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ABSTRACT 
 

The design effect measures the inflation of the sampling variance of an estimator as a result of 
the use of a complex sampling scheme. It is usually measured relative to the variance of the 
estimator under simple random sampling. Many social survey designs employ multi-stage 
sampling, leading to some clustering of the sample and this tends to lead to design effects 
greater than unity. There is some empirical evidence that design effects from clustering tend 
to decrease the more complex the analysis. For example, design effects for regression 
coefficients are often found to be less than design effects for the mean of the dependent 
variable in the regression. Evidence of design effects close to unity for such analyses may be 
used by some analysts of survey data to justify ignoring the sampling design in complex 
analyses. In this paper we present some evidence of an opposite tendency, for design effects 
to be higher for complex longitudinal analyses than for corresponding cross-sectional 
analyses. Our empirical evidence is based upon data from the British Household Panel Study. 
This survey follows longitudinally a sample of individuals selected in 1991 by two-stage 
sampling, with clustering by area. Data are collected in annual waves. Our analyses are based 
upon a subsample of women aged 16-39. The dependent variable is a gender role attitude 
score, derived from responses to six five-point questions, and treated as a continuous variable. 
Covariates include age group, economic activity and educational qualifications. Longitudinal 
regression models include random effects for women. Data are analysed for five waves of the 
survey when the gender role attitude questions were asked. The design effects for the 
regression coefficients are found to increase the more waves are included in the analysis. A 
similar tendency is observed for estimates of the time-averaged mean of the dependent 
variable. A possible theoretical explanation is provided. The implication of these findings is 
that standard errors in analyses of longitudinal survey data may be very misleading if the 
initial sample was clustered and if this clustering is ignored in the analysis. 
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Summary. There is some empirical evidence that the variance-inflating impacts of 

complex sampling schemes decline the more complex the analysis. In this paper we 

present some evidence of an opposite tendency, for the impact to be higher for 

longitudinal analyses than for corresponding cross-sectional analyses. Our 

empirical evidence is based upon a regression analysis of longitudinal data on 

gender role attitudes from the British Household Panel Survey. We investigate 

reasons for this finding and suggest that it arises from a specific longitudinal feature 

of the analysis. We contrast two approaches to allowing for the effect of clustering 

in longitudinal analyses: a survey sampling approach and a multilevel modelling 

approach. We suggest that the impact of clustering can be seriously 

underestimated if it is simply handled by including an additive random effect to 

represent the clustering in a multilevel model. 
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1. Introduction 

This paper develops methodology for the analysis of complex survey data (Skinner et al., 

1989) to address longitudinal aspects of regression analyses of British Household Panel 

Survey (BHPS) data on attitudes to gender roles and their relation to demographic and 

economic variables. We consider two broad questions. First, is the impact of the complex 

sampling design on variance estimation for analyses of these longitudinal data greater or 

less than for corresponding cross-sectional analyses? Kish and Frankel (1974) presented 

empirical work which suggested that the impacts of complex designs on variances are 

reduced for more complex analytical statistics and so one might conjecture that the impact 

on longitudinal analyses might also be reduced. We shall provide evidence in the opposite 

direction that, at least for the specific analyses considered, the impact on longitudinal 

analyses tends to be greater. Given that an impact does exist, the second question 

addressed is how to undertake variance estimation. We shall focus in the paper on the 

clustering impact of the sampling design. It is natural to represent such clustering via 

multilevel models and we shall consider specifically how variance estimation methods 

based upon multilevel models compare with survey sampling variance estimation 

procedures. 

When asking how an analysis should take account of complex sampling, it is natural 

first to ask whether the parameters of interest should depend on the design, via the 

population structure underlying the sampling (Skinner et al., 1989). In this paper we shall 

assume this is not the case, since the primary sampling units in the BHPS are postcode 

sectors, determined by the needs of the British postal system and assumed here not to be 

relevant to the definition of parameters of scientific interest. A second question which 

might be asked is how the sampling impacts on point estimation, e.g. via the use of 

sampling weights. We shall refer to this question briefly, but we shall largely suppose that 
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point estimation is unaffected by the design.  Our main focus will be on the impact of the 

design on variance estimation. 

The impact on variance estimation will be measured here by the ‘misspecification 

effect’, denoted meff (Skinner, 1989a), which is the variance of a point estimator divided by 

the expectation of the variance estimator, a measure of relative bias of the variance 

estimator. This concept is closely related to that of the ‘design effect’ or deff of Kish (1965), 

defined as the variance of the point estimator under the given design divided by its 

variance under simple random sampling with the same sample size, a concept more 

relevant to the choice of design than to the choice of standard error estimator. In the 

application in this paper, estimated meffs may be treated as equivalent to estimated deffs 

when the variance estimator ignores the complex design. 

