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Abstract

We use Melnikov function techniques together with geometric meth-
ods of bifurcation theory to study the interactions of forcing, damping
and detuning on resonant periodic orbits for single and coupled forced
van der Pol oscillators. For a coupled pair the local bifurcation geom-
etry is almost everywhere described in terms of the singularities of a
line congruence in three dimensions.

1 Introduction

The search for harmonic and subharmonic periodic orbits of a single or several
coupled forced nonlinear oscillators such as the van der Pol system

ẋ = ω0y

ẏ = −ω0x− δ(x2 − 1)y + ε cos(ωt)
(1.1)

(here x, y ∈ R while δ, ε are small constants and the angular frequency ω of
the forcing term is close to the natural frequency ω0 of the linear system) has a
long and distinguished pedigree, originating in mechanical and electrical engi-
neering and more recently of major interest in the biological sciences with par-
ticular reference to synchronisation: see for example [4],[6],[21],[24],[28],[29].
We do not attempt to survey here the vast literature on forced or coupled
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oscillators, but refer to standard texts such as [13, 25, 26] for classical back-
ground or [12, Ch.11],[19, Ch.4] for more recent approaches.

From the geometrical dynamics point of view the natural object of study
for a system of m weakly coupled oscillators each having an attracting limit
cycle is an m-dimensional invariant torus (the cartesian product of the limit
cycles) on which the flow is periodic or quasiperiodic, depending on the
rational relations or otherwise between the frequencies of the component
oscillators. On a cross-section of the flow the dynamics is modelled by a
discrete dynamical system (Poincaré map) on a torus of dimension m − 1,
this system being close to the direct product of m − 1 rigid rotations. For
m = 2 the creation and annihilation of periodic orbits of various periods on
the circle (1-dimensional torus) in response to perturbations of frequency and
amplitude is typically described by Arnold tongues [3, Ch.3,§11], while for
m = 3 the situation naturally becomes much more complicated [5],[15],[28].

In the present setting (1.1) we begin not with a limit cycle or cycles (on
which after forcing or coupling perturbations the above remarks apply), but
with a linear system of simple harmonic motion in the plane which, as is
well known (see e.g. [25]) gives rise to a limit cycle of variable amplitude
when a nonlinear van der Pol damping perturbation (the δ-term in (1.1)) is
introduced. At the same time an independent small-amplitude forcing term
ε cosωt is applied with frequency close to but possibly detuned from that of
the linear system. For ε small relative to δ the bifurcation is dominated by
the limit cycle of the unforced van der Pol system and for small detuning
as the forcing amplitude ε increases we see the creation of a pair of near-
harmonic ((1 : 1) resonant) periodic solutions governed by an Arnold tongue
as expected. This analysis can be found in standard texts such as [12, Ch.11]
or [13, Ch.14, Th.3.1].

However, the original equilibrium state at the origin also persists as a
near-harmonic periodic orbit (the so-called quasi-static solution) for the per-
turbed system. As detuning and forcing amplitude increase these periodic
orbits interact and our bifurcation analysis (see Section 3 below) shows that
the Arnold tongue splits into two, while across the ‘inside’ edges one of the
orbits created within the tongue coalesces with the quasi-static orbit at a
saddle-node bifurcation. As detuning increases further the tongues disap-
pear at what turns out to be a cusp bifurcation point controlling the inter-
action of all three near-harmonic orbits. The bifurcation diagram is shown
in Figure 3.2, where the coordinates a, α essentially represent the reciprocal
of the detuning parameter and the forcing amplitude respectively: we refer
to Section 3 for details.
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Bifurcation results for systems of this general kind have been much stud-
ied in the literature, from various points of view. For example, conditions
on the function g (assumed 2π-periodic in t) for the existence of 2π-periodic
solutions to a system of the form

ẍ+ x = εg(x, ẋ, t; ε)

for x ∈ R and small ε ∈ R can be found in [12] or [13]. See also [16] for
an extension of the methods to include certain degeneracies, and also [23]
for a quite different topological approach using index theory. In all cases the
criteria involve integrating a certain function obtained from g around periodic
solutions of the unperturbed equation, often called a Melnikov integral.

The main aim of this paper is to extend the theory of the Melnikov integral
method, specifically as refined and developed in a series of papers by Chicone
[7, 8, 9, 10], to a general multi-parameter setting, and then to illustrate the
method by applying it first to a single and then to a coupled pair of van
der Pol oscillators subject to forcing and detuning. The latter system is
studied in [8], for example, but the bifurcation results are there described
in terms of a single Melnikov (integral) bifurcation problem obtained after
temporarily fixing the values of all parameters except one. In contrast, in the
multiparameter setting developed in the present paper the bifurcations are
seen to be controlled not by the vanishing of a single bifurcation (Melnikov)
function but by the loss of rank of a bifurcation matrix. The kernel of this
matrix determines to a first approximation the direction from the origin in
parameter space along which bifurcations can occur.

These methods fit in to the general framework of multi-parameter bifur-
cation from a manifold as described in [11], and take their inspiration from
Chicone’s results as well as from earlier work of Hale and Taboas [20] on the
interaction of forcing and damping for nonlinear oscillators. We believe our
approach is not only a natural one from the geometric point of view but gives
clearer insight into the relative roles of the key parameters than might be ob-
tained by more analytical methods. We now describe the general technique
in more detail.

1.1 Outline of the method

Let γ be a periodic orbit of period T > 0 for an autonomous system of
ordinary differential equations

ẋ = f(x) (1.2)
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in Rn, assuming sufficiently regularity so that solutions with given initial
data are unique and are defined for all t ∈ R. Then each point of γ is a
fixed point for the map φT : Rn → Rn where {φt} is the flow generated by
the solutions of the equations. If we now perturb the system by applying a
small-amplitude forcing of period T ′ close to T , while possibly at the same
time amending the original equations slightly through the introduction of
damping, for example, then the map

F : Rn → Rn

defined by following solutions of the nonautonomous perturbed system for
time T ′ is close to the original map φT . The problem of finding T ′-periodic
orbits of the perturbed system close to γ then becomes the problem of finding
the fixed points (if any) ξ of F that are close to γ or, to express it another way,
to find which points ξ0 of γ persist nearby as periodic points ξ with period
T ′ for the nonautonomous perturbed system. We call the corresponding T ′-
periodic orbit of ξ under the perturbed flow a near-harmonic periodic orbit
emanating from ξ0.

1.1.1 A single perturbation parameter

A standard technique, which presumably goes back at least to Poincaré, is
to consider the perturbation of (1.2) as depending on a single parameter
ε ∈ R (with no perturbation when ε = 0) and, given sufficient smoothness,
to expand the corresponding map F = Fε in powers of ε on a neighbourhood
U of γ. The displacement map, that is the difference

Pε = Fε − id

between Fε and the identity map, vanishes at least on γ when ε = 0, but may
vanish on a larger set: indeed, in a wide class of examples (including ours)
in which n = 2 and the unperturbed system is a simple harmonic oscillator,
the map P0 vanishes on the whole of R2. Let V ⊂ U denote the zero set
of P0 . Then at points x ∈ V the expansion of Fε in powers of ε has ε as a
factor. After removal of this factor, the remaining term without ε is the first
derivative

P ′ :=
∂Pε

∂ε

∣∣∣
ε=0

: V → Rn, (1.3)

called the bifurcation map. If P ′(ξ) 6= 0 there there can be no zeros of Pε

close to ξ when |ε| is sufficiently small. We state this as the first key result.

Proposition 1.1 A necessary condition for a branch of near-harmonic pe-
riodic orbits to emanate from ξ0 ∈ V as ε moves away from zero is that
P ′(ξ0) = 0. 2
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Finally, by the implicit function theorem (IFT), provided the zeros of P ′ are
nondegenerate (the Jacobian matrix of P ′ there is nonsingular), these zeros
will persist nearby as zeros of Pε for small ε 6= 0, and correspond to periodic
orbits of the perturbed system with period T ′.

This method is effective for a single parameter as long as the zeros of P ′

are nondegenerate, but further questions arise if P ′ has zeros that are degen-
erate. A class of ODE problems where this happens is studied for example
by Hale and Taboas [20]: see also [12]. However, the philosophy of unfolding
theory for singularities of smooth (that is, C∞) maps and vector fields [2, 30]
shows that the introduction of further parameters often enables degeneracies
to be controlled and local bifurcation behaviour to be understood in a wider
framework. This is the approach we exploit in this paper.

1.1.2 Multiple parameters

For a system as above but with perturbations depending on d parameters
ε = (ε1, . . . , εd) ∈ Rd we have for each i = 1, . . . , d a bifurcation map as
in (1.3)

P ′
i : V → Rn,

obtained by setting all other parameters εj with j 6= i equal to zero. We then
assemble the {P ′

i} to form a map P from V to the space L(d, n) of n×d real
matrices.

Definition 1.2 The bifurcation matrix P(ξ) is the n × d matrix whose ith

column is P ′
i (ξ) ∈ Rn for i = 1, . . . , d. The map P : V → L(d, n) is called

the bifurcation map for the perturbed system.

