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1. INTRODUCTION

1.1 Site description

The site at which the wave measurements were taken is shown on the map
in figure 1.1. The buoy was moored in a water depth of approximately 88
metres at position 57055.8'N,001054.1'W. It is about 26 kilometres NNE
of Kinnairds Head, Banffshire, NE Scotland.

The receiving site was on Quarry Head, about 3 kilometres SW of
Rosehearty, Banffshire.

1.2 Description of measuring and recording systems

Wave measurements were made using a standard Waverider buoy moored as
described by Humphery (1982). This instrument senses the vertical
acceleration of the buoy by means of a stabilized accelerometer and uses
analogue double integrators to reconstitute the surface elevation. This
information is transmitted ashore via a high frequency (HF) radio 1link
employing a frequency modulated (FM) subcarrier to encode the wave
height information.

At Quarry Head the buoy’s transmissions were received and a counting
arrangement ( described in Appendix 1 ) was used to decode the wave
height information. In this way a measure of surface elevation was ob-
tained at 0.5 second intervals in the form of a digital count. This was
recorded on magnetic tape using a Microdata digital data logger. The
time between successive records was 3 hours, and the length of each
record was 17 minutes. A back-up cassette system was also employed to
log the FM buoy-signal directly. These cassettes could be used to
provide in-fill data in the event of a malfunction of the Microdata.

1.3 Calibration and maintenance

The buoy was maintained on site by Wimpey Laboratories Ltd (now Wimpol
Ltd) wunder contract to I0S. Regular replacement visits were made by
Wimpey Laboratories Ltd and, in addition, special buoy~replacement
visits were also made either when data reception stopped, or when data
quality fell below acceptable standards. Appendix IV contains a brief
history of the site.

The buoys were calibrated periodically by Wimpey Laboratories Ltd staff
using the facilities at the National Maritime Institute at Hythe. Buoy
sensitivity has been found in practice to be within t 2%, and the
decoding technique described in Appendix I has reduced variations in
sensitivity due to the shore station equipment to a negligible wvalue.
Therefore the overall sensitivity of the system is stable to
within * 2%, A local site agent changed the Microdata cartridges,
cassette tapes and also reported signal-loss and any other malfunctions.

1.4 Wave data coverage and return ( figures 1.4 (a) - 1.4 (£f) )

The data covered the period from 1 February 1980 to 31 January 1982.
For this period 2470 of the 5848 possible Microdata records were either
missing or classified invalid, resulting in a data return of 57.76%. No
attempt has been made to correct any bias which may have resulted from
missing/invalid records, because of the wuncertain reliability of the
available techniques.



Month Number
YEAR 1 2 3 4 5 6 7 8 9 10 11 12

1980 - 38 155 163 149 27 50 242 42 11 69 --
1981 182 215 215 139 189 31 168 234 216 213 216 235
1982 179

TOTAL 361 253 370 302 338 58 218 476 258 224 285 235

TABLE 1.4 : Number of valid records for each calendar month , With
totals for the whole period.

(However, there is one exception: simple gap—filling by linear
interpolation, up to a maximum of 7 consecutive records, has been
carried out for the purpose of persistence calculations only: see
section 3.6)

It can be seen from table 1.4 that there was a poor representation for
the month of June and that August had a good data return. Although there
is little seasonal bias, the data return over the two year period was
generally poor. The approximate times when missing/invalid records
occurred may be derived from the plots in figure 1.4 which shows Hs as a
time series. On these plots each vertical line represents a valid
record, and the height of the line is proportional to the value of Hs
for that record; therefore these plots also indicate the variation of Hs
with time.

2. WIND DATA - COMPARISON WITH THE LONG-TERM AVERAGE

This section is intended to place the wind speeds recorded during the
wave data gathering period into context, by relating them to the long
term wind speed results. It is intended that this information should
allow a qualitative assessment of how typical the measured waves are of
the longer time scale. The meteorological statéon nearest to the wave
measurement site is Fraserburgh (57 40°N, 002 00°W). The data used are
hourly winds speeds from February 1970 to January 1982.

2.1 Monthly variation of wind speeds (figure 2.1)

Mean wind speeds for each of the calendar months of the two year period
of this report are plotted. (Data for November 1980 were unavailable).
In addition, the ‘long-term’ mean wind speed and its standard deviation
are calculated and plotted for each of the twelve calendar months.
Comparing monthly means for the ‘long-term” data with that from the
years when wave data were recorded, it can be seen that the wind speeds
in winter were slightly higher than the long-term mean: in most months
at least one of the two year values lies above the standard deviation.
In summer the wind speeds are slightly lower than the long-term mean,
though all values lie within the standard deviation.