One reason for studying meffs for variance estimators which ignore the design is 

that analysts of longitudinal survey data face many difficult methodological challenges and 

they may be tempted to view the impact of complex sampling on standard errors as a 

relatively minor issue which, if ignored, is unlikely to lead to misleading inferences. Indeed, 

in cases where the survey documentation indicates that the design effect of the mean of 

the analyst’s outcome variable of interest is not much larger than one, the analyst might 

justify ignoring the design when estimating standard errors by appealing to the observation 

of Kish and Frankel (1974, p.13) that “design effects for complex statistics tend to be less 

than those for means of the same variables”. 

The paper is motivated by a regression analysis of five waves of BHPS data, based 

upon work of Berrington (2002) and described in Section 2. After a description of models 

and estimation methods in Section 3, the paper proceeds in Section 4 to provide evidence 

that meffs for longitudinal analyses can be greater than for corresponding cross-sectional 

analyses, implying that more caution is required before ignoring the complex design in 

standard error estimation. Alternative approaches to variance estimation are considered in 
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Section 5, with the focus being on the treatment of clustering and on a comparison 

between a multilevel modelling approach (Goldstein, 2003, Ch.9; Renard and 

Molenberghs, 2002) and a survey sampling approach (Skinner et al, 1989).  

We ignore the effects of stratification and weighting in the empirical work in sections 

4 and 5 in order to isolate the source of potential misspecification effects and to avoid 

introducing the more complex weighting issues arising with multilevel models (Pfeffermann 

et al., 1998). We make brief remarks on these effects in the concluding discussion in 

Section 6. 

 

2. The motivating application to BHPS data  

Recent decades have witnessed major changes in the roles of men and women in the 

family in many countries. Social scientists are interested in the relation between changing 

attitudes to gender roles and changes in behaviour, such as parenthood and labour force 

participation (e.g. Morgan and Waite, 1987; Fan and Marini, 2000). A variety of forms of 

statistical analysis are used to provide evidence about these relationships. In this paper we 

consider a longitudinal regression analysis, based upon a model considered by Berrington 

(2002), with a measure of attitude to gender roles as the dependent variable. We also 

consider some simpler versions of this analysis to facilitate understanding of the 

methodological issues outlined in Section 1. The models will be set out formally in Section 

3. 

The data come from waves 1, 3, 5, 7 and 9 (collected in 1991, 1993, 1995, 1997, 

and 1999 respectively) of the BHPS, when respondents were asked whether they ‘strongly 

agreed’, ‘agreed’, ‘neither agreed nor disagreed’, ‘disagreed’ or ‘strongly disagreed’ with a 

series of statements concerning the family, women’s roles, and work out of the household. 

Responses were scored from 1 to 5.  Factor analysis was used to assess which 

statements could be combined into a gender role attitude measure. The attitude score 
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considered here is the total score for six selected statements. Higher scores signify more 

egalitarian gender role attitudes. Berrington (2002) provides further discussion of this 

variable.  

Covariates for the regression analysis were selected on the basis of discussion in 

Berrington (2002) but reduced in number to facilitate a focus on the methodological issues 

of interest. The covariate of primary scientific interest is economic activity, which 

distinguishes in particular between women who are at home looking after children 

(denoted ‘family care’) and women following other forms of activity in relation to the labour 

market. Variables reflecting age and education are also included since these have often 

been found to be strongly related to gender role attitudes (e.g. Fan and Marini, 2000). All 

these covariates may change values between waves. A year variable (scored 1, 3,…, 9) is 

also included. This may reflect both historical change and the general ageing of the 

women in the sample.  

The BHPS is a household panel survey of individuals in private domiciles in Great 

Britain (Taylor et al., 2001). Given the interest in whether women’s primary labour market 

activity is ‘caring for a family’, we define our study population as women aged 16-39 in 

1991. This results in a subset of data on n = 1340 women. This subset consists of those 

women in the eligible age range for whom full interview outcomes (complete records) were 

obtained in all the five waves. We comment further on the treatment of nonresponse in 

section 3. 

The initial (wave one) sample of the BHPS in 1991 was selected by a stratified 

multistage design in which households had approximately equal probabilities of inclusion. 