With the displacement map Pε = Fε − id : U → Rn defined as before but
now with ε ∈ Rd we have

Pε(ξ) = P(ξ)ε +O(|ε|2). (1.4)

Taking polar coordinates in Rd by writing ε = ρs where ρ > 0 and s belongs
to the unit sphere Sd−1 in Rd, the expression (1.4) becomes

Pε(ξ) = ρP(ξ)s+O(ρ2) (1.5)

from which it is clear that if s0 /∈ kerP(ξ0) then for sufficiently small ρ > 0
there are no solutions to Pε(ξ) = 0 for any ξ in a neighbourhood of ξ0 and
any ε in a cone about the s0-axis in Rd. Hence we are able to state the
following result:
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Proposition 1.3 A necessary condition for a branch of near-harmonic pe-
riodic orbits to emanate from ξ0 ∈ V as ε moves away from the origin in Rd

in the direction of s0 ∈ Sd−1 is that s0 ∈ kerP(ξ0). 2

That this necessary condition is not sufficient will become clear from
examples that we consider below. However, the condition is sufficient if
s0 ∈ kerP(ξ0) in a way which is nondegenerate with respect to the family of
kernels {kerP(ξ)} as ξ varies near ξ0. The precise meaning of this statement
varies depending on the relative sizes of n and d, and we refer to [11] for a
fuller discussion of this issue.

In the case of a single forced van der Pol system we shall be concerned
with n = d = 2. Here, a typical 2 × 2 matrix is nonsingular and so has zero
kernel, and it is a codimension-1 occurrence for the matrix to have kernel of
dimension 1. This is the geometry we exploit in order to locate near-harmonic
periodic orbits for the system (1.1).

For a coupled pair of van der Pol systems in Section 4 we focus instead
on the 2-dimensional kernels of a family of 4× 4 matrices. The intersections
of these kernels with the unit sphere S3 in R4 projects stereographically to a
2-parameter family of lines (or line congruence) in R3 and local bifurcation
geometry is generically determined by the local structure of this line congru-
ence. We are not able to present a complete analysis in this case, but we
pursue the methods far enough to exhibit the specific calculations needed
in order to determine key features of the bifurcation geometry in any given
case.

2 The bifurcation map for planar systems

Here we set out the details of the formalism as described by Chicone [7,
8, 9] for applying the method described above to a planar system with one
perturbation parameter. We consider the general system

ẋ = f(x) + εg(x, t; ε) x ∈ R2, ε ∈ R (Sε)

in a neighbourhood U of a periodic orbit γ of period T > 0 for the system
S0 (that is, ε = 0), where the maps f and g are assumed to be C∞ and there
are no zeros of f in U . Temporarily disregarding g, we note that at each
point ξ ∈ U we have a basis for (the tangent space to) R2

B(ξ) = {f(ξ), f⊥(ξ)}
where if u = (v, w) ∈ R2 then u⊥ denotes the vector (−w, v). Let V ⊂ U be
the set of zeros of the displacement map P0 in U , that is the set of T -periodic
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orbits in U . For ξ ∈ V let γ(ξ) denote the (T -periodic) orbit of ξ for the
unperturbed system S0 .

First we suppose that the perturbing vector field g also has period T in t.
Then we have Diliberto’s result [14] (with minor correction: see [7, 8, 9]):

Theorem 2.1 The bifurcation map P ′ : V → R2 has the form

P ′(ξ) = (N (ξ),M(ξ)) (2.1)

with respect to the basis B(ξ) of R2, where N ,M : V → R are given by

N (ξ) =

∫ T

0

‖f‖−2
{
f.g − α(t)

β(t)
f⊥.g

}
dt (2.2)

M(ξ) =

∫ T

0

‖f‖−2
{ 1

β(t)
f⊥.g

}
dt, (2.3)

with f, g evaluated at ξt = φt(ξ) with {φt} the flow for the unperturbed sys-
tem S0: thus the integrals take place along γ(ξ). Here the functions α(t)
and ln β(t) correspond to the first-order variation in (respectively) time and
displacement transverse to the orbit γ(ξ) for orbits of S0 close to γ(ξ). 2

To be more precise, α(t) and β(t) are terms from the fundamental matrix
solution Ψξ(t) of the variational equation ẇ = Df(ξt)w with respect to the
bases B(ξ) and B(ξt) for R2 at ξ and ξt respectively: we have

Ψξ(t) =

(
1 ‖f‖2α(t)
0 β(t)

)

where explicit formulae for α(t) and β(t) can be found in [14] and [7, The-
orem 4.1] as well as [8, 9]. However, in the example that we study in this
paper the system S0 is just simple harmonic motion for which α(t) = 0 and
β(t) = 1 for all t, and so the expressions (2.2),(2.3) become

N (ξ) =

∫ T

0

‖f‖−2 f.g dt (2.4)

M(ξ) =

∫ T

0

‖f‖−2 f⊥.g dt. (2.5)

In cases when α 6= 0 or β 6= 1 then γ(ξ) is called normally nondegenerate
(see [8, 9]), and in this case γ(ξ) is isolated among T -periodic orbits. Finding
zeros of P ′ at points of γ(ξ) then reduces (via Liapunov-Schmidt reduction)
to studying the zeros of a single function C : γ(ξ) → R called the bifurcation
function. In our applications, however, we do not have normal nondegeneracy
and so cannot make this simplification.
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2.0.3 The effect of detuning

Suppose now, in contrast to the above, that the t-period T ′ of g(x, t; ε) is not
exactly T when ε 6= 0. More precisely, suppose that

T ′ = T + kε+O(ε2)

for a nonzero constant k ∈ R. We call k the detuning parameter. It is easy
to verify (see [8, end of Section 4]) the following simple but crucial fact:

Proposition 2.2 The effect of detuning on the map P ′ is to replace the
component N by N + k. 2

As might be expected, and as we shall see below, increasing the detuning
crucially affects the bifurcation behaviour of Sε .

2.0.4 Multiparameter planar systems

For a system Sε with multiple parameters ε = (ε1, . . . , εd) ∈ Rd, where the
perturbation term is ε · g(x, t; ε) with g taking values in Rd and the dot
denoting scalar product, we apply the above formalism in the case of each
scalar parameter εi to obtain integrals Ni,Mi as in (2.2),(2.3) and construct
a matrix-valued bifurcation map P : V → L(d, 2) as in Section 1.1.2. The
van der Pol system (1.1) is of this type with d = 2 and ε = (δ, ε).

3 Single van der Pol system

At this point we become more specific and apply the general method de-
scribed in Section 2 to the single forced van der Pol system (1.1). We have
T = 2π

ω0

and allow ω to vary with ε so that

T ′ :=
2π

ω
=

2π

ω0

+ kε+O(ε2), (3.1)

where k is the detuning parameter with a different status from the perturba-
tion parameters δ, ε. For given k we seek those harmonic orbits (T -periodic
orbits of (1.1) with (δ, ε) = (0, 0)) that persist as near-harmonic (T ′-periodic)
orbits under perturbation with ε = (δ, ε) 6= (0, 0).

3.1 The bifurcation matrix

Evaluation of the integrals that appear in N and M in (2.4) and (2.5) is in
this case very straightforward, since φt(ξ) = R−tξ where ξ = (x, y)

t

and Rt
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is the 2 × 2 rotation matrix

Rt =

(
cosω0t − sinω0t
sinω0t cosω0t

)
.

Here t denotes transpose; since we are now working with matrices it is nec-
essary to take more care in distinguishing row and column vectors. Taking
polar coordinates (x, y) = (r cos θ, r sin θ) for r 6= 0 we find using (2.4),(2.5)
(with T = 2π/ω0) that the bifurcation matrix whose columns represent the
bifurcation maps for the parameters δ, ε respectively is

P(r, θ) =
π

ω2
0

(
0 kπ−1ω2

0 − r−1 cos θ
(1 − 1

4
r2) r−1 sin θ

)
. (3.2)

The following results about the kernel kerP(r, θ) are now easy to check:

Proposition 3.1

1. If π cos θ − krω2
0 6= 0 and r 6= 2 then P(r, θ) has zero kernel.

2. If π cos θ − krω2
0 6= 0 and r = 2 then kerP(r, θ) is spanned by the

vector (1, 0)t.

3. If π cos θ − krω2
0 = 0 and r 6= 2 then

kerP(r, θ) = span{(4 sin θ, r(r2 − 4))t}.

2

It is the third case that is of most interest to us, since there kerP(r, θ) has
dimension 1 and varies with (r, θ). Thus the two circles C and E given by

C : r = 2 (3.3)

E : r = a cos θ, a = π(kω2
0)

−1 (3.4)

play a key role in the analysis that follows. Note that E is the circle with
diameter [0, a ] on the x-axis (we allow r < 0, corresponding to replacing θ by
θ ± π). As the detuning coefficient k increases the circle E shrinks towards
the origin.

The remaining cases not covered by Proposition 3.1 are where ξ ∈ E∩C,
and there the expressions for kerP(r, θ) in cases 2 and 3 coincide except where
sin θ = 0. This occurs only at the origin (already excluded since r 6= 0) and
the point (2, 0) when a = 2 : at these points P(r, θ) is the zero matrix.
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3.2 The kernel map

Let C̃, Ẽ denote the circles C,E respectively with (if a = 2) the point (2, 0)
deleted from C and E and with the origin in any case deleted from E. From
Proposition 3.1 we know that dim kerP(ξ) = 1 when ξ ∈ C̃ ∪ Ẽ, and so to
each ξ ∈ C̃ ∪ Ẽ we can associate the corresponding kerP(ξ) as an element
of the projective line RP 1 (the set of lines through the origin in R2).

