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A simplified particle-based computer model for hydrated phospholipid bilayers has been developed and applied
to quantitatively predict the major physical features of fluid-phase biomembranes. Compared with available
coarse-grain methods, three novel aspects are introduced. First, the main electrostatic features of the system
are incorporated explicitly via charges and dipoles. Second, water is accurately (yet efficiently) described, on
an individual level, by the soft sticky dipole model. Third, hydrocarbon tails are modeled using the anisotropic
Gay-Berne potential. Simulations are conducted by rigid-body molecular dynamics. Our technique proves 2
orders of magnitude less demanding of computational resources than traditional atomic-level methodology.
Self-assembled bilayers quantitatively reproduce experimental observables such as electron density, compress-
ibility moduli, dipole potential, lipid diffusion, and water permeability. The lateral pressure profile has been
calculated, along with the elastic curvature constants of the Helfrich expression for the membrane bending
energy; results are consistent with experimental estimates and atomic-level simulation data. Several of the
results presented have been obtained for the first time using a coarse-grain method. Our model is also directly
compatible with atomic-level force fields, allowing mixed systems to be simulated in a multiscale fashion.

Introduction

Lipid bilayers are complex and fascinating systems; they are
characterized by highly heterogeneous structure and dynamics,
and display an astonishingly rich and biologically relevant
behavior on a vast range of spatial and temporal scales.1-3

Experimental investigation of the physics of membranes allows
the determination of a large body of bilayer features. The internal
structure can be described via electron density profiles,4 the
ordering of the hydrocarbon tails is quantified by order
parameters,5 fluidity is studied by lateral diffusion measure-
ments,6 mechanical properties can be related to the measure-
ments of elastic moduli,7 electrostatic properties are quantified
by estimating internal potentials,8 and even the transbilayer
pressure distribution can be qualitatively measured.9 These
fundamental membrane properties are central to an incredibly
large number of biological mechanisms. The bilayer structure
directly influences the conformation of embedded proteins,
whereas lipid fluidity is crucial, for example, for membrane
lateral organization. The membrane dipole potential and as-
sociated electric field also play fundamental roles; for example,
they are involved in the regulation of membrane proteins,
membrane fusion, insertion and folding of amphiphilic peptides,
redox reactions, permeability, interaction with drugs, and
signaling.10 An even more important feature is the lateral
pressure profile, which characterizes the transmembrane distri-
bution of forces. The lateral pressure profile is the most
fundamental physical property of lipid bilayers;3 it determines
the interfacial area, it is at the basis of phase transitions and
fusion,11 it modulates the insertion, folding, and functioning of
membrane proteins,12 and it affects permeability,13 drug trans-
port,14 and anesthesia.15 The lateral pressure profile is also

directly related to the elastic curvature constants that characterize
the Helfrich expression for the bending free energy.16-18 These
constants, in turn, control membrane shape and play specific
roles in the mechanisms modulated by the lateral pressure
profile.

Considering the amount and variety of phenomena associated
with lipid bilayers, it is clear that the development of realistic
models is a delicate and challenging task. Particle-based
computer simulation represents a powerful tool to model
biomembranes, as it can provide detailed dynamic and thermo-
dynamic data for a broad range of systems.

Atomic-level (AL) models have been employed for decades
now and have significantly contributed to the understanding of
many membrane phenomena.19-36 However, AL methods
require an enormous amount of computational resources to
calculate the interactions between all atoms in the system. The
large computational cost of AL models results in a number of
limitations and issues. For example, collective, large-scale
phenomena such as self-assembly, membrane fusion, or micro-
domain formation (lipid rafts) are typically intractable. In fact,
apart from one exception,20 all published AL simulations to date
have been carried out on preassembled bilayers due to the
prohibitive computational cost of simulating self-assembly; this
does not guarantee that the system is at thermodynamic
equilibrium. Furthermore, the reliability of the calculation of
some important properties, such as the lipid area, diffusion
coefficients, or the lateral pressure profile, can be undermined
by insufficient sampling. These issues can be tackled by
adopting a simplified, coarse-grain description.

The coarse-grain (CG) methodology generally involves
grouping together selected clusters of atoms into single mac-
rosites to significantly reduce the number of interactions
calculated and, hence, also the computational cost. Over the
past few years, the CG field has grown significantly; a large
number of models have been developed for different membrane
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systems and with differing degrees of simplification.37-39 We
now review those CG models of phospholipid membranes that
retain an explicit connection with the chemical identity of the
systems described, as this is the level at which our new
methodology is located. Such models can be called “specific”.
In the specific CG models,40-45 a lipid molecule, which at the
atomic level comprises about 100 particles, is typically reduced
to around 10 CG sites. To further increase simulation efficiency,
the representations of water and electrostatics are highly
simplified. A popular strategy involves representing three42-44

or four40 water molecules as single CG units. However, in one
model,45 water molecules are described individually, whereas
in another,41 solvation is described implicitly. None of these
models explicitly includes water electrostatics. The charges in
the lipid glycerol-ester region are also not explicitly repre-
sented. As for the lipid headgroup region, electrostatics are
present in most models, where, however, artificial dielectric
constants are introduced to account for water screening.40-43

Such simple models can be orders of magnitude more efficient
than corresponding AL systems, and hence, they can be applied
to simulate phenomena at larger temporal and spatial scales,
such as self-assembly,40-42,46 phase transition,47,48 and vesicle
fusion.49 CG simulations have also been conducted to study the
interaction with inclusions such as alcohols,50 anesthetics,51

cholesterol,52 and even proteins.53 These studies are interesting
because they have given access to membrane processes that are
difficult to investigate by any other theoretical or experimental
technique. However, we have identified a number of issues in
these CG models and their application. The oversimplification40-43

or lack44,45 of explicit electrostatics inherently precludes an
accurate representation of charge-dependent properties. The
membrane dipole potential, electric field, and orientational
polarization effects cannot be modeled; related phenomena might
be ill-represented. The highly simplified modeling of water as
a rather generic, apolar solvent is also a matter of concern. Water
is a fundamental component of membrane systems; it drives
the formation of lipid aggregates through the hydrophobic effect
and provides the necessary electrostatic screening between
charged particles (such as headgroups and ions). These features
are not consistently accounted for by the referenced CG models.
Water also generates a significant electric field by collectively
orienting its dipoles; clearly, such a local polarization effect
cannot be captured by apolar solvent particles. Other issues
affecting the specific CG models developed to date involve the
membrane dynamic properties, which are reproduced with some
difficulty, and the associated issue in interpreting the simulation
time scales. For example, lipid diffusion coefficients have been
reported to be 440,52 to 10046 times higher than experimental
data; as already pointed out elsewhere,54 the ad hoc rescaling
of the simulation time according to these factors40,46 is question-
able because it assumes that all dynamic events are homoge-
neous in time scale, whereas, in general, dynamic processes in
membrane systems are highly heterogeneous. Another issue
concerns the attractive possibility of mixing CG and AL
representations in multiscale simulation, where selected parts
of the system are described at an atomic level, whereas the
surrounding environment is simulated by simplified models. It
would not be straightforward to interface the available CG
models with AL representations due to the radically different
description of electrostatics and solvent. An original approach
to the problem involves performing a rigorous and consistent
parametrization of the mixed AL-CG interactions,55 although
charges are still absent.

In this article, we present a new specific CG model that
addresses the issues discussed above. In common with the
models reviewed, we have significantly simplified the repre-
sentation of lipid molecules to increase simulation efficiency.
In contrast to the other models, we have retained an explicit
description of water and the major electrostatics. The model
characteristics are described in the following section, along with
the simulation methodology and the parametrization procedure.
The predictive power of our new CG model will then be
demonstrated by reproducing experimental observables against
which it is not directly fitted. All major physical properties of
fluid-phase phospholipid bilayers will be investigated; many of
these properties are reproduced for the first time using a CG
method. Moreover, the force field developed will be shown to
be directly compatible with AL representations. Model exten-
sions, and preliminary applications in the context of multiscale
simulation, will be discussed.

