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The identification of lead molecules using computational modeling often relies on approximate, high-
throughput approaches, of limited accuracy. We show here that, with a methodology we recently developed,
it is possible to predict the relative binding free energies of structurally diverse ligands of the estrogen
receptor-R using a rigorous statistical thermodynamics approach. Predictions obtained from the simulations
with an explicit solvation model are in good qualitative agreement with experimental data, while simulations
with implicit solvent models or rank ordering by empirical scoring functions yield predictions of lower
quality. In addition, it is shown that free energy techniques can be used to select the most likely binding
mode from a set of possible orientations generated by a docking program. It is suggested that the free
energy techniques outlined in this study can be used to rank-order, by potency, structurally diverse compounds
identified by virtual screening, de novo design or scaffold hopping programs.

Introduction

Computer programs that predict the orientation of a small
molecule in a three-dimensional model of a protein structure
have become an established tool for rational drug design,
whether it be to analyze protein-ligand interactions of a putative
drug in atomic details or to conduct a virtual screen of a large
library of compounds in the search for novel small molecules
that can inhibit proteins of biomedical relevance.1-3 Numerous
studies have attempted to compare the strengths and weaknesses
of various docking programs and have suggested that redocking
experiments with modern docking algorithms can predict
correctly the binding mode of a small molecule about 80% of
the time, which is sufficient to make docking a valuable tool in
structure-based drug discovery.4-7 However, accurate prediction
of a ligand binding mode is not a sufficient condition to identify
novel drug-like molecules. A strong binding affinity for its target
is essential for a small molecule to become an effective drug
and therefore successful computer-aided drug design method-
ologies must also be able to predict the potency of a small
compound for a given biomolecule.

This issue, often referred to as the scoring problem, has
traditionally been addressed with scoring functions that typically
take the form of a series of equations that attempt to relate
empirically the nature of the predicted protein-ligand interac-
tions in the complex to the experimental binding affinity of the
ligand.6-8 Because scoring functions tend to be relatively
efficient, they have been used extensively to process hundred
of thousands of docking poses in virtual screening experiments.
These studies have shown that properly parametrized scoring
functions can discriminate to some degree compounds that bind
a target from those that would not but their performance is often
target dependent. In addition, scoring functions often have
difficulties in rank ordering active compounds by their potency.6,7

Because of these issues, considerable efforts have been devoted
to improving the accuracy and reliability of binding affinity
predictions for protein-ligand complexes.

The factors that govern binding affinity can be understood
in the framework of statistical thermodynamics and the resulting
equations allow, in principle, an exact computation of the
binding free energy of a ligand.9 In practice, these statistical
mechanics equations are far too complex to be solved rigorously
even with the aid of a computer and approximate solutions must
be sought. For instance, molecular interactions are often
described by molecular force fields rather than quantum
theory.10,11 As a result, if the force field does not reproduce
well the intermolecular interactions, the accuracy of the
predicted free energy will be lessened. Another longstanding
issue in free energy simulations is that it can be difficult to
observe over the course of a molecular dynamics (MDa) or
Monte Carlo (MC) simulation a sufficiently large number of
representative protein-ligand conformations, in which case
entropic contributions to the binding free energy may be
incorrectly calculated.12,13 This problem is often seen when free
energy simulations of the same protein-ligand complex,
repeated independently, fail to give the same result. The solution
to this predicament is simple, as precision can usually be
increased by running longer simulations. However, this can often
render a free energy simulation prohibitively expensive for
routine use. Thus, while prediction of binding affinities by free
energy computer simulations have been reported for two
decades,14 limitations in force field and sampling techniques
have restricted widespread adoption of this methodology. We
use the term rigorous to denote methodologies that are based
on a sound statistical thermodynamic basis and only make
approximations in their implementation. To overcome the
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limitations of rigorous free energy simulations, approximate free
energy calculation methodologies have been developed. The
MM/PBSA method predicts absolute binding free energies by
combining molecular mechanics interaction energies, implicit
solvation free energies, and entropy estimates from normal-mode
analysis.15 The methodology appears more accurate than simpler
scoring functions, but the performance can be highly variable
across different protein-ligand complexes.16,17 The linear
interaction energy (LIE) method estimates absolute binding free
energies from only two simulations of the solvated protein-ligand
complex and the ligand in solution and is thus approximately 1
order of magnitude more efficient than rigorous free energy
simulations.18 However, LIE models need in general to be
calibrated with a training set of inhibitors and thus require
available experimental data to be used reliably.19

In recent years, the increased affordability of computing
power, along with methodological advances, have renewed
interest in the applicability of rigorous free energy simulations
to drug design problems.9,20,21 Different studies have demon-
strated that with a cluster of commodity PCs it now appears
possible to predict efficiently relative binding affinities for
several dozens of structurally similar compounds over the course
of a few days and with an accuracy superior to traditional
scoring functions.22-25 Key to the success of these studies is
the structural similarity of the ligands investigated. It has been
known for some time that free energy differences between
similar compounds converge more rapidly than between dis-
similar compounds. Series of similar compounds are often
considered in lead optimization studies, and this is where free
energy simulations usually have had an impact on drug
design.23,24

There are, however, many instances where one would be
interested in the binding affinity of sets of structurally diverse
compounds. Practical free energy simulation techniques that
readily allow binding affinity predictions for a range of
structurally diverse inhibitors could prove particularly useful
for rational drug design, for instance, when searching for novel
scaffolds that could form a suitable starting point for a lead
optimization program. In recent years, methodologies that allow
the computation of absolute or relative binding free energies of
a series of diverse compounds have been reported.26-32 These
studies have often been proofs of principle, and the methods

were often validated on simple systems for which extensive
experimental data were available. It is thus important to explore
the applicability of these novel free energy simulation techniques
to pharmaceutically relevant protein-ligand systems for which
limited experimental data is available, as this is the situation
typically faced by scientists engaged in rational drug design
efforts.

