. Therefore, mixed interactions between CG sites and
AL atoms can be treated straightforwardly by available formulas.
In particular, Lennard-Jones cross terms between lipid head-
groups, water, and solute atoms are calculated using standard
mixing rules.41 Mixed Lennard-Jones/Gay-Berne interactions
are consistently treated using the generalized Gay-Berne
potential,42 which accounts for the intralipid headgroup-tail
interactions, the interaction between the Lennard-Jones term of
the SSD potential and the Gay-Berne lipid term, and the
interaction between the Lennard-Jones terms of the AL solutes
and the Gay-Berne lipid term. Explicit formulas of potentials,
forces, and torques for both the original Gay-Berne model and
its generalized version are reported in detail elsewhere.27,42,43

In our model we represent explicitly all relevant electrostatics
of the lipid, water, and solute molecules through point charges
(monopoles) and point dipoles, as described previously. There-
fore, monopole-monopole, monopole-dipole and dipole-dipole
interactions can be simply described by standard electrostatic
formulas.44 Despite being able to directly treat the mixed
AL-CG interactions, some ad hoc adjustments should be
expected, given that we are mixing two rather different empirical
models, that is, our coarse-grain force-field and the GAFF
atomic-level force-field.37 In fact, preliminary work to calibrate
the mixed parameters between CG and AL sites was previously
carried out by calculations of water-octane partition coefficients
for a range of solutes by Monte Carlo simulations.26 Octane
molecules were modeled as pairs of Gay-Berne ellipsoids
connected by a harmonic spring, using the parameters developed
for the hydrocarbon tails of our CG lipid model,25 water was
represented with the SSD potential,28,29 and the solutes with the
GAFF all-atom force-field.37 The solutes used were 15 analogues
of neutral amino acid side chains. In that work,26 results could
be brought into excellent agreement with experimental data by
introducing two scaling factors into the standard mixing rules,
to modify the electrostatic potential energy term between water
and solutes, and the generalized Gay-Berne potential energy
term between lipid tail sites and solutes. That study26 proved

that a general, transferable multiscale model for our CG model
and a standard AL force-field can be obtained through a fast
and simple calibration involving only two extra parameters. In
fact, the scaling factor R controlling the electrostatic interaction
between CG water and AL solutes has been transferred unaltered
to the simulations reported in this article. In particular, the
electrostatic energy Uij

E between an AL atom i, bearing the partial
charge Qi, and an SSD water site j, characterized by the dipole
µj, is calculated as

where R is the additional scaling factor, ε0 is the permittivity
of vacuum, and rij the distance between the interacting pair.
Following our previous calibration work,26 we therefore set R
) 1.1. The second scaling factor controls the Lennard-Jones/
Gay-Berne mixed energy term εij between an AL atom i and
an ellipsoidal CG site j:

where � is the additional scaling factor, εi is the Lennard-Jones
energy term for atom i, and εj is the Gay-Berne energy term
for the coarse-grain site j. In our previous multiscale calculation
of solvation free energies for AL solutes in CG octane26 it was
observed that, without scaling the mixed interaction term εij (that
is, setting � ) 1), the solutes would favor too much the CG
apolar phase, resulting in an overestimation of partition coef-
ficients. This was fixed by simply reducing �; in particular, the
target data were fitted by setting � ) 0.8. To a first approxima-
tion, it would be tempting to directly transfer this value for �
to the systems investigated in this article. However, we are here
considering an interfacial membrane system, rather different
from the homogeneous bulk-phase octane system employed in
the previous multiscale study,26 and hence such a transfer may
not be physically justified. We therefore decided to specifically
parametrize � for solute-lipid interactions; this could be done
in a fast and simple way, using a similar approach to that
employed in our previous multiscale investigation.26 In particu-
lar, we select as parametrization targets the permeability
coefficient data obtained from AL simulations of a set of small
organic molecules.34 Using the methodology described in the
next section, preliminary multiscale permeability simulations
were carried out to identify the value for � that could best fit
the target data. As observed for the octane study,26 simply
leaving � ) 1 revealed a tendency of the multiscale model to
overestimate the partitioning of the AL solutes into the CG
apolar region, in this case corresponding to the lipid hydrocarbon
core of the membrane. This initially led to transmembrane
permeability coefficients larger than those obtained in the
reference AL investigation.34 To calibrate the mixed interactions,
� was decreased until the target data could be reproduced; in
this case, the best fit was obtained for � ) 0.5. This value for
� has therefore been adopted for the simulations presented in
the reminder of the article. It will be seen that the fitting of this
single parameter allows accurate permeability predictions for
all the eight solutes selected, both in terms of absolute
magnitudes and regarding the relative rankings; this is not trivial,
given that the solutes are rather diverse and characterized by
permeability coefficients spanning several orders of magnitude.

