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VIBRATION OF RAILWAY BRIDGES IN THE AUDIBLE FREQUENCY
RANGE

by David Herron

The noise level associated with a train travelling on a bridge is normally greater than
that for a train travelling on plain track. It is sometimes the bridge noise that causes
the highest levels of disturbance to people in the vicinity or triggers action under
regulations such as the Environmental Noise Directive. Consequently, there is a need
to study means of predicting noise levels from proposed bridges, noise control

measures for existing structures and principles of low-noise bridge design.

This thesis describes a programme of work in which an existing calculation model for
bridge noise and vibration has been tested and alternative calculation methods have
been developed where required. The existing model is based on analytical models for
wheel-rail interaction and the calculation of the power input to the bridge. The
response of the various component parts of the bridge for this power input is found

using a simplified SEA scheme.

In this work, the existing model has been tested against measurements made on
railway bridges and the results of an advanced method of structural analysis, the

Waveguide Finite Element (WFE) method. This method is well-suited to modelling
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some important types of railway bridge. Specifically, it allows a numerical modelling
approach to be used up to higher frequency than conventional Finite Element
methods. It has been found to offer some significant advantages over the existing
bridge noise model, particularly for concrete-steel composite bridges and concrete

box-section viaducts.

The track support structure has an important influence on bridge noise and vibration,
through its role in the transmission of vibration from the rail to the bridge. Laboratory
measurements have been made in this work to characterise the vibration transmission
properties of two important types of track support structure on bridges; ballasted track
and two-stage resilient baseplate track. Improved methods of modelling the dynamic
behaviour of these track forms have been developed from the measurements, which

can be used in calculation models for both bridge noise and also for rolling noise.

Keywords: Railway, Bridge, Wavenumber Finite Element, Noise, Vibration, Ballast.
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1. INTRODUCTION

1.1. THE ENVIRONMENTAL NOISE PROBLEM
1.1.1. Environmental noise from the railway

Environmental noise is a growing concern throughout the industrialised world. In the
European Union, it is estimated that 20% of the population are exposed to noise
levels that scientists and health professionals believe to be unacceptable (Future
Noise Policy, 1996). The primary effect of this noise on humans is typically

‘annoyance’ during the day-time and sleep disturbance at night.

Transportation noise is the main component of environmental noise. The EU has
estimated that road traffic is the major source of noise with a long-term average
sound level greater than 65dB(A). Of the locations with noise levels higher than this,
it is estimated that around 1.7% are due to noise from railways (Future Noise Policy,
1996). Relative to road and aircraft noise, it is also found that rail noise is less

annoying for a given noise level (Fields and Walker, 1981) and (Miedema, 1998).

Nonetheless, excessive noise is the main concern expressed by the public regarding
the effect of railways on the environment (Future Noise Policy, 1996). On this basis,
there has been considerable opposition to the expansion of railway infrastructure and
capacity in some areas. Large public protests have taken place in response to the
introduction of high-speed trains between Paris and Marseille for example (European
Environment Agency, 2009). It is therefore necessary to reduce railway noise if the
role of rail transport is to be increased, an important objective of transport policy in

Europe and elsewhere.
1.1.2. Noise reduction programmes

There has been legislation enforcing maximum at-source sound levels for road
vehicles and aircraft since the 1970s. For railway noise, the difficulty in separating
the noise produced by the track and that from the rolling stock delayed the
introduction of such legislation. There are now limits for the noise produced by the
rolling stock when measured on a reference track, within the so-called Technical
Standards for Interoperability (Directive 2001/16/EC, 2001), but not for noise from

the track or from support structures, such as bridges and viaducts.
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An important mechanism by which public concerns regarding railway noise are
addressed is the environmental impact assessment that is required in order to gain
approval for a new railway infrastructure project. In England and Wales, this
normally takes the form of a public enquiry for major projects, following the
Transport and Works Act (1992). This leads to undertakings being given concerning
noise and its control by which the project must abide. Similar processes are used in
other parts of the world. It is therefore necessary to demonstrate that the
environmental impact of a railway infrastructure project is acceptable in advance of

its construction.