In this paper, we demonstrate how modern free energy
simulation techniques can be applied in a drug design context
to identify promising scaffolds from a series of diverse
compounds. We select for this a series of putative estrogen
receptor R ligand binding domain (ER-R LBD) inhibitors
reported by Firth-Clark et al.33 The modulation of the activity
of estrogen receptors forms the basis of many therapeutic
interventions for the treatment of cancer or neurodegenerative
diseases.34

This data set, shown in Figure 1, consists of 16 structurally
diverse ligands. These compounds were generated and scored
favorably by a de novo design program.35 Subsequently, they
were synthesized and tested for inhibition. Six compounds were
found to be active, while the others did not show significant
inhibition. Because the six actives comprise the native agonist
and one structure that was already known to be active,36 four
novel actives were identified in this study. This result was
encouraging, but it also showed the limitations of the scoring
function employed in this study, as 10 ligands predicted to be
active did not in fact show potent inhibition. We ask ourselves,
could true actives have been identified in this data set using
more sophisticated computational techniques? We seek answers
to this question by using different free energy simulation
methodologies and in doing so demonstrate how these methods
can expand the range of problems molecular modelers can tackle
with greater confidence.

Methods

Docking Protocol. The program GOLD was used to dock ligands
into the estrogen receptor binding site.37,38 The structure of 17-�
estradiol complexed to ER-R LBD was used for this purpose (PDB
1GWR).36 Fairly exhaustive search criteria were selected (popula-
tion size of 100 individuals and a maximum of 100000 operations
per docking). GOLD was configured to generate poses until the
RMSDs of the top three scoring poses are within 1.5 Å. Otherwise,

Figure 1. Structure of the compounds considered in this study. The natural agonist 17-�-estradiol is labeled EST. Compounds that were judged
potent in the study of Firth-Clark et al.33 are labeled with the letter H, while compounds that did not show a noticeable inhibition are labeled with
the letter D. The IC50 of the active compounds reported by Firth-Clark et al. are given next to their label.
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a maximum of 10 poses were generated. The top scoring pose was
retained as a starting point for subsequent free energy simulations.
In some dockings, to bias the search toward particular binding
modes, a constraint was applied to force the formation of a hydrogen
bond between particular protein and ligand atoms. Previous
literature evidence39 has suggested that the Chemscore40 scoring
function produces more accurate binding modes over the Gold-
score37 scoring function for hydrophobic binding sites, and the
former was therefore employed in this study.

Free Energy Calculations. Relative binding free energies can
be calculated by constructing a thermodynamic cycle. The principles
behind this methodology have been reviewed elsewhere.41 The free
energy change for the mutation of ligand A into B in one medium
is obtained by application of the thermodynamic integration
method.42

∆Gmedium,AfB )∫0

1 ∂G(λ)
∂λ

dλ (1)

λ is a coupling parameter that allows the smooth transformation
of the potential energy function appropriate for ligand A into a
potential energy function appropriate for ligand B. To accurately
estimate the free energy change, the free energy gradients are
calculated at several values of the parameter λ (one simulation must
therefore be conducted for each λ value) and the integral in eq 1 is
then estimated by numerical integration using the trapezium rule.
In this work, the free energy gradients were calculated by a finite
difference scheme, i.e., (∂G/∂λ)λ ) [∆G(λ f λ + ∆λ) - ∆G(λ f
λ - ∆λ)]/2∆λ provided ∆λ is small.43 For each simulation run at
a particular value of the coupling parameter λ, the Zwanzig equation
(eq 2) was used to calculate the free energy changes ∆G(λ f λ +
∆λ) and ∆G(λ f λ - ∆λ), where ∆λ was set to 0.001.44

∆G(λf λ+∆λ))-�-1 ln〈exp(-�(Uλ+∆λ -Uλ))〉λ

(2)

where the angular brackets denote an ensemble average and Uλ is
the potential energy of the system simulated at λ. The potential
energy function Uλ is a function of the intra- and intermolecular
degrees of freedom of the simulated system and an estimate of the
ensemble average in eq 2 requires the enumeration of the low energy
configurations of the system. These configurations were generated
using the replica exchange thermodynamic integration (RETI)
method45,46 and Metropolis Monte Carlo sampling.47 In the RETI
method, a standard Monte Carlo simulation is performed as usual
at each value of the coupling parameter λ. In addition, moves that
exchange system coordinates between replica i at λ ) A of energy
UA(i) and replica j at λ ) B of energy UB(j) are occasionally
attempted, subject to the acceptance test described by eq 3.

exp(�([UB(j)-UB(i)]- [UA(j)-UA(i)]))g rand(0, 1)

(3)

The exchange of coordinates between the different simulations
run in parallel has been shown to enhance configurational sampling
and, hence, convergence of the calculated properties, while the
acceptance test ensures that each replica converges the simulation
to the correct distribution of states.45,46

The relative binding free energy ∆∆Gbind,AfB is the difference
between the free energy change in the protein environment
∆Gprotein,AfB and the free energy change in the aqueous environment
∆Gaqueous,AfB. Relative free energies are often computed using a
single topology approach whereby the molecular geometry and force
field parameters of two ligands A and B are linearly interpolated
to allow for the smooth alchemical transformation of ligand A into
ligand B as the coupling parameter λ is increased.48 While this
approach allows the efficient computation of free energy changes
between congeneric ligands (e.g., substituents on a ring), it is usually
difficult to set up large perturbations that change significantly the
topology of the solute (e.g., inserting a heterocycle). To overcome
this limitation, a dual topology approach can be used to compute

relative free energies.49 With this technique, the two ligands of
interest A and B are simulated together. No intermolecular
interaction energies are computed between the two ligands and the
other intermolecular energy terms are coupled to λ such that the
total energy U of the system is given by eq 4

U(λ))U0 + λU(B)+ (1- λ)U(A) (4)

where U(B) is the intermolecular energy of the ligand B that is
being turned on, and U(A) the intermolecular energy of the ligand
A that is being turned off. U0 accounts for all other energy terms.

We have recently shown that by using a dual topology approach
in conjunction with a soft-core energy function50 and a constraint
that prevents the drift of one ligand away from the binding site as
it becomes decoupled from its surrounding environment, it is
possible to compute efficiently relative binding free energies
between structurally diverse compounds.30 This technique is
especially advantageous over absolute binding free energy calcula-
tion schemes when there is a significant conformational or hydration
change in a protein binding site upon ligand binding, as large
structural rearrangement and water diffusion in and out of cavities
are not sampled easily in typical MC or MD simulations. This dual
topology approach was adopted here, not only to calculate the
relative binding free energies of the ligands but also to predict the
relative stabilities of the docked poses.