Uij
E ) R

Qiµjrij

4πε0|rij|
3

(1)

εij ) �√εiεj (2)
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The Inhomogeneous Solubility-Diffusion Model. The
inhomogeneous solubility-diffusion model5-7 relates the (ex-
perimentally measurable) permeability coefficient of a solute
to an integral of depth-dependent parameters across the mem-
brane. In particular, the transmembrane permeability coefficient
P is expressed as

where R(z), ∆G(z), and Dz(z) are the solute resistance, the
transfer free energy, and the z component of the diffusion
coefficients, respectively, at position z along the direction normal
to the membrane interfacial plane. Precisely, the transfer free
energy ∆G(z) represents the difference between the free energy
at position z across the bilayer and the reference value in the
water phase, which we assume to be zero. The integration
extremes z1 and z2 are taken in the water phases at the two sides
of the membrane, so that the integration is performed over the
entire bilayer. The quantities featuring in the inhomogeneous
solubility-diffusion model (eq 3) can be obtained from simula-
tion by applying the z-constraint method.7,45-47 For this work,
we have developed an alternative implementation of the
z-constraint method which guarantees the conservation of all
relevant physical quantities; the algorithm is detailed in the
Supporting Information.

Permeability Simulation Protocol. Molecular dynamics is
carried out with our software BRAHMS.25,48 The equations of
motion are integrated using an advanced symplectic and time-
reversible method,49 with a time step of 20 fs. Pressure and
temperature are maintained at 1 atm and 30 °C using the weak-
coupling scheme.50 Lipid, water, and solute temperatures are
coupled separately with time constants τT ) 0.1 ps for lipid
and water, and τT ) 0.02 ps for the solute. The pressure is
controlled by semi-isotropic volume scaling with time constant
τP ) 0.2 ps and isothermal compressibility � ) 4.6 × 10-5

atm-1. The cutoff radius for both Lennard-Jones and electrostatic
water-water interactions is 0.9 nm, as prescribed for the SSD
parametrization adopted.29 All other nonbonded cutoff radii have
been set to 1.2 nm. Electrostatic interactions are treated using
cutoff schemes. In particular, all charge-charge and charge-
dipole interactions (including those between AL and CG sites)
are implemented using the shifted-force cutoff method.41 We
employ the SSD parameters optimized to evaluate dipole-dipole
interactions with a cubic switching cutoff scheme;29 for con-
sistency, all dipole-dipole interactions are treated in this
manner. Nonbonded interactions involving solute molecules are
treated as group-based with a cutoff distance of 1.2 nm; the
interactions between all solute atoms and the interacting
site (either a lipid or a water site) are evaluated if the distance
between the solute mass center and the interacting site is less
than the cutoff. The bilayer model employed is a CG membrane
comprising 128 DMPC lipids and 3400 hydrating SSD water
molecules.25 For each of the AL solutes, the z-constraint method
has been applied to sample 16 equally spaced z-positions across
one monolayer; results are considered valid also for the other
monolayer by symmetry. In particular, we have sampled
distances from 3.1 to 0.1 nm from the bilayer center in 0.2 nm
increments along the z-axis (normal to the membrane plane).
In each simulation, a single solute molecule was present in the
bilayer. For each solute, 16 systems were prepared (to cover
the selected z-depths). Molecules were initially inserted at
0.002% of their actual size, and with charges and Lennard-Jones

parameters set to 0.002% of their actual values. The solutes
were then incrementally grown back, and the interaction
parameters incrementally increased toward their real values, over
50000 molecular dynamics steps, corresponding to 1 ns of
simulation time. This insertion procedure proves robust, as it
allows a gradual relaxation of the bilayer around the permeant.
For each solute, the 16 systems were subsequently equilibrated
for 10 ns. For each of these systems, production runs were then
conducted for 80 ns, divided into two consecutive 40 ns batches.
The simulation length was set to ensure convergence of the
average constraint force, from which the solubility-diffusion
parameters are derived (eq 3). A typical example of the time
evolution of the constraint force on a solute during one of the
permeability simulations is shown in Figure 1. It can be seen
that the constraint force fluctuates significantly over time scales
of a few tens of ns; our choice for a sampling time of 80 ns
seems therefore appropriate. Using standard 2-GHz AMD
Opteron processors, each 80 ns production run took just five
days of CPU-time. All simulations could be run almost
concurrently on the Iridis cluster51 at the University of Southamp-
ton in a coarsely parallel fashion, meaning that each (indepen-
dent) simulation ran on a different CPU. The entire set of
simulations, totaling over 10 µs of simulation time, ran in about
one week.