The Directive on Environmental Noise (Directive 2002/49/EC) is an important
legislative control for environmental noise from existing infrastructure in the
European Union. Member states are required to produce noise maps, that is to
predict the noise levels around major urban areas using simple and largely empirical
calculation methods. Locations where an unacceptable noise level is expected are
identified from these noise maps. Actions plans are required to reduce the noise
levels at these locations and for railways may include a range of noise control
measures, such as changes to the track or rolling stock, limits on the number of train
movements or maximum train speed. This is therefore a further driver for railway
noise research and is notable because it is the first regarding noise control measures

for existing infrastructure.
1.2. THE GENERATION OF RAILWAY NOISE
1.2.1. Noise from a train travelling on plain track at -grade

The noise associated with a train travelling on plain track at grade consists of three
major components: rolling noise, traction noise and aerodynamic noise. Of these,
rolling noise is normally the major source (Thompson and Jones, 2000). Unevenness
in the running surfaces of the wheels and rails, normally referred to as wheel-rail
roughness, causes relative vertical motion between the rail and wheel (Thompson,

1993). These components therefore radiate sound.

Rolling noise has been studied extensively and a predictive model for this noise has
been developed, Track-Wheel Interaction Noise Software, TWINS. This model is

based on a description of the rolling stock and track, together with appropriate



roughness spectra for the wheel and rail. TWINS has been shown to predict rolling
noise for typical track and wheel designs to within about 2dB. A summary of this
work is given by (Thompson et al. 1996a), (Thompson et al. 1996b) and (Jones and
Thompson, 2003).

The relevant wavelengths of the wheel and rail roughness typically lie in the range
from 5 to 500mm, with amplitudes of up to 50um (Remington, 1987). For a wheel or
rail roughness of wavelength A and a train travelling at speed V, a sinusoidal vibration
will be produced with frequency f,

f:K
A (1.1)

The contact zone between the rail and wheel has a length of the order of 10mm, and
there is therefore a contact filter effect for wavelengths shorter than this (Remington,
1987). The maximum frequency of interest in rolling noise is typically about SkHz,

due to this contact filter effect.

The relative contributions made by the wheel and rail to the overall rolling noise
differ through the frequency range, according to their relative mobilities, vibration
transmission and sound radiation. For frequencies between about 100Hz and those in
which the wheel exhibits a modal response, typically above 1 to 2kHz, the rail
normally has a higher mobility than the wheel. In this frequency range, the vibration
of the rail is therefore greater than that of the wheel. The rolling noise is then
dominated by either the noise radiated by the rail or by components of the track
structure, such as the sleepers. Sleeper noise is normally important only up to
frequencies of about 500Hz, dependent on the rail fastener stiffness (Thompson et al.
1996b). In the frequency range in which the wheel exhibits a modal response, the
wheel vibration is normally large relative to that of the rail, such that the wheel noise

component dominates the rolling noise in this range.
1.2.2. Noise from a train travelling on a bridge

When a train is travelling on a bridge, the vibration generated by the combined
wheel-rail roughness is transmitted from the rail to the bridge, via the track support
structure. This vibrational energy propagates through the bridge, causing the whole

bridge to radiate noise (Janssens and Thompson, 1996). The noise radiated by this
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large structure normally constitutes a significant addition to the wheel-rail rolling
noise and other noise sources. In some cases, the different type of track structure
used on bridges than on plain track at-grade also causes a significant increase in the
rolling noise (Poisson and Margiocchi, 2006). Measurements show that the overall
noise level associated with a train travelling on a bridge may be up to 20dB greater

than that for a train on plain track at grade (Hardy, 1999).

Urban railways are heavily dependent on bridges and viaducts: Kurzweil (1977)
estimates that 30% of route miles on urban light rail systems in the US are on
elevated track. Mainlines are also more reliant on bridges in heavily populated areas,
as the need to cross roads and other railway lines is encountered more frequently than

in rural areas.