With some docking protocols, it was found that some compounds
could bind in two binding modes. In this case, the relative binding
affinities were computed from the most stable binding mode. In
principle, a ligand able to bind in two binding modes of similar
free energy would have an additional entropic contribution to its
relative binding free energy of up to -RT ln 2 kcal ·mol-1.51 Such
a contribution is however small and would not have affected any
of the qualitative rankings obtained in this study.

Implicit Solvent Model. In biomolecular simulations, solvent
effects are usually reproduced by explicitly considering thousands
of solvent molecules in the simulation. This approach is generally
considered accurate and faithful to statistical thermodynamics. It
is, however, possible to model solvent effects implicitly by
application of the laws of classical electrostatics.42 This approach
has often been shown to be an effective means to speed up
significantly simulations with only a moderate loss of accuracy.
Implicit solvent models typically decompose a hydration free energy
into a sum of free energy terms arising from polar and non polar
effects as shown in eq 5:

∆Ghyd )∆Gpolar +∆Gnonpolar (5)

The latter term is often taken as proportional to the solvent
accessible surface area of the system. The former term can be
obtained from Poisson-Boltzmann or Generalized Born theories.52-54

To obtain the ∆Gpolar term by a GBSA theory requires the
computation of atomic Born radii. In essence, a Born radius
measures the spherically averaged distance of a solute atom to the
solvent. This quantity is difficult to calculate accurately because it
formally involves the solution of a complex integral over the
position of all the atoms present in the system. Fast, effective
approaches that estimate this quantity by a sum of pairwise terms
have proven a popular alternative.55 A drawback of these schemes
is that they incorrectly attribute a bulk dielectric constant to
numerous small voids in a protein that are not occupied by solvent.
As a result, it is possible for a polar group to be still considered
partially solvated, even in purely hydrophobic environments. This
can affect predicted binding free energies by several kcal ·mol-1.22

Given the hydrophobic nature of the ER-R LBD, this error was of
concern. As the error on the Born radii tends to be systematic,
Onufriev et al. have proposed an empirical formula that adjusts
the values of the atomic Born radii to compensate for their
underestimation in protein.56 This approach was implemented and
tested in this study.

System Preparation. The PDB structure of human ER-R LBD
was selected as the starting point for this study (PDB code
1GWR).36 Hydrogen atoms were added to the protein with
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the program WHATIF, with which the protonation state of the
histidines was also decided.57 The protein was setup with the
AMBER99 force field.58 Models of the set of inhibitors reported
by Firth-Clark et al.33 were constructed using the program
Molden.59 Relative free energy calculations, which involve a
change of net charge, are difficult to carry out reliably with the
simple nonbonded cutoff employed in this study, and compounds
1-(4-amino-1-piperidinyl)-2-(4-hydroxyphenyl)-ethanone (DNP-
13794) and 2-hydroxy-5-[3-(4-hydroxyphenyl)-1-oxopropyl]-
benzoic acid (DNP-13810) from the work of Firth-Clark et al.
were therefore not included because they would carry a net
charge at physiological pH, unlike all the other inhibitors that
are likely to be neutral at physiological pH.33 Compounds that
could adopt multiple tautomers were modeled in the tautomeric
form used in the study of Firth-Clark et al. The ligands were
setup with the GAFF60 force field and the atomic partial charges
were derived using the AM1/BCC method61 as implemented in
the package AMBER8.62 To avoid steric clashes, the protein
complexed to 17-� estradiol was energy minimized using the
Sander module of AMBER8.62 Subsequent Monte Carlo simula-
tions were conducted with a modified version of the ProtoMS2.1
package.63 To reduce the computational cost, only the protein
residues that have one heavy atom within 15 Å of any heavy
atom of the ligand 17-�-estradiol were retained. The protein
scoop was inspected visually, and additional residues distant from
the binding site were added to the scoop to neutralize its total
charge and avoid excessive fragmentation of the protein
backbone. The resulting protein scoop consisted of 123 residues.
The ligands were initially modeled in the binding site in the
orientations predicted by the docking program GOLD. For the
explicit solvent simulations, crystallographic waters were re-
tained and the complex was hydrated by a sphere of TIP4P water
molecules64 of 22 Å radius and centered on the geometric center
of the ligand. To prevent evaporation, a half-harmonic potential
with a 1.5 kcal ·mol-1 ·Å-2 force constant was applied to water
molecules whose oxygen atom distance to the ligand center of
geometry was greater than 22 Å. A similar sphere of water was
employed to solvate the ligands in the unbound state. For the
implicit solvent simulations, all the crystallographic waters were
removed. IC50s have been reported for a subset of the inhibitors
considered in this study. These were converted to a binding
affinity relative to ligand H13 using eq 6, which is derived from
the Cheng-Prusoff equation:65

∆∆Gbind,AfB )-RT ln
IC50(B)

IC50(A)
(6)

Monte Carlo Simulation Protocol. The bond angles and torsions
for the side chains of 49 residues within about 10 Å of any heavy
atom of the ligand and all the bond angles and torsions of the ligand
were sampled during the simulation, with the exception of rings.
The bond lengths of the protein and ligand were constrained. To
increase flexibility, the main chain of the flexible protein side chains
was also allowed to move by rigid body rotations and translations
around the CR atom.

A 10 Å residue-based cutoff, feathered over the last 0.5 Å, was
employed in all simulations.42 In the generalized Born simulations,
a cutoff of 20 Å for the calculation of the Born radii was applied.
To render the implicit solvent simulations more efficient, a
generalized Born scheme described previously was adopted.66 For
the explicit solvent simulations in the bound state, solvent moves
were attempted with a probability of 85.7%, protein residue moves
with a probability of 12.8% and solute moves with a probability of
1.4%. In the unbound state, solvent moves were attempted 98.4%
of the time. The temperature was set to 25 °C. Replica exchange
moves were attempted every 200 thousand (K) moves. The solvent
was equilibrated for 20 million (M) configurations to remove any
repulsive contacts with the solute(s). The system was then simulated
at 16 evenly spaced values of the coupling parameter λ for 70 M
moves where solute, protein, and solvent moves were attempted
and statistics were collected over the last 60 M moves. In the

implicit solvent simulations, solute moves were attempted 10% of
the time, with the remainder being protein residue moves. In the
unbound state, 1 K moves of equilibration were performed before
200 K moves of data collection. Replica exchange moves were
attempted every 6 K moves. In the bound state, 2 M moves were
conducted at each of the 16 values of λ, and statistics were collected
over the last 1.8 M moves. The parameters for the GBSA force
field were taken from a previous study.67

Unless otherwise noted, each simulation was repeated three times
with a different random number seed and the free energy change
and statistical error estimate was taken as the mean and the standard
error of the free energies from these simulations. The free energy
changes computed in this study, as well as Chemscore binding
energies, are listed in the Supporting Information, and plots
summarizing these data are presented in the Results section.