As primary sampling units (PSUs), 250 postcode sectors were selected, with replacement 

and with probability of selection proportional to size using a systematic procedure. 

Addresses were selected as secondary sampling units, with the adoption of an analogous 

systematic procedure. In addresses with up to 3 households present, all households were 
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included, and in those with more than 3 households, a random selection procedure, using 

a Kish grid, was used for the selection of 3 households. Then, all resident household 

members aged 16 or over were selected. All adults selected at wave one, were followed 

from wave two and beyond. A consequence of this design is that inclusion probabilities of 

adults vary little. The impact of weighting is considered briefly in section 6. The 1340 

women represented in the data are spread fairly evenly across 248 postcode sectors. The 

small average sample size of around five per postcode sector combined with the relatively 

low intra-postcode sector correlation for the attitude variable of interest leads to relatively 

small impacts of the design, as measured by meffs. Since our aims are methodological 

ones, to compare meffs for different analyses, we have chosen to group the postcode 

sectors into 47 geographically contiguous clusters, to create sharper comparisons, less 

blurred by sampling errors which can be appreciable in variance estimation. The meffs in 

the tables we present therefore tend to be greater than they are for the actual design. The 

latter results tend to follow similar patterns, although the patterns are less clear-cut as a 

result of sampling error.  

 

3.  Regression model and inference procedures 

Let ity denote the value of the attitude score for woman i at wave t  (coded 1,..., 5t T= =  

to correspond to 1991, 1993, …,1999) and let 1( ,..., ) ’i i iTy y y=  be the vector of repeated 

measures.  We consider linear models of the following form to represent the expectation of 

iy  given the values of covariates: 

( )i iE y x β= ,            (1) 

where 1( ’,..., ’)’i i iTx x x= , itx is a 1×q vector of specified values of covariates for woman i 

at wave t ,  β  is the q×1 vector of regression coefficients and the expectation is with 

respect to a superpopulation model (Goldstein, 2003, p. 164). A more sophisticated 



 7 

analysis might include a measurement error model for attitudes (e.g. Fan and Marini, 

2000), with each of the five-point responses to the six statements treated as ordinal 

variables. Here, we adopt a simpler approach, treating the aggregate score ity  and the 

associated coefficient vector β  as scientifically interesting, with the measurement error 

included in the error term of the model. 

We consider estimation of β  based on data from the ‘longitudinal sample’, Ts , i.e. 

the sample for which observations are available for each of 1,...,t T= . We did not attempt 

to use data observed only at a subset of the five waves, partly for simplicity but also 

because our primary interest is clustering and we did not wish differences in clustering 

effects over time to be confounded with differences in incomplete data effects. A concern 

with the use of the longitudinal sample Ts  is that the underlying attrition process may lead 

to biased estimation of β . One possible way of attempting to correct for this potential 

biasing effect is via the use of longitudinal survey weights, ,iTw i s∈ (Lepkowski, 1986).  

The most general estimator of β  we consider is 

( ) 1
1 1ˆ ' '

T T

iT i i iT i i
i s i s

w x V x w x V yβ
−

− −

∈ ∈
∑ ∑=  ,     (2) 

where V is a ‘working’ variance matrix of iy  (Diggle et al. 2002, p.70), taken as the 

exchangeable variance matrix with diagonal elements 2σ  and off-diagonal elements 2ρ̂σ , 

and ρ̂  is an estimator of the intra-individual correlation, obtained by iterating between 

generalised least squares estimation of β and survey-weighted moment-based estimation 

of the intra-individual correlation (Liang and Zeger, 1986; Shah et al., 1997). Note that 2σ  

cancels out in (2) and hence does not need to be estimated for β̂ . 

This variance matrix,V , would arise if ity obeyed the multilevel (mixed linear) 

model:  
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it it i ity x u vβ= + + ,       (3) 

with independent random effects iu  and itv  with variances 2 2
uσ ρσ=  and 

2 2(1 )vσ ρ σ= − respectively. We find that this model provides a first approximation to the 

variance structure for the regression models fitted in section 4.  For illustration, we find 

ˆ 0.59ρ =  in the most elaborate regression model implying a fairly substantial between-

woman component in the attitude scores unexplained by the chosen covariates. It is not 

necessary, however, for the error structure to follow the specific model in (3) exactly for β̂  

to be consistent.  

