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Abstract This paper describes the application of geometric bounding techniques to range-only navigation of an 

underwater vehicle.  A geometric technique is defined to obtain a position fix of an underwater vehicle using a 

combination of dead-reckoning navigation and acoustic measurements of range between the underwater vehicle and a 

GPS equipped ship.  An assessment is made of the accuracy to which navigational parameters can be estimated using 

these methods. 
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1  Introduction 

 

Typically, Autonomous Underwater Vehicles 

(AUVs) navigate in the underwater domain using 

dead-reckoning navigation systems such as 

bottom-lock acoustic Doppler systems and inertial 

navigation systems (INS).  For navigation to 

remain accurate over long periods of time, 

position estimates from dead-reckoning systems 

must be updated periodically with measurements 

of absolute position, usually requiring the 

submersible to surface to obtain a GPS position 

fix.  It is, however, undesirable for a submersible 

to routinely depart from its mission to obtain GPS 

fixes as surfacing is time consuming and because 

the accuracy of dead-reckoning navigation is 

much reduced while sensors are not in range of 

the seabed.  These issues are greatly exacerbated 

in deep diving vehicles and so an alternative 

source of absolute position fix is required while 

navigating in the underwater domain. 

As a substitute for onboard GPS, acoustic 

localization techniques are increasingly being 

used for acquisition of geo-referenced position 

fixes while underwater.  This paper describes 

techniques that have been developed for analysing 

navigational error in the deep diving autonomous 

underwater vehicle Autosub 6000 [1] (Figure 1), 

using an acoustic localization system.  Acoustic 

baseline navigation encompasses a number of 

techniques in which acoustic transponders are 

used to provide positioning information for 

underwater vehicles.  The most common strategies 

for acoustic baseline navigation are Long Baseline 

(LBL) in which a number of acoustic beacons are 

deployed on the sea floor and localisation is 

achieved through triangulation like methods [2, 3, 

4], Short Baseline (SBL), in which transponders 

are mounted on a supporting ship [5], and Ultra-

Short Baseline (USBL), in which transponder 

elements are closely spaced in a single housing 

and are used for range-and-bearings localisation 

[6].  Each of these techniques requires significant 

effort in calibration, either in surveying the 

position of deployed acoustic beacons in LBL 

positioning or in calibration and alignment of SBL 

or USBL systems [7].  Recent work in range-only 

navigation attempts to reduce calibration issues by 

augmenting dead-reckoning navigation with 

ranging information from only a single acoustic 

transponder [8, 9, 10, 11]. 

 

 

Figure 1: The Autosub 6000 autonomous underwater 

vehicle. 

While range-only navigation has the advantage of 

reducing calibration requirements, careful 

planning of the trajectories of both the ship and 

submersible is required if there is to be no 

ambiguity in derived position fixes [10].  Without 

this approach, non-linear optimisation techniques 

such as those described in [8, 11, 12] may 

converge towards local maxima. 

In addition to gaining position information it is 

also desirable to have a measure of the error in a 

position derived from acoustic localisation.  

Recent published literature on range-only 

localisation [8, 9, 11] has focused on linearised 

Kalman filter based range-only navigation.  



Because Kalman filter based range-only 

navigation requires linearisation of the range 

measurement equations around the filtered 

position estimate, the technique is sensitive to 

positioning errors, which may cause the filter to 

diverge.  The largest source of these positioning 

errors is accumulated drift in dead-reckoning 

navigation while the submersible descends 

towards the seabed, during which acoustic 

Doppler based velocity sensors can only measure 

velocity relative to the non-stationary water.  The 

range-only problem is therefore split into two sub-

problems: an initialisation step and real time 

filtering.  As the real time filter implementation 

has previously been formulated as a Kalman filter, 

the initialisation step in [8, 11] is based upon 

optimisation yielding a point solution and 

Gaussian error.  Such point statistic estimates may 

however be misleading in the presence of local 

maxima in the matching function if the number of 

measurements or data samples are small  for the 

law of large numbers to take effect.  Recent 

developments in filtering techniques [13], 

however, allow modelling of arbitrary error 

distributions giving rise to the possibility of 

alternative localisation techniques that aren't 

restricted to yield point solutions with Gaussian 

error distributions. 