Results

Refinements of Binding Modes Predicted by Docking. The
chemical structures of the ligands considered in this study are
shown in Figure 1. It can be seen that the compounds present
in this data set contain two to four rings and several different
functional groups commonly encountered in drug-like mol-
ecules. All the compounds are neutral, but compound D08 is a
zwitterion at physiological pH. The molecular weight of the
compounds is not high, and the IC50s of the actives range from
low nanomolar to micromolar. The novel actives identified in
this data set by Firth-Clark et al.33 could be suitable candidates
for subsequent lead optimization.

Figure 2 shows a sketch of the estrogen receptor R ligand
binding domain binding site that depicts a possible binding mode
of ligand H09. With the exception of 17-�-estradiol, the
compounds in this data set were generated by a de novo design
program,35 and it is apparent that the program sought to satisfy
hydrogen bonding with Glu353, Arg394, and His524 and identified
a diverse range of hydrophobic and aromatic moieties that could
link the hydrogen bond donating/receiving groups. This explains
the relative diversity of scaffolds that are present in this data
set but also why they tend to have roughly the same size. Even
then, the structural diversity of the compounds shown in Figure
1 is large for a traditional relative free energy simulation study,

Figure 2. Representation of compound H09 bound to the ligand
binding domain of the estrogen receptor R. The ligands in the data set
shown in Figure 1 can donate or receive hydrogen bonds to Arg394,
Glu353, and His524. In addition, they form mainly hydrophobic interac-
tions with the other nearby protein residues.
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and it would have been difficult to compute binding affinities
for this data set until recent methodological advances.27,28,30

Before binding affinities can be predicted by free energy
simulations, a structure of each ligand complexed in the binding
site of the ligand binding domain of the estrogen receptor R
must be available. Because in this data set only the crystal
structures of ligand H13 and 17-�-estradiol (EST) have been
solved,36 plausible binding modes for the 14 other compounds
must be determined by a docking program.

In Figure 2, ligand H09 has its hydroxyl group oriented
toward the Glu353/Arg394 pair. Because of the relatively few
possible hydrogen bond partners in the protein binding site and
the nature of the compounds in this data set, it is actually
possible to generate a plausible binding mode by flipping ligand
H09 by 180° such that its hydroxyl group interacts with His524.
Apart from ligand H13 and EST, for whom a crystal structure
has been solved, a similar situation arises for all other ligands
in the data set (compound D08 does not have a hydroxyl group,
but the same situation arises for the orientation of its amino
acid group). This feature of the binding site of the estrogen
receptor R is well documented. For instance, crystallographic
data shows that the orientation of raloxifene, a selective estrogen
receptor modulator that differs from H13 by the addition of a
side chain to the benzothiophene ring,68 is flipped by 180°
compared with H13.36,69

To simplify the discussion, we arbitrarily decide that the pair
Glu353/Arg394 is at the “top” of the binding site and His524 at
the “bottom”. The first orientation where the hydroxyl group
(or amino acid group for compound D08) is oriented toward
Glu353/Arg394 will be referred to as “top”, and the second
orientation where the hydroxyl group (or amino acid group for
compound D08) is oriented toward His524 will be referred as
“bottom”.

To assess whether the free energy simulations can correctly
identify the crystallographic binding mode for the two ligands
EST and H13 for whom a structure is available, poses in top or
bottom orientations of the phenol hydroxyl group were generated
with the program GOLD. The difference in binding free energy
between these two alternative binding geometries was then
calculated using the dual-topology free energy methodology
described earlier. Experimentally, both compounds are known
to adopt a top orientation in the crystal structures.

EST is larger than any other ligand in the data set and does
not fit well in a bottom orientation. Accordingly, the top pose
is favored by Chemscore by 3.7 score units and by a large free
energy difference of about 34 and 31 kcal ·mol-1 with the
implicit and explicit solvent protocols. This is in agreement with
the experimentally observed binding mode.

Interesting results were obtained for ligand H13. GOLD
predicts that the top pose is favorable by 1.4 score units.
However the implicit solvent simulations predict that the bottom
pose is favored by 0.8 ( 0.3 kcal ·mol-1, while the explicit
solvent simulations predict the top pose to be favored by 0.6 (
0.4 kcal ·mol-1. Therefore, given the limits in accuracy and
precision of the present simulations, it is difficult to assign
unambiguously a single binding mode to H13. Because crystal-
lographic studies have suggested that, depending on the nature
of an additional substituent, this scaffold can bind in a top or
bottom orientation, it is perhaps not surprising that the free
energy simulations do not indicate a strong preference for either
orientation. If the bottom orientation of this scaffold was strongly
disfavored, then analogues adopting this binding mode would
not be expected to be potent ligands.69

The remaining compounds were then docked using the
program GOLD. The best scoring pose was assigned to be top
or bottom depending on the orientation of the ligand hydroxyl
group. Table 1 shows that GOLD predicted that all of the
ligands, regardless of their chemical structure, would bind with
their hydroxyl group oriented toward the top of the binding site,
with the exception of H95 for which the docked energies of a
top and bottom pose were within 0.5 score units, and hence the
docking was judged to be indecisive.

To assess the predictions of the docking program, the relative
free energy of the top and bottom binding modes for each ligand
was computed in implicit and explicit solvent. The data in Table
1 shows that the predictions of the free energy simulations differ
from Chemscore in a number of instances. Using implicit
solvent, five compounds are predicted to bind with their
hydroxyl group at the bottom of the binding site and the relative
free energies of the top and bottom binding modes for two
compounds is less than 1 kcal ·mol-1, suggesting they could
bind in both orientations. The explicit solvent simulations mirror
this trend well but with two exceptions, ligands D97 and D01.
They were predicted to bind in both orientations by the implicit
solvent simulations but are found to bind only in bottom and
top orientations respectively, in explicit solvent.