Due to the prevalence of bridges and viaducts in urban areas, combined with the
higher noise levels expected for these cases than for trains travelling at-grade, the
noise from elevated structures is an important part of the noise impact of the railway.
Elevated sections of a proposed new railway line may therefore receive particular
attention in an environmental impact assessment. For existing lines, it is likely that
bridges and viaducts will be identified in action plans produced from the noise
mapping exercise required by the Directive on Environmental Noise (Directive
2002/49/EC, 2002). The standard used for noise mapping in the UK, Calculation of
Railway Noise (1995), requires a correction of up to +9dB(A) for a train travelling on
a bridge rather than on plain track at-grade. Consequently, there is a need to study
means of predicting noise levels from proposed bridges and viaducts, noise control
measures for existing structures and principles of low-noise bridge and viaduct

design.
1.3. RAILWAY BRIDGE AND TRACK STRUCTURES
1.3.1. Introduction

A wide range of bridge and track structures are in use on railways and previous work
has shown that their associated noise levels vary considerably. It is therefore
appropriate to introduce the reader to common bridge and track structures at this

stage.



1.3.2. Railway bridge structures

Bridges and viaducts are required on the railway in order to cross valleys, water
(rivers, river estuaries and flood plains for example), roads and other railway lines.
The term viaduct will be used here to refer to a longer elevated structure, composed
of many consecutive spans. The majority of modern bridges and viaducts can be
divided into three groups: concrete box-section, concrete-steel composite and all-

steel. Examples of these are shown in Figure 1.1 below.

1) . . . | = o | N

‘— Single piece

concrete casting

‘H Concrete deck
N |
| —=8— Steel I-section beam
1i1)
Steel deck plate Steel box-
section
beam

Cross-beam

Figure 1.1. Examples of modern bridge structures i) concrete box-section ,ii)

concrete-steel composite (taken from Bewes, 20006)), iii) all-steel.

In the past, masonry, iron and steel bridges were built for the railway. Masonry
bridges are normally regarded as very low-noise elevated structures (Shield et al.,
1989), such that they have required little attention with regard to noise. However,

such structures have not been built in recent years because of their high cost.

Iron and steel bridges have been built in various different configurations. Some of

these do not have a deck plate, rather they are constructed only from beams and these



will be referred to here as open bridges. In addition to beams running parallel to the
axis of the bridge, some bridges include beams that lie perpendicular to the axis of
the bridge, referred to here as cross-beams. Some of the most common

configurations for historical iron and steel bridges are shown in Figure 1.2 below.

i) Steel deck plate

J Steel I-

section beam

1

Cross-beam

Wrought

iron truss

Steel deck plate

iii) l

Steel I-

section beam

; = Steel deck plate
v) P Steel 1-
l section

b beams

Figure 1.2. Four historical designs for iron and steel railway bridges: i) side-deck I-

beam, ii) truss, iii) under-deck I-beam, iv) side and under-deck I-beam.
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1.3.3. Track structures with a ballast layer

Most railway track is ballasted, which means that the rails are fastened to sleepers,
which are supported by a layer of ballast. A cross-sectional view of a typical

ballasted track arrangement on a bridge is shown in Figure 1.3 below.

Sleeper Rail

ARV v v v v vy

Ballast

PRI
SRS
hatata T4 e a0y

PR R = 52

ANANANN IAANN

_ Liner
Bridge deck

Figure 1.3. Typical ballasted track arrangement on a bridge.

Ballast is usually crushed natural rock, such as granite. Specifications for railway
ballast, such as British Standard BS EN 13450 (2002), require a carefully controlled
range of ballast grain sizes and an angular grain shape, in order to promote
interlocking between the grains and high internal friction. The ballast layer is

typically 250mm to 500mm deep, measured from the underside of the sleeper.

The ballast is packed under the sleeper only in the areas beneath the rails, during
track construction and maintenance operations, in order to promote track stability
(Esveld, 1989). The sleeper should be fully embedded in the ballast, as shown in
Figure 1.3, to prevent lateral and longitudinal motion of the sleeper under the moving
load of the train. Wooden sleepers were widely used in the first half of the 20"
century, but concrete sleepers are now the most usually used. The sleepers are
normally set at a distance of between 0.6 and 0.75m apart, measured parallel to the

axis of the bridge (Esveld, 1989).

Some form of liner is normally placed between the ballast and the bridge deck. In the
past, wood has been used for this purpose to protect the deck from impact damage.
Specialist liners are used on modern bridges, which may also prevent rainwater

reaching the bridge deck in order to guard against corrosion of the structure.