Results

In this section, we report the results obtained from the
multiscale AL-CG permeability simulations. For the free
energy, diffusion and resistance profiles, and for the overall
permeability coefficients, we will report average values and
standard errors computed from the averages over the two 40 ns
consecutive blocks of each of the 80 ns runs. The data obtained
will be compared to previous AL simulation studies and
available experimental data. The CG membrane is a model for
DMPC bilayers, and hence comparisons should ideally be made
with results obtained with this lipid species. In fact, some
experimental and simulation data for DMPC will be reported.
However, we will consider many results obtained for dipalmi-
toylphosphatidylcholine (DPPC) lipid bilayers, as this was the
lipid species employed in the AL investigation which constitutes
our primary comparison source.34 DPPC is structurally identical
to DMPC apart from slightly longer tails (two more carbons).

P ) 1/ ∫z1

z2 R(z) dz ) 1/ ∫z1

z2
exp(∆G(z)/kBT)

Dz(z)
dz (3)

Figure 1. Constraint force on a molecule of acetic acid constrained at
a distance of 0.1 nm from the bilayer center. For clarity, the data are
represented as moving averages over 10 ns time windows; the plotted
constraint force at x ns thus corresponds to the average over the time
interval from (x - 5) ns to (x + 5) ns.
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Also, all data considered here refer to fully hydrated bilayers
in the liquid-crystalline phase. Under these conditions, DPPC
bilayers are only 0.2 nm thicker than DMPC bilayers;52 this
amounts to just ≈5% of the overall membrane thickness.
Permeability properties are unlikely to be significantly affected
by this difference, particularly in terms of relatiVe permeabilities,
which are our main focus. Therefore, we believe it is reasonable
to compare results for DMPC to corresponding data for DPPC.
We will also report a few experimental permeability coefficients
derived from studies on lecithin bilayers, which are mixtures
of different phosphatidylcholine (PC) lipids.

Free Energies of Transfer. For each of the solutes consid-
ered, the free energies of transfer from the water phase to the
selected z-positions inside the membrane are reported in Figure
2. Considering the first part of the curves, from the water phase
to the headgroup region, we can identify two types of behavior.
The solutes ethane, methanol, methylamine, and water exhibit
an overall slight free energy increase on entering the headgroup
region. This behavior indicates a minor permeability-barrier
effect in this region. The remaining half of the solutes
(acetamide, acetic acid, benzene, methylacetate) show instead,
in the same region, a free energy decrease; this corresponds to
these permeants favoring the headgroup region with respect to
the water phase.

Proceeding deeper into the bilayer, corresponding to the
glycerol region, all molecules except water display a free energy
decrease. In particular, most permeants (acetamide, acetic acid,
benzene, ethane, and methylacetate) are characterized in this
region by deep free energy minima, between -6 and -11 kJ/
mol; these solutes are therefore predicted to preferably partition
in this region. Methanol and methylamine display shallower
local free energy minima, whereas the free energy of water
continues monotonically to increase.

The rightmost part of the diagram in Figure 2 shows the
change in free energy characterizing the solutes when con-
strained in the hydrocarbon tail region (the bilayer core). Here
all solutes display a free energy increase, highlighting a barrier
effect of the hydrocarbon tail region. A particularly steep free
energy increase can be noticed for acetamide, acetic acid,
benzene, methanol, methylacetate, and water. The free energy
rise in this region is instead rather small for methylamine, and
almost negligible for ethane.

