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The noise level associated with a train travelling on a bridge is normally greater than 

that for a train travelling on plain track.  It is sometimes the bridge noise that causes 

the highest levels of disturbance to people in the vicinity or triggers action under 

regulations such as the Environmental Noise Directive.  Consequently, there is a need 

to study means of predicting noise levels from proposed bridges, noise control 

measures for existing structures and principles of low-noise bridge design.   

This thesis describes a programme of work in which an existing calculation model for 

bridge noise and vibration has been tested and alternative calculation methods have 

been developed where required.  The existing model is based on analytical models for 

wheel-rail interaction and the calculation of the power input to the bridge.  The 

response of the various component parts of the bridge for this power input is found 

using a simplified SEA scheme.   

In this work, the existing model has been tested against measurements made on 

railway bridges and the results of an advanced method of structural analysis, the 

Waveguide Finite Element (WFE) method.  This method is well-suited to modelling 

 ii



some important types of railway bridge. Specifically, it allows a numerical modelling 

approach to be used up to higher frequency than conventional Finite Element 

methods.  It has been found to offer some significant advantages over the existing 

bridge noise model, particularly for concrete-steel composite bridges and concrete 

box-section viaducts. 

The track support structure has an important influence on bridge noise and vibration, 

through its role in the transmission of vibration from the rail to the bridge.  Laboratory 

measurements have been made in this work to characterise the vibration transmission 

properties of two important types of track support structure on bridges; ballasted track 

and two-stage resilient baseplate track.  Improved methods of modelling the dynamic 

behaviour of these track forms have been developed from the measurements, which 

can be used in calculation models for both bridge noise and also for rolling noise.    

Keywords: Railway, Bridge, Wavenumber Finite Element, Noise, Vibration, Ballast.    
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1.  INTRODUCTION 

1.1.  THE ENVIRONMENTAL NOISE PROBLEM 

1.1.1.  Environmental noise from the railway  

Environmental noise is a growing concern throughout the industrialised world.  In the 

European Union, it is estimated that 20% of the population are exposed to noise 

levels that scientists and health professionals believe to be unacceptable (Future 

Noise Policy, 1996).  The primary effect of this noise on humans is typically 

‘annoyance’ during the day-time and sleep disturbance at night.   

Transportation noise is the main component of environmental noise.  The EU has 

estimated that road traffic is the major source of noise with a long-term average 

sound level greater than 65dB(A).  Of the locations with noise levels higher than this, 

it is estimated that around 1.7% are due to noise from railways (Future Noise Policy, 

1996).  Relative to road and aircraft noise, it is also found that rail noise is less 

annoying for a given noise level (Fields and Walker, 1981) and (Miedema, 1998).   

Nonetheless, excessive noise is the main concern expressed by the public regarding 

the effect of railways on the environment (Future Noise Policy, 1996).  On this basis, 

there has been considerable opposition to the expansion of railway infrastructure and 

capacity in some areas.  Large public protests have taken place in response to the 

introduction of high-speed trains between Paris and Marseille for example (European 

Environment Agency, 2009).  It is therefore necessary to reduce railway noise if the 

role of rail transport is to be increased, an important objective of transport policy in 

Europe and elsewhere.   

1.1.2.  Noise reduction programmes  

There has been legislation enforcing maximum at-source sound levels for road 

vehicles and aircraft since the 1970s.  For railway noise, the difficulty in separating 

the noise produced by the track and that from the rolling stock delayed the 

introduction of such legislation.  There are now limits for the noise produced by the 

rolling stock when measured on a reference track, within the so-called Technical 

Standards for Interoperability (Directive 2001/16/EC, 2001), but not for noise from 

the track or from support structures, such as bridges and viaducts.   
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An important mechanism by which public concerns regarding railway noise are 

addressed is the environmental impact assessment that is required in order to gain 

approval for a new railway infrastructure project.  In England and Wales, this 

normally takes the form of a public enquiry for major projects, following the 

Transport and Works Act (1992).  This leads to undertakings being given concerning 

noise and its control by which the project must abide.  Similar processes are used in 

other parts of the world.  It is therefore necessary to demonstrate that the 

environmental impact of a railway infrastructure project is acceptable in advance of 

its construction.   

The Directive on Environmental Noise (Directive 2002/49/EC) is an important 

legislative control for environmental noise from existing infrastructure in the 

European Union.  Member states are required to produce noise maps, that is to 

predict the noise levels around major urban areas using simple and largely empirical 

calculation methods.  Locations where an unacceptable noise level is expected are 

identified from these noise maps.  Actions plans are required to reduce the noise 

levels at these locations and for railways may include a range of noise control 

measures, such as changes to the track or rolling stock, limits on the number of train 

movements or maximum train speed.  This is therefore a further driver for railway 

noise research and is notable because it is the first regarding noise control measures 

for existing infrastructure.    

1.2.  THE GENERATION OF RAILWAY NOISE 

1.2.1.  Noise from a train travelling on plain track at -grade 

The noise associated with a train travelling on plain track at grade consists of three 

major components: rolling noise, traction noise and aerodynamic noise.  Of these, 

rolling noise is normally the major source (Thompson and Jones, 2000).  Unevenness 

in the running surfaces of the wheels and rails, normally referred to as wheel-rail 

roughness, causes relative vertical motion between the rail and wheel (Thompson, 

1993).  These components therefore radiate sound.   

Rolling noise has been studied extensively and a predictive model for this noise has 

been developed, Track-Wheel Interaction Noise Software, TWINS.  This model is 

based on a description of the rolling stock and track, together with appropriate 
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roughness spectra for the wheel and rail.  TWINS has been shown to predict rolling 

noise for typical track and wheel designs to within about 2dB.  A summary of this 

work is given by (Thompson et al. 1996a), (Thompson et al. 1996b) and (Jones and 

Thompson, 2003).   

The relevant wavelengths of the wheel and rail roughness typically lie in the range 

from 5 to 500mm, with amplitudes of up to 50μm (Remington, 1987).  For a wheel or 

rail roughness of wavelength λ and a train travelling at speed V, a sinusoidal vibration 

will be produced with frequency f,  

          λ
v

f =
         (1.1) 

The contact zone between the rail and wheel has a length of the order of 10mm, and 

there is therefore a contact filter effect for wavelengths shorter than this (Remington, 

1987).  The maximum frequency of interest in rolling noise is typically about 5kHz, 

due to this contact filter effect.   

The relative contributions made by the wheel and rail to the overall rolling noise 

differ through the frequency range, according to their relative mobilities, vibration 

transmission and sound radiation.  For frequencies between about 100Hz and those in 

which the wheel exhibits a modal response, typically above 1 to 2kHz, the rail 

normally has a higher mobility than the wheel.  In this frequency range, the vibration 

of the rail is therefore greater than that of the wheel.  The rolling noise is then 

dominated by either the noise radiated by the rail or by components of the track 

structure, such as the sleepers.  Sleeper noise is normally important only up to 

frequencies of about 500Hz, dependent on the rail fastener stiffness (Thompson et al. 

1996b).  In the frequency range in which the wheel exhibits a modal response, the 

wheel vibration is normally large relative to that of the rail, such that the wheel noise 

component dominates the rolling noise in this range.        

1.2.2.  Noise from a train travelling on a bridge 

When a train is travelling on a bridge, the vibration generated by the combined 

wheel-rail roughness is transmitted from the rail to the bridge, via the track support 

structure.  This vibrational energy propagates through the bridge, causing the whole 

bridge to radiate noise (Janssens and Thompson, 1996).  The noise radiated by this 

3 



large structure normally constitutes a significant addition to the wheel-rail rolling 

noise and other noise sources.  In some cases, the different type of track structure 

used on bridges than on plain track at-grade also causes a significant increase in the 

rolling noise (Poisson and Margiocchi, 2006).  Measurements show that the overall 

noise level associated with a train travelling on a bridge may be up to 20dB greater 

than that for a train on plain track at grade (Hardy, 1999).   

Urban railways are heavily dependent on bridges and viaducts: Kurzweil (1977) 

estimates that 30% of route miles on urban light rail systems in the US are on 

elevated track.  Mainlines are also more reliant on bridges in heavily populated areas, 

as the need to cross roads and other railway lines is encountered more frequently than 

in rural areas.   

Due to the prevalence of bridges and viaducts in urban areas, combined with the 

higher noise levels expected for these cases than for trains travelling at-grade, the 

noise from elevated structures is an important part of the noise impact of the railway.  

Elevated sections of a proposed new railway line may therefore receive particular 

attention in an environmental impact assessment.  For existing lines, it is likely that 

bridges and viaducts will be identified in action plans produced from the noise 

mapping exercise required by the Directive on Environmental Noise (Directive 

2002/49/EC, 2002).  The standard used for noise mapping in the UK, Calculation of 

Railway Noise (1995), requires a correction of up to +9dB(A) for a train travelling on 

a bridge rather than on plain track at-grade.  Consequently, there is a need to study 

means of predicting noise levels from proposed bridges and viaducts, noise control 

measures for existing structures and principles of low-noise bridge and viaduct 

design.   

1.3.  RAILWAY BRIDGE AND TRACK STRUCTURES 

1.3.1.  Introduction 

A wide range of bridge and track structures are in use on railways and previous work 

has shown that their associated noise levels vary considerably.  It is therefore 

appropriate to introduce the reader to common bridge and track structures at this 

stage.   
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1.3.2.  Railway bridge structures 

Bridges and viaducts are required on the railway in order to cross valleys, water 

(rivers, river estuaries and flood plains for example), roads and other railway lines.  

The term viaduct will be used here to refer to a longer elevated structure, composed 

of many consecutive spans.  The majority of modern bridges and viaducts can be 

divided into three groups: concrete box-section, concrete-steel composite and all-

steel.  Examples of these are shown in Figure 1.1 below.  

i) 

 

Single piece 

concrete casting 

ii) 

 

Concrete deck 

Steel I-section beam 

iii) 
Steel deck plate 

Cross-beam 

 

Steel box-

section 

beam 

 

Figure 1.1. Examples of modern bridge structures i) concrete box-section ,ii) 

concrete-steel composite (taken from  Bewes, 2006)), iii) all-steel.   

In the past, masonry, iron and steel bridges were built for the railway.  Masonry 

bridges are normally regarded as very low-noise elevated structures (Shield et al., 

1989), such that they have required little attention with regard to noise.  However, 

such structures have not been built in recent years because of their high cost.   

Iron and steel bridges have been built in various different configurations.  Some of 

these do not have a deck plate, rather they are constructed only from beams and these 
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will be referred to here as open bridges.  In addition to beams running parallel to the 

axis of the bridge, some bridges include beams that lie perpendicular to the axis of 

the bridge, referred to here as cross-beams.  Some of the most common 

configurations for historical iron and steel bridges are shown in Figure 1.2 below.   

 

Steel deck plate 

Steel I-

section beam 

Cross-beam 

i) 
i) 

ii) 
Wrought 

iron truss 

Steel deck plate 

Steel I-

section beam 

iii) 

Steel deck plate 
Steel I-

section 

beams 

iv) 

 

Figure 1.2. Four historical designs for iron and steel railway bridges: i) side-deck I-

beam, ii) truss, iii) under-deck I-beam, iv) side and under-deck I-beam. 
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1.3.3.  Track structures with a ballast layer 

Most railway track is ballasted, which means that the rails are fastened to sleepers, 

which are supported by a layer of ballast.  A cross-sectional view of a typical 

ballasted track arrangement on a bridge is shown in Figure 1.3 below.   

Sleeper Rail  

 
Rail fastener 

Ballast 

 

 

 
Liner 

 
Bridge deck 

Figure 1.3.  Typical ballasted track arrangement on a bridge.   

Ballast is usually crushed natural rock, such as granite.  Specifications for railway 

ballast, such as British Standard BS EN 13450 (2002), require a carefully controlled 

range of ballast grain sizes and an angular grain shape, in order to promote 

interlocking between the grains and high internal friction.  The ballast layer is 

typically 250mm to 500mm deep, measured from the underside of the sleeper.   

The ballast is packed under the sleeper only in the areas beneath the rails, during 

track construction and maintenance operations, in order to promote track stability 

(Esveld, 1989).  The sleeper should be fully embedded in the ballast, as shown in 

Figure 1.3, to prevent lateral and longitudinal motion of the sleeper under the moving 

load of the train.  Wooden sleepers were widely used in the first half of the 20th 

century, but concrete sleepers are now the most usually used.  The sleepers are 

normally set at a distance of between 0.6 and 0.75m apart, measured parallel to the 

axis of the bridge (Esveld, 1989). 

Some form of liner is normally placed between the ballast and the bridge deck.  In the 

past, wood has been used for this purpose to protect the deck from impact damage.  

Specialist liners are used on modern bridges, which may also prevent rainwater 

reaching the bridge deck in order to guard against corrosion of the structure.   
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Rail fasteners are used to connect the rails to the sleepers.  The fastener normally 

consists of a clip to provide the required clamping load to the rail-foot and an 

elastomeric railpad, fitted between the rail and sleeper.  This resilient connection 

protects the sleeper from high-frequency excitation (Esveld, 1989), which prevents 

crack formation in concrete sleepers and extends the service life of sleepers in 

general.   

1.3.4.  Track structures without a ballast layer 

Some railway track structures, both at grade and on bridges, do not include a ballast 

layer or sleepers.  These will be referred to as directly-fastened track here.  The main 

reason for using this type of track is that it requires less maintenance than ballasted 

track.  The cost associated with maintenance of ballasted track may be a significant 

part of the running costs of a railway (Zhai et al., 2004).  However, construction costs 

for directly-fastened track are greater than those for ballasted track (Esveld, 1989).  

For bridges, the use of directly-fastened track in preference to ballasted track also 

brings a significant reduction in the weight that the bridge must support and therefore 

the bearing strength requirements.  Further, use of directly-fastened track can lead to 

a reduction in the overall depth of the bridge below rail height, which may be of 

value in some cases.  

Modern rail fasteners on directly-fastened track are referred to as baseplate-type rail 

fasteners, or ‘baseplates’ here.  A range of different baseplates are used; an example 

of a relatively simple design is shown in Figure 1.4 below.   
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Figure 1.4. Example of a baseplate-type rail fastener (drawing courtesy of Pandrol , 

used with permission).   

The baseplate shown above consists of a railpad fitted between the rail and a cast-iron 

plate that is fixed to the bridge structure using bolts.  The stiffness of the railpad used 

in baseplate rail fasteners may be much lower than that in ballasted track, because the 

railpad is normally the only source of resilience in directly-fastened track.  More 

complex baseplate designs are used where relatively low levels of vertical stiffness 

are required.  Two-stage resilient baseplates are an example of this, in which there is 

a resilient pad between the plate and the rail and another between the plate and the 

track-slab or bridge.   

In the past, directly-fastened track structures on bridges were built from wooden 

beams.  A typical arrangement is shown in Figure 1.5 below. 
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Figure 1.5.  Directly-fastened track structure built from wooden beams.  

The assembly of beams shown above is normally used to transmit the load from the 

rail to positions on the bridge deck that are located directly above cross-beams in the 

bridge.  On this type of track, the rail fastener usually consists of a clip to hold the 

rail foot in position and a screw or spike connection to the sleeper.  There is often no 

railpad in this type of track, the resilience coming from the beams themselves.       

1.3.5.  Influence of the track structure on noise 

The transmission of vibration from the wheel-rail contact zone to the bridge, via the 

track structure, was identified as the means by which the bridge is caused to vibrate 

and radiate sound in Section 1.2.2.  The track structure, in its various forms, was 

described as a resilient connection between the rails and the bridge in Sections 1.3.3 

and 1.3.4.  Vibration isolation, that is, dynamic decoupling of two connecting 

systems (Brennan and Ferguson, 2004), therefore occurs between the rail and the 

bridge in some frequency range.  This behaviour is an important factor in bridge 

noise and it is introduced here using the single degree-of-freedom system shown in 

Figure 1.6 below,  
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Figure 1.6.  Single degree-of-freedom mass-spring system. 
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where Fe  represents a harmonic excitation force applied to the mass m and x is the 

displacement of the mass.  The term k(1+iη) describes the stiffness of a mass-less 

spring with hysteretic damping.  Ft is the force transmitted to the rigid foundation, 

and it is related to the excitation force in the frequency domain by the force 

transmissibility, Tf, as follows (Mead, 1998),                            

       ηiΩ-1
ηi1

F
F

T 2
e

t
f +

+
==

             (1.2) 

where Ω = ω/ωn is the ratio of the forcing frequency to the undamped natural 

frequency of the system, ω k/mn =      .  The force transmissibility is a measure of the 

effectiveness of the vibration isolation provided by the damped spring.  This is shown 

in Figure 1.7 as a function of the normalised frequency Ω, for two different levels of 

damping in the spring.   
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Figure 1.7.  Force transmissibility of the mass-spring system shown versus non-

dimensional frequency:       , η = 0.01;              , η = 0.5.    

For values of Ω much less than unity, the transmitted force is approximately equal to 

the excitation force, for both damping levels.  There is therefore no significant 

vibration isolation effect in this frequency range.  For values of Ω close to unity, the 

transmitted force is greater than the excitation force.  This vibration amplification 

effect is larger for the low damping case.  It is only when Ω is greater than    2  that 

the transmitted force is smaller than the excitation force, such that there is effective 

vibration isolation.  In this frequency range, the effect of the hysteretic damping level 

is small.  However, a viscous damping model would indicate a larger effect.  
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The complexity of a system that consists of a rail, track support and bridge means 

that it is not possible to evaluate the vibration isolation effect precisely using a simple 

expression such as that for the simple system of Figure 1.6.  However, as a first 

approximation the effect of different track structures on the behaviour of the rail, 

track support and bridge system can be predicted using a simple lumped parameter 

approach.  A two degree-of-freedom system can be proposed where the rail and the 

bridge are represented by masses and the track support by a damped spring between 

them.  The natural frequency of the mode in which the rail and bridge move in anti-

phase on the stiffness of the track support can then be estimated from,  

           b

t

r

t
n m

S
m
S

ω +=
                   (1.3) 

where St is the track stiffness per unit length, mr is the mass per unit length of the rail 

and mb is the mass per unit length of the bridge.  The frequency given by equation 

(1.3) will be referred to hereafter as the decoupling frequency.  In simple terms, the 

motion of the rail and bridge are well-coupled up to this frequency, and decoupled for 

higher frequencies.  Effective vibration isolation can be expected for frequencies 

greater than about   2 times the decoupling frequency.  The form of equation (1.3) 

shows that there will be isolation between the rail and bridge down to lower 

frequencies when a relatively soft track support is used.  Control of this frequency 

range through changes to the mass per unit length of the rail and bridge is also 

possible, but these changes are normally more difficult to achieve practically.   

In addition to its role in bridge noise, the track structure also has an important 

influence on rolling noise, or more specifically on the noise from the rail and track 

support structure.  This is largely due to the effect of the dynamic properties of the 

track on the rate at which vibration is attenuated as it travels along the rail, normally 

called the decay rate (Jones et al., 2006).  The decay rate controls the length of rail 

that is effective in radiating noise, such that it is a key factor in the noise radiated by 

the rail.  Janssens and Thompson (1996) compare decay rate and rail vibration 

measurements between directly-fastened track on a bridge and ballasted track at-

grade: the decay rates are generally much lower and the rail vibration level higher for 

the directly-fastened track on a bridge.  The stiffness of a direct-fastening system is 
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also important to the decay rates in the rail.  The frequency range over which the 

motion of the rail and bridge are well-coupled is associated with a high rate of decay 

of vibration in the rail and therefore low rail noise.  Relatively soft direct-fasteners 

are therefore associated with higher rolling noise levels (Wang et al., 2000).   

There are secondary effects of the track stiffness on rolling noise, such as an increase 

in sleeper noise for a relatively stiff rail fastener on ballasted track (Vincent et al., 

1996), or an increase in noise radiated by the baseplates in directly-fastened track 

(Wang et al., 2000).  However, the track stiffness required to give minimum rolling 

noise is normally much greater than that for minimum noise from the bridge.  The 

track stiffness level required for minimum overall noise from a train travelling a 

bridge is therefore dependent on the relative levels of rolling noise and bridge noise.  

This needs to be addressed on a case-by-case basis.      

1.4.  LITERATURE REVIEW 

1.4.1.  Surveys of bridge noise 

The problem of noise from railway bridges and viaducts has been studied extensively 

since the 1960’s.  Early published work took the form of noise measurements for 

existing bridges in Europe (ORE, 1966), (ORE, 1971) and in Japan (Japanese 

National Railways, 1973), (Japanese National Railways, 1975).  Kurzweil (1977) 

presents a compilation of results from these measurement programmes in Europe and 

in Japan.  A total of 11 different classifications of bridge are identified from this data, 

such that all bridges within each classification have similar construction and noise 

characteristics.  Mean A-weighted noise levels are given for each of these bridge 

classifications at a distance of 25m from the track.  The lowest noise levels are for 

concrete bridges with ballasted track, and for a given train speed these levels are 

comparable to those for at-grade track.  The highest noise levels are those for steel 

bridges with directly-fastened track, typically 15dB higher than those for at-grade 

track.  Kurzweil (1977) attributes the lower noise levels found for bridges with 

ballasted track than those with directly-fastened track to the added mass on the bridge 

deck, vibration damping in the ballast and the sound absorption properties of the 

ballast.   

13 



Ban and Miyamoto (1975) present the results of a thorough noise survey for bridges 

and viaducts on high-speed Shinkansen lines in Japan.  The findings reported are 

broadly similar to those from Kurzweil (1977) with regard to the relative noise levels 

for different types of bridge and track structure.  Notably, it was found that concrete 

bridges produce noise mainly in the frequency range up to about 500Hz, while steel 

bridges produce significant noise over a much larger range, up to about 2kHz.  

Later, Hardy (1999) presents the results of a noise measurement survey that show 

considerable overlap between the noise levels for different classes of bridge, 

including those with ballasted track and directly-fastened track.  This indicates that 

an empirical scheme is not a suitable means to predict the noise from a proposed 

bridge, even in cases where measurement data is available for bridges of similar 

design.   

As described in Section 1.3.2, bridges with a concrete deck and steel support beams 

have been built in recent years, mainly on the basis of relatively low construction 

costs.  These bridges are referred to here as composite bridges and are common on 

urban light railways.  Composite bridges have been linked to high noise levels, 

particularly compared with all-concrete structures (Shield et al., 1989) and (Walker et 

al., 1996).  Noise from composite bridges on urban light railways have been the cause 

of complaints from local residents.  Shield et al. (1989) present an example case on 

the Docklands Light Railway in London (DLR).  These complaints were linked to 

very high noise levels at low frequencies, particularly for the 63Hz one-third octave 

band, often described as bridge ‘rumbling’ noise.  This case demonstrates that overall 

A-weighted noise levels, which emphasise the higher-frequency noise components, 

may not correlate well with the disturbance caused by railway bridge noise to local 

residents.   

1.4.2.  Noise control measures for railway bridges

Kurzweil (1977) identifies seven different approaches to noise control for railway 

bridges: i) source reduction, ii) vibration isolation, iii) vibration damping, iv) mass 

addition, v) acoustic isolation, vi) acoustic absorption, vii) reduction of radiating 

area.  This will be used here as a structure for reviewing the previous work on noise 

control measures for railway bridges. 
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Source reduction for railway bridge noise refers to improving the quality of the wheel 

and rail running surfaces.  With the exception of trains with cast-iron block brakes, or 

the removal of rail corrugation, there is normally very limited scope for such 

improvements (Thompson, 2009).   

The vibration isolation principle and its application to railway bridges was described 

in Section 1.3.5.  Numerous publications describe the use of this approach to achieve 

significant reductions in the noise radiated by the bridge, such as Ban and Miyamoto 

(1975), Kurzweil (1977), Oderbrant (1996), Hardy (1999), Wang et al. (2000) and 

Wang et al. (2007).  A particularly clear example of the use of resilient baseplates to 

reduce noise from a steel bridge is given by Wang et al. (2000).  Originally, the track 

structure was of the directly-fastened wooden type.  This was replaced by modern 

resilient baseplates, with a stiffness of approximately 30kN/mm.  Vibration velocity 

measurements made on the bridge girders before and after the change to the track 

structure show a reduction of typically 5dB in the frequency range from 100Hz to 

400Hz and of about 20 dB for higher frequencies.  Wayside noise measurements 

show a reduction of 6dB(A).   

Vibration isolation using resilient baseplates has been found to be one of the most 

effective noise control measures for railway bridges (Kurzweil, 1977) and Oderbrant 

(1996).  However, it was noted by Wang et al. (2007) that the noise reduction 

achieved by using resilient fasteners is dependent on the relative levels of rolling 

noise and bridge-radiated noise.  The reduction in overall noise achieved by changing 

to a more resilient track structure is often smaller than expected, because of the 

greater rolling noise for more resilient track supports (see Section 1.3.5).   

There are means of achieving effective vibration isolation between the rail and the 

bridge other than resilient rail fasteners.  For ballasted track, resilient mats can be laid 

between the ballast and the bridge deck.  It may be expected that this approach would 

not have as great an effect on the decay rates in the rail as resilient fasteners, because 

the coupling between the rail and the relatively heavily-damped ballast would not be 

affected.  For directly-fastened track, resilient material may be added between a 

concrete slab that supports the track and the bridge deck, so-called floating slab track.  

The modelling study presented by Crockett and Pyke (2000) shows that the use of 
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floating slab track, together with very soft baseplates, may be an effective measure 

for reducing bridge noise.  This is a very high cost approach, but as for ballast mats, 

effective vibration isolation can be achieved down to very low frequencies by this 

means, because of the large sprung mass above the resilient layer combined with low 

overall stiffness.     

It may be possible to treat bridge noise by increasing the damping in the bridge, using 

constrained layer treatments or by adding ballast to the bridge deck.  The 

effectiveness of these measures seems to vary significantly from one case to another.  

This may be related to the wide range of damping levels reported for bridge 

structures in previous work.  Hanel and Seeger (1978) report large noise reductions 

on fitting constrained layer damping treatments to an all-steel bridge that initially had 

very low damping, with an estimated damping loss factor of 0.0015.  Other work 

indicates that the damping loss factor for an all-steel bridge may be as high as 0.05, 

without the use of special damping treatments (Kurzweil, 1977).  This may explain 

the lesser effects of constrained layer damping treatments on other all-steel bridges, 

such those reported by Oderbrant (1996).  Remington and Wittig (1985) report a 

similar finding for a concrete-steel composite bridge on which damping treatments 

were tested.    

Poisson and Margiocchi (2006) used rail dampers, in the form of a tuned absorber 

system attached to the rails, to reduce the noise associated with the passage of a train 

over a bridge by about 3dB.  This was achieved by reducing the rolling noise level, 

which was the dominant source for this steel bridge with direct fasteners.  Adding 

damping to the rail is not expected to reduce the noise radiated by the bridge 

significantly, because it is only the rail vibration close to the forcing point that is 

related to the transmission of power to the bridge (Thompson, 1992).  Tuned 

absorbers have also been tested on a steel bridge deck.  The vibration levels were 

reduced at low frequencies, but there was no effect on the overall A-weighted level 

(Poisson and Margiocchi, 2006).   

Practically, the addition of mass to an existing bridge is normally achieved by laying 

ballast on the bridge as a replacement for directly-fastened track.  The noise surveys 

described in Section 1.4.1 indicate that the effects of this change may include 
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vibration damping, sound absorption and added mass.  It is therefore difficult to 

identify the effect of any one of these on bridge noise.   

Acoustic measures for reducing bridge noise normally involve blocking noise paths 

and providing a means to absorb the acoustic energy.  Rolling noise is more readily 

treated by this means than the noise radiated by the bridge, because of its more local 

nature.  Sound barriers beside the track are used for this purpose, such as in the case 

reported by Fitzgerald (1996).  However, it is also possible to shield the noise 

radiated by the bridge structure.  Kurzweil (1977) reports that a noise reduction of 

27dB was achieved by fitting a complete enclosure around a bridge.  However, this is 

clearly an extremely high cost approach.   

A lesser effect can be achieved at a lower cost by using a closed bridge design, such 

as the concrete box-section structure shown in Figure 1.1i).  The noise radiated by the 

underside of the bridge deck is shielded by the main box beneath the deck.  A closed-

section steel bridge design has also been shown to bring a noise benefit over open-

girder bridges (Thompson, 2009).      

As a final note, large reductions in noise from existing bridges can often be achieved 

by using several of the noise control measures described above for a single case.  

Fitzgerald (1996) presents an example of using two complementary noise control 

measures, resilient baseplates for the noise radiated by the bridge and noise barriers 

for the rolling noise.  This approach was shown to reduce the overall noise level for a 

composite bridge by about 15dB(A). 

1.4.3.  Predictive models for bridge noise 

A predictive model for bridge noise is sought for use in making environmental 

impact assessments of new railway infrastructure projects, to guide noise control 

programmes for existing bridges and also low-noise design of new bridges and track 

structures.  The work of Hardy (1999) indicates that an empirical scheme is not a 

reliable means to predict the noise from a new bridge.  Further, such an approach is 

clearly not an ideal basis for the development of novel noise control measures and 

low-noise bridge and track designs.  A theoretical model for bridge noise is therefore 

required, based on the physical processes by which bridge noise is produced.  The 

literature shows a range of different approaches for the development of such a model.   
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Ouelaa et al. (2005) present a model for bridge noise and vibration that is based on 

the modal superposition method.  The bridge is modelled as an equivalent simply-

supported beam coupled to a moving train, represented by a series of two degree-of-

freedom systems for the bogies.  Excitation of the bridge due to both the moving load 

and wheel-rail roughness is considered.  However, neither the rail nor the track 

support structure are defined explicitly in this model.  Given the important influence 

of the track structure on both the noise radiated by the bridge and the rolling noise, it 

is clear that this model does not satisfy the requirements of a predictive model for 

bridge noise described above.    

Finite Element (FE) models have been used to study bridge noise, such as those 

described by (Walker et al, 1996) and (Crocket and Pyke, 2000).  The main difficulty 

in using an FE model to predict bridge vibration and noise is the enormous number of 

modes expected in the frequency range of interest for bridge noise, up to 

approximately 1500Hz (Janssens and Thompson, 1996).  Consequently, the 

computational demand involved in solving such a model over this frequency range is 

too great for it to be used for repeated design calculations.  FE models for bridge 

noise and vibration are therefore normally used for only some lower part of the 

frequency range of interest.  Crocket and Pyke (2000) present an FE model of a 

concrete box-section viaduct, track and rolling stock (for the primary and secondary 

suspension systems, bogie and coach masses) that has approximately 60,000 degrees 

of freedom.  Despite this level of complexity, the model is valid only up to a 

frequency of about 630Hz.   

The Statistical Energy Analysis (SEA) method seems to address the difficulty of 

using the FE method for railway bridges.  The input power to each major component 

of the structure, or in SEA terms, each ‘subsystem’ of the ‘SEA network’, is equated 

to the power dissipated within it and the power flow to other subsystems (the 

coupling power).  Individual modes are not accounted for, rather the average 

response of all the modes in a given frequency band is found.  The fluctuations in the 

response of the physical system due to the effects of individual modes become 

smaller as the number of modes in the structure increases.  Unlike the FE method, 

SEA therefore becomes more attractive for complex systems at high frequencies, 

where the number of effective modes is large.  For this reason and due to its very low 
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computational cost, SEA has been widely used to predict bridge noise and vibration.  

A comprehensive account of the SEA method is given by Lyon and DeJong (1995).  

The development of SEA-based models for bridge noise and vibration is described 

here, with a more detailed account of one particular model given in Section 1.5 to 

follow.    

Kurzweil (1977) presents an early example of an SEA-based model for bridge noise 

and vibration, which provides a relatively simple introduction to this type of model.  

The rail vibration energy is found from measurements of the rail vibration velocity 

and a beam on elastic foundation model for the rail and the track structure.  The 

transmission of vibrational energy to the bridge, via the track structure, is found using 

an SEA model.  The power flow between subsystems was found using the coupling 

loss factor approach, see (Lyon and DeJong, 1995) for details.  The coupling loss 

factors were obtained from analytical expressions for idealised structural 

components, beams and plates. 

The output of the SEA calculation is the energy of each major component of the 

structure (or subsystem of the SEA network).  These energies can be used to find 

spatially-averaged velocities for each major component of the bridge, as frequency 

band averages.  The sound power radiated by each of the bridge components is then 

calculated using a radiation efficiency approach.  The sound pressure at a given 

location is found from the sound power by treating each component of the bridge as a 

line of incoherent point sources.    

Remington and Wittig (1985) used a similar approach to model an open (no deck 

plate) steel bridge, with wooden sleepers.  A wheel-rail interaction calculation was 

used for the excitation of the wheel and rail due to the roughness on the rolling 

surfaces.  The combined roughness spectrum was calculated from rail velocity 

measurements, rather than being found by direct measurement.  This approach was 

chosen in preference to using rail velocity measurements directly as an input to the 

bridge noise and vibration calculation, so that the effects of changes to the track 

structure can be evaluated using the model.  Then an SEA calculation was used to 

predict both the vibration transmission from the rail to the bridge and also the 
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vibration response of the bridge, with coupling loss factors found from analytical 

expressions for idealised structural components.   

Both Kurzweil (1977) and Remington and Wittig (1985) compared the results of the 

models to bridge noise measurements and showed that reasonable agreement could 

be obtained from this relatively simple and computationally-light approach.   

Janssens and Thompson (1996) present a model for the noise and vibration from all-

steel bridges with directly-fastened track, in which an SEA-based method is used to 

predict the response of the bridge structure, although not the vibrational power 

transmitted from the rail to the bridge.  This, hereafter referred to as the power input 

to the bridge, is found from the product of the real part of the bridge input point 

mobility and the excitation force applied by the rail fasteners to the bridge.  Note that 

this is valid only for the frequency range in which the motion of the rail is decoupled 

from that of the bridge.  Simple mobility models for I-section beams are proposed 

and shown to compare well with FE predictions and measurements made on a bridge.   

The power input to the bridge is used in an SEA-based calculation for the bridge 

vibration response.  The rail and track structure are not included in this calculation.  

The bridge is divided into a number of subystems, which take the form of plates; 

typically one plate is used for each beam web, two for the beam flanges and one plate 

for the bridge deck.  It is assumed that the bridge structure is strongly-coupled in 

SEA terms and that the structure is reasonably homogeneous, which is reasonable for 

a steel bridge unless local damping treatments are used (Janssens and Thompson, 

1996).  Under these conditions, it is possible to calculate the response of each plate in 

the system without the use of coupling loss factors.  This approach to calculation of 

the bridge response is referred to here as a simplified SEA scheme.  It is an attractive 

one, because finding suitable coupling loss factors may be the most difficult part of 

an SEA model (Harrison et al., 2000).   

The model originally proposed by Janssens and Thompson (1996) has been 

developed further, (Harrison et al., 2000), (Bewes et al., 2006) and (Bewes, 2006).  In 

its present form it is called NORBERT and a more detailed description is given in 

Section 1.5.   
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The development of the models for bridge noise and vibration described above has 

yielded a greater understanding of low-noise bridge design.  An important example of 

this is the identification of the direct relationship between the input point mobility of 

the bridge and the vibrational power  input to the bridge, by both Janssens and 

Thompson (1996) and Walker et al. (1996).   

1.5.  THE NORBERT BRIDGE NOISE MODEL 

1.5.1.  Overview 

The NORBERT model calculates the vibration response of the bridge, the noise 

radiated by the bridge and the rolling noise during the passage of a train.  The inputs 

to the model are sets of data that describe the rolling stock, the track structure, the 

bridge structure and the roughness of the wheel and rail rolling surfaces.  A brief 

account of the calculation methodology is given here, based mainly on the 

description given in the manual for the NORBERT program (Thompson et al, 2005).  

A structure for the calculation of bridge noise is shown in Figure 1.8 below.    
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Figure 1.8. Flowchart of a model for railway bridge noise, based on (Janssens and 

Thompson, 1996).    

The methods used to calculate bridge noise and vibration in NORBERT are described 

in Sections 1.5.2 to 1.5.6.
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1.5.2.  Excitation at the wheel-rail interface

The component velocities at the contact point and the excitation force applied to the 

rail can be found from the following wheel-rail interaction calculation at each 

frequency (Thompson, 2009),  
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where vr,o is the r.m.s. vibration velocity of the rail at the contact point, vw,o is the 

r.m.s vibration velocity of the wheel at the contact point and Frail  is the r.m.s. input 

force to the rail.  Yr denotes the mobility of the rail, Yw that of the wheel and Yc that of 

a linearised Hertzian contact spring between them (Grassie et al., 1982).  r is the 

r.m.s. combined wheel-rail roughness.  Note that only vertical motion is considered 

in the model, which is expected to be adequate for the case for straight track.  