To estimate the covariance matrix of β̂  allowing for the complex sampling design, 

we may use the linearization estimator (Skinner, 1989b, p.78): 

1 1

-1 2 -1ˆ( ) 'V /( 1) ( ) 'V
T T

iT i i h h ha h iT i i
i s h a i s

v w x x n n z z w x xβ
− −

∈ ∈

    = − −        
∑ ∑ ∑ ∑ ,        (4) 

where h  denotes stratum, a  denotes area (primary sampling unit, PSU),  hn  is the 

number of PSUs in stratum h ,  1’iha iT i i
z w x V e−= ∑ , /ah ha a

z z n= ∑ and ˆ
i i ie y x β= − . Note 

that this variance estimator requires use of the stratum and primary sampling unit 

identifiers. See Lavange et al. (1996) and Lavange et al. (2001) for applications of a similar 

approach to allowing for complex sampling designs in regression analyses of repeated 

measures data from different longitudinal studies.  

In order to assess the impact of the complex design on variance estimation, we also 

consider a linearization variance estimator which ignores the complex design, denoted 

0
ˆ( )v β , given by expression (4) where the PSUs become the same as women so that 

haz is 

replaced by 1’
iT i i

w x V e−  and there is only a single stratum so that 
h

n n=  is the overall 

sample size and the term 
hz  disappears. Ignoring the weights and the term /( 1)n n − , this 
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is the ‘robust’ variance estimator presented by  Liang and Zeger (1986) as consistent 

when (1) holds, but where the working variance matrix, V , may not reflect the true 

variance structure. See also Diggle et al. (2002, section 4.6). 

Following Skinner (1989a, p.24), we refer to 0
ˆ ˆ( ) / ( )k kv vβ β , the ratio of these two 

variance estimators for the thk  element of β̂ , as an estimated misspecification effect and 

denote it meff. This ratio may be viewed as an estimator of the misspecification effect, 

defined as 0
ˆ ˆvar( ) / [ ( ]k kE vβ β , on the assumption that ˆ( )v β  is a consistent estimator of 

ˆvar( )β . This quantity is a measure of the relative bias of the ‘incorrectly specified’ 

variance estimator 0
ˆ( )kv β  as an estimator of ˆvar( )kβ .  

In general, meffs will reflect the impact of weighting, clustering and stratification. For 

simplicity of interpretation, we shall in this paper only present values of meffs capturing the 

effect of clustering, treating the weights as constant and ignoring stratification.  

 

4.  Misspecification effects: the impact of ignoring clustering in longitudinal 

analyses 

In this section we explore the impact of ignoring clustering in standard error estimation for 

various longitudinal analyses. To provide theoretical motivation for the kind of impact we 

may expect, consider converting the two-level model in (3) into a simple three-level model 

(Goldstein, 2003) as: 

ait ait a ai aity x u vβ η= + + + ,        (5) 

where an additional subscript a  has been added to denote area (cluster) and an additional 

random term aη  with variance 2

ησ  represents the area effect (assumed independent of aiu  

and aitv ). We now let 2
uσ  and 2

vσ  denote the variances of aiu  and aitv  respectively. Let us 

use this model to consider first the expected nature of misspecification effects in the case 
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of cross-sectional analyses, where t  is kept fixed as 1t = . In this case, if we suppose for 

simplicity that 1aitx ≡  and β  is the mean of aity  in (5) and that there is a common sample 

size m  per cluster, the misspecification effect is approximately equal to
11 ( 1)m τ+ − , 

where 2 2 2 2
1 /( )u vη ητ σ σ σ σ= + +  is the intracluster correlation (Skinner, 1989b, p. 38). If the 

sample sizes per cluster are unequal a common approximation is to replace m  in this 

formula by m , the average sample size per cluster.  

Turning to the longitudinal case, where again 1aitx ≡  and now β  is a longitudinal 

mean of aity  for 1,...,t T= , the same theory for misspecification effects will apply, but 

where 1τ  is replaced by τ , the intracluster correlation for aη  and ai aitu v+   averaged over 

the waves., i.e. 2 2 2 2/( / )u v Tη ητ σ σ σ σ= + + . Hence, under this model, the misspecification 

effect increases as T increases, if 2 0vσ > .  

Let us now compare this expected theoretical pattern with the empirical findings. 

Using data from just the first wave and setting 1aitx ≡ , the meff for this cross-sectional 

mean is given in Table 1 as about 1.5.  This value is plausible since  the average sample 

size per cluster is 1340/ 47 29m = ≈  and using the 11 ( 1)m τ+ −  formula, the implied 

value of 1τ  is about 0.02 and such a small value is in line with other estimated values of 1τ  

found for attitudinal variables in British surveys (Lynn and Lievesley, 1991, App. D).  