Rail fasteners are used to connect the rails to the sleepers. The fastener normally
consists of a clip to provide the required clamping load to the rail-foot and an
elastomeric railpad, fitted between the rail and sleeper. This resilient connection
protects the sleeper from high-frequency excitation (Esveld, 1989), which prevents
crack formation in concrete sleepers and extends the service life of sleepers in

general.
1.3.4. Track structures without a ballast layer

Some railway track structures, both at grade and on bridges, do not include a ballast
layer or sleepers. These will be referred to as directly-fastened track here. The main
reason for using this type of track is that it requires less maintenance than ballasted
track. The cost associated with maintenance of ballasted track may be a significant
part of the running costs of a railway (Zhai et al., 2004). However, construction costs
for directly-fastened track are greater than those for ballasted track (Esveld, 1989).
For bridges, the use of directly-fastened track in preference to ballasted track also
brings a significant reduction in the weight that the bridge must support and therefore
the bearing strength requirements. Further, use of directly-fastened track can lead to
a reduction in the overall depth of the bridge below rail height, which may be of

value in some cases.

Modern rail fasteners on directly-fastened track are referred to as baseplate-type rail
fasteners, or ‘baseplates’ here. A range of different baseplates are used; an example

of a relatively simple design is shown in Figure 1.4 below.



Toe Insulator

Baseplate

Side Post Insulator

Figure 1.4. Example of a baseplate-type rail fastener (drawing courtesy of Pandrol

used with permission).

The baseplate shown above consists of a railpad fitted between the rail and a cast-iron
plate that is fixed to the bridge structure using bolts. The stiffness of the railpad used
in baseplate rail fasteners may be much lower than that in ballasted track, because the
railpad is normally the only source of resilience in directly-fastened track. More
complex baseplate designs are used where relatively low levels of vertical stiffness
are required. Two-stage resilient baseplates are an example of this, in which there is
a resilient pad between the plate and the rail and another between the plate and the

track-slab or bridge.

In the past, directly-fastened track structures on bridges were built from wooden

beams. A typical arrangement is shown in Figure 1.5 below.



Sleeper

Way beam

Figure 1.5. Directly-fastened track structure built from wooden beams.

The assembly of beams shown above is normally used to transmit the load from the
rail to positions on the bridge deck that are located directly above cross-beams in the
bridge. On this type of track, the rail fastener usually consists of a clip to hold the
rail foot in position and a screw or spike connection to the sleeper. There is often no

railpad in this type of track, the resilience coming from the beams themselves.
1.3.5. Influence of the track structure on noise

The transmission of vibration from the wheel-rail contact zone to the bridge, via the
track structure, was identified as the means by which the bridge is caused to vibrate
and radiate sound in Section 1.2.2. The track structure, in its various forms, was
described as a resilient connection between the rails and the bridge in Sections 1.3.3
and 1.3.4. Vibration isolation, that is, dynamic decoupling of two connecting
systems (Brennan and Ferguson, 2004), therefore occurs between the rail and the
bridge in some frequency range. This behaviour is an important factor in bridge
noise and it is introduced here using the single degree-of-freedom system shown in

Figure 1.6 below,

F.

— 1

k(1+in) X

Fy
Figure 1.6. Single degree-of-freedom mass-spring system.



where F, represents a harmonic excitation force applied to the mass m and x is the
displacement of the mass. The term k(/+in) describes the stiffness of a mass-less
spring with hysteretic damping. F; is the force transmitted to the rigid foundation,
and it is related to the excitation force in the frequency domain by the force
transmissibility, 7}, as follows (Mead, 1998),

T _F Ity
T F 1-Q%+ip (1.2)

where Q = w/w, is the ratio of the forcing frequency to the undamped natural
frequency of the system, @, - M The force transmissibility is a measure of the
effectiveness of the vibration isolation provided by the damped spring. This is shown
in Figure 1.7 as a function of the normalised frequency £, for two different levels of
damping in the spring.
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Figure 1.7. Force transmissibility of the mass-spring system shown versus non-

dimensional frequency: ——, n = 0.01; — — — — ,n=20.5.