Definition 3.2 The kernel map

κ : C̃ ∪ Ẽ → RP 1

is given by
κ : ξ 7→ kerP(ξ).

It is straightforward to verify that κ is a smooth map.

For all ξ ∈ C̃ we have that κ(ξ) is the δ-axis, corresponding to perturba-
tions with zero forcing term. The associated bifurcation map P ′

δ : R2 → R2

is identically zero, from which a priori we can deduce nothing about the zero
set of the displacement map Pδ itself: in particular, it may be empty. How-
ever, when ε = 0 the system (1.1) is the standard autonomous van der Pol
system (see [25] for example) which is well known to have a unique periodic
orbit that tends to the circle C and whose period tends to 2π/ω0 as δ → 0.

We therefore turn now to the case of ξ ∈ Ẽ, where it is the interactions
of δ and ε with nonzero detuning k that are important. Here the geometry
of the kernel map κ plays a key role. Points ξ ∈ E can be parametrised as
ξ = ξ(θ) where

ξ(θ) = (r cos θ, r sin θ)t =
a

2
(1 + cos 2θ, sin 2θ)t (3.5)

for 0 ≤ θ < π, although we shall find it useful to take a ‘double’ parametriza-
tion with 0 ≤ θ < 2π. From Proposition 3.1 the geometry of κ : Ẽ → RP 2

is conveniently represented by means of the map ψ : [0, 2π) → R2 given by

ψ : θ 7→
(
4 sin θ, a cos θ(a2 cos2 θ − 4)

)
t

(3.6)

so that [ψ(θ)] = κ(ξ) for ξ ∈ Ẽ given by (3.5), and we write [ε] to denote the
element of RP 1 containing ε = (δ, ε) 6= (0, 0). The image of ψ in R2 will be
the main tool in our bifurcation analysis.

Definition 3.3 The bifurcation curve B in R2 is the image of the map ψ :
[0, 2π) → R2.

It is important to make clear that B itself is not part of any bifurcation
diagram for this problem; rather it is the geometry of B that determines the
bifurcation diagram as we explain in the remainder of this section.
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3.3 Geometry of the bifurcation curve B

As ξ(θ) traverses E the point ψ(θ) provides a smooth parametrization of B.
Replacing θ by 2π − θ reflects B in the ε-axis, while replacing θ by θ + π
mod 2π reflects B in the origin. Thus B exhibits 4-fold symmetry, being
setwise invariant under the action of the Klein 4-group generated by these
reflections or, equivalently, by reflections in both coordinate axes.

It is of course only the polar angle (mod π) of ψ(θ) ∈ B̃ that is signifi-
cant for describing κ, while the radial distance |ψ(θ)| is not relevant. This
representation of κ nevertheless allows us to take account in a continuous
way of the degeneracy at (x, y) = (2, 0) when a = 2. The subset B̃ ⊂ B that
corresponds to Ẽ consists of B with the points (±4, 0) excluded, and if a = 2
the origin excluded also.

3.4 Bifurcation analysis

The first observation is that since detP(r, θ) → ∞ as r → ∞ it follows that
P(ξ)s is uniformly bounded away from 0 ∈ R2 for s ∈ S1 and ξ outside
any neighbourhood of C ∪ E, and so from (1.5) we deduce that bifurcating
near-harmonic orbits must lie close to C ∪E. We state this more precisely.

Corollary 3.4 Given any neighbourhood W of C ∪ E in R2 and fixed de-
tuning k 6= 0 as in (3.1), then for sufficiently small (δ, ε) 6= (0, 0) every
2π
ω

-periodic orbit for the system (1.1) lies in W . 2

For ξ ∈ Ẽ and (δ, ε) ∈ R2 we have (δ, ε) ∈ kerP(ξ) precisely when the line
[(δ, ε)] intersects B̃ at ψ(θ) where ξ = ξ(θ). We next show that provided this
intersection is in general position (transverse) we can deduce the existence
of zeros of P(δ,ε) close to ξ.

As in Section 1.1.2 we write (δ, ε) = ρs where s ∈ S1 and ρ > 0.

Theorem 3.5 Suppose (0, 0) 6= (δ0, ε0) = ρ0s0 ∈ R2 and the line [(δ0, ε0)]
intersects B̃ transversely at the point ψ(θ0) where θ0 ∈ [0, 2π). Let ξ0 =
ξ(θ0) ∈ Ẽ and suppose ξ0 /∈ C. Let γ0 denote the harmonic orbit of ξ0 in R2.

Then for sufficiently small ρ > 0 and s sufficiently close to s0 the sys-
tem (1.1) has a 2π

ω
-periodic orbit close to γ0 , tending uniformly to γ0 in all

derivatives as ρ→ 0.

Proof. Consider the smooth map

G : R2 × S1 × R → R2
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given by
G(ξ, s, ρ) = Pρs(ξ) = ρP(ξ)s+O(ρ2)

as in (1.5) with P(ξ) given by (3.2). A solution (ξ, s, ρ) to G(ξ, s, ρ) = 0
with ρ > 0 corresponds to a T ′-periodic orbit of (1.1) through ξ ∈ R2 with
parameter values (δ, ε) = ρs. Since G(ξ, s, 0) vanishes identically we can
write

G(ξ, s, ρ) = ρH(ξ, s, ρ)

for a smooth map H : R2 × S1 × R → R2 that has the form

H(ξ, s, ρ) = P(ξ)s+O(ρ).

To obtain solutions to H(ξ, s, ρ) = 0 for small ρ we shall invoke the implicit
function theorem.

For ξ ∈ R2 and ε ∈ R2 let Ψ(ξ, ε) = P(ξ)ε. Thus ε ∈ kerP(ξ) if and
only if Ψ(ξ, ε) = 0 ∈ R2, and for s ∈ S1 ⊂ R2 we have Ψ(ξ, s) = H(ξ, s, 0).

Let L = L(ξ, ε) denote the partial derivative of Ψ with respect to ξ at
(ξ, ε).

Lemma 3.6 Let ε ∈ kerP(ξ) with ξ = ξ(θ) ∈ Ẽ. The linear map L : R2 →
R2 is invertible if and only if the line [ε] intersects B̃ transversely at ψ(θ).
This is equivalent to the condition

a
′(θ) · ε 6= 0 (3.7)

where a(θ) denotes the bottom row of P(ξ(θ)) for, the prime denotes d/dθ
and the dot denotes scalar product.

Proof. For ξ ∈ R2 use polar coordinates ξ = ξ(r, θ) and write

P(r, θ) ε =

(
v
w

)
.

Substituting r = r(θ) = a cos(θ) for ξ ∈ E we have ξ′(θ) = (r′(θ), 1)t and so

L

(
r′(θ)

1

)
=

(
v′(θ)
w′(θ)

)
=

(
0

w′(θ)

)
(3.8)

since E is defined by v = 0. Elementary linear algebra then shows that

detL =
∂v

∂r
w′(θ) (3.9)
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so, since ∂v
∂r

= cos θ 6= 0 for ξ ∈ Ẽ, the invertibility of L is equivalent to

w′(θ) = a
′(θ) · ε 6= 0

as claimed. To see that this characterises transversality of [ε] to B observe
that differentiation of the identity P(ξ(θ))ψ(θ) = 0 with respect to θ gives

Lξ′(θ)ψ(θ) + P(ξ)ψ′(θ) = 0. (3.10)

The transversality condition is that ψ′(θ) is not a scalar multiple of ψ(θ),
equivalent to P(ξ)ψ′(θ) 6= 0 and thus by (3.10) to

Lξ′(θ)ψ(θ) 6= 0

which is the condition (3.7) since ε is a nonzero scalar multiple of ψ(θ). 2

The proof of Theorem 3.5 now follows, since the IFT implies that if
s0 ∈ kerP(ξ0) then for s sufficiently close to s0 and all sufficiently small ρ
there is a smooth solution ξ = ξ(s, ρ) to H(ξ, s, ρ) = 0 with ξ(s0, 0) = ξ0.
We need consider only ρ > 0. The uniform convergence of the corresponding
periodic orbit to γ0 follows from standard smoothness properties of solutions
of differential equations. 2

Theorem 3.5 shows that if a ray R from the origin in R2 intersects the
curve B̃ transversely at one or more points, then each of these points corre-
sponds to a point on the circle E from which a near-harmonic periodic orbit
of (1.1) emanates as the parameter point (δ, ε) moves away from the origin
along R. However, as the direction of R varies the number of (transverse)
intersections of the ray R with B may also vary: typically it will change by 2
each time the ray passes through a nondegenerate (quadratic) tangency with
the curve. This is the basis for the following local bifurcation result as first
described by Hale and Taboas [20].

Proposition 3.7 Suppose the ray R1 has a nondegenerate tangency with the
curve B at the point ψ(θ1). Then there is a smooth arc Γ1 from the origin in
R2, tangent to R1 at the origin, such that pairs of fixed points of F(δ,ε) close

to ξ(θ1) ∈ Ẽ (that is, pairs of 2π
ω

-periodic orbits of (1.1)) are created by a
saddle-node bifurcation as (δ, ε) crosses Γ1 sufficiently close to the origin.

