

1965

High-power and tunable operation of a diode-bar-pumped double-clad Tm-doped silica fibre laser at $2\mu\text{m}$

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin and D. C. Hanna

Optoelectronics Research Centre
University of Southampton
Southampton, SO17 1BJ
United Kingdom

tel. +44 23 8059 3776
fax. +44 23 8059 3142
e-mail: wac@orc.soton.ac.uk

Abstract

A cladding-pumped Tm-doped fibre laser produced 14W of output at $2\mu\text{m}$ for 36.5W of launched pump at 787nm. Wavelength tuning from $1.87\mu\text{m}$ to $2.03\mu\text{m}$ at power levels $>1.8\text{W}$ for 16W of pump is also reported.

High-power and tunable operation of a diode-bar-pumped double-clad Tm-doped silica fibre laser at $2\mu\text{m}$

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin and D. C. Hanna

Optoelectronics Research Centre

University of Southampton

Southampton, SO17 1BJ

United Kingdom

tel. +44 23 8059 3776 fax. +44 23 8059 3142 e-mail: wac@orc.soton.ac.uk

Solid-state sources with high output power in the 'eyesafe' $2\mu\text{m}$ spectral region have applications in medicine and LIDAR, and also provide an ideal starting wavelength for nonlinear frequency conversion to the mid-infrared (3-5 μm) spectral region. For many of these applications high efficiency and good beam quality are also required. This combination of operating characteristics is often difficult to achieve in conventional 'bulk' solid-state lasers due to thermal effects, which degrade beam quality and reduce overall efficiency. Double-clad fibre lasers offers an alternative means for scaling to high power [1],[2] with the advantage that thermal loading is distributed over a long length of fibre minimising the risk of damage, and the beam quality is determined by the waveguiding properties of the core, which can easily be tailored to produce a single-mode output.

The fibre used in our experiments was fabricated in-house and had a Tm-doped aluminosilicate core of diameter $20\mu\text{m}$ and 0.12NA, and an inner cladding with outer dimension $\sim 200\mu\text{m}$. The latter was coated with a low index ($n=1.375$) polymer outer cladding resulting in a high numerical aperture of 0.49 (calculated) for the inner cladding. The fibre was pumped from opposite ends by two diode-bars at 787nm. The output from each bar was re-formatted by two-mirror beam shapers [3] to allow efficient coupling into the inner cladding. The effective absorption coefficient for the pump light was measured to be 0.46dB/m. Feedback for laser oscillation was provided by a dichroic mirror with high reflectivity (>99.8%) at $2\mu\text{m}$ and high transmission (85%) at 787nm, butted to one end of the fibre, and by the 3.5% Fresnel reflection from the other cleaved fibre end. For a fibre length of 4.5m, the threshold pump power was 5.8W (launched), and at the maximum pump power of 36.5W (launched) the fibre laser produced 14W of output at a $1.998\mu\text{m}$. We measured a beam quality factor, $M^2 < 1.1$, confirming the single-mode nature of the output beam. The slope efficiency with respect to launched power (~46%) was greater than the Stokes efficiency (~39%), suggesting that 'two-for-one' cross-relaxation [4] may enhance the efficiency as is commonly the case in Tm-doped crystal lasers.

Tunable operation of the Tm-doped fibre laser was investigated using a modified arrangement with a single diode-bar pump source, a shorter length of fibre (~1.7m) to reduce re-absorption loss, and a diffraction grating to provide the required wavelength selection. In preliminary experiments, wavelength tuning from $1.87\mu\text{m}$ to $2.03\mu\text{m}$ (i.e. over a range of 160nm) at power levels >1.8W was achieved for a maximum pump power (launched) of ~19W (15.8W absorbed). At a wavelength of $2.00\mu\text{m}$ the output power was >2.3W. Further extension of the tuning range and a significant increase in output power should be achievable through optimisation of the pump in-coupling optics and the fibre laser design. The combination of high power, high efficiency, diffraction-limited beam quality and wide tunability available from cladding-pumped Tm-doped fibre lasers should make these devices attractive for a wide range of applications.

References

1. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh and E. Zucker, Conference on Lasers and Electro-Optics 1999 Technical Digest, Optical Society of America, Washington, D.C., paper CPD11.
2. S. D. Jackson and T. A. King, Opt. Lett., 1998, **23**, pp. 1462-1464.
3. W. A. Clarkson and D. C. Hanna, Opt. Lett., 1996, **21**, pp. 375-377.
4. T. Becker, R. Clausen, G. Huber, E. W. Duczynski and P. Mitzscherlich, in Tunable Solid-State Lasers, vol.5 of OSA Proceedings, (Optical Society of America, Washington, D.C.), 1989, pp.150-153.