Methodology

Lipid Model. We have designed a CG model for dimyris-
toylphosphatidylcholine (DMPC); Figure 1 shows both the AL
structure and our simplified CG representation. Each lipid
molecule, in reality comprising more than 100 atoms, has been
reduced to 10 macrounits. The lipid headgroup is coarse-grained
into two Lennard-Jones spherical units, accounting for the
choline and phosphate moieties. Headgroup electrostatics are
represented by a positive point charge embedded in the choline
group and a negative one in the phosphate group. The glycerol
and hydrocarbon regions are modeled by soft uniaxial ellipsoids
through the Gay-Berne potential.56 The Gay-Berne potential
can be seen as an extension of the (isotropic) Lennard-Jones
potential, where extra terms are included to allow the modeling
of nonspherical (anisotropic) particles. In particular, the glycerol-
ester region is described by two Gay-Berne ellipsoidal units,
each embedded with a point dipole to account for the dipolar
charge distribution in this region. Hydrocarbon tails are modeled
by chains of three neutral Gay-Berne ellipsoids, each repre-
senting a segment of four consecutive methyl groups. The shape
of the Gay-Berne ellipsoids can be tuned to accurately capture
the underlying real elongated structure of the tail segments
considered. We have already used the Gay-Berne representation
of lipid tails to simulate an idealized bilayer, without headgroups
and solvation; despite the simplicity of that model, order
parameters and diffusion coefficients proved consistent with
experiment.57 Mixed Lennard-Jones/Gay-Berne interactions
(between headgroup and tail sites) are consistently treated using

Figure 1. Lipid coarse-graining strategy. The left molecule is an all-
atom representation of a DMPC lipid. The corresponding CG model is
depicted on the right. CG electrostatics are highlighted; they comprise
positive (“+” sign) and negative (“-” sign) point charges and point
dipoles (arrows). Harmonic springs, representing CG covalent bonding,
are also shown (dotted lines).
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the generalized Gay-Berne potential.58 Explicit formulas of
potentials, forces, and torques for both the original Gay-Berne
model and its generalized version are reported in detail
elsewhere.56,58,59 Intralipid bonds are modeled by the Hooke
potential, as is standard practice. No angle or torsional potentials
are present.

Water Model. Water molecules are represented by the soft
sticky dipole (SSD) model.60 The SSD water is a single-site
model; the three atoms of individual water molecules are coarse-
grained into a single interaction center, which comprises a
Lennard-Jones core providing excluded volume, a point dipole
to account for electrostatics, and a tetrahedral “sticky” term to
model hydrogen bonding. Detailed formulas of the SSD
potential, and corresponding forces and torques, can be found
elsewhere.60,61 The SSD model is about 1 order of magnitude
computationally cheaper than the traditional AL multisite water
models, yet it accurately reproduces structural, thermodynamic,
dielectric, dynamic, and temperature-dependent properties.60-63

The Lennard-Jones term of the SSD potential interacts with the
Gay-Berne lipid terms (tail and glycerol sites) through the
generalized Gay-Berne potential.58

Treatment of Electrostatics. All electrostatic terms in our
model interact with each other through either charge-charge,
charge-dipole, or dipole-dipole potentials.64 A relative di-
electric constantεr ) 1 is assumed, that is, no artificial explicit
screening is introduced. Long-range electrostatics are treated
using cutoff schemes. In particular, charge-charge and charge-
dipole interactions are implemented using the shifted-force
cutoff method.65 We employ the SSD parameters optimized to
treat long-range dipole-dipole interactions with a cubic switch-
ing cutoff scheme;62 for consistency, all dipole-dipole interac-
tions are treated in this manner. We are aware that using cutoffs
to approximate long-range electrostatics might introduce simula-
tion artifacts. In AL simulation, long-range electrostatic interac-
tions are typically included by Ewald techniques,66 which
however are also known to introduce artifacts.67-70 In fact, it
has been argued that cutoff schemes can be as good as69 or
better70 than Ewald methods. We have chosen the cutoff
alternative as its simplicity and efficiency are consistent with
the overall spirit of simplification of the model.

Simulation Details. To study our model by molecular
dynamics, we have specifically developed the software
BRAHMS.71 The basic structure of BRAHMS has been
designed following Rapaport.72 Interactions are computed using
a combined cell-subdivision/neighbor-list algorithm, which relies
on standard periodic boundary and minimum image conventions.
Dedicated routines have been implemented for the calculation
of energies, forces, and torques, the integration of rigid-body
dynamics, the control of pressure and temperature, as well as
for the analysis of the trajectory. The translational motion of
all particles is described by Newton’s second law. Lennard-
Jones particles (lipid headgroups) are represented as point
masses, their position being defined by the coordinates of the
mass centers, as is standard practice. Gay-Berne particles (lipid
tails) are represented as symmetric rigid bodies, whereas SSD
molecules (water) are represented as general, nonsymmetric rigid
bodies; the rotational motion is described by Euler’s equation,
the orientations being represented with rotation matrices. To
numerically integrate the equations of motion, we have imple-
mented an advanced symplectic and time-reversible method.73

The initial membrane configuration was constructed from a set
of AL coordinates for hydrated DMPC.74 Groups of atoms were
mapped into CG interaction sites according to our CG strategy
(Figure 1). The number of water molecules was adjusted to

match the experimental hydration level of 26.6 water/lipid.4 Our
final system comprises 128 DMPC lipids and 3400 water
molecules. Coordinates are defined in a Cartesian frame with
the origin in the center of the simulation region; thex and y
axes lie parallel to the bilayer interfacial plane, thez axis thus
being perpendicular to it. Thez axis will also be referred to as
the (interfacial) “normal”. Molecular dynamics simulations are
carried out with an integration time step of 20 fs. This time
step is larger than those normally employed in AL simulation
(1-5 fs), and hence, it allows more efficient sampling. This
improvement is determined by the removal of fast degrees of
freedom (such as those, typical in AL models, due to stiff
harmonic potentials or light particles) and the excellent stability
properties of the integration algorithm implemented.73 Pressure
and temperature are maintained at 1 atm and 30°C using the
weak-coupling scheme.75 Lipid and water temperatures are
coupled separately with a time constant ofτT ) 0.2 ps; for rigid-
body sites, translational and rotational degrees of freedom are
coupled independently. The pressure is controlled by semi-
isotropic volume scaling, with a time constant ofτP ) 0.5 ps
and an isothermal compressibility ofâ ) 4.6 × 10-5 atm-1.
The cutoff radius for both Lennard-Jones and electrostatic
water-water interactions is 0.9 nm.62 All other nonbonded cutoff
radii, both for Lennard-Jones and electrostatic interactions, are
set to 1.2 nm. The net mass center velocity of the entire system
is set to zero at every step.76 To avoid artifacts in the
evaluation of lipid diffusion,23 the net lateral translation of each
of the two monolayers is removed at every step.

