The University of Southampton
University of Southampton Institutional Repository

Rotating gravity currents. Part 1. Energy loss theory

Rotating gravity currents. Part 1. Energy loss theory
Rotating gravity currents. Part 1. Energy loss theory
A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to $\surd 2$, as for non-rotating flows.
0022-1120
35-62
Martin, J.R.
cdd66693-adae-4f31-b9d9-7d02b0eba675
Lane-Serff, G.F.
129c1906-92f5-4c21-b039-f5d4790248f9
Martin, J.R.
cdd66693-adae-4f31-b9d9-7d02b0eba675
Lane-Serff, G.F.
129c1906-92f5-4c21-b039-f5d4790248f9

Martin, J.R. and Lane-Serff, G.F. (2005) Rotating gravity currents. Part 1. Energy loss theory. Journal of Fluid Mechanics, 522, 35-62. (doi:10.1017/S0022112004001983).

Record type: Article

Abstract

A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to $\surd 2$, as for non-rotating flows.

This record has no associated files available for download.

More information

Published date: 2005

Identifiers

Local EPrints ID: 15053
URI: http://eprints.soton.ac.uk/id/eprint/15053
ISSN: 0022-1120
PURE UUID: 62d1eb88-9287-403c-b176-250df6c54e92

Catalogue record

Date deposited: 17 Mar 2005
Last modified: 15 Mar 2024 05:33

Export record

Altmetrics

Contributors

Author: J.R. Martin
Author: G.F. Lane-Serff

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×