For values of Q much less than unity, the transmitted force is approximately equal to
the excitation force, for both damping levels. There is therefore no significant
vibration isolation effect in this frequency range. For values of Q close to unity, the
transmitted force is greater than the excitation force. This vibration amplification
effect is larger for the low damping case. It is only when Q is greater than J2 that
the transmitted force is smaller than the excitation force, such that there is effective
vibration isolation. In this frequency range, the effect of the hysteretic damping level

is small. However, a viscous damping model would indicate a larger effect.
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The complexity of a system that consists of a rail, track support and bridge means
that it is not possible to evaluate the vibration isolation effect precisely using a simple
expression such as that for the simple system of Figure 1.6. However, as a first
approximation the effect of different track structures on the behaviour of the rail,
track support and bridge system can be predicted using a simple lumped parameter
approach. A two degree-of-freedom system can be proposed where the rail and the
bridge are represented by masses and the track support by a damped spring between
them. The natural frequency of the mode in which the rail and bridge move in anti-

phase on the stiffness of the track support can then be estimated from,

m. m, (1.3)
where S:is the track stiffness per unit length, 72, is the mass per unit length of the rail
and my is the mass per unit length of the bridge. The frequency given by equation
(1.3) will be referred to hereafter as the decoupling frequency. In simple terms, the
motion of the rail and bridge are well-coupled up to this frequency, and decoupled for
higher frequencies. Effective vibration isolation can be expected for frequencies
greater than about /2 times the decoupling frequency. The form of equation (1.3)
shows that there will be isolation between the rail and bridge down to lower
frequencies when a relatively soft track support is used. Control of this frequency
range through changes to the mass per unit length of the rail and bridge is also

possible, but these changes are normally more difficult to achieve practically.

In addition to its role in bridge noise, the track structure also has an important
influence on rolling noise, or more specifically on the noise from the rail and track
support structure. This is largely due to the effect of the dynamic properties of the
track on the rate at which vibration is attenuated as it travels along the rail, normally
called the decay rate (Jones et al., 2006). The decay rate controls the length of rail
that is effective in radiating noise, such that it is a key factor in the noise radiated by
the rail. Janssens and Thompson (1996) compare decay rate and rail vibration
measurements between directly-fastened track on a bridge and ballasted track at-
grade: the decay rates are generally much lower and the rail vibration level higher for

the directly-fastened track on a bridge. The stiffness of a direct-fastening system is
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also important to the decay rates in the rail. The frequency range over which the
motion of the rail and bridge are well-coupled is associated with a high rate of decay
of vibration in the rail and therefore low rail noise. Relatively soft direct-fasteners

are therefore associated with higher rolling noise levels (Wang et al., 2000).

There are secondary effects of the track stiffness on rolling noise, such as an increase
in sleeper noise for a relatively stiff rail fastener on ballasted track (Vincent et al.,
1996), or an increase in noise radiated by the baseplates in directly-fastened track
(Wang et al., 2000). However, the track stiffness required to give minimum rolling
noise is normally much greater than that for minimum noise from the bridge. The
track stiffness level required for minimum overall noise from a train travelling a
bridge is therefore dependent on the relative levels of rolling noise and bridge noise.

This needs to be addressed on a case-by-case basis.
1.4. LITERATURE REVIEW
1.4.1. Surveys of bridge noise

The problem of noise from railway bridges and viaducts has been studied extensively
since the 1960’s. Early published work took the form of noise measurements for
existing bridges in Europe (ORE, 1966), (ORE, 1971) and in Japan (Japanese
National Railways, 1973), (Japanese National Railways, 1975). Kurzweil (1977)
presents a compilation of results from these measurement programmes in Europe and
in Japan. A total of 11 different classifications of bridge are identified from this data,
such that all bridges within each classification have similar construction and noise
characteristics. Mean A-weighted noise levels are given for each of these bridge
classifications at a distance of 25m from the track. The lowest noise levels are for
concrete bridges with ballasted track, and for a given train speed these levels are
comparable to those for at-grade track. The highest noise levels are those for steel
bridges with directly-fastened track, typically 15dB higher than those for at-grade
track. Kurzweil (1977) attributes the lower noise levels found for bridges with
ballasted track than those with directly-fastened track to the added mass on the bridge
deck, vibration damping in the ballast and the sound absorption properties of the
ballast.

13



Ban and Miyamoto (1975) present the results of a thorough noise survey for bridges
and viaducts on high-speed Shinkansen lines in Japan. The findings reported are
broadly similar to those from Kurzweil (1977) with regard to the relative noise levels
for different types of bridge and track structure. Notably, it was found that concrete
bridges produce noise mainly in the frequency range up to about S00Hz, while steel

bridges produce significant noise over a much larger range, up to about 2kHz.