In this paper techniques will be outlined for 

obtaining error bounds on the position of an 

underwater vehicle by modelling error bounds on 

acoustic range measurements and dead reckoning 

navigation.  Errors in all sensor measurements will 

be taken into account, based on the assumption 

that sensor errors lie within known bounds.  Given 

conservative error bounds one can be sure that the 

true values of estimated parameters are contained 

within computed solution sets.  Bounding methods 

for state estimation, model parameter bounding 

and control problems have been developed in 

many papers [14, 15, 16, 17].  Set membership 

techniques have previously been applied in the 

field of mobile robotics to obtain bounds on robot 

position with respect to known features, either to 

determine a robots configuration in a known 

environment, either as a batch operation on 

multiple observations of features [18, 19], or as a 

observers that track bounds on the changes in 

robot state recursively through time [20, 21, 22, 

23, 24, 25, 26]. 

Of the related work in set membership in robotics 

the application that is described in this paper is 

most closely related to that in [19], in which the 

position of an underwater vehicle is bounded 

using range measurements from multiple acoustic 

beacons that are mounted in floating buoys.  The 

application in this paper differs from that 

described in [19] in the use of only a single 

acoustic beacon that is mounted on an observing 

ship.  Based on only a single range measurement 

the bounded geometric set of  feasible positions of 

the vehicle is a spherical shell centred on the ship.  

To further refine the submersible position set 

additional measurements of range between the 

ship and the moving submersible are required, and 

these range measurements will be separated in 

time.  In order to refine the vehicle position set 

one must therefore also know the change in 

position of the submersible between consecutive 

range measurements.  The set membership 

approach described in [19] will therefore be 

adapted so that the vehicle position set is 

propagated in time using dead-reckoning 

measurements under the assumption that the dead-

reckoning noise distribution is unknown but 

contained within known bounds.  This allows the 

refinement of dead-reckoning position estimation 

using a single transceiver-transponder pair, rather 

than a deployed network of beacons.  A technique 

is then developed for determining the initial 

position of the vehicle based on dead-reckoning 

measurements and measurements of range from a 

single acoustic beacon.   This technique may be 

used to correct for drift in an AUV’s navigation 

during its decent towards the seabed, during which 

time its navigation will be subject to increased 

dead-reckoning error in the form of random noise 

and unobservable drift due to ocean currents.  

Once this initial position estimate is made the 

AUV may navigate relative to the seabed and the 

observing ship is free to depart. 

As a bounded error technique [16], the technique 

developed here yields solution sets that are 

guaranteed to contain the true initial position of 

the underwater vehicle so long as assumptions on 

noise bounds are satisfied.  This differs from 

techniques based point measurements with 

assumptions on noise statistics as information is 

gained of all initial positions that are feasible 

given available sensory data.  This is 

advantageous as one is not mislead about the 

accuracy of position estimates, as can be the case 

with statistical approximations of errors in point 

estimates. 

 

Nomenclature 

 

t  Period of time between updates 

A

ˆ

  Estimated feasible set of A  



A  Defined as }|{= AaaA 


 



BA  Minkowski sum operator where 

},|{= BbAabaBA    

d  Unmeasured drift velocity in north-east-down 

frame 

k
D  Feasible set of d  

kd ,

E  Bounds on feasible error in unmeasured drift 

velocity d  

kv,

E  Bounds on feasible error in measured velocity v  

k  Time index 

n
p  Time index of range measurement n  

k
R  Range measurement shell, centred on position of 

observing platform 

s  Ship position 

x  AUV position 

0

X  Initial state  

p

0

X  Prior bound on 

0

X  

k
X  Submersible position at instant k 

kR ,

X  Position change from initial conditions  

kup,

ˆ

X  Range measurement updated position at instant k  

kv,

X  Total measured position change since 0=k   

kd ,

X  Total unmeasured drift since 0=k  

k
V  Feasible set of v  

v  Measured velocity rotated into north-east-down 

frame 

b

v  Measured velocity in body frame 

  AUV roll angle 

  AUV pitch angle 

  AUV yaw angle 

 