Prediction of Relative Binding Affinities. For each ligand,
the most likely binding mode, as suggested by the relative free
energies of the top and bottom orientations of each compound,
was retained for the prediction of binding affinities. Given the
experimental evidence and the slight preference for a top
orientation as predicted by the free energy simulations, ligand
H13 in its orientation observed in a crystal structure36 was
selected as a reference compound and relative binding free
energies between ligand H13 and every other ligand were
computed in implicit and explicit solvent. Figure 3 plots the
relative binding affinities predicted by each approach and
compares them with experiment. Because IC50s were measured
only for the compounds judged to be active, quantitative
comparisons and rank ordering are only possible in the set of
six actives. If the 10 other compounds are to be confidently
identified as inactives, then they should have a relative binding
affinity higher than those of the actives.

With the explicit solvent simulations, EST is correctly
identified as the most potent ligand in this data set; however,
the magnitude of its predicted binding affinity is much too
negative. The rank-ordering of the actives is not very accurate
either. Ligand H95 is predicted to be more potent than ligand
H13, and ligand H09 is predicted to be less potent than several
decoys. However, the discrimination between actives and

Table 1. Orientation of Each Ligand in the Binding Site of the LBD of
ER-R as Predicted by GOLD or by Free Energy Simulationsa

compd GOLD/Chemscore ∆G, explicit ∆G, implicit

H95 both top top
D96 top bottom bottom
D97 top bottom both
D98 top bottom bottom
D99 top top top
H00 top top top
D01 top top both
H02 top bottom bottom
D05 top top top
D06 top bottom bottom
D07 top top top
D08 top top top
H09 top bottom bottom
D11 top top top

a If the top and bottom orientations differed by less than 0.5 score units
or 1 kcal ·mol-1, both orientations were deemed possible.
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inactives is high, and five of the six actives (EST, H95, H13,
H00, H02) are ranked among the top six compounds of the data
set. This result is very encouraging because the IC50s of several
of the hits are in the micromolar range, and such compounds
can be regarded as moderately potent inhibitors that may not
be easily discriminated from other inactive compounds. Given
that all the compounds in the data set were scored favorably by
Screenscore,33 it is clear that this rescoring by free energy
simulations has markedly improved the discrimination between
hits and inactives.

The results of the implicit solvent simulations differ for
several ligands. EST is still predicted the most potent, and the
relative binding affinities of the hits are now in better agreement
with experiment than with the explicit solvent simulations. For
instance, H95 is now correctly predicted to be less potent than
H13, and the computed binding affinity for H09 is now in closer
agreement with experiment. The six hits are now correctly rank-
ordered with the implicit solvent simulations, which was not
the case for the explicit solvent simulations.

On the other hand, the computed binding affinities of several
decoys are either much lower (D96, D97) or much higher than
with explicit solvent simulations (D98, D01, D06, D07). As a
result, only three hits are among the top six compounds (EST,
H13, H09) in this data set, and even then, the relative potencies
of H09, D05, and D11 cannot be well discriminated because of
overlapping error bars.

The binding affinity of compound D08 is very high with both
simulation protocols. That such a compound would bind poorly
was not unexpected, as it is the only zwitterionic compound in
the data set. As a result, it is much better solvated by water and
its transfer to a buried, hydrophobic binding site is therefore
strongly disfavored. It is also possible that D08 would adopt a
different protonation state in the binding site. Unfortunately,
this possibility can not easily be accounted for with the classical
potential energy function employed in this study. Firth-Clark
et al. noted that Screenscore does not consider the acidity of
functional groups, and this could explain why D08 scored well
with Screenscore but very poorly in the present free energy
simulations.33

In the previous section, free energy simulations suggested
that a number of ligands would bind in a different orientation
to the one predicted by docking. In particular, two of the
hits, H02 and H09, were predicted to bind in a top orientation
by Chemscore but in a bottom orientation by free energy

simulations. Chemscore was not able to discriminate between
top and bottom orientations for H95, while the explicit-
solvent free energy simulations indicate that this compound
would bind in a top orientation. We computed the binding
affinity of these ligands relative to H13 in explicit solvent,
but starting from the top orientation instead for H02 and H09
and bottom orientation for H95, i.e., we used the opposite
geometries to those suggested by the free energy calculations.
The computed binding affinities were 8.2 ( 0.3, 13.3 ( 0.6,
and 13.2 ( 0.6 kcal ·mol-1, respectively. These binding
affinities are 5.9, 8.1, and 15.6 kcal ·mol-1 higher than those
obtained when the ligands are modeled in the orientation
predicted by the explicit solvent free energy simulations. With
such poor relative affinities, these three hits would not have
been discriminated from the decoys. In the absence of
crystallographic data, these additional simulations provide
further confidence in the binding modes predicted by the free
energy simulations.

Outliers in the Implicit Solvent Predictions. It is apparent
that the implicit solvent protocol has not been as successful as
the explicit solvent protocol to discriminate hits from decoys
in this data set. Interestingly, as shown in Figure 3, several
compounds containing an amide group score too favorably with
the implicit solvent protocol but score badly with the explicit
solvent protocol (D96, D97, D99, D05). Table 2 lists the
absolute hydration free energies of simple amide groups, and
the hydration free energy relative to H13 for some of the ligands
containing an amide group, calculated using our GBSA protocol.
These figures are compared to the absolute hydration free energy
measured by experiment, or the hydration free energy relative
to H13 predicted by explicit solvent simulations. With the GBSA
parametrization employed here,67 it is apparent that the hydration
of amide groups is systematically underestimated. This would
mean that the cost of desolvating an amide group with the
current GBSA model would be less than in the explicit solvent
simulations. This may explain then why decoys containing
amide group are predicted to bind too favorably with the implicit
solvent model. Because amide groups are ubiquitous in proteins,
this observation was of concern and it was decided to repa-
rameterize the GBSA model to improve predictions for the
hydration free energy of amides. Table 2 shows that simple
adjustments in the Born radius parameters for the oxygen atom
of the amide group (the radius was reduced from 1.65 to 1.37
Å) allowed considerable improvement in the prediction of the
hydration free energies. In addition, the relative hydration free
energies of the ligands containing amide groups predicted with
the revised GBSA parameter set were now found to be in much
closer agreement with the explicit solvent results.

Another issue to be expected with the present implicit solvent
model is its tendency to assign high dielectric constants to small

Figure 3. Binding affinities predicted by explicit and implicit solvent
simulations. In black, the experimental IC50s converted to relative
binding affinities with eq 6, in blue, the binding affinities predicted by
explicit solvent simulations, and in red, the binding affinities predicted
by implicit solvent simulations. The binding affinities of D08 are off-
scale and stand at 21.8 ( 0.8 and 18.5 ( 0.3 kcal ·mol-1 for the explicit
and implicit solvent simulations, respectively. All the figures are relative
to ligand H13. The error bars give one standard error.