However, lateral excitation forces may be significant for curved track (Bewes, 2006).   

The wheel mobility is found from a two degree-of-freedom model for each wheel, 

shown in Figure 1.9. 
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Figure 1.9.  Two degree-of-freedom model for each wheel of the train. 
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mbogie represents the bogie mass per wheel and mwheel the unsprung mass per wheel.  

The use of a mass to represent the wheel is normally adequate in the frequency range 

of interest for bridge noise.  Two springs, k1 and k2, and a viscous damper, C, 

represent the primary suspension.  Physically, spring k2 represents bushes and/or the 

‘blow/off’ characteristics of the damper.  kc represents the stiffness of the linearised 

Hertzian contact spring between the wheel and rail, which has been set to 1.3GN/m in 

this work.  A notional damping loss factor of 0.1 is applied to the contact spring, 

required to prevent excessive vibration at the contact resonance (around 80Hz).    

The rail mobility is found from a model of the rail as a Timoshenko beam 

continuously connected to another Timoshenko beam, for the bridge, by up to three 

continuous resilient layers and up to two continuous mass layers.  This will be 

referred to as the coupled beam model hereafter and it is described further in Section 

1.5.3.   

The r.m.s. roughness amplitude is found from roughness measurements made on 

wheel and rail running surfaces.  The wheel and rail roughness spectra are added in 

the frequency domain, assuming that they are uncorrelated (Thompson et al. 1996a).  

No account is taken of the low-frequency excitation associated with the moving axle 

load, which is expected to be significant only for frequencies lower than about 25Hz 

(Bewes, 2006).   

The measurement of wheel and rail roughness is a specialised activity, such that 

measurements for wheel and rail roughness levels are not normally made on a case-

by-case basis.  Average roughness spectra have been produced from measurement 

programmes such as those reported by (Dings and Dittrich, 1996), (Thompson et al., 

1996a), (Thompson et al., 1996b) and (Hardy, 1997).  These roughness 

measurements have been extended to longer wavelengths using track geometry data 

from (Esveld, 1989) and are available for use in the NORBERT program.   

1.5.3.  Power input to the bridge 

In the frequency range over which the bridge is expected to behave as a Timoshenko 

beam, the coupled beam model introduced in Section 1.5.2 is used to calculate the 

power input to the bridge.  Either a coupled infinite Timoshenko beam model or a 

coupled finite Timoshenko beam model may be used.  For the finite length model, 
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the beams are simply supported at their ends and are assigned a length equal to that of 

the bridge spans.  The layers of resilience and mass between the two beams are 

specified to represent the track structure.  While the track supports are normally 

periodic, no account is taken of this in the coupled beam model; the support is treated 

as continuous.  It is expected that some error will be introduced by this simplified 

treatment of the track support structure in the frequency range around 1kHz, due to 

the so-called ‘pinned-pinned’ mode of the rail between the discrete supports.     

A ballast layer can be modelled using a resilient layer in which distributed mass and 

stiffness effects are accounted for, such that the expected internal modes of the ballast 

layer can be included in the analysis.  However, there is currently a lack of evidence 

in the literature to support the approach taken in this part of the calculation.  Further, 

when NORBERT has been used for bridges with ballasted track, the predicted noise 

and vibration levels have generally shown less agreement with measurement data 

than is normally the case for bridges with directly-fastened track. 

For some resilient baseplates of relatively complex design, internal modes are 

expected within the frequency range of interest for bridge noise.  In previous work, 

these have been modelled using two resilient layers and one mass layer.  However, 

the suitability of this modelling approach is unclear because measurement data for the 

high-frequency dynamic stiffness of these baseplates is not available.    

The power input to the bridge per wheel, per unit force applied to the rail is found 

from the coupled beam model as follows,  

                  
( ) ( ) xdxWxFRe

2
1

P
2/L

2/L

.

bridge

.
*

in ∫=
-       (1.7) 

where F* is the complex conjugate of the force applied by the track structure to the 

bridge, found from the product of the displacement across the resilient layer adjacent 

to the bridge and its transfer stiffness.  W (x ) bridge represents the velocity of the bridge 

at the base of the track and L the length of the bridge.   

. 

The power input to the bridge for the idealised excitation (equation (1.7)) is then 

corrected for the number of wheels on the bridge and the roughness excitation force 

as follows,  
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                               (1.8) 
in

2
railwbridge PFNP =

where Nw is the number of wheels on the bridge.  

In the frequency range in which the bridge is not expected to behave as a 

Timoshenko beam and it is decoupled from the rail, an alternative method is used to 

calculate the power input to the bridge, 

                   
{ } 2

bridbrbridge FYReP =
           (1.9) 

where Ybr is the input point mobility of the bridge.  Fbrid is the r.m.s. force applied by 

the track support to the bridge, found from the velocity of the rail at the contact point 

between a single wheel and the rail, the number of wheels on the bridge and a 

modified track transfer stiffness, keq, as follows,   

                           
w
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o,req2
brid N

ω
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           (1.10) 

where,                    spacing

min
eq L

λ45.0
k =

                    (1.11) 

The use of a modified track transfer stiffness follows from the work of Thompson 

(1992), which shows that for two continuously-coupled beams with excitation at the 

upper beam, only vibration within about half a wavelength of the excitation force 

transmits net power to the lower beam.  λmin is the smaller of either the wavelength in 

rail or in the bridge beam and Lspacing is the distance between track supports.   

The input point mobility of the bridge is calculated using expressions for the mobility 

of an I-section beam, from Bewes (2006) and a thick plate, from (Cremer et al., 

1988).  For bridges that have support beams and a deck, the lateral distance between 

the input point and the support beam is expected to control the relative influence of 

the support beam and the deck on the mobility of the bridge.  In NORBERT, the 

mobility of the beam is used up to the frequency at which the lateral distance between 

the input point (the base of the track support) and the centre-line of the support beam 

is equal to one-quarter of a bending wavelength in the bridge deck.  At higher 

frequencies, i.e. when the distance between the input point and the centre-line of the 
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support beam is greater than one quarter of a bending wavelength in the deck plate, 

the mobility of the bridge is set to that of the deck.   

For bridges in which the mobility of the beams and the deck are substantially 

different, such as all-steel bridges, this switch between the beam mobility model and 

plate mobility model may introduce a large step-change to the input mobility of the 

bridge and therefore also to the input power to the bridge.  Physically, however, a 

transition would be expected between beam and plate-dominated behaviour, over 

some range of frequencies. This is a part of the model that requires further study. 

1.5.4.  Vibration response of the bridge 

The vibration response of the bridge is found by application of the simplified SEA 

scheme introduced in Section 1.4.3.  In the steady state, the input power to the bridge 

must equal to the power dissipated within it plus that radiated as sound,  

              (1.12) 
dissraddissbridge PPPP ≈+=

where it can normally be assumed that the radiated power, Prad, is small relative to 

the dissipated power Pdiss.  The power dissipated within each plate subsystem is 

related to its mean-square velocity as follows (Cremer and Heckl, 1988), 

     
2

iiiiii,diss vAhρηfπ2P =
           (1.13) 

where ηi is the damping loss factor of plate i, ρi its density, hi its thickness and Ai its 

surface area.             is the spatially averaged mean square velocity.   

If the bridge can be assumed to be strongly-coupled in SEA terms and reasonably 

homogeneous, the vibrational energy per mode in each subsystem will tend to 

equalise across the system (Lyon and DeJong, 1995).  This is commonly referred to 

as the equipartition of modal energy.  The ratio of the mean-square velocities in two 

subsystems is then equal to the ratio of their mobilities (Cremer and Heckl, 1988), 
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and for the plate subsystems used here with identical material properties, this can be 

related to their thickness, 
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If all the subsystems of the bridge have the same material properties and damping 

loss factor, the spatially-averaged mean-square velocity of subsystem j can be 

obtained from (Janssens and Thompson, 1996),  

                       ∑
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         (1.16) 

Equipartition of modal energy is not expected to apply for concrete-steel composite 

bridges, in which a thick concrete deck is connected to relatively thin-walled steel 

beams (Thompson et al., 2005).  As an alternative to the use of a relatively complex 

SEA scheme, in which coupling loss factors are required as inputs to the calculation, 

Bewes (2006) proposed that concrete-steel composite bridges could be modelled 

using two SEA networks; one for the steel beams and one for the concrete deck.  

Equipartition of modal energy is expected to apply within each of these networks, 

such that the simplified SEA scheme described above can be applied to each network 

separately.  One of the SEA networks must be chosen as the primary SEA network, 

which receives vibrational energy from the track supports.  Intuitively, this would be 

the network for the relatively thick concrete deck, which would impose its velocity as 

an edge excitation to the steel beam.  The power flow, P ,edge  between the two 

networks is then given by (Beranek and Ver, 1992), 

                                       (1.17) 

where 

( )'ZRevLP 2
1exedge =

Lex is the excitation length, v1 is the r.m.s. velocity of the primary component 

and Z’ is the impedance of the secondary component per unit width.  The vibration 

response of the plates in the secondary SEA network is found by application of 

equation (1.16) for the power input given by equation (1.17).      

Bewes (2006) trialled this two SEA network approach for modelling concrete-steel 

composite bridges, with the deck as the primary network and also with the steel beam 

as the primary network, together with several options for the input point mobility 

calculation.  Reasonable agreement with measurements was obtained for frequencies 

between 60Hz and 630Hz using the deck as the primary SEA system together with 
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the mobility calculation based on the switch between the beam and plate models.  

Large differences between the measured and predicted vibration levels were found 

outside this frequency range.   

1.5.5.  Sound power radiated by the bridge 

The spatially averaged velocity of the plates can be used to calculate the sound power 

radiated by the bridge from, 

                     
∑=
i

2
iiioorad vAσcρP

       (1.18) 

where ρo and co are the density of air and the speed of sound in air respectively and σi 

is the radiation efficiency of plate i, obtained from standard formulae for beams at 

low frequencies and simply supported baffled plates at higher frequencies.   

1.5.6.  Rolling noise 

NORBERT contains a database of transfer functions for rolling noise spectra from 

wheel-rail roughness spectra.  These transfer functions have been calculated using the 

separate predictive model for rolling noise, TWINS, for three different wheel designs 

and three different track structures.  Corrections are applied to account for the 

differences between these reference cases and that under consideration, with regard to 

the effect of the track stiffness on the wheel and rail vibration, and also the effect of 

the decay rate in the rail on the noise radiated by the rail.  The overall noise 

associated with the passage of a train on a bridge can be estimated by this means 

together with the calculation of the noise radiated by the bridge, with minimal 

additional user input or computational cost.  More reliable rolling noise estimates can 

be obtained from a TWINS model for the specific rolling stock and track 

combination, if required.   

1.6.  PROJECT SPONSOR 

This research has been carried out as an EngD project, the principles of which are to 

conduct industrially relevant work with a sponsor in such a way that the knowledge 

and know-how is transferred to industry.  Pandrol is a UK-based company 

specialising in the design and manufacture of rail fasteners and associated installation 

equipment.  Pandrol supplies over 200 railway systems in 91 countries worldwide 
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and has the largest share of the rail fastener market.  This has been achieved through 

the development of a wide range of rail fastener products, from relatively simple low-

cost fasteners, such as those described in Section 1.3.3, to sophisticated resilient 

baseplates.   

Railway bridges are an important application for resilient baseplates, due to the noise 

impact of bridges and the influence of the track structure on this noise impact.  

Pandrol therefore has a commercial interest in the development of a predictive model 

for bridge noise, inclusive of the role of the track structure.  Such a model can be 

used to guide the design of new products and to select the most appropriate fastener 

for a given application.  Perhaps the most important reason for Pandrol to develop a 

bridge noise model is to demonstrate to its customers that it understands the nature 

and solution of the engineering problems that their products are required to address.   

The NORBERT model has been used for these purposes prior to this project (Wang 

et al. 2007) and also during the present work (Herron, 2008).  The work outlined in 

Section 1.7 below is intended to improve Pandrol’s ability to predict the vibration 

response and noise for types of bridge that represent important applications for 

resilient baseplates.   

1.7.  PROJECT OBJECTIVES AND THESIS STRUCTURE  

The NORBERT model was evaluated against noise and vibration measurement data 

for three different types of bridge in a previous EngD project, (Bewes, 2006).  

Several areas of the model that require further development were identified from this 

evaluation.  In addition, the limited use of NORBERT for bridges with ballasted track 

in previous work indicates that its predictive ability is poorer than that for bridges 

with directly-fastened track.   

The overall objective of this work is to test the NORBERT model further, 

particularly with regard to the issues identified by Bewes (2006) and the treatment of 

bridges with ballasted track, and to develop alternative calculation methods where 

required.  This has been pursued using an advanced method of structural analysis, 

together with laboratory tests and measurements on a railway bridge.   
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There are five specific objectives within this overall project objective, each relating 

to an aspect of the NORBERT model in which there is a need for further work.  A 

single chapter of the thesis has been dedicated to each of these five objectives.   

In Chapter 2, the approach taken to calculation of the input point mobility of an all-

steel railway bridge in NORBERT is studied using a range of analysis methods.  The 

objective of this work is to assess the NORBERT mobility model, particularly with 

regard to the switch made between the mobility of the support beam and that of the 

deck at some discrete frequency (see section 1.5.3), and to develop an alternative 

mobility calculation where necessary.  One of the analysis methods used here, an 

advanced FE approach called the Waveguide Finite Element (WFE) method, is found 

to be particularly appropriate for studying the response of some important types of 

bridge.    

Chapters 3 and 6 describe the use of the WFE method to model the vibration 

response of a concrete-steel composite bridge and a concrete box-section viaduct.  

The objective of this work is to evaluate further the approaches proposed by Bewes 

(2006) for application of NORBERT to these types of bridge and, again, to propose 

alternative methods where required.   

The objective of the work described in Chapter 4 is to find a means to model the 

dynamic behaviour of the ballast layer in NORBERT that is supported by suitable 

measurement data.  A programme of laboratory measurements is described, together 

with the assessment of three simple models against this data.  Chapter 5 describes 

similar work for resilient baseplates, again with the aim of developing a proven 

means to model this type of track structure in NORBERT.     

Chapter 7 presents a set of conclusions for the work described in Chapters 2 to 6 and 

recommendations for future work.   

1.8.  ORIGINAL CONTRIBUTION 

The application of the WFE method to railway bridges is a major part of the work 

presented in this thesis.  To the author’s knowledge, this is the first time WFE has 

been used for this purpose and it has provided new knowledge with regard to the 

vibration response characteristics of three different types of bridge.  For all-steel 

bridges with a plate-like deck and I-section beams beneath the deck, an improved 
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simple model for calculating the input point mobility was developed from the results 

of the WFE analysis.  For concrete-steel composite bridges and concrete box-section 

bridges, the WFE analysis shows that their vibration response is complex and 

requires a more detailed modelling approach than that available in NORBERT.   

The WFE method has also been used to calculate the transmission of power from the 

rail to the bridge via the track structure and the vibration response of the bridge 

during the passage of a train.  This is of particular value for concrete-steel composite 

and concrete box-section bridges, which are not amenable to the use of simple 

structural models such as those contained in NORBERT.  Further, the WFE-based 

modelling approach developed in this work is more attractive than one based on 

conventional FE methods, mainly due to its calculation efficiency.   

The second major topic of the work presented in this thesis is the development of 

improved means to model the track support structure on railway bridges for use in 

predicting bridge noise and vibration.  Measurements have been made for the high-

frequency dynamic transfer stiffness of a layer of railway ballast between two 

concrete blocks.  These measurements provide evidence to support the approach 

taken to modelling ballast in NORBERT, which was previously unavailable for the 

case of ballast on a stiff foundation such as a concrete bridge deck. 

A combined FE and experimental study of the high-frequency dynamic behaviour of 

a typical commercial two-stage resilient baseplate rail fastener has also been 

conducted.  It is found that bending modes of the cast-iron top plate need to be 

considered in modelling bridges with this type of track structure.  This has an 

important effect on the dynamic stiffness of the baseplate and it may be particularly 

significant in rolling noise.  Means of accounting for this behaviour in modelling the 

track have been developed in this work.   
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2.  MODELS FOR THE INPUT POINT MOBILITY OF A 

RAILWAY BRIDGE  

2.1. THE MOBILITY MODEL IN NORBERT 

2.1.1.  Introduction 

The need to calculate the input point mobility of the bridge, in order to find the input 

power to the bridge in NORBERT, was described in Section 1.5.3.  The mobility 

model in NORBERT is based on expressions for the mobility of idealised bridge 

components; a beam and a plate.  The beam represents the primary support beams that 

are normally orientated parallel to the axis of the bridge and the plate represents the 

bridge deck.  The approach taken to the calculation of the beam and plate mobilities in 

NORBERT is described in Sections 2.1.2 and 2.1.3.  The means by which these are 

used to find the input point mobility of the bridge is described in Section 2.1.4.   

2.1.2.  Mobility of the support beam  

I-section girders are commonly used as the primary support beams in a railway 

bridge, (Janssens and Thompson, 1996).  NORBERT contains a set of expressions for 

the mobility of an I-section beam, divided into three different frequency ranges.  At 

low frequency, it is modelled as a finite simply-supported Timoshenko beam, with a 

length equal to the bridge span (Thompson et al., 2005).  The modes of the support 

beam are therefore accounted for in this frequency range.   

At high frequencies, there is longitudinal or ‘in-plane motion’ in the beam’s web and 

bending motion in the beam’s flanges.  In this frequency range, the mobility of the 

support beam is found from the combination of the mobility of the beam flange, 

treated as a normally-excited flat plate, and that of the beam web treated as an edge-

excited flat plate (Thompson et al., 2005).  In an intermediate frequency range, an 

empirical transition is made between the results of the low and high frequency 

models.   

This set of equations will be referred to here as the Bewes equations for the mobility 

of an I-section beam, described in (Bewes, 2006).  Note that an infinite structure 

model of the beam is used in the high frequency range, such that the result represents 

a spatial and frequency average input mobility of an equivalent finite structure with a 
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high modal density (Skudrzyk, 1980).  It is expected that this condition will be met for 

the frequency range in which there is in-plane motion in the beam web, so that it is 

also reasonable to neglect the modes of the beam in the intermediate frequency range, 

where the empirical calculation for the mobility of the beam is used.     

In some bridges there are beams orientated perpendicular to the axis of the bridge, 

called cross-beams here, in addition to the primary beams.  These cross beams have 

smaller cross-section dimensions than the primary beams, such that they usually have 

a lesser effect on the input point mobility of the bridge, but there are exceptions to 

this.  In some cases, particularly those with wooden directly-fastened track, the track 

supports are connected to the cross-beams.  The cross-beams may then have an 

important influence on the input point mobility of the bridge in some higher frequency 

range.  The work of Behr (2005) also suggests that the effect of local reinforcements 

to the deck (such as cross-beams) on the input point mobility of the bridge may be 

greater for bridges with ballasted track.  Modelling a bridge with cross-beams is 

therefore particularly challenging and relies greatly on the judgement of the user.  

Bridges with cross-beams are not considered further in this thesis.   

2.1.3.  Mobility of the bridge deck 

The mobility of the bridge deck is normally used in NORBERT only for relatively 

high frequencies.  It is assumed that the modal density of the deck is large in this 

range, such that an infinite plate model can be used to represent the deck.   

The point mobility of an infinite plate, in the frequency range in which the effects of 

transverse shear motion and rotational inertia are small, is given by, 

               ( )
hDρ8

1
ωY11 =           (2.1)

where,               ( )2

3

υ112
Eh

D =            (2.2) 

is the flexural rigidity, E is the Young’s modulus, h is the plate thickness, υ is the 

Poisson’s ratio and ρ is the density.  This will be referred to as the thin plate model 

here.   

In NORBERT, the mobility of the deck plate is calculated from the so-called thick 

plate equation.  This is equivalent to equation (2.1) for low frequencies, but accounts 
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for the effects of transverse shear deformation and rotational inertia at high 

frequencies.  The point mobility of the thick plate is given by (Cremer et al, 1988),  
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where G is the shear modulus and  is a reduced shear modulus.   G85.0*G =

2.1.4.  Application of beam and plate models to a railway bridge 

Sometimes a bridge is designed so that the rails and therefore the track supports are 

located directly above the longitudinal support beams in the bridge.  With regard to 

bridge noise, this is an attractive approach because the input point mobility and 

therefore the input power to the bridge at these positions are smaller than for other rail 

positions on a given bridge structure.  For bridges where the track supports are 

positioned at some lateral distance d from the centre-line of the support beam, this 

distance is expected to control the relative influence of the support beam and the deck 

on the point mobility.  The NORBERT mobility model calculates the point mobility 

of the bridge based on the following ‘switch’ between the mobility of the support 

beam and that of the deck plate (Bewes, 2006). 

            For 
4
λ

d < , then beambridge YY =        (2.4) 

            For 
4
λ

d > , then platebridge YY =        (2.5) 

where λ is the bending wavelength in the deck.  Physically, this means that the 

influence of the beam dominates the point mobility at positions that are within a 

lateral distance of one-quarter of a bending wavelength in the deck from the support 

beam.  For positions on the deck that are further from the support beam, the influence 

of the deck controls the point mobility.   

The switch in mobility models described by equations (2.4) and (2.5) means that for a 

bridge in which the track supports are at some lateral distance from the longitudinal 

beams, the input power to the bridge is found from the mobility of the primary 

support beam in some lower frequency range and from the mobility of the deck in 

some higher frequency range.  In a steel bridge, the mobility of the I-section beam is 
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normally small relative to that of the bridge deck in the frequency range up to that in 

which in-plane motion in the web of the I-section beam becomes important.  For these 

bridges, the switch in mobility model therefore introduces a large step-change to the 

input mobility of the bridge and therefore also to the input power to the bridge.  

Physically, it is expected that the input mobility of the bridge would show a transition 

between the mobility of the beam and that of the plate over some range of 

frequencies, rather than a step-change at some particular frequency.  The switch in 

mobility models described by equations (2.4) and (2.5) may therefore cause 

significant error in some part of the frequency range of interest, for bridges in which 

the track supports are offset from the centre-line of the support beams.   

The aims of this chapter are to assess the suitability of the NORBERT mobility model 

and to develop an alternative model if this is found to be necessary.  Three 

progressively more detailed analyses have been made for the mobility of a coupled 

beam and plate structure.  Model 1 is based on the mobility of a beam at a point some 

distance from a supporting spring, presented in Section 2.2.  Model 2 is based on the 

mobility of a plate at some distance from a supporting beam obtained using an 

analytical approach, described in Section 2.3.  Model 3 is for the same structure but 

obtained using a finite element approach, see Section 2.4.   

2.2.  MODEL 1: ONE DIMENSIONAL MODEL OF A BRIDGE 

2.2.1.  Description of model 1 

As a simple example of the behaviour to be investigated, i.e. that of a bridge which 

consists of a deck plate and a support beam, a model was constructed of an infinite 

beam and a spring.  This is shown in Figure 2.1 below.   

2
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Figure 2.1.  One dimensional model of a railway bridge cross-section. 
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The one dimensional model shown in Figure 2.1 consists of an infinite beam that 

represents the bridge deck and a spring that represents the support beam.  A rigid link 

connects positions 2 and 3.   

The point and transfer mobility terms at frequency ω relate the velocity amplitude at 

positions 1 and 2 on the beam to the applied force amplitude at position 1,  

                                (2.6) 2211111 FYFYv +=

                                  (2.7) 2221122 FYFYv +=

where vn is the velocity at position n and Fn is the applied force.  For the mobility 

terms, Ynm , the left-hand index indicates the force position and the right-hand index 

refers to the velocity position.  For a linear system, the two transfer mobility terms are 

identical.   

At position 2, the spring force is related to the velocity by,                    

                                                        (2.8) 2332 FYv =

where Y33 is the mobility of the spring.  Substituting equation (2.8) into (2.7), 

                                (2.9) 222112233 FYFYFY +=
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=∴            (2.10) 

Now substituting for F2 in equation (2.6) gives the mobility of the combined system,  
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For this simple analysis, it is appropriate to use Euler beam theory to calculate the 

point and transfer mobility of the infinite beam, neglecting transverse shear and 

rotational inertia effects.  The point mobility of an infinite beam without the spring is 

the same at all positions along the beam. The point mobility is given by, 

                   ( ) ( ) 3
b
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==                         (2.12) 

and for , the transfer mobility to a point 0≥x x is given by,   
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where the bending wavenumber κb is given by,  

                                                           4 2
b ω

EI
Aρ

κ =             (2.14) 

Equation (2.14) gives four solutions: a near-field wave for each direction along the 

beam, with wavenumbers of , and a propagating wave for each direction, 

with wavenumbers of    

bκiκ ±=

bκκ ±= .

The results of equations (2.12) and (2.13) can be used in equation (2.11) to calculate 

the mobility of the combined beam and spring system.  

2.2.2.  Results of model 1 

Mobilities calculated from the model described in Section 2.2.1 are given here to 

demonstrate the behaviour of the system.  These are presented in terms of a 

normalised mobility and a normalised distance between the input point and spring, 

defined as follows, 

             system
Norm

spring

Y
Y

Y
=%                           (2.15) 

and, 

                                                     ( )beam
Norm λreal

x
x =         (2.16) 

Two different cases are considered here: one in which the beam has a magnitude of 

point mobility that is ten times larger than that of spring, and one in which the beam 

has a magnitude of point mobility that is twice as large as that of spring   A damping 

loss factor of 0.1 has been assigned to the beam in each case.   
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Figures 2.2 i) and 2.2 ii) show the point mobility as a function of distance between the 

input point and the spring for these two systems.    
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ii) i) 

Figure 2.2.  Normalised point mobility shown against normalised distance between 

the input point and spring, i) beam mobility (magnitude) ten times larger than that of 

spring, ii) beam mobility (magnitude) twice as large as that of spring:  , beam 

and spring model;  , uncoupled beam;  , uncoupled spring;  , 

indicates one-quarter of a bending wavelength in beam. 

Figure 2.2 i) shows the expected behaviour: the point mobility of the system is similar 

to that of the spring for input points that are located close to the spring and makes a 

transition to that of the beam (in a spatially-averaged sense) as the input point is 

moved toward one-quarter of a bending wavelength away from the spring.   

Figure 2.2 ii) shows that when the mobility of the spring is not small relative to that of 

the beam, the input point mobility of the system is significantly lower than that of 

either the beam or spring for positions close to the spring.  This would be expected, 

since the beam and spring are combined in parallel and this combination would be 

characterised by the sum of their impedances.  As the input point is moved away from 

the beam, the system mobility again tends toward that of the beam in a spatially-

averaged sense.  This simple model thus indicates the type of transition that the point 

mobility makes as the forcing point moves away from the support.   

Further results from this model will be presented in Section 2.5, together with those 

from the more complex models described in Sections 2.3 and 2.4 below.  The next 

model is of a plate supported by a beam and therefore is a much fuller representation 

of the transition made by the point mobility of a plate-beam bridge as the forcing 

point moves away from the location of the support beam.       
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2.3.  MODEL 2: TWO-DIMENSIONAL MODEL OF A BRIDGE 

Yoo et al. (2004) developed an analytical model for the response of an infinite beam 

coupled to a thin plate of infinite length, but finite width.  A very similar approach has 

been used here to model a plate that is of infinite width and length, coupled to an 

infinite beam.  A detailed description of this model is given in Appendix A.  Some 

results from this model are presented here for a structure intended to represent a steel 

railway bridge.  A rectangular-section beam has been considered, because the Euler 

beam model used in the analysis is applicable to this type of beam over a larger 

frequency range than it is for an I-section beam.   This system is shown in Figure 2.3 

below.  

Figure 2.3.  Infinite plate and infinite beam structure. 
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It has been assumed in this analysis that the beam does not rotate.  This is a 

reasonable simplifying assumption, given the large torsional stiffness of the beam 

relative to the bending stiffness of the thin plate.  A damping loss factor of 0.01 and 

the material properties for steel given in Table 2.1 have been used for both the beam 

and the deck.

Property Value 

Dynamic Young's Modulus (GPa) 207 

Density ( kg/m3) 7800 

Poisson's ratio 0.3 

Table 2.1.  Material properties for the steel beam and deck.   

The input point mobility of this structure in the wavenumber domain is shown in 

Figure 2.4 below, as a function of the wavenumber in the x directon, for three 

different distances between the input point and the support beam, d, at a frequency of 

100Hz.  The real part the input point mobility is shown here because this relates 

directly to the power input to the structure. 
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ii) i) 

iii) iv) 

 
Figure 2.4.  Real part of input point mobility of the coupled plate and beam system 

shown versus wavenumber in the x direction, at a frequency of 100Hz. i) for ,   

ii)  , iii) , iv)  ,  , analytical solution;   

 , free plate wavenumber;   , free beam wavenumber. 

0d =

8/λd = 4/λd = λ2d =

For a position directly over the beam, Figure 2.4 i) shows that the point mobility of 

the structure in the wavenumber domain has large peaks centred on the free beam 

wavenumbers.  The point response of the structure at this position is therefore 

dominated by the behaviour of the beam.   

At a lateral distance of λ/8 and λ/4 from the support beam, Figures 2.4 ii) and iii) show 

significant response around both the free plate wavenumber and the free beam 

wavenumber.  Figure 2.4 iv) shows that for a position two wavelengths away from the 

support beam, the point mobility is dominated by large peaks centred on the free plate 

wavenumber.   

In summary, the results of the two dimensional beam and plate model presented here 

in the wavenumber domain serve to confirm the conclusions drawn from the one-
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dimensional system analysis given in Section 2.2.  Spatial-domain results from this 

two dimensional model are presented in Section 2.5.  

2.4.  MODEL 3: WAVEGUIDE FINITE ELEMENT MODEL OF A BRIDGE 

2.4.1.  The Waveguide Finite Element method 

If a structure can be idealised for vibration modelling purposes to be infinitely long 

and have a constant cross-section, special modelling methods can be used to analyse 

its vibration with much better efficiency than conventional three-dimensional 

numerical techniques such as the finite element method.  The individual spans of 

many railway bridges are suitable for this kind of idealisation.  A novel finite element 

(FE) approach to modelling this class of structure has been developed, (Gavric, 1992), 

(Karassalo, 1994), (Nilsson, 2004).  This will be referred to here as the Waveguide 

Finite Element (WFE) method.  Since the cross-section properties are constant in one 

direction, it is sufficient to use finite elements to represent only the cross-section of 

the structure.  The deformation of the structure in the direction of wave propagation, 

along its length, is described using an analytical form; complex exponential terms 

representing waves propagating along the axis of the waveguide.   

The advantage of using WFE rather than conventional FE for ‘waveguide structures’ 

is the much lower computational cost, due to the relatively limited use of finite 

elements in WFE.   It can therefore be expected that WFE, unlike conventional FE, 

can be used to predict the response of a railway bridge over the frequency range of 

interest to bridge noise in a reasonable time scale.   

2.4.2.  Basis of the WFE method 

The basis of the WFE approach is briefly described here, in order to provide a 

background for the description of how WFE has been used in this work to study the 

vibration response of railway bridge structures.  Software developed by Nilsson 

(2004) has been used to produce mass and stiffness matrices from an element 

description of the structure.  The focus of the work presented here is therefore the use 

of these matrices to calculate the free and forced vibration response, rather than the 

element or matrix formulations. This is described below, based on the more 

comprehensive accounts of the WFE method given by (Gavric, 1992), (Karassalo, 

1994) and (Nilsson, 2004).        
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The structure under analysis is defined in three-dimensional space, using x, y and z 

coordinates.  The cross-section lies in the y-z plane and the wave propagation is in the 

x direction, in which the structure is of infinite extent.  The structure undergoes steady 

state harmonic motion at circular frequencyω , such that the deformation is elastic.  

The displacement at any node in the cross-section, for a single wave of wavenumber 

κ, can be described by, 

                                (2.17) tωixκi-
i ee)z,y()t,z,y,x(

_

WW =

where is the displacement, a function of the coordinates in three perpendicular 

directions and time 

W

t.   is the displacement of the cross-section, a function of 

coordinates in two perpendicular directions (

_

W

y and z) that define the plane of the cross-

section.  The virtual work principle is the basis for the development of the equations 

used to describe the behaviour of the structure.  For details of this development 

procedure, see (Petyt, 1990).  This leads to a set of linear algebraic equations of the 

following form (Nilsson, 2004). 
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where  are a set of stiffness matrices,  j takes the values 0, 1, 2 and 4 for the plate 

elements used in this work,  is the mass matrix and  is the force vector for the 

cross-section.  Equation (2.18) can be written in the following form, by referring to 

equation (2.17) for the partial derivative terms.    
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The dispersion relations are obtained by solving the eigenvalue problem given by 

equation (2.19) for the case of free vibration,   

                           (2.20) ( ) 0)x(ωκi
4

0j

2j
j =∑ --

=

_
WMK

The simple eigenvalue problem in  can be solved for known values of 2ω κ , or 

alternatively, a solution for the polynomial eigenvalue problem in )( κi−  can be found 
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for known values of .  For each eigenvalue there exists a corresponding 

eigenvector, which describes the mode shape of the cross-section for this wave.  

Solutions to equation (2.20) in its polynomial form in 

ω

κ can be found using standard 

computing routines.  Alternatively, the eigenvalue problem given by equation (2.20) 

can be transformed to a simple linear eigenvalue problem inκ (Gavric, 1994).  The 

more widely-available standard solution routines for linear eigenvalue problems can 

then be used to obtain the dispersion characteristics of the structure.  This has been 

found to be a more stable method of solution for some problems than the polynomial 

eigensolution routine and has therefore been used in all the WFE modelling work 

reported here.   

The response of the structure to a concentrated load can be described in the spatial 

domain using a delta function, as follows.   

                          (2.21) ( ) )x(δ)x(ωκi
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Use can be made of the following Fourier transforms in order to transform equation 

(2.21) from the spatial domain into the wavenumber domain.   
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where  indicates displacement of the cross-section in the wavenumber domain and 

is the force vector for the cross-section in the wavenumber domain.  Equation 

(2.21) can therefore be written in the wavenumber domain as,  
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The cross-section displacements in the wavenumber domain can be found using 

matrix inversion,   
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The following inverse Fourier transform returns the cross-section displacement vector 

to the spatial domain,     

                    κde)κ( 
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A method of evaluating this integral based on the method of residues was presented 

by Karassalo (1994).                          
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where n is the number of waves in the structure at a given frequency, over which a 

sum is taken to find the overall response of the structure. pκ is the wave number at the 

pole under consideration, at which all the wavenumber-dependent terms in equation 

(2.27) are evaluated.  The ‘L’ and ‘R’ indices indicate the left and right-eigenvectors 

respectively.  The ‘DOF’ subscript is an index that refers to the degree-of-freedom at 

which the displacement is required.  The derivative term in equation (2.27) can be 

expanded as follows,  
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MATLAB computer programs have been used to calculate the free and forced 

response of a waveguide structure from the WFE matrices, following the approach 

described above.  

2.4.3.  WFE model of a coupled beam and plate 

Having introduced the WFE approach, the focus is now returned to the point mobility 

of a plate near to a supporting beam.  The WFE models described in this work are for 

structures of infinite extent in the length direction, but finite cross-section dimensions.  

A WFE model was created of a coupled beam and plate structure, in which the plate 

has a width of 4m.  With this exception, the geometric and material properties of the 

coupled beam and plate in the WFE model are the same as those defined in Section 

2.3 above.  The ‘beam’ is represented as a vertically-orientated plate.   

Figure 2.5 shows the nodes of the WFE model for this structure.   
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Figure 2.5.  Node positions in the WFE model of the 4m wide plate coupled to a 1m 

deep rectangular-section beam. 

The elements used in the WFE model are two-noded plate elements, in which each 

node has four degrees of freedom: translation in the three coordinate directions shown 

in Figure 2.5 and rotation about the x axis.  These elements can be thought of as thin 

strips of material, of finite width and infinite length.  The plate elements are defined in 

terms of two node positions, the thickness of the element and the material properties.   

Testing has shown that 3 elements per wavelength are sufficient to obtain satisfactory 

results when using these plate elements, which have cubic interpolation functions.  