2.2 Yearly variation of wind speeds (figure 2.2)

The year-to-year variability of wind conditions is illustrated 1in this
figure. It shows, for each year, the maximum value of wind speed, the
means of the next N highest wind speeds, where N = 5, 10, 20, 50, 100
(thus the highest 186 wind speeds are represented) and the overall mean
wind speed.

It can be seen that for 1973/4 and 1981/2 the maximum wind speeds are
higher than those recorded for any of the other years, whilst the
overall mean wind speeds for these same years are consistent with the
general trend during the twelve year period. The 1981/2 maximum which
is the larger of those mentioned above (seen on figure 2.2) occurred
during the period for which wave measurements are available, between
23rd November 1981 at 2100hrs and 24th November 1981 at 000lhrs; when
wind conditions were 53 knots 270° and 56 knots 280° respectively.
Under these circumstances the wave conditions at Kinnairds Head are
fetch-limited, and comsequently this storm did not generate the highest
waves recorded during the report period (see section 3 for highest
wave).

3. WAVE DATA - DESCRIPTION AND DISCUSSION OF THE PRESENTATIONS
Where figures show seasonal data, the seasons are defined as follows:

Summer — April to September
Winter - October to March

The maximum value of Hs in these two years of data was recorded on the
28th February 1981 at 1500hrs. Wind conditions on this day were near
gale force, South Easterlies. There was an increase in wind speed
during the latter part of the day, yielding a mean wind speed of 29.5
knots. Under these circumstances the wave conditions at Kinnairds Head
are not fetch-limited and a Hs value of 8.65 metres was recorded; the
associated value of Tz is 9.70 seconds and of Hmax(50) is 16.29 metres.

3.1 Statistics of variations of wave heights

3.1.1 Monthly variation of Hs (figure 3.1.1)

For each month, the mean significant wave height is calculated and
plotted seperately for each year. The yearly variation is most
pronounced for the months February and September, with the greatest
variation in September.

3.1.2 Yearly variation of Hs (figure 3.1.2)

The year—to-year variability of wave conditions is illustrated in this
figure. It shows, for each year, the maximum value, the means of the
next N highest values where N = 5, 10, 20, 50, 100 (thus the highest 186
values of Hs are represented) and the overall mean value of Hs. The
plot shows that the overall mean wave conditions are similar for each of
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the two years, and that the maximum Hs value for 1981/2 is larger than
that for 1980/1.

3.2 Statistics of wave heights

3.2.1 Occurrence of Hs (figures 3.2.1.1 - 3.2.1.3)

The percentage occurrence of Hs is shown by means of histograms. It can
be seen from figure 3.2.1.3 that approximately 76% of the annual Hs
occurrences lie between 0.5 and 2.5 metres.

3.2.2 Exceedance of Hs and Hmax(3hr) (figures 3.2.2.1. - 3.2.2.3.)

These graphs may be used to estimate the fraction of the time during
which Hs 1is greater than or less than, a given height. For instance,
from figure 3.2.2.2 it may be seen that during the winter the
significant wave height exceeded 4 metres for approximately 6% of the
time.

3.3 Design wave heights

The methods used to calculate the design wave height (the most probable
height of the highest wave with a return period of 50 years) are
described in Appendix III. The results obtained by different methods
are given below:

3.3.1 Weibull distribution of Hs (figure 3.3.1)

The parameters of the Weibull distribution which most closely fits the
data are A = 0.62 metres, B = 1.13 metres and C = 1.07. This
distribution is represented by the straight line in figure 3.3.1 Extra-
polation of this line to a return period of 50 years yields a value of
Hs of 12.2 metres. The value of Tz associated with this Hs is approx-—
imately 11.8 seconds, resulting in a value of the design wave height of
22.7 metres.

3.3.2 Fisher-Tippett I distribution of Hs (figure 3.3.2)

The parameters of the Fisher-Tippett I distribution which most closely
fit the data are a = 1.06 metre 'and b = 1.14. This distribution is
represented by the solid straight line on figure 3.3.2.