A close comparison between the AL-CG free energy profiles
and the corresponding curves calculated in the reference AL
study34 highlights a number of qualitative differences. In the
lipid headgroup-glycerol region, all the AL profiles34 display
a free energy increase on entering the headgroup region.
However, as already noted earlier, at the same location only
half of the multiscale profiles are characterized by a free energy
increase, whereas the remaining half display a shallow dip.
Experimental data on the free energy difference between the
headgroup region and the water phase have been obtained for
acetic acid; from the partition coefficient in DMPC vesicles, a
value ∆G ≈ -0.45 kJ/mol was calculated.53 This negative value
is in qualitative agreement with our AL-CG results, whereas
it is inconsistent with the AL results, which gave a positive
free energy difference.34 However, there is a discrepancy of a
factor of ∼5 between that experimental value53 and our AL-CG
result. Experiments have also been performed on short-chain
alcohols including methanol. These data indicate that short-chain
alcohols in general,54-58 and methanol in particular,54,55 prefer-
entially locate inside the bilayer, and in particular in the polar/
apolar interface region, comprising the headgroup, glycerol, and
upper tail region. The AL-CG free energy curve for methanol
displays a global minimum at z ) -1.1 nm, thereby indicating
a preferential partioning inside the membrane, in the glycerol
and upper tail regions. Instead, the AL data by Bemporad et
al.34 do not show any free energy minimum inside the
membrane, thus predicting a preferential location of methanol
outside the bilayer, in the water phase. Patra et al.59 also studied
the interaction of methanol with lipid bilayers by AL simulation.
In that study, 90 methanol molecules were inserted in the water
phase of a membrane system comprising 128 lipids and ∼9000
water molecules. By calculating equilibrium density distribu-
tions, it was observed that methanol preferentially partitioned
inside the bilayer, at an average distance of ∼1.4 nm from the
bilayer center. This is consistent with our AL-CG prediction
of a preferential location of methanol inside the bilayer, at ∼1.1
nm from the bilayer center. Patra et al.59 also predicted the
interaction of methanol with the membrane to be weak, as no
penetration through the bilayer took place over the 50 ns
simulation (by comparison, ethanol was instead found to
permeate easily59). Such an observation is consistent with our
AL-CG free energy curve for methanol, as the minimum is
shallow (indicating weak association with the bilayer) and the
central barrier is substantial (thus opposing penetration). Overall,
the AL simulation results of Patra et al.59 are therefore in line
with the AL-CG data presented here. More evidence in support
of our AL-CG results can be found in recent AL data60,61 on
the transfer free energies of the side chain analogues of the
amino acids asparagine and serine, which are identical to
acetamide and methanol, respectively. These free energy
profiles60,61 are consistent with our multiresolution results; in
particular, negative global minima corresponding to the glycerol
region can be identified for both molecules.

In general, in the glycerol region, all the AL-CG multiscale
free energy profiles, except those for water and ethane, display
minima at z ≈ -1.1 nm, corresponding to a region that
comprises the glycerol backbone and the upper tail methylene
of the hydrocarbon region. In particular, acetamide, acetic acid,
benzene, and methylacetate show in this location rather deep
global free energy minima, of the order of -5 to -10 kJ/mol.
For these molecules there are evident discrepancies with the
corresponding AL data.34 For example, the AL free energy
curves for acetamide and acetic acid display global minima in
the water phase outside the bilayer (for z ) -3 nm), while

Figure 2. Free energies of transfer from water to selected z-positions
along the bilayer normal. To facilitate interpretation, different regions
across the system are marked in italics, namely, the bulk water region,
the lipid headgroup region, the lipid glycerol region, and the hydro-
carbon tail core. Approximate boundaries between these regions are
defined by the vertical dotted lines.
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increasing monotonically across the glycerol region. The AL
profile34 for benzene does display a minimum inside the
membrane, as in the multiscale data, whereas the AL curve34

for methylacetate displays a very shallow minimum (as opposed
to the deep minimum in the AL-CG result). The multiscale
data for methylamine and methanol are characterized, in the
glycerol region, by shallow minima, whereas the AL curves,34

in the same region, monotonically increase. Ethane and water
behave similarly for both the AL34 and multiscale models in
the glycerol region; ethane displays a minimum, whereas water
is characterized by a clear free energy increase.

Deep inside the hydrocarbon tail core, most of the multiscale
curves display a similar behavior to the AL results.34 In
particular, acetamide, acetic acid, methanol, methylamine, and
water are characterized by overall increases. However, the data
for benzene and methylacetate are not consistent; in the central
hydrocarbon region, the free energy of these two solutes
increases in the AL-CG results, whereas it remains constant
in the AL data.34

Regarding the free energy of water, it is possible to compare
our results to simulation data reported in the literature;7,34,62-64

all these investigations yield curves qualitatively similar to that
obtained from our simulations. The free energy values in the
bilayer center, quantifying the water permeability barrier func-
tion of membranes, are collected in Table 1; it can be seen that
our result lies inside the range of those obtained by AL methods.

Diffusion Coefficients. The diffusion profiles Dz(z) are
displayed in Figure 3. The values obtained with the AL-CG
model are within 1 order of magnitude of the AL results reported
in the simulation study of the same set of solutes.34 However,
qualitative discrepancies from that study34 can be noted for a
number of molecules. In particular, Figure 3 shows that the
diffusion coefficients of benzene, ethane, methylamine, methy-
lacetate, and water are higher in the center of the bilayer than
in the outer water phase; these data do not agree with those