To assess the impact of the longitudinal aspect of the data, we re-estimate the meff 

using data for waves 1,…,t for t=2, 3, … 5. Table 1 suggests a tendency for the meff to 

increase with the number of waves, as anticipated from the theoretical reasoning. These 

meffs are certainly subject to sampling error and there appears to be some genuine 

variation in misspecification effects for cross-sectional estimates at different waves but this 

variation does not appear to be sufficient to explain this trend. 
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To pursue the theoretical rationale for this finding further, note that model (5) is 

likely to be an oversimplification because the area effects are likely to display some 

variation over time, suggesting that we write atη  rather than aη . In this case, τ  becomes 

var( ) /[var( ) var( )]a a a au vτ η η= + + , where /ta at Tη η= ∑  and a au v+ =  

( ) /t ai aitu v T+∑ .  Now, it seems plausible that the  average level of egalitarian attitudes in 

an area will vary less from year to year than the attitude scores of individual women, since 

the latter will be affected both by measurement error and genuine changes in attitudes, so 

that var( )aη  may be expected to decline more slowly with T than var( )a au v+ . We may 

therefore expect τ , and consequently the meff, to increase as T increases, as we observe 

in Table 1. 

We next elaborate the analysis by including indicator variables for economic activity 

as covariates. The resulting regression model has an intercept term and four covariates 

representing contrasts between women who are employed full-time and women in other 

categories of economic activity. The meffs are presented in Table 2. The intercept term is 

a domain mean and standard theory for a meff of a mean in a domain cutting across 

clusters (Skinner, 1989b, p.60) suggests that it will be somewhat less than the meff for the 

mean in the whole sample, as indeed is observed with the meff for the cross-section 

domain mean of 1.13 in Table 2 being less than the value 1.51 in Table 1. As before, there 

is some evidence in Table 2 of tendency for the meff to increase, from 1.13 with one wave 

to 1.50 with five waves, albeit with lower values of the meffs than in Table 1. The meffs for 

the contrasts in Table 2 vary in size, some greater than and some less than one. These 

meffs may be viewed as a combination of the traditional variance inflating effect of 

clustering in surveys together with the familiar variance reducing effect of blocking in an 

experiment. The main feature of these results of interest here is that there is again no 

tendency for the meffs to converge to one as the number of waves increases. If there is a 

trend, it is in the opposite direction. For the contrast of particular scientific interest, that 
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between women who are full-time employed and those who are ‘at home caring for a 

family’, the meff is consistently well below one. 

We next refine the model further by including, as additional covariates, age group, 

year and qualifications. The results for meffs are given in Table 3. The meffs for the 

economic activity covariates again vary, some being above one and some below one. 

There is again some evidence of a tendency for these meffs to diverge away from one as 

the number of waves increases. A comparison of Tables 1 and 3 confirms the observation 

of Kish and Frankel (1974) that meffs for regression coefficients tend not to be greater 

than meffs for the means of the dependent variable. 

 

5. Alternative approaches to variance estimation  

It follows from the previous section that it is, in general, important to allow for clustering in 

variance estimation with longitudinal survey data. Evidence was presented that the effect 

of ignoring clustering was at least as great for certain longitudinal analyses as cross-

sectional analyses. The linearization estimator in (4) provides one approach to variance 

estimation. In this section we compare this estimator with a model-based approach. 

In a model-based approach, we may aim to capture the effect of clustering on 

variances by the inclusion of the random area effects, aη , in the three-level model in (5) 

and by the use of an estimation approach which encompasses both point and interval 

estimation. We consider here the use of iterative generalized least squares (IGLS), 

following Goldstein (1986). This leads to a slightly different point estimator of β  to the 

estimator in (2) but we found almost identical values of these two estimators in our 

application.  

We next estimated the standard errors for the β estimates, using the IGLS 

procedure (Goldstein, 1986), under the assumption that model (5) holds with each of the 

three random effect terms being normally distributed with constant variances. The results 
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are given in Table 4 in the column headed ‘3 level model-based’.  For comparison, we also 

estimate the standard errors under the two level model in (3) – the results are in the 

column headed ‘2 level model-based’. The estimates in the two columns are virtually 

identical. There is a single digit difference in the third decimal place for some coefficients 

and slightly greater difference for the intercept term. We suggest that this is evidence that 

simply adding in a random area effect term can seriously understate the impact of 

clustering on the standard errors of the estimated regression coefficients. To provide 

theoretical support for this claim, consider first the cross-sectional case ( 1T = ) where x is 

scalar. Then, if the three-level model (5) holds, an approximate expression for the meff of 

the variance estimator of β̂  based upon the two-level model (3) is: 