However, inspection of the plotted points suggests that the data falls
on two approximately straight 1line segments: one extending up to 6
metres and one above 6 metres. The latter segment which includes the
top 6 classes of the sample distribution contains only 10 observations
out of a total of 3378 and is thus poorly defined. In spite of this, it
is these observations which are most relevant to the problem of
estimating extreme waves and we cannot disregard the information
contained 1in them. With these considerations in mind we construct two
further (dashed) lines L1 and L2 which give the best fit (by eye) to the
two segments. Extrapolation of each of the resulting three lines to a
return period of 50 years gives, for line L1 a value of Hs(50) of 11.0,
for line L2 a value of Hs(50) of 13.4, and for the best fit line a
value of Hs(50) of 12.3 metres. The approximate values of Tz associated
with each of these values of Hs are 11.1, 12.4, and 11.8 seconds
respectively. Using these figures the design wave height (Hmax(50)) for
each of these 1lines are 20.5, 24.8 and 22.8 metres respectively. The
range of these values, about 4.3 metres, can be taken as the uncertainty
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in the design wave prediction introduced by the extrapolation process
and is essentially due to the poor sampling of the higher waves.
Hmax(50) is thus 22.8%2.3 metres using the Fisher-Tippett I dis-
tribution as our model.

3.3.3 Individual Wave Model (figure 3.3.3)

The value of steepness used by the wave-by-wave method of determining
the design wave height (as described in Appendix III) is 1:13 and the
inverse mean period is 0.20 Hz. Using these values and the Fisher-
Tippett 1 parameters given in section 3.3.2, the data which appear in
figure 3.3.3 are obtained; by interpolation the design wave height is
found to be 25.1 metres. A higher value of design wave height is
expected from this method than from the two methods described above, for
reasons stated in Appendix III.

3.4 Statistics of wave periods
The percentage occurrences of each of three wave period parameters ( Tz,
Tbar, and Te ) are shown on a series of histograms.

3.4.1 Occurrence of Tz (figures 3.4.1.1 = 3.4.1.3)

In figure 3.4.1.3 the most frequently occurring values of Tz in the data
set lie between 4.0 and 4.5 seconds ( 17.2% of the total). All values
of Tz lie between 2.5 and 10.0 seconds.

3.4.2 Occurrence of Tbar (figures 3.4.2.1 - 3.4.2.3)

In figure 3.4.2.3. the most frequently occurring values of Tbar in the
data set 1lie between 4.5 and 5.0 seconds ( 14.6% of the total). All
values of Thbar lie between 2.5 and 11.5 seconds.

3.4.3 Occurrence of Te (figures 3.4.3.1 - 3.4.3.3)

In figure 3.4.3.3 the most frequently occurring values of Te in the data
set lie between 5.5 and 6.0 seconds ( 12.4% of the total). All values
of Te lie between 3.0 and 13.0 seconds.

3.5 Statistics of wave height and period combined.

These figures (sometimes called ‘scatter’ plots) show the numbers of
wave records having particular combinations of values of Hs and period
parameters (Tz, Tbar, and Te). The numbers of wave records are
presented as parts per thousand ( the total number of valid observations
being shown on each figure), except for those which would be less than
one part per thousand; these are shown instead as single occurrences and
are distinguished by being underlined.

3.5.1 Occurrences of Hs and Tz combined (figures 3.5.1.1 - 3.5.1.3)

On these figures points of equal occurrences are joined by contour lines
to give an 1indication of the bivariate probability distribution of Hs
and Tz, and to illustrate the correlation between them. A wave
‘steepness’ (as defined in Appendix III) can be calculated for each
(Hs,Tz) pair. A line is drawn on figure 3.5.1.3 showing a ’steepness’

of 1:12, wh;ch is the limiting ‘steepness’ for the main body of the
data. (Wave ‘steepness’ as shown in this figure are 1less than the

maximum of 1:7 for ar individual wave, since Hs and Tz are parameters
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averaged over a number of waves most of which have ‘steepness’ less than
this maximum).

3.5.2 Occurrences of Hs and Tbar combined ( figures 3.5.2.1. - 3.5.2.3)
These figures show data boundaries similar to those of wave ‘steepness’
in figures 3.5.1.1 to 3.5.1.3.