reported in the AL simulation study34 where, for all solutes,
diffusion coefficients in the bilayer center were found to be
significantly lower than in the water phase. However, two other
previous AL investigations reported conflicting results. In the
water permeability simulations by Marrink and Berendsen,7 the
diffusion rate in the bilayer center was reported to be more than
twice as large as in the water phase. As noted elsewhere,2 this
discrepancy may stem from Marrink and Berendsen’s modeling
of the -CH2- and -CH3 groups in the lipid tails without
explicit hydrogens, that is, using a united-atom representation.
However, Shinoda et al.,62 using an explicit-hydrogen model,
also reported the diffusion coefficient Dz for water in a DPPC
bilayer to be twice as high in the hydrocarbon center than in
the water phase. Moreover, in another molecular dynamics
investigation of benzene in a DMPC bilayer with all hydrogens
explicitly modeled, it was found that benzene diffused three
times faster in the bilayer center than in the interfacial region;65

in that case though, the total diffusion coefficient was calculated,
as opposed to the z-component only (as considered in this study
and the other referenced works). In all these studies,7,62,65 the
enhanced diffusion was ascribed to the small size of water and
benzene; they diffuse faster by jumping between the free volume
pockets available in the middle of the bilayer, which is in fact
the lowest-density region of the system.

Resistances. Resistance profiles R(z) as a function of the
bilayer normal, calculated from ∆G(z) and Dz(z) with eq 3, are
displayed in Figure 4. It can be seen that the most hydrophilic
solutes, which are acetamide, acetic acid, methanol, and water,
are characterized by a net resistance increase from the water
phase to the hydrocarbon core. Methylamine, benzene, and
methylacetate display almost no overall change, whereas ethane
shows a net resistance decrease. In general, the resistance
profiles of Figure 4 show a clear correlation to the free energy
profilesofFigure2.This is expected, as in the solubility-diffusion
model employed (eq 3) the resistance R(z) depends largely on
the free energy difference ∆G(z), which features as the argument
of an exponential, while the contribution of the diffusion
coefficient Dz(z) is comparatively small. However, in some
resistance profiles it is possible to identify slight deviations from
the shape of the corresponding free energy profiles; these effects
are determined by the diffusion coefficients (Figure 3). The local
resistance is inversely proportional to the diffusion coefficient
(eq 3); the observed enhanced diffusion of some solutes in the

TABLE 1: Free Energy of Transfer of Water from the
Outer Water Phase to the Bilayer Centera

multiscale (this work) 28.1 ( 0.7c

atomic-levelb 22.934d 22.563c 26.07d 26.462d 56.564c

a Values expressed in kJ/mol. b References are given. c Fluid-phase
DMPC. d Fluid-phase DPPC.

Figure 3. Diffusion coefficients along the z-dimension (normal to the
membrane plane) for selected z-positions inside the bilayer. To facilitate
interpretation, different regions across the system are marked in italics,
namely, the bulk water region, the lipid headgroup region, the lipid
glycerol region and the hydrocarbon tail core. Approximate boundaries
between these regions are defined by the vertical dotted lines.

Figure 4. Resistance profiles. The curves connect resistance values
calculated at selected z-positions along the bilayer normal. To facilitate
interpretation, different regions across the system are marked in italics,
namely, the bulk water region, the lipid headgroup region, the lipid
glycerol region, and the hydrocarbon tail core. Approximate boundaries
between these regions are defined by the vertical dotted lines.
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bilayer core should therefore affect resistances in that region.
This effect can be observed for benzene, ethane, methylamine,
methylacetate, and water, which display a resistance drop in
the bilayer center despite the free energy increase observed in
the same region (Figure 2); this resistance decrease is indeed
determined by the increased diffusion of these solutes (discussed
in the previous section).

Permeability Coefficients. The free energies of transfer
∆G(z) and diffusion data Dz(z) have been combined according
to the inhomogeneous solubility-diffusion model5-7 (eq 3) to
calculate the permeability coefficients. Table 2 reports the
permeability coefficients computed for the eight solutes con-
sidered. Results obtained in this study, using a CG DMPC model
mixed with AL solutes, are shown in the second column. The
third column reports corresponding results obtained by standard
AL simulations, whereas the fifth column shows available
experimental data. The results obtained in this work are
generally within 1 order of magnitude of the AL data, and within
2 orders of magnitude of the available experimental measure-
ments. Since in our model we parametrized the AL-CG scaling
factor � (defined in eq 2) to best fit the magnitude of the AL
permeability coefficient data, this level of agreement is expected.
However, it is most important to capture the solute relatiVe
permeability coefficients, which define the permeability ranking
orders of the solutes, and these are generally independent from
the extra parameter introduced. We observe that the permeability
ranking orders obtained from the AL and the AL-CG multiscale
methods are almost identical, as shown in Table 3. This result
shows the high accuracy of the method in predicting a (crucial)
property for which it was not directly fitted.