Proof. The statement clearly holds for solutions to H(ξ, s, 0) = 0, in
the notation of Theorem 3.5, with Γ1 = R1. The fact that this behaviour
persists for H(ξ, s, ρ) = 0 for small ρ > 0 is a consequence of the local per-
sistence (stability) of nondegenerate tangency. For details of this argument
see [20], [12] or [11]. 2
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Figure 3.1: The bifurcation curve B in the (δ, ε)-plane for various choices of
the (inverse) detuning parameter a, showing intersections of B with a ray
from the origin with polar angle α, and (inset) the corresponding points on
the circle E in the (x, y)-plane: these are fixed points of the time-T ′ map
F = F(δ,ε). The stability of the associated near-harmonic orbits depends on
the positions of the fixed points relative to the circles C,D and ellipse V
(see Section 3.5). In particular, solid circles • denote stable orbits, while
symbols +, ◦ denote those with one or both eigenvalues (respectively) of the
derivative of F lying outside the unit circle.
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In Figure 3.1 we show plots of the curve B for various choices of the pa-
rameter a (proportional to k−1 as in (3.4)), here chosen with a > 0, together
with certain choices of rays through the origin that intersect B transversely.
We also show the points on E associated to these intersections, that is the
corresponding points ξ ∈ R2 from which near-harmonic periodic orbits of
the perturbed system will bifurcate as in Theorem 3.5.

We now describe this behaviour more precisely in the following theorem
which is the main result of this paper for the single van der Pol system (1.1).

Denote by R(α) the ray R that makes an angle α (its polar angle) with
the positive δ-axis. As the figures suggest, rays R(α) are typically transverse
to or have nondegenerate tangency with B, although there is precisely one
value a = a2 at which rays R(α) with polar angles ±α2 and π±α2 have cubic
tangency with B.

In the ξ-plane let E+, E− denote the upper (y > 0) and lower (y <
0) semicircles of E respectively. In the (δ, ε)-plane, number the quadrants
anticlockwise in the usual way, starting with the first quadrant where δ, ε are
both positive.

Theorem 3.8 First suppose a > 0. There are three ranges of a in which
behaviour differs.

(1) 0 < a ≤ a2 = 4
√

2
3

∼ 1·89 (that is k ≥ k2 = 3π

4
√

2
ω2

0).

For a < a2 there is for each α precisely one intersection of R(α) with
B. It is transverse, and for α 6= 0, π (that is ε 6= 0) corresponding to a
T ′-periodic point ξ lying in E− or E+ according as α lies in an odd or even
quadrant, with ξ tending to the origin or (a, 0) as α tends to an even or odd
multiple of π

2
respectively. For a = a2 there is a cubic tangency of R(α2) with

B, where tan(α2) = ±4
√

2
3
√

3
∼ ±1·09.

(2) a2 < a < 2 (that is π
2ω2

0

= k1 < k < k2).

In each quadrant there are precisely two values α1(a), α̃1(a) of α for which
R(α) is tangent to B, the tangencies being nondegenerate. For α in the sector
S(a) between α1 and α̃1 the ray R(α) has three (transverse) intersections
with B, while for α outside the closure of S(a) there is only one. All the
corresponding T ′-periodic points ξ ∈ E lie in E− or E+ according as α lies
in an odd or even quadrant. These periodic points ξ are created or annihilated
in pairs at saddle-node (quadratic) bifurcations as α passes through α1 and
α̃1. As α tends to an even or odd multiple of π

2
(that is ε→ 0 or δ → 0) the

(single) corresponding ξ tends to the origin or to (a, 0) respectively.
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(3) a > 2 (that is 0 < k < k1).

For α 6= 0, π each ray R(α) has transverse intersection with B at a point
ψ(ξ0) with the corresponding T ′-periodic point ξ0 lying in E− or E+ according
as R(α) lies in an even or odd quadrant. The point ξ0 varies smoothly with
α and a, and ξ0 tends to (a, 0) as α→ ±π

2
.

Moreover, there is also a unique value α1(a) for which R(α1) has a non-
degenerate quadratic tangency with B. For R(α) lying between R(α1) and the
x-axis the ray R(α) has two further transverse intersections with B. These
correspond to T ′-periodic points ξ1, ξ2 in the opposite semicircle of E from
ξ0, created at a saddle-node bifurcation as α passes through α1 . One of ξ1 or
ξ2 tends to the origin as α → 0 or α→ π.

Note: when a = 2 the curve B passes through the origin and the analysis
there in terms of kerP(ξ) breaks down.

Finally, when a < 0 the descriptions are analogous, after reflecting the
circle E through the origin while reflecting the curve B in the δ-axis.

Proof. The condition that ψ(θ) and ψ′(θ) be linearly dependent, correspond-
ing to a tangency ofR(α) withB at ψ(θ), is easily verified from (3.5) and (3.6)
to be

2a2u2 − 3a2u+ 4 = 0 (3.11)

where u = cos2 θ. This is easily checked to be the same as the condition that
a
′(θ) · (δ, ε) = 0: compare (3.7). For 0 < a < a2 this equation has no real

solutions u. As a increases through a2 a pair of solutions is created at u = 3
4

(corresponding to θ = π± π
6
): one of these solutions increases through u = 1

(that is θ = π) as a increases through 2, and the other solution remains in
the interval (0, 3

4
) for all a. Reinterpreting these statements in terms of θ

gives the results as described. 2

In the (a, α)-parameter space this behaviour is organised by a cusp bifur-
cation at (a2, α2) as shown in Figure 3.2.

Using the structural stability of cusp (codimension 2) bifurcations and
Proposition 3.7 we can describe the bifurcation behaviour for (1.1) for (δ, ε)
close to the origin as |a| passes through a2.

Corollary 3.9 For each |a| > 2 there is in each quadrant of the (δ, ε) param-
eter plane a unique smooth arc Γ0(a) from the origin such that a saddle-node
bifurcation of periodic orbits with angular frequency ω close to ω0 occurs as
(δ, ε) crosses Γ0(a) sufficiently close to the origin. For a2 < |a| < 2 there are

two such arcs Γ0(a), Γ̃0(a) which approach each other and mutually annihilate
as |a| decreases through a2. 2
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α

α

Figure 3.2: Bifurcation diagram in the limit as ρ → 0 for the system (1.1)
with detuning k as in (3.1). Here a = π(kω2

0)
−1 and (δ, ε) = ρ(cosα, sinα).

The curve corresponds to saddle-node bifurcations of 2π
ω

-periodic orbits, with
cusp bifurcation points at (a2,±α2). Small circles indicate the parameter
values corresponding to the diagrams in Figure 3.1.
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3.5 Stability

The preceding bifurcation analysis considered only the existence of near-
harmonic periodic orbits and not their stability. A periodic orbit of Sε cor-
responding to a fixed point ξ of Fε is linearly asymptotically stable precisely
when the eigenvalues of DFε(ξ) lie inside the unit circle. If ε = ρs for
s ∈ S1, ρ > 0 as before we have

DFε(ξ) = I + ρL+O(ρ2)

with I the identity and L ∈ L(2, 2) as in the proof of Lemma 3.6. The
eigenvalues of DFε(ξ) thus have the form 1 + ρλ+O(ρ2) for λ an eigenvalue
of L. It follows that, for ρ sufficiently small, an eigenvalue of DFε(ξ) lies
inside the unit circle if and only if the corresponding eigenvalue of L has
negative real part, which we can determine from the trace and determinant
of L.

To evaluate the trace and determinant we must use the same coordinates
in domain and range, while we recall that the matrix P(ξ) is defined using the
basis B(ξ) in the range. Therefore we need first to rotate and re-scale B(ξ)
back to the standard basis, that is to multiply P(ξ) on the left by the matrix

ω0

(
y x
−x y

)
, after which we easily find that for arbitrary s = (d, e) ∈ S1

and ξ ∈ R2

traceL = π
ω0

d(2 − r2).

We also find

detL = π2

16ω2

0

(
d2(4 − r2)(4 − 3r2) + 16e2a−2

)

which for ξ = (x, y) ∈ E and s ∈ kerP(ξ) becomes

detL = π2

ω2

0

(r2 − 4)(x2 + 3y2 − 4)

after using (3.5),(3.6). From this we see that the real parts of both eigenvalues
of L are negative if and only if ξ = (x, y) /∈ U and d has the same sign as
r2 − 2. Therefore we arrive at the following characterisation of stability.

Proposition 3.10 Let ε = (δ, ε) = ρs ∈ R2 and assume that the line [ε]
intersects the bifurcation curve B transversely at a point ψ(θ0) ∈ B̃. Then for
ρ > 0 sufficiently small, the near-harmonic periodic orbit for Sε bifurcating
from the harmonic orbit γ0 of ξ0 = ξ(θ0) is linearly asymptotically stable
if and only if ξ0 lies outside the region U and outside or inside the circle
D = {ξ : |ξ| =

√
2} according as δ > 0 or δ < 0. 2
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For example, in Figure 3.1 for (a, α) = (1.8, 0.6) there are no linearly asymp-
totically stable bifurcating periodic orbits: here δ > 0 and the only bifurcat-
ing periodic point ξ ∈ E lies outside the region U but inside the circle D.
With α replaced by α + π, however, the location of ξ is unchanged but the
bifurcating periodic orbit becomes stable. Likewise for the other three cases
shown: it is only the periodic point ξ not in U and lying outside D that is
stable. The existence and stabilities of these periodic orbits may be easily
verified using the package DEtools in Maple, for example.

Thus we see that the ‘double’ parametrization of the circle E, while tech-
nically redundant as far as existence of T ′-periodic orbits is concerned, nev-
ertheless plays a role in their stability analysis.