3.5.3 Occurrences of Hs and Te combined ( figures 3.5.3.1 - 3.5.3.3)

On these figures lines of constant wave power per unit length of wave
crest are shown (in Kw/m), using the formula applicable to deep water
(see Appendix II). It should be noted that using the deep water formula
instead of the depth-dependent formula results in an underestimate of
wave power; the magnitude of this underestimate depend on the depth of
the water and on the form of the spectrum. Typically for this site, the
underestimation is less than 57%.

3.6 Presentation of persistence of calms and of storms of Hs

Seasonal presentations of persistence of calms and of storms of Hs are
omitted, because of the lack of continuity of the data (figures 1.4(A) -
1.4(F) illustrate this). The two year period of wave data is presented
in figures 3.6.1 and 3.6.2.

3.6.1 Persistence of calms of Hs (Figure 3.6.1)

Information about, for example, calms of Hs less than 1.0 metre can be
derived from this figure. The mean duration of calms was approximately
28 hours (with a standard deviation of 34 hours); and the time occupied
by these events was 287 of the total observation time (given on the
figure as 11643 hours). To calculate the number of such events which
are likely to occur in a complete year, we proceed as follows, assuming
that the statistics of our incomplete data set are representative of
those of a typical complete year.

The number of hours in a complete year = 24 x 365 = 8760, and so Hs is
less than 1.0 metre for 28% x 8760 = 2453 hours. The number of events
is time period/mean duration of each event = 2453/28 = 88 events per
year.

3.6.2 Persistence of storms of Hs (figure 3.6.2)

Similar information can be obtained for storms. Information about, for
example, storms of Hs greater than 4.0 metres can be derived from this
figure. The mean duration of storms was approximately 14 hours (with a
standard deviation of 15 hours); and the time occupied by these events
was 47 of the total observation time (given on the figure as
11643hours). To calculate the number of such events which are likely to
occur in a complete year, we proceed as above, assuming that the
statistics of our incomplete data set are representative of those of a
typical complete year.

The number of hours in a complete year = 24 x 365 = 8760 and so Hs is
greater than 4.0 metres for 4% x 8760 = 350 hours. The number of events
is time period/mean duratuion of each event = 350/14 = 25 events per
year.
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3.7 Distribution of wave energy with Hs and Te. (figures 3.7.1 - 3.7.3)
For each wave record the wave power (P) per metre of wave crest 1is
calculated from Hs and Te using the formula applicable to deep water.
(see Appendix II and the note in section 3.5.3) The total energy flux at
the buoy position during the period T is given by:

E= ]O‘P(t)dt

which is in kWh/m provided t is measured in hours.

We approximate this, assuming P remains constant over the interval bet-
ween records by:

/_\.tz:.L P.L

where i is the observation index,
At is the observation interval and is equal to 3 hours for this
site,
P is the power, and the sum is over the total number of 3-hourly
observations in period T, thus for a single 3-hourly period the
energy = Pat.

For each class of (Hs,Te ) the energy from all records with Hs and Te
values falling within the class is summed. The total energy within each
class is then expressed in parts per thousand of the overall total
energy and 1is presented in these figures ( a zero indicates less than
one part per thousand). In figure 3.7.3 it can be seen that a large
proportion of the wave energy measured at the site during this two year
period is associated with values of Hs and Te in the middle sector of
their ranges.

3.8 Occurrence of Qp (figures 3.8.1 - 3.8.3)

For each record Qp, which is proportional to the degree of peakedness of
the spectrum, is calculated (see Appendix I1I). The most frequently
occurring values of Qp in the data set lie between 1.5 and 2.5
(approximately 61.0%). All values of Qp lie between 0.5 and 5.5 (figure
3.8.1.3).
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APPENDIX I

Frequency logging of wave data

The Waverider buoy employs a 259Hz frequency modulated (FM) subcarrier
to encode wave height information and has a nominal calibration so that
an upward motion of the buoy of 1 metre displacement results in an
increase in subcarrier frequency by 1.86Hz. Traditionally the wave
height information is extracted from the signal by monitoring the V.C.O.
(voltage control oscillator) voltage in a phase locked loop demodulator.
In the IOS system however a different approach is used. The 259Hz FM
signal is applied to a phase locked loop which multiplies the subcarrier
frequency by a factor of 128 and also serves to filter out any
extraneous noise. The phase 1locked loop output is subtracted from a
signal with a fixed frequency of 128 x 290Hz. This gives a signal whose
frequency depends upon wave height and for which (290-259) x 128Hz
corresponds to zero wave height. The frequency of this signal is
counted over a period of one half second, so that for the zero wave
height a count of 1984 1s obtained. In the presence of waves the count
will change by -1.86 x 64 counts per metre of upward displacement.