Simple analytical models were used to predict the wavelength in the plate and in the 

beam at the maximum frequency considered in this work, 2kHz.  For a thin plate, the 

bending wavenumber is given by, 
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where the flexural rigidity of the plate is given by, 
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and the wavelength is related to the wavenumber by, 

                                      
plate

plate κ
πλ 2

=         (2.31) 

A bending wavelength of approximately 0.38m is expected in the 30mm thickness 

steel plate at a frequency of 2kHz.  An element width of 0.125m is therefore 

appropriate and has been used to model most of the plate.  Smaller elements have 

been used in part of the plate, in order to provide the required spatial resolution for the 
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point mobility calculations as a function of position on the deck presented in Section 

2.5.    

The vertical and lateral beam bending waves were not considered in the selection of 

the element size for the beam in the WFE model.  These waves cause displacements 

that vary as a function of position along the length of the structure and these are dealt 

with using the analytical wave functions.  Rather, plate bending and in-plane wave 

motions were considered in selecting an appropriate element size for modelling the 

beam using WFE.  Equations (2.29) to (2.31) show that the plate bending wavelength 

in the ‘beam’ is approximately 0.44m at a frequency of 2kHz.  For the in-plane wave, 

a wavelength of 2.5m was found at this frequency from the longitudinal wave speed in 

steel.  It is therefore sufficient and convenient to use an element width of 0.125m in 

modelling the beam using WFE. 

Note that the WFE method has also been used to study the response of rectangular and 

I-section beams, see Appendix B.   

2.4.4.  Results of model 3 

To develop the understanding from the mobilties presented in Sections 2.2.2 (results 

from the beam and spring model) and 2.3 (results from the analytical plate and beam 

model) calculations are presented in this section from the WFE model described 

above in Section 2.4.3.  Firstly, results of a free vibration response WFE analysis are 

presented here, in the form of dispersion relations and mode shapes.  The eigenvalue 

problem of equation (2.20) has been solved for , given a set of known and purely-

real values of 

2ω

κ .  It is therefore only the propagating waves that are considered here.  

This limits the number of waves to be included in the dispersion diagram in a given 

frequency range, such that these may shown reasonably clearly.  The dispersion 

diagram obtained from the WFE analysis for the coupled beam and plate is shown in 

Figure 2.6 below, for the case of zero damping, together with the results of simple 

analytical models for the waves in the structure.   
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Figure 2.6.   Purely-real wavenumber shown versus frequency for the coupled beam 

and plate structure, with no damping:  ,WFE;  , vertical bending wave in 

deck (thin plate model for 30mm thickness plate);  , vertical bending wave in 

beam (Euler beam model);  , longitudinal wave in steel.  

The WFE solution consists of a set of discrete points, or wavenumber-frequency pairs.  

Each of these points is a solution to the eigenvalue problem of equation (2.20).  Loci 

can be identified from these discrete solutions and many of these loci will not pass 

through the origin (at zero wavenumber and zero frequency).  These are propagating 

waves only above some minimum frequency, known as the wave cut-on frequency.   

Comparing the WFE solutions with the curves obtained from the analytical models, a 

longitudinal wave can be identified in the WFE solution, a vertical beam-bending 

wave up to a frequency of approximately 5Hz and a plate-bending wave in the upper 

part of the frequency range shown.   

The mode shapes can also be found from the solution of equation (2.20).  These 

provide further information for identification of the wave types in the coupled beam 

and plate and are shown in Figure 2.7 for frequencies of 1Hz and 50Hz.   

48 



Frequency of 1Hz 

0.0012+0i 0.035+0i

0.069+0i

 

0.11+0i

 

Frequency of 50Hz 

0.061+0i
0.25+0i

 

0.27+0i 1.73+0i

 
2.47+0i

2.49+0i

 
Figure 2.7.  Mode shape plots and corresponding wavenumbers for the couple beam 

and plate structure.  Caption above each plot shows wavenumber (rad/m):  

  , original node position;  , deformed shape.    

At 1Hz, Figure 2.7 shows the expected waves with a zero cut-on frequency: a 

longitudinal mode, a lateral bending mode, a vertical bending mode and a torsional 

mode.  There is very little deformation of the cross-section at this frequency.   
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The modes that show deformation of the cross-section at a frequency of 50Hz are for 

various combinations of either vertical bending or torsional motion of the beam and/or 

the plate.  For all but very low frequencies, modes of these types are expected to 

control the response of the structure to vertical excitation.  With increasing frequency, 

there is a progression toward higher-order versions of these modes, that is to modes of 

the same basic form but with shorter wavelengths.  To illustrate this, two modes that 

are important in the response of the structure to vertical excitation at a frequency of 

250Hz are shown in Figure 2.8 below.   

 

0.85+0i

 

0.67+0i

   
Figure 2.8.  Mode shape plots and corresponding wavenumbers for two important 

modes of the couple beam and plate structure at 250Hz.  Caption above each plot 

shows wavenumber (rad/m):  , original node position;  ,deformed shape.    

ii) i) 

Comparing the modes shown in Figure 2.8 at a frequency of 250Hz with those of 

similar basic form in Figure 2.7 at 50Hz shows the expected change in the 

wavelengths.  This comparison also illustrates how the influence of the beam on the 

point mobility at some lateral distance from the beam would become smaller as the 

frequency is increased.   

2.5.  EVALUATION OF THE THREE MOBILITY MODELS   

2.5.1.  Introduction 

The three models presented in Sections 2.2 to 2.4 have been used to predict the input 

point mobility of the coupled beam and plate structure described above, first as a 

function of input point position and then as a function of frequency.  In this section, 

the results given by these three different models are compared with each other and 

with those of the NORBERT mobility model.   

2.5.2.  Point mobility as a function of position   

The normalised point mobility of the coupled beam and plate structure is shown as a 

function of the normalised distance between the input point and the beam centre-line 
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in Figure 2.9 below.  Note that these quantities are as defined in Section 2.2 above 

(equations (2.15) and (2.16)), except that the system mobility is normalised by the 

mobility of the beam for the models described in Sections 2.3 and 2.4, rather than that 

of the spring as for the model in Section 2.2.  Note also that these results have been 

obtained at a single frequency, 100Hz.    
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Figure 2.9.  Normalised point mobility of the coupled beam and plate structure shown 

against normalised distance between the input point and the beam centre-line: 

 , WFE;   , two dimensional analytical model;  , one 

dimensional analytical model;  , uncoupled plate mobility.   

The three models give results that are similar; each shows a transition from close to 

the mobility of the support beam to that of the plate as the input point is moved from 

the beam to a distance equal to approximately one-quarter of a wavelength from the 

beam.  For a normalised distance of between about 0.05 and 0.2, the two dimensional 

analytical model gives a lower mobility than either the WFE model or the one 

dimensional model.  It is likely that this is due to the assumption that the beam does 

not rotate in the two dimensional analytical model.   

It is expected that of these three different models, the WFE model is based on the best 

representation of the coupled beam and plate structure.  The one dimensional model 

gives the expected behaviour in terms of the magnitude of the point mobility, but not 

the real part of point mobility: the mobility of the one dimensional system at a 

normalised distance of zero is purely imaginary.  It is therefore not a suitable means to 

predict the vibration input power to railway bridge structures.  The WFE model also 

has advantages over the two dimensional model, principally that the motion of the 
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beam is not limited to that given by an Euler beam model.  The one dimensional 

model and the two dimensional analytical model will therefore not be used further in 

this section.  This makes it possible to present results in the form of the real part of 

point mobility, which is again preferred because of its relation to power input.   

A simple empirical model has been fitted to the WFE result for the real part of point 

mobility that can be used to predict the transition between the mobility of the beam 

and that of the plate in a coupled beam and plate structure.  This is given by,  

               { } { } { } { }
⎟
⎠
⎞

⎜
⎝
⎛ −

×+= 3
3

25.0
ReRe

ReRe beamdeck
Nbeambridge

YY
dYY      (2.32) 

where ‘ ’ is the normalised distance between the input point and the beam.  Here, 

the beam mobility is calculated using the Euler beam model and the deck mobility is 

calculated using the thin plate model.  Since it is now the real part of the point 

mobility that is of concern, the normalised system mobility is re-defined as,  

Nd
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A comparison between this normalised mobility given by the simple empirical model, 

the WFE model and the NORBERT mobility model is shown in Figure 2.10 below, 

for the coupled beam and plate structure defined above, at a frequency of 100Hz.   
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Figure 2.10.  Normalised point mobility (as given by equation 2.33) of the coupled 

beam and plate structure shown against normalised distance between the input point 

and the beam centre-line:  , WFE;  , empirical transition;  , 

NORBERT mobility model.    
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In order to test further the proposed empirical transition, an alternative coupled beam 

and plate structure has been studied here using the WFE method, the empirical 

transition and the NORBERT mobility model.  The plate remains as before, but for 

this case it is coupled to the I-section beam shown in Figure 2.11 below.    

1m 

0.04

0.4m

0.04

Figure 2.11. Cross-section geometry of the I-section support beam in the alternative 

coupled beam and plate structure.   

The nodes of the top flange of the I-section beam shown in Figure 2.11 are common 

to those in the deck.  The top flange elements therefore over-lay those in the deck, 

over the width of the top flange.  The nodes of the WFE model for this structure are 

shown in Figure 2.12 below.   

 

y 

x

z 

Figure 2.12.  Node positions in the WFE model of the coupled I-section beam and 

plate structure.   

The input point mobility of the coupled I-section beam and plate structure at a 

frequency of 100Hz is shown as a function of the distance between the input point and 

the centre-line of the support beam web in Figure 2.13.       
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Figure 2.13.  Normalised point mobility (as given by equation 2.33) of the coupled I-

section beam and plate structure shown against normalised distance between the 

input point and the beam centre-line:  , WFE;  , empirical 

transition;  , NORBERT mobility model.    

Figure 2.13 shows that the empirical transition model is in satisfactory agreement with 

the WFE result for this case and again seems to offer an advantage over the 

NORBERT mobility model.   

2.5.3.  Point mobility as a function of frequency  

In NORBERT, the point mobility is required at a single position on the bridge deck 

over the frequency range of interest in bridge noise.  It is therefore of interest to 

compare the point mobility given by the WFE, empirical transition and NORBERT 

mobility models as a function of frequency.  This allows an assessment to be made of 

any benefit there may be in using the empirical transition to predict the mobility of the 

bridge in preference to the NORBERT mobility model.    

Figure 2.14 shows the input point mobility of the coupled I-section beam and plate 

structure as a function of frequency, for an input point located at a lateral distance of 

0.2m from the centre-line of the support beam.   
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Figure 2.14.  Real part of the input point mobility of the coupled I-section beam and 

plate structure, at a lateral distance of 0.2m from the centre-line of the beam:  

 , WFE;  , empirical transition;  , NORBERT mobility model.   

The input point mobility obtained from the WFE analysis shows the expected 

transition from the mobility of the beam to that of the plate over the frequency range 

up to approximately 200Hz.  It is seen that the empirical transition is an approximate 

frequency-average to the WFE result in this range.  There are peaks in the WFE result 

due to the cut-on of waves over the frequency range shown.  The NORBERT mobility 

model underestimates the mobility of the structure for frequencies between about 

40Hz and 200Hz, by up to an order of magnitude.    

2.6.  CONCLUSIONS 

The work presented in this chapter is concerned with the calculation of the input point 

mobility of a railway bridge, required in order to predict the power input to the bridge. 

The NORBERT mobility model is based on a switch between the mobility of the 

support beam and that of the deck plate.  It was expected that this switch may 

introduce some error to the calculation, for bridges in which the track supports are not 

positioned directly over the support beams.  This was confirmed by using three 

different approaches to modelling a coupled beam and plate, intended to represent a 

typical all-steel railway bridge.  All three models show that a transition is required 

between the mobility of the beam and that of the plate as the input force is moved 

away from the support beam, rather than the switch between them used in the 

NORBERT mobility model.  
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An empirical means to predict the transition between the mobility of the beam and 

that of the plate was found by fitting to the results of the WFE analysis described here.  

This empirical transition represents an alternative to the NORBERT mobility model 

and requires no additional computation or user input.  It is shown that the empirical 

transition is in much closer agreement with the results of the WFE analysis than the 

NORBERT mobility model.  On this basis, it is recommended here that the transition 

model is added to NORBERT and used to calculate the input point mobility for all-

steel bridges in which the track supports are not positioned directly over the support 

beams.  Further, it is preferable to use the result of an infinite beam model as input to 

the transition model.  This is because this type of structure has been shown to behave 

as a beam only for very low frequencies, up to about 20Hz here, such that a finite 

beam model would predict the modes of the structure incorrectly at higher 

frequencies.     

The second major outcome of the work presented in this chapter is the demonstration 

of the WFE method as a suitable tool for the analysis of those railway bridge 

structures that have a constant cross-section along their span length.  WFE addresses 

the difficulty found in using conventional FE for bridges, related to the number of 

modes at high frequencies and the consequent computational cost.  The WFE analysis 

of the coupled I-section beam and plate presented in Section 2.5 required 

approximately one hour using a laptop computer.  There are also advantages in using 

WFE for the analysis of bridge structures rather than the analytical models described 

in Sections 2.2 and 2.3, related to its flexibility and the frequency range over which 

valid results can be expected.  The WFE method has therefore been used to study the 

vibration response of concrete-steel composite bridges and concrete box-section 

bridges in Chapters 3 and 6 to follow.   

56 
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3.  APPLICATION OF THE MODELS TO CONCRETE-

STEEL COMPOSITE RAILWAY BRIDGES   

3.1.  INTRODUCTION 

3.1.1.  Concrete-steel composite bridges 

In this chapter, concrete-steel composite bridges are studied using both the WFE 

method and the NORBERT model.  Bewes (2006) found that the behaviour of 

concrete-steel composite bridges, referred to here as ‘composite bridges’, is quite 

different from that of all-steel bridges.  In a composite bridge, the point mobility of 

the concrete deck may be in the same order of magnitude as that of the steel support 

beam over much of the frequency range of interest.  For this reason, the procedure that 

has been developed for calculating the mobility of all-steel bridges in NORBERT, as 

either the mobility of the deck or that of the beam, or as a transition between them, 

may not be applicable to composite bridges.   

Moreover, the simplified SEA scheme used in NORBERT, which is based on the 

assumption of equipartition of energy between the subsystems, is valid only for 

reasonably homogeneous structures (Janssens and Thompson, 1996).  An all-steel or 

an all-concrete bridge satisfies this criterion; the plate subsystems in a NORBERT 

SEA model of these bridges normally have similar thickness and impedance.  

However, this is not the case for a composite bridge, in which a thick concrete deck is 

connected to relatively thin-walled steel beams (Thompson et al., 2005).   

3.1.2.  Use of NORBERT for concrete-steel composite bridges 

Bewes (2006) proposed three different models for the input point mobility of a 

composite bridge in NORBERT: a beam model, a plate model and the switch between 

them described in the previous chapter.  Two different approaches to the use of a 

simplified SEA calculation for composite bridges were also tested.  In both of these, 

the support beams and the deck were treated as separate SEA networks, such that 

equipartition of modal energy can be applied to each network separately.  One of 

these networks was set as the primary SEA network, which receives the power input 

from the base of the track.  The secondary SEA system is then driven by the primary 

system.  While this approach avoids the need to determine coupling loss factors, a 

particularly difficult part of an SEA analysis, there is a lack of physical basis for the 
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selection of either the deck or the support beam as the primary system into which the 

vibrational power from the track is injected.     

A further concern in using two SEA networks to model a composite bridge in 

NORBERT is the smaller number of modes in each of these networks over a given 

frequency band than would be the case if only a single network had been used.  The 

minimum frequency for which the use of a statistical method can be justified for a 

composite bridge is therefore likely to be greater than that for a single material bridge.  

This minimum frequency can be estimated from the modal densities, n (modes per 

rad/s), of each plate in the SEA network, given by (Cremer et al., 1988),  

       
πω4

Aκ
n

2

B
=                              (3.1) 

where A is the surface area of the plate and Bκ  is the bending wavenumber in the 

plate.  Application of equation (3.1) to the SEA networks used by Bewes (2006) to 

model a composite bridge on the Docklands Light Railway (DLR) in London gives 

the following frequency-independent modal densities,  

Table 3.1.  Modal density of each plate in the SEA model of a composite bridge on the 

DLR used by Bewes (2006).   

Based on the modal densities shown in Table 3.1, the total number of modes expected 

in the one-third octave frequency band centred on 315Hz is just five for the concrete 

component SEA network (deck and side-deck) and 15 for the steel component 

network (beam flanges and beam webs).  It may therefore be inappropriate to use a 

statistical method such as SEA for this composite bridge below the 315Hz one-third 

octave frequency band.   

Bewes evaluated the proposed NORBERT mobility and SEA calculations for 

composite bridges by comparison with measurements made for vibration under-traffic 

on the DLR composite bridge.  The best agreement was achieved by using the switch 

between beam and plate models for the mobility calculation and setting the deck as 

the primary SEA network.  However, that work could not be regarded as an ideal 

  

Deck 

(concrete) 

Side-deck 

(concrete) 

Beam flanges 

(steel) 

Beam webs 

(steel) 

n (modes per rad/s) 0.008 0.004 0.004 0.03 
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basis for assessment of the proposed mobility and SEA models, as there is significant 

uncertainty in other parts of the NORBERT calculation for vibration under traffic, 

such as the roughness excitation at the wheel-rail interface and the behaviour of the 

track structure.  Further, the comparison with measurement data does not easily lead 

to a physical explanation for the observed behaviour. 

3.1.3.  Modelling concrete-steel composite bridges using WFE 

In the work described in this chapter, the WFE method has been used to investigate 

the issues relating to the application of NORBERT to composite bridges.  It is 

expected that the WFE method is a suitable approach to the prediction of both the 

input point mobility of the bridge and the response of the main components of the 

bridge during a train pass-by.  The results of this analysis have been compared with 

those obtained from NORBERT, using the mobility and SEA models proposed by 

Bewes, for the same composite bridge on the DLR.  Bewes’s measurement data has 

also been referred to, where available.    

3.2.  CHARACTERISING THE VIBRATION REPSONSE OF THE 

COMPOSITE BRIDGE ON THE DOCKLANDS LIGHT RAILWAY 

3.2.1.  The composite bridge on the DLR                                                             

Measurements were made in previous work for noise and vibration on a composite 

bridge on the DLR in London, located between Tower Gateway and Shadwell stations 

(Bewes, 2006).  The cross-section geometry of this twin-track bridge is shown in 

Figure 3.1 below.    

 

Figure 3.1.  A sketch of the composite bridge on the DLR, taken from Bewes (2006). 

Figure 3.1 shows a concrete deck supported by two steel I-section beams.  The deck 

has a typical thickness of 0.39m where it is reinforced by the track slab, 0.23m 

elsewhere and an overall width of 8m.  The I-section beams are 1m deep, with a web 

thickness of 0.03m, flange thickness of 0.04m and flange width of 0.4m.  This bridge 

consists of 16m length spans, with support from concrete columns at the span ends.   
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The material properties for steel defined in Chapter 2 (Table 2.1) were used here to 

model the I-section support beams.  For the concrete deck, the Young’s modulus is 

subject to significant uncertainty because it is dependent on the precise composition 

of the concrete.  Following consultation with a company responsible for building 

concrete bridges on the DLR and reference to Kong and Evans (1982), the following 

set of material properties have been assumed for the concrete deck. 

 

 

  

                                                        

Table 3.1.  Material properties for the concrete deck.   

3.2.2.  WFE model for the composite bridge on the DLR 

The concrete deck in this bridge is expected to show thick-plate behaviour in the 

frequency range of interest for bridge noise.  This behaviour cannot be accounted for 

using the WFE plate elements, which are based on thin plate theory.  Rather, a solid 

element model would be required.  However, a plate element model is preferred here 

because it is simple and computationally light relative to a solid element model.   

In order to assess the need to account for thick-plate effects in this modelling work, a 

comparison was made between the mobility of the concrete deck given by both thick 

and thin infinite plate theory.  It was found that these differ by less than 15% in the 

frequency range up to 1.5kHz for the concrete deck in this bridge.  On this basis, 

thick-plate effects have been neglected in the modelling work presented here and plate 

elements are used to model both the bridge deck and the support beams.   

A WFE model for half of the bridge cross-section was run separately for boundary 

conditions at the bridge centre-line appropriate to symmetric and anti-symmetric 

motion about the centre-line.  A significant reduction in the overall solution time is 

achieved by this approach, relative to that for a model of the full bridge cross-section, 

due to the reduction in the number of degrees-of-freedom in the model.     

Figure 3.2 shows the nodes of the WFE model for half of the DLR composite bridge.   

Property Value 

Dynamic Young's Modulus 40GPa 

Density 2400kg/m
3
 

Poisson's ratio 0.2 
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Figure 3.2.  Node positions in the WFE model for half of the composite bridge on the 

DLR. 

The lengths of the elements shown in Figure 3.2 were chosen with reference to the 

requirement for at least three elements per wavelength described in Chapter 2.  Thin 

infinite plate theory was applied to the bridge deck, the flanges and the web of the I-

section beam, in order to estimate the minimum wavelength in each of these 

components in the frequency range up to 1.5kHz.   

Bewes (2006) used a frequency-dependent loss factor to model this bridge in 

NORBERT.  However, this cannot be included in the WFE analysis easily.  In the 

absence of suitable measurement data for the damping in this structure, a frequency-

independent structural damping loss factor has been used in both the WFE and 

NORBERT modelling work presented here.  A structural damping loss factor of 0.02 

has been chosen for this composite bridge, following Harrison et al. (2000).  The term 

structural damping loss factor is used here for a loss factor that describes the overall 

level of damping in a structure, inclusive of the damping in the material and at the 

joints in the bridge and track structure.    

Note that the modelling of the rail and track supports will be described in Section 

3.2.5 to follow.   

y 
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3.2.3.  Free vibration response analysis 

The dispersion relations obtained from solution of the eigenvalue problem for a 

prescribed set of purely real wavenumbers are identified for the case of zero damping 

in Figure 3.3 below.  A number of dispersion curves calculated from simple analytical 

models are also shown to aid interpretation of the waveforms in the bridge.    
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Figure 3.3.   Purely-real wavenumber shown versus frequency for the composite 

bridge on the DLR, with no damping:  ,WFE for symmetric case; * , WFE for anti-

symmetric case;  , longitudinal wave in steel;   , longitudinal wave in 

concrete;  , lateral beam-bending wave in deck (Euler beam model;       

 , vertical bending wave in I-section beam (Euler beam model);             

 , vertical bending wave in deck (thin plate model).   

The waves in the structure with a zero cut-on frequency can be identified from a 

comparison of the discrete WFE solution points to the curves obtained from the 

analytical models.  The symmetric case WFE solution in Figure 3.3 shows waves with 

dispersion properties that approximately follow those for a vertical bending wave in 

the I-section beam at very low frequencies, a longitudinal wave in the concrete deck 

and a longitudinal wave in the I-section beam.  For the anti-symmetric case, the WFE 

solution shows waves with dispersion properties that approximately follow those for a 

lateral beam-bending wave in the concrete deck at low frequencies and a longitudinal 

wave in the I-section beam.  There is an additional set of WFE solution points for the 

anti-symmetric case with a zero cut-on frequency.  These are for the torsional wave.   
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For frequencies greater than approximately 10Hz, it can be seen that the WFE 

solution points depart from the analytical models for the vertical bending wave in the 

I-section beam and the lateral beam-bending wave in the deck.  Further, three waves 

cut on in the frequency range up to 20Hz.  It is necessary to study the mode shapes 

associated with these waves in order to identify the wave type in each case.  These are 

shown for the symmetric waves in Figure 3.4 below, at frequencies of 1Hz and 25Hz. 

Frequency of 1Hz 

 

 

 

Frequency of 25Hz 

 

 

 

 

 

 

Figure 3.4.  Mode shape plots and corresponding wavenumbers for the symmetric 

modes of the composite bridge on the DLR.  Caption above each plot shows 

wavenumber (rad/m):  , original node position;  , deformed shape.     

For a frequency of 1Hz, Figure 3.4 shows a mode in which the bridge performs beam-

bending motion in the vertical direction, with no cross-sectional deformation, in 

addition to the longitudinal waves in the I-section beam and the deck.  At the higher 

frequency shown in Figure 3.4, the two longitudinal modes remain unchanged and the 

beam-bending mode of the bridge is also present.  Two additional modes are shown, 

one which has a cut-on frequency of 15Hz and another with a cut-on at 20Hz.  The 
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former shows primarily torsional motion of the I-section beam and the latter is the 

first plate-bending mode in the bridge deck.   

Figure 3.5 shows the mode shapes for the anti-symmetric waves in the bridge for 

frequencies of 1Hz and 25Hz.    

Frequency of 1Hz 

 

 

  

  

Frequency of 25Hz 

  

 

  

 

 

Figure 3.5.  Mode shape plots and corresponding wavenumbers for the anti-

symmetric modes of the composite bridge on the DLR.  Caption above each plot 

shows wavenumber (rad/m):  , original node position;  , deformed shape.    

At 1Hz there is a longitudinal mode of the steel beams, a torsional mode of the bridge 

and a lateral beam-bending mode of the bridge.  At 25Hz the longitudinal, torsional 

and lateral beam-bending modes persist and they are joined by a mode in which the I-

section beam performs torsional motion.  This is the anti-symmetric counterpart to the 

mode with similar appearance shown in Figure 3.4 for a frequency of 25Hz.   
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The dispersion and mode shape diagrams presented in Figures 3.3 to 3.5 describe the 

low-frequency behaviour of the viaduct.  Presentation of the free vibration response 

analysis results for higher frequencies is made difficult by the large number of waves 

in the viaduct.  In order to present dispersion results clearly over a larger frequency 

range, it is necessary to select only some of the waves from the full WFE solution for 

plotting.  This has been done by plotting the dispersion results only for the waves with 

relatively large wave amplitudes at the excitation position (where the force from the 

track support is input to the bridge).  The majority of the total power input to the 

structure is transmitted to these waves.  It is then only a small fraction of the total 

number of waves in the WFE solution that need to be considered in characterising the 

response of the bridge. 

To implement this, a wave with a displacement amplitude (magnitude of the complex 

amplitude) greater than 75% of the largest wave amplitude at a given frequency is 

labelled as a ‘very high power wave’, a wave with an amplitude of between 50% and 

75% of the maximum wave amplitude as a ‘high power wave’ and a wave with 

between 25% and 50% of the maximum wave amplitude as a ‘medium power wave’.  

Note that the term ‘power’ is used loosely here as the relative wave amplitudes are 

only an approximate indicator of the relative powers transmitted to the waves.    

Figure 3.6 shows the dispersion relations for these waves when the viaduct is excited 

at the outer rail position on the deck, for the symmetric case only, together with the 

results of appropriate analytical models.  A relatively large frequency range of 1Hz to 

3kHz has been chosen for this analysis, so that the high-frequency asymptotic 

behaviour may be shown.  
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Figure 3.6.   Purely-real wavenumber shown versus frequency for the composite 

bridge on the DLR, with no damping, for symmetric motion about the centre-line and 

excitation at the outer rail position: *, WFE result for very high power waves;                   

 , WFE result for high power waves;  , WFE result for medium power waves; 

 , vertical bending wave in deck (thin plate model);  , vertical bending 

wave in I-section beam (Euler beam model).   

Figure 3.6 shows that for frequencies up to about 20Hz and the symmetric waves 

only, the vibration power input to the bridge is transmitted to waves with dispersion 

properties similar to those given by the Euler beam model for the I-section support 

beam.  At a frequency of 20Hz the first plate-bending mode within the width of the 

deck cuts-on and as expected, a significant part of the power input to the bridge is 

transmitted to these waves.  However, very high power waves in the frequency range 

from 20Hz to about 300Hz have dispersion properties that lie between those of the 

Euler beam model and the thin plate equation.   

For frequencies greater than 300Hz, the power is transmitted to waves which are 

predominantly bending waves in the deck.  This is a significantly lower frequency 

than that at which the distance between the excitation position and the web of the 

support beam becomes equal to one-quarter of a bending wavelength in the deck, 

which is about 730Hz.  There are no WFE solutions shown in Figure 3.6 that closely 

approximate to the results of analytical models for the I-section beam or the 

component parts of the beam for frequencies greater than 300Hz.  This is supporting 
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evidence for nomination of the deck as the primary SEA system in NORBERT, which 

receives the power input from the base of the track. 

Figure 3.7 shows the dispersion relations for the important anti-symmetric waves in 

the bridge, again for excitation at the outer rail position.   
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Figure 3.7.   Purely-real wavenumber shown versus frequency for the composite 

bridge on the DLR, with no damping, for anti-symmetric motion about the centre-line 

and excitation at the outer rail position: *, WFE result for very high power waves;    

 , WFE result for high power waves;  , WFE result for medium power waves; 

 , vertical bending wave in deck (thin plate model);   , vertical bending 

wave in I-section beam (Euler beam model).   

It can be seen that the power input to the bridge is transmitted predominantly to plate 

bending waves in the deck, for frequencies greater than about 300Hz in the anti-

symmetric case solution, as for the symmetric case solution.  For lower frequencies 

and excitation at the outer rail position, torsional waves of the bridge section dominate 

the power transmission to the anti-symmetric waves.   

3.2.4.  Input point mobility 

The point mobility on the bridge deck at the outer rail position has been calculated 

from the WFE model of the bridge and also from the NORBERT model, shown in 

Figure 3.8 below.  The real part of mobility, rather than the magnitude, has been 

shown here because this is directly related to the vibrational power input to the bridge. 
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Figure 3.8.  Real part and phase of point mobility on the deck of the composite bridge 

on the DLR, at the outer rail position, shown versus frequency:  , from WFE 

model;   , from thick infinite plate model applied to bridge deck;   

 , from Bewes equations for mobility of an I-section beam.   

Figure 3.8 shows that the point mobility at the outer rail position given by the WFE 

model has plate-like characteristics for frequencies greater than about 100Hz: the real 

part of mobility is close to frequency-independent and the phase is approximately 

zero, when a frequency-average of the mobility is considered.  For lower frequencies, 

the WFE mobility spectrum shows some influence of the bending waves in the 

support beam: the real part of the mobility becomes smaller with increasing frequency 

over this range and the phase angle is closer to that expected for a beam (-45
o
).  The 

peaks and troughs in the WFE mobility spectrum are due to the modes of the cross-

section, and correspond to the wave cut-on frequencies.   

In NORBERT, the thick-plate approximation for the bridge mobility would be used 

for the outer rail position in the frequency range above 730Hz, based on the switch 

between beam and plate mobility models described in Section 2.1.4.  This leads to an 

overestimate for the real part of point mobility relative to the frequency-average WFE 

result in this range, but only by about 30%.   
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For frequencies lower than 730Hz, the bridge would be modelled as a beam in 

NORBERT.  This approach would lead to an overestimate for the real part of point 

mobility relative to the WFE result by a factor of between three and four in the 

frequency range up to 100Hz and by a factor of about two for frequencies between 

100Hz and 730Hz.  This comparison with the WFE mobility shows that it is necessary 

to account for the influence of both the steel I-section beam and the concrete deck of 

this bridge.  This is because the I-section beam and the concrete deck have similar 

mobilities.  The WFE method is expected to capture the behaviour of the composite 

bridge more reliably, because the combined behaviour of the deck and the support 

beam can be accounted for.   

If an appropriate representation of the rail and track support is included in the WFE 

model, the power input to the bridge may be found from the WFE matrices.  This is 

the subject of Section 3.2.5 below.   

3.2.5.  Calculation of the power input to the bridge using a WFE model of the 

bridge and track 

In this section, the track is added to the WFE model of the bridge in order to allow 

computation of the power transfer from the track into the bridge structure.  The rail 

behaves as a beam in the frequency range of interest, with transverse shear and 

rotational inertia effects in the upper part of this range.  In the absence of Timoshenko 

beam elements in WFE, four vertically-orientated plate elements were used to model 

the rail: one for the rail head, one for the rail foot and two for the web.  The rail on the 

DLR is of BS80A rail section, the geometry for which was taken from (Esveld, 1989).   

The WFE representation of the rail was checked by finding the point mobility from a 

WFE model of only the rail and comparing it with that given by Timoshenko beam 

theory for the properties of the BS80A rail.  This is shown in Figure 3.9 below.  
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Figure 3.9.  Magnitude of point mobility on the BS80A rail:    , from a WFE model of 

only the rail;  , from Timoshenko beam theory.   

Figure 3.9 shows that the WFE representation of the rail is suitable for prediction of 

the rail response over the frequency of interest.  A damping loss factor of 0.02 was 

used for the rail in all the modelling work described here.   

The rails are directly-fastened to the concrete bridge deck with Pandrol type 4479 

baseplates, set at 0.6m intervals along the rail.  There is a single rubber pad in these 

baseplates.  Bewes (2006) used a point accelerance measurement on the unloaded rail 

together with the coupled beam model to determine a dynamic stiffness of 84MN/m 

and a damping loss factor of 0.17 for these rail fasteners.     

A single vertically-orientated plate element was used to represent the track support as 

an equivalent continuous resilient layer in the WFE model.  The Young’s modulus of 

the resilient layer in the vertical direction was specified by considering the stiffness of 

a strip of material subject to a distributed load, 

         
h

ELt
k =              (3.2) 

where L is the length of the strip, t is its thickness and h is its height.  In the WFE 

model, the thickness and height dimensions were set to 0.1m, such that the stiffness 

per unit length of the resilient layer is equal to the Young’s modulus for the plate 

element in the vertical direction.  For these fasteners with a dynamic stiffness of 

84MN/m, set at 0.6m intervals, a vertical Young’s modulus of 140MPa is appropriate.    
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Orthotropic material properties were assigned to the plate element used to represent 

the resilient layer in the WFE model, in order to minimise the effects of shear waves 

along its length.  Physically, such shear waves do not exist because the track support 

consists of spatially discrete rail fasteners rather than a continuous resilient connection 

between the rail and bridge. The Young’s modulus in the axial direction and the shear 

modulus were therefore set to very small values.     

The power input to the bridge is found from an appropriate model of the rail, track 

support structure and the bridge as follows, 

                                        ( )( ) dx)x(Wxz.sRe
2

1
P bridge

.2
L

2
L

*

bridge ∫=           (3.3) 

where s is the stiffness of the track support per unit length, ( )xz  is the displacement 

across the track support and * indicates the complex conjugate.  )x(W bridge

.

is the 

velocity of the bridge directly below the track and L is the length of the bridge.   

Other power quantities can be found from the WFE model and these provide further 

understanding of the behaviour of the combined rail, track support and bridge system.  

For excitation at the rail, the power input to the rail is given by,  

                                                      { } 2

railrailrail_in FYReP =            (3.4) 

where railY  is the point mobility at the rail head and Frail is the r.m.s. force input to the 

rail.  The power dissipated in the resilient layer is found from (by the definition of loss 

factor), 

                                              ( ) dxxzsωη
2

1
P

2
L

2
L-

2

resilientresilient ∫=           (3.5) 

where resilientη  is the damping loss factor of the resilient layer.      

Equations (3.3) and (3.5) require that the response of the structure is calculated as a 

function of the axial distance along the bridge span, followed by integration along the 

axis.  Simple trapezoidal integration has been used to evaluate these integrals over the 

span length of the bridge. 

. 
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The power quantities defined by equations (3.3) to (3.5) are shown below in 

Figure 3.10 for excitation at the outer rail of the DLR composite bridge, for a single 

input force at the rail of unit amplitude (peak). 
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Figure 3.10.   Power shown versus frequency, for a single excitation force of unit 

amplitude (peak) at the outer rail of the composite bridge on the DLR:  , input 

power to the rail;  , input power to the bridge;  , power dissipated in 

the resilient layer. 

At low frequencies, almost all of the power input to the rail is transmitted across the 

track support structure to the bridge.  The motion of the rail and bridge are well-

coupled in this frequency range and, due to the relative impedances of the bridge and 

rail, the power is transmitted to the bridge in preference to the rail.   

The power input to the rail is proportional to the point mobility at the rail head for this 

idealised excitation case (constant input force for all frequencies) and is therefore 

greatest at the resonance frequency, approximately 315Hz in this case.  Here, the 

bridge and the rail move in anti-phase on the track stiffness.  This frequency can 

therefore be called the decoupling frequency.  At this frequency, the majority of the 

power input to the system is dissipated in the resilient layer, due to the large 

displacements across it.  However, the maximum power input to the bridge is also 

found at this frequency, because the force applied to the bridge is dependent on the 

displacement across the resilient layer (equation (3.3)).   