Sampling Enhancement.To estimate the efficiency gain of
our simplified CG methodology over traditional AL modeling,
we compared the sampling speed of our code BRAHMS with
the popular AL software CHARMM.77 We selected an AL test
system26 and constructed a corresponding CG configuration;
both membranes comprised 72 lipids and 2094 water molecules.
In particular, there were 2814 interaction sites in the CG system
and 15210 atoms in the AL system. Our model was simulated
with a 20 fs time step and cutoff treatment of long-range
interactions, whereas the AL simulation was conducted with a
2 fs time step and PME scheme66 for evaluation of long-range
electrostatics. By simulating on the same AMD 1400 MHz
processor, we measured sampling speeds of 324 ps/CPU-hour
for BRAHMS and 2.5 ps/CPU-hour for CHARMM, corre-
sponding to a CG speed-up factor of≈130. The choice of a 2
fs time step in the AL run is typical for AL membrane
simulations.19,26-32,34-36 We are aware that the use of constraint
and multistep algorithms can allow time steps of 421,22and even
5 fs,20,23 hence more than twice larger than that employed in
our test. Using a 5 fstime step in the AL run would bring the
CG speed-up factor down to≈50. However, there are also some
AL membrane studies that report the use of a 1 fs time
step.24,25,33 Overall, our choice to consider an “average” AL
time-step of 2 fs seems reasonable. We are also aware that the
reported CG speed-up factor benefits, in part, from the cutoff
treatment of CG electrostatic interactions with respect to the
more costly PME scheme used in the AL CHARMM simulation.
Also, CHARMM is not the most efficient biological molecular
dynamics code; however, significant effort has not been made
to optimize the performance of BRAHMS. In summary, it seems
acceptable to claim that the reduced number of interactions, the
use of larger integration time steps, and the simplified treatment
of electrostatics make our CG technique roughly 2 orders of
magnitude less demanding of computational resources than
traditional AL methodology. All data reported in the rest of the
paper refer to the larger membrane (128 DMPC lipids and 3400
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water molecules) described in the previous section; single-
processor simulations of this system have been carried out on
the Iridis high-performance computational cluster at the Uni-
versity of Southampton,78 where BRAHMS runs at up to 22
ns/CPU-day.

Force Field Parametrization. We chose to parametrize the
CG force field of our lipid model to reproduce the experimental
volume and area per lipid4 and the average segmental tail order
parameter5,79 of fluid-phase DMPC. The volume per lipid is
computed asVL ) (VT - NWVW)/NL, with VT as the total volume
of the system,NW as the number of water molecules,VW as the
volume per water, andNL as the number of lipids. The area per
lipid is computed asAL ) A/NL

m, with A as the total interfacial
area andNL

m as the number of lipids per monolayer. Second-
rank order parameters are calculated for the CG tail sites as (3
cos2 θ - 1)/2, with θ being the angle between the ellipsoid
axis and the bilayer normal. The six tail ellipsoids of each lipid
are sorted, in pairs, into three layers at different depths along
the tails; the “top layer” comprises the tail sites connected to
the glycerol units, the “end layer” comprises the terminal tail
sites, and the “midlayer” is between the previous two. We
compute segmental order parameters for each of the three layers
so defined and the average order parameter for the entire
hydrocarbon tail region.

Setting of Bond Rigidity, Masses, and Moments of Inertia.
The rigidity constant of the Hooke potential, modeling intralipid
covalent bonds as harmonic springs, is set to 3 kcal/(mol Å2),
a typical value for CG models.40 The reference bond lengths
are set to zero for simplicity, although they could have also
been empirically assigned. Both approaches seem equally
reasonable, as the CG springs are extremely soft; the selected
CG rigidity constant is 2 orders of magnitude smaller than those
normally used for AL bond stretching (300-800 kcal/(mol
Å2)).80 The masses of the CG lipid sites are set to the sum of
the atomic masses of the corresponding AL groups. For the
ellipsoidal rigid-body units, the principal moments of inertia
are assigned assuming uniform density. The mass and principal
moments of inertia of water sites are increased to optimize the
stability of molecular dynamics integration.81 In particular, the
water mass is set to 50 amu (the real value being 18 amu). The
chosen principal moments of inertia correspond to a redistribu-
tion of water masses as follows: 15 amu for each hydrogen
and 20 amu for the oxygen. Thermodynamic properties are not
affected by such an alteration of the inertial features of water.
However, dynamics are intuitively predicted to be somewhat
slower. To quantify this effect, we ran a simulation of a pure
water system comprising 500 molecules and computed the
diffusion coefficient. Our result of 1.8× 10-5 cm2/s is only
slightly lower than the experimental value82 of 2.3× 10-5 cm2/
s, indicating that the dynamic behavior of our “heavy” water
remains realistic.

Nonbonded Terms: Initial Setting and Refinement.Prelimi-
nary Lennard-Jones parameters for the headgroup sites were
set by fitting the potential energy of the CG sites to that of the
corresponding AL clusters of particles. Gay-Berne parameters
were initially taken from our previous model of the hydrocarbon
tails.57 Lennard-Jones and Gay-Berne cross terms are calculated
by standard rules,58,65 with the following exceptions, where
scaling factors are introduced: (i) To promote the self-assembly
process, the mixed Lennard-Jones/Gay-Berne energy param-
eters between hydrophilic (water and headgroup) and hydro-
phobic (tail) sites are decreased. (ii) To mimic the hydrogen-
bonding capabilities of phosphate-water and glycerol-water
pairs, the corresponding Lennard-Jones/Gay-Berne energy cross

terms are increased. The magnitudes of the headgroup charges
and glycerol dipoles have been chosen to reproduce the
corresponding net charges and dipoles computed from the
underlying AL distribution of partial charges. Initial simulations
were performed on a preassembled bilayer. Parameters were
optimized by trial-and-error molecular dynamics to reproduce
the targeted experimental data. In each trial-and-error simulation,
the area per lipid (which is the slowest-converging quantity)
typically reached equilibrium in≈20 ns, corresponding to one
CPU-day of simulation with BRAHMS. By running several tests
in parallel, the parameter space could be explored quite
efficiently. The experimental volume and area per lipid could
be matched by tuning the Lennard-Jones parameters of the
headgroup particles, whereas tail order parameters were repro-
duced by adjusting the Gay-Berne potential. Self-assembly runs
were then prepared. To generate an initial random solution of
lipids and water, the preassembled bilayer was brought to high
temperature (up to 1000°C) while switching off electrostatics;
runs were continued until visual inspection and order parameters
confirmed a completely random configuration. By varying the
temperature and the run length, several different starting
configurations were obtained (typically, less than 1 CPU-hour
of simulation is sufficient for each “disassembling” run). We
then restored the electrostatics and started the self-assembly
simulations at a temperature of 30°C; self-aggregation was
typically completed over a time scale of≈100 ns. Further trial-
and-error runs were carried out to refine the force field until
we consistently obtained stable, defect-free bilayers matching
the targeted experimental structural properties. The final com-
plete parameter set is reported in Table 1; standard naming
conventions are employed for the potentials, namely, Lennard-
Jones,65 Gay-Berne,56 generalized Gay-Berne/Lennard-Jones,58

electrostatic,64 and Hooke.80

Fitted Properties.Snapshots from a representative self-
assembly simulation are displayed in Figure 2. A fast phase
separation between lipids and water is followed by a slow
rearrangement of the bilayer to expose the headgroups while
burying the hydrocarbon tails in the interior. A transient water
pore is also observed. The time scale and the overall aggregation
mechanism are consistent with the only AL self-assembly
simulation reported to date.20 We then analyzed the self-
assembled bilayers to check the correct reproduction of the
targeted experimental data. The time evolution of the lipid
volumeVL and areaAL over a 100 ns time window (after self-
assembly) is shown in Figure 3, together with the experimental
estimates. Our measurementsVL ) 1.104( 0.002 nm3 andAL

) 0.594( 0.003 nm2 are consistent with the experimental data4

VL ) 1.101nm3 andAL ) 0.606 nm2. The fluctuations are similar
to those observed with AL models.21,23 Segmental order
parameters for the three layers previously defined are plotted
in Figure 4, along with the experimental data. The agreement
is rather good, apart from the midlayer order parameter, which
is somewhat lower than the experimental values. We calculated
an average segmental order parameter for the entire tail region
of Smol ) 0.36( 0.01, consistent with the value of 0.38 deduced
from the experimental data.5,79 Standard errors have been
estimated using the block averaging method72 using 10 consecu-
tive 10 ns blocks.