 

2  Methods  

 

Initially we will formulate the problem of using 

acoustic ranging measurements to refine a dead-

reckoning based estimate of the current position of 

an underwater vehicle.  Having introduced the 

current position estimation problem, we then 

develop a technique for obtaining bounds on the 

initial position of an underwater vehicle.  This will 

be done by taking range measurements while the 

underwater vehicle undertakes a prescribed 

manoeuvre. 

The vehicle model used in this application is 

based on motion in a 3-dimensional space, in a 

north-east-down coordinate frame.  In this 

reference frame the rate of change in vehicle 

position x


 is defined by the rotation of a velocity 

vector 

b

v , measured in a reference frame that is 

aligned to the submersible body, into the north-

east-down coordinate frame.  This is achieved by 

rotation around the vehicles heading, pitch and 

roll, which are measured by an inertial navigation 

system (INS). 

 
b

Euler
vRx  ,,=


 (1) 

The dead-reckoning position estimates, 

determined by integration of (1), are updated by 

measurements of range between the submersible 

position x  and the position s  of an observing ship 

using a pair of acoustic transponders.  Assuming 

spherical spreading of acoustic waves is assumed 

then this range r  is defined as 

sx =r  (2) 

however, variation in sound speed as a function of 

depth causes acoustic waves to diffract as they 

propagate though the water column.  Therefore, a 

more appropriate form of (2) is  sx,= gr , which 

must be solved using an acoustic ray tracing 

model, as described in Section 3.1. 

In a set membership context the dead-reckoning 

based position estimate is defined as the set 

kRk ,0

=

ˆ

XXX   (3) 

 

where   denotes Minkowski sum as defined in 

Nomenclature, 

k
X

ˆ

 is an estimated bounding set 

containing the submersible's current position, 

0

X  

is a set containing the submersible's initial 

position, 

kR ,

X  is a bounding set containing the 

relative change in position from the initial position 

and k  is a periodic sampling time index.  Then 

kdkvkR ,,,

= XXX   (4) 

 where 

kv,

X  and 

kd ,

X  are defined as  

t
kkkv



)(=

121,

VVVVX   (5) 

  

t
kkkd



)(=

121,

DDDDX   (6) 

Here 

k
V  is the Minkowski sum of a vector 

k
v , 

the measured velocity at instant k  (rotated into a 

world coordinate frame), with a polytope 

kv,

E , 

which describes the error in 

k
v : 

kvkk ,

= EvV  .  

k
D  is defined by the sum of an unmeasured drift 

velocity 

k
d  with a bounding error  

kd ,

E : 

kdkk ,

= EdD   

 

If the velocity sensor is tracking the sea floor and 

is properly calibrated then this drift component of 

kR ,

X  can be ignored. In practice 

kd ,

E and 

kd ,

V  can 

defined as constant error sets, i.e. independent of  

k . 

(3) therefore completely describes all possible 

positions of the submersible through propagation 

of errors in dead-reckoning navigation.  This set 



can be refined by restricting the position of the 

submersible to be within a range bound of an 

observing ship.  A range measurement with 

bounded errors can be described by a spherical set 

k
R .  The range updated location of the 

submersible 

kup,

ˆ

X  is then  

kkkup
XRX

ˆ

=

ˆ

,

  (7) 

and so a refined estimate of the submersible's 

position can be calculated from Equations (3), (4) 

and (7) as  

)(=

ˆ

,,0, kdkvkkup
XXXRX   (8) 

For a series of range measurements made at 

instants 

N
ppk 

1

=  the range corrected position 

set should be used for future dead-reckoning 

updates.  A position update at instant 

n
pk =  then 

becomes  

)