This concludes the bifurcation analysis for near-harmonic periodic orbits
for a single forced van der Pol system with detuning, based on the study of
the kernel of the bifurcation matrix and the geometry of its movement as
parameters are varied. We now turn to apply this technique to the more
complicated case of a coupled pair of systems of the same van der Pol type.

4 A coupled pair of forced van der Pol equa-

tions

In this section we study a system of equations of the form

u̇1 = v1

v̇1 = −u1 − c1u2 + h1

u̇2 = v2

v̇2 = −c2u1 − u2 + h2

(4.1)

where the coupling terms c1, c2 are positive constants with c1c2 < 1 to ensure
that the unperturbed linear system (with h1 = h2 = 0) has purely imaginary
eigenvalues. The terms h1, h2 are as yet unspecified but considered to be
smooth functions of t with small amplitude. We first set up the machinery
to calculate the 4 × 4 bifurcation matrix for the general system (4.1) and
then specialise to the case of two van der Pol systems.

We do not attempt a full description of the bifurcation of near-harmonic
periodic orbits, but describe the details of the geometric framework in R4

analogous to the 2-dimensional characterisations for a single system illus-
trated in Figure 3.1 and obtain some intermediate results. In the regime that
will be of interest to us the kernel of the bifurcation matrix is 2-dimensional
while (u1, v1, u2, v2) lies on a certain torus in R4. This torus is the analog of
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the circle E in Section 3, and so the bifurcation of near-harmonic periodic
orbits is now described in terms of a 2-parameter family of 2-planes through
the origin in 4-space. After stereographic projection this can be interpreted
as a line congruence in R3.

4.1 Constructing the bifurcation matrix

We begin by applying a linear transformation




u1

v1

u2

v2


 =




1 0 1 0
0 ω1 0 ω2

d 0 −d 0
0 ω1d 0 −ω2d







y1

z1
y2

z2


 (4.2)

to put the system (4.1) into the slightly more amenable form

ẏ1 = ω1z1 (4.3)

ż1 = −ω1y1 +
1

2ω1
(h1 + ch2) (4.4)

ẏ2 = ω2z2 (4.5)

ż2 = −ω2y2 +
1

2ω2
(h1 − ch2). (4.6)

Here
1 − ω2

2 =
√
c1c2 = ω2

1 − 1 (4.7)

and c = d−1 = ±
√

c1
c2

, while the terms h1, h2 are now understood to be

expressed in terms of the new coordinates. We suppose moreover that ω1, ω2

are rationally related, so that nω1 = mω2 for integers n,m and therefore all
orbits of the linear system are periodic.

Now suppose that hi (i = 1, 2) in (4.4),(4.6) depend smoothly on a single
parameter ε ∈ R and vanish when ε = 0, so that

hi = εgi +O(ε2)

for smooth functions gi and i = 1, 2. Applying the general theory outlined
above in Section 1.1.1 and again following Chicone [8, 9, 10] we have associ-
ated to ε a bifurcation map

P ′ = (N1,N2,M1,M2)
t : V → R4 (4.8)
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where

N1 =

∫ T

0

−y1

2‖f1‖2
(g1 + cg2)dt (4.9)

N2 =

∫ T

0

−y2

2‖f2‖2
(g1 − cg2)dt (4.10)

M1 =

∫ T

0

z1
2‖f1‖2

(g1 + cg2)dt (4.11)

M2 =

∫ T

0

z2
2‖f2‖2

(g1 − cg2)dt. (4.12)

Here T = 2mπ/ω1 = 2nπ/ω2, and the integrals are taken along a T -periodic
(harmonic) solution curve γ for the unperturbed system (ε = 0). The solution
for γ is given explicitly by

(yi(t), zi(t))
t = (ri cos(ωit+ θi), ri sin(ωit+ θi))

t, i = 1, 2.

4.2 The van der Pol case

We now specialise to the particular choices of h1, h2 that correspond to van
der Pol systems, namely

hi = δivi(1 − u2
i ) + εi cos(ω̃it) (4.13)

for i = 1, 2. Here the forcing angular frequency ω̃i is close to ωi, so that as
in (3.1)

2π

ω̃i

=
2π

ωi

+ κiεi +O(ε2
i ) (4.14)

with κi the detuning parameter for i = 1, 2, and we seek periodic solutions
of period T ′ = 2mπ/ω̃1 = 2nπ/ω̃2.

To construct the bifurcation matrix as in Section 1.1.2 it is necessary to
evaluate the four integrals (4.9)–(4.12) for each of the four cases correspond-
ing to the components of ε = (δ1, δ2, ε1, ε2) in turn. The results are set out
below. Additional terms appear if ω1 = ω2 (already excluded by (4.7)) or
3ω1 = ω2 (likewise) or ω1 = 3ω2, and so for simplicity we exclude this latter
resonant case.

Case 1: parameter δ1

g1 = v1(1 − u2
1) = (ω1z1 + ω2z2)

(
1 − (y1 + y2)

2
)

g2 = 0

}
.
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Here we find N1 = N2 = 0 while

Mi =
T

16ωi

(p + r2
i ) (4.15)

for i = 1, 2 , where p = 4 − 2(r2
1 + r2

2).

Case 2: parameter δ2

g1 = 0

g2 = v2(1 − u2
2) = d(ω1z1 − ω2z2)

(
1 − d2(y1 − y2)

2
)
}
.

Again N1 = N2 = 0 and now

Mi =
T

16ωi

(q + d2r2
i ) (4.16)

for i = 1, 2 , where q = 4 − 2d2(r2
1 + r2

2).

Case 3: parameter ε1

g1 = cos ω̃1t, g2 = 0.

Here using Proposition 2.2 we find

N1 = − T

4ω2
1r1

cos θ1 +mκ1, M1 =
T

4ω2
1r1

sin θ1 (4.17)

while N2 = M2 = 0.

Case 4: parameter ε2

g1 = 0, g2 = cos ω̃2t.

Here

N2 =
cT

4ω2
2r2

cos θ2 + nκ2, M2 = − cT

4ω2
2r2

sin θ2 (4.18)

while N1 = M1 = 0.

The above calculations provide the four columns of the 4 × 4 bifurcation
matrix corresponding to the parameters δ1,δ2,ε1,ε2 in turn. Assembling the
matrix we thus obtain

P(ξ) =
T

16




0 0 −a1 cos θ1 + d1 0
0 0 0 a2c cos θ2 + d2

ω−1
1 (p+ r2

1) ω−1
1 (q + d2r2

1) a1 sin θ1 0
ω−1

2 (p+ r2
2) ω−1

2 (q + d2r2
2) 0 −a2c sin θ2




(4.19)
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where
ξ = (r1 cos θ1, r1 sin θ1, r2 cos θ2, r2 sin θ2) (4.20)

and where ai = 4r−1
i ω−2

i , ri 6= 0 and di = 8
π
ωiκi for i = 1, 2. Note that here

a1, a2 are analogs of the inverse-detuning parameter a in Section 3, not to be
confused with the specific parameter value a2 in Proposition 3.8.

Following Proposition 1.3 we seek the kernel of the matrix P(ξ). First,
we find

detP(ξ) = K∆(−a1 cos θ1 + d1)(a2c cos θ2 + d2) (4.21)

where ∆ = (1 − d2)(r2
1 − r2

2) and K is a positive constant.

Write

pi = (p+ r2
i ) and qi = (q + d2r2

i ) for i = 1, 2,

and let

b1 = −a1 cos θ1 + d1 (4.22)

b2 = a2c cos θ2 + d2. (4.23)

The following facts are easily verified:

Proposition 4.1

(1) If b1 = 0 and b2∆ 6= 0 then P(ξ) has rank 3 and kerP(ξ) is spanned by
the vector

µ1(ξ) := (q2a1 sin θ1,−p2a1 sin θ1,−4ω−1
1 ∆, 0)t.

(2) If b2 = 0 and b1∆ 6= 0 then P(ξ) has rank 3 and kerP(ξ) is spanned by
the vector

µ2(ξ) := (−cq1a2 sin θ2, cp1a2 sin θ2, 0, 4ω
−1
2 ∆)t.

(3) If b1b2 6= 0 and ∆ = 0 then P(ξ) has rank 3 and kerP(ξ) is spanned by
the vector

ν(ξ) := (q1,−p1, 0, 0)t.

(4) If b1 = b2 = 0 and ∆ 6= 0 then P(ξ) has rank 2 and kerP(ξ) is spanned
by the vectors {µ1(ξ),µ2(ξ)}.

2
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Denote the subsets of R4 on which the conditions (1)–(4) hold byN1,N2,N3,N4

respectively. In case (1) the vector µ1(ξ) is independent of θ2 and so the ker-
nel map

κ : N1 → RP 3 : ξ → kerP(ξ)

is degenerate; likewise for the map κ : N2 → RP 3. In case (3) the vector ν(ξ)
depends on neither θ1 nor θ2 and so κ has even greater degeneracy. However,
in case (4), where dim kerP(ξ) = 2, we have a more amenable situation, as
we shall next show.

4.3 The first order bifurcation problem

In order to build a framework for describing the configuration of solutions
to Pε = 0 (corresponding to near-harmonic periodic solutions of (4.1)) anal-
ogous to the circle E and curve B for the single system (1.1) but now in
higher dimensions, we introduce the following terminology:

M : = {(ξ, ε) ∈ R4 × R4 : Pε(ξ) = 0} ,
ML : = {(ξ, ε) ∈ R4 × R4 : P(ξ)ε = 0}.