The rail becomes decoupled from the bridge at high frequencies and the power input 

to the bridge is therefore relatively small in this range.  This is the effect of the 
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vibration isolation provided by the resilient layer, introduced in Section 1.3.5.  In this 

frequency range, the majority of the power input to the system is dissipated in the rail.  

It is of interest to compare the power input to the bridge obtained from the WFE and 

NORBERT models.  The infinite length coupled beam model in NORBERT has been 

used here, rather than the finite length coupled beam model, mainly because this can 

be compared directly with the WFE model (also an infinite length model).  However, 

it is also expected that the finite length coupled beam model in NORBERT would 

predict the modes of the structure incorrectly, because it was shown in Sections 3.2.3 

and 3.2.4 that this bridge behaves as a beam only for frequencies up to about 20Hz.   

Figure 3.11 compares the power input to the bridge obtained from the WFE and 

NORBERT models.          
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Figure 3.11.  Power input to the bridge shown versus frequency, for a single 

excitation force of unit amplitude (peak) at the outer rail of the composite bridge on 

the DLR:  , from WFE;  , from NORBERT.   

The power input to the bridge obtained from the WFE model is lower than that given 

by NORBERT in the frequency range up to about 250Hz; by between 4 and 6dB up to 

100Hz and by about 3dB in the range between 100Hz and 250Hz.  This is consistent 

with the comparison shown between the NORBERT and WFE results for the input 

point mobility of the bridge in Section 3.2.4.   

The peaks in the power input spectra given by the two models occur at slightly 

different frequencies: about 295Hz for the NORBERT model and 315Hz for the WFE 

model.  That is, the coupling between the rail and the bridge occurs differently in the 
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two models.  Since, it is expected that the representation of the rail and the track 

support structure in the two models is the same, this difference can be attributed to the 

representation of the bridge structure in the two models.   

In the frequency range above 300Hz, the two models give similar results for power 

input to the bridge.  From the comparison made between the input point mobilities of 

the bridge in these two models in Section 3.2.4, it was expected that the power input 

to the bridge given by NORBERT would be significantly greater than that from the 

WFE model up to about 730Hz.  The difference in the coupling between the rail and 

the bridge in these models largely offsets the effect of the different bridge mobilities 

on the power input calculation.   

3.3.  VIBRATION OF THE COMPOSITE BRIDGE UNDER-TRAFFIC 

3.3.1.  Prediction of the bridge velocity during a train pass-by 

In this section, the vibration response of the composite bridge during the passage of a 

train is calculated using the WFE model.  This is compared with the vibration under 

traffic found using NORBERT and from the measurements made by Bewes (2006).   

The bridge velocity has been calculated from the WFE model in response to a single 

unit force acting at the outer rail head, which was then adjusted for the excitation 

expected during the passage of a train as follows,  

                                                   ><>=< 22

railw

2 vFNV          (3.6) 

where >< 2V  is the spatially-averaged mean-square velocity in response to the 

passage of the train, Frail is the r.m.s. amplitude of the input force to the rail, 
wN  is the 

number of wheels within the span length of the viaduct and >< 2v  is the spatially-

averaged mean-square velocity in response to a unit force.  The number of wheels on 

the bridge can be found by comparing the length of the train and the axle positions to 

the span length of the bridge.  The force input to the bridge at each wheel-rail 

interface was calculated using the appropriate NORBERT modules, described in 

Section 1.5.2.  The rail mobility obtained from a preliminary run of the WFE model 

was used in this calculation.    

A different approach has been taken to modelling the B90/B92 rolling stock used on 

the DLR in this work than in the previous work by Bewes (2006).  These vehicles are 
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fitted with Bochum 54 or Bochum 84 resilient wheels.  The motion of the bogie and 

that of the wheel are expected to decouple at a frequency of about 10Hz.  Since bridge 

vibration data is not available for such low frequencies, it is sufficient to calculate the 

force input to the bridge at each wheel-rail interface using a vehicle model that is 

limited to a description of the resilient wheel, shown in Figure 3.12 below. 

 

 

 

 

 

 

Figure 3.12.  Two degree-of-freedom model for the resilient wheel on B90/B92 rolling 

stock.  

mouter is the mass of the outer part of the wheel and minner is that of the inner part of the 

wheel.  kw  represents the stiffness of the rubber elements fitted between the inner and 

outer parts of the wheel.  The damping in these rubber elements has been modelled 

using a damping loss factor ηw.  kc represents the stiffness of the linearised Hertzian 

contact spring between the wheel and rail, which has been set to 1.3GN/m in this 

work.   

The parameter values used to model the resilient wheels have been taken from the 

specifications for Bochum 54 and Bochum 84 wheels.  These are shown in Table 3.2, 

together with the other input data to the NORBERT vehicle model appropriate for the 

B90/B92 rolling stock on the DLR.  Note that the train speed given here is the average 

train speed found by Bewes (2006) using the measured acceleration time histories and 

knowledge of the axle spacing.    

mouter 

 

kc 

kw(1+iηw) 

minner 
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Table 3.2.  Input data to the NORBERT vehicle model for the B90/B92 rolling stock 

on the DLR.    

The wheel roughness spectrum was taken from (Dings and Dittrich, 1996) and 

represents an average of measurements made on 37 disc-braked wheels.  For the rail, 

an ‘average UK roughness’ was used, from (Hardy, 1997).   

Bewes (2006) measured the vibration on the bridge deck at four positions where the 

deck thickness is 0.39m and four positions where the deck thickness is 0.23m.  The 

former will be described as the deck and the latter as the side-deck hereafter.  These 

measurements have been spatially-averaged for both the deck and the side-deck (i.e. 

averaged over four transducer positions for the deck and four for the side-deck), and 

averaged over the 48 train pass-bys for which measurements were made.   

The spatially-averaged velocities found from the measurements are directly 

comparable to the output of the simplified SEA calculation in NORBERT.  The 

assembly of plates proposed by Bewes (2006) as the basis of this calculation has been 

adopted in the NORBERT modelling work reported here.  This consists of plates for 

the deck, side-deck, beam flanges and beam webs.      

In order to obtain corresponding results from the WFE model, the velocity at each 

node in the cross-section was calculated at regular sampling points away from the 

excitation position, in a direction parallel to the axis of the bridge.   

                                                     

( )

span

N

1n
n

2

p
2

p N

xv

v

∑
>=<

=
         (3.7)       

Stiffness of rubber elements in wheel,  kw (N/m)  610×300  

Damping loss factor for rubber elements in wheel,  ηw  (N/m) 0.2 

Contact stiffness,  kc  (N/m)  910×1.3  

Mass of inner part of wheel (kg)  350 

Mass of outer part of wheel (kg)  120 

Length of one vehicle (m)  14 

Length of train (m) 56 

Number of wheels per vehicle  6 

Train speed (km/h) 54 
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where >< 2

pv  is the spatially-averaged mean-square velocity along the length of the 

structure at node ‘p’  in the cross-section, ( )
n

2

p xv  is the mean-square velocity at each 

sampling position along the length of the bridge for this node and the series 
nx defines 

the sampling positions.   

Physically, wave reflection at the ends of the bridge span would be expected to make 

a significant contribution to the energy in the bridge span, at least for low frequencies.  

Since the WFE model used here is for an infinite structure, it cannot account for wave 

reflection at the span ends directly.  Two different approaches were considered for the 

calculation of the spatially-averaged velocity along the length of the bridge: one based 

on the assumption of strong wave reflection at the span ends of the bridge and one 

based on weak wave reflection at the span ends.  In the former, the sum of the squared 

velocities in equation (3.7) was made over a length that includes all points at which 

there is a significant response.  This sum was then divided by the number of sampling 

points in the span length of the bridge, spanN .  For the weak reflection case, the sum of 

the squared velocities in equation (3.7) was made only over the span length of the 

bridge.   

The difference between the results of these two calculations is large at low 

frequencies, approximately 13dB at a frequency of 50Hz, but small at higher 

frequencies.  It is expected that the calculation based on the assumption of strong 

reflection at the span ends represents a closer approximation to the physical behaviour 

of the bridge, due to the large impedance change at the span ends.  This approach has 

therefore been taken to the calculation of the spatially-averaged velocity along the 

length of the bridge at each node in the WFE model, using equation (3.7).  These 

results were then averaged over all the nodes in each of the major components of the 

bridge, such that they represent spatially-averaged velocities for these components 

that can be compared with the results of the simplified SEA calculations proposed for 

this bridge by Bewes (2006) and with the measurement data.   

The spatially-averaged velocity on the deck of the composite bridge is shown below 

in Figure 3.13.  
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Figure 3.13.  Spatially-averaged velocity on the deck of the composite bridge on the 

DLR  shown versus frequency:  , measured average;  , measured range; 

 , WFE result;  , NORBERT result;  , NORBERT result using 

power input spectrum from WFE. 

Figure 3.13 shows that the bridge deck velocity predicted using the WFE model is in 

reasonably close agreement with the measurements for the frequency bands from 

50Hz to 630Hz.  The peak in the model results at about the 80Hz band is due to the 

mode in which the mass of the wheel and the mass of the rail vibrate on the track 

stiffness.  This peak is not clearly defined in the measurements.  It is likely that the 

vehicle model is responsible for a significant part of the difference between the results 

of the models and the measurement in this range.  For the frequency bands above 

630Hz, the deck velocity given by the WFE model is 10 to 20dB lower than the 

measurement.   

One of the NORBERT results shown in Figure 3.13 was obtained using the approach 

recommended by Bewes (2006) for modelling composite bridges in NORBERT.  The 

power input to the bridge was found from the beam representation of the bridge for 

frequencies less than 730Hz and from the plate model for higher frequencies.  The 

bridge velocity was calculated using the simplified SEA scheme in which the deck is 

set as the primary network and the beam as the secondary network.  This calculation 

gives a similar result to the WFE model for much of the frequency range, but it is up 

to 4dB lower for the frequency range between 250Hz and 630Hz, and further from the 

measurement in this range. 
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It was shown in Sections 3.2.4 and 3.2.5 that there is reason to expect significant error 

in the NORBERT result for the power input to this composite bridge and it is 

expected that the WFE model represents an improved basis for this calculation.  In 

evaluating the simplified SEA schemes proposed by Bewes for modelling composite 

bridges in NORBERT, it is therefore appropriate to use the power input to the bridge 

obtained from the WFE analysis as an input to the calculation of the component 

velocities in NORBERT.  For the same power input to the bridge, Figure 3.13 shows 

that the recommended simplified SEA scheme gives lower deck velocities than the 

WFE analysis, by 2 to 3dB in the frequency range up to 400Hz and by typically 1.5dB 

in the range above 630Hz.  The WFE result for deck velocity is in generally closer 

agreement with the measurements.    

Figure 3.14 shows the spatially-averaged velocity in the side-deck of the composite 

bridge.   
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Figure 3.14.  Spatially-averaged velocity on the side-deck of the composite bridge on 

the DLR  shown versus frequency:  , measured average;  , measured 

range;  , WFE result;  , NORBERT result;  , NORBERT 

result using power input spectrum from WFE. 

This shows that the side-deck velocity calculated from the WFE model is comparable 

to the measurement in the frequency bands from 80Hz to 630Hz.  For higher 

frequencies, the WFE result is 8 to 13dB lower than the measurement.  This 

comparison for the side-deck velocity is similar to that for the deck velocity (Figure 
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3.13), but the under-prediction of the high frequency response is less severe for the 

side-deck than for the main deck.   

The NORBERT results for the side-deck velocity, using both the power input to the 

bridge calculated in NORBERT and using the power input taken from the WFE 

model, are generally higher than the WFE result.  Given the comparison shown 

between the results of these models for the deck velocity in Figure 3.13 above, where 

the WFE result was higher than the NORBERT result, this indicates that the division 

of energy between the deck and the side-deck in the simplified SEA calculation in 

NORBERT is different to that in the WFE analysis.  This is studied further in Section 

3.3.2 below.   

Bewes (2006) identified uncertainty in the assumed wheel-rail roughness spectrum 

and the fastener stiffness as the most likely causes of the difference between the deck 

and side-deck velocity spectra predicted using NORBERT and the measurements for 

frequencies greater than 630Hz.  The use of the WFE method for this structure does 

not address either of these issues.   

3.3.2.  Assessment of the SEA schemes proposed for the composite bridge 

In this section, the WFE method has been used to calculate the spatially-averaged 

velocities of all the main components of the bridge, including those for which 

measurement data is not available.  Comparison has been made to the results of the 

two different simplified SEA schemes studied by Bewes (2006) for modelling 

composite bridges using NORBERT: one in which the deck is primary network (used 

in Section 3.3.1 above) and one in which the beam is the primary network.  These 

have been assessed against measurements for the deck and side-deck only in the 

previous work by Bewes (2006).  Here they have been compared with the WFE model 

for prediction of the spatially-averaged velocity for all the main components of the 

bridge.  The power input to the bridge obtained from the WFE analysis has been used 

as input data to the NORBERT calculations here such that the energy sharing between 

the bridge components in the simplified SEA schemes may be compared directly with 

that given by the WFE analysis.   

Figure 3.15 shows the spatially-averaged velocity spectra for each of the major bridge 

components, obtained using the two simplified SEA schemes in NORBERT and the 

WFE model.    
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Figure 3.15 shows that the component velocities given by the simplified SEA scheme 

in which the beam is the primary network are much higher than those obtained from 

the WFE analysis or the alternative SEA-based calculation.  The difference between 

the two simplified SEA schemes is large, up to 25dB.  That with the beam as the 

primary network will not be discussed further in this work.  

The component velocities given by the simplified SEA scheme in which the deck is 

the primary network compare much less closely with those obtained from the WFE 

model for the beam flanges and the beam webs than for the deck and side-deck in the 

frequency range up to 800Hz.  The simplified SEA scheme gives velocities for the 

beam flanges and beam webs that are up to 15dB greater than those from the WFE 

model in this range.  These two models therefore differ in the division of the input 

power between the concrete components (deck and side-deck) and the steel 

components (beam flanges and beam web).  It is expected that this can be modelled 

more accurately using the WFE approach than a simplified SEA scheme in which the 

concrete and steel components are treated separately.   

3.4.  CONCLUSIONS 

The WFE method has been used to predict the vibration response of this composite 

bridge on the DLR and to study the issues regarding the application of NORBERT to 

this type of bridge identified by Bewes (2006).  The point mobility on the deck of this 

bridge was predicted using the WFE model and this shows that the bridge behaves as 

a coupled beam and plate over a significant part of the frequency range of interest.  

The simple structural models based on the use of either the mobility of the support 

beam, that of the deck or a smooth transition between these are therefore not readily 

applicable to this bridge.   

A representation of the rail and track support was added to the WFE model of the 

bridge and used to calculate the power input to the bridge.  The NORBERT model 

overestimates the power input to this composite bridge in the frequency range up to 

about 300Hz, relative to the WFE model.  This is due to the higher mobility of the 

bridge in NORBERT, which is found from a beam model for the bridge in this range. 

It has been shown that the WFE method can be used to predict the vibration response 

of the bridge under-traffic, given the excitation force at the rail as an input to the 

calculation.  This has been found using the wheel-rail interaction model in 
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NORBERT.  The bridge structure response is in satisfactory agreement with the 

measurements for the deck and side-deck made by Bewes (2006) for the frequency 

bands between 63Hz and 630Hz.  At higher frequencies, the WFE result, like the 

NORBERT result, is significantly lower than the measurement.  The WFE and 

NORBERT results for the deck and side-deck are in quite close agreement for the 

frequency bands above 630Hz.  Bewes (2006) identified the assumed wheel-rail 

roughness and the rail fastener stiffness as the most likely causes of the discrepancy 

between NORBERT and the measurements at high frequency, and these apply equally 

to the results the WFE modelling.    

Comparison of the spatially-averaged velocity for each major component of the bridge 

given by the WFE and NORBERT models indicates that the distribution of energy 

amongst these components is significantly different in the two models, for frequencies 

up to about 800Hz.     

The WFE method is expected to be a more reliable means to predict the power input 

to this composite bridge and the sharing of this power amongst the major components 

of the bridge than NORBERT.  This is due to the more detailed representation of the 

structure on which the WFE calculations are based, such that fewer simplifying 

assumptions are required than in using NORBERT for this type of bridge.  It is 

therefore recommended that a WFE model should be used for predicting the vibration 

of a composite bridge.   
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4.  THE DYNAMIC BEHAVIOUR OF RAILWAY 

BALLAST 

4.1. INTRODUCTION  

4.1.1.  Railway ballast in bridge noise modelling 

Most tracks, even on bridges, are ballasted and it is the layer of ballast that forms the 

connection between the track and the bridge deck.  For these cases, it is therefore 

necessary to include a representation of the ballast layer in a model for bridge noise 

and vibration.  This introduces additional uncertainty to the modelling task, relative to 

the case of directly-fastened track, because the properties of the ballast layer are the 

least well-defined parameters in the track model, (Jones et al., 2000).   

Ballasted track is normally regarded as the low-noise option for the track form on 

railway bridges.  This is supported by the case described by Stuber (1975).  Directly-

fastened track on a steel bridge was replaced by ballasted track, with a reported 

12dB(A) reduction in the noise level at distance of 25m from the bridge.  However, 

the noise survey reported by Hardy (1999) shows that bridges with ballasted track 

produce relatively high noise levels in some cases.   

There is also disagreement with regard to a physical explanation for any noise 

reduction that the use of ballasted track in preference to directly-fastened track may 

provide.  Stuber (1975) attributed this to the sound absorption properties of the ballast, 

Hardy (1999) identified the damping in the ballast as the primary mechanism by 

which ballast could reduce bridge noise and Kurzweil (1977) refers to the additional 

mass on the deck of a ballasted bridge.  There may also be a significant difference in 

the dynamic stiffness of these two trackforms, and therefore also in the vibration 

isolation effect between the rail and the bridge.  However, this discussion remains at a 

speculative stage, because there is a lack of reliable measurement data for the stiffness 

and damping properties of railway ballast. 

Bridges with ballasted track have been studied using NORBERT, (Cobbing and 

Jones, 2008).  The dynamic stiffness of the ballast was found by treating the ballast 

loaded in compression beneath each sleeper as an axially-loaded rod of finite length.  

The analytical solution for the response of such a rod was presented by Snowdon 
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(1963).  The first longitudinal mode is expected in the ballast ‘rod’ within the 

frequency range of interest in bridge noise, such that the ballast stiffness would be 

frequency-dependent.    

While the axially-loaded rod model provides a simple means to predict the dynamic 

stiffness of the ballast based on the expected physical behaviour, there is currently a 

lack of evidence in the literature to support this approach.  Further, when this model 

has been used in NORBERT for bridges with ballasted track, the predicted noise and 

vibration levels have generally been in a lesser degree of agreement with 

measurement data than is normally the case for bridges with directly-fastened track.   

The aim of the work presented in this chapter is to validate a simple model that can be 

used to describe the behaviour of a ballast layer in NORBERT against appropriate 

measurement data.    

4.1.2.  Previous work on the dynamic properties of ballast 

Jones et al. (2000) measured the dynamic transfer stiffness of a ballast layer in a test 

section of at-grade railway track using accelerometers mounted on the sleeper and 

force transducers on a concrete slab beneath the ballast.  Note that it is the transfer 

stiffness, the force transmitted to a blocked termination per unit displacement at the 

input side (Thompson and Verheij, 1997), which is required to calculate the vibration 

transmission from the rail to the bridge.  A predictive model for the ballast transfer 

stiffness was proposed in which the ballast loaded by each sleeper was treated as a 

frustum of material, with sides inclined at an angle of 30 degrees to the vertical (i.e. a 

cone angle of 60 degrees).  The level of agreement shown between the results of the 

model and the measurement work was not conclusive.  This was attributed, at least in 

part, to the inability to calibrate force transducers buried under the track.    

Zhai et al. (2004) studied the direct stiffness of the ballast layer on an in-service 

railway by embedding a protected accelerometer in the ballast to measure its 

acceleration during a train pass-by.  A model for the ballast’s direct stiffness was 

proposed, also based on a frustum of loaded ballast beneath each sleeper with sides 

inclined at an angle of 30 degrees to the vertical.  The model differs from that 

proposed by Jones et al. (2000) in that shear stiffness and damping parameters were 

used to account for the effects of interaction between frustums of loaded ballast 

beneath adjacent sleepers, in cases where this is expected to occur.  This interaction 
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between adjacent columns of loaded ballast was reported to have an important 

vibration-attenuation effect on the dynamic behaviour of the track. The transfer 

stiffness of the ballast was not considered in this work.   

Al Shaer et al. (2008), Burrow et al. (2007), Chebli et al. (2008) have each used finite 

element (FE) models to study ballasted at-grade railway track, inclusive of the 

subgrade.  However, since the sub-grade is normally less stiff than the ballast, these 

studies do not address the need for a model of ballasted track on a railway bridge.   

Some models of railway ballast have been developed in which the ballast is modelled 

as a group of discrete particles, Discrete Element modelling, rather than assuming it 

may be treated as a homogeneous continuum of material, as in the rod, frustum and 

FE models.  Suiker et al. (1999), Kruse and Popp (2003), Sahin and Indraratna (2006) 

and Saussine et al. (2006) present examples of this approach.  These models have 

been developed to study the deterioration of ballast layers over large numbers of 

cycles in service.  This is an important concern, due to the enormous cost of 

maintaining ballasted track (Saussine et al., 2006).  

Suiker et al. (1999) suggest that heterogeneous effects in the ballast become more 

important at high frequencies, as the wavelength in the ballast becomes comparable to 

the grain size.  Saussine et al. (2006) remark on the small depth of the ballast layer 

relative to the grain diameter, typically in the ratio of around ten to one, in justifying 

the need for this type of model.  While only the case of ballast on a relatively soft sub-

grade was considered, these models do provide information on the contact force 

network in the ballast and the settlement process.  This is relevant to the study of the 

dynamic behaviour of ballast and would be very difficult to obtain experimentally.    

The numerical model developed by Kruse and Popp (2003) was based on a two-

dimensional representation of the ballast layer, with each grain modelled as a polygon 

with between five and eight sides.  A random number generator was used to set the 

dimensions of these polygons within limits expected of railway ballast.  This model 

was used to simulate pouring the ballast, laying the sleeper and a series of load cycles 

intended to represent the passage of a train.  The settlement of the ballast during these 

load cycles was found to vary greatly as the simulation was re-run for the same type 

of ballast layer.  This was attributed to the chaotic process of pouring the ballast, such 

that the initial conditions to differ in successive simulations, and the randomly 
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selected grain sizes.  It was also reported that the network of contact forces between 

the ballast grains consists of only a small number of paths through the depth of the 

ballast layer.  The majority of the grains are therefore not involved in the transmission 

of load across the ballast.  The increase in stiffness of the ballast due to an applied 

static load was attributed, at least in part, to the formation of new contacts between the 

grains.   

Saussine et al. (2006) also used a two dimensional discrete element model of a layer 

of ballast to predict its settlement.  The simulation showed how the grains move 

relative to each other during the settlement process.  A ‘breathing’ phenomenon was 

reported over a load cycle, where the grains move to areas of relatively low force 

intensity as the external load is reduced.  The contact force network was strongest 

directly beneath the sleeper in all cases.   

In summary, the literature review shows that the case of ballasted track on a relatively 

stiff foundation such as on railway bridges has received little attention.  There does 

not appear to be a proven means for prediction of the dynamic stiffness of railway 

ballast, or measurement data that could be used to validate such a model.   

The finite element and discrete element approaches to modelling the ballast described 

in the literature are not considered suitable for use in NORBERT, due to their 

complexity and computational demand.  Relatively simple models for the ballast have 

therefore been considered here and tested against dynamic transfer stiffness 

measurements.    

4.2.  EXPERIMENT DESIGN 

4.2.1.  Approach taken to measurement of ballast stiffness   

Measurements were made for the dynamic transfer stiffness of the ballast in the 

laboratory using a measurement rig, rather than in-situ on a railway bridge.  Practical 

difficulties were expected in making these measurements on a railway bridge, 

particularly with regard to the required level of access.  It was assumed in the design 

of the measurement rig that the effects of the moving load on ballast in railway track 

could be neglected, following Grassie et al. (1982).   

Dynamic transfer stiffness measurements have been made for rail fasteners in 

previous work, normally by the ‘direct’ method or the ‘indirect’ method.  The 
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difference between these is the means by which the force transmitted across the 

resilient element is determined.  In the former, it is measured directly using a force 

transducer mounted on the output side of the resilient element under test.  This 

requires a body on the output side that has a large stiffness and a small mass relative 

to that of the resilient element (Morrison et al., 2005).  This does not seem practically 

achievable for measuring the stiffness of a quantity of ballast that is representative of 

that loaded by the sleeper in railway track.  The indirect method of transfer stiffness 

measurement has therefore been adopted here, in which the transmitted force is found 

by measuring the acceleration of the solid body on the output side of the ballast and 

deriving the force by applying Newton’s second law.   

4.2.2.  Simple model of the ballast stiffness test rig 

A simple model of a rig that is suitable for making dynamic transfer stiffness 

measurements by the indirect method is shown below in Figure 4.1.   

 

Figure 4.1.  Simple model of the ballast stiffness test rig.       

Figure 4.1 shows a two degree-of-freedom system, with three stiffness elements.  ku is 

required to isolate the upper mass from the structure used to apply a static preload to 

the system, simulating the effect of the wheel-load on the ballast in railway track.  kl  

provides isolation between the lower mass and the ground.  The upper mass, ms, will 

be referred to as the ‘sleeper’ hereafter and the lower mass, mb, as the ‘base slab’.   

In the experiment, the transfer stiffness of the ballast layer is found from acceleration 

measurements made on the sleeper and base slab as follows,                                               
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where TransF  is the force transmitted across the ballast, sx  is the displacement of the 

sleeper and bx is that of the base slab.  The quantity required from the measurement 

work is therefore a transfer function between the acceleration of the sleeper and that 

of the base slab.   

The factors that control the frequency range over which valid stiffness measurements 

can be made using this approach can be identified from the system model shown in 

Figure 4.1.  For excitation at the sleeper by the harmonic force tωi

sef , the equations of 

motion are given by,   

             
sbBTsBPSuSS

2
fxk-xkxkxmω =++-                   (4.3) 

              0xk-xkxkxmω sBTbBPblbb

2 =++-                    (4.4) 

where BPk  is the point stiffness of the ballast and BTk  is the transfer stiffness of the 

ballast.  Writing equations (4.3) and (4.4) in matrix form, 
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The response of the system can be found by matrix inversion of equation (4.5).  A 

practically realisable set of parameter values are shown in Table 4.1, together with a 

pre-estimate for the ballast layer stiffness.   

Table 4.1.  Example parameter values for the simple model of the measurement rig.      

No damping was included in this model.  For these parameter values, the accelerance 

of the sleeper and the base slab are shown in Figure 4.2 below. 

ms (kg) mb (kg) uk  (MN/m) lk  (MN/m) 
BPBT k,k  (MN/m) 

100 1000 5 5 100 
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Figure 4.2.  Amplitude and phase of accelerance, for excitation at the sleeper: 

 , sleeper;   ,base slab.   

Figure 4.2 shows the response expected of a two degree-of-freedom system with 

excitation at the upper mass (sleeper): a resonance of both masses at a frequency f1, an 

anti-resonance of the sleeper at a frequency Af  and a second resonance of both masses 

at frequency 2f .  From the system equations, these frequencies can be estimated as 

follows (Thompson et al., 1998). 
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Figure 4.2 shows that the motion of the two masses is well-coupled up to a frequency 

of close to Af .  Since there is no displacement across the ballast in this part of the 

frequency range, its stiffness has no effect on the response of the masses.  It was 

therefore expected that the lower limit to the frequency range for valid measurements 

would be close to Af .  In order to make measurements down to low frequencies, 
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therefore, the mass of the base slab should be large and the stiffness of the lower 

resilient mount small, while retaining stability of the rig.     

For frequencies greater than Af , Figure 4.2 shows that the motion of the two masses is 

de-coupled.  The simple model indicates that valid measurements could be made up to 

a frequency at which the response of the base slab becomes very small, due to 

vibration isolation between the sleeper and base slab, such that the signal from the 

base slab accelerometer would be dominated by noise.  Physically, however, it is the 

modal response of the base slab and sleeper that needs to be considered in 

determining the upper limit to the frequency range for valid measurements.  Equation 

(4.2) is valid only for the frequency range in which the sleeper and base slab behave 

as simple masses.    

4.2.3.  The main components of the test rig 

The measurements would ideally be made on a quantity of ballast that is 

representative of that loaded beneath a single monobloc railway sleeper during the 

passage of a train.  Initial calculations showed that for a rig based on a monobloc 

sleeper, the internal modes of the sleeper and any practically-achievable base slab 

would occur from frequencies as low as 100Hz.  A rig with smaller physical 

dimensions is therefore required in order to use equation (4.2) to determine the ballast 

stiffness over a range of frequencies, such that its frequency-dependence can be 

assessed.   

It has been assumed here that the transmission of load between the sleeper and the 

ballast takes place in areas local to the two rail seats.  This is supported by inspection 

of some ballasted track, the work of Kaewunruen and Remennikov (2007) and also 

Esveld (1988); it is common for the sleeper to be out of physical contact with the 

ballast in the centre-span region.  It is therefore sufficient for the measurement rig to 

simulate the ballast loaded in compression beneath a single rail seat.  On this basis, 

the ‘sleeper’ used in this work was a concrete block with a length of 600mm and a 

width of 285mm.  These dimensions correspond to those for a one-quarter length 

section of an F40 monobloc sleeper.   

The ballast was poured into an open-topped box, referred to as the ballast box 

hereafter.  It was intended that the side walls of this box would not be subject to 

significant normal load by the ballast, for safety reasons and so that these walls do not 
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influence the stiffness measurements.  The literature shows two different load 

distribution patterns in the ballast: Saussine et al (2006) report that the compressive 

load in the ballast is concentrated in the ballast directly beneath the sleeper, while 

Jones et al. (2000) and Zhai et al. (2004) assumed that the ballast load spreads 

downwards at an angle of 60 degrees (cone angle).  The latter is a more conservative 

approach and has therefore been taken here in designing the rig.  On the basis of this 

assumed load distribution and a ballast layer depth of 300mm, the length of the ballast 

box was set to 900mm and its width to 600mm.  Measurements have been made for a 

deeper layer of ballast, but only for relatively low preloads, such that no significant 

safety risk was expected.   

The length and width of the base slab follow those of the ballast box.  The depth of 

the base slab was chosen by using a simple ANSYS FE model to predict its first few 

natural frequencies.  Eight-noded brick elements (ANSYS element SOLID45) were 

used to model the base slab.  No constraints were applied to this model, such that any 

partial constraint applied to the base slab by the ballast has been neglected.   

Concrete is the only material that can provide the mass and stiffness required here at 

an acceptable cost.  Relatively basic equipment was used to produce this concrete in 

the laboratory, such that the mixing and composition could not be controlled with the 

accuracy expected of commercially-produced concrete.  The dynamic Young’s 

modulus of this concrete was therefore subject to significant uncertainty, but it was set 

to a mid-range value of 30GPa (Kong and Evans, 1987) in the FE model.  The density 

and Poisson’s ratio were set to 2400kg/m
3
 and 0.2 respectively.     

It is expected that torsional modes of the base slab or the sleeper would not be 

strongly-excited in the test rig and these have therefore been ignored in this analysis.  

The first internal mode of the base slab of interest here is a vertical bending mode.  

The deformed shape of the base slab in this mode is shown in Figure 4.3. 
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Figure 4.3.  Deformed shape of the base slab in the first vertical bending mode.    

The natural frequency of the mode shown in Figure 4.3 is approximately 1.5kHz when 

the depth of the base slab is set to 500mm.  Together with the length and width 

dimensions given above, this represents a reasonably large concrete casting, but one 

that could be cast satisfactorily in the laboratory and subsequently moved into 

position on the lower resilient mounts.  Note that the maximum overall depth of the 

base slab and sleeper is 800mm, limited by the ceiling height in the laboratory.          

The measurement made using the accelerometer on the sleeper in the fully-assembled 

test rig is a point response measurement.  An anti-resonance in the sleeper response 

must therefore follow the bounce resonance at frequency f2 (equation (4.8)).  With 

regard to the sleeper, it is this feature of its response that may impose the upper limit 

for valid stiffness measurements, rather than the first internal resonance. 

The acceleration measurement on the base slab represents a transfer response.  In this 

case, there only will be an anti-resonance between consecutive modes if the modal 

constants for these modes have the same sign (Ewins, 2000).  The sign of the modal 

constant for a given mode is dependent on the relative phase of the motion at the 

excitation and response positions.  Given that the high-frequency behaviour of the 

ballast was not well-understood in advance of the test work, this was difficult to 

predict.  However, it seemed possible that if this problem occurred at a sufficiently 

low frequency to prevent measurements being made over an acceptable frequency 

range, it could be treated by moving the accelerometer on the base slab to another 

position.   

Prediction of the sleeper anti-resonance frequencies requires a more detailed 

knowledge of the test rig properties, including the ballast, than was available prior to 

building the rig.  The expected first bending resonance frequency of the sleeper was 
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therefore used to set the depth of the sleeper block, estimated using the same FE 

approach as that for the base slab.  For a 300mm deep sleeper, with same material 

properties as those used for the base slab analysis, the first bending resonance 

frequency of the sleeper was estimated as 2kHz.   

4.3.  APPARATUS AND PROCEDURE 

4.3.1.  Description of the test rig  

A photograph of the rig used to make the ballast stiffness measurements is shown 

below in Figure 4.4.    

 

Figure 4.4.  Photograph of the ballast stiffness test rig. 

The upper resilient isolator shown in Figure 4.4 provides vibration isolation between 

the sleeper and the hydraulic press for all but very low frequencies.  It consists of 

three layers of ballast mat material, specification DFSAH12, supplied by CDM-UK.  

A fabricated steel ‘arch’ structure was fitted between this resilient material and the 

hydraulic press.  This allows access to the upper face of the sleeper, so that the system 

can be excited using the impact hammer.     

The ballast box consists of a steel frame, which supports four vertical sides formed of 

12mm thick plywood panels.  A 1mm thick steel sheet was welded to the bottom of 

the steel frame.  This is required to prevent the escape of ballast from beneath the steel 

frame of the box under preload.   
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Figure 4.4 shows three layers of resilient material beneath the base slab, labelled 

lower resilient isolator.  This resilient material is also to specification CDM-

DFSAH12 and provides vibration isolation between the base slab and the foundation. 

The Enerpac hydraulic press shown in Figure 4.4 was supported by a steel load frame, 

used to apply a static preload to the system.  A force gauge was fitted to the pump and 

this was used to determine the applied preload in each test.  This gauge was checked 

by comparison with a calibrated load-cell.  The preloads referred to in this work are 

subject to a maximum error of +/-2kN.      

The reinforced concrete sleeper and base slab have masses of approximately 150kg 

and 850kg respectively.     

4.3.2.  Measurement method   

Accelerometers were used to measure the acceleration of the sleeper and base slab at 

the centre of their upper faces, such that the transfer function between these can be 

found and used to calculate the ballast stiffness from equation (4.2).  In order to avoid 

damage from the ballast under load, the accelerometer on the base slab was placed 

inside an inverted steel cup and the cable was run along the floor of the ballast box 

inside a stiff-walled nylon pipe.  A third accelerometer was used to measure the 

acceleration of the impact hammer, which was converted to a force estimate.  

Accelerance spectra for the sleeper and base slab were found from the excitation force 

spectrum and used to study the behaviour of the measurement rig. 

The equipment used to make these acceleration measurements is shown below in 

Table 4.2.   

Table 4.2.  Equipment list for acceleration measurements.    

1 Kistler Accelerometer 8712A5M1 accelerometer (on base slab) 

2 Kistler Accelerometer 8702B25M1 accelerometer (on sleeper) 

3 Kistler Accelerometer 8702B500M1 accelerometer (on impact hammer) 

4 National Instruments SCXI-1531 Accelerometer Input Module 

5 National Instruments SCXI-1600 USB Data Acquisition Module 

6 National Instruments SCXI-1000 Chassis for SCXI-1531 and SCXI-1600 

7 Laptop computer running Pandrol LOGGER software 
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The accelerometers were calibrated by making point accelerance measurements on a 

known mass supported on resilient material and inspection of the spectra in the mass-

controlled frequency range.  Since it is the transfer function between the acceleration 

of the sleeper and the base slab that is required here, the accelerometers to be used on 

the base slab and the sleeper were calibrated simultaneously.  This was repeated 

periodically through the test work.    