ˆ

(=

ˆ

,,

1

,,

n
pd

n
pv

n
pup

n
p

n
pup

XXXRX 



 (9) 

 Where 

1

,

ˆ

n
pup

X  is the range updated position set 

at 

1

=
n

pk , and 

n
pv,

X  and 

n
pd ,

X  bound the 

accumulated observed dead-reckoning position 

changes and unmeasured drifts from the instant of 

the previous range measurement 

1

=
n

pk  to the 

instant of the current position estimate 

n
pk =  

such that  
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n
p
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p

n
p

n
p

n
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It should be noted that for highly vertical 

geometries (submersible depth much greater than 

the horizontal ship-submersible distance) the 

range measurement set can be approximated as a 

spherical shell centred on the observing ship 

corrected for average sound speed using standard 

tables such as Carter's tables [27].  If this is not 

the case then the range measurement must be 

constructed using a sound propagation model 

using a sound speed profile obtained in situ.  The 

influence of GPS errors on the range measurement 

set can be included in calculations by Minkowski 

addition of a set describing uncertainty of ship 

position to the range set. 

 

2.1  The use of range measurements to 

bound the initial position of a vessel 

 

To determine a bounding set for the submersible's 

initial position we wish to find a set 

0

ˆ

X  

encompassing all possible initial positions for 

which a solution to (8) exists.  Formally this is 

described by (12)  

})({=
,,000,


kdkvkk

XXxRxX |

ˆ

 (12) 

Now we note that Minkowski addition can be 

described in an alternative form as  

})(|{=  BABA zz  (13) 

Bearing (13) in mind we see that (12) can be 

rewritten as  

})({=
,000,




kRkk
XxRxX |

ˆ

 (14) 

where  

)}({=
,,, kdkvkR

XXxxX 


|  (15) 

(12) can therefore be expressed as  

           




kRkk ,0,

=

ˆ

XRX  (16) 

The best bound 

k0,

ˆ

X  for the initial position based 

on the range measurement at instant k  is given by 

(14).  When range measurements are available at a 

number of different instants k  the true initial 

condition is bounded by 

k0,

ˆ

X  for all k .  The true 

initial position can therefore be bounded by  

            )(=

ˆ

,

1=

0




kRk

K

k

XRX   (17) 

Further, if a prior bound 

p

0

X  on 

0

X  is known then  

        ))((=

ˆ

,

1=

00




kRk

K

k

p

XRXX   (18) 

(18) allows estimation of the initial position of a 

submersible based on ship-submersible range 

measurements and dead-reckoning velocity 

information.  Here 

p

0

X  may describe an initial 

position derived from either propagation of dead-

reckoning measurements taking into account 1) 

drift, 2) bounds on vehicle depth obtained from a 

pressure sensor, or 3) the full region bounded by 

the sea floor and surface. 

 

 

3  Simulation of Geometric 

Techniques using Artificial Data 

 

3.1  Simulation setup for estimation of 

initial position of a vessel 

 

The techniques described in Section 2 have been 

applied to simulated navigational data using the 

Geometric Bounding Toolbox (GBT) [28].  

Modelled error bounds in measurements and real 

world parameters take values that are consistent 

with those that would be encountered in real world 



operation (see Table 1).  Values quoted are 

consistent with those stated in [29].  As this paper 

represents part of a project to develop navigational 

tools for the deep diving underwater vehicle, 

Autosub 6000, error parameters have been chosen 

that most accurately model errors in Autosub's 

sensors.  Autosub 6000, being equipped with an 

IXSEA PHINS inertial navigation system, can be 

expected to experience attitude error of up to 

0.02



.  This corresponds to a positioning error that 

is two orders of magnitude smaller than can be 

expected of the Acoustic Doppler Current Profiler 

(ADCP) used by Autosub 6000 to measure 

velocity, which is a Teledyne RD Instruments 

Workhorse Navigator.  Because of this, errors in 

INS attitude measurements have been neglected.  