Thus M is the locus of solutions that we seek (at least for |ε| small), whileML

is the locus of solutions for the simpler system obtained when terms of order
greater than 1 in the parameters are ignored. We call this latter problem
the first order bifurcation problem, and regard ML as a close approximation
to M for small values of |ε|. We discuss below the extent to which this is
justified.

Let
pr : R4 ×R4 → R4

denote projection to the second (that is, the ε) factor. The overall bifurcation
behaviour of the displacement map Pε is determined by the geometry of the
projection pr|M : M → R4, since if ε ∈ R4 then M ∩pr−1(ε) is by definition
the set of points (ξ, ε) such that ξ satisfies Pε(ξ) = 0 for the given ε, and as
ε varies the structure of M ∩ pr−1(ε) may change. An analogous statement
applies to pr|ML and the solutions to P(ξ)ε = 0.

If (ξ0, ε0) ∈M is such that ξ0 is a regular point of Pε0
then, by the IFT, the

solution locus M is locally a smooth 4-manifold in a neighbourhood of (ξ0, ε0)
and such that the projection pr|M : M → R4 is a local diffeomorphism at
(ξ0, ε0). Specifically, for all ε sufficiently close to ε0 there is a unique ξ = ξ(ε)
close to ξ0 and varying smoothly with ε such that Pε(ξ) = 0. Consequently
bifurcation can occur only where ξ is not a regular point of Pε, in which
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case either M fails locally to be a smooth 4-manifold or M is a 4-manifold
but (ξ, ε) is a singular point of the projection pr|M : M → R4. Analogous
statements apply to ML with the map ξ 7→ P(ξ)ε in place of Pε. We write

Ξ : = {(ξ, ε) ∈M : ξ is a singular point of Pε}
ΞL : = {(ξ, ε) ∈ML : ξ is a singular point of ξ 7→ P(ξ)ε}.

Definition 4.2 The bifurcation set Γ or ΓL for the nonlinear problem or for
the first-order problem respectively is the subset Γ = pr(Ξ) or ΓL = pr(ΞL)
of the parameter space R4.

Our strategy in the bifurcation analysis, which mimics that of Section 3, is
to characterise those features of the singularity geometry of the map

pr|ML : ML → R4

that are robust, i.e. persist under sufficiently small perturbations, and then
deduce that those features will also be present in the projection

pr|M : M → R4

for ε sufficiently close to the origin in parameter space R4. This will justify
our view of ML as an accurate model forM when parameter values are small.
In order to make these ideas precise we shall use results from singularity
theory.

The degeneracies in cases (1)–(3) of Proposition 4.1 imply that we cannot
expect robustness in the structure of the projection ML → R4 near points
(ξ, ε) where ξ ∈ N1 ∪ N2 ∪ N3. In the remainder of the paper we therefore
deal only with case (4) where ξ ∈ N = N4 .

4.3.1 Structure of the singularities when ξ ∈ N

In the phase space R4 = R2 × R2 the manifold N is the torus given by

(d1, d2) = (a1 cos θ1,−a2c cos θ2),

that is in polar coordinates

ξ = (r1 cos θ1, r1 sin θ1, r2 cos θ2, r2 sin θ2) (4.24)

where
(r1, r2) = (2t1 cos θ1,−2t2 cos θ2) (4.25)
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with r1r2 6= 0, r2
1 6= r2

2 and

4ti = πω−3
i κ−1

i χi (4.26)

for χ1 = 1 and χ2 = c. We allow ri < 0 when π
2
< θi <

3π
2

mod 2π. This
torus is the analog of the circle E ⊂ R2 in the case of the single van der Pol
system in Section 3.

From Proposition 4.1 we have an explicit parametrization of the 4-dimensional
solution locus

NL := ML ∩ (N × R4),

namely

Φ : (θ1, θ2, x, y) 7→
(
ξ(θ1, θ2), xµ1(θ1, θ2) + yµ2(θ1, θ2)

)
(4.27)

where ξ(θ1, θ2) is as in (4.24) with (r1, r2) given by (4.25), and with µ1,µ2

expressed in terms of (θ1, θ2) also using (4.25). Since for all λ ∈ R we have

P(ξ)λε = λP(ξ)ε, (4.28)

in order to find the singular set ΞL for the projection NL → R4 it will suffice
to restrict ε ∈ R4 to |ε| = 1 and then extend radially in parameter space.
For this purpose for any ρ > 0 denote

Mρ : = M ∩ (R4 × ρS3) ,

ML
ρ : = ML ∩ (R4 × ρS3)

where S3 ⊂ R4 is the unit 3-sphere. We focus attention on ML
1 and in

particular on
NL

1 := NL ∩ML
1 .

The projection ofNL into parameter space R4 can be viewed as a 2-parameter
family A of 2-planes through the origin in R4, these being the 2-dimensional
kernels of P(ξ) with ξ = ξ(θ1, θ2) ∈ N . The projection of NL

1 into S3 can
likewise be seen as a 2-parameter family A∩S3 of great circles, and by (4.28)
the family A has the structure of a cone from the origin to A∩S3. However,
in order to visualise A, rather than work in S3 we instead project A ∩ S3

radially to A ∩ Π for a fixed affine 3-space Π not through the origin in R4:
then A∩Π is a 2-parameter family of lines in Π, also called a line congruence
in Π. This line congruence structure provides an effective way to grasp the
local geometry of the bifurcation set ΓL.

Conveniently, the local geometry of line congruences has been studied
and classified using methods of singularity theory by Izumiya et al. [22].
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In that paper the authors show that the singularities that arise in generic
line congruences are the same as those that arise in generic smooth maps
R3 → R3, namely folds, cusps and swallowtail points. These are also stable
singularities: their local structure persists (up to smooth coordinate change
in source and target) under sufficiently small smooth perturbations.

In view of these results, together with the fact that radial projection
from the origin is a diffeomorphism from a hemisphere of S3 to Π, we expect
ΞL

1 := ΞL ∩ NL
1 to consist of fold surfaces, possibly with curves of cusp

points and isolated swallowtail points, their configuration determining the
bifurcation structure for the first order bifurcation problem P(ξ)ε = 0 with
|ε| = 1. To confirm whether this is the case in the current setting it would
be necessary to verify when the genericity assumptions used in [22] hold
also in our context of coupled van der Pol systems. We do not attempt
this here, but instead provide algebraic and geometric criteria that explicitly
characterise fold, cusps and swallowtail points in this context. Moreover, we
give numerical illustrations confirming that all these do in fact occur.

4.3.2 The singular set ΞL
1

For convenience we choose Π to be the hyperplane given by ε1 = 1 in R4.
(This choice excludes points of ΞL lying in the hyperplane ε1 = 0 of course.)
Accordingly we replace µ1,µ2 by scalar multiples of themselves that have first
component equal to 1, and then focus on the remaining three components.
Explicitly, assuming sin θ1, sin θ2 6= 0 and writing

µ1 = q2a1 sin θ1 (1,ν1), µ2 = −cq1a2 sin θ2 (1,ν2)

with ν1,ν2 ∈ R3, we replace Φ in (4.27) by the reduced map

Φ̃ : (θ1, θ2, x) 7→
(
ξ(θ1, θ2), xν1(θ1, θ2) + (1 − x)ν2(θ1, θ2)

)

that parametrises the 3-manifold NL
Π := ML ∩ (N × Π). In order to study

the singularities of the projection NL
Π → Π, and so by radial extension the

singularity set ΞL, we are thus led to study the singularities of the map

G : U × R → R3 : (θ1, θ2, x) 7→ xν1(θ1, θ2) + (1 − x)ν2(θ1, θ2)

where U =
{
(θ1, θ2) ∈ R2 : ξ(θ1, θ2) ∈ N, θ1, θ2 /∈ {0, π}

}
.

The Jacobian matrix of G has the form of three columns

DG(θ1, θ2, x) =
(
x∂1ν1 + (1 − x)∂1ν2 , x∂2ν1 + (1 − x)∂2ν2 , ν1 − ν2

)

where ∂i denotes ∂/∂θi for i = 1, 2, and we see that its determinant is a
quadratic expression Q(x) in x with coefficients smooth functions of (θ1, θ2).
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Proposition 4.3 For (θ1, θ2) belonging to an open dense subset Ũ ⊂ U the
quadratic equation Q(x) = 0 has distinct real solutions x = xi(θ1, θ2), i = 1, 2.

Proof. See Appendix. 2

Therefore, since the distinct roots of a quadratic polynomial vary smoothly
with the coefficients, the singular set

Σ̃G := {(θ1, θ2, x) ∈ Ũ : detDG(θ1, θ2, x) = 0}
ofG|Ũ has two connected components (smooth 2-manifolds) Σ̃1

G, Σ̃
2
G parametrised

by (θ1, θ2) 7→ (θ1, θ2, xi(θ1, θ2)) for i = 1, 2.