Results

In this section, we thoroughly investigate the physical
properties of our self-assembled CG bilayer model. Simulation
results will be primarily compared to experimental data, although
in some cases, AL and CG models, and alternative theoretical
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approaches, will also be considered. If not otherwise stated, all
data reported for comparison refer to systems and conditions
consistent with our simulations, that is, fully hydrated liquid-
phase DMPC bilayers at 30°C. We simulated a self-assembled
bilayer for several hundreds of nanoseconds, over which time
the system remained stable and all of the properties observed
fluctuated around their equilibrium values. Most of the measure-
ments were taken over a 200 ns time window; for each
parameter measured, the reported average value and standard
error have been computed from two subaverages taken over
the two 100 ns consecutive blocks of the trajectory, unless
otherwise stated. However, to compute the water permeability
coefficient, the detection of water permeation events was carried
out for 900 ns; this long simulation time was necessary to collect
enough statistics on such relatively rare events. The analysis of
a number of properties was carried out following a general
process that involves “slicing” the system along planes perpen-
dicular to thez axis (interface normal). In particular, we have
defined 600 slices of thickness∆z ≈ 0.1 Å, the actual value of
∆z being evaluated at every step to account for the fluctuations
of the z dimension of the simulation region. Several bilayer
properties are homogeneous inside of a particular slice due to
the intrinsic axial symmetry of the system. Therefore, single
curves, profiles evaluated as a function ofz, provide full
characterization. The slicing procedure was employed to
calculate the following profiles: electron density, lateral pres-
sure, electric field, water polarization, and electrostatic potential.
We report the average profiles obtained from calculation at every
molecular dynamics integration step over the 200 ns measure-

ment time. No extra processing has been done, that is, no filters
have been applied to smooth the curves, and we have not
averaged over the two monolayers. It will be seen that the
profiles are, nonetheless, extremely smooth (almost noise-free)
and symmetrical. This is indicative of a well-equilibrated system
and adequate sampling. We again emphasize that all properties
considered in the following did not directly enter the param-
etrization process.

Structure. Electron Density Profile.In general, to estimate
the electron distribution from particle-based models, electrons
have to be arbitrarily assigned to each site. Care should be taken
to match as closely as possible the underlying real electron
locations, with the obvious requirement for the total number of
electrons per lipid in the model to be equal to the real value
(374 for DMPC). For our model, we assume all electrons
belonging to the choline and phosphate clusters to be located
at the mass center of the choline and phosphate CG units,
respectively. As for the ellipsoidal particles that constitute the
rest of the lipid in our representation, we have resolved four
positions evenly spaced along the principal axis of each
ellipsoid; electrons are assigned to these positions to match as
closely as possible the underlying real distribution. The total
electron density profile of our model is reported in Figure 5
along with the experimental profile;4 the agreement is rather
good. In fact, our profile matches the experimental result with
an accuracy which is comparable to the results obtained with
AL models.22-24 The only significant difference involves the
central region, corresponding to the terminal methyl groups,
where the density of our model is slightly higher than that
obtained from experiment. The pronounced central trough in
the electron density is possibly determined by the “curling up”
of the terminal methyl segment; experimental order parameters5

indeed indicate that the terminal methyl segment is significantly
tilted with respect to the neighboring segment. Our model (by

TABLE 1: Force Field Parametersa

parameter value

σCC 5.0 Å
σPP 4.9 Å
σGG 3.8 Å
σTT 3.8 Å
σWW 3.035 Å
εCC 1.9 kcal/mol
εPP 2.0 kcal/mol
εGG 1.3 kcal/mol
εTT 1.3 kcal/mol
εWW 0.152 kcal/mol
εTW xεTTεWW/3
εTC xεTTεCC/2
εTP xεTPεPP/2
εWP 1.5xεWWεPP

εWG 1.5xεWWεGG

µ 2
ν 1
κ 1.77
κ′ 20
QC +0.7e
QP -0.7e
µG 3 D
µW 2.42 D
k 3 kcal/(mol Å2)

a Subscripts C, P, G, T, and W stand for the site types choline,
phosphate, glycerol, tail, and water, respectively. Lennard-Jones cross
terms are calculated by a standard rule,65 except forεTW, εTC, εTP, εWP,
andεWG, which have been set as reported. The constantsµ, ν, κ andκ′
refer to Gay-Berne parameters.56 As for the mixed Gay-Berne/
Lennard-Jones potential,58 cross termsøR-2 are calculated by a standard
rule,58 andø′R′-2 ) 0. Charges and dipoles are identified byQ andµ;
cross terms are obtained via a standard rule.64 The rigidity of the Hooke
spring potential is identified byk; reference lengths are zero. Springs
are anchored at the mass center for C and P sites and at a distance of
κGBσTT/4 from the mass center along the symmetry axes for G and T
sites.

Figure 2. Self-assembly simulation snapshots. The choline, phosphate,
glycerol, and tail sites of lipid molecules are represented in red, yellow,
green, and orange, respectively. Water molecules are colored in blue.
A quick phase separation (0-10 ns) is followed by the formation of a
transient water pore (80 ns), which eventually disappears, leading to
the stabilization of a defect-free bilayer (120 ns).
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construction) cannot capture this feature as the four consecutive
methyl groups at the end of each tail, represented by a single
rigid ellipsoid, are assumed to be aligned. From the distance
between the maxima of the profile, we compute a membrane
thickness ofdHH ) 3.71( 0.02 nm, close to the experimental
value4 of 3.53 nm. Single-site profiles are shown in Figure 6.
We observe broad peaks, significant headgroup hydration, and
water penetration down to the glycerol region. These findings
are consistent with AL simulation data.22-24

Headgroup dipole.We define the headgroup dipole moment
asµbHG ) qdB, with dB as the instantaneous vector connecting the
phosphate to the choline mass center andq as the (equal)
absolute magnitude of each headgroup charge. Owing to the
lack of experimental data for the headgroup dipole of DMPC,
we compare our model with experiments on dipalmitoylphos-
phatidylcholine (DPPC) bilayers. Apart from slightly longer tails
(two more carbons), DPPC is identical to DMPC; also, the
experiments considered83,84 were carried out on fully hydrated
bilayers in the fluid phase, under the same conditions as those
in our simulation. Therefore, it is reasonable to compare our
results for DMPC with these experimental data for DPPC. We

calculate a dipole magnitude ofµHG ) 16.1( 0.1 D, broadly
consistent with the experimental estimate83 for DPPC of 18.7
D. As for the orientation, the headgroup dipole of our model is
inclined, on average, by 92.3° from the membrane normal,
marginally pointing toward the bilayer interior. Experiment on
fluid-phase DPPC estimated the preferred conformation at≈72°
from the membrane normal, hence slightly pointing toward the
water phase.84 Despite a small discrepancy regarding the average
angle, our result agrees with experiment by describing the
headgroup dipole as being roughly parallel to the membrane
plane.84 A recent AL simulation study of DMPC also reported
the headgroup dipole to lie essentially flat on the bilayer plane,
the average angle being estimated at 72.3° from the interface
normal.23

Mechanical Properties.Compressibility Moduli.The area
compressibilityKA can be computed from simulation asKA )
kBTA/σ2(A), A andσ2(A) being, respectively, the mean and mean-
squared fluctuation of the interfacial area. We have calculated
for our modelKA ) 297( 22 dyn/cm, a value consistent with
the experimental measurement7 of 234 dyn/cm. The volume
compressibility modulusKV can be computed asKV ) kBTV/

Figure 3. Time evolution of the volumeVL and the areaAL per lipid; the curves connect 10 ps running averages. The experimental values4 are
plotted as straight gray lines.