Table 2. Hydration Free Energies of Compounds Containing Amide
Groupsa

compound ∆Gsolvb ∆GsolvGBSA
c ∆GsolvGBSA, rev

d

acetamide -9.7 -8.5 ( 0.1 -11.6 ( 0.1
N-methylacetamide -10.1 -6.8 ( 0.1 -9.7 ( 0.1
N,N-dimethylacetamide -8.5 -4.9 ( 0.1 -7.6 ( 0.1
propionamide -9.4 -7.3 ( 0.1 -10.3 ( 0.1
D96 -6.1 ( 0.2 -1.8 ( 0.1 -5.0 ( 0.1
D97 -3.7 ( 0.2 -0.9 ( 0.1 -3.9 ( 0.1
D99 -4.7( 0.4 -1.4 ( 0.1 -4.5 ( 0.1
D05 -7.9( 0.2 -4.5 ( 0.1 -7.9 ( 0.1

a All the figures are in kcal ·mol-1. The free energies are absolute
hydration free energies for the first four compounds, and relative to ligand
H13 for the last four compounds. b From experiments (small molecules)70

or from explicit solvent simulations (ligands). c Default GBSA parameter
set. d Revised GBSA parameter set (see text).
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pockets of void that are left in the binding site but cannot in
fact be occupied by water. While the modifications of Onufriev
et al. tend to fix this error in an average way,56 initial results
we obtained with this protocol show that the methodology did
not in fact improve the accuracy of the binding affinity
predictions. Previously, it was found that by introducing in the
simulation a set of spherical particles that do not have non-
bonded terms but a Born radius and hence that solely displace
the dielectric in a hydrophobic binding site, it was possible to
improve the treatment of ligand desolvation by a Generalized
Born technique and thereby improve the accuracy of the
predicted binding affinities.22 This approach was therefore
adopted in this study and eight such particles were positioned
in the binding site of the ER-R LBD, where pockets of void
between protein residues and EST had been left.

Figure 4 plots the relative binding affinity obtained with this
revised implicit solvent protocol that uses the revised GBSA
parameter set and solvent displacing spheres and compares it
to the results obtained with the previous implicit solvent
simulations. In spite of the improved predictions of hydration
free energies, the relative binding affinities are comparable to
the previous simulation protocol. In fact, in light of the statistical
uncertainties, the binding affinities of the decoys containing
amides have not increased significantly even though they now
have a more negative hydration free energy. Addition of solvent
displacing spheres in the binding site was found previously to
improve the prediction of binding affinities for a series of
Celecoxib analogues bound to COX-2.22 With the current data
set, this protocol does not seem effective at improving the
discrimination between hits and decoys. This indicates perhaps
that this approach might not be systematically applicable and
that, in fact, alternative algorithms that compute more accurate
Born radii are necessary.

Even though the binding affinities of the decoys containing
amide groups have not increased significantly, the revised
implicit solvent protocol discriminate better hits from decoys
in this data set. This is because H02 scores lower, and now
four hits score among the top six compounds (EST, H13, H02,
H95) although H95 cannot be well discriminated from D01 and
D05 in light of the statistical uncertainty.

It is interesting that the modified implicit solvent protocol
has improved the prediction of hydration free energies, but this
improvement has not translated into better predictions of binding

affinities or closer agreement with the explicit solvent results.
In fact, we have noted previously that strong correlation between
hydration free energies predicted by explicit or implicit solvent
does not necessarily imply a strong correlation between binding
free energies predicted by both techniques.22 Similarly, we have
shown that accurate prediction of hydration free energies by a
GBSA model does not necessarily imply a correct treatment of
the energetic of intermolecular interactions.67 The current
findings question which steps should to be taken to improve
the accuracy and reliability of implicit solvent models.

Outliers in the Explicit Solvent Predictions. The explicit
solvent simulation protocol was found to discriminate well
actives from inactives in this data set. However, the binding
affinity of EST is significantly overestimated and the binding
affinity of compound D01 was too strong to discriminate it from
the other actives.

We recall that the model of the protein binding site employed
in these simulations was constructed from the crystallographic
structure of ER-R complexed to EST. The protein residues in
the binding site of this structure are prearranged to interact with
EST. In addition, because the setup of the model of the protein
binding site entails energy minimization of the structure
complexed to EST, we expressed concern that such a protocol
would create a bias for this particular ligand, which could
explain why this compound scores very favorably.

To assess the impact of the protein setup on the results, free
energy simulations in explicit solvent were repeated using a
model of the protein binding site constructed from a crystal-
lographic structure of ER-R complexed to ligand H13 (PDB
code 1GWQ).36 Figure 5 plots the results obtained with this
protein structure and compares them to the results obtained
previously.

It is apparent that EST still scores very well, regardless of
the protein structure. This suggest that no significant bias toward
this particular compound has been introduced with the present
protein setup protocol and perhaps that its large computed
binding affinity might be attributed to errors caused by the
potential energy function.

However, several decoys score now much higher in binding
affinity (D96, D97, D98, D05, D06, D07). The large, several
kcal ·mol-1, differences in binding affinities obtained do indicate
that the computed free energies depend on the selection of a

Figure 4. Binding affinities predicted by two different implicit solvent
simulation protocols. In black, the experimental IC50s converted to
relative binding affinities with eq 6, in red, the binding affinities
predicted by the default GBSA model, and in maroon, the binding
affinities predicted by implicit solvent simulations with a revised GBSA
model. The binding affinity of D08 is off-scale and stands at 18.5 (
0.3 and 20.4 ( 0.1 kcal ·mol-1 for the implicit and revised implicit
solvent simulations, respectively. All the figures are relative to ligand
H13. The error bars show one standard error.