11 ( 1) xmeff m τ τ= + − ,      (6) 

where 1τ  is as above and xτ is the intracluster correlations for x (Scott and Holt, 1982; 

Skinner, 1989b, p.68). This result extends in the longitudinal case, to: 

1 1 ( 1) zmeff m ττ≤ ≤ + − � ,     (7) 

where τ�  is the long-run (T = ∞ ) version of τ (see Appendix) and zτ  is an intracluster 

correlation coefficient for /ai aitt
z x T= ∑ . The proof of this result and the simplifying 

assumptions required are sketched in the Appendix. The main point is that both τ� and zτ  

are small in our application and hence zττ� will be very small and thus the meff will be close 

to one. In our application, the estimated value of τ� is 0.019 and none of the covariates 

may be expected to display important intra-area correlation. This theoretical result 

provides one possible explanation for the negligible size of the differences in standard 

errors observed in Table 3 between the two-level and three-level models.  

As discussed in Skinner (1989b, p.68) and supported by theory in Skinner (1986), 

the main feature of clustering likely to impact on the standard errors of estimated 

regression coefficients is the variation in regression coefficients between clusters. This is 
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not allowed for in model (5). We have explored this idea by introducing random coefficients 

in the model. Treating the elements of β  now as the expected values of the random 

coefficients, we found that the estimates of β  were hardly changed. We found that the 

estimated standard errors of these estimates were indeed inflated, much more so than 

from the introduction of the single term aη ,  and that the inflation was of an order similar to 

those of the meffs in Tables 2 and 3. Nevertheless, the IGLS method did lead to several 

negative estimates of the variances of the random coefficients, raising issues of which 

coefficients to allow to vary or more generally the issue of model specification. This 

problem is accentuated with increasing numbers of covariates, as the number of 

parameters in the covariance matrix of the coefficient vector increases with the square of 

the number of covariates. Overall, the inclusion of random coefficients seems to raise at 

least as many problems as it solves, if the clustering is not of intrinsic scientific interest, 

and thus does not seem a very satisfactory way to allow for clustering in variance 

estimation. It is simpler to change the method of variance estimation. 

One approach is to use a variance estimator which allows for the kind of 

heteroskedasticity which random coefficients would generate, treating differences between 

random coefficients and their expectation β  as contributing to the error component of the 

model. This is achieved for IGLS or other likelihood-based point estimation methods for 

the multilevel model in (5) by the use of a ‘robust’ variance estimation method (Goldstein, 

2003, p. 80). These robust variance estimation methods turn out to be almost the same as 

the linearization method of section 3. Values of these robust standard error estimates are 

also included in Table 4. The robust standard error estimator for the two level model 

performs very similarly to the linearization estimator which ignores clustering. The robust 

standard error estimator for the three level model performs very similarly to the 

linearization estimator which allows for two stage sampling. The slight differences reflect 
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the differences between the estimation method for V in (2) and (4) and the IGLS 

estimation method.  

The linearization method in the presence of two-stage sampling is thus very close to 

robust variance estimation methods used in the literature on multilevel modeling. The 

distinction between the methods becomes stronger if we allow also for stratification and 

weighting. Another distinction is that in the multilevel modeling approach, differences 

between model-based and the robust standard errors might be used as a diagnostic tool to 

detect departures from the model (Maas and Hox, 2004). For example, the large 

differences in the three-level standard errors for the coefficients of age group in Table 4 

might lead to consideration of the inclusion of random coefficients for age group. This 

contrasts with the survey sampling approach where the error structure in model (5) is only 

treated as a working model and it is not necessarily expected that standard errors based 

upon this model will be approximately valid.   

In this paper we have implicitly treated the linearization method as a ‘gold standard’ 

for variance estimation because of its consistency. Nevertheless, this method may be 

expected to be less efficient than model-based variance estimation if the model is correct 

and the variance of the variance estimator should not be ignored, especially when the 

number of clusters is not large. Wolter (1985, Ch. 8) summarises a number of simulation 

studies investigating both the bias and variance of the linearization variance estimator and 

these studies suggest that the linearization method performs well even with few clusters.  