Figure 4. Tail order parameters. The estimated segmental order parameters79 from experiment5 are superimposed on our simulation results obtained
by averaging over layers of tail sites as defined in the text. Standard errors are reported.
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σ2(V), V and σ2(V) being, respectively, the mean and mean-
squared fluctuation of the volume of the simulation region. We
have calculated for our modelKV ) 13.7( 0.2 kbar, consistent
with the experimental range of 10-30 kbar reported as typical
for fluid-phase phospholipid bilayers.1

Bending Rigidity Modulus.The bilayer bending modulusκb

can be related to the area compressibility modulusKA via7 κb

) KAdt
2/24, the “effective” bilayer thicknessdt beingdt ) dHH

- 1 nm, withdHH as the peak-to-peak distance in the electron
density profile. UsingKA and dHH from our previous results,
we obtainκb ) 21.9 ( 1.6kBT. Experiments have measured
16.7kBT from X-ray data,85 13.5kBT from pipet aspiration,7

31.4kBT from thermally excited shape fluctuation,86 and 32.1kBT
from all-optical measurement.87 Our estimate lies inside the
range of the experimental values.

Lateral Pressure Profile.The transmembrane lateral pressure
profile π(z) of our model, calculated by a standard procedure,30,33

is reported in Figure 7. Distinctive features can be highlighted
and related to their molecular origin. Corresponding to the
interfacial water regions, at the left and right extremes of the
profile, the net lateral pressure is almost zero, as it should be
for bulk water at mechanical equilibrium. In fact, it is possible
to observe a slightly positive value, which indicates repulsive
interactions; these arise from the partial alignment of water

dipoles as a consequence of the strong membrane electric field
(as analyzed in the following section on water polarization) and
the disturbance of interfacial water due to the nearby lipid
headgroups (with occasional headgroup protrusions into the
water phase). Upon entering the membrane, at the headgroup
region, we observe large positive lateral pressures, with a peak
magnitude of≈370 atm, which reflect a strong desire of the
bilayer interfacial area to expand. This results from repulsive
interactions between the headgroups due to steric, electrostatic,
and hydration forces.1 At the polar/apolar interface, roughly
corresponding to the lipid glycerol groups, the profile is
characterized by deep troughs of lateral pressure, with minimum
values of≈-650 atm (Figure 7). Here, the interfacial tension
tries to contract the bilayer to minimize the exposure of the
hydrocarbon core to the polar environment. In the bilayer
hydrocarbon interior, the pressure profile displays positive
values. The tight lipid packing conditions result in stretched
tails with respect to isolated “free” tails; the corresponding
entropy loss causes significant intertail repulsion.88 In particular,
the hydrocarbon region is characterized by three local maxima
and two local minima. Two outer maxima, of peak magnitude
≈ 180 atm, are located corresponding to the top segments of
the lipid tails; high ordering here (see Figure 4) is indicative of
high entropy loss, which results in large repulsive forces. The
two pressure minima are observed corresponding to the midtail
segments; in this region, the packing-related entropy loss is
relatively small since the connectivity to neighboring segments
already limits the midtail conformational entropy in free tails.
A broad lateral pressure maximum, of peak magnitude≈ 200
atm, is located at the very center of the bilayer (Figure 7). Here,
the ordering is minimal (see again Figure 4), and hence, the
presence of such large repulsive forces might seem unjustified.
However, the relative entropy loss of the tail ends in the
hydrocarbon core, with respect to free tails, is predicted to be
maximal,89 thus leading to sharp pressure increases toward the
bilayer center. Experimental investigation of the lateral pressure
distribution is extremely difficult; the few attempts made to date
provide qualitative and partial pictures for the hydrocarbon
region only.9,13 Unfortunately, the lateral pressure inside the
DMPC bilayers has never been experimentally investigated.
However, the pressure distribution has been probed for dioley-
lphosphatidylcholine (DOPC) bilayers.9 DOPC tails are slightly
longer than DMPC (18 vs 14 carbons) and contain one double

Figure 5. Total electron density profile. The distribution calculated with our model is superimposed on the profile obtained from experiment.4

Figure 6. Single-site electron density profiles. Distributions are
displayed for each site of our model. For the tail sites, electrons
belonging to the CH2 groups have been differentiated from the ones
belonging to the terminal CH3 group.
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bond (or unsaturation), whereas DMPC is fully saturated. The
headgroup and glycerol regions are identical for the two species.
The experiment9 was carried out with fully hydrated fluid-phase
bilayers, as in our simulation. Overall, it seems reasonable to
compare our results for DMPC with the data for DOPC. The
experimental data indicate that the hydrocarbon tails generate
positive pressures nonuniformly distributed; in particular, local
minima roughly at mid-depth along the tails of each leaflet were
observed.9 The qualitative experimental picture is therefore
consistent with our calculation. Our profile can also be compared
to the distributions obtained from AL bilayer models of a variety
of phospholipid species.30-36 We note a general agreement on
the number and locations of the pressure peaks and troughs. In
particular, the midtail minima are also reproduced by these
models; they are observed for fully saturated30-35 as well as
for unsaturated33-36 lipids. In terms of magnitude, AL models
are broadly consistent with ours in the peak values recorded.
In particular, peak pressures recorded for fully saturated
lipids30-35 are on the order of 200 to 600 atm for the headgroup
maxima,-500 to -1000 atm for the polar/apolar interfacial
troughs, and 200 to 300 atm for the central peak. Our results
lie inside of these intervals. The only AL pressure profile DMPC
available31 displays the qualitative features present in our profile,
although the peak magnitudes are slightly different. The AL
profile31 is rather noisy, and it was computed from a relatively
short run (14.3 ns after only 5 ps of equilibration). Hence, it is
probably undersampled and not fully converged. Also, the
membrane area was held fixed, whereas in our simulation, the
xy interfacial plane fluctuated according to the lateral compo-
nents of the pressure tensor. It is therefore not appropriate to
compare in detail our profile to that AL curve.31 Regarding the
other specific CG models developed to date, the lateral pressure
profile has been calculated so far only once, for a DPPC
bilayer;90 there are issues, however, with the reported data, in
that the CG pressure profile90 does not feature the midtail
minima and displays magnitudes that are markedly different
from the other published AL results30,34,35for DPPC bilayers.
Pressure profiles have also been computed from particle-based
simulations of generic coarse-grain models.91-98 It has been
argued32 that the level of simplification of these models (which
do not incorporate electrostatics and contain highly simplified
water representations) makes their pressure profile predictions
questionable. In fact, some qualitative features are captured,

although none of these models reproduce a central pressure
maximum as observed in our profile and in the AL studies;
central minima of nearly zero91-94 or negative95-98 magnitude
are instead reported. Predictions of the pressure profile have
also been obtained by analytical theory.89,99-101 These methods
typically consider only the tail region, and they assume uniform
density. Two of these models89,101reproduce the midtail minima.
With one exception,89 the pressure profiles obtained by analytical
theory do not feature the central maximum corresponding to
the tail ends.

Membrane CurVature Elasticity.In the popular formalism
developed by Helfrich,16-18 the surface curvature elastic energy
per unit areag is expressed asg ) κ(c1 + c2 - c0)2/2 + κGc1c2,
with κ as the bending rigidity,c1 andc2 as the (local) principal
curvatures,c0 as the spontaneous (or intrinsic) curvature, and
κG as the Gaussian curvature modulus. In the following sections,
we will calculate the constantsc0 andκG by evaluating the first
and second integral moments of the pressure profile over each
monolayer.88 The final values and standard errors are estimated
from four separate averages, two (one for each monolayer) for
each of the two consecutive 100 ns measurement blocks. Similar
calculations have been previously performed by analytical
theory,99,102 with a generic CG model,103,104 and with AL
models,33,35 although not for DMPC. Experimental data for
DMPC are also lacking. However, we will be able to compare
our results to experimental data for similar lipids and to general
theoretical predictions.

