The University of Southampton
University of Southampton Institutional Repository

Exact properties of the conditional likelihood ratio test in an IV regression model.

Hillier, Grant (2009) Exact properties of the conditional likelihood ratio test in an IV regression model. Econometric Theory, 25, (4), pp. 915-957. (doi:10.1017/S026646660809035X).

Record type: Article


For a simplified structural equation/IV regression model with one right-side endogenous variable, we derive the exact conditional distribution function of Moreira's (2003) conditional likelihood ratio (CLR) test statistic. This is used to obtain the critical value function needed to implement the CLR test, and reasonably comprehensive graphical versions of this function are provided for practical use.

The analogous functions are also obtained for the case of testing more than one right-side endogenous coefficient, but in this case for a similar test motivated by, but not generally the same as, the likelihood ratio test. Next, the exact power functions of the CLR test, the Anderson-Rubin test, and the Lagrange multiplier test suggested by Kleibergen (2002) are derived and studied. The CLR test is shown to clearly conditionally dominate the other two tests for virtually all parameter configurations, but no test considered is either inadmissable or uniformly superior to the other two.

The unconditional distribution function of the likelihood ratio test statistic is also derived using the same argument. This shows that both exactly, and under Staiger/Stock weak-instrument asymptotics, the test based on the usual asymptotic critical value is always oversized and can be very seriously so when the number of instruments is large.

Full text not available from this repository.

More information

Published date: August 2009
Organisations: Economics


Local EPrints ID: 150161
PURE UUID: 865ea112-4fd3-466b-b72c-17b3ae056a64

Catalogue record

Date deposited: 04 May 2010 13:07
Last modified: 18 Jul 2017 19:22

Export record


Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.