Possible degrees of freedom corrections to confidence intervals for regression coefficients 

based upon the linearization method with small numbers of clusters are discussed by 

Fuller (1984). A simulation study of estimators for multilevel models in Maas and Hox 

(2004) does not suggest that the linearization method performs noticeably worse than the 

model-based approach, in terms of the coverage of confidence intervals for coefficients in 

β ,  even with as few as 30 clusters.  
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6. Discussion 

We have presented some theoretical arguments and empirical evidence that the impact of 

ignoring clustering in standard error estimation for certain longitudinal analyses can tend to 

be larger than for corresponding cross-sectional analyses. The implication is that it is, in 

general, at least as important to allow for clustering in standard error estimation for 

longitudinal analyses as for cross-sectional analyses. Thus, the expectation from the 

finding of Kish and Frankel (1974) that complex sampling has less of an impact on 

variances for more complex analytical statistics was not borne out in this case.  

  The longitudinal analyses considered in this paper are of a certain kind and we 

should emphasise that the patterns observed for meffs in these kinds of analyses may well 

not extend to other kinds of longitudinal analyses.  To speculate about the class of models 

and estimators for which the patterns observed in this paper might apply, we conjecture 

that increased meffs for longitudinal analyses will arise when the longitudinal design 

enables temporal ‘random’ variation in individual responses to be extracted from between-

person differences and hence to reduce the component of standard errors due to these 

differences, but provides less ‘explanation’ of between cluster differences, so that the 

relative importance of this component of standard errors becomes greater. 

  The empirical work presented in this paper has also been restricted to the impact of 

clustering. We have undertaken corresponding work allowing for weighting and 

stratification and found broadly similar findings. Stratification tends to have a smaller effect 

than clustering. The sample selection probabilities in the BHPS do not vary greatly and the 

impact of weighting by the reciprocals of these probabilities on both point and variance 

estimates tends not to be large. There is rather greater variation among the longitudinal 

weights, iTw , which are provided with BHPS data for analyses of sets of individuals who 

have responded at each wave up to and including a given year, T . The impact of these 

weights on point and variance estimates is somewhat greater. As T increases and further 
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attrition occurs, the weights, iTw , tend to become more variable and lead to greater 

inflation of variances. This tends to compound the effect we have described of meffs 

increasing with T . 

  Leaving aside consideration of stratification and weighting, we have compared two 

approaches to allowing for cluster sampling. We have treated the survey sampling 

approach as a benchmark. We have also considered a multilevel modelling approach to 

allow for clustering. We have suggested that the use of a simple additive random effect to 

represent clustering can seriously understate the impact of clustering and may lead to 

underestimation of standard errors. If the clustering is of scientific interest, the solution is 

to consider the specification of the model, including for example the use of random 

coefficients. If the clustering is treated as a nuisance, simply reflecting administrative 

convenience in data collection, we suggest the survey sampling approach has a number of 

practical advantages. This is discussed further by Lavange et al. (1996, 2001) in relation to 

other applications to repeated measures data  

 

Appendix. Justification for (7) 
 

For simplicity, x  and β are taken to be scalar, β̂  is taken to be the ordinary least squares 

estimator and it is assumed that the sample sizes within clusters are all equal to m . The 

meff in (7) is defined as 3 3 2
ˆ ˆvar ( ) / [ ( )]E vβ β , where 3E  and 3var  are moments with 

respect to the three-level model in (5) and 2
ˆ( )v β  is a variance estimator based upon the 

two-level model in (3).  Under (5) we obtain 

2 2 2 2 2 2 2 2
3

ˆvar ( ) ( ) ( )cit c u ci v cit
cit c ci cit

x x x xηβ σ σ σ−
++ += + +∑ ∑ ∑ ∑ , 
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where + denotes summation across a suffix, 2 2, uησ σ and 2
vσ  are the respective variances 

of ,a aiuη  and aitv and citx is centred at 0. We further suppose that 2
ˆ( )v β  is defined so that 

2 2 2 2 2 2 2
2

ˆ[ ( )] ( ) [( ) ]cit u ci v cit
cit ci cit

E v x x xηβ σ σ σ−
+≈ + +∑ ∑ ∑ . 