The impact hammer has a mass of 0.6kg and relatively stiff plastic tip, such that 

strong excitation could be delivered to the sleeper for frequencies up to approximately 

1.2kHz.  A series of ten hammer taps were recorded in each test so that the effects of 

noise on the measurement signals could be reduced by averaging.  The equipment 

described in Table 4.3 was used to record acceleration time-histories and to produce 

the required frequency response functions. 

The ballast stiffness beneath each sleeper in railway track is a function of the contact 

state between the sleeper and the base slab (Wu and Thompson, 2000).  Since 

significant variability may be expected in this contact state from one sleeper to 

another, the ballast stiffness would also be expected to differ between sleepers.  Three 

sets of measurements were therefore made for each ballast layer configuration tested.  

The ballast was dug-out and then re-poured between each of the three measurements.  

4.3.3.  Test set-up procedure  

The ballast was poured into the ballast box to the required depth and the top surface 

levelled by hand.  The sleeper was then lifted into place on top of the ballast.  A 

plumb line was used position the sleeper centrally about the axis of the press.  The 

ballast beneath the sleeper was adjusted until the sleeper was horizontal, by ramming 

the ballast with a steel rod.  A series of load cycles were used to simulate the initial 

ballast settlement process.  A load of up to 100kN was applied over nine cycles, with 

checks made for the inclination of the sleeper every three cycles.  The steel rod was 

again used to adjust the ballast until the sleeper was horizontal where necessary.   

Point accelerance measurements were made on the upper surface of the sleeper close 

to each corner and mid-way along each of the longer sides.  These measurements 

showed the behaviour of the ballast had become steady from one load application to 

another after the nine load cycles.  A comparison between the point accelerance at 

symmetrically opposed locations about the centre of the sleeper upper face was used 
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to assess the uniformity of the support provided by the ballast to the sleeper.  Rigid 

body ‘rocking’ motion of the sleeper must be avoided, as this would not fully engage 

the stiffness of the ballast.  In some cases it was necessary to adjust the ballast further 

using the steel rod.              

4.3.4.  Types of ballast layer tested 

Various ballast materials are used in different parts of the world, laid to a range of 

depths and the state of the grains with respect to wear is expected to change 

significantly over the service life of the ballast.  Further, some form of liner is laid 

between the ballast and the bridge deck in many cases, to protect the deck from 

impact damage and to exclude rainwater from the bridge structure.  It was therefore 

necessary to make measurements on a range of different ballast layers in this work, to 

account for the variability in behaviour expected between them.  These are 

summarised in Table 4.3 below.     

Table 4.3.  Summary of the different types of ballast layer tested in this work. 

The use of a liner between the ballast and the bridge deck is expected to affect the 

overall stiffness between the sleeper and bridge deck by two different mechanisms: 

the connection of the liner stiffness in series with the ballast stiffness and modification 

of the contact state between the ballast and the bridge deck.  At present, only two 

types of liner are approved for use between a bridge deck and the ballast on UK 

mainline track.  A sample of one of these liners was supplied by the manufacturer, 

Stirling Lloyd plc.  This liner normally consists of two parts: a 2mm thick hard resin 

layer applied to the bridge deck in the form of a spray and a 6mm thick geotextile mat 

laid between the resin layer and the ballast.  The hard resin layer is not expected to 

have a significant influence on the stiffness between the sleeper and bridge deck.  

Measurements were therefore made with only the geotextile mat laid beneath the 

Configuration Number Depth (mm) Wear State Liner 

1 150 New None 

2 300 New None 

3 450 New None 

4 450 New 10mm plywood 

5 300 New Geotextile mat 

6 300 Old None 
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ballast.  For bridges built in the past, it is common to find a layer of wood laid 

between the ballast and the bridge deck.  Measurements were therefore made for the 

case of a 12mm thick plywood panel laid between the sleeper and the ballast.     

Table 4.3 shows that two different types of ballast material were used in this test 

work, labelled ‘new’ and ‘old’.  The new ballast was supplied by Lafarge Aggregates 

and is typical of the granite ballast used on railways in central and eastern England.  

The old ballast was obtained from a ballast recycling plant in Doncaster.  This ballast 

had been removed from mainline UK track at the end of its service life.  Photographs 

of new and old ballast samples are shown in Figure 4.5 below.  

 

Figure 4.5.  Photographs of samples of the new ballast, left-hand pane, and old 

ballast, right-hand pane.    

Figure 4.5 shows that the old ballast grains have edges and corners that are visibly 

less angular than those for the new ballast grains, due to wear action.   

4.4.  RESULTS AND DISCUSSION 

4.4.1.  Introduction 

Some example measurements are considered in sub-sections 4.4.2 to 4.4.4, to 

illustrate the frequency range over which the valid results have been obtained, some 

important features of the stiffness spectra and the effects of a liner in the system.  The 

effect of preload on the stiffness of the ballast layer is discussed in sub-section 4.4.5.    

4.4.2.  Example stiffness spectrum for a 150mm deep ballast layer 

The dynamic transfer stiffness of the 150mm deep ballast layer is close to frequency-

independent over a larger frequency range than that of the deeper ballast layers tested 
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in this work.  It is therefore the most suitable one to study the effects that limit the 

valid frequency range for the measurements made on this rig.   

Figure 4.6 shows the accelerance spectra of the sleeper and base slab obtained during 

a test for a 150mm deep layer of new ballast, under a preload of 60kN.   
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Figure 4.6.  Magnitude and phase angle of accelerance, for a 150mm deep layer of 

new ballast, subject to a preload of 60kN, with no liner present:  , sleeper; 

 , base slab.   

For frequencies up to 500Hz, the measured accelerance spectra are similar to those 

given by the simple model of the test rig presented in Section 4.2.2.  The main 

differences between them in this range are due to the effects of damping in the 

physical system, which was not included in the simple model.  Figure 4.6 shows that 

the first resonance of the system occurs at approximately 20Hz, the anti-resonance of 

the sleeper at 58Hz and the second resonance of the system at 145Hz.   

At frequencies greater than 500Hz, the modal response of the sleeper and base slab 

introduce features to the accelerance spectra that are not present in the results of the 

simple model.  Figure 4.6 shows anti-resonances of the base slab and the sleeper at 

650Hz and 1.1kHz respectively.  These features have a significant influence on the 

accelerance spectra for frequencies down to approximately 500Hz for the base slab 

and 800Hz for the sleeper.  Note that these frequencies are dependent on the stiffness 
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of the ballast layer under test.  It will be shown in the sections to follow that this 

ballast layer has a relatively low stiffness.   

An internal resonance of the base slab is shown in the measurements at a frequency of 

1.2kHz and of the sleeper at 2.2kHz.  The base slab was designed for a first bending 

resonance of 1.5kHz, and the sleeper for 2kHz, as discussed in Section 4.2.3 above.  

The material properties achieved in casting the base slab were therefore disappointing 

relative to those for the sleeper.   

The ballast transfer stiffness calculated from the accelerance measurements for this 

case using equation (4.2) is shown below in Figure 4.7.  A solid line has been used to 

show the stiffness measurement in the valid frequency range and a dashed line has 

been used outside this frequency range. 
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Figure 4.7. Magnitude and phase of ballast transfer stiffness, for a 150mm deep layer 

of new ballast, subject to a preload of 60kN, no liner present:  ,measurement 

in valid frequency range; , measurement outside valid frequency range;      

*, point stiffness given by equation (4.7);  , point stiffness given by equation (4.8)  

Figure 4.7 shows a stiffness magnitude of close to 100MN/m for frequencies between 

40Hz and 500Hz.  The phase angle is steady over much of this frequency range, at 

approximately 10 degrees.  The estimates made for the direct stiffness of the ballast 

using equations (4.7) and (4.8) compare well with the measured transfer stiffness at 

the first anti-resonance frequency of the sleeper (fA) and the second resonance 
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frequency of the system (f2).  The ballast behaves as a damped spring in this 

frequency range, such that the direct stiffness and the transfer stiffness should be 

equivalent.       

The transfer stiffness found using equation (4.2) is not valid for frequencies less than 

about 40Hz or greater than 500Hz in this case.  This is consistent with the accelerance 

spectra shown in Figure 4.6, which shows that the motion of the sleeper and base slab 

are well-coupled up to 40Hz and that the base slab only behaves as a simple mass up 

to approximately 500Hz.  It is the anti-resonance of the base slab that imposes the 

upper limit for valid measurements made using this rig.  While this limit is lower than 

had been hoped for, it is slightly higher for ballast layers with greater stiffness and it 

is sufficient for the frequency-dependence of the ballast stiffness to be studied for the 

deeper ballast layers tested here.   

4.4.3.  Example stiffness spectrum for a 300mm deep ballast layer 

Figure 4.8 shows the transfer stiffness results obtained for a 300mm deep layer of new 

ballast under a preload of 20kN, with no liner present.     
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Figure 4.8. Magnitude and phase of ballast transfer stiffness, for a 300mm deep layer 

of new ballast, subject to a preload of 20kN, no liner present:  ,measurement 

in valid frequency range; , measurement outside valid frequency range. 
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Figure 4.8 shows a stiffness magnitude of approximately 200MN/m and a phase angle 

of typically 10 to 15 degrees in the frequency range between 30Hz and 300Hz.  For 

higher frequencies, the stiffness magnitude increases significantly with frequency, up 

to approximately 460MN/m at 500Hz.  This is accompanied by a change in the phase 

angle.  It has been shown in Section 4.4.2 above that the sleeper and base slab behave 

as simple masses in this frequency range.  These features can therefore be attributed to 

an internal mode of the ballast layer.    

4.4.4.  Example stiffness spectra for a 450mm deep ballast layer 

Figure 4.9 shows the transfer stiffness results obtained for a 450mm deep layer of new 

ballast under a preload of 10kN, with no liner present.    
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Figure 4.9. Magnitude and phase of ballast transfer stiffness, for a 450mm deep layer 

of new ballast, subject to a preload of 10kN, no liner present:  ,measurement 

in valid frequency range; , measurement outside valid frequency range. 

The measured stiffness has a magnitude of approximately 100MN/m and a phase 

angle of 5 to 10 degrees for frequencies between 45Hz and 100Hz.  For higher 

frequencies, the stiffness is frequency-dependent.  There is a broad peak in the 

magnitude spectrum at around 450Hz, together with a phase change of close to 180 

degrees over the frequency range from 250Hz to 530Hz.  These features are more 

fully-formed for this deeper ballast layer within the valid frequency range than was 
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the case for the 300mm deep layer and show the effects of an internal mode of the 

ballast more clearly.     

There is also a peak in the stiffness magnitude shown in Figure 4.9 at a frequency of 

150Hz, together with a small change in the phase angle.  The cause of these features is 

not clear. 

Figure 4.10 shows the transfer stiffness spectrum, for a 450mm deep ballast layer 

under a 10kN preload, with a 12mm thick plywood panel fitted between the sleeper 

and the ballast.  
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Figure 4.10. Magnitude and phase of ballast transfer stiffness, for a 450mm deep 

layer of new ballast, subject to a preload of 10kN, with a 12mm thick plywood panel 

fitted between the sleeper and ballast:  ,measurement in valid frequency 

range; , measurement outside valid frequency range. 

For frequencies up to 70Hz, the measured stiffness magnitude is approximately 

35MN/m and its phase is about 10 degrees.  Comparison with the stiffness magnitude 

shown in this frequency range for the 450mm deep layer of ballast without liner in 

Figure 4.9 shows that the effect of the 12mm plywood panel is to reduce the stiffness 

by a factor of around 3 in this frequency range.  For frequencies between 70Hz and 

250Hz, the stiffness spectra obtained with and without the plywood liner are similar in 

appearance. 
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The stiffness of the 450mm deep ballast layer with the plywood panel is 

approximately 100MN/m in the frequency range between 250Hz and the upper 

frequency limit for valid measurements (500Hz).  The effect of the liner in this range 

is therefore to remove the peak expected due to the internal mode of the 450mm deep 

ballast layer, with a consequent reduction in stiffness by up to a factor of 4.   

4.4.5.  Effect of preload 

The results presented in sub-sections 4.4.2 to 4.4.4 show that the magnitude and phase 

of the ballast stiffness are quite steady over the frequency range from the lower limit 

for valid measurements (around 40Hz) to about 100Hz.  The stiffness of the various 

ballast layers under a range of preloads has therefore been compared at a frequency of 

100Hz.  Figures 4.11 i) to iii) show the transfer stiffness of the three different types of 

300mm deep ballast layers tested in this work, at a frequency of 100Hz, versus 

preload.  
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Figure 4.11.  Transfer stiffness magnitude for the 300mm deep layers of ballast, 

shown versus preload, at a frequency of 100Hz. i) new ballast, ii) new ballast plus 

geotextile mat, iii) old ballast:  , seating 1;  , seating 2; * ,  seating 3;   

 , ½  power law;   , 1/3 power law. 

Figures 4.11 i) to iii) show that there is reasonable consistency between the results 

obtained for the three sleeper seatings in each case.   

For the new ballast layer and also for the new ballast plus geotextile mat, the stiffness 

magnitude is approximately proportional to the square root of the applied preload, for 

preloads up to 60kN.  The preload applied to the ballast per sleeper end, during a train 

pass-by, normally lies within this range.  Jones et al. (2000) reported a similar finding 

i) 

ii) 

iii) 
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for a 300mm deep layer of new ballast.  A comparison of Figures 4.11 i) and 4.11 ii) 

shows that the geotextile mat causes a reduction in the stiffness magnitude by 

approximately 25%.  Thus, of the two stiffnesses in series, the stiffness of the ballast 

is greater than that of the geotextile.   

Figure 4.11 iii) shows that the preload dependence of the 300mm deep layer of old 

ballast appears to follow a one-third power law more closely than a one-half power 

law.  The former is that expected from Hertzian contact theory, for a pair of elliptical 

surfaces.  The photographs of the new and old ballast grains presented in Figure 4.5 

above show that the old ballast grains are less angular than the new ballast grains.  

Contact between the old ballast grains may therefore represent a significantly closer 

approximation to the Hertzian contact model than that between new ballast grains.   

Comparing Figures 4.11 i) and 4.11 iii) shows that for high preloads, the old ballast is 

less stiff than the new ballast.  This is contrary to the expectation that the stiffness of 

railway ballast would increase significantly through its service life.  A primary 

mechanism by which this is thought to occur is the production of fine material as the 

ballast grains wear, such that voids between the grains become filled.  This effect may 

not have been properly included in this test work, because fine material would have 

been lost as the ballast was removed from the track and during subsequent handling.     

It has been shown that the ballast behaves as a damped spring over a significant range 

of frequencies.  Assuming that the damping in the ballast layer may be modelled using 

a loss factor approach, the damping may be quantified as follows,  

                        ( )ηi1kk r

* +=         (4.9) 

                                                      ( ) η
k

kη
θtan

r

r
==∴        (4.10) 

where *
k  is the complex ballast transfer stiffness, θ  is the phase angle and kr is the 

real part of the ballast transfer stiffness.   

Figure 4.12 shows the damping loss factor estimates made using equation (4.10) for a 

300mm deep layer of new ballast, with no liner, with the geotextile liner, and also for 

a 300mm deep layer of old ballast, versus preload.   
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Figure 4.12.  Damping loss factor for a 300mm deep layer of ballast at frequency of 

100Hz, shown versus preload. i) 300mm new ballast, ii) 300mm new ballast plus 

geotextile mat, iii) 300mm old ballast:    , seating 1;    , seating 2; * ,  seating 3; 

, mean of all measurements.   

There is significant spread in the damping loss factor values obtained for different 

sleeper seatings and also in repeat measurements made for a single sleeper seating.  

For the old ballast, this variability is greater for low preloads, but this trend is less 

clear for new ballast.  The mean damping loss factor for new ballast without a liner is 

typically in the range from 0.1 to 0.15, while for new ballast plus geotextile mat and 

for old ballast it is typically 0.2.  Higher damping in the old ballast may be expected 

i) 

ii) 

iii) 
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from the less angular shape of the old grains, such that there would be greater relative 

motion between them and therefore more energy dissipation due to friction.  The 

greater damping loss factor found for new ballast when the geotextile mat is present is 

likely to be due to energy dissipation within the mat, rather than due to any effect it 

may have on the settlement of and relative motion between the ballast grains.         

Now consider the 450mm deep ballast layer, with and without the 12mm thick 

plywood liner laid between the sleeper and the ballast.  Figure 4.13 shows the 

magnitude of the transfer stiffness versus preload. 
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Figure 4.13. Transfer stiffness magnitude of the 450mm deep layers of ballast, shown 

versus preload, i) no liner, ii) 12mm thick plywood liner:     , seating 1;    , seating 2, 

* , seating 3,  , ½  power law;   , 1/3 power law. 

Note that it was necessary to take the results at a lower frequency than 100Hz for the 

plywood liner case, typically 60Hz, in order to avoid the effects of the first mode of 

this relatively soft ballast layer.  The variability between the stiffness results obtained 

for the 450mm deep layers of ballast is relatively high, such that it is unclear whether 

their stiffness varies with preload according to a one-half or a one-third power law.   

i) 

ii) 
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Comparing the stiffness results obtained for the 300mm and 450mm deep layers of 

new ballast, without liners, they differ by a factor of about two for a given preload 

level.  The use of the plywood liner brings a further reduction in stiffness, down to 

approximately 60MN/m per sleeper end for a preload of 20kN.  This is of the same 

order as that for a resilient baseplate rail fastener (Thompson, 2009).   

Figure 4.14 shows the damping loss factor estimates made for the 450mm deep ballast 

layer with no liner present and also with the plywood liner, versus preload.  
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Figure 4.14.  Damping loss factor for 450mm deep layer of new ballast, shown versus 

preload: i) no liner, ii) with 12mm thick plywood liner:     ,  seating 1;    , seating 2, 

 , mean of all measurements.   

A damping loss factor of 0.1 is appropriate for the 450mm deep ballast layer over the 

range of preloads tested, with and also without the plywood liner.  This is 

significantly lower than that found for the 300mm deep ballast layers.   

4.4.6 Behaviour of the 150mm deep ballast layer 

Figure 4.15 shows the magnitude of the transfer stiffness of the 150mm deep layer of 

new ballast versus preload. 

i) 

ii) 
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Figure 4.15.  Transfer stiffness magnitude of the 150mm deep layers of ballast, shown 

versus preload, at a frequency of 100Hz:     ,  seating 1;    , seating 2, * , seating 3; 

 , mean of all measurements.   

The transfer stiffness of the 150mm deep layer of new ballast was found to show no 

significant dependence on the applied preload or frequency in the range over which 

valid measurements have been made.  The stiffness magnitude was found to lie 

between 100MN/m and 160MN/m in all tests, with the variability between the three 

sleeper seatings being responsible for almost all of this range.  This stiffness is lower 

than that of the 300mm deep ballast layer, contrary to expectations based on models 

for the ballast as a continuum.  It will be shown in Section 4.5 that a continuum model 

can be used to predict the stiffness of a 300mm and 450mm deep ballast layer 

reasonably well.   

In many of the measurements made for the 150mm deep layer of ballast, the phase 

angle of the stiffness is not stable with respect to frequency over any significant part 

of the frequency range, such that it is not possible to estimate the damping loss factor 

using equation (4.10) in these cases.  From those measurements that do show a stable 

phase angle in the low frequency range, the damping loss factors estimated from the 

phase angle are shown as a function of preload in Figure 4.16 below.  
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Figure 4.16.  Damping loss factor for 150mm deep layer of new ballast, shown versus 

preload.   

A damping loss factor in the range from 0.15 to 0.2 is appropriate for the 150mm deep 

layer of ballast.   

It is proposed here that the rather different behaviour found in the test work for the 

150mm deep ballast layer may be caused by a relatively restricted ballast settlement 

process in this layer.  For most of the grains, the major dimension lies between 30mm 

and 50mm, but the grains are normally orientated such that the major dimension is 

roughly horizontal.  It is therefore expected that the 150mm deep layer of ballast 

consists of about five adjacent grains in the vertical direction, and a 300mm deep 

layer of about 10 grains in the vertical direction.  There may therefore be significantly 

more freedom for the migration of ballast grains to areas of lower force intensity 

during settlement of the ballast, described by Saussine et al. (2006), for the 300mm 

deep layer than the 150mm deep layer.     

Restricted motion of the grains in the 150mm deep ballast layer would limit the 

formation of contacts between grains during the load cycles used to prepare each 

ballast layer for test and also as the preload is increased during each test.  There would 

therefore be fewer chains of loaded grains between the sleeper and the base slab in 

this relatively shallow ballast layer, such that its stiffness would be low.  Further, 

since the formation of new contacts between grains was identified as a major factor in 

the dependence of the ballast stiffness on preload (Kruse and Popp, 2003), restricted 

grain motion in the 150mm deep layer may also explain the approximately constant 

stiffness found over a large range of preloads in these tests.   



 112 

4.5.  MODELLING THE BALLAST LAYER 

4.5.1.  Models for the dynamic stiffness of ballast 

In using NORBERT for bridges with ballasted track, the dynamic stiffness of the 

ballast has been calculated from an axially-loaded rod model for the ballast beneath 

the sleeper (Cobbing and Jones, 2008). The cross-section dimensions of this rod were 

set to the base dimensions of the sleeper, and its length to the depth of the ballast 

layer.  An analytical solution for the dynamic transfer stiffness of this rod, with 

harmonic excitation at one end, is presented by Snowdon (1963),  

              ( )hκsin

κEA
kB =

           (4.11) 

where h is the depth of the ballast layer and κ  is the wavenumber in the rod, given by, 

             
( ) 2/1

ρ/E

ω
κ =

           (4.12) 

Jones et al. (2000) and Zhai et al. (2004) took a slightly different approach to 

modelling the dynamic stiffness of the ballast, in which it is assumed that the load 

from the sleeper spreads downwards at an angle of 60 degrees (cone-angle) in the 

ballast.  The transfer stiffness was calculated from the following expression for an 

axially-loaded circular frustum (Jones et al., 2000),  

                      
( )

2

12

B
A

A

hκsin

κnEA
k =

              (4.13) 

where 1A  is the area of the frustum at its upper face and 2A  that at its lower face.  The 

circular frustum is specified so that the areas of its upper and lower faces are equal to 

those of the non-circular frustum expected in the ballast, given the base dimensions of 

the sleeper and a load spread angle of 60 degrees.   

An alternative to the continuum models has also been considered.  It may be supposed 

that following initial settlement of the ballast, much of the compliance of the ballast 

layer is local to the contact between the ballast and the containing surfaces, rather than 

evenly distributed through the ballast.  The bulk of the ballast, which lies between the 

grains adjacent to the containing surfaces, may therefore be represented as a rigid 

mass.  The ballast grains in contact with the containing surfaces above and below the 



 113 

ballast may be approximated as simple stiffness elements.  This will be referred to as 

the ‘interface stiffness’ model here and it is shown diagrammatically in Figure 4.17.  

 

Figure 4.17.  System diagram for the interface stiffness model.      

kI1  represents the stiffness at the ballast-sleeper interface, kI2 represents the stiffness 

at the ballast-deck interface.  mbal represents the mass of the ballast layer, found from 

the volume of the prismatic rod of ballast directly beneath the sleeper and the density 

of the ballast.  ms is the mass of the sleeper and mb that of the base slab.   

For excitation at the sleeper by the harmonic force tωi

sef , the equations of motion for 

the system shown in Figure 4.17 are as follows,   

                   s211I1s

2
f)-xx(kxmω =+-          (4.14) 

             0)=-x(x)+k-x(x+kxm-ω 322I121I2Bal

2                     (4.15) 

                                    0)=-x(x+kxm-ω 232I3b

2          (4.16) 

or in matrix form,  

                           

0

0

f

=
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       (4.17) 

Equation (4.17) can be solved for the unknown displacements, from which the 

transfer stiffness is found using the indirect stiffness calculation of equation (4.2). 

 

 

kI2 
x2 

mBal 

 ms 

mb   
x3 
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Each of the three models contain parameters for which values are not known.  Values 

for the Young’s modulus to be used in the rod and frustum models, and kI1 and kI2 in 

the interface stiffness model, were found by fitting the results of the models to the 

measurements for a 450mm deep layer of new ballast, under preloads of 10kN and 

20kN.  This fitting exercise was limited to low frequencies, where the magnitude and 

phase of the ballast stiffness do not vary significantly with frequency.  The ability of 

the models to predict the frequency-dependence of the ballast stiffness at higher 

frequencies was assessed by comparing them to the measurements for the remainder 

of the frequency range in which the measurements are valid.  That is, the prediction of 

the first resonance in the ballast was tested against the measurement data.     

The ability of the three models to account for the influence of the depth of the ballast 

layer on its dynamic transfer stiffness was then tested by applying them to a 300mm 

deep layer of new ballast, for preloads of 10kN and 20kN, using the parameter values 

obtained for the 450mm deep layer of ballast.  No attempt was made to fit the models 

directly to the measurements for the 300mm deep layer of ballast.   

4.5.2.  Modelling a 450mm deep layer of new ballast 

The measured transfer stiffness for a 450mm deep layer of new ballast under a 

preload of 10kN is shown below in Figure 4.18, along with calculations from the three 

models.  
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Figure 4.18. Magnitude and phase angle of the ballast transfer stiffness, for a 450mm 

deep layer of new ballast subject to a preload of 10kN:  , from 

measurements;   , rod model;  , frustum model;  , interface 

stiffness model. 

Figure 4.18 shows best agreement between the results of the rod model and the 

measurements with regard to the main peak in the magnitude spectra, at about 450Hz.   

The frustum model predicts this main peak at a significantly lower frequency, but the 

maximum value and bandwidth of the peak are similar to those in the measurements.  

The interface stiffness model does not predict this peak in the magnitude spectrum 

satisfactorily.  None of the models predict the feature shown in the measured result 

between 100Hz and 250Hz.  However, this is a less significant feature than the main 

peak at about 450Hz.         

The input data used in the rod and frustum models to produce the results shown above 

in Figure 4.18 above are given in Table 4.4. 

Table 4.4.  Input data used for the rod and frustum models of a 450mm deep ballast 

layer, under a preload of 10kN.   

 Rod Frustum 

Young’s modulus (MN/m
2
) 220 130 

Material damping loss factor 0.45 0.45 
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The frustum model was applied to the 450mm deep ballast layer for a load-spread 

angle of 40 degrees (cone angle), rather than the intended 60 degrees, limited by the 

dimensions of the base slab.  It is clear from Figure 4.18 that the use of a larger load-

spread angle would not improve the level of agreement between the frustum model 

and the measurements. 

It was found necessary to use a material damping loss factor value in the rod and 

frustum models of 0.45 in order to predict the broad peak shown in the measurements 

at higher frequencies.  This is significantly larger than that found from the phase angle 

of the complex stiffness at low frequencies, typically 0.1 for a 450mm deep layer 

(Figure 4.14).  An explanation for this difference can be found in the literature.  

Richards and Lenzi (1984) and Kuhl and Kaiser
 
(1952) describe the damping of 

granular materials in terms of a loss factor that is dependent on the amplitude of 

vibration.  At low frequencies the energy dissipation occurs primarily within the 

grains, such that the damping loss factor is relatively small.  For the higher amplitudes 

in the frequency range where the ballast layer is resonant, the loss factor becomes 

significantly larger due to energy dissipation by frictional forces between the grains.  

Much of this previous work on damping in granular materials has been done for sand, 

but Kuhl and Kaiser (1952) report similar behaviour for a layer of brick rubble.  It is 

therefore expected that a frequency-dependent damping loss factor is required to 

model the dynamic behaviour of ballast over the frequency range of interest in bridge 

noise.  While the measurement and modelling work described here show significant 

changes in the damping level with frequency, they do not provide sufficient data on 

which to base a precise development of the damping loss factor with frequency.   

The measurements made for a 450mm deep layer of new ballast under a preload of 

20kN are compared the results of the models for this case in Figure 4.19 below.  Note 

that the parameter fitting exercise, in the low frequency range, has been repeated here 

for this higher preload case.     
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Figure 4.19. Magnitude and phase angle of the ballast transfer stiffness, for a 450mm 

deep layer of new ballast subject to a preload of 20kN:  , from 

measurements;   , rod model;  , frustum model;  , interface 

stiffness model. 

The comparison shown between the three models and the measurement work shown 

in Figure 4.19 for the 20kN preload case is consistent with that shown previously for 

the 10kN preload case.  The rod model underestimates the stiffness for the main peak 

at about 515Hz, but does predict the frequency of this peak correctly.   

The input data used in the rod and frustum models for the 20kN preload case is shown 

in Table 4.5 below. 

Table 4.5.  Input data used for the rod and frustum models of a 450mm deep ballast 

layer, for preload of 20kN.   

4.5.3.  Modelling a 300mm deep layer of new ballast                                                  

The three models were applied to the 300mm deep layer of new ballast under preloads 

of 10kN and 20kN, for the same parameter values found for these preloads by fitting 

the models to the measurements made for the 450mm deep ballast layer in Section 

 Rod Frustum 

Young’s modulus (MN/m
2
) 285 170 

Material damping loss factor 0.45 0.45 
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4.5.2 above.  Only the depth of the ballast layer was changed in the rod and frustum 

models, and the mass of the ballast in the interface stiffness model.  

 Figures 4.20 i) and ii) compare the results of the three models run for these parameter 

values with the measurements made for the 300mm deep ballast layer.   
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Figure 4.20. Magnitude and phase angle of the ballast transfer stiffness, for a 300mm 

deep layer of new ballast, i) subject to a preload of 10kN, ii) subject to a preload of 

20kN:  , from measurements;   , rod model;  , frustum model; 

 , interface stiffness model. 

i) 

ii) 
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Over the frequency range in which the ballast stiffness is close to frequency-

independent, up to about 100Hz, the stiffness magnitude predicted using the rod and 

frustum models is in close agreement with the measurements.  Since the Young’s 

modulus was found by fitting to the measurements for a 450mm deep ballast layer, 

this indicates that the dependence of the ballast stiffness on the layer depth is 

accounted for satisfactorily in the rod and frustum models.  The interface stiffness 

model indicates that the ballast stiffness is independent of the layer depth.  A 

comparison of the stiffness magnitude at low frequencies in Figures 4.18, 4.19 and 

4.20 clearly shows that this is not the case.   

For frequencies greater than approximately 100Hz the stiffness of the ballast is 

frequency-dependent and in this range, Figure 4.20 i) shows that both the rod and 

frustum models are in reasonable agreement with the measurements made for the 

10kN preload level.  However, for the 20kN preload case, Figure 4.20 ii) shows that 

the rod model that is in best agreement with the measurements.   

On the basis of the comparison shown between the three models and the 

measurements made for both the 450mm and 300mm deep ballast layers, it is 

concluded here that the rod model is the most suitable of these for predicting the 

dynamic transfer stiffness of ballast.  Only the rod model has therefore been used in 

Section 4.5.4 below.    

4.5.4.  Modelling a 450mm deep layer of new ballast with a 12mm thick plywood 

liner 

The case of a ballast layer with a resilient liner is one of practical importance and it 

has been studied here using the rod model for the ballast, together with a simple 

representation of the liner.  The mass of the liner is normally small relative to that of 

the ballast, such that a model for this combination can be proposed in which the rod 

for the ballast is connected in series with a simple stiffness element that represents the 

liner, shown in Figure 4.21 below. 
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Figure 4.21.  System diagram for the ballast connected in series with a liner.   

The overall point and transfer stiffness of the system shown in Figure 4.21 can be 

obtained from the matrix equation,  

liner2221
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            (4.18) 

The displacements at nodes 1 and 2 are found by matrix inversion of equation (4.18) 

for a unit force applied to node 1.  The two transfer stiffness terms for the ballast are 

assumed equal and are obtained from the rod model for the ballast (equation (4.11)).  

The point stiffness terms for the ballast are also found from the rod model (Snowdon, 

1963),  
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The overall point stiffness for the system at node 1 is then given by, 
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and the overall transfer stiffness between nodes 1 and 3 is given by, 
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The measurements made for a 12mm thick plywood liner and a 450mm deep ballast 

layer, under a preload of 10kN, have been used to test this modelling approach. 

Appropriate input parameters to the rod model for new ballast and a preload of 10kN 

are presented in Table 4.4, but the stiffness of the plywood liner is unknown.  The 

kliner 
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model has therefore been run for three different values of liner stiffness, shown in 

Figure 4.22 together with the measurements for this case.  
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Figure 4.22.  Magnitude and phase angle of the ballast transfer stiffness, for a 450mm 

deep layer of new ballast with 12mm thick plywood liner, subject to a preload of 

10kN:  , from measurements;  , proposed model with 50MN/m 

stiffness for liner;  , proposed model with 100MN/m stiffness for liner;  

 , proposed model with 500MN/m stiffness for liner. 

At low frequencies, the measurements show that the stiffness magnitude for the 

450mm deep ballast layer with the plywood liner is typically of a factor of two 

smaller than that for the ballast layer alone (see Figure 4.18).  The feature shown in 

the frequency range from 100Hz to 200Hz is very similar to that found for the ballast 

layer tested without a liner.  For frequencies greater than about 250Hz up to the 

maximum measurement frequency (about 500Hz in this case), the liner has the effect 

of flattening the stiffness magnitude spectrum, which remains between 85MN/m and 

130MN/m over this range of frequencies.  The main peak in the measured stiffness 

magnitude in this frequency range is not found when the ballast is combined with the 

plywood liner.  However, the phase angle measured for the combined ballast and liner 

case is quite similar to that for the ballast layer tested without a liner.       

The stiffness magnitude spectrum obtained from the proposed model with a stiffness 

of 50MN/m representing the liner is in agreement with the measurements for 

frequencies up to about 100Hz.  The model does predict a peak in the transfer 
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stiffness of the combined ballast and liner in the frequency range above 200Hz, due to 

the internal mode of the ballast layer, which is not supported by the measurement 

data.  However, the model run with a stiffness of 50MN/m for the liner remains in 

reasonable agreement with the measurements up to a frequency of about 350Hz for 

the stiffness magnitude and over almost all of the measured frequency range for the 

phase angle.   

In summary, the comparison made between the predicted and measured stiffness for 

the plywood liner and 450mm deep ballast layer shows that the proposed model is 

satisfactory for frequencies up to about 350Hz, but not for higher frequencies.  Since 

the rod model has been shown to predict the behaviour of this type of ballast layer 

adequately when it is tested alone and that of the liner is expected be quite simple, this 

implies that ballast behaves differently when the liner is present.  It seems likely that 

the interaction between the ballast and the sleeper could be substantially modified by 

the presence of a relatively soft liner.   

4.5.5.  Contact area between the ballast and the 12mm thick plywood liner 

The stiffness of the plywood liner found from Figure 4.22 and the material properties 

of the liner can be used to estimate the total contact area between the ballast and the 

liner.  The stiffness of the liner under a distributed load is given by,   

                                                     
h

AE
K

contactliner

liner =               (4.22) 

where 
contactA  is the total contact area between the ballast and the liner, 

linerE  is the 

Young’s modulus of the liner and h is its thickness (12mm).  If 12GPa is taken as an 

appropriate Young’s modulus for the liner (Benham and Crawford, 1987) and the 

liner stiffness as 50MN/m, then equation equation (4.20) indicates that the total 

contact area is approximately 250mm .   

A second estimate for the total contact area between the ballast and an adjacent body 

was made by applying inspecting the witness marks made on the liner during a single 

test under preloads of up to 30kN.  Thirty individual marks were made on the liner 

and their total area was approximately 500mm
2
.  While this is considerably higher 

than the estimate obtained from equation (4.22), it is expected that a significant part of 

the marked area would have been produced during the initial cycles where the 
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majority of the ballast settlement occurs.  The effective contact area during the 

measurements may be considerably smaller.  It is therefore concluded here that the 

contact area between the ballast and the plywood liner is of the order of 100mm
2
 and 

that only a small fraction of the number of ballast grains that lie within the base area 

of the sleeper may be in physical contact with it.  Further, it is expected that the 

contact area between the ballast and concrete bodies such as a sleeper or bridge deck 

would be smaller than that between the ballast and the relatively soft plywood liner.       

4.6.  CONCLUSIONS 

The work presented in this chapter describes a study of the dynamic behaviour of 

railway ballast through a programme of measurements and the use of simple models.  