4.3.3 Characterisation of fold points

The condition for a point of σ ∈ Σ̃G to exhibit a fold singularity is that
DG(σ) have rank 2 (therefore kernel dimension 1) and that the kernel of

DG(σ) be transverse to Σ̃G at that point: see [1],[17],[18]. The rank condition
is equivalent to the condition that σ be a regular zero of detDG, that is
grad detDG(σ) 6= 0, and the transversality condition then is that h(σ) 6= 0
where h(σ) is the scalar product

h(σ) := w(σ) · grad detDG(σ) (4.29)

and kerDG(σ) = span{w(σ)}.
Writing

detDG(θ1, θ2, x) = q (x− x1)(x− x2) (4.30)

with q, x1, x2 functions of θ1, θ2 , an elementary calculation shows that where
σ = (θ1, θ2, x1) we have

grad detDG(σ) = q (x2 − x1)(∂1x1, ∂2x1,−1) (4.31)

and similarly for x2. Moreover, a candidate for w(σ) is given by any nonzero
column a(σ) of the adjugate matrix adjDG(σ). Therefore without loss of

generality the function h in (4.29) may be replaced on Σ̃i
G by hi given by

hi(σ) := a(σ) · (∂1xi, ∂2xi,−1).

We thus arrive at the following criterion for fold points:

Proposition 4.4 The singular point σ ∈ Σ̃i
G , i = 1, 2 is a fold point if and

only if hi(σ) 6= 0.

Remark. The adjugate of a 3× 3 matrix of rank 2 itself has rank 1, so that
each column is a scalar multiple of the same nonzero column. Therefore in
selecting a candidate for kerDG(σ) as above it is important to ensure that
this scalar factor (a real-valued function of (θ1, θ2)) is nonzero at σ.
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4.3.4 Further degeneracy

Generically we expect the locus hi = 0 (where Proposition 4.4 fails) to be a

smooth 1-manifold Σ̃i1
G in Σ̃i

G, for which the image under G is a cusp ridge
in Π, with possible isolated swallowtail points. The latter more degenerate
points occur where kerDG(σ), which for σ ∈ Σ̃i1

G is by definition tangent to

Σ̃i
G since hi = 0, is also (quadratically) tangent to Σ̃i1

G (see [1],[17],[18]). In
Figure 4.1 we give a numerical illustration with the help of MAPLE showing
part of a cusp ridge in the bifurcation set G(Σ̃1

G) ⊂ ΓL ∩ Π in Π. In Fig-

ure 4.2(a) we show the curve Σ̃11
G in Σ̃1

G (parametrised by (θ1, θ2)) together

with the direction of kerDG(σ) at three points σ on Σ̃11
G , while Figure 4.2(b)

shows the corresponding cusp ridge and swallowtail structure in the bifurca-
tion set ΓL ∩ Π.

2

ε1

ε2

δ

Figure 4.1: Part of a cusp ridge in the bifurcation set ΓL ∩Π. The surface is
more highly compressed than the figure suggests, lying close to the plane ε2 =
0.8 δ2. Numerical parameter values are c = 2/3 and ω2 = ηω1 with η = 2/5
and such that ω2

1 + ω2
2 = 2 (so ω1 = 1.1, ω2 = 0.88 approx.), corresponding

to (c1, c2) ∼ (0.14, 0.31). Detuning parameters are κ1 = 1, κ2 = 2.
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θ2

θ1

Figure 4.2: (a) A curve of cusp singular points for the map G, with an
isolated swallowtail singular point where the kernel of DG is tangent to
the cusp curve. (b) The corresponding swallowtail point in the plane Π at
(approximately) ε = (1, 2.94,−0.15, 2.40) in parameter space, showing the
coalescence of two cusp ridges and (behind) the transverse intersection of two
sheets of the fold surface. Parameter values as for Figure 4.1.

4.4 The full nonlinear problem

Recall that with the notation of Section 1.1.2

Pε(ξ) = ρP(ξ)s+O(ρ2) = ρ
(
P(ξ)s+O(ρ)

)

for ε = ρs with s ∈ S3. Solutions to Pε(ξ) = 0 with ε 6= 0 and |ε| small thus
arise from the set ML

1 of solutions to the first order problem P(ξ)s = 0 after
applying a perturbation of O(ρ) followed by rescaling by the factor ρ.

We have seen above that for every ξ in the open dense subset Ñ ⊂ N ,
where

Ñ := {ξ(θ1, θ2) : (θ1, θ2) ∈ Ũ}
with Ũ as in Proposition 4.3, there are two lines L1(ξ), L2(ξ) through the
origin in R4 such that

{ξ} ×
(
L1(ξ) ∪ L2(ξ)

)

consists of singular points of the projection NL → R4, and the part of the
singular set ΞL that corresponds to Ñ is precisely the union of these lines
as ξ runs through Ñ . Each line Li(ξ) intersects the unit sphere S3 in an
antipodal pair of points ℓ±i (ξ) which (when ε1 6= 0) are the radial projections
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from Π of the point G
(
θ1, θ2, xi(θ1, θ2)

)
. The points {ξ} × {ℓ±i } are singular

points of the projection NL
1 → S3.

At these points the projection NL
1 → S3 typically exhibits a fold singu-

larity, so that locally there is a smooth 2-dimensional fold surface KL
1 in S3

such that the number of solutions ξ ∈ N to the first-order problem P(ξ)ε = 0
changes by two as ε crosses KL

1 . The stability of fold singularities under C∞

perturbations implies that for sufficiently small ρ > 0 the same holds for the
nonlinear problem Pε(ξ) = 0 with |ε| = ρ. To be precise, let us write

Ñρ := M ∩ (Ñ × ρS3), ÑL
ρ := ML ∩ (Ñ × ρS3).

Then the projection pr : ρ−1Ñρ → S3 has a corresponding fold obtained from
that of pr : ρ−1ÑL

ρ = ÑL
1 → S3 by a local C∞ diffeomorphism close to the

identity and tending to the identity as ρ → 0. (Here the rescaling ρ−1 is
understood to apply in the second (that is ε) component only.) Hence for

sufficiently small ρ > 0 the projection Ñρ → ρS3 itself exhibits a fold with
fold surface Kρ ⊂ ρS3, so that the number of solutions ξ ∈ N to Pε(ξ) = 0
changes by two as ε crosses Kρ in ρS3. The local fold bifurcation set for
the first order problem is a cone KL from the origin in R4 to the local fold
surface KL

1 in S3, and so this corresponds to a ‘curved’ cone structure for the
bifurcation set for the nonlinear problem: the ‘curved’ cone K is obtained
from KL by applying a diffeomorphism1 at the origin in R4 with derivative
the identity.

Fold surfaces for NL
1 → S3 meet in cusp ridges, corresponding to points

ξ ∈ N that are regular zeros of the function hi(ξ, xi(ξ)) for i = 1 or 2. As
above, these give rise to cones on cusp ridges for the bifurcation set of the first
order problem, and ‘curved’ cones on cusp ridges for the nonlinear problem
with ρ > 0 sufficiently small. Likewise, isolated swallowtail points for NL

1 →
S3 correspond to C∞ arcs through the origin (C1 at the origin) of swallowtail
bifurcation points for the nonlinear problem. For sufficiently small ρ > 0
the overall configuration of curved cones on fold surfaces, cusp ridges and
swallowtail points constitutes the bifurcation set Γ for the nonlinear problem
Pε(ξ) = 0.

We have not verified explicitly that the functions hi : Σ̃G → R, i = 1, 2 do
satisfy the generic conditions needed to ensure the C∞ stability of the cusp
ridges and swallowtail points of the projection ÑL

1 → S3, or (equivalently)
that the line congruence A ∩ Π satisfies the generic conditions in [22]. Nev-
ertheless, numerical evidence indicates (as would be expected) that at least

1This diffeomorphism is C
∞ away from the origin, but may be only C

1 at the origin
itself.
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for an open dense set of coefficients c1, c2 in (4.1) and detuning parameters
κ1, κ2 in (4.14) this is indeed the case.

4.5 Interpretation of the bifurcation geometry

We conclude by recalling how the bifurcation geometry described above re-
lates to the original problem of persistence of periodic solutions of period
close to T for a pair of coupled van der Pol oscillators (4.1). Recall that here
T = m2π

ω1

= n2π
ω2

and for simplicity (see Section 4.1) we assume m 6= 3n.

As ε = (δ1, δ2, ε1, ε2) traces out a smooth path close to (but not passing
through) the origin in parameter space R4 there exists a corresponding fi-
nite set of solutions ξ to the equation Pε(ξ) = 0 close to the 2-dimensional

manifold Ñ (an open dense subset of a torus) in phase space R4. These
are fixed points of the map Fε, and correspond to T ′-periodic solutions (T ′

close to T ) with initial data ξ of the non-autonomous perturbed coupled van
der Pol system (4.1). A typical path in R4 will intersect the bifurcation set
Γ (‘curved’ cone) transversely at discrete points ε which correspond to the
creation or annihilation of pairs of periodic orbits in saddle-node (fold) bi-

furcations. For any given ξ ∈ Ñ there exists ρ0 > 0 such that there exist two
C1 curves γ1(ξ), γ2(ξ) through the origin in parameter space R4, tangent at
the origin to the lines {L1(ξ), L2(ξ)} as described in Section 4.3, such that
a saddle-node bifurcation occurs close to ξ in phase space R4 whenever ε

passes through γ1(ξ) or γ2(ξ) and |ε| < ρ0. The point in phase space at
which the bifurcation occurs tends to ξ as ρ→ 0.

Paths in bifurcation space R4 will typically avoid the 2-dimensional curved
cones on cusp ridges and any isolated swallowtail arcs, but 2-parameter fami-
lies in R4 close to the origin will typically encounter isolated parameter values
corresponding to cusp bifurcations of T ′-periodic orbits, while 3-parameter
families will typically encounter swallowtails. Note that a swallowtail bifur-
cation point lies on a C1 curve of swallowtail points through the origin in
parameter space, and corresponds to a point ξ ∈ Ñ from which four T ′-
periodic orbits may simultaneously bifurcate.