The counting scheme described above determines the frequency response of
the detector system which has the form:

sin x
X

where x =mft, t is the time period over which the frequency is counted
(0.5 seconds); and f is the sea wave frequency. For high frequencies
(above 1Hz) the response function should be slightly modified to take
account of the frequency response inherent in the phase locked loop.

This system has two advantages over the traditional analogue logging
system: Firstly, the receiver and demodulator do not require regular
calibration. Secondly, the system frequency response serves as a pre-—
cisely defined low pass anti-alias filter.
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APPENDIX II

Method of spectral analysis and derivations of wave parameters

The digital time-series of water surface elevations (recorded for
approximately 17 minutes with a sampling interval of 0.5 seconds) allows
an estimate to be made of the spectrum of the sea for the three-hour
period over which the time—-series is considered to be representative.
An outline of the method of spectral analysis used is given below.

I1.1 The Fast Fourier Transform
Using the Fourier theorem, the elevation of the sea surface above its
mean at timet is given by

@
h(t) = Z {a, cos gr;_lt + b, sin 21;it}
=1

where

T is the record length.

The Fast Fourier Transform, based on the above relationships, is used to
compute the pairs of coefficients, a, and b; , at the fundamental
frequency

1

and at integral multiples of this frequency up to the Nyquist frequency

£ 1
mAX T AT

where AT is the sampling interval.
The sample estimate of the spectrum at the ith frequency, ®i, 1s then
computed as

.= L(a.z +bi2) .

I1.2 Tapering of the data

Variance of the wave record which is not located at one of the harmonic
frequencies appears in the spectral estimates not only of the harmonics
ad jacent to the true frequency but in a band of harmonics. This
"leakage” leads to biassed estimates in that on balance a small
proportion of the variance which should appear in the neighbourhood of

the spectral peak ‘leaks’ towards higher and lower frequencies. The
effect can be reduced by tapering the ends of the time-series data

smoothly to =zero before performing the Fast Fourier Transform; a
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‘cosine taper’ applied to 12.5% of the record at each end has been used
on the data described in this report. (This leads to a small increase
in the sampling errors of the spectral estimate.)

I1.3 Smoothing the spectral estimates

The spectral estimates,®;, have a standard error of 100%. This large
standard error may be reduced by taking the average of consecutive
spectral estimates, and assigning to it the mid-frequency of the band of
estimates used. Some of the data used in this report are derived from
smoothed spectral estimates, S, which have been averaged in blocks of
ten.

10j
1
Sj== 2o
. 10 1=10j—9
and

I1.4 Application to the wave data

The wave data described in this report are derived from time-series
containing 2048 values of sea surface elevation taken at 0.5 second
intervals.

fo= 52— Hz = .0
Therefore 0~ 5048 Hz 009766 Hz
frr\ax=1HZ.

and
Smoothing the spectral estimates in blocks of ten results in 102
smoothed estimates at the following frequencies

f, = .00537 Hz

fmax = .992 HZ

Af = .009766 Hz .

The normalised standard error of the smoothed spectral estimates is 32%,
although the tapering process increases this error by a small amount.,

II.5 Definition of spectral moments
The nth moment of a continuous spectrum is

© n
mn=-[ " E(f) of

where E(f) is the spectral density at frequency f.

For the discrete spectra produced from the digital time-series, the
following equation has been wused in the calculation of the spectral
moments.

U
mp = % 2"
I=|L

42; (faz = .0410Hz),
651; (fes1 = .6357Hz).

where i
iy
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I1.6 Derivation of wave parameters
The wave parameters presented in this report are derived from the
spectral moments using the following identities.

HS = 4 V mo
Tz = /Mo
Mo
T (Tbar) = Mo
1
Te = Mo
Mg

The spectral peakedness parameter Qp (GODA(1970)) is computed from

Qp = 1=
Tm,

where j. = 5; (fs = .0444Hz)

ju=65; (fes = .6304Hz)
(It should be noted that the smoothed spectral estimates are used in the
calculation of the peakedness parameter.)

|
2i(f,‘8j2)
7

Wave power may be calculated from the spectra using the expression

P=fE(f) Vy(f,d) df

where Vb is the group velocity at frequency f and in water of depth d.
An approximation to this expression has been used in this report, based
on the assumption that the wave measurements were made in deep water: in
this case

Vg(f,d) =Vy(f) = Zi‘_f

which leads to

P'= 0.49Hs?Te

where P’ is in kilowatts per metre of wave crest
Hs is in metres
Te is in seconds.