It was found that one of these simple models is a suitable means of predicting the 

dynamic transfer stiffness of a 300mm or 450mm deep layer of ballast for frequencies 

up to approximately 600Hz.  This model is based on longitudinal wave motion in a 

prismatic rod of ballast loaded in compression by the sleeper.  There appears to be a 

reasonable basis for confidence in using this model for frequencies outside the range 

over which valid measurements have been made in this work.  It is expected that this 

continuum approach can be used to predict the behaviour of the granular ballast 

material up to the frequency at which the wavelength in the ballast becomes of the 

same order as the grain size.  Based on the properties used for modelling the ballast in 

this work, this implies that the rod model can be used up to a frequency of at least 

2kHz.   

NORBERT contains an option for modelling ballasted track using the rod model.  The 

work reported here addresses the need for measurements to support the use of this 

model for ballasted track.  However, the parameter values found by fitting the rod 

model to the measurements are different from those that have been used in previous 

use of NORBERT for bridges with ballasted track.   

It is recommended here that a damping loss factor is used in the rod model to account 

for damping in the ballast.  It was found that an appropriate damping loss factor for 

the ballast varies significantly over the frequency range for which measurements have 

been made.  It is thought that the damping in the ballast is dependent on the amplitude 

of vibration in the ballast, due to energy dissipation by friction between the grains.   
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The measurement and modelling work described here does not provide sufficient data 

on which to base a precise development of the damping loss factor with frequency.  It 

is therefore recommended that a simple two-stage approach is taken to modelling 

damping in railway ballast.  For the frequency range in which the ballast can be 

described as a simple stiffness beneath the sleeper, with no internal mode effects, a 

relatively small damping loss factor should be used of about 0.1 to 0.2.  For higher 

frequencies, where internal mode effects of the ballast layer are significant, a damping 

loss factor of about 0.45 should be used.  The output of the rod model for a ballast 

layer of a given specification can be used to select an appropriate frequency at which 

to change from the low frequency damping model to the high frequency damping 

model.     

Table 4.7 presents a summary of the data obtained in this work for 300mm and 

450mm deep layers of new ballast, without liners, under preloads of 10 to 30kN.   

Table 4.7.  Summary of the data obtained for the 300mm and 450mm deep layers of 

new ballast without liners, under preloads of 10kN, 20kN and 30kN.   

The Young’s modulus values presented in Table 4.7 can be used in the rod model 

(equation 4.11) to estimate the transfer stiffness of these types of ballast layer as a 

function of frequency.  Appropriate values for the cross-sectional area and the density 

of the ballast rod beneath each rail seat are 0.17m
2
 and 1500kg/m

3 
respectively.      

The measurements made for ballast at the end of its service life are thought to be 

unrepresentative of that in railway track, due to the loss of fine material when the 

ballast was removed from the track and during subsequent handling.  This case has 

therefore been omitted from Table 4.7.   

The 150mm ballast layer was found to behave quite differently from the deeper 

layers, such that the rod model does not apply to this case.  However, such a shallow 

layer of ballast is not normally used in railway track.       

Preload 

(kN) 

kB for 300mm 

Ballast (MN/m) 

kB for 450mm 

Ballast (MN/m) 

Erod 

(MN/m
2
) 

10 170 80 220 

20 220 130 285 

30 260 140 380 
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The effect of two different liner materials on the transfer stiffness of the ballast layer 

was considered in this work.  The effect of the goetextile mat was found to be quite 

small, but the 12mm thick plywood liner had a significant influence.  It was shown 

that the dynamic transfer stiffness of a ballast layer with a liner could be modelled 

reasonably well as a series combination of the rod for the ballast and an appropriate 

stiffness element for the liner up to a frequency of about 350Hz.       

Table 4.8 presents a summary of the data obtained for the two different types of liner 

tested in this work, under preloads of 10 to 30kN.   

Table 4.8.  Summary of the data obtained for the two different types of liner tested in 

this work, under preloads of 10kN, 20kN and 30kN.   

While the work presented in this chapter addresses the need for a validated means to 

model ballasted track on railway bridges, it does not explain the lower noise levels 

reported in some previous work for bridges with ballasted track than for bridges with 

direct fasteners.  The stiffness measured for the ballast layers tested in this work can 

be achieved using direct fasteners.  There may be some benefit with regard to bridge 

noise from the higher damping in the ballast, in some parts of the frequency range, but 

the effect of this is expected to be relatively small.  It is likely therefore that the 

dynamic loading of the deck plates by a layer of ballast provides at least some of the 

measured effect.   

 

Preload 

(kN) 

kliner for Geotextile 

Mat (MN/m) 

kliner for 12mm Plywood 

Panel (MN/m) 

10 800 50 

20 800 60 

30 800 70 



5.  THE DYNAMIC STIFFNESS OF A TWO-STAGE 

RESILIENT BASEPLATE 

5.1.  INTRODUCTION 

For rail fasteners of the two-stage resilient baseplate type, those in which there is a 

resilient pad between the plate and the rail and also between the plate and the bridge, 

internal modes of the fastener may be expected in the frequency range of interest in 

bridge noise.  This type of rail fastener will be referred to as a ‘resilient baseplate’ 

hereafter.  As for the case of ballasted track considered in Chapter 4, an understanding 

of the modes in resilient baseplate track is required in order to predict the vibration 

transmission from the rail to the bridge.  This need is addressed in this chapter 

through an experimental and modelling study of the vibration response of a resilient 

baseplate.   

An example of a commercial resilient baseplate, Pandrol VIPA-SP, is shown in Figure 

5.1 below.                                                          

                      

Figure 5.1.  Pictorial view of a Pandrol VIPA-SP resilient baseplate (drawing 

courtesy of Pandrol , used with permission).   

The bottom plate shown in Figure 5.1 is fixed to the bridge deck with grout, such that 

it is not free to vibrate.  The top plate, however, is resiliently mounted between the 

railpad and the baseplate pad.  Therefore, a mode may be expected in which the mass 

126 



of the top plate vibrates on the combined stiffness of these pads.  An option is 

available in NORBERT to model the track as a pair of resilient layers with a 

distributed layer of mass between them, such that the effects of this internal mode of 

the baseplate assembly are accounted for.  Here, this model of a resilient baseplate is 

referred to as the ‘spring-mass-spring’ model.   

In some higher frequency range, modes are expected in which the top plate performs 

bending motion.  It is not known whether or not these modes have a significant effect 

on the behaviour of the baseplate within the frequency range of interest for bridge 

noise, but this will be investigated here.   

It is the vertical transfer stiffness of the resilient baseplate that is of primary interest 

here, because this is required in order to calculate the vibration transmission from the 

rail to the bridge.  Reliable measurements for the transfer stiffness of a resilient 

baseplate assembly may be difficult to achieve.  A purpose-built measurement rig 

would be required, and due to the time and cost involved in producing such a rig, it 

was decided that this should not be attempted in this project.  An alternative approach 

has therefore been taken to determine the transfer stiffness of resilient baseplates.   

Measurements have been made of the vibration response of the component parts that 

are expected to control that of the complete assembly: the railpad, the baseplate pad 

and the top plate.  These measurements have been used to develop simple predictive 

models for the response of the assembly.  Finally, these models have been evaluated 

against measurements of the direct stiffness, rather than the transfer stiffness, of a 

resilient baseplate assembly.  Measurements of the direct stiffness are more straight-

forward than for the transfer stiffness, because the need to measure the force or 

displacement at the output side of the system is avoided.   

A Pandrol VIPA-SP baseplate, the ‘offset shoulder’ variant, is the subject of the 

experimental and modelling work described here.  However, there are other baseplates 

of broadly similar design and it is intended that the outcomes of this work should be 

applicable to this class of rail fastener in general.   
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5.2.  MEASUREMENT OF THE DYNAMIC TRANSFER STIFFNESS OF A 

RAILPAD AND A BASEPLATE PAD 

5.2.1. Measurement rig and procedure 

A knowledge of the stiffness of the railpad and baseplate pad under the load 

conditions found in railway track is required in order to create a representative model 

of the resilient baseplate assembly.  Transfer stiffness measurements were therefore 

made for a railpad and a baseplate pad taken from a VIPA-SP baseplate assembly, 

using a similar method to that described in Chapter 4 for the ballast stiffness 

measurements.  Both of these pads are studded natural rubber pads with an installed 

overall thickness of approximately 12mm. 

It was necessary to use a pair of steel blocks for the pad stiffness measurements, 

rather than the concrete blocks used for the ballast measurements.  The concrete 

blocks were either not sufficiently flat or too rough for the pads to be compressed 

uniformly over their working area.  The two steel blocks used for the upper and lower 

masses in this work are each rectangular with dimensions of 490 x 240 x 100mm and 

a mass of 90kg.  The first internal resonance frequency of these blocks is 

approximately 2.2kHz.  Their dimensions are not ideal; the frequency range of 

measurement could be increased by using deeper blocks.  However, the steel blocks 

used in this work were available at no cost and are adequate for measurement of the 

pad stiffness over a significant part of the frequency range of interest in bridge noise.  

A photograph of the test rig used to measure the dynamic transfer stiffness of the 

railpad and baseplate pad is shown in Figure 5.2.      
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Figure 5.2.  Photograph of the rig used to measure the dynamic transfer stiffness of 

the railpad and baseplate pad.    

Figure 5.2 shows the two steel blocks mounted on soft isolation mounts, positioned 

beneath a hydraulic press that was used apply a preload to the system.  Two Kistler 

8702B25M1 accelerometers were used to measure the acceleration of the steel blocks: 

one mounted at the centre of the top face of the upper block and one mounted at the 

centre of the underside of the lower block.  Two railpads were tested together, placed 

side-by-side between the two blocks.  This was helpful with regard to the stability of 

the rig.  A single baseplate pad was tested, because it was not possible to fit two of 

these larger pads between the blocks.  The system was excited by striking the upper 

block close to the centre of its top face with a 0.6kg impact hammer.  The dynamic 

transfer stiffness spectrum was found from the acceleration measurements using the 

same calculation as described in Chapter 4 for the ballast stiffness measurements 

(equation (4.2)). 

5.2.2.  Results 

Results are presented here are for the expected preloads on each pad during a train 

pass-by on the Docklands Light Railway (DLR), for B90/B92 rolling stock.  The case 

is relevant to the modelling work presented in the following chapter for the concrete 

box-section viaduct.  The wheel load for the B90/B92 rolling stock with passengers 

on-board is approximately 33kN.  The railpad is subject to an additional load from the 

rail clips, nominally 20kN.  Assuming that about half of the train wheel load is 
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transmitted to the baseplate (Carlone and Thompson, 2001), due to the bending 

stiffness of the rail, the preload on the baseplate pad is approximately 15kN and that 

on the railpad is approximately 35kN. 

The transfer stiffness spectrum obtained from the acceleration measurements made on 

a single baseplate pad under a preload of 15kN is shown below in Figure 5.3.  The 

frequency range over which the results are valid is indicated by the use of a solid 

rather than a broken line.  
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Figure 5.3.  Magnitude and phase of the transfer stiffness of a single Pandrol 11247 

baseplate pad shown versus frequency, for a preload of 15kN. 

Figure 5.3 shows that the stiffness magnitude ranges from approximately 70MN/m at 

a frequency of 140Hz to 90MN/m at a frequency of 615Hz.  The phase angle is stable 

for frequencies between 120Hz and 370Hz, at approximately 10 degrees.  This 

corresponds to a damping loss factor of around 0.17.  At high frequencies, both the 

magnitude and phase spectra show the effects of noise on the accelerometer signal 

from the lower steel block.  This is due to the vibration isolation effect provided by 

the resilient pads between the two blocks.  

The stiffness spectrum obtained from the acceleration measurements made for two 

railpads under a total preload of 70kN is shown below in Figure 5.4.       
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Figure 5.4.  Magnitude and phase of the transfer stiffness of two Pandrol 11246 

railpads combined in parallel, shown versus frequency, for a preload of 70kN. 

The total stiffness magnitude for the two railpads ranges from approximately 

280MN/m at a frequency of 140Hz to 450MN/m at 700Hz.  The phase angle is 

approximately 10 degrees for much of this frequency range, corresponding to a loss 

factor of 0.17.  

For the purposes of the modelling work presented in the sections to follow, the 

frequency-dependence of the railpad and baseplate pad stiffness has been ignored.  

The assumed values, taken from these measurements, are shown below in Table 5.1.  

  Railpad Baseplate Pad 

Stiffness (MN/m) 160 80 

Damping Loss Factor 0.17 0.17 

Table 5.1.  Stiffness and damping loss factor values used in the modelling work for the 

railpad and baseplate pad, for the loaded track condition on DLR.          

5.3.  THE MODES OF VIBRATION FOR A RESILENT BASEPLATE 

An ANSYS FE model was used to study the modes of vibration of the Pandrol VIPA-

SP resilient baseplate.  The top plate has complex three-dimensional geometry, 

particularly around the rail clip positions (see Figure 5.1).  However, for the 

prediction of the first few modes, it has been assumed here that this can be neglected.  
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Shell elements with out-of-plane displacements, ANSYS element type SHELL93, 

have been used to create a flat plate with the plan-view geometry of the top plate.  The 

plate was given a thickness of 20mm, which is appropriate for much of the physical 

component, and the material properties for cast iron were used, as shown in Table 5.2 

below.  

 

 

                                        

Table 5.2.  Material properties for the cast iron top plate.                      

Property Value 

Young's Modulus 160GPa 

Density 7300kg/m3

Poisson's ratio 0.3 

A free vibration response analysis was run for the shell element representation of the 

top plate only, with no constraints applied to it.  This case is equivalent to that of the 

top plate laid on a soft support, for all but very low frequencies.  Measurements have 

been made for the point and transfer accelerance of the top plate in this support 

condition, which show two resonances in the frequency range of interest, one at 

685Hz and one at 1500Hz.  The resonance frequencies found in the measurements 

were used to check that the FE model of the top plate captures its dynamic behaviour 

adequately, despite the omission of some geometric detail.     

The mode shape plots obtained from the FE model for the first two modes of the 

unconstrained top plate are shown together in Figure 5.5 below.     

Figure 5.5.  Mode shape plots obtained from the ANSYS model for the first two modes 

of the unconstrained top plate: i) vertical bending mode with a natural frequency of 

685Hz, ii) torsional mode with a natural frequency of 1400Hz. 

ii) i) 

Figure 5.5 i) shows a vertical bending mode of the top plate, with a natural frequency 

of 685Hz that is in close agreement with the first resonance frequency found in the 

measurements made for a top plate laid on a soft support.  Figure 5.5 ii) shows a 
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torsional mode, with a natural frequency of 1400Hz that is in satisfactory agreement 

with the second resonance frequency found in the measurements.   

The railpad and the baseplate pad were next added to the FE model of the top plate.  

Both pads have a working area of approximately 210mm by 120mm, neglecting the 

voids between the studs.  The areas of the baspelate pad that lie beneath the rail clips 

when the baseplate is assembled have also been ingnored here.  The stiffness of these 

parts of the baseplate pad is not engaged unless there is significant rail-roll.  Nine 

equally-spaced linear spring elements, ANSYS element type COMBIN14, were used 

to represent each of the pads.  There was no damping in these elements.   

A point mass of 5kg was added to the upper node of the central element in the spring 

array used to represent the railpad.  This allows straight-forward comparison of the FE 

results to the experimental work described in Section 5.5.  The upper nodes in this 

array of spring elements were constrained to move together in the vertical direction, 

such that they are all effectively coupled to the point mass.  The nodes at the lower 

end of the spring elements used to represent the baseplate pad were constrained in all 

degrees-of-freedom, so that the fastener has a blocked termination.   

The ANSYS FE model of the baseplate assembly is shown below in Figure 5.6.  

       
Figure 5.6.  ANSYS FE model of the baseplate assembly.

A free response analysis was run for the model shown in Figure 5.6.  Over the 

frequency range of interest here, there are three modes of the baseplate assembly that 

are important in the response of the baseplate to vertical excitation at the rail.  These 

are shown in Figure 5.7. 
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Figure 5.7. Mode shape plots for three important modes of the resilient baseplate: i) 

mode with a natural frequency of 350Hz, ii) mode with a natural frequency of 650Hz, 

iii) mode with a natural frequency of 1.2kHz.

i) 

ii) 

iii) 

Figure 5.7 i) shows a mode in which the combined mass of the rail and baseplate 

move vertically on the stiffness of the baseplate pad.  There is only slight deformation 

of the top plate in this mode and the natural frequency can be predicted well using a 

lumped mass approach.  In the mode shown in Figure 5.7 ii), the outer parts of the top 

plate move in large-amplitude motion relative to those in the central part of the top 

plate.  This mode will be referred to as the vertical-flapping mode hereafter.  The 

mode shown in Figure 5.7 iii) is the bending mode of the top plate.  This mode occurs 

at a higher frequency when the top plate is combined with the railpad and baseplate 

pad than when it is modelled alone (Figure 5.5 i)), due to the additional stiffness of 

the pads.    

The modes shown in Figure 5.7 indicate that it is necessary to include the bending 

motion in the top plate in order to model the dynamic stiffness of the resilient 

baseplate over the frequency range of interest in bridge noise.  Further, it can be seen 

that the bending motion takes place almost entirely along the length of the top plate.  

That is the top plate performs beam-bending motion, rather than plate-bending motion 

in its first internal mode.  This finding has been used to develop relatively simple 
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models of the baseplate that are appropriate for use in the prediction of bridge noise 

and vibration.   

5.4.  SIMPLE MODELS FOR A RESILENT BASEPLATE 

5.4.1.  Simple FE Model 

The modes of vibration presented in Section 5.3 indicate that it is sufficient to use 

beam finite elements to represent the top plate in a model for the resilient baseplate, 

within the frequency range of interest in bridge noise.  A relatively simple FE model 

has been programmed in MATLAB using six Euler beam elements (Petyt, 1990) to 

represent the top plate and six linear spring elements to represent the pads.  It is 

possible to represent the Pandrol VIPA-SP baseplate adequately using an even smaller 

number of elements, however, but this model is used as some flexibility is required so 

that it can be adapted to other resilient baseplate designs.     

Figure 5.8 shows the simple FE model of the resilient baseplate schematically.  

Figure 5.8.  Simple FE model of the resilient baseplate and section of rail:  , nodes. 

1 2 

3 4 

6 7 

8 

5 

Each of the nodes shown in Figure 5.8, with the exception of node 8, has two degrees-

of-freedom, one for vertical displacement and one for rotation.  A point mass element 

may be been added to node 8, to represent the mass of a section of rail loaded into the 

fastener (see Section 5.5).  Only vertical motion is allowed at node 8.  The following 

dimensions were used to represent the top plate in the VIPA-SP baseplate as a beam, 

together with the material properties of Table 5.2.      

Parameter 
 

Value Units 

Length 360 mm 

Width                                                          200 mm 

                  

Table 5.3.  Dimensions of the beam used to represent the top plate in the simple FE 

model of the VIPA-SP baseplate. 

Height 20 mm 
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A free vibration response analysis for the beam defined in Table 5.3 (without springs) 

shows a first natural frequency in bending that is in close agreement with that found 

from the measurements made on the top plate laid on a resilient support and the 

analysis presented in Section 5.3 above.     

A damping loss factor of 0.1 was assigned to the beam, required in order to obtain 

results that are in satisfactory agreement with those from the measurements made for 

the baseplate assembly (Section 5.5).  This accounts for the energy dissipated at joints 

and areas where there is relative motion between the component parts in the assembly.  

The springs also have damping loss factors of 0.17 as listed in Table 5.1.       

A forced response analysis was obtained from the simple FE model for harmonic 

excitation of unit amplitude at node 8.  The overall transfer stiffness of the system is 

given by,                                                                                          

     
8N

N

1n
TPnBPn

T x

xk
k

∑

= =     (5.1)  

where kBPn is the transfer stiffness of each element used to represent the baseplate pad, 

xTPn is the displacement at the upper node of these elements and xN8 is the 

displacement at node 8.   

The direct stiffness at node 8 is given by, 

            
8N

8N_D x
F

k =     (5.2) 

where F is the force applied to node 8.   

The transfer stiffness and the direct stiffness of the baseplate given by equations (5.1) 

and (5.2), for excitation but no mass at node 8, are shown in Figure 5.9 below.  
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Figure 5.9. Magnitude and phase of the baseplate stiffness obtained from the simple 

FE model, for excitation but no mass at node 8, shown versus frequency:   

 , direct stiffness;  , transfer stiffness.   

In the frequency range up to about 200Hz the magnitude of the direct and transfer 

stiffness are both approximately 53MN/m, that expected of the railpad stiffness 

connected in series with the baseplate pad stiffness.  There is a minimum in the 

magnitude of the direct stiffness at about 360Hz, due to the first mode of the system 

(see Figure 5.7 i)) and also at about 850Hz due to the second mode of the system (see 

Figure 5.7 ii)).  The magnitude spectra for the direct and transfer stiffness show peaks 

at about 480Hz and 1150Hz, these are due to the anti-resonances in the response at 

node 8.   

The minimum in the transfer stiffness magnitude at a frequency of about 560Hz 

occurs due to cancellation between the forces applied by the three springs (in the 

lower set) to the foundation.  The outer two springs are compressed when the centre 

spring is stretched, and visa versa.  The summation of the spring forces made in the 

numerator of equation (5.1) therefore has a minimum value at this frequency.  This 

behaviour is expected physically, but will take place continuously over the area of the 

baseplate pad rather than from the summation of the just three spring forces.     
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5.4.2.  Spring-mass-spring model 

The approach used to model resilient baseplate track in NORBERT has also been 

considered here.  This is shown for the case of a single baseplate and section of rail in 

Figure 5.10 below.   

f  

 

mtp 

mr  

krp  

 

kbp  

                                                                                                                                

Figure 5.10.  Spring-mass-spring model of the resilient baseplate and rail section.   

In this figure, m  r is the mass of the rail section, krp the stiffness of the railpad, m  tp the 

mass of the top plate and k  bp the stiffness of the baseplate pad.  The equations of 

motion for this system can be derived for an analytical solution.  Alternatively, the 

simple FE model described above in Section 5.4.1 can be made to behave as a spring-

mass-spring system, by setting the Young’s modulus of the top plate to a very large 

value, such that the top plate behaves as a lumped mass over the frequency range of 

interest.  Note that the mass of the top plate is approximately 11kg.   

The transfer stiffness and the direct stiffness of this system, with mr  set to zero, are 

shown in Figure 5.11 below.  
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 Figure 5.11. Magnitude and phase of the baseplate stiffness obtained from the 

spring-mass-spring model, shown versus frequency:  , direct stiffness; 

 , transfer stiffness.   

The stiffness spectra given by the spring-mass-spring model are of the expected form: 

a single minimum in the magnitude of the direct stiffness due to the first mode of the 

system and a peak in the magnitude of both the direct and transfer stiffness due to the 

first anti-resonance of the system.  Note that the minimum in the direct stiffness 

magnitude associated with the first mode occurs at a different frequency for the 

spring-mass-spring system than for the simple FE model.  This is due to the effect of 

bending motion in the top plate on the engagement of the stiffness of the baseplate 

pad.    

5.5.  THE DIRECT STIFFNESS OF A RESILIENT BASEPLATE  

5.5.1.  Direct stiffness measurements on a baseplate assembly 

As described in Section 5.1 above, direct stiffness measurements have been used as a 

basis for an assessment of the proposed models for the baseplate assembly, due to the 

difficulties expected in making transfer stiffness measurements for such a baseplate 

assembly.  It is assumed here that a model shown to predict the direct stiffness of the 

baseplate is also a reliable means to determine its transfer stiffness.      

The measurements were made on a complete Pandrol VIPA-SP assembly with a 

250mm length section of aluminium rail loaded into the clips.  An aluminium rail was 
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used in order to minimise the effects of the inertia forces associated with the mass of 

the rail on the point response at the rail head for high frequencies.  The aluminium rail 

section has a mass of 5kg and it is known to behave as a lumped mass up to a 

frequency of at least 1.2kHz. 

The resilient baseplate, rail section and the arrangement used to apply a preload to the 

system is shown in Figure 5.12 below.   

                                                                
Figure 5.12.  Photograph of the Pandrol VIPA-SP baseplate, rail section and the 

arrangement used to apply a preload to the system.    

Figure 5.12 shows a clamping arrangement that consists of four threaded rods, nuts to 

allow adjustment of the preload and two cross-beams that transmit the load to a pair of 

load cells.  The load cells were mounted on a 20mm thickness layer of resilient 

material, which provides vibration isolation between the clamping arrangement and 

the system under test.  The upper surface of the load cells has a domed shape, which 

promotes vertical loading of the rail.  The load cells were connected to appropriate 

instrumentation, such that a known preload could be applied to each end of the rail.  

5.5.2.  Assessment of the models against direct stiffness measurements 

Figure 5.13 shows the direct stiffness measured at the rail using the test rig described 

above, for an applied preload of 15kN.  The results of the simple FE model and the 

spring-mass-spring model are also shown.  
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Figure 5.13.  Magnitude and phase of direct stiffness at the railhead shown versus 

frequency, for a preload of 15kN:  , measurement;  , spring-mass-

spring model;  , simple FE model. 

The measured stiffness spectrum shown in Figure 5.13 has the expected form up to a 

frequency of approximately 550Hz: the minimum in the stiffness magnitude at about 

330Hz due to the first mode of the system and the peak at about 450Hz due to the first 

anti-resonance in the response of the rail.  For frequencies greater than 550Hz the 

measured stiffness does not show the structure of clearly-separated modes that was 

expected.  It is not clear whether this is due to the behaviour of the baseplate or that of 

the measurement rig.   

The direct stiffness at the railhead given by the simple FE model is in satisfactory 

agreement with the measurement up to a frequency of approximately 550Hz, for both 

the magnitude and phase.  The spring-mass-spring model fails to predict the response 

of the baseplate beyond the first natural frequency of the system (330Hz), which is the 

mode in which the combined mass of the rail and top plate move on the stiffness of 

the baseplate pad.   

It was found that the direct stiffness measured at the railhead had the expected form 

over a much greater frequency range when the system was subject to a smaller 

preload.  One such case of practical interest here is that for an unloaded BS80A rail 

supported by Pandrol VIPA-SP baseplates set at 0.75m intervals.  When no train 
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wheel-load is present, the external preload on the baseplates of this track is due to the 

mass of the rail in one span, approximately 0.3kN.  The total preload on the railpad is 

therefore 20.3kN and that on the baseplate pad is 0.4kN (external preload plus load 

due to top plate mass).  Appropriate stiffness values for the pads under these load 

conditions, obtained from measurements, are shown below in Table 5.4.  

Railpad Baseplate Pad   

Stiffness (MN/m) 80 15 

Damping Loss Factor 0.17 0.17 

Table 5.4.  Stiffness and damping loss factor values used in the modelling work for the 

railpad and baseplate pad, for the unloaded track condition on DLR.        

Figure 5.14 shows the direct stiffness at the railhead for an external preload of 0.3kN, 

obtained by measurement and from the two predictive models.  
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Figure 5.14.  Magnitude and phase of direct stiffness at the rail head shown versus 

frequency, for an external preload of 0.3kN:  , measurement;   

 , spring-mass-spring model;  , simple FE model. 

The measured direct stiffness spectrum has the expected form over the frequency 

range of interest here.  There are three minima, at about 150Hz, 515Hz and 800Hz.  

These correspond to the three types of mode described in Section 5.3, but with 

different natural frequencies due to the lower preload level considered here.  Anti-
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resonances in the response give rise to two peaks in the stiffness spectrum, at 350Hz 

and 700Hz.  For frequencies greater than 1kHz, the response is dominated by the 

inertia of the rail.   

The simple FE model predicts a stiffness spectrum that has a similar structure to the 

measurements.  While the predicted spectrum contains all the main features of the 

measurement, there are some differences in the frequencies at which these occur.  

Specifically, the frequencies at which the second peak in the direct stiffness spectrum 

occurs and the minimum that follows (due to the first internal mode of the top plate) 

are over-predicted by up to 20%.   

The FE model predicts the first bending resonance frequency of the top plate in the 

free-free support condition (no railpad or baseplate pad) correctly.  It is therefore 

likely to be the modelling of the partial constraints provided by the railpad and 

baseplate pad to the top plate that is responsible for the difference between the results 

of the simple FE model and the measurements.  This may be a limitation of the highly 

simplified representation of the baseplates geometry on which this model is based.   

There are larger differences between the results of the spring-mass-spring model and 

the measurement.  There is an order of magnitude difference between the dynamic 

stiffness predicted using this model and the measurement for frequencies close to 

500Hz.   

5.6.  INTERNAL MODES OF THE STUDDED PADS  

Internal modes of the studded railpad and baseplate pad are expected in some 

frequency range.  Two different types of mode can be envisaged: that due to the plane 

part of the pad moving as a mass on the stiffness of the studs and that due to 

longitudinal wave motion in the thickness dimension of the pad.  An assessment is 

made here of the need to include these modes in a predictive model for the transfer 

stiffness of a resilient baseplate, by using models to estimate the frequencies at which 

the internal modes of the pads occur.  This is necessary because the pad stiffness 

measurements described in Section 5.5 are valid for only part of the frequency range 

of interest in bridge noise.  A baseplate pad under a preload of approximately 0.4kN 

will be considered here, which corresponds to the case of unloaded track, the practical 

condition in which an internal mode of the baseplate pad will occur at the lowest 
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frequency.  The first internal mode of the railpad will occur at a higher frequency, 

because it is under additional preload from the rail clips.   

Figure 5.15 shows a simple model of a studded pad that can be used study the mode in 

which the plane part of the pad vibrates as a mass on the stiffness of the studs.     

   
Figure 5.15. Spring-mass-spring model for the baseplate pad.  

M 

kL  

kU  

kU and kL represent the combined stiffness of all the upper and lower studs in the pad 

respectively.  m represents the mass of the plane part of the pad.  In this simple 

analysis, it is assumed that the resilience in the pad is concentrated in the studs and 

that all the mass lies in the plane part of the pad.  ku and kl are therefore equal to twice 

the overall stiffness of the pad, and m is equal to the mass of the pad.  For the 

baseplate pad subject to a preload of 0.4kN, the overall stiffness of the pad has been 

measured as approximately 15MN/m and its mass as 0.65kg.  The natural frequency 

of the mode in which the mass of the plane part of the pad vibrates on the combined 

stiffness of the studs is therefore given by, 

             kHz5.1
m

kk
π2
1

f LU
bounce =

+
=          (5.3) 

The result given by equation (5.3) represents a lower bound estimate for the natural 

frequency of the first internal mode of the baseplate pad, because it is for the lowest 

preload of practical interest and because of the assumptions made regarding the 

distribution of the stiffness and mass in the pad.  This result indicates that it is not 

necessary to consider this type of mode in modelling bridge noise, but that it may be 

of interest in modelling rolling noise, due to the effect it is expected to have on decay 

rates in the rail for frequencies between 1 and 2kHz.   

The longitudinal modes of vibration in the thickness dimension of the pad have been 

studied using an axially-loaded rod model.  It has been assumed that only the zones of 

the plane part of the pad that lie directly beneath a stud are involved in the 

144 



transmission of load across the pad.  The same material properties can then be used 

for the plane part of the pad and for the studs, such that a single rod can be used to 

model the pad.  The density of the rubber material used to manufacture the baseplate 

pad is approximately 1300kg/m3 in the uncompressed condition.    

The cross-sectional area of the baseplate pad that is involved in load transmission is a 

function of the preload applied to the pad.  For very low preloads, it is the total cross-

sectional area of all the studs, and for high preloads it tends to the total area of the 

plane part of the pad as the studs deform to fill the voids between them.  The axially-

loaded rod model was run for both cases.  The value used for the Young’s modulus in 

each case was chosen by fitting the result of the model at low frequency to the 

measured stiffness of the baseplate pad in the unloaded condition.  When run with 

these values for Young’s modulus, the axially-loaded rod model predicts the first 

longitudinal mode of the pad at approximately 5kHz.  This type of mode of the pads 

can therefore be disregarded in modelling bridge noise and rolling noise.    

5.7.  CONCLUSIONS 

A combined experimental and modelling study of the dynamic stiffness of a resilient 

baseplate has been described in this chapter.  For the Pandrol VIPA-SP baseplate, it 

has been shown that beam-bending motion in the top plate has an important effect on 

its response to vertical excitation at the rail.  A simple FE model has been developed 

to predict the response of a resilient baseplate, inclusive of bending in the top plate.   

Comparison with measurements made for the direct stiffness of a VIPA-SP baseplate 

attached to a short section of rail for an external preload of approximately 0.3kN 

shows that the simple FE model proposed here should be used in preference to the 

spring-mass-spring model available in NORBERT.  For higher preloads, the simple 

FE model works well up to approximately 550Hz, above which the measurement does 

not show the expected form.  It is not clear whether this is due to a problem in the 

measurement setup at these high preload levels, or if the behaviour of the system 

changes significantly as the preload is increased.   

As noted in Section 5.1, there is a range of resilient baseplate designs in-service on 

railway track.  The primary design parameters that vary amongst these baseplates are 

the length of the top plate and the stiffness of the railpad.  The Pandrol VIPA-SP is a 

compact design, with a relatively soft railpad.  Using the simple FE model it is found 
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that an increase in the length of the top plate from 360mm to 500mm, that for a long 

baseplate, has the effect of reducing the frequencies at which the main features of the 

stiffness spectrum significantly.  However, use of a relatively stiff railpad is expected 

to move the natural frequency for the beam-bending mode of the top plate to 

frequencies outside the range of interest in bridge noise, even for a 500mm long top 

plate.   

The stiffness spectra given by the spring-mass-spring model differ considerably from 

the measurements (and the simple FE model).  When the baseplate length and the 

railpad stiffness are increased from their values for the VIPA-SP baseplate, the 

differences between spring-mass-spring and simple FE models remain, indicating that 

the spring-mass-spring model is not realistic enough.      

The approach proposed here for modelling the Pandrol VIPA-SP resilient baseplates 

is assessed further in the following chapter, where it is applied to the case of 

continuous baseplate track on a viaduct.   
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6.  APPLICATION OF THE MODELS TO A CONCRETE 

BOX-SECTION VIADUCT 

6.1.  INTRODUCTION 

Bridges and viaducts of the concrete box-section type are considered in this chapter 

with regard to the prediction of noise and vibration.  Previously, Bewes (2006) studied 

a viaduct of this type close to Chep Lap Kok airport in Hong Kong.  Measurements 

were made for the vibration on the viaduct deck under traffic and these were 

compared with predictions made using NORBERT.  Bewes found the predicted deck 

vibration to be significantly lower than the measurement in the higher frequency 

bands. One area of uncertainty is the damping loss factor that is appropriate for a 

concrete box-section.  For a damping loss factor of 0.1, the work of Bewes shows that 

the NORBERT prediction is at least 10dB lower than the measurement for 

frequencies greater than 400Hz.   

The main difficulty in using NORBERT for a concrete box-section viaduct is due to 

the complex cross-section geometry of these structures.  Figure 6.1 shows the cross-

section of the viaduct studied in the previous work by Bewes (2006).  

  

Figure 6.1.  Cross-sectional view of the concrete box-section viaduct close to Chep 

Lap Kok airport in Hong Kong (Bewes (2006).   

The viaduct shown in Figure 6.1 is less amenable to the approximation for mobility 

used in NORBERT than the structures studied in previous chapters, as it is difficult to 

express in terms of beams and plates.  Below the rail decoupling frequency, Bewes 

(2006) used an I-section beam in the coupled beam model, with the dimensions of the 

beam web set to those of a single box web.  The width of the beam flanges were set to 

the mean of those of the box flange and the viaduct deck.  The thickness of the flanges 
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was set to that of the box flange.  For frequencies greater than the decoupling 

frequency, either the I-section beam model or a plate model with a thickness equal to 

the local deck thickness around the rail seats was used to calculate the power input to 

the viaduct.  The switch between the beam model and the plate model was made at the 

frequency for which the distance between the rail and the box web is equal to one-

quarter of a bending wavelength in the deck.      

In this work, a new set of measurements has been made for a concrete box-section 

viaduct on the Docklands Light Railway (DLR), with particular attention paid to the 

need to characterise its vibration response.  In addition to the measurement of 

vibration under-traffic, point and transfer response measurements have been made on 

the viaduct deck.  These measurements have been used as a basis for an evaluation of 

the approach proposed by Bewes (2006) to the calculation of the input power for this 

type of structure.  The use of point and transfer mobilities in this evaluation means 

that the effects of uncertainty in the wheel-rail roughness and the properties of the 

track structure are avoided.  Together with the availability of the WFE method, these 

new measurements allow a more detailed study of the behaviour of concrete box-

section viaducts with respect to vibration than was possible in previous work.  