Figure 5. Binding affinities predicted by explicit solvent simulations
conducted with two different protein models. In black, the experimental
IC50s converted to relative binding affinities with eq 6, in blue, the
binding affinities predicted by the explicit solvent simulations conducted
with a model constructed from 1GWR, and in cyan, the binding
affinities predicted by explicit solvent simulations conducted with a
model constructed from 1GWQ. The binding affinity of D08 is off-
scale and stands at 21.8 ( 0.8 and 24.2 ( 0.6 kcal ·mol-1 for the
simulations in 1GWR and 1GWQ, respectively. All the figures are
relative to ligand H13. The error bars show one standard error.
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particular protein structure. It has been observed previously that
the position of a single valine side chain in a mutant of T4-
lyzozyme can affect absolute binding free energies by several
kcal ·mol-1 for a set of small molecules.28,71 Here, overlay of
the binding sites constructed from the two protein structures
does not indicate a single obvious difference in side chain
positions, which could explain the discrepancy in the simulation
results. Rather, because the structures differ slightly in several
locations (backbone position, side chain orientations) it is more
likely that the differences in binding affinities arise from a
combination of these small differences. In principle, the
computed binding energies should not depend on the selection
of a given three-dimensional model of the same protein if
sufficient sampling of the protein and ligand degrees of freedom
is achieved during the simulation. That such a dependency is
in fact observed indicates that the sampling techniques used
here are not able to generate completely identical protein-ligand
configurations from both protein structures.

We note that, with the exception of compound H00, the
binding affinities of the hits have not changed significantly and
compound D01 still scores favorably in this new structure. As
a result, while the rank-ordering of the actives is now slightly
different, five still score among the top six compounds (EST,
H95, H00, H13, H02). Thus, for this data set, selection of either
protein structure leads to a similar discrimination of hits from
decoys.

Correlation of Binding Affinities with Simpler Models. The
free energy simulations in explicit solvent show good discrimi-
nation between actives and inactives in this data set, but their
computational cost is significant. Because these free energy
simulations generate a wealth of data that can be subsequently
analyzed, it is interesting to determine if, in fact, correlations
between binding affinity and other simple descriptors can be
obtained.

Figure 6 shows in blue and magenta colors, the negative of
the relative hydration free energies of the compounds in this
data set predicted by explicit or implicit solvent techniques. With
this simple property, it is apparent that most decoys score poorly
while the hits tend to score well. In fact, rank-ordering according
to this metric yields five hits among the top six compounds for
the explicit solvent simulations (EST, H13, H09, H00, H95)

and the revised implicit solvent simulations (EST, H13, H09,
H02, H00). We note that the revised implicit solvent protocol
fares as well as the explicit solvent protocol only with the revised
GBSA parameter set. With the default GBSA parameters,67 only
three hits (EST, H13, H09) would be ranked among the top six
compounds (data not shown, see Supporting Information).

It may appear at first sight surprising that the hydration free
energies provide a means to discriminate actives from inactives
that is as accurate as the more time-consuming computation of
binding free energies. The answer to this observation lies
probably in the nature of the data set. The compounds listed in
Figure 1 were generated by a de novo design algorithm that
seeks suitable chemical structures amenable to synthesis that
satisfy hydrogen bonding and size constraints defined by the
binding site. Therefore, all the optimum solutions of this
algorithm yielded compounds of roughly similar size that satisfy
all the important hydrogen bond constraints in the binding site.
Because the binding site is fairly hydrophobic and not solvent
exposed, it is likely that ligand desolvation is an important factor
that controls the strength of binding. An accurate prediction of
the relative hydration free energies can therefore provide a
reasonable rank-ordering of the compounds in this data set. This
is an interesting observation because the computation of relative
hydration free energies is about twice as fast as the computation
of the relative binding free energies with the explicit solvent
protocol and hundreds of time faster with the implicit solvent
protocol. We stress again however that only the revised implicit
solvent protocol fares as well as the explicit solvent protocol
and that the strong correlation between hydration and binding
free energies is likely to be system dependent.

The free energy simulations were shown to discriminate
actives from inactives in this data set better than the scoring
function Screenscore, but this comparison might be unfair
because this data set was selected precisely because Screenscore
reported a majority of false positives.33 To assess whether or
not the free energy simulations do, in fact, show an improvement
over more traditional scoring functions, we also plot in Figure
6 in orange the binding affinities computed with the scoring
function Chemscore.

Chemscore appears to give better results than Screenscore;
EST is identified as one of the most potent ligands, along with
H09. However, three decoys (D01, D06, D07) score well and
overall, only three actives appear among the top six compounds
(EST, H09, H02).

Discussion

In drug design to date, rigorous free energy simulations have
been mainly applied to lead optimization problems. A number
of studies have suggested that several dozen substituents around
an identical core can be screened by such techniques at a
reasonable computational expense.22-25 A difficult problem in
drug design is often the selection of a chemical structure that is
an adequate starting point for a lead optimization program. The
aim of the present work was to explore if and how recent
methodological advances in computation of binding affinities30

would allow the screening and rank-ordering of structurally
diverse scaffolds. The quality of the results reported here
suggests that free energy simulations should be considered more
often to assist rational drug design efforts. However, it is
important to keep in mind the current limitations in order to
decide where and when this technology can be applied
effectively.

A source of concern for any molecular modeling study is
the size and quality of the data set used to validate the different

Figure 6. Discrimination of hits from decoys by plotting hydration
free energies or Chemscore binding energies. In black, the experimental
IC50s converted to relative binding affinities with eq 6, in blue, the
negative of the hydration free energies predicted by explicit solvent
simulations, in maroon, the negative of the hydration free energies
predicted by revised implicit solvent simulations, and in orange, the
binding energies predicted by Chemscore. The relative hydration free
energy of D08 is off-scale and stands at 38.4 ( 0.5 and 34.6 ( 0.1
kcal ·mol-1 for the simulations in explicit and implicit solvent,
respectively. All the figures are relative to ligand H13. The error bars
show one standard error.
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computational techniques tested. The compounds reported by
Firth-Clark et al.33 were adopted in this work because they
presented chemically diverse structures and had all been assayed
in the same study. Only two compounds were excluded from
our study (see the Methods section) for sound methodological
reasons.