In the case of water, the permeability coefficient calculated
here with the solubility-diffusion model parametrized via
constraint simulations can be compared with that obtained by
directly applying Fick’s law on the observed spontaneous

transmembrane flux of water molecules during long-time
unconstrained molecular dynamics. By running our original CG
model for 0.9 µs and counting the number of water molecules
spontaneously crossing the membrane, we obtained a value of
9.2 ( 0.4 × 10-3 cm/s (details of the calculation can be found
in the original reference25). We have also recently run a 1.2 µs
unconstrained simulation with the refined force field used in
the work presented here; the permeability coefficient obtained
from that simulation was 5.1 ( 0.6 × 10-3 cm/s (unpublished
result). These values are larger but of the same order of
magnitude than that obtained here (1.4 ( 0.1 × 10-3 cm/s).
Considering the differences in the simulation methods (uncon-
strained vs constrained) and the permeation models (Fick vs
solubility-diffusion) involved, this level of agreement is
satisfactory.

Solute Orientations, Membrane Perturbations, and Water
Intrusions. By visually inspecting the trajectories, we notice
that all solutes, when constrained in the outer water phase and
in the lipid headgroup regions, are characterized by isotropic
motion. Also, the presence of permeants in these regions does
not influence the structure of the bilayer. However, when the
permeants are constrained in the lipid glycerol and hydrocarbon

TABLE 2: Permeability Coefficientsa

atomic-level experiment

solute multiscaleb (this work) value reference value reference

acetamide 8.2 ( 0.6 × 10-2 6.6 ( 1.9 × 10-3c 34 1.0 × 10-4d 78
1.7 × 10-4e 70
1.7 × 10-4e 79
2.9 × 10-4e 39

1.65 × 10-4e 4
4.5 × 10-4c 80

acetic acid 1.4 ( 0.6 × 10-1 1.3 ( 0.5 × 10-1c 34 6.9 × 10-3e 70
6.6 × 10-3e 81
5.0 × 10-3e 13

benzene 7.8 ( 2.6 10 ( 1c 34
ethane 7.3 ( 0.6 6.7 ( 0.8c 34
methanol 1.8 ( 0.2 × 10-1 1.9 ( 0.4 × 10-2c 34
methylacetate 15.1 ( 2.3 9.5 ( 1.1c 34
methylamine 3.3 ( 1.2 1.2 ( 0.2c 34 9 × 10-1e 82

8 × 10-2e 70
water 1.4 ( 0.1 × 10-3 6.8 × 10-2b 63 8.3 × 10-3b 83

4.0 × 10-2c 63 7.0 × 10-3b 84
1.3 ( 0.3 × 10-2c 34 2.4 × 10-2b 76
1.6 × 10-2c 62 4.0 × 10-4b 77
7.0 ( 3.0 × 10-2c 7 1.0 × 10-3b 77

6.0 × 10-4b 85
2.4 × 10-3c 86
1.9 × 10-2c 76
1.5 × 10-2d 78
3.4 × 10-3e 70
2.2 × 10-3e 4
1.9 × 10-3e 13

a Values in cm/s. References are included. b Fluid-phase DMPC. c Fluid-phase DPPC. d Fluid-phase DLPC. e Fluid-phase lecithin.

TABLE 3: Comparison of Permeability Ranking Orders.
Solutes are Listed in Order of Decreasing Permeability
Coefficient

atomic-level (Bemporad et al.)34 multiscale (this work)

benzene methylacetate
methylacetate benzene
ethane ethane
methylamine methylamine
methanol methanol
acetic acid acetic acid
water acetamide
acetamide water
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regions, some interesting effects can be observed. The more
polar solutes, that is, acetamide, acetic acid, and methanol,
clearly show a tendency for preferential orientations. In
particular, these molecules tend on average to point their oxygen
atoms (their most polar moieties) away from the hydrocarbon
center and toward the headgroup and water regions. Also, these
solutes typically induce local perturbations, such as intrusions
of water and headgroups into the hydrocarbon region. As an
example, Figure 5 shows a snapshot from a simulation with
acetic acid; the permeant induces the formation of a water
“finger”, and it locally attracts some lipid headgroups. Similar
effects have been observed for acetic acid in a standard AL
simulation by Bemporad et al.;66 that study is also consistent
with ours in showing that acetic acid orients its oxygens toward
the water-lipid interface. Moreover, that AL simulation showed
the formation of a water column local to the solute,66 a
membrane “defect” similar to that observed here (Figure 5).
This behavior was also observed by Patra et al. in their
simulation study involving methanol.59 They noticed how
methanol molecules move together with small clusters of water
molecules when trying to enter the membrane.59 Figure 6 shows
two snapshots of our AL-CG multiscale simulations of
methanol constrained at a distance of 0.1 nm from the bilayer
center; the presence of water molecules closely interacting with
the permeating methanol can be clearly seen. The rest of the
solutes, that is, benzene, ethane, methylacetate, and methy-
lamine, induce less pronounced local perturbations compared
to those observed for the most polar molecules. In general, the
effects observed can therefore be related to the degree of polarity
of a permeant. When residing in the glycerol and hydrocarbon
regions, highly polar (hydrophilic) solutes attract hydrating water
and interact with headgroups, whereas nonpolar (hydrophobic)
solutes do not significantly perturb the bilayer.