As the intended application of the initial position 

estimation technique is the correction of drift in 

dead-reckoning navigation by re-initialisation of 

vehicle position once it has descended to within 

sensor range of the ocean floor, the unobservable 

component of drift velocity defined in (6), 

assumed to be due to ocean currents, can be 

ignored as velocity is measured by the ADCP with 

respect to the static seabed.  Therefore, so long as 

the vehicle is within sensor range of the seabed 

and a set that bounds the unmeasured component 

of velocity the set bounding this drift velocity is 

0D  .  The vehicle velocity is then described by 

V , which is modelled as an orthotope that bounds 

the set of feasible velocities measured by the 

ADCP, rotated into the north-east-down 

coordinate frame.  The range error used is that 

quoted by LinkQuest, the manufacturers of the 

TrackLink 10000 acoustic transponder system that 

is installed on Autosub 6000.  The bounds in GPS 

position fixes are taken at 99.7 %  confidence 

intervals of fix accuracy seen in GPS data.  Error 

bounds on depth measurements are chosen to 

bound errors in measurements obtained using an 

onboard pressure sensor.   

 

Table  1: Errors used in simulations 

  Simulation Errors  

 ADCP velocity 

error  

   0.3 % distance travelled  

 INS error   <  0.02 deg  (negligible)  

 Range error     0.4 m  

 Ship GPS error     1.23 m  

 Depth error     1 m 

 

For proper application of the system the effect of a 

non-constant sound speed on the propagation of 

acoustic waves should be taken into account.  The 

ray tracing model is used to model the propagation 

of the acoustic waves away from the acoustic 

source by successive application of Snell’s Law as 

rays travel through each layer in an ocean that is 

assumed to be vertically stratified with respect to 

sound speed.  Within each layer in the vertically 

stratified ocean a linear variation in sound speed is 

assumed.  Under this assumption acoustic rays 

will travel along arcs of circles through each 

sound speed layer in the model.  By tracing the 

paths of rays emitted from the acoustic source at a 

number of angles two isotemporal curves are 

formed describing the inner and outer bounds on 

the range shell.  It should be noted that these 

isotemporal curves would generally not be 

spherical except in the case that the sound speed is 

constant across all depths. 

In this paper a ray-tracing model has been used to 

simulate the effects of varying sound speed on 

acoustic range measurements for sound speed 

profiles that can be expected in North Atlantic and 

in Antarctic regions.  These sound speed profiles 

represent the extremes of sound speed variation 

that Autosub 6000 is likely to encounter in 

operation.  The sound speed profiles used are 

shown in Figure 2.   The sound speed profile will 

affect the size of the observed solution set by 

affecting the angle at which acoustic wave fronts 

arrive at the submersible and will also have a 

small affect on the bounds of the range shell. 

 

 

 

Figure 2: Sound speed profiles used in simulations. 

 

The approach adopted in this paper for 

computation of the operations described in Section 

2.1 is based on conducting operations on convex 

polytopes using the GBT [28,31,32].   This 

requires that the range shell set is approximated by 



a set of convex polytopes that together contain the 

range shell.  Each of these polytopes are formed 

by hyperplanes describing upper and lower 

bounds on the depth measurement, inner and outer 

bounds on the range measurement isotemporal 

curves under the assumption of plane wave 

propagation within the depth bounds and a pair of 

hyperplanes that bound an arc of rotation around 

the vertical depth axis.  This approximation is 

demonstrated in Figure 3, where the range shell is 

approximated by a set of 8 polytopes, each of 

which spanning an arc of 45 degrees around the 

depth axis.  The approximation of the range shell 

used in simulations is split into 90 segments, each 

spanning an arc of 4 degrees around the depth 

axis.  In this representation of the range 

measurement the Minkowski addition 




kRkk ,0,

=

ˆ

XRX  is computed by adding 



X

R ,k



 to 

each convex polytope in 



R

k

, while intersections 

evaluated in (17) and (18) are computed as the set 

intersections of each polytope in




kRk ,

XR  with 

each polytope in 

10,

ˆ

k
X .  There is therefore a 

progressive increase in the complexity of the 

solution polytope 

0

ˆ

X  as additional measurements 

are used to update the solution set.  This increase 

in computational complexity can be mitigated by 

applying a simplification step to reduce polytope 

complexity.  The solution set can be approximated 

using bounding convex polytopes, for example 

using outer bounding parallelotopes [22] or 

minimum volume ellipsoids [23], after each 

measurement is used to update 



X

0

.  