The computational expense of the present free energy
simulation protocols was higher than those necessary for the
prediction of relative binding affinities of structurally similar
compounds. For a given ligand, a binding affinity prediction
required 1300 CPU hours on a AMD Opteron 2.2 GHz processor
(or 700 CPU hours for the implicit solvent protocol), but these
could be spread on up to 32 processors. Thus, one data point
could be acquired in ca. 1-2 days of computation. However, it
was apparent that the binding affinities were not fully converged
because independent repetitions of the same run gave different
answers (see the Supporting Information for plots of the
convergence of free energy against the number of Monte Carlo
moves for selected systems). To obtain an estimate of the
statistical error on the computed free energies, the binding
affinity of each ligand for each protocol was computed three
times and the mean binding affinity was reported. The average
standard deviation was about 1.0 kcal ·mol-1 for the explicit
solvent simulations, and 0.7 kcal ·mol-1 for the implicit solvent
simulations. This standard deviation was higher than that
estimated by block averaging techniques applied to a single run
and is probably closer to the true statistical uncertainty of the
calculated free energies. We note that, overall, the number of
degrees of freedom of the ligands in this data set is not large.
Previously, we have suggested that with the current protocol,
the more degrees of freedom a ligand possesses, the more time-
consuming it will be to converge its binding free energy to an
acceptable level of precision.30

In a more pragmatic application, the simulation protocol could
be modified to accelerate the speed at which results are obtained.
For instance, if a compound scores very poorly in one run (like
D08 in this study), additional runs are not necessary to flag it
as inactive. The number of intermediate values of the coupling
parameter λ (16 in this study) or Monte Carlo moves (70 M
per λ value) could also be reduced. More refined protocols could
be subsequently applied to rank order more precisely a subset
of compounds whose predicted binding affinities lie in a narrow
interval.

In this work, we found that free energy simulations could be
used to predict the most likely orientation of a given ligand
from a set of possible binding modes. Interestingly, some
binding modes identified as most likely by the free energy
simulations did not score favorably with Chemscore. Because
the binding affinities subsequently computed from the incorrect
binding mode (as identified by free energy simulations) led to
poor discrimination of hits from decoys, it is important to ensure
that the correct binding mode has been selected prior to
conducting a free energy study. Because the binding modes of
most of the compounds in this work are not known (a situation
often faced in a real drug design context), we cannot determine
which method is more accurate, and this work should be the
focus of another more detailed study. We note that to use free
energy simulations to score different binding modes, these must
have been determined previously by a docking program or by
the molecular modeler’s intuition and/or knowledge of the
binding site. The present technique cannot help locate a binding
mode that has not been identified previously because the free
energy simulations are too computationally intensive to drive
the search for different poses by a docking program.

In many cases, we have tested the performance of a given
technique by assessing its ability to score the active compounds
among the top six compounds in the data set. Given the small
size of the present data set, we must ask ourselves if this
approach generated statistically meaningful observations. The
probability of randomly picking six actives from a data set of
six actives and 10 inactives (regardless of the order in which
the actives are picked and picking one compound at a time) is
0.01%. The probabilities of randomly picking at least 5, 4, 3,
2, 1 actives among six compounds are 0.7%, 9.2%, 39.1%,
78.5%, and 97.4% respectively. With these considerations in
mind, we can say that the discrimination between actives and
inactives by explicit solvent simulations or by ordering according
to the opposite of the computed hydration free energies is highly
unlikely to be a chance effect but that the performance of
Chemscore or the implicit solvent simulations is not guaranteed
to be much more than chance.

In the present work, the explicit solvent simulation protocol
outperforms the implicit solvent simulation protocol. In a
previous study on another data set, both protocols were judged
to give predictions of similar accuracy.22 We note that in the
absence of compounds containing an amide group, the quality
of the implicit solvent predictions would have been comparable
to the explicit solvent results. It is likely that a more definitive
assessment of the strength of each approach will have to be
deferred until the time that much larger data sets can be
considered for a free energy simulation study. Alternative
implicit solvent models that improved the prediction of hydration
free energies for these compounds were not able to improve
the prediction of binding affinities. This is an interesting
observation that is of importance, as the quality of an implicit
solvent model is often judged on its ability to reproduce
hydration free energies.

The span of the binding affinities generated by implicit or
explicit solvent simulations was larger than the range that would
be expected on the basis of the ratio of the measured IC50s for
the actives. This trend was observed in other studies.22-24 In
addition, quantitative agreement between computed and mea-
sured binding affinities was not systematically achieved for the
actives. A mean error of about 1.0 kcal ·mol-1 is often regarded
as successful in a typical relative binding energy study. Such
studies were often concerned with free energy differences
between structurally similar compounds that are usually easier
to converge and that are less sensitive to the quality of the
molecular force field, as errors in force field terms for the parts
of the compounds that are similar can be expected to cancel.
This situation will arise less frequently if one considers data
sets of structurally diverse compounds, and with current
biomolecular force fields, the average error may be expected to
be higher than in studies concerned only with series of
congeneric inhibitors. Also, the binding affinities were found
to be sensitive to the protein structure selected, from which a
model of the protein binding site was constructed. If sufficient
sampling of the protein degrees of freedom is conducted, the
binding affinities should be independent of the protein structure
because it contains the same amino acid sequence. This problem
points to the need for methodological advances that allow more
effective sampling of the protein degrees of freedom.

All these observations suggest that it is challenging to
systematically achieve quantitative agreement in the prediction
of protein-ligand binding affinities with current simulation
methodologies as applied to a set of diverse ligands. However,
even if the computed binding free energies cannot be directly
related to a binding affinity, in most instances, a suitably high
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correlation between the two properties, or a statistically
significant ability to discriminate actives from inactives, would
be the most important goal. This is clearly achieved by the
explicit solvent simulation protocol in this study. In addition,
analysis of the simulations provide useful information that can
assist ligand design; for instance, the contribution of desolvation
to the binding affinities of the ligands in this data set and for
this target. Given that the ligand data set is so diverse, this
success is very encouraging and supports the use of free energy
simulations for drug design studies.

Conclusions

The binding affinities for a set of 16 structurally diverse
compounds to the ligand binding domain of the estrogen receptor
R have been determined using statistical thermodynamics,
classical force fields, and implicit or explicit solvent models.
Free energy simulations conducted in explicit solvent were found
to discriminate well actives from inactives and better than
implicit solvent simulations or empirical scoring functions. The
free energy simulations were also used to score possible binding
modes for each compound, and it was found that the orientation
favored by the free energy simulations was not always the
orientation favored by the empirical scoring function Chemscore.

With computational facilities available to a typical research
organization, the present free energy simulation technique can
be used to screen a focused data set of chemically diverse, low
molecular weight compounds. The current approach can be
readily applied to rank by potency, compounds generated by
virtual screening, de novo design, or scaffold hopping tools. It
is thus expected that the free energy simulation methodology
employed here will prove useful to identify lead molecules in
rational drug design studies.
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