II1.7 Reference

GODA Y 1970. Numerical experiments on wave statistics with spectral
simulation. Report of the Port and Harbour Research Institute 9,
No 3, 3-57. -
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APPENDIX III

Details of methods used for calculating design wave heights

III.1 By finding the long-term distribution of Hs

III.1.1 Hs is used as a measure of the "sea-state" (i.e. the intensity

of wave activity), and it is sampled every 3 hours. It is assumed that
a set of Hs data for one year, or an integral number of years, is
representative of the wave climate.
For each value of Hs, the probability that this value will not be
exceeded 1is calculated; this probability is then plotted against Hs.
The axes are scaled according to an extreme-value distribution, so that
data with a perfect fit would appear as a straight line on the diagram.
This procedure is carried out using extreme—value distributions defined
in the following ways

Weibull

_A\C
1—exp[—(h—BA)J, for h>A
Prob{(Hs <h) =

0 , for h<A

where B and C are positive, and A represents a lower bound on h.

Fisher-Tippett I (first asymptote)

Prob(Hs<h) = exp[— exp(—ah+b)]- a=>0

Fisher-Tippett III (third asymptote)

exp [— (%)C] , for h<A

1 ~, for h>A

where B and C are positive, and A represents an upper bound on h. (See
FISHER AND TIPPETT(1928) and GUMBEL (1958) for the derivations of these
distributions.)

For each extreme-value distribution the best—fit straight line is drawn;
this line 1is then extrapolated to the desired probability (see section
I1I.1.2) and the corresponding value of Hs is read off as the "design
sea-state".

III.1.2 To calculate the "sea-state" which will be exceeded only once
in N years, a storm duration of D hours needs to be assumed. The
probability that a randomly chosen time will be within this storm is
then

D
24 x365.25xN
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10S uses D = 3 hours (this choice is discussed in section III.l1.5) which
gives

-4
Probability = 3—4-%—10——

6.845x10°% for N =50years

III.1.3 The value of Tz for the "design sea-state'" is required before
the highest wave in the storm can be calculated. This is derived from
the bivariate distribution of Hs and Tz (figure 3.5.1.3). A line is
drawn across this at the "design sea-state" value of Hs and the most
likely value of Tz (the modal value) is then estimated wusing extra=
polations of the probability contours.

III.1.4 The most probable value of the highest zero-up—cross wave in
the storm is then derived by assuming that the heights of such waves
follow a Rayleigh distribution whose probability density function is

prob (h) = (__2ﬁ_2 exp [— (_h__)z]

Hrms Hrms

where Hrms = Hs

Exact theory is not available for zero—up-cross wave heights, but this
distribution has been found to be an adequate fit to measured data. If
there are n waves in the recording interval (3hr), then the probability
that the highest wave, H, in three hours is less than h is

Prob (H<h) = { 1- exp[—(Hh )2]

rms,
with a corresponding probability density function

(H?ﬁ h exp[—(H:ns>2] {1 —exp[_<|-1rhms)2]%n-1

The most probable value (the mode) of this probability demsity function
is usually used and is given by

Hmax (3hr) = Hrms VW

where P is a function of Tz which may be found using either figure 7 or
equation 6.,1-2 in TANN(1976).

III.1.5 In choosing the value of storm durationD, it should be noted
that the effect of increasingD is to decrease the value of Hs for a
given return period N. However, it also increases the ratio of
Hmax(3hr) to Hs. It is found that in practice these effects roughly
cancel and typically the value of Hmax(3hr) changes by only 3 per cent
for a change of D from 3 to 15 hours. The choice of D is therefore not
critical.

Many details of the above procedures may be found in TANN(1976).
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I1I.2 By a wave—-by-wave method

I1I.2.1 BATTJES(1970) shows that the probability that a randomly chosen
wave will have a height H greater than h is

L7 L7R(h, Hs) T2 p(T2, Hs) dHs dT
Prob(H>h) = <0 <o 2
_'; _’; Tz p(Tz,Hs) dHs dTz

where R(h Hs) is the Rayleigh cumulative probability function
and p(Tz,HS) is the joint probability density function of Hs and Tz.