Torque Tension and Spontaneous CurVature. We have
calculated the first integral momentP1 of the lateral pressure
profile π as

wherez ) 0 at the center of the bilayer andz ) h in the water
phase.88 In particular, we have integrated the pressure profile
over each of the two monolayers, withz ) 0 and(h, h being
half of the z dimension of the simulation region. The first
moment of the lateral pressure is also called the torque tension
τm, with the superscript “m” indicating “monolayer”. We have
calculated a monolayer torque tensionτm ) P1 ) -0.020(
0.003kBT/Å. We can then write99 τm ) κmc0

m, with κm andc0
m

being the monolayer bending rigidity and spontaneous curvature,

Figure 7. Lateral pressure profile.

P1 ) ∫0

h
zπ(z)dz
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respectively. Considering that11 κm ) κb/2, we obtain a mono-
layer spontaneous curvature ofc0

m ) -0.018 ( 0.003 nm-1.
The spontaneous curvature has been measured for a number of
type-II lipids, that is, lipids forming inverted nonlamellar
structures; typical values in the range of-0.05 to -1 nm-1

have been reported.11 Lower absolute values are expected for
bilayer-forming, type-0 lipids, such as DMPC. Our estimate is
therefore reasonable.

Gaussian CurVature Modulus. The monolayer Gaussian
curvature modulus can be determined as

ê being the distance to the pivotal surface, defined as the surface
at which there is no change in the molecular cross-sectional
area upon bending.11 Defining the second integral momentP2

of the lateral pressure profile as

we can rewrite the expression for the Gaussian curvature
modulus asκG

m ) 2êP1 - P2, P1 being the first moment. The
pivotal surfaceê has been experimentally identified close to
the polar/apolar interface.105 Considering the lateral pressure
profile (Figure 7), we assume the polar/apolar interfaces of the
two monolayers to be located at the two main troughs of the
curve. In fact, the global minima of the pressure profile identify
the regions of largest surface tension, situated at the hydrophobic/
hydrophilic interfacial regions. Hence, by computing the half-
distance between the global minima of the pressure profile, we
setê ) 1.79 nm. The second integral moment of the pressure
profile from simulation isP2 ) 5.3( 0.1kBT. With P1 andê as
defined previously, we finally obtainκG

m ) -5.4 ( 0.1kBT. It
has been shown105 that the monolayer Gaussian curvature
modulus is generally related to the bending rigidity according
to -1 < κG

m/κm < 0; this prediction has been confirmed
experimentally.11 The more stringent relationκG

m/κm ≈ -0.8
has also been proposed.18 For our model, assumingκm ) κb/
2,11 we calculateκG

m/κm ≈ -0.5, a value consistent with the
reported theoretical predictions. We have also estimated the
bilayer Gaussian curvature modulus as17 κG

b ) 2(κG
m - 2κmc0

mê)
) -10.9 ( 2.3kBT.

Electrostatic Properties.Electric Field.We have computed
the transbilayer electric field by integrating the charge density
of the system along the bilayer normal.106 The z projection of
the electric field as a function of the position along the bilayer
normal is reported in Figure 8; the total profile is displayed
together with single-site profiles of the various charged groups.
The calculated magnitude of the total electric field within the
membrane is enormous, with local values on the order of≈109

V/m. Although no direct experimental measure is available, such
a large figure is expected,107 considering the magnitude of the
dipole potential (see next section). The total electric field arises
predominantly from the glycerol-ester dipoles through their
alignment along the interface normal. The headgroup contribu-
tion is relatively small; in fact, the headgroup dipole lies almost
parallel to the membrane plane, and hence, despite its large
magnitude, its projection along the normal and, consequently,
thez component of the electric field will be small, on average.
A significant contribution to the net total field is due to
interfacial water; water dipoles generate a strong field, which
counteracts the total field to lower the overall magnitude. We
have further investigated interfacial water by quantifying water
ordering. In particular, we have calculated the transbilayer water
polarization profile as the first-rankP1(z) order parameter65 of
the water dipoles with respect to the interface normal. To better
represent the physical significance of interfacial water ordering,
we have also computed the density-weighted profile by multi-
plying P1(z) by the water number density profileFW (deduced
from the electron density of Figure 6). The density-weighted
water polarization profile is shown in Figure 9; the correlation
with the water electric field (Figure 8) is evident.

Dipole Potential.We have calculated the electrical potential
profile Ψ(z) by integrating the electric field along the interface
normal.106 Figure 10 reports the total transmembrane electric
potential together with single-site profiles. The molecular origin
of the membrane dipole potential can be clearly identified;
according to our results, the overall potential largely originates
from the glycerol groups. Water ordering generates a negative
potential that lowers the overall value, whereas the headgroup
contribution is comparatively small. The total membrane dipole
Ψd for our model, measured in the hydrocarbon core with
respect to the water phase, is+1.57( 0.03 V. Experimentally,
a value of+0.45 V for DMPC was obtained with the monolayer
method.108 Cryo-EM experiments have recently estimated a

Figure 8. Transbilayer electric field. Thez projection of the total transmembrane electric field is plotted together with single-site profiles.

κG
m ) -∫0

h
(z - ê)2π(z)dz

P2 ) ∫0

h
z2π(z) dz
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magnitude of+0.51 V for a diphytanoylphosphatidylcholine
(DPhPC) bilayer;8 this result can be reasonably considered as
representative for ester-PC lipid bilayers in general (thus
including DMPC) due to the presence of the same charged
groups (glycerol-ester and headgroup). Our model correctly
predicts the sign of the dipole potential, although the magnitude
is larger than those estimated experimentally. Part of the reason
for the discrepancy observed is specific to our model. In our
simulation, the headgroup dipole points, on average, slightly
toward the bilayer interior, thus generating a small positive
contribution to the dipole potential (Figure 10). As already noted,
experiments suggest instead an orientation slightly pointing
toward the water phase,84 which would give rise to a negative
contribution to the dipole potential. A possible solution, which
we are indeed considering, involves introducing an angular
bonded term, of the form typically present in both AL and CG
force fields, to restrain the headgroup dipole to a configuration
more similar to that of the experiment; this would yield a more

realistic headgroup configuration and, in turn, a lower total
potential. It is worth pointing out that large values for the
membrane dipole have also been obtained with a number of
AL models; 27-29 the overestimation of internal electrical
potentials might be partly due to a general weakness of
nonpolarizable force fields.

Dynamics.Lipid Lateral Diffusion.We have calculated the
lipid lateral diffusion coefficient using the Einstein expression,72

as is standard practice in membrane simulations.21-23 Figure
11 shows the lipid lateral diffusion coefficientDlat computed
for two different measurement times. In particular, the diffusion
coefficient measured on a subnanosecond scale is reported in
the top panel of Figure 11; at 0.5 ns, a representative value of
≈60 nm2/µs can be observed. This result is consistent with those
obtained from experimental methods such as quasi-elastic
neutron scattering,109 which measure lipid displacements over
time periods of less than a nanosecond and yield short-range
diffusion constants in the range of 10-100 nm2/µs. In the bottom

Figure 9. Transbilayer water polarization profile. The first-rank order parameterP1 of the water dipoles with respect to thez axis unit vector is
weighted by the water number densityFW. Considering the frame of reference employed, the interface normal originates at the center of the system
and is oriented along thez axis. Hence, positive values in the left half of the water polarization profile correspond to water dipoles oriented toward
the bilayer interior, whereas negative values correspond to water dipoles oriented toward the water phase. For the right half of the curve, the
convention is reversed.