Remark. A path ε(τ) in R4 with ε(τ) → 0 ∈ R4 as τ → τ0 need not
correspond to a path of solutions ξ(τ) to Pε(ξ) = 0 approaching a point (ξ, 0)
in the solution locus M . For this to be the case we require ε(τ)/|ε(τ)| to tend
to a limit in S3 as τ → τ0. See [20] for further discussion of this important
point.

In this analysis we have not discussed stability of bifurcating periodic or-
bits. An argument similar to that of Section 3.5 for a single oscillator shows
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that stability is determined by the eigenvalues of the matrix L(ξ, ε) as in the
Appendix below. We have also not attempted here to give a complete de-
scription of the global bifurcation behaviour in terms of the full 4-dimensional
geometry and the structure of the associated line congruence of singularities.
The remainder of this task as well as the stability analysis is left to the
enthusiastic reader.

5 Appendix: specific calculations

In this Appendix we look more closely at the structure of the singular set of
the projection pr|NL : NL → R4. With the parametrization Φ from (4.27)
the singular set of pr|NL corresponds to that of the map R4 → R4 given by

(θ1, θ2, x, y) 7→ xµ1(θ1, θ2) + yµ2(θ1, θ2).

We have seen in Section 4.3 that the IFT implies that this projection map can
be singular only where (for given ε ∈ R4) the map Ψ : R4 → R4 : ξ 7→ P(ξ)ε
is singular. Let us denote the derivative of Ψ at (ξ, ε) by L = L(ξ, ε).

Recall that for ξ ∈ N the first two rows of the matrix P(ξ) are identically
zero, and so the kernel of P(ξ) is the kernel of the 2×4 matrix A(ξ) of rank 2,
where

A(ξ) =

(
ω−1

1 p1 ω−1
1 q1 a1 sin θ1 0

ω−1
2 p2 ω−1

2 q2 0 −a2c sin θ2

)
. (5.1)

This enables us to simplify the description of L.

Lemma 5.1 Let ξ ∈ N and ε ∈ R4 such that ε ∈ kerP(ξ). The linear map
L : R4 → R4 is singular if and only if detQ(ξ, ε) = 0 where

Q(ξ, ε) =

(
q11(ξ, ε) q12(ξ, ε)
q21(ξ, ε) q22(ξ, ε)

)

with qij(ξ, ε) = ε
t∂ai/∂θj in which a

t

i is the ith row of the matrix A(ξ) for
i = 1, 2, and where ξ ∈ N is parametrised as ξ(θ1, θ2) using (4.24) and (4.25).

Proof. This proceeds by analogy with the proof of Lemma 3.6. Writing

P(ξ) ε =

(
v

w

)

with v,w ∈ R2 and using polar coordinates (r1, r2, θ1, θ2) in the domain of
L we have

L =

(
vr vθ

wr wθ

)
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where vr denotes the 2× 2 matrix with columns ∂v

∂r1

, ∂v

∂r2

and so on. Then by
analogy with (3.8) at points of N

L

(
r
′(θ)
I

)
=

(
v
′(θ)

w
′(θ)

)
=

(
0

w
′(θ)

)
(5.2)

since v = 0 identically on N . Here r
′(θ) denotes the 2×2 Jacobian matrix of

r = (r1, r2) with respect to θ = (θ1, θ2) where N is parametrised by r = r(θ)
as in (4.25), while v

′(θ),w′(θ) are the Jacobian matrices of v,w with respect
to (θ1, θ2) after the substitutions (4.25), and I is the 2×2 identity matrix. It
is easy to check that vr is invertible, and then applying the invertible 4 × 4
matrix

J :=

(
I 0

−wrv
−1
r I

)

to both sides of (5.2) gives
(

vr vθ

0 wθ − wrv
−1
r vθ

) (
r
′(θ)
I

)
=

(
0

w
′(θ)

)
(5.3)

from which since det J = 1 it follows that

detL = det JL (5.4)

= det vr det(wθ − wrv
−1
r vθ) (5.5)

= det vr det w
′(θ). (5.6)

Therefore L is invertible if and only if w
′(θ) is invertible. However, w

′(θ) is
precisely the matrix Q(ξ, ε) as in the statement of the Lemma. 2

After substitution ε = xµ1 + yµ2 the determinant of Q(ξ, ε) becomes a
quadratic form in (x, y) with coefficients depending on ξ ∈ N :

detQ(ξ, ε) = Q(ξ)(x, y). (5.7)

In general we might expect there to be nonempty open sets in N where Q(ξ)
is definite and where it is indefinite. However, we now show that in fact the
quadratic form Q(ξ) is never definite, so that Proposition 4.3 holds.

To find the entries qij in the matrix Q of Lemma 5.1 we calculate explicitly
the partial derivatives mij := ∂ai/∂θj and find

m11 = 8t21ω
−1
1 sin θ1 cos θ1(1, d

2, 0, 0)t + 2t−1
1 (ω1 cos θ1)

−2(0, 0, 1, 0)t

m12 = 16t22ω
−1
1 sin θ2 cos θ2(1, d

2, 0, 0)t

m21 = 16t21ω
−1
2 sin θ1 cos θ1(1, d

2, 0, 0)t

m22 = 8t22ω
−1
2 sin θ2 cos θ2(1, d

2, 0, 0)t + 2ct−1
2 (ω2 cos θ2)

−2(0, 0, 0, 1)t.
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Substituting ε = µ1 and ε = µ2 in turn into qij = ε
tmij we obtain two 2× 2

matrices Q1(ξ), Q2(ξ) where

Q1 = −32t1(d
2 − 1)ω−3

1

(
2 sin2 θ1 − 1 + t221c

2
21 4t221c21 sin θ1 sin θ2

4ω12 sin2 θ1 2ω12t
2
21c21 sin θ1 sin θ2

)
,

(5.8)

Q2 = −32ct2(d
2 − 1)ω−3

2

(
2ω21t

2
12c12 sin θ1 sin θ2 4ω21 sin2 θ2

4t212c12 sin θ1 sin θ2 2 sin2 θ2 − 1 + t212c
2
12

)

(5.9)

in which

ω12 = ω1

ω2

= ω−1
21

t12 = t1
t2

= t−1
21 = dω3

21
κ2

κ1

c12 = cos θ1

cos θ2

= c−1
21 .

Observe the symmetry: Q2 is obtained from Q1 by interchanging suffices 1
and 2 apart from the factor c. This is of course a consequence of the symmetry
of the original system (4.1) and the slight asymmetry in the choice of the
diagonalisation matrix (4.2). Note also that t12 is inversely proportional to
the detuning coefficient ratio κ1/κ2.

We are now in a position to calculate the quadratic form Q(ξ) in (5.7).
We have

Q(ξ)(x, y) = det(xQ1(ξ) + yQ2(ξ)) (5.10)

= D11x
2 + (D12 +D21)xy +D22y

2 (5.11)

where Dij is the determinant of the 2 × 2 matrix whose first column is that
of Qi and second column is that of Qj for i, j ∈ {1, 2}. The discriminant of
Q(ξ) is

∆Q := (D12 +D21)
2 − 4D11D22.

After some algebra in which agreeable cancellations occur, we arrive at the
following result.

Proposition 5.2 Up to multiplication by a positive constant

∆Q =
(
A1s

2
1 + A2s

2
2 +

1

2
A1A2

)2 − 16A1A2s
2
1s

2
2

where si = sin θi (i = 1, 2) and A1 = t212c
2
12 − 1, A2 = t221c

2
21 − 1 ; note that

A1A2 = −(A1 + A2). 2



COUPLED VAN DER POL OSCILLATORS 36

It can easily be checked that A1A2 ≤ 0 with equality if and only if A1 =
A2 = 0, that is

t1 cos θ1 = t2 cos θ2 i.e. r1 = r2 . (5.12)

As an easy consequence we conclude the following.

Proposition 5.3 The discriminant ∆Q ≥ 0 for all (θ1, θ2), with ∆Q = 0
if and only if either (5.12) holds or θ1, θ2 satisfy one or other of the two
conditions

s1 = 0, (1 − s2
2)(1 − 2s2

2) = t212 or

s2 = 0, (1 − s2
1)(1 − 2s2

1) = t221.

2

Let Ũ ⊂ U be the dense open subset on which none of these equations is
satisfied, so that ∆Q > 0 for (θ1, θ2) ∈ Ũ , and let Ñ be the corresponding
open dense subset of N .

Corollary 5.4 For all ξ ∈ Ñ the quadratic form Q(ξ)(x, y) is nondegenerate
and indefinite. 2

Consequently every ξ ∈ Ñ is a potential fold bifurcation point from which a
pair of T ′-periodic orbits of (1.1), mutually annihilating or appearing, may
emanate as ε = (δ1, δ2, ε1, ε2) moves away from the origin in R4 in an ap-
propriate direction (one of two directions, and their negatives). To decide
if ξ corresponds to a more degenerate cusp ridge point (three T ′-periodic
points coinciding) or a swallowtail point (four T ′-periodic points) requires
evaluating the functions h1, h2 as in Proposition 4.4, as well as the align-
ment of kerDG(σ) at the corresponding points σ of the singularity set Σ̃G

as described in Section 4.4.
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