Simplifications of this form are essential in real-

time state estimation, as discussed in [21].  In the 

application described in this paper no such 

approximations have been applied.  This 

limitation restricts the applicability to estimation 

of the initial position set from only a small 

number of range measurements.    However, by 

approximating the position set with an outer 

bounding polytope after each range measurement, 

the described technique can be used in recursive 

real-time estimation. 

 

 

 

Figure 3: An example of the polygonal approximation to the 

range set, shown as a wire frame, limited by upper and 

lower bounds on vehicle depth.  The approximation is 

constructed as a set of convex polytopes, one of which 

shaded in grey, that outer bound the range measurement set.  

The example approximation shown here is constructed from 

8 convex polytopes.  Approximations used in simulations 

are constructed in a similar manner from 90 convex 

polytopes. 

 

3.2  Simulation results 

 

Simulations have been carried out to estimate the 

initial position based on (18).  The strategy 

employed in simulations is to obtain acoustic 

range measurements while the submersible 

navigates along the perimeter of a box that is 

centred on the supporting ship.  An example of 

one such navigation box is shown in Figure 4.  If a 

trajectory of constant heading were used, instead 

of the perimeter of the box, the solution set would 

consist of a pair of unconnected sets lying either 

side of the submersible’s trajectory.  While the 

bounding technique described here will allow the 

estimation of a solution comprised of a pair 

disparate subsets, such a solution is undesirable 

and so the trajectory in which the vehicle 

navigates around the perimeter of a box has to 

been chosen as it allows a single solution set to be 

determined.  An example solution for bounding 

the feasible set of initial positions based on 

navigating around this “box trajectory” is shown 

in Figure 5.  Each ring depicted in the left plot of 

Figure 5 is a set of initial positions that are 

feasible given a single range measurement and 

bounds on the vehicle depth.  The true initial 

position must be consistent with all sensor 

measurements and so must lie within the 

intersection of each of these rings.  This 

intersection is shown in the right plot of Figure 5. 

 



 

Figure 4: An example trajectory used for localization.  The 

submersible begins at position (500,500) and navigates a 

box of side length 1000 m around the ship, located at the 

origin, while ship-to-submersible range is measured 

acoustically. 

 

 

Figure 5: Initial position estimation for a vehicle navigating 

around along the path shown in Figure 4.  Left Panel: each 

shaded ring contains all feasible positions of the submersible 

at 0k  given a single range measurement and all dead-

reckoning data up to the instant of the range measurement.  

Right Panel: the intersection of the rings shown in the left 

panel corresponding to the feasible set of initial positions 



X

0

 given all available data, as computed from (18). 

 