Discussion

We have presented a new multiscale AL-CG model where
the two levels of resolution (atomic-level and coarse-grain)
interact without the need for an interface. This is possible thanks
to the unique nature of our CG model,25 which consists of
potentials directly compatible with AL force-fields. In particular,
both lipid and water CG models contain all relevant electrostat-
ics; this feature, which is not present in any other CG model,
allows the AL-CG electrostatic interactions to be treated
straightforwardly. By adopting a CG description of the mem-
brane, we could increase the simulation efficiency to explore
larger systems for longer times than has been done with standard
AL simulations. We studied the interaction of solutes with a
bilayer system comprising 128 lipids, larger than the typical
36-72 lipid bilayers that have been simulated by standard AL
methods in permeability calculations.7,34,45,62-64,67,68 Large mem-
branes minimize artifacts from periodicity (due to the periodic
boundary condition normally assumed in molecular dynamics)
and are less likely to suffer from structural distortions caused
by the permeant inclusions (this problem being particularly
serious when large solutes, such as drugs, are considered). For
each solute, we have sampled selected depths across the
membrane for 80 ns, a much longer time than that (<10 ns)
typically reached in corresponding AL permeability simu-
lations.7,34,45,62,63,68 Each 80 ns run, often necessary to reach
convergence, took only five days of CPU-time on a standard
computational processor. By comparing the simulation cost of
our multiresolution model to corresponding AL calculations,34

a speed-up factor of 2 orders of magnitude can been estimated.
We could run all simulations reported in this article almost
simultaneously on a cluster;51 a total of over 10 µs of simulation
data were produced in about one week.

The permeability results obtained by the AL-CG method
were generally within 1 order of magnitude of those obtained
in a reference AL study34 and within 2 orders of magnitude of
available experimental data (Table 2); more importantly, the
relative permeabilities, and hence also the ranking order, are in
good agreement (Table 3). Results indicate that the overall
permeability is mainly determined by the free energy compo-
nent, the diffusion contribution being rather marginal; such
findings agree with previous analysis.34,69

Regarding the diffusion profiles, we have already pointed out
that in the AL-CG profiles (Figure 3) most solutes display
diffusion coefficients in the center of the bilayer which are
higher than in the water phase, whereas in the AL simulations34

the diffusion coefficients for all solutes were found to be
significantly lower inside the bilayer than in the water phase.
We also noticed that there are literature data more in line with
the AL-CG results, at least for water7,62 and benzene.65 Also,
experimentally, solutes with low molecular weight (<50) have
been found to permeate significantly faster than predicted by
Overton’s theory.70 This discrepancy has been explained with
the free-volume model, according to which small-sized solutes
diffuse abnormally fast by jumping between mobile free-volume
pockets which are too small to accommodate larger solutes.71

Free-volume voids form dynamically by lateral density fluctua-
tions in the lipid hydrocarbon region of membranes.72 As noted
elsewhere,2 this hypothesis is also supported by simulation data
on large (molecular weight ≈ 300) solutes, for which the
diffusion coefficient is almost independent of the depth inside
the bilayer;66,71,73 this can be rationalized considering that
those permeants are too large to jump through the free-volume
pockets. It could be argued whether CG membrane models can
adequately capture free-volume effects. Our specific model has

Figure 5. Simulation snapshot from a multiscale z-constraint simula-
tion. The permeant acetic acid is constrained at 0.1 nm from the bilayer
center toward the left monolayer. The CG choline, phosphate, and water
sites are represented in red, yellow, and blue, respectively. The lipid
tails are omitted for clarity. The AL solute acetic acid is colored by
atom type, with hydrogen, oxygen and carbon colored gray, red, and
green, respectively. Image prepared with VMD.87
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proved consistent in this respect; the experimental lipid lateral
diffusion coefficient was accurately reproduced, and mass-center
traces were shown to be consistent with the free-volume model.25