6.2. MEASUREMENTS ON THE VIADUCT 

6.2.1.  The viaduct and test site 

The measurements were made on a concrete box-section viaduct between Pontoon 

Dock and West Silvertown stations on the Bank to King George V Dock line of the 

DLR.  A photograph is shown in Figure 6.2.    
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Figure 6.2.  A photograph of the concrete box-section viaduct under study, taken from 

the platform on Pontoon Dock station, looking toward West Silvertown station. 

The twin-track viaduct is made up of 37m length spans between the support pillars.  

The measurements were made between way markers 05096 and 05097, marked ‘Test 

site’ in Figure 6.2.  This site was chosen because there is very little lateral curvature 

or vertical gradient in this part of the viaduct and because it is at approximately mid-

span between the vertical support pillars.  These are desirable conditions for use of  

the NORBERT and WFE models.   

The rail section and rolling stock are the same as for the concrete-steel composite 

bridge described in Chapter 3.  The rails are directly fastened to the deck of the 

concrete box-section viaduct using Pandrol VIPA-SP resilient baseplates, set at 0.75m 

intervals. 

The location of the viaduct, in a busy area of London and close to roads and London 

City airport means that it is not possible to obtain useful measurements for the noise 

levels associated with a train pass-by on this viaduct.  

6.2.2.  Point and transfer response measurements  

Point and transfer response measurements were made on the viaduct deck and rail 

using an instrumented hammer on 15
th

 and 16
th

 April 2008, before trains began 

running for the day.  Trial measurements on large concrete castings showed that it 

would be necessary to use two different hammers in order to excite the structure 

sufficiently over the frequency range of interest, one with a mass of 3.3kg and one 

Test site 
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with a mass of 0.6kg.  The larger of these hammers provided excitation with a cut-off 

at a frequency of 200Hz, while the other had a cut-off of 1.25kHz.  The results 

obtained using these two different hammers were checked for satisfactory agreement 

in the frequency range over which both are expected to deliver sufficient energy to the 

viaduct structure, approximately 100Hz to 200Hz.  They have been plotted in the 

frequency range up to 200Hz for the large hammer tests and up to 1.25kHz for the 

small hammer tests.    

The point response measurements were made at four different positions across the 

right-hand side of the viaduct.  These positions are shown below in Figure 6.3.  

 

Figure 6.3.  Cross-sectional view of the concrete box-section viaduct (courtesy of 

Halcrow Group Ltd), showing the four positions on the deck at which point response 

measurements were made.   

Position P1 is at a lateral distance of approximately 0.25m from the viaduct centre-

line.  Positions P2 and P3 are close to the inner and outer rails, at approximately 1.2m 

and 2.6m from the viaduct centre-line respectively.  Position P4 is at lateral distance 

of approximately 3.6m from the viaduct centre-line.  Note that there is a walk-way 

formed by loosely-mounted bricks on top of the viaduct deck, to the outside of 

position P4, which is not shown in Figure 6.3.  This walk-way is not expected to make 

a significant contribution to the mass or stiffness of the structure.  It has therefore 

been omitted from the WFE model of the viaduct. 

Transfer accelerance measurements were made along a line parallel to the viaduct 

centre-line, passing through position P3.  The excitation position was moved along 

this line in increments equal to half the baseplate spacing for the first ten 

measurements and in increments equal to the baseplate spacing (0.75m) subsequently.  

P1 

 

P2 

 

P3 

 

P4 
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The accelerometer position remained fixed.  Measurements were made for a 

maximum distance of 7.5m between the excitation and response positions, above 

which the response signal became heavily-contaminated by noise.  Due to the limited 

time available, transfer response measurements were made using only the 0.6kg 

hammer.  The minimum frequency for which these measurements are valid is 

approximately 100Hz.     

Point and transfer accelerance measurements were also made at the head of the outer 

rail on the viaduct, for the vertical direction only.  These measurements have been 

used to asses the track model developed in Chapter 6 for resilient baseplate track.  The 

rate of decay of vibration in the rail is the quantity of primary interest here and the 

method for its calculation proposed by Jones et al. (2006) has been followed.   

6.2.3. Vibration measurements under-traffic  

Measurements were also made of the vibration of the viaduct deck and rail under-

traffic on 16
th

 April 2008.  Acceleration measurements were made at two locations on 

the deck and one location on each rail, summarised below in Table 6.1. 

Table 6.1.  Positions of the accelerometers used to measure vibration under traffic.    

The accelerometers were attached to the viaduct at a single cross-section of the 

viaduct at mid-span between adjacent baseplates.  Recordings were made for a total of 

29 trains.   

6.3.  MODELLING THE CONCRETE BOX-SECTION VIADUCT 

The application of NORBERT and the WFE method to the concrete box-section 

viaduct is described in this section.  These two different modelling approaches have 

been used to predict the vibration response of the viaduct and the rail.  The results of 

this modelling work are compared with the measurements made on the viaduct in 

Section 6.4.   

Measurement Location Orientation 

Inside rail Centre of rail foot, mid-span Vertical 

Outside rail Centre of rail foot, mid-span Vertical 

Viaduct deck Position P2 Vertical 

Viaduct deck Position P3 Vertical 
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6.3.1.  Use of NORBERT for the concrete box-section viaduct 

The approach proposed by Bewes (2006) for defining an I-section beam and a plate to 

represent a concrete box-section viaduct in NORBERT was described in Section 6.1.  

This approach has been followed here and an appropriate set of input parameters for 

this viaduct is shown below in Table 6.2. 

Table 6.2.  Input parameters for the I-section beam and plate used to represent the 

concrete box-section viaduct in NORBERT. 

The distance between the rail and the beam web shown in Table 6.2 is for the outer 

rail position, because the modelling work for vibration under-traffic presented in 

Section 6.4 is for excitation at the outer rail.  Note also that the finite length coupled 

beam model has been used here to calculate the power input to the viaduct, for 

frequencies less than the decoupling frequency.  The lengths of the beams used to 

model the structure at low frequencies were set to the span lengths of the viaduct 

(37m).       

The material properties used to model the concrete viaduct in both NORBERT and 

WFE are summarised in Table 6.3 below.  

 

 

 

Table 6.3.  Material properties used to model the concrete box-section viaduct.      

As described in Chapter 3, the Young’s modulus of concrete is strongly dependent on 

the mixture composition.  The company responsible for the construction of this 

viaduct, Halcrow Group Limited, took samples of the concrete used to cast the viaduct 

sections and measured the compressive strength of these as approximately 60kN/mm
2
 

Thickness of beam web (m) 0.3 

Depth of beam web (m) 2 

Thickness of beam flanges (m) 0.18 

Width of beam flanges (m) 3 

Thickness of deck plate (m) 0.38 

Distance between the rail and beam web (m) 0.6 

Property Value 

Young's Modulus 40GPa 

Density 2400kg/m
3
 

Poisson's ratio 0.2 
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after a suitable setting time.  The dynamic Young’s modulus given in Table 6.3 was 

chosen from the compressive strength measurement and reference to (Kong and 

Evans, 1987).  Standard design values have been used for the density and Poisson’s 

ratio, which are less sensitive to the mixture composition.   

A frequency-independent damping loss factor of 0.1 has been chosen for the viaduct, 

based on the comparison made between the transfer accelerance measurements and 

corresponding results of the WFE modelling work presented in Section 6.4.1.   

Two different approaches have been taken to the application of the SEA method in 

NORBERT for this viaduct: a relatively detailed SEA network and a relatively simple 

one.  In the former, the geometry of the viaduct has been reproduced quite fully, such 

that the geometry of the plate assembly corresponds closely with the physical 

dimensions of the viaduct.  In the relatively simple SEA network, a smaller number of 

plates are used, but these have larger physical dimensions.  The minimum number of 

modes over a given frequency band in a single subsystem is therefore greater for the 

simple SEA network.  Consequently, it may be expected that this network can be used 

to predict the response of the structure reliably down to lower frequencies than the 

more detailed SEA network.  The two SEA networks are shown in Figure 6.4 below.
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Figure 6.4. SEA representation of the concrete box-section viaduct in NORBERT:      

i) simple SEA network; ii) detailed SEA network.                                                         

The cross-section dimensions and the number of plates for both the simple and the 

detailed SEA networks are given in Table 6.4 below.   
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Table 6.4.  Specification of the plates in, i) simple SEA network, ii) detailed SEA 

network. 

The modal density in each of the plates described in Table 6.4 can be estimated from 

(Cremer and Heckl, 1988),  

       ( )
hc6.3

A

πω4

Aκ
ωn

L

2

B
==    (6.1) 

where A is the surface area of the plate, Bκ  is the free bending wavenumber of the 

plate, h is its thickness and Lc is the longitudinal wave speed in concrete. Application 

of equation (6.1) to the plates defined above shows that the minimum modal density 

in a single plate in the detailed SEA network is a factor of three smaller than that in 

the simple SEA network: at 0.006 modes per rad/s and 0.018 modes per rad/s 

respectively.  However, these modal density values indicate that the number of modes 

expected in a single plate over any one-third octave frequency band in the range of 

interest is less than one for either of these SEA networks.  This shows that the internal 

modes of the individual subsystems occur only for relatively high frequencies.  The 

total number of modes in a given frequency band for all the plates in the SEA network 

may therefore be a more appropriate basis for assessment of the frequency range for 

  Name  Thickness (m) Width (m) Number 

B Side-deck 0.22 2.0 2 

C Main deck 0.38 6.0 1 

E Web 0.3 2.2 2 

F Bottom flange 0.18 3.0 1 

  Name  Thickness (m) Width (m) Number 

A Parapet 0.25 0.65 2 

B Side-deck 0.22 1.7 2 

C Main deck 0.38 2.5 2 

D Centre-deck 0.22 1.0 1 

E Web 0.3 2.2 2 

F Bottom flange 0.18 3.0 1 

i) 

ii) 
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which SEA can be applied to the structure (Lyon, 1975).  For both SEA networks 

considered here, the total number of modes of the viaduct expected in the 40Hz one-

third octave band is around 5.  On this basis, it expected that both of the networks 

shown in Figure 6.4 are suitable for use in predicting the vibration response of the 

viaduct over the frequency range for which measurements have been made.   

The resilient baseplate track structure on this viaduct was modelled as a continuous 

resilient layer between the rail and the viaduct with a stiffness per unit length of 

70MN/m
2
 and a damping loss factor of 0.2.  These values are based on the low-

frequency results of the laboratory measurements made for the VIPA-SP baseplates 

under a preload of 15kN presented in Chapter 5.  This preload level is appropriate for 

the baseplates subject to the wheel-load from DLR rolling stock, as discussed in 

Chapter 5.   

The average speed at which the trains passed the test site was found to be 

approximately 50km/h from inspection of the measured time series and the axle 

spacing for the rolling stock.  The maximum train speed found from the 

measurements was 53km/h and the minimum speed was 44km/h. 

6.3.2.  Use of the WFE method for the concrete box-section viaduct 

The results of the WFE modelling work will be compared with the point and transfer 

response measurements that are valid up to approximately 1.2kHz.  It is therefore 

appropriate to specify the WFE model for this same frequency range.  The maximum 

section thickness of the viaduct is 380mm, occurring in the viaduct deck.  The point 

mobility results given by thick and thin infinite plate theory for a 380mm thick 

concrete plate at a frequency of 1.2kHz differ by less than 10%.  Plate elements, with 

cubic shape functions, have therefore been used for the WFE analysis of this viaduct.    

Simple analytical models were used to determine appropriate element lengths for each 

part of the structure, together with the requirement for at least three of these plate 

elements per wavelength in the frequency range of interest.   

Figure 6.5 shows the nodes of the WFE model for half of the concrete box-section 

viaduct.  Symmetric and anti-symmetric boundary conditions have been applied to the 

nodes on the viaduct centre-line, and used to recover the solution for the full viaduct 

structure.  
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Figure 6.5.  Node positions in the WFE model for half of the concrete box-section 

viaduct, showing the outer rail and track support. 

In the WFE model shown in Figure 6.5, a single plate element represents the track 

structure as a continuous resilient layer between the rail and the viaduct deck.  The 

properties of this plate element were chosen to give the same frequency-independent 

track stiffness per unit length and damping loss factor as described for the NORBERT 

model in Section 6.3.1.  Above this are four plate elements representing the rail, 

following the method used to represent this same type of rail in Chapter 3.   

In a second stage of the WFE modelling work for this viaduct, a more detailed 

representation of the Pandrol VIPA-SP baseplate track was used to account for the 

expected frequency-dependent stiffness of this track.  The approach taken to 

modelling a single baseplate in the preceding chapter using FE was extended to the 

case of the track on this viaduct using WFE.  The WFE model of the track is shown in 

Figure 6.6 below.  

z 

y 
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Figure 6.6.  WFE model of a resilient baseplate:  , nodes. 

Nodes 1 to 6 in Figure 6.6 define the rail, in which the rail foot is now represented by 

two horizontally-orientated elements.  There are two vertical plate elements for the 

railpad, three horizontal plate elements for the top plate and two vertical plate 

elements for the baseplate pad.  The nodes at the lower end of the baseplate pad are 

common to elements in the viaduct deck.  Fewer nodes have been used in the WFE 

model of this track than were used in the FE model of a single baseplate in Chapter 5, 

because the WFE model was intended for use in this specific case, rather than as a 

model for resilient baseplates in general.   

All the plate elements used to represent the track support were assigned orthotropic 

material properties.  The elastic moduli were set to very low values in all but the 

vertical direction, to minimise the effects of wave motion along the length of the track 

support, which does not occur physically because this support is not continuous.  The 

properties of the elements used to represent the railpad and baseplate pad were chosen 

to give a continuous stiffness equivalent to the stiffness of these pads as presented in 

the preceding chapter, by dividing by the baseplate spacing, 0.75.     

The top plate was defined in WFE as a plate strip with a width of 360mm and 

thickness of 20mm, again following the work presented in Chapter 6.  In order for this 

plate strip to have a continuous mass per unit length equivalent to that of the discrete 

baseplates set at 0.75m intervals, it was necessary to assign these elements a density 

of 2100kg/m
3
.  This property change affects the onset of bending in the top plate, such 

that it was also necessary to change the Young’s modulus to 38GPa in order to predict 
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the first bending mode of the unconstrained top plate in agreement with the 

measurement made for the top plate laid on a soft support, described in Chapter 5.   

6.3.3.  Free vibration analysis 

As for the bridges studied in previous chapters, the WFE model of the concrete box-

section viaduct was first used to study its free vibration response.  The dispersion 

relations obtained from solution of the eigenvalue problem for a prescribed set of 

purely real wavenumbers are identified for the case of zero damping in Figure 6.7 

below.  A number of dispersion curves calculated from simple beam and plate theory 

are also shown in Figure 6.7 in order to aid interpretation of the waveforms in the 

viaduct.               
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Figure 6.7.   Purely-real wavenumber shown versus frequency for the case of zero 

damping in the concrete box-section viaduct:  ,WFE for symmetric case; * , WFE for 

anti-symmetric case;  , infinite thin plate model (380mm thickness);             

 , Euler beam model (vertical bending);  , Euler beam model (lateral 

bending);   , longitudinal wave in concrete. 

Those waves in the structure with a zero cut-on frequency can be identified from a 

comparison of the WFE solution with the curves obtained from the analytical models 

at low frequencies.  The Euler beam results have been obtained using the section 

properties of the equivalent I-section beam proposed by Bewes (2006).  The WFE 

solutions corresponding to the vertical beam bending wave, the lateral beam bending 

wave and the longitudinal wave can be identified.  The WFE solutions for the 
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torsional wave are those for the anti-symmetric case that show a zero cut-on 

frequency (not the lateral bending wave).  The Euler beam result for the vertical beam 

bending wave departs from the corresponding WFE solution for frequencies greater 

than approximately 20Hz.  At this frequency, the first non-zero frequency wave cut-

on occurs in the WFE solution.  For higher frequencies, the highest wavenumbers 

from the WFE model tend toward the results obtained by the thin infinite plate 

bending model.   

For further identification of the modes, Figure 6.8 shows the mode shapes for the 

symmetric waves in the viaduct at frequencies of 1Hz, 25Hz, and 50Hz.  
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Frequency of 1Hz 

         

Frequency of 25Hz 

  

Frequency of 50Hz 

                               

                 

Figure 6.8.  Mode shape plots and corresponding wavenumbers for the symmetric 

modes of the concrete box-section viaduct about the centre-line.  Caption above each 

plot shows wavenumber (rad/m): , original node position;  ,deformed shape.   

                                                                                                                            

At 1Hz, there is a longitudinal mode and a vertical beam bending mode with no 

deformation of the cross-section.  At the two higher frequencies shown, the viaduct 

does not behave as a beam and there is significant deformation of the cross-section in 

all modes except the longitudinal mode.  Plate bending motion in the viaduct deck 

appears to dominate the response in these modes.   
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Figure 6.9 shows the mode shapes for the anti-symmetric waves in the viaduct at 

frequencies of 1Hz, 25Hz, and 50Hz.   

 Frequency of 1Hz 

           

Frequency of 25Hz: 

          

Frequency of 50Hz 

              

                 

Figure 6.9.  Mode shape plots and corresponding wavenumbers for the anti-

symmetric modes of the concrete box-section viaduct about the centre-line.  Caption 

above each plot shows wavenumber (rad/m):  , original node position;   

 , deformed shape.                         

At 1Hz the two modes shown in Figure 6.9 are the torsional and lateral beam bending 

modes.  At both 25Hz and 50Hz, there is again significant deformation of the cross-

section, with bending motion in the viaduct deck for all modes.   
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The dispersion and mode shape diagrams presented in Figures 6.7 to 6.9 show the 

behaviour of the viaduct at low frequencies.  As for the concrete-steel composite 

bridge under study in Chapter 3, it is possible to plot the dispersion results clearly 

over a much larger range of frequencies by selecting only the waves with relatively 

large amplitudes for a given excitation position.  Waves with an amplitude (magnitude 

of the complex amplitude) greater than 75% of the largest amplitude at a given 

frequency are referred to here as ‘very high power waves’, those with an amplitude 

between 50% and 75% of the maximum amplitude as ‘high power waves’ and those 

with between 25% and 50% of the maximum amplitude as ‘medium power waves’.  

Note that the term ‘power’ is used loosely here as the relative wave amplitudes are 

only an approximate indicator of the relative powers transmitted to the waves.     

Figure 6.10 shows the dispersion relations for the high-energy content waves when 

the viaduct is excited at position P3 on the deck, from the symmetric case WFE 

solution, together with the results of appropriate analytical models.  
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Figure 6.10.   Purely-real wavenumber shown versus  frequency for the case of zero 

damping in the concrete box-section viaduct and excitation at position P3, symmetric 

case WFE solution: * , WFE result for very high power waves;  , WFE result for 

high power waves;  , WFE result for medium power waves;  , Euler beam 

model (vertical bending);  , infinite thin plate model (380mm thickness); 

 , infinite thin plate model (220mm thickness). 



164 

Figure 6.10 shows that for frequencies greater than approximately 500Hz, much of the 

vibration power input to the viaduct at position P3 on the deck is transmitted to the 

plate bending waves in the part of the deck which has a thickness of 380mm.  For 

frequencies less than 20Hz, the majority of the input power is transmitted to the 

vertical beam bending wave of the viaduct.  For frequencies between 20Hz and 

500Hz, the dispersion results obtained from the WFE model indicate that much of the 

input power is transmitted to waves with dispersion properties that lie between those 

of the beam and plate bending waves.  

Figure 6.11 shows the dispersion relations for the important waves in the viaduct for 

excitation at position P4 on the deck, where the local deck thickness is 220mm, from 

the symmetric case WFE solution.  
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Figure 6.11.   Purely-real wavenumber shown against frequency for the case of zero 

damping in the concrete box-section viaduct and excitation at position P4, symmetric 

case WFE solution: * , WFE result for very high power waves;  , WFE result for 

high power waves; , WFE result for medium power waves;  , Euler beam 

model (vertical bending);  , infinite thin plate model (380mm thickness); 

 , infinite thin plate model (220mm thickness). 

The dispersion relations shown for selected waves at position P4 show broadly similar 

behaviour to that discussed previously for position P3.  The differences between them 

occur at higher frequencies and are due to the lower local deck thickness around 

position P4.  While the response shows a transition between beam bending and plate 
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bending waves in the local deck thickness from about 20Hz to 500Hz, as for position 

P3, there appears to be an additional stage in this transition for position P4.  In the 

range from about 100Hz to 300Hz, Figure 6.11 shows that a significant part of the 

input power to the bridge is transmitted to waves which have dispersion 

characteristics that approximate to those for plate bending waves in the thickest part 

of the deck (380mm), rather than the local deck thickness (220mm).   

In summary, the free vibration response analysis presented in this section provides a 

physical understanding of how this structure behaves in response to vertical excitation 

on the deck.  The majority of the power input to concrete box section viaduct is 

transmitted to beam bending waves for frequencies less than 20Hz and to plate 

bending motion in the deck, local to the input point, above about 500Hz.  Between 

these ranges, the input power is transmitted to waves with dispersion properties that 

lie between those of the beam and plate bending waves.  For position P4, where the 

deck thickness is relatively low, power transmission to waves with dispersion 

characteristics similar to those for plate bending waves in the thicker parts of the deck 

seems to be important in the frequency range between about 100Hz and 300Hz.   

6.4.  COMPARISON OF THE MODELS WITH THE MEASUREMENTS  

6.4.1.  Transfer response on the viaduct deck 

In this section the measured transfer accelerance on the viaduct deck is compared with 

that predicted using the WFE model.  This is of interest here because it can be used to 

determine an appropriate damping loss factor for use in modelling the viaduct.  In 

order to aid the comparison of the measured and predicted transfer accelerances, the 

following normalisation has been used,   

       ( )
( )

( )ωA

x,ωA
x,ωA

p

t

Norm =        (6.2)  

where, At is the transfer accelerance and Ap is the point accelerance.   

Figures 6.12 to 6.14 (for different frequency bands) show the normalised transfer 

accelerance as a function of distance between the excitation and response positions on 

the viaduct deck, obtained from the measurements and from the WFE analysis.  The 

WFE results are plotted for different values of damping loss factor (ηbridge).   
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Figures 6.12 to 6.14 show a relatively high rate of decay over a distance of 

approximately 1m from the excitation position, in all frequency bands.  This is due to 

the near-field waves in the viaduct.  The average decay rate over the 7.5m length of 

viaduct for which measurements were made increases from approximately 0.4dB/m in 

the 125Hz frequency band to 1.4dB/m in the 1kHz band.  These values are consistent 

with those reported for the rate of decay of vibration in railway bridges in previous 

work (Hardy, 1999).     

In many cases the measured response magnitude does not decrease uniformly with 

distance and may even increase again.  This behaviour is also present in the results of 

the WFE analysis.  For the higher frequency bands, the variation in response 

magnitude with distance tends towards an oscillatory appearance.  This is not due to 

the modal response of the viaduct structure, because the WFE model is based on an 

infinite structure.  It is due instead to the modulation produced when two waves with 

similar amplitude, but slightly different wavenumber are combined.   

Considering all frequency bands, the agreement between the model and the 

measurements shown in Figures 6.12 to 6.14 is best, when a damping loss factor of 

0.1 is used.  This value is larger than the material damping loss factor for concrete, 

typically in the range from 0.01 to 0.05 (Beranek, 1971).  This indicates that there is 

energy dissipation in the structure due to mechanisms other than material damping.  

There may be significant energy dissipation due to friction in the structure at internal 

joints and at connections with fixtures such as the handrail and brick walkway (see 

Figure 6.2).  These mechanisms of energy dissipation cannot be included in the WFE 

model directly, but their effect is incorporated via the empirical ‘structural damping 

loss factor’ of 0.1.  This has been used in all the WFE modelling work presented in 

the sub-sections to follow and also in the bridge noise model.   

6.4.2.  Point response on the viaduct deck 

In this section, the measured point mobility at each position on the viaduct deck, P1 to 

P4, is compared with the corresponding result from the WFE model and from the 

NORBERT model for mobility.   

The point response measurements were made using two different impact hammers, 

described in Section 6.2.2.  Example coherence spectra for the measurements made 

with these hammers are shown in Figure 6.15 below. 
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Figure 6.15.  Example coherence spectra for measurements made with the two 

different impact hammers:  , 0.6kg hammer;  , 3.3kg hammer. 

The coherence for the 3.3kg impact hammer is satisfactory for frequencies between 

about 30Hz and 300Hz.  That for the 0.6kg hammer is close to unity for frequencies 

between about 100Hz and 1200Hz.  Based on this is and a comparison of the 

excitation spectrum produced using each of these hammers, the point mobility results 

have been plotted between 30Hz and 200Hz for the 3.3kg hammer tests and between 

200Hz and 1200Hz for the 0.6kg hammer tests.     

The WFE model was run for input and excitation at each of the four positions on the 

deck, P1 to P4.  In NORBERT, appropriate values of plate thickness and the lateral 

distance to the web of the box-section have been used for each of these positions on 

the deck.  The specification of the beam used to represent the viaduct remains as 

shown in Table 6.2.  

Figures 6.16 to 6.19 show the real part and phase of the point mobility at positions P1 

to P4 on the viaduct deck.  Note that the real part of the mobility, rather than the 

magnitude, has been plotted here because this is directly related to the vibrational 

power input to the viaduct.   
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 Figure 6.16.  Real part and phase of point mobility on the concrete box-section 

viaduct deck at position P1:  , measurement;  , from NORBERT; 

 , from WFE model.   
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Figure 6.17.  Real part and phase of point mobility on the concrete box-section 

viaduct deck at position P2:  , measurement;  , from NORBERT; 

 , from WFE model.   
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Figure 6.18.  Real part and phase of point mobility on the concrete box-section 

viaduct deck at position P3:  , measurement;  , from NORBERT; 

 , from WFE model.   
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Figure 6.19.  Real part and phase of point mobility on the concrete box-section 

viaduct deck at position P4:  , measurement;  , from NORBERT; 

 , from WFE model.   

The spectra for the real part of the measured mobility consist of reasonably well-

separated peaks at low frequencies, typically up to about 100Hz.  These are due to the 

modes of the structure, both along its length and within the cross-section.  At higher 
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frequencies, the modal overlap becomes larger and the response tends to that of an 

infinite structure.   

Comparing the measured mobility spectra first with those predicted using NORBERT, 

it is clear that the finite length Timoshenko beam model does not predict the response 

of the structure correctly.  The predicted real part mobility spectra show peaks that do 

not correspond to those in the measurements and the model results are generally lower 

than the measurements.  At position P3 for example, the beam model is used in the 

frequency range up to about 500Hz and in this range the predicted real part of point 

mobility is typically a factor of 2 lower than the measurement.  This may be expected 

from the results of the WFE free vibration response analysis presented in Section 

6.3.3, which shows that this viaduct behaves as a beam only for frequencies up to 

about 20Hz.  For frequencies between about 20Hz and 500Hz, the dispersion diagram 

of Figure 6.10 shows that the much of the power input to the viaduct at position P3 is 

transmitted to waves that have dispersion properties that lie between those of the 

beam bending and plate bending waves in the frequency range from 20Hz to 500Hz.  

Since the mobility of the deck plate is significantly larger than that of the beam 

representation of the viaduct used in NORBERT, use of the beam model leads to an 

underestimate for the point mobility in this frequency range.      

The switch from the beam mobility model to the plate mobility model in NORBERT 

introduces a large step-change to the predicted mobility spectra, which is not shown in 

the measurements.  Further, the measurements do not show a transition between the 

mobility of a beam and that of an appropriate plate, of the kind proposed for all-steel 

bridges in Chapter 2.  Rather, the response of the concrete box-section viaduct at 

positions P2 and P3 is that of a reinforced plate over a significant part of the 

frequency range of interest.  This is shown less clearly for the other positions on the 

deck, where the plate model is mainly used in NORBERT, due to the greater distance 

between these positions and the box webs.   

The NORBERT model for mobility is in agreement with the measurements in a 

frequency-average sense at positions P2 and P3 over the frequency where the plate 

model is used.  For positions P1 and P4, where the deck thickness is lower, the use of 

the plate model in NORBERT leads to an overestimate for the point mobility by a 

factor of about 2 in the frequency range up to 250Hz at P1 and up to 1kHz for P4.     
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The WFE results are generally in close agreement with the measurements, in a 

frequency-average sense.  The combined beam and plate bending behaviour that is 

important for positions P2 and P3 is accounted for.  The mobility at position P1 in the 

range up to about 250Hz and P4 in the range up to 1kHz are also predicted correctly 

using the WFE method.  In these cases, the mobility on the deck is lower than that of 

a plate with the local section thickness, due to the restraint provided by the relatively 

thick parts of the deck.  This is supported by the dispersion diagram of Figure 6.11, 

which shows that a significant part of the power input to the viaduct at position P4 is 

transmitted to waves that have dispersion properties similar to those for bending 

waves in thickest part of the deck.  This occurs in a frequency range determined by 

the bending wavelength in the local deck thickness and the lateral distance between 

the position on the deck of interest and the part of the deck with greater thickness.   

In summary, the results presented in this section show that the WFE method is a 

suitable approach to predicting the point mobility of a concrete box-section viaduct.  

It offers a clear benefit over the NORBERT model for mobility, particularly for cases 

such as at position P3, where the response of the viaduct is neither that of an 

equivalent beam or a plate in the frequency range from about 20Hz to 500Hz.    

6.4.3.  Decay rates in the rail 

The rate of decay of vibration in the rail is an important measure of the acoustic 

performance of the track.  The WFE representation of the resilient baseplate track on 

this viaduct described in Section 6.3.2 has been used predict the decay rate in the rail.  

This is compared here with decay rates obtained from the transfer accelerance 

measurements made on the rail.  This represents a more complete assessment of the 

model proposed for resilient baseplate track than that described in Chapter 5, in which 

only a single baseplate was considered.  The procedure proposed by Jones et al. 

(2006) for the calculation of the decay rate in the rail has been adopted here, for both 

the measured data and the WFE prediction.     

It is the case of unloaded track that is of interest here, in order to compare with the 

decay rates found from the measurements made on the unloaded rail.  The properties 

of the elements used for the railpad and baseplate pad were therefore chosen to give a 

continuous stiffness equivalent to the case of unloaded VIPA-SP baseplates set 0.75m 

apart.  It was found from initial modelling work that the decay rates predicted using 
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this track model are sensitive to the value used for the railpad stiffness.  It is therefore 

necessary to study the transfer stiffness measurement made during the course of the 

laboratory test work described in Chapter 5 for a preload level appropriate to the case 

of unloaded track.   

Figure 6.20 shows the transfer stiffness spectrum obtained for two of these railpads 

combined in parallel under a total preload of 40kN.   
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Figure 6.20.  Magnitude and phase of the transfer stiffness of two Pandrol 11246 

railpads combined in parallel, shown versus frequency, for a preload of 40kN. 

The measurement data is valid for frequencies up to about 700Hz.  Railpad stiffness 

values for a single railpad under a preload of 20kN, approximately that for railpads on 

unloaded DLR track, have been found from Figure 6.20 at frequencies of 150Hz and 

500Hz.  It will be shown that the 1.25kHz one-third octave frequency band is of 

particular importance in the decay rate spectrum for the rail.  A value for the railpad 

stiffness at a frequency of 1.25kHz has therefore been extrapolated from the 

development of the transfer stiffness shown in the measurements up to 700Hz.      

The railpad stiffness values used in the WFE analysis to predict the decay rates in the 

rail are shown in Table 6.5 together with the corresponding equivalent continuous 

stiffness values.   
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Table 6.5.  Stiffness data for the railpad used in the WFE prediction of decay rates in 

the rail.       

A baseplate pad stiffness of 15MN/m was used throughout the decay rate prediction 

work.  The stiffness of the baseplate pad shows much less frequency-dependence than 

the railpad and this has therefore been neglected. 

The decay rates in the rail obtained from the transfer accelerance measurements and 

those predicted using the WFE model, for the three different railpad stiffness values, 

are shown in Figure 6.21 below. 
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Figure 6.21.  Decay rate in the unloaded rail:  , measured;  , WFE 

with railpad stiffness of 80MN/m;  , WFE with railpad stiffness of 100MN/m; 

 , WFE with railpad stiffness of 200MN/m. 

Figure 6.21 shows a relatively high measured decay rate for the frequency bands up to 

63Hz and also in the 500Hz and 1.25kHz bands, typically 4dB/m.  In the lower 

frequency bands, this is due to the strong coupling between the motion of the rail and 

the viaduct.  Around 63Hz, the resonance of the rail on the stiffness of the baseplate 

occurs and above this frequency the rail is decoupled from the bridge.  The measured 

decay rate of vibration in the rail therefore drops to between 1dB/m and 1.5dB/m.  It 

Frequency 

(Hz) 

Railpad Stiffness 

(MN/m) 

Equivalent continuous 

stiffness (MN/m/m) 

150 80 107 

500 100 133 

1250 200 267 
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is expected that the high rates of decay in the 500Hz and 1.25kHz bands are due to the 

vertical flapping mode and the bending of the top plate mode respectively, described 

in Chapter 5.   

The decay rates predicted using the WFE model for the three different values of 

railpad stiffness are similar up to the 315Hz band and in satisfactory agreement with 

the measurements in these bands.  For higher frequencies, the decay rates predicted 

using the three stiffness values are quite different.  The result obtained for a railpad 

stiffness of 100MN/m, appropriate for a frequency of 500Hz, is in close agreement 

with the measurement in this part of the frequency range, where the first peak is 

shown.  Similarly, it is the WFE result obtained with the railpad stiffness expected at 

high frequencies that is in closest agreement with the measurement around the peak in 

the 1.25kHz band.   

The WFE track model can be modified so that the bending motion in the top plate is 

omitted from the analysis, by setting a very large Young’s modulus for the top plate.  

The track model is then of the spring-mass-spring form used previously in the bridge 

noise model for this type of track.  Figure 6.22 shows the decay rates obtained using 

this track model in the WFE analysis, together with the previous WFE result (where 

bending in the top plate is accounted for) and the measured decay rate.  Both WFE 

models were run for the railpad stiffness expected at a frequency of 500Hz.  
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Figure 6.22.  Decay rate in the unloaded rail:  , measured;  , WFE 

with proposed track model;  , WFE with spring-mass-spring track model. 
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Figure 6.22 shows that the spring-mass-spring track model can be used to predict the 

peak centred on the 500Hz band reasonably well, but that the peak in the 1.25kHz 

band is omitted.  This was expected as the spring-mass-spring model does not contain 

the resonance in this band.  The track model proposed here offers a small benefit over 

the spring-mass-spring model in the prediction of the first peak in the decay rate curve 

and the ability to account for the second peak if a frequency-dependent railpad 

stiffness is used in the model.   

6.4.4. Vibration of the viaduct under-traffic 

Figure 6.23 shows the measured average deck velocity at position P3 on the viaduct 

deck, together with the spatially-averaged velocity at this position in the cross-section 

obtained from the WFE analysis using both the constant stiffness track model and the 

track model proposed in this work.  Note that the spatial average of the WFE result 

has been taken along the length of the structure only and that an equivalent result is 

not available from NORBERT, because the SEA calculation only gives spatial 

averages for whole sub-systems. 
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Figure 6.23.  Spatially-averaged velocity at position P3 on the deck of the concrete 

box-section viaduct shown versus frequency:  , measured average;            

 , measured range;  , WFE result for constant track stiffness;   

 , WFE result with proposed track model. 

The spectra obtained from the WFE analysis have a broadly similar shape to the 

measurement for the frequency bands above 80Hz, but the deck velocity is under-



179 

predicted throughout this range by typically 6dB, or a factor of 2.  The main peak in 

the measured velocity spectrum occurs at a slightly lower frequency than that in the 

results of the WFE analysis.  The modelling of the resilient wheel is likely to be 

responsible for a significant part of this difference.   

The results obtained using the two different track models in WFE are similar for the 

frequency bands up to 200Hz.  For the higher frequency bands, where the effects of 

the baseplate resonances are significant, the two WFE results are different.  However, 

that obtained using the proposed track model is only in significantly closer agreement 

with the measurements in the 1kHz and 1.25kHz frequency bands.   