Figure 10. Electrical potential profile. The total transmembrane potential is plotted together with single-site profiles.
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panel of Figure 11, we report the diffusion measurement over
a 100 ns scale; the converged value is 12( 3 nm2/µs. This
result is consistent with the value of 9 nm2/µs measured by
pulsed field gradient NMR spectroscopy.6 Our diffusion results,
both for short and long time scales, are also consistent with
recent AL simulation data.21 The reason why lipid diffusion rates
are different over short and long ranges can be understood by
considering the free-volume theory.110 According to the free-
volume model, lateral diffusion occurs by discrete jumps of lipid
molecules into nearby vacancies formed by lateral density
fluctuations; in between jumps, a lipid molecule spends a
relatively long time rattling in a cage formed by its neighbors.
Over short (<1 ns) time scales, the diffusion coefficient is high
because it is determined by the fast short-range lipid motion
mainly due to a “rattling-about” behavior. However, considering
longer times, this rattling motion averages out, yielding no net
displacement. The true, long-range diffusion coefficient is
determined by the lipid jumps, which give rise to effective
displacement over longer (>10 ns) time scales. From our
simulation, we can directly visualize the lipid diffusion mech-
anism by recording single-lipid trajectories and projecting them
onto the bilayer plane. Figure 12 reports the mass center lateral
motion of selected lipids over a 100 ns time window; the
“rattling” pattern, accompanied by occasional jumps, is clearly
observable. To our knowledge, there are no experimental data
directly showing the free-volume diffusive mechanism at this
level of resolution. Also, no explicit single-lipid trace has been
reported for other CG models yet. Results similar to ours have
been obtained using AL models,22,25 although they are from
shorter simulations (10-50 ns).

Water Permeation.By simulating over relatively long times,
we observe statistically significant numbers of water molecules
penetrating through the bilayer from one water phase to the
other. In particular, over 900 ns, we have detected 208 crossing
events, 107 along thez axis positive direction and 101 along
the opposite (negative) direction. We have then computed the
water permeability coefficient using Fick’s law. The water
concentration gradient is calculated as∆CW ) CW

waterphase-
CW

hydrocarboncore) 33 nm-3, assumingCW
hydrocarboncore) 0 nm-3.

Considering the interfacial areaA and the unidirectional flux
of waterJW, we computed a permeability coefficient ofPW )
JW/∆CWA ) 92 ( 4 µm/s, in good agreement with the

experimental estimate2 of 70 µm/s. Such a calculation has been
previously reported once for another CG model.40 Passive water
transport has never been quantified with AL models due to the
very demanding computational efforts required to simulate long
trajectories. For example, in a recent AL study,34 4 phosphati-
dylcholine bilayers, each comprising 128 lipids, have been
simulated for 50 ns. In the four simulations, two, four, six, and
seven crossing events were observed. It is evidently not possible
to attempt an estimation of the permeability coefficient on the
basis of such poor statistics.

Discussion

We have presented a new specific CG model for biological
membrane systems. To some extent, our approach is similar to
a number of CG membrane models that have recently been
developed.40-45 However, three main characteristics set our
model apart from the other CG methodologies developed to
date: explicit incorporation of the main electrostatics, realistic
description of water, and use of anisotropic potentials to
accurately capture lipid shape.

We employed our methodology to simulate a fluid-phase
DMPC bilayer. The model was parametrized to reproduce basic

Figure 11. Lateral diffusion coefficients of lipid mass centers calculated using the Einstein relation as a function of the measurement time. The
top panel (1 ns temporal scale) refers to short-range diffusion, whereas the bottom panel (100 ns temporal scale) refers to long-range diffusion.

Figure 12. Mass center traces of selected lipids over a 100 ns time
window. Each trace, identified by a different color, represents the mass
center motion of a single lipid projected onto thexy plane.
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experimental data (volume and area per lipid, order parameters)
and the self-assembly process. The time scale and overall self-
aggregation mechanism are consistent with the available atomic-
level data.20 All major physical features of our self-assembled
bilayer system were then quantitatively evaluated; we stress the
fact that these properties did not directly enter the parametriza-
tion process. Structural results compared well with correspond-
ing experimental data. In particular, the total electron density
profile matched the curve obtained via experiment (Figure 5),
and single-site profiles showed characteristic broad distribution
peaks (Figure 6), consistent with the notion of fluid-phase lipid
bilayers being highly disordered yet distinctly stratified systems.3

The headgroup dipole moment was also analyzed; the experi-
mental magnitude was reproduced, while the average orientation
was found to be slightly different from that observed experi-
mentally.

A thorough mechanical analysis was performed. First,
compressibility moduli were evaluated. The area compressibility
modulus describes the response of the bilayer surface area to
an isotropic tension, whereas the volume (or bulk) compress-
ibility modulus describes the response of the bilayer volume to
uniform hydrostatic pressure.1 Both parameters represent fun-
damental mechanical properties. The compressibilities computed
for our model proved consistent with experimental measurement.
The transbilayer lateral pressure profile was calculated (Figure
7). The profile was thoroughly analyzed; every feature was
described and related to its molecular origin. Although no
quantitative experimental data is available to confirm our result,
the profile of our model seems very reasonable; it shows the
qualitative features obtained from experiments performed on
similar systems,9 and both shape and magnitude are consistent
with AL simulation data.30-36 We then analyzed our simulation
according to the elasticity theory developed by Helfrich.16-18

The Helfrich formula, valid both for a monolayer and a bilayer,
characterizes the spontaneous shape of interfaces, and it predicts
the stored energies that accumulate as a result of deviations from
the spontaneous shape. In particular, from the first integral
moment of the pressure distribution, we determined the mono-
layer torque tension, which characterizes the curvature elastic
stress,111,112and the spontaneous curvature, which quantifies the
tendency to curl and to form different phases.17 Both these
parameters are believed to specifically control protein function,
membrane stability, phase behavior, and fusion.111,112Our model
proved able to correctly predict a monolayer curvature typical
of type-0, bilayer-forming lipids for DMPC. Through the second
integral moment of the pressure profile, we computed the
Gaussian curvature modulus, which, in general, describes the
energy required to change the Gaussian curvature of a surface.
From a biophysical perspective, the Gaussian curvature modulus
sensitively affects the energy of intermediates in phase transi-
tions and fusion of phospholipid bilayers,113 and it is also
predicted to strongly influence the membrane-mediated interac-
tions between embedded proteins.104 Our calculation proved in
agreement with theoretical predictions.11,18 It is important to
highlight that the consistent results obtained for the curvature
elastic parameters provide further confidence that the pressure
profile obtained with our model is quantitatively credible.

Electrical properties were also investigated. In particular, we
studied the membrane dipole potential and associated transbi-
layer electric field. Our model correctly predicted the sign of
the membrane potential, the magnitude being larger than the
experimental estimate. Notably, we addressed an important issue
which cannot be directly studied in real systems and which still
represents an open question,107 the molecular origin of the dipole

potential. In particular, by separating individual contributions,
we could identify the glycerol-ester dipoles as the major
contributors to the electric field and dipole potential (Figures 8
and 10), and we could quantify the strong influence of interfacial
water ordering (Figure 9). Both these observations confirm
hypotheses based on experimental data.114,115

Realistic lipid diffusion was also simulated; our results, both
for short-range and long-range coefficients, proved consistent
with experiments (Figure 11). Furthermore, single-lipid diffusion
trajectories were extracted (Figure 12). We observed a “rattling
and jumping” behavior of the kind predicted by the free-volume
theory110 and simulated in AL studies.22,25 Finally, long-time
simulation (almost 1µs) allowed the spontaneous permeation
of water molecules to be observed and quantified; we measured
a permeability coefficient consistent with experiment.