In general, several possible reasons can account for the
discrepancies observed between the AL-CG results presented
here and the corresponding AL data.34 First, there are significant
differences in the models. The AL model34 explicitly represents
every atom, whereas, in the AL-CG system, the bilayer
representation is substantially simplified.25 The solutes, in
particular, are modeled atomistically in both studies, but with
different force-fields, that is, CHARMM74 for the AL model34

and GAFF37 for our AL-CG model. Second, simulation
conditions are also somewhat different. The AL-CG simula-
tions have been carried out at a temperature of 30 °C, whereas
it was 50 °C for the AL study.34 These temperatures were chosen
to ensure that the lipids simulated, DMPC and DPPC, respec-
tively, were in the (biologically relevant) liquid-crystalline phase.
Moreover, in the AL simulations34 the bilayer interfacial area
was artificially kept fixed to avoid known artifacts of the
particular AL force-field employed,75 whereas in the AL-CG
study we have implemented the (more realistic) semi-isotropic
pressure coupling, which allows the xy interfacial plane to
fluctuate according to the lateral components of the pressure
tensor. Finally, there are differences in the way diffusion
coefficients were computed. The integral involved in the
calculation of Dz(z) (reported in the Supporting Information) is
typically characterized by slowly converging tails, which can
undermine the reliability of the estimation of the diffusion
coefficient. To avoid such problems, the integral is sometimes
fitted to an analytical function;34,68,69 however, when sufficiently
long simulations are performed, no fitting is required.62,63 In
the AL study by Bemporad et al.,34 the force fluctuation
autocorrelation function had to be approximated by fitting to
analytical functions because of the limited simulation time (10
ns per solute’s z-location). The AL-CG runs were instead
sufficiently long (80 ns) to yield converged values without
resorting to approximations.

In both the AL34 and the AL-CG models, it is difficult to
clearly identify how the limitations and artifacts, inherent in
each of the models, affect the results. The general tendency
would be to consider the AL data more accurate. However, we
have already noted that experimental data53 on the free energy
difference between the headgroup region and the water phase
for acetic acid indicate a value ∆G ≈ -0.45 kJ/mol. This finding
is inconsistent with the AL results of Bemporad et al., which
yielded a positive free energy difference.34 Also, a number of
experiments have shown that short-chain alcohols, and in
particular methanol, preferentially partition inside the bilayer,

corresponding to the headgroup-glycerol region.54-58 Consider-
ing the free energy curves from permeability simulations, those
experimental observations54-58 are consistent with our multiscale
results and incompatible with the AL data of Bemporad et al.,34

that predict a partitioning location for methanol in the water
phase, outside the membrane. Also, other more recent AL
simulation studies59-61 support the predictions of our multiscale
AL-CG model that methanol and acetamide preferentially
partition inside the membrane, approximately at the lipid
headgroup-tail interface.

A general note must be made regarding the investigation of
the transmembrane permeability of water. The inhomogeneous
solubility-diffusion mechanism,5-7 which is at the basis of our
calculation, is accepted by many as the dominant mechanism
for the passive permeation of solutes across biomembranes.76

For water and ionic solutes however, another mechanism, based
on transient water pores, has been proposed.77 So far, experi-
ments have not provided decisive evidence. Simulations have
the potential to shed light on the issue, although very large length
and time scales might be required, as it is estimated that the
formation of only one pore requires two thousand lipids.77

An important aspect of our multiresolution approach concerns
its transferability to different systems. We have recently
conducted permeability simulations of large molecules such as
�-blocker drugs and steroid hormones,73 employing essentially
the same protocol presented here; in particular, we used the
same values for the multiscale parameters R and �. Partitioning
locations and relative permeability coefficients proved in
agreement with atomistic simulation data and experimental
measurements.73 While further work is needed to properly assess
the transferability and generality of our method, these results
are very encouraging.

Conclusion

We have presented a new multiresolution methodology based
on the direct compatibility between our recently developed
coarse-grain (CG) membrane model25 and a standard atomic-
level (AL) force-field. The method has been applied to simulate
the transmembrane permeation process of small AL solutes
embedded in a hydrated CG lipid bilayer. Permeability calcula-
tions have been carried out by applying a new z-constraint
algorithm which properly conserves total momentum and force.
The permeability properties calculated by multiscale simulation
compare favorably with previous computational investigations
and available experimental data. Importantly, the permeability
ranking order between the solutes is accurately predicted.
Overall, the multiscale AL-CG methodology presented allows

Figure 6. Simulation snapshots from a multiscale simulation with the permeant methanol constrained at 0.1 nm from the bilayer center toward the
left monolayer. The color code is described in the legend of Figure 5.
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simulations to benefit from an efficiency speed-up of 2 orders
of magnitude over traditional AL methods, while retaining
generality and accuracy.
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