After some algebra we may show that 

1 ( 1) [1 ( 1) ]/[1 ( 1) ]z x xmeff m T Tττ ρ τ ρτ= + − + − + −� ,                            (8) 

where 2 2 2/( )uη ητ σ σ σ= +� , 2 2 2 2 2( ) /( )u u vη ηρ σ σ σ σ σ= + + + , 2 2/x xB xτ σ σ= , 

2 2 /( )x citcit
x nTσ = ∑ , 2 2 2[ ( / ) / / ]/[1 1/ ]xB ci xci

x T n T Tσ σ+= − −∑ , 2 2/z zB zτ σ σ= , 

2 2 /z cici
z nσ = ∑ , 2 2 2[ ( / ) / / ]/[1 1/ ]zB c zc

z m C m mσ σ+= − −∑  and n Cm=  is the sample 

size. Note that when 1T = , we have 1ρ =  and (8) reduces to (6). In general 1ρ ≤  and 

(7) follows from (8). In fact, we estimate ρ  as 0.59 in our application so the bound in (7) is 

not expected to be very tight. 
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Table 1.  Estimates for Longitudinal Means 

 β̂  s.e. meffs 
Waves 1-9  1-9  1 1,3 1,3,5 1-7 1-9 

 19.83 0.12 1.51 1.50 1.68 1.81 1.84 
 

 

Table 2.  Estimates for Regression with Covariates defined by Economic Activity 

 β̂  s.e. meffs 
Waves 1-9  1-9  1 1,3 1,3,5 1-7 1-9 

        

Intercept 20.58 0.11 1.13 1.01 1.09 1.38 1.50 
        

Contrasts for        
 PT employed -1.03 0.10 0.93 0.91 0.93 1.00 0.89 
 Other inactive -0.80 0.15 0.60 0.96 0.68 0.76 0.81 
 FT student 0.41 0.24 1.10 1.32 1.14 1.48 1.44 
 Family care -2.18 0.10 0.72 0.49 0.58 0.66 0.60 

 

Note:  intercept is mean for women full-time employed 
 contrasts are for other categories of economic activity relative to full-time employed 

 

Table 3. Estimates for Regression Coefficients with Additional Covariates in Model 

 β̂  s.e. meffs 
Waves 1-9  1-9  1 1,3 1,3,5 1-7 1-9 

        

Intercept 20.20 0.30 0.95 0.87 0.87 1.04 1.07 
        

Year, t -0.04 0.01 - 0.86 0.69 0.59 0.96 
        

Age Group        
 16-21 0.00 -      
 22-27 -0.71 0.25 1.22 1.37 1.44 1.73 1.64 
 28-33 -0.89 0.27 1.38 1.40 1.46 1.68 1.59 
 34+ -1.03 0.27 0.94 1.10 1.13 1.26 1.34 
        

Economic 
Activity 

       

 FT employed 0.00 -      
 PT employed -0.93 0.10 0.97 0.95 0.96 1.06 0.91 
 Other inactive -0.75 0.15 0.60 0.96 0.68 0.77 0.81 
 FT student 0.17 0.24 0.93 1.32 1.23 1.39 1.32 
 Family care -2.09 0.10 0.77 0.59 0.70 0.78 0.67 
        

Qualification        
 Degree 0.00 -      
 QF -0.52 0.21 0.77 0.64 0.75 0.87 0.85 
 A-level -0.61 0.24 0.98 0.87 0.94 0.94 1.01 
 O-level -0.44 0.20 0.62 0.62 0.59 0.69 0.73 
 Other -1.16 0.22 0.83 0.83 0.78 0.80 0.82 
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Table 4.  Estimated Standard Errors of Regression Coefficients 

 Linearization  Multilevel modelling 

 SRS complex  
2 level 
model-
based 

2 level 
robust 

3 level 
model-
based 

3 level 
robust 

        

Intercept 0.287 0.296  0.253 0.288 0.259 0.293 
        

Year, t 0.014 0.014  0.013 0.014 0.013 0.014 
        

Age Group        
 16-21        
 22-27 0.191 0.245  0.155 0.192 0.155 0.243 
 28-33 0.214 0.270  0.187 0.215 0.187 0.266 
 34+ 0.237 0.275  0.218 0.238 0.218 0.271 
        

Economic 
Activity        

 FT employed        
 PT employed 0.103 0.098  0.098 0.103 0.098 0.096 
 Other inactive 0.166 0.150  0.146 0.166 0.146 0.148 
 FT student 0.207 0.238  0.199 0.207 0.199 0.236 
 Family care 0.125 0.102  0.112 0.125 0.112 0.101 
        

Qualification        
 Degree        
 QF 0.228 0.210  0.207 0.228 0.208 0.211 
 A-level 0.238 0.239  0.209 0.240 0.210 0.237 
 O-level 0.234 0.199  0.217 0.235 0.218 0.199 
 Other 0.247 0.224  0.229 0.249 0.230 0.223 

 

 

 

 