The SEA calculation in NORBERT gives the spatially-averaged velocity in each sub-

system.  Corresponding results can be found from the WFE analysis, by averaging 

over all the nodes in each subsystem, but not from the measurements, because of the 

limited number of measurement positions.  The results of the WFE model (with the 

constant stiffness track model) and NORBERT have therefore been compared here, 

for selected parts of the structure, shown in Figure 6.24 below.  
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Figure 6.24.  Spatially-averaged velocity for three subsystems in the concrete box-

section viaduct shown versus frequency, i) main deck, ii) side-deck iii) bottom flange: 

 , WFE (constant track stiffness);  , NORBERT simple SEA model; 

 , NORBERT detailed SEA model. 

i) 

 

ii) 

 

iii) 
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Figure 6.24 i) shows that the velocity on the main deck given by the WFE analysis is 

typically 10dB greater than that from the NORBERT models in the frequency bands 

up to 400Hz, and about 4dB greater in the higher frequency bands.  Since the WFE 

result for deck velocity was shown to be lower than the measurement made on the 

viaduct deck, NORBERT is therefore in greater error relative to the deck velocity 

measurement than WFE.  Note also that the effect of the two different approaches 

taken to the SEA modelling in NORBERT is very small over the frequency range 

shown for the deck, the side-deck and the bottom flange.     

It was shown in Figure 6.18 that the structural model in NORBERT underestimates 

the real part of the point mobility at position P3 by a factor of 2 for frequencies up to 

about 500Hz, relative to both WFE and the measurements.  This accounts for a 3dB 

difference between the deck velocity under-traffic given by the NORBERT and WFE 

models in this frequency range.  Note that this beam representation of the bridge is 

used in the calculation for the power input to the bridge based on the mobility of the 

bridge and also that on the coupled beam model of the rail and bridge.  For 

frequencies greater than about 500Hz, the input point mobility at position P3 in the 

WFE and NORBERT models is similar.  The difference in the deck velocity given by 

the WFE and NORBERT models in this range is therefore due to the division of the 

input power between the components of the viaduct in these two different types of 

model.   

There is a significant difference between the results of the WFE and NORBERT 

models for the velocity of the side-deck and the bottom flange of the box-section.  

When the lower power input to the bridge in NORBERT for the frequency range up to 

about 500Hz is accounted for, it is clear that the simplified SEA scheme in 

NORBERT predicts greater energy transfer from the deck to the components remote 

from the power input point than the WFE model.  This indicates that the assumption 

of equipartition of energy, on which the simplified SEA scheme in NORBERT is 

based, does not hold for this structure.  The lower energy transmission from the deck 

to the other viaduct components predicted by the WFE analysis than given by 

equipartition of energy indicates that the energy dissipation within the subsystems is 

significant relative to the energy transmitted between them.  This is reasonable given 

the relatively high damping loss factor used to model this structure, 0.1.  A more 
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complex SEA scheme, including coupling loss factors, would be required to account 

for this behaviour.   

6.5. CONCLUSIONS 

This chapter presents the most detailed study of a railway bridge structure of all those 

described in this work.  A new set of measurements has been made and this allows 

particular attention to be paid to characterisation of the vibration response of the 

bridge structure, free from the influence of the track and the rolling stock.  Two of the 

main areas of uncertainty in modelling this type of structure that were identified in the 

previous work by Bewes (2006) can therefore be addressed here: the structural model 

used to predict the power input to the viaduct and the damping level in the structure.   

Point mobility measurements were made at four positions on the viaduct deck over a 

frequency range from 30Hz to 1.2kHz.  For a significant part of this frequency range, 

the viaduct behaves as a reinforced plate for excitation at the rail seat positions.  It has 

been demonstrated that the WFE method is a satisfactory means to predict this 

complex behaviour.  However, the simple structural models in NORBERT 

underestimate the power input to the viaduct by a factor of about 2 over a significant 

part of the frequency range of interest.  The WFE method has also been shown to 

predict the transfer response of this viaduct correctly over the frequency range from 

100Hz to 1kHz, using a damping loss factor of 0.1.   

The vibration under-traffic predicted using the WFE and NORBERT models differ 

significantly.  Further, it is the WFE result that is in closer agreement with the 

measurements made on the viaduct deck.  Part of this difference between the models 

is due to the lower mobility representation of the bridge in NORBERT for frequencies 

up to about 500Hz and part is due to the energy sharing between the major 

components of the structure.   There is less energy transfer from the main deck, where 

the energy input to the viaduct from the track occurs, to other the other components in 

the structure according to the WFE analysis than the simplified SEA calculation in 

NORBERT (based on equipartition).   

The approach developed in Chapter 5 for modelling the resilient baseplate track used 

on this viaduct was included in the WFE analysis.  The comparison made between the 

decay rates in the unloaded rail shows that the proposed track model does offer an 

advantage over the spring-mass-spring approach used previously in NORBERT.  This 
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is expected to have an important effect on the rolling noise prediction for baseplate 

track (on bridges or otherwise).  It is also shown that the frequency dependence of the 

railpad stiffness is significant in predicting the correct decay rates in the rail. 

However, the proposed track model seems to be of limited benefit in modelling 

vibration of the viaduct under-traffic.  The WFE model underestimates the deck 

vibration in all frequency bands, typically by about 6dB, using both the proposed 

track model and the constant stiffness track model.  The reasons for this difference are 

unclear.  The structural model of the viaduct has been shown to be reliable from 

comparison to the measurements for point and transfer accelerance.  Further, the 

decay rate analysis for the rail presented in Section 6.4.3 indicates that the track on 

this viaduct is modelled reasonably well in WFE, albeit for the unloaded rather than 

the loaded track case.  It is therefore likely that the modelling of the excitation at the 

wheel-rail interface is responsible for a significant part of the difference between the 

results of the models and the measurements for vibration under-traffic.   

The resilient wheels on the DLR rolling stock introduce additional difficulty to 

modelling the excitation at the wheel-rail interface.  While a reasonably complete set 

of data is available for this wheel, it not known if the simple model of this wheel 

presented in Section 3.3.1 (Chapter 3) is an adequate means to predict its dynamic 

behaviour over the frequency range required here.  Further, it is expected that the 

methods available for estimating the wheel-rail roughness levels from rail vibration 

measurements may not be valid when the rolling stock has resilient wheels.  The 

suitability of the assumed wheel-rail roughness level for modelling this case is 

therefore unknown.   
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7. SUMMARY OF CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 

7.1.  OVERVIEW 

A theoretical model for the prediction of noise from railway bridges is required for 

use in making environmental impact assessments for new infrastructure projects, to 

guide noise control programmes for existing bridges and also the design of low-noise 

bridge and track structures.  Such a model, NORBERT, was developed and used for 

these purposes prior to the start of this EngD project.  Some aspects of this model 

have been identified as worthy of further study, mainly in the work of Bewes (2006). 

The aim of the work described in this thesis is to test these parts of the NORBERT 

model further and to develop improved calculation methods where required.   

An advanced finite element (FE) analysis technique was used in much of this work, 

Wavenumber Finite Elements (WFE), in order to calculate the power flow from the 

rail to the bridge structure and to calculate the vibration response of the bridge.  The 

method assumes an infinite ‘extruded’ geometry of the bridge.  For bridges that have 

geometry of this kind, WFE represents a more computationally efficient modelling 

approach than conventional FE methods.  WFE is particularly useful in that the 

behaviour of the structure can be understood in terms of its propagating wave modes.        

A total of five major issues were addressed and the findings of the work for each of 

these are summarised in Sections 7.2 to 7.6 below.  Recommendations for future work 

are made in Section 7.7.   

7.2.  MOBILITY MODEL FOR STEEL BRIDGES      

The NORBERT model for mobility is based on expressions for the mobility of 

idealised bridge components; a beam and a plate.  A switch between the beam and 

plate models is made for bridges where the track supports are not positioned directly 

over the longitudinal beams.  However, this was found to be an over-simplification 

which leads to step changes in the bridge response at certain frequencies for some 

bridges.   

Three different models were used to study the mobility of a coupled beam and plate, 

intended to represent a steel bridge.  All these models show that a transition is 

required between the mobility of the beam and that of the plate as the input force is 
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moved away from the support beam.  An empirical means to predict this transition 

was found by fitting to the results of one of the models for the coupled beam and 

plate, that based on the WFE method.  It has been demonstrated that this empirical 

transition offers a clear improvement over the switch mobility model for mobility.   

In the frequency range where the motion of the rail and the bridge is well-coupled, the 

input power to the bridge is found in NORBERT using the coupled beam model, 

rather than from the mobility of the bridge.  The empirical transition proposed in this 

work is not compatible with the coupled beam model, which requires that the bridge is 

modelled as a beam.  The modelling work presented in Chapter 2 indicates that the 

transition between beam and plate behaviour may occur for typical steel bridges over 

a significant part of the frequency range in which the motion of the rail and the bridge 

is well-coupled.  A more complex model for the rail, track support structure and the 

bridge than that in NORBERT would be required in order to account for a transition 

between beam and plate behaviour of the bridge in these cases.     

7.3.  MODELLING THE VIBRATION RESPONSE OF CONCRETE-STEEL 

COMPOSITE BRIDGES  T 

The behaviour of concrete-steel composite bridges is quite different from that of steel 

bridges.  The type of mobility model used for steel bridges is not applicable to 

composite bridges because the mobility of the deck is normally comparable to the 

mobility of the support beam in a composite bridge.  Further, the simplified SEA 

scheme in NORBERT is not valid for a composite bridge (Janssens and Thompson, 

1996).  The WFE method was used study these two issues in modelling the vibration 

response of composite bridges.     

TA WFE analysis of the composite bridge on the DLR was used to show that the 

response of this type of bridge is that of a Treinforced plate over a significant part of 

the frequency range of interest.  The simple structural models in NORBERT are 

therefore not readily applicable to this type of bridge and nor is the empirical 

transition developed for steel bridges.  The power input to the bridge and the vibration 

response under-traffic were calculated from a WFE model of the rail, the track 

support structure and the bridge.  It was found that the approach recommended by 

Bewes (2006) for modelling composite bridges using NORBERT leads to an 

overestimate for the power input to the bridge in the frequency range up to about 



186 

300Hz.  This is due to the difficulty in using the simple structural models in 

NORBERT for this type of bridge.   

The two simplified SEA schemes proposed by Bewes (2006) for modelling composite 

bridges in NORBERT predict different energy sharing Tbetween the major components 

of the bridge than the WFE model for frequencies up to about 800Hz.  The results of 

the WFE model for vibration under-traffic are in slightly closer agreement with the 

measurements made by Bewes (2006) for the DLR composite bridge than the 

NORBERT results obtained using the preferred simplified SEA scheme for composite 

bridges, that with the deck as the primary SEA network.  However, the under-

prediction of the response in the 800Hz frequency band and above remains.    T 

7.4.  THE DYNAMIC BEHAVIOUR OF RAILWAY BALLAST 

The dynamic behaviour of railway ballast has been studied through a programme of 

measurements and modelling work, that addresses the need for a means to model 

ballasted track on bridges that is supported by measurement data.  A model based on 

longitudinal wave motion in a prismatic rod of ballast loaded in compression by the 

sleeper has been shown to predict the dynamic transfer stiffness of a 300mm or 

450mm deep layer of ballast for frequencies up to approximately 600Hz, the 

maximum measurement frequency.  It is expected that the model can be used up to 

higher frequencies.  The case of a ballast layer on a bridge with a resilient liner was 

found to be more difficult to model.  The rod model for the ballast combined in series 

with a simple stiffness element for the liner was shown to be in reasonable agreement 

with the measurements up to about 350Hz.     

The damping loss factor for the ballast was estimated from the phase of the measured 

transfer stiffness at low frequencies where the ballast acts as a simple stiffness and at 

higher frequencies by comparing the first peak in the measured transfer stiffness 

spectrum with that predicted using the rod model.  The ballast is more heavily damped 

in the higher frequency range, consistent with previous work for the damping in 

granular materials, (Richards and Lenzi, 1984) and (Kuhl and Kaiser, 1952).  For 

modelling the damping in ballasted track on bridges, it is recommended that a 

damping loss factor of 0.1 to 0.2 is used for the frequency range in which the ballast 

behaves as a simple stiffness beneath the sleeper.  In the frequency range where the 
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internal mode effects of the ballast layer are significant, a damping loss factor of 

about 0.45 should be used.   

The measurements made for a sample of ballast at the end of its service life are not 

expected to be representative of that for ballast in railway track, due to the loss of the 

fine material during removal of the ballast from the track and subsequent handling.   

The dynamic properties of ballast found in this work do not explain the lower noise 

levels reported in some previous work for bridges with ballasted track than for bridges 

with direct fasteners.  It is likely therefore that the dynamic loading of the deck plates 

by a layer of ballast provides at least some of the measured effect.   

7.5. THE DYNAMIC BEHAVIOUR OF A TWO-STAGE RESILIENT 

BASEPLATE 

The high-frequency dynamic behaviour of a two-stage resilient baseplate is not well-

known.  A combined measurement and FE modelling study has therefore been 

conducted for a Pandrol VIPA-SP baseplate rail fastener.  It is shown that beam-

bending motion in the top plate has an important effect on the dynamic stiffness of 

this baseplate.  A simple FE model has been developed, which accounts for the effects 

of bending in the top plate on the direct and transfer stiffness.  Measurements for the 

direct stiffness of a VIPA-SP baseplate loaded with a short section of rail show that 

this simple FE model is a more accurate means to predict the behaviour of this 

baseplate than the spring-mass-spring model used previously in NORBERT.  It is 

expected that the simple FE model is applicable to other types of two-stage resilient 

baseplate. 

7.6.  MODELLING THE VIBRATION RESPONSE OF A CONCRETE BOX-

SECTION VIADUCT   

A new set of measurements were made in this work on a concrete box-section viaduct 

on the DLR, with a particular emphasis on characterising the vibration response of the 

bridge structure.  It is shown that the WFE method is a suitable means to predict the 

point response on the viaduct deck, by comparison with the measurements.  The 

response of this viaduct at the rail seat positions is that of a reinforced plate over 

much of the frequency range of interest.  As for the concrete-steel composite bridge, 

this behaviour cannot be accounted for satisfactorily using the simple structural 

models in NORBERT.  The WFE method has also been shown to predict the transfer 
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response of this viaduct correctly over the frequency range from about 100Hz to 

1kHz, for a damping loss factor of 0.1.   

The use of the simple structural models in NORBERT for the concrete box-section 

viaduct introduces a significant error to the calculation for the power input to the 

viaduct.  This is responsible for part of the difference shown between the vibration 

under-traffic predicted using the WFE and NORBERT models.  The WFE method 

also predicts different energy sharing between the major components of the structure 

than the simplified SEA scheme in NORBERT.  While the WFE result for the 

velocity on the viaduct deck under-traffic is typically a factor of two smaller than the 

measurement, the NORBERT result is in significantly greater error relative to the 

measurement.   

The measurements made on the concrete box-section viaduct have been used as a 

further basis for evaluating the approach proposed for modelling two-stage resilient 

baseplate rail fasteners.  This was incorporated in the WFE model of the rail, track 

support structure and the concrete box-section viaduct.  It is shown that the decay 

rates in the rail obtained using the proposed track model are in closer agreement with 

the measurements than those given by the spring-mass-spring model used for this 

track form in previous NORBERT modelling work.  This is expected to have an 

important effect on the rolling noise prediction for baseplate track.  However, the 

inclusion of bending motion in the top plate in the WFE model has only a small effect 

on the predicted viaduct vibration.    

7.7.  RECOMMENDATIONS FOR FUTURE WORK 

7.7.1.  Recommendations for bridge modelling 

A WFE model of the rail, the track and the bridge offers some important advantages 

over NORBERT in modelling concrete-steel composite and concrete box-section 

bridges in which the cross-section properties are constant along the span length.  It is 

therefore recommended that the WFE approach is used to model these types of bridge 

structure in future work.  It is expected that a plate element WFE model is suitable for 

bridges over the frequency range of interest in bridge noise, unless they have 

unusually large thickness concrete construction.  A WFE calculation for bridge 

vibration under-traffic typically takes 2 to 3 hours to run, such that it is suitable for 

use as a design tool.   



189 

WFE should also be considered for use in modelling steel bridges in which the 

longitudinal support beams are offset from the track supports.  The empirical 

transition model for mobility proposed in this work for use in NORBERT is 

applicable only to the frequency range where the motion of the bridge is decoupled 

from that of the rail.  A WFE model should be used in cases where the transition 

between beam and plate behaviour needs to be accounted for in the frequency range 

below the decoupling frequency.   

Steel bridges with track supports that are positioned directly over the longitudinal 

support beams have not been studied in this work.  However, it is expected that 

NORBERT is the most suitable means to model these bridges.  NORBERT should 

also be used for bridges that do not have constant cross-section properties along the 

span length.   

The models developed in this work for ballasted track and two-stage resilient 

baseplate track should be used in future bridge modelling work, in NORBERT or in a 

WFE model as appropriate.  The input data obtained in this work for the ballast model 

can be used in future work to model ballast layers of similar specification.  For the 

resilient baseplates, it is expected that the input data presented in this work is 

applicable only to Pandrol VIPA-SP baseplates.  Specific input data for the 

dimensions of the top plate and the stiffness of the pads would be required in order to 

apply this model to a different type of baseplate.   

7.7.2. Recommendations for research work 

It is recommended here that a major part of future work for the development of bridge 

noise and vibration models should be the acquisition of comprehensive sets of 

measurement data to be used for further validation of the two models used in this 

work, NORBERT and WFE.  Ideally, measurements would be made for the vibration 

of all the major components of the structure under-traffic, the point and transfer 

response on the bridge deck and the wheel and rail roughness levels.  Practically, such 

a measurement campaign would be difficult to arrange (or fund) and therefore only 

part of this measurement data was available during the present work.  However, it 

may be possible to obtain more complete sets of data in the future, for a range of 

different types of bridge.     
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Rail roughness measurements can be made for a range of wavelengths appropriate to 

modelling bridge noise using a portable trolley fitted with an accelerometer, see 

Thompson (2009) for details.  One of the important sources of uncertainty in the 

modelling work for vibration under-traffic can therefore be eliminated, but at the 

significant cost of hiring this specialist equipment.  It may also be possible to make 

measurements for the vibration under-traffic of all the major components of a bridge 

in the future.  This could be used to test the division of the input power amongst the 

major components of the bridge in the models.   

The modelling of the resilient wheels on the DLR rolling stock is a further source of 

uncertainty in the modelling work presented here.  In the absence of suitable 

measurement data, it is not clear how adequately the simple model of a resilient wheel 

used in this work represents its dynamic behaviour.  Rolling stock with resilient 

wheels is widely-used on light urban railways, which represent an important 

application for the bridge models, because they usually include elevated sections of 

track and are often in noise-sensitive areas.  It is therefore recommended here that the 

dynamic behaviour of resilient wheels should be studied in future work.   

A useful extension could be made to the ballast stiffness measurements made in this 

work if the case of ballast at a late stage of its service life, including the fine material 

produced by wear action, could be tested in some way.  It is recommended here that 

point response measurements are made on sleepers in ballasted track, for ballast at 

various stages of its life, such that the effect of wear on the stiffness of the ballast can 

be quantified.  Measurements of this kind would only provide information on the 

direct stiffness of the ballast at low frequencies, but this may be sufficient to 

determine how the transfer stiffness results obtained in this work for new ballast 

should be adjusted for the effects of wear.  

It is recommended here that the next step in the development of modelling approaches 

for bridges with ballasted track should be to quantify the effect of the dynamic 

loading of the deck plates by a layer of ballast on their vibration response.  It is 

expected that this effect is significant, particularly for a steel bridge, and that it may 

explain the lower noise levels reported in previous work for bridges with ballasted 

track than those with directly-fastened track.  It is recommended here that this is 

studied experimentally, rather than through FE or other modelling work.  This is 
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because a modelling study would require detailed material property data for the 

ballast and this is not available.   

While it is expected that the WFE models for the concrete-steel composite bridge and 

the concrete box-section viaduct represent reasonably complete models of these 

structures, there may be scope to develop improved models using existing structural 

modelling methods.  For example, it is possible to perform a WFE analysis for a finite 

length representation of the bridge structure with idealised boundary conditions, rather 

than for an infinite length structure representation.  The modes of the bridge span 

could then be included in the analysis.  The point and transfer response measurements 

made on the concrete box-section viaduct in this work indicate that the effects of these 

modes are relatively small.  However, for bridges with shorter spans, or with lower 

damping, the benefits of a finite length bridge model may be significant.  In addition 

to WFE analysis of finite length structures, it may also be useful to apply advanced 

structural modelling methods based on periodic structure theory to bridges.  

Specifically, this type of model may be appropriate for studying the effect of cross-

beams on the vibration response of a bridge.  
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APPENDIX A – ANALYTICAL MODEL FOR THE 

RESPONSE OF AN INFINITE PLATE AND BEAM 

A.1.  INTRODUCTION 

Yoo (2004) developed a model for the response of an infinite beam coupled to a plate 

of infinite length, but finite width.  A very similar approach can be used to model a 

plate that is of infinite width and length, coupled to an infinite beam.  This is 

described here and has been used in Section 2.3 of the thesis.   

The cross-section of the infinite plate and beam system is shown in Figure A.1 below, 

together with the waves expected in the structure.   

   

Figure A.1. Infinite beam and infinite plate system shown in cross-section together 

with the expected waves. 

Figure A.1 shows an external point force of magnitude Fo applied to the plate, at a 

lateral distance L from the beam.  Harmonic forcing and motion of the structure are 

assumed at a frequency ω.  Eight waves are shown by a symbol that indicates either a 

propagating or a near-field wave is expected.  The time dependency terms, ti
e

ω , have 

been omitted from both the waves and the external forcing term in Figure A.1.  The 

structure will be considered in three sections, where a local coordinate system is used 

for each section as follows. 

Section P1, for Ly <<0 .  Local coordinate is y1, where yy =1 . 
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Section P2, for 0<<∞− y .  Local coordinate is y2, where yy =2 . 

Section P3, for ∞<< yL .  Local coordinate is y3, where Lyy −=3 . 

Figure A.2 shows the structure divided into these sections, so that the internal shear 

forces per unit distance in the x direction (f) , acting between the sections, can be 

idntified.   

 

Figure A.2.  Infinite beam and infinite plate system shown divided into three sections. 

The external point force applied at location Lyxx == ,0
 can be represented in the 

spatial domain using the delta function as ( ) ( )LyxxF −− δδ 00 .   

No external force is shown applied to the beam in Figure A.2, it is only the shear 

forces in the plate that excite the beam.  Assuming that the beam behaves as an Euler 

beam, its equation of motion is given by, 
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where 
bD  is the flexural rigidity of the beam, 

bm'  is the mass per unit length of the 

beam and ( )xwb  is the vertical (z direction) displacement of the beam.  A Fourier 

transform can be applied to find the displacement of the beam in wavenumber domain 

as follows, 
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The spatial derivatives of the displacement and the shear forces in the plate can be 

transformed in a similar manner.  For example, the first spatial derivative of the 

displacement is transformed as follows,  
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Equation (A.1) can therefore be expressed in the wavenumber domain as, 

                                ( ) ( ) ( ) ( )xxxbbxbxb ffWmWD κκκωκκ 12

24
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The equation of motion for the thin plate, if it was free from both the applied external 

force and the forces applied by the beam would be given by, 
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where pD  is the flexural rigidity of the plate, pm ''  is the mass per unit area of the 

plate and ( )xwp  is the out-of-plane displacement of the plate.  This can be expressed 

in the wavenumber domain by using Fourier transforms,  

    ( )
( )

( ) 0,''
),(,

2, 2

4

4

2

2

24
=−















∂

∂
+

∂

∂
− yWm

y

yW

y

yW
yWD xpp

xpxp

xxpxp κω
κκ

κκκ  

              (A.6) 

For harmonic motion, a solution for the displacement of the plate in equation 

(A.6) would be expected of the form,  

                 ( )
yyk

xp Bey,W =κ         (A.7) 

Substituting equation (A.7) into (A.6), 
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where p

p

p

D

m
κ

ω
=4

2''
is the free plate wavenumber.  yk  and xκ can be related to the 

free plate wavenumber as follows, 

        ( ) 02 44224
=−+− pyyxx kk κκκ       (A.10) 

                                   ( ) 222
pyx k κκ ±=−        (A.11) 
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Solutions for yk can be found from equation (A.11).  Waves travelling in the positive 

y direction, should have a negative real part wavenumber, the negative square root is 

therefore taken for these waves.  The ‘ ± ’ signs in equations (A.11) provide two 

negative-real part solutions,  

             1

22

ypxy kk =−−= κκ      (A.12) 

    2
22

ypxy kk =+−= κκ      (A.13) 

For 22

px κκ < , the solution for 1yk  from equation (A.12) will mean that equation 

(A.5) for the displacement of the plate takes the form of a complex exponential, 

representative of a propagating wave.  For 22

px κκ < , the solution for 2yk  from 

equation (A.13) will mean that equation (A.5) for the displacement of the plate takes 

the form of an exponential decay function, representative of a near-field wave.  For 

22

px κκ > , the solutions for both 1yk  and  2yk  will represent near-field waves. 

For waves travelling in the negative y direction, positive wavenumbers are required 

and the positive square root is therefore taken, 

         3
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ypxy kk =−= κκ       (A.14) 

                             4
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ypxy kk =+= κκ       (A.15) 

3yk  gives rise to a propagating wave if 22

px κκ <  and 4yk is associated with a near-

field wave under this condition.  For 22

px κκ >  both 3yk  and 4yk  will be associated 

with near-field waves.  

The displacement of each section of the plate can now be considered, using the local 

coordinate system defined above.  For section P1, 
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For section P2, 
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For section P3, 
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                                         ( ) 32
8

31
733

yykyyk

xp eBeBy,W +=κ          (A.18) 

A set of equations for the response of the coupled plate and beam structure to the 

external force on the plate can be found by application of the boundary conditions of 

the problem.   

Equal displacement of the beam and section P1 of the plate is required at their 

intersection.  In spatial terms, this is for all x and for y1 = 0 of section S1. 

       ( ) ( )xbyxp WyW κκ =
=0111 ,           (A.19) 

      ( ) 04321 =−+++∴ xbWBBBB κ          (A.20) 

The torsional stiffness of the deep beams used in steel railway bridges relative to the 

bending stiffness of the thin deck plate implies that vertical bending motion, rather 

than torsional motion, will be of greatest importance to the response of the structure to 

a vertical load.  A simplifying assumption will be made here that the beam does not 

rotate, it moves in the vertical direction only.  Under this condition, it follows that the 

rotation of sections P1 and P2 of the plate along 0
21

== yy  would also be zero.  
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And, 
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A further expression can obtained by substituting into equation (A.1) for the shear 

forces in the plate,   
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For continuity of displacement between sections p1 and p2 of the plate,  
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For continuity of displacement between sections p1 and p3 of the plate, 
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For continuity of rotational displacement between sections p1 and p3 of the plate, 
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For force equilibrium at the junction between sections p1 and p3 of the plate, 
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For moment equilibrium at the junction between sections P1 and P3 of the plate, 



205 

         ( ) ( )
0333111 ,,

==
=

yxpLyxp yMyM κκ          (A.34) 

Where the Fourier transform of the moment per unit length is given by (Yoo, 2004), 
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In this case, 
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Equations (A.20), (A.21), (A.22), (A.24), (A.26), (A.28), (A.30), (A.33) and (A.36) 

can be used to construct a dynamic stiffness matrix, which relates the amplitudes of 

the waves to the amplitude of the applied force as follows, 

       FKu =         (A.37) 

This can be done more concisely if the following terms are introduced, 

   ( ) ynxynn kvk −−= 223 κα          for 4,3,2,1    =n     (A.38) 
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22 κγ −=                  for 4,3,2,1    =n      (A.39) 

The dynamic stiffness matrix can then be written as follows,  
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               (A.40) 

The column vector of amplitudes can be written as, 

                            ( )[ ]T

xb κ    W    B    B    B    B    B    B    BBu 87654321=            (A.41) 
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And the vector of force amplitudes is given by, 

                                          F ( )[ ] ' 0    
x

F   0                       κ
0

000000=                    (A.42) 

Re-arrangement of equation (A.37) allows the vector of the unknown amplitudes to be 

found from, 

                                                                FKu
1−

=            (A.43) 

The inversion of matrix K  can be performed numerically using MATLAB.  Although 

it is known that the dynamic stiffness matrix can be ill-conditioned when obtained in 

this way, the results obtained by this means appear to be satisfactory.  The inverse of 

the dynamic stiffness matrix was therefore not obtained analytically.   

The wave amplitudes together with yk  allow calculation of the displacement of the 

plate as a function of the y coordinate and xκ .  To obtain the displacement of the 

structure in the spatial domain, that is as a function of both the x and y coordinates, an 

inverse Fourier transform is required, given by, 
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Point frequency response functions are sought here, rather than transfer quantities.  

Equation (A.44) therefore need only be evaluated at the coordinates at which the force 

is applied, that is Lyxx ==  ,0 .  The choice of datum in the x direction is arbitrary for 

this structure, which is infinite in this direction, so the integrand in equation (A.44) 

can be simplified by setting 00 =x .    
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Since the displacement of sections P1 and P3 must be equal, we can find the 

displacement of either of these to calculate the point receptance, and from this the 

mobility of the structure.  Considering section P1,  
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APPENDIX B – THE INPUT POINT MOBILITY OF 

BRIDGE BEAMS 

B.1.  INTRODUCTION 

Bewes (2006) developed sets of equations for the point mobility of both rectangular-

section beams and I-section beams over the frequency range of interest in bridge 

noise.  Here, the WFE method is applied to these beams in order to show that this 

method gives results that are equivalent to those from the Bewes equations and to 

study the in-plane modes of these beams further.  Bewes (2006) reported difficulty in 

identifying the in-plane modes of these beams using conventional FE methods.  This 

can be addressed using the WFE method.      

B.2.  A RECTANGULAR-SECTION BEAM 

A rectangular-section beam with a depth equal to 1m and a thickness of 0.02m was 

studied by Bewes (2006) and this geometry has been retained here.  The WFE 

representation of the beam is shown diagrammatically in Figure B.1 below.   

 

Figure B.1. Node positions in the WFE model of the rectangular cross-section beam. 

In order to allow all high frequency behaviour that might occur in the range of real 

analyses, the WFE analyses for beams have been performed up to a frequency of 

10kHz.  The element length in the y direction was chosen based on a calculation for 

the minimum expected wavelength of the longitudinal wave in the depth of the beam, 

together with the requirement for at least three of these cubic-interpolation plate 

elements per wavelength.   The motion of the nodes was constrained in the z direction, 

because this is not expected to be of importance in the response of the beam to forcing 

1m 
 

z 
z 

y 
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in the y direction.  Note that the material properties of steel  have been used for all the 

beam modelling work reported here.   

The matrix eigenvalue problem (equation (2.20), Section 2.4.2) was solved for a set of 

prescribed frequencies, in order to obtain purely real, purely imaginary and complex 

wavenumbers for the undamped case.  For the simple geometry under consideration 

here, these can be shown on a single dispersion diagram, Figure B.2 below.  
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Figure B.2.  Real part (positive y axis) and imaginary part (negative y axis) of 

wavenumber plotted against frequency:     , real part of wavenumber from WFE;                                       

    , imaginary part of wavenumber from WFE;  , longitudinal wave theory; 

  , 1
st
 solution to Timoshenko beam equation;  , 2nd solution to 

Timoshenko beam equation. 

Figure B.2 shows that there are just two propagating waves with a zero cut-on 

frequency for this case where the beam is not free to move in the z direction.  These 

are a vertical bending wave and a longitudinal wave, which have wavenumbers that 

can be calculated using Timoshenko beam and simple longitudinal wave theory 

respectively, at low frequencies.  The other waves which have a real part to their 

wavenumber at low frequency also have a significant imaginary part.  The rate of 

decay with distance travelled for these waves is therefore large, such that their 

influence on the response of the beam is expected to be small.  The wave that cuts-on 
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at a frequency of approximately 1500Hz corresponds to the second solution of the 

Timoshenko beam equation.   

The input point mobility of the beam was calculated using the WFE method, for an 

applied force at the top of the beam in the y direction and a damping loss factor of 

0.01.  The results obtained are compared with those from the equations proposed by 

Bewes for rectangular-section beams in Figure B.3 below.  
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Figure B.3.  Real part of input point mobility for the rectangular-section beam shown 

versus frequency:   , WFE solution;  , Timoshenko beam result;   

  , Bewes transitional model;  , edge-excited plate model.  

Figure B.3 shows that the WFE mobility spectrum is in agreement with the results of 

the three equations proposed for modelling rectangular-section beams by Bewes 

(2006).  A large peak is shown in the WFE mobility spectrum centred on a frequency 

of about 2.5kHz.  This corresponds to the frequency at which the longitudinal wave in 

the beam has a wavelength equal to twice the depth of the beam, i.e. this is the cut-on 

frequency of the first in-plane wave of the beam.  Figure B.3 shows smaller peaks in 

the WFE mobility spectrum at frequencies of approximately 5.5kHz and 9kHz, the 

cut-on frequencies of the second and third in-plane waves respectively.  The first in-

plane wave is of particular interest, because it is associated with a large increase in the 

mobility of the beam and may occur in the frequency range of interest in bridge noise 

for some bridges.  However, this wave is not easily-identifiable from the dispersion 

diagram of Figure B.2, due to the number of propagating waves in the beam at high 

frequencies.    
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The wavenumber-frequency pairs for the first in-plane wave were identified from the 

forced response WFE calculation.  A dispersion diagram could then be produced to 

show this wave clearly, in Figure B.4 below.   
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Figure B.4.  Wavenumber shown versus frequency for waves with purely real 

wavenumbers, for a beam with zero damping:     , WFE solution. 

The wavenumber-frequency pairs for the first in-plane wave of the beam show a cut-

on frequency of about 2.7kHz and a negative gradient for wavenumbers less than 2 

rad/m, i.e. the group velocity is negative.  The mode shape associated with this wave 

is shown in Figure B.5 below.   

-2.9384+1.1982e-016i

 

Figure B.5. Mode shape plot for the first in-plane wave of the rectangular-section 

beam:     , original node position;             , deformed shape.  

As expected, the first in-plane mode of the beam is dominated by 

stretching/compression motion in the plane of the beam.  
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B.3.  AN I-SECTION BEAM 

Figure B.6 shows the cross-section geometry of an I-section beam studied by Bewes 

(2006) together with the WFE representation of this beam.   

 

Figure B.6.  Cross-section geometry and WFE representation of the I-section beam.    

The element sizes have been specified based on the minimum wavelength expected in 

the web and flanges and the requirement for at least three elements per wavelength. 

The motion of the nodes in the web was constrained in the z direction.   

Figure B.7 shows the dispersion diagram obtained by solution of the eigenvalue 

problem for unknown frequencies, given a prescribed set of real wavenumbers.  The 

results of Timoshenko beam and longitudinal wave theory are also shown.    
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Figure B.7.  Wavenumber shown versus frequency for waves with purely real 

wavenumbers:     , WFE solution;         , Longitudinal wave;            , 1
st
 solution to 

Timoshenko beam equation;              , 2nd solution to Timoshenko beam equation. 

The first wave solution to the Timoshenko beam model is in agreement with the WFE 

result up to a frequency of approximately 300Hz.  The second Timoshenko solution is 

in agreement with the WFE result up to a frequency of approximately 1800Hz.  

Figure B.8 shows the input point mobility of the I-section beam found using the WFE 

method for an applied force in the y direction at the top of the beam (on the centre-

line) and the Bewes equations for the mobility of an I-section beam.  The damping 

loss factor is 0.01 in both calculations.  
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Figure B.9.  Real part of input point mobility of the I-section beam plotted versus 

frequency:   , WFE solution;  , Timoshenko beam result;   

 , Bewes transitional model;  , Bewes high frequency model.  

Figure B.9 shows that the WFE mobility spectrum is in agreement with the results of 

the Bewes equations for the mobility of an I-section beam.  There are several distinct 

peaks in the mobility spectrum obtained from the WFE matrices, which correspond to 

wave cut-on frequencies.  The large peak centred on a frequency of approximately 

1.8kHz is due to the first in-plane mode of the beam.  The locus corresponding to this 

wave in the dispersion diagram of Figure B.7 can be identified and shows the negative 

group velocity characteristic for small wavenumbers also found for the first in-plane 

wave of the rectangular-section beam.  The mode shape associated with this wave is 

shown in Figure B.10 below.   
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Figure B.10. Mode shape plot for the first in-plane wave of the I-section beam: 

     , original node position;   , deformed shape.  

The first in-plane mode of the I-section beam consists of compression/extension in the 

web accompanied by a flapping motion in the flanges.  This finding supports the 

approach taken to calculating the point mobility of this type of beam at high 

frequencies by Bewes (2006). 