It is desirable to have a measure of the accuracy 

that can be expected for a given box size at a 

given depth.  To this end, navigational boxes 

similar to that shown in Figure 4 have been 

simulated for boxes of side length ranging from 

250 m to 1500 m, and at depths ranging from 500 

m to 4000 m.  Error parameters used in 

simulations are those shown in Table 1.  For all 

simulations the resulting initial position sets 

contain the true initial positions.  The sizes of the 

initial position set calculated in each simulation 

are shown in Figure 6.  These sizes are the lengths 

of the maximum dimension across the initial 

position set calculated in each simulation.  It can 

be seen that the solution size is relatively 

insensitive to sound speed profile so long as sound 

speed information is accurate, with a difference 

between solution size observed in the North 

Atlantic and Antarctic waters of less than 0.5 m in 

all simulations.  Figure 6 shows that the size of the 

solution sets is dependent on the size of the box 

around which the submersible navigates.  If the 

submersible navigates around the perimeter of a 

box of short side length then accumulated dead-

reckoning error is small but the acoustic wave 

fronts of the range measurement impinge on the 

submersible at a shallow angle to the horizontal 

plane so that the range measurement provides 

little information of the horizontal position of the 

submersible.  The converse becomes true with 

increasing navigation box size as range 

measurements intersect with the vehicle position 

set at a steeper angle to the horizontal but bounds 

on dead-reckoning error increase due to the larger 

distance travelled.  Figure 6 indicates that there is 

an optimal size for the box at which these two 

factors balance to give a minimum size feasible 

set of initial positions. 

 

 

 

Figure 6: Size of initial position solution 



X

0

 corresponding 

for boxes with sides of length 250 m to 1500 m calculated in 

250 m steps at depths of 500 m to 4000 m.  Results for 

Antarctic sound speed conditions are shown as solid lines 

while North Atlantic conditions are shown as dashed lines. 

 

It should be noted that at present there are some 

limitations introduced by the computational 

techniques used to produce the results shown in 

Section 3.  As calculations are currently based on 

vertex and polytope facet calculations, the input 

and output sets can only be described as straight 

edged, polygonal sets.  There is therefore some 

approximation of the range measurement sets, 

which are inherently curved.  The computational 

techniques currently used are also limited to 

application in short term estimation of vehicle 

position, as solution sets become increasingly 

complex as additional range measurement 



information is incorporated.  These limitations 

can, however, be mitigated by employing a 

polytope simplification strategy in which the 

solution set is approximated by an outer bounding 

polytope of simpler form, as discussed in Section 

3.1.  A further limitation of the system described 

here is the sensitivity of the geometric techniques 

used to outliers in measurements.  Techniques for 

dealing with outliers in geometric computation are 

documented in [30] and there has been promising 

recent work [25] in bounded parameter estimation 

with a fixed number of outliers.  It is clear that the 

techniques described in this paper should be 

extended to allow for potential outliers to allow 

robust application of the system.  

 

4  Conclusions 

 

The bounding techniques described in this paper 

have a number of advantages over likelihood 

based range-only submersible positioning 

described in the literature [8, 11]. Firstly, the 

computed solution sets may be disparate and so 

can show multiple discrete solutions.  Secondly, 

no assumptions are made about sensor noise 

statistics other than that sensor noise lies within 

known tolerances. Thirdly, the full range of 

possible solutions that are consistent with 

measurement errors are calculated, rather than the 

single most likely solution with a lower bound on 

error variance [8, 11].  This set of solutions can, 

however, be expected to appear to be more 

conservative than statistical likelihood  methods 

that exploit assumed statistical properties of errors 

not certain to be valid in reality.     

While the techniques described here have been 

applied to problems in underwater navigation they 

can equally well be applied to localisation in 

terrestrial navigation with respect to known 

landmarks.  In this setting, the bounds on the 

initial location of a robot can be computed based 

on computation of the equations described in 

Section 2.  We believe that the techniques 

described here have potential as useful tools both 

in their own right and for validation of 

navigational parameters estimated by other 

methods.  It is hoped that the results shown in 

Figure 6 will serve as useful guidelines to the 

accuracy that can be achieved in single-

transponder pair range-only navigation of vehicles 

operating at full ocean depth. 

As discussed in Section 3, the system described in 

this paper is currently sensitive to outliers in range 

measurements.  The development of parameter 

bounding techniques, that are robust to outliers, is 

an ongoing research area and it is believed that 

further work should focus on this issue.  The 

technique described in this paper should also be 

extended to allow estimation of additional 

navigational parameters such as heading errors 

and biases related to calibration of the dead-

reckoning system.  Finally, developments of 

complexity reduction techniques by approximate 

polytopes have the potential to enhance the speed 

of real-time computations. Approximations can be 

used to obtain the bounding sets of position 

estimates, similarly to the approximations used in 

[31]. 
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