III.2.2 TANN makes the following suggestion in an wunpublished manu-
script. In order that values of Hs higher than those actually measured
may be represented in the calculation of this probability, the values of
Hs are assumed to have a long-term cumulative probability function
F(Hs), and a probability density function f(Hs)= F'(Hs).

For each value of Hs throughout the long-term distribution, an average
value of Tz" 1is used (denoted bylz'(Hg9). It is defined as

Tz(Hs) ='/(; Tz p(Tz,Hs) dTz
f (Hs)

Therefore

[+ 4]
A‘ Tz p(Tz,Hs) dTz = Tz7/(Hs) f(Hs)

which, when substituted into equation (1), allows the probability of
exceedance to be written

LR, Hs) T(HS) f(Hs) dHs

Prob (H>h) = =
5 Tz '(Hs) f(Hs)dHs

The value of TZ"ZHS)used with each value of Hs is chosen to satisfy the
condition of constant wave "steepness", where the relationship between
"steepness'(l:s), water depth(d), Hs and Tz is

_ J2msHs 2nd)
Tz = { g COth(SHs

The value for the steepness used in this report 1is given in section
3.3.3.

The long—term distribution used in the computation for this report is
the Fisher-Tippett 1 extreme-value distribution, whose probability
density function is

f(Hs) = aexp [(b—aHs) - exp(b—aHs):l

The constants a,b are determined graphically as described in section

I1I.l.1, and their wvalues as used in this report are given in section
3.3.2.
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ITII.2.3 Thus the probability of a wave exceeding each particular wave
height may be found, and this probability may be converted into a return
period of N years using the formula

1
N = —
365.25x24x3600 x T~ 'x Prob

where T2 average ( ) -

1
period

The value of the average wave period is contained in section 3.3.3.
Since T is a non-analytic function of Prob, the simplest way of
solving the problem is to calculate Prob for various values of h ,
calculate N for each of these values of Prob, and then interpolate to
find the height h corresponding to the required value of N(in this case
50 years).

Whereas the method described in section III.l assumes that the highest
wave in a 50-year period will come from the most stormy 3-hour period in
50 years, the individual wave method takes into account the probability
that storms other than the highest may provide the wave with a 50-year
return period. Consequently the height of a 50-year wave as estimated
by this method is 1likely to be greater than that estimated from the
method of using a long-term distribution of Hs.

III.3 References

BATTJES J A 1970. Long-term wave height distribution at seven stations
around the British Isles. National Institute of Oceanography,
Internal Report No A44. T

FISHER R A AND TIPPETT L H C 1928. Limiting forms of the frequency
distribution of the largest or smallest member of a sample.
Proceedings of the Cambridge Philosophical Society 24, 180-190.

GUMBEL E J 1958. Statistics of Extremes. New York: Columbia
University Press. 371 pp.

TANN H M 1976. The estimation of wave parameters for the design of
offshore structures. Institute of Oceanographic Sciences, Report
No 23.
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APPENDIX IV

Kinnairds Head Waverider deployment history.

YEAR DATE EVENT
1979 19 October Buoy deployed.
25 October Receiving system commissioned.
21 November Buoy lost from station (unknown to I0S).
1980 04 January Buoy found drifting, instruction to replace
issued.
16 January Buoy deployed, transmission frquency in
29MHZ band.
28 January Buoy found drifting off Scrabster
(NE Scotland), instruction to replace
issued.

23 February Buoy deployed.

25 February Alarm light system installed, Microdata
logger replaced.

25 May Buoy adrift, instruction to replace issued.
09 June Buoy deployed.

18/19 June Aerial system changed.
25 June Requested replacement of buoy transmitter.
01 July Buoy adrift, instruction to replace issued.
25 July Buoy deployed.

08 September No signal at shore station, instruction to
replace issued.

04 October Buoy deployed.
Telemetry problems, long periods of nil data.

27 November No signal at shore station, instruction to
replace issued.

13 December Buoy (higher output 0/P ) deployed.



1981

1982

18

08

05

29

04

10

25

08

26

28

December

January
May

May
June
June
June
July
January

February

23

No signals at shore station, instruction
to replace issued.

Buoy deployed.

Buoy exchanged.

Poor signal, instruction to replace issued.
Buoy deployed.

No signal at shore station.

Instruction to replace issued.

Buoy deployed.

No signal at shore station.

End of contract.
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