The entire set of quantitative results obtained from our
simulation is collected in Table 2, along with the corresponding
experimental data. In general, experimental investigation on
phospholipid bilayers suggests that the properties of membranes
are governed by basic, purely physical principles.3 Our model
is a demonstration of the validity of this view; we have
consistently reproduced experiments with a simple model that
includes only the fundamental physics.

There are potentially many future extensions to the model
presented. In fact, preliminary investigations into the modeling
of different lipid species (such as DOPC) are being carried out.
Cholesterol is also a primary candidate for future inclusion in
our CG model; the Gay-Berne potential can allow cholesterol
to be modeled accurately and efficiently with disk-like sites.

A unique and very promising aspect of our CG strategy is
the straightforward compatibility with AL models; the potentials
present in our force field can be readily mixed with AL force
fields. In fact, electrostatic and van der Waals interactions are
represented consistently by our CG model and standard AL
models using Coulombic and Lennard-Jones potentials. Our
model also comprises the anisotropic Gay-Berne potential,
which can be seen as a generalization of the Lennard-Jones

TABLE 2: Physical Parameters of the Fluid-Phase DMPC
Phospholipid Bilayera

parameter our model experimentb

VL [nm3] 1.104( 0.002 1.1014

AL [nm2] 0.594( 0.003 0.6064

dHH [nm] 3.71( 0.02 3.534

Smol 0.36( 0.01 0.385,79

µHG [D] 16.1 ( 0.1 18.783,c

θHG [deg] 92.3( 0.1 ≈7284,c

KA [dyn/cm] 297( 22 2347

KV [kbar] 13.7( 0.2 10 to 301

κb [kBT] 21.9( 1.6 13.5,7 16.7,85 31.4,86 32.187

τm [kBT/Å] -0.020( 0.003 na
c0

m [nm-1] -0.018( 0.003 ≈0
κG

m [kBT] -5.4( 0.1 -10.9 to 011

κG
b [kBT] -10.9( 2.3 na

Ψd [V] 1.57 ( 0.03 0.45,108 0.518,d

Dlat [nm2/µs] 12( 3 96

PW [µm/s] 92( 4 702

a Abbreviations:VL ) volume per lipid,AL ) area per lipid,dHH )
bilayer thickness,Smol ) segmental order parameter,µHG ) magnitude
of the headgroup dipole,θHG ) angle between the headgroup dipole
and the bilayer normal,KA ) area compressibility,KV ) volume
compressibility,κb ) bilayer bending rigidity,τm ) monolayer torque
tension, c0

m ) monolayer spontaneous curvature,κG
m ) monolayer

Gaussian curvature,κG
b ) bilayer Gaussian curvature,Ψd ) dipole

potential,Dlat ) lipid lateral diffusion,PW ) water permeability, na)
not available.b Superscripted numbers are references.c Fluid-phase
DPPC.d Fluid-phase DPhPC.
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potential. Gay-Berne and Lennard-Jones models can be mixed
through a generalized formalism,58 as we have already done to
describe headgroup-tail and water-tail interactions. Recent
work in our group has provided further evidence of the validity
of our multiscale approach; in that study,116 water-octane
partition coefficients for a range of solutes were calculated by
Monte Carlo simulations. Octane molecules have been modeled
as pairs of Gay-Berne ellipsoids connected by a harmonic
spring using the parameters developed here for the lipid
hydrocarbon region, water has been represented with the SSD
potential, and the solutes have been represented with an all-
atom force field. This mixed AL-CG study has yielded results
in good agreement with experimental data, using a fraction of
the computational time needed by corresponding AL models.
Furthermore, we are currently conducting AL-CG simulations
where small organic molecules, described at the all-atom level
using standard force field parameters, are inserted across our
CG bilayer. In particular, we are performing the same investiga-
tion reported in a previous AL study,26 where molecular
dynamics simulations were used to calculate transmembrane
free-energy profiles and permeability coefficients of eight small
organic molecules. Preliminary results confirm the validity of
our method; the data obtained from the AL-CG simulations
are consistent with the corresponding AL results,26 while the
computation time is reduced by 2 orders of magnitude. Overall,
it is clear how our approach can allow the efficient multiscale
mixing of CG and AL models, the latter employed to represent
molecules where fine chemical detail is important, such as drugs
or membrane proteins.

Conclusion

We have reported the development of a new coarse-grain
model for biomembranes and its application to the study of the
most important physical properties of a representative fluid-
phase phospholipid bilayer. The model has proved capable of
consistently and quantitatively reproducing a large number of
experimental observables, in terms of structure, elasticity,
electrostatics, and dynamics. In this work, for the first time, a
coarse-grain membrane model has yielded quantitative data for
the headgroup dipole, Gaussian curvature modulus, electric field
and electrostatic potential profiles, interfacial water ordering,
short-range and long-range lateral diffusion coefficients, single-
lipid diffusive paths, and spontaneous permeation of explicit
water. Molecular-level insights into crucial membrane properties
and mechanisms have been obtained and rationalized. This study
generally demonstrates that the fundamental behavior of lipid
bilayers does not depend on fine chemical detail but on basic
physical interactions. The direct compatibility of our model with
standard atomic-level representations allows the study of
problems where a multiscale approach is desirable.
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(6) Filippov, A.; Orädd, G.; Lindblom, G.Langmuir2003, 19, 6397.
(7) Rawicz, W.; Olbrich, K. C.; McIntosh, T.; Needham, D.; Evans,

E. Biophys. J.2000, 79, 328.
(8) Wang, L.; Bose, P. S.; Sigworth, F. J.Proc. Natl. Acad. Sci. U.S.A.

2006, 103, 18528.
(9) Templer, R. H.; Castle, S. J.; Curran, A. R.; Rumbles, G.; Klug,

D. R. Faraday Discuss.1998, 111, 41.
(10) Starke-Peterkovic, T.; Turner, N.; Vitha, M. F.; Waller, M. P.;

Hibbs, D. E.; Clarke, R. J.Biophys. J.2006, 90, 4060.
(11) Shearman, G. C.; Ces, O.; Templer, R. H.; Seddon, J. M.J. Phys.:

Condens. Matter2006, 18, S1105.
(12) van den Brink-van der Laan, E.; Killian, J. A.; de Kruijff, B.

Biochim. Biophys. Acta2004, 1666, 275.
(13) Kamo, T.; Nakano, M.; Kuroda, Y.; Handa, T.J. Phys. Chem. B

2006, 110, 24987.
(14) Curnow, P.; Lorch, M.; Charalambous, K.; Booth, P. J.J. Mol.

Biol. 2004, 343, 213.
(15) Mohr, J. T.; Gribble, G. W.; Lin, S. S.; Eckenhoff, R. G.; Cantor,

R. S.J. Med. Chem.2005, 48, 4172.
(16) Helfrich, W.Z. Naturforsch., C: Biosci.1973, 28, 693.
(17) Seddon, J. M.; Templer, R. H. InStructure and Dynamics of

Membranes; Lipowsky, R., Sackmann, E., Eds.; Elsevier: New York, 1995;
pp 97-160.

(18) Marsh, D.Chem. Phys. Lipids2006, 144, 146.
(19) Essex, J. W.; Hann, M. M.; Richards, W. G.Philos. Trans. R. Soc.

London, Ser. B1994, 344, 239.
(20) Marrink, S.-J.; Lindahl, E.; Edholm, O.; Mark, A. E.J. Am. Chem.

Soc.2001, 123, 8638.
(21) Wohlert, J.; Edholm, O.J. Chem. Phys.2006, 125, 204703.
(22) Moore, P. B.; Lopez, C. F.; Klein, M. L.Biophys. J.2001, 81,

2484.
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