Later, Hardy (1999) presents the results of a noise measurement survey that show
considerable overlap between the noise levels for different classes of bridge,
including those with ballasted track and directly-fastened track. This indicates that
an empirical scheme is not a suitable means to predict the noise from a proposed
bridge, even in cases where measurement data is available for bridges of similar

design.

As described in Section 1.3.2, bridges with a concrete deck and steel support beams
have been built in recent years, mainly on the basis of relatively low construction
costs. These bridges are referred to here as composite bridges and are common on
urban light railways. Composite bridges have been linked to high noise levels,
particularly compared with all-concrete structures (Shield et al., 1989) and (Walker et
al., 1996). Noise from composite bridges on urban light railways have been the cause
of complaints from local residents. Shield et al. (1989) present an example case on
the Docklands Light Railway in London (DLR). These complaints were linked to
very high noise levels at low frequencies, particularly for the 63Hz one-third octave
band, often described as bridge ‘rumbling’ noise. This case demonstrates that overall
A-weighted noise levels, which emphasise the higher-frequency noise components,
may not correlate well with the disturbance caused by railway bridge noise to local

residents.

1.4.2. Noise control measures for railway bridges

Kurzweil (1977) identifies seven different approaches to noise control for railway
bridges: 1) source reduction, ii) vibration isolation, iii) vibration damping, iv) mass
addition, v) acoustic isolation, vi) acoustic absorption, vii) reduction of radiating

area. This will be used here as a structure for reviewing the previous work on noise

control measures for railway bridges.
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Source reduction for railway bridge noise refers to improving the quality of the wheel
and rail running surfaces. With the exception of trains with cast-iron block brakes, or
the removal of rail corrugation, there is normally very limited scope for such

improvements (Thompson, 2009).

The vibration isolation principle and its application to railway bridges was described
in Section 1.3.5. Numerous publications describe the use of this approach to achieve
significant reductions in the noise radiated by the bridge, such as Ban and Miyamoto
(1975), Kurzweil (1977), Oderbrant (1996), Hardy (1999), Wang et al. (2000) and
Wang et al. (2007). A particularly clear example of the use of resilient baseplates to
reduce noise from a steel bridge is given by Wang et al. (2000). Originally, the track
structure was of the directly-fastened wooden type. This was replaced by modern
resilient baseplates, with a stiffness of approximately 30kN/mm. Vibration velocity
measurements made on the bridge girders before and after the change to the track
structure show a reduction of typically 5dB in the frequency range from 100Hz to
400Hz and of about 20 dB for higher frequencies. Wayside noise measurements

show a reduction of 6dB(A).

Vibration isolation using resilient baseplates has been found to be one of the most
effective noise control measures for railway bridges (Kurzweil, 1977) and Oderbrant
(1996). However, it was noted by Wang et al. (2007) that the noise reduction
achieved by using resilient fasteners is dependent on the relative levels of rolling
noise and bridge-radiated noise. The reduction in overall noise achieved by changing
to a more resilient track structure is often smaller than expected, because of the

greater rolling noise for more resilient track supports (see Section 1.3.5).

There are means of achieving effective vibration isolation between the rail and the
bridge other than resilient rail fasteners. For ballasted track, resilient mats can be laid
between the ballast and the bridge deck. It may be expected that this approach would
not have as great an effect on the decay rates in the rail as resilient fasteners, because
the coupling between the rail and the relatively heavily-damped ballast would not be
affected. For directly-fastened track, resilient material may be added between a
concrete slab that supports the track and the bridge deck, so-called floating slab track.
The modelling study presented by Crockett and Pyke (2000) shows that the use of
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floating slab track, together with very soft baseplates, may be an effective measure
for reducing bridge noise. This is a very high cost approach, but as for ballast mats,
effective vibration isolation can be achieved down to very low frequencies by this
means, because of the large sprung mass above the resilient layer combined with low

overall stiffness.

It may be possible to treat bridge noise by increasing the damping in the bridge, using
constrained layer treatments or by adding ballast to the bridge deck. The
effectiveness of these measures seems to vary significantly from one case to another.
This may be related to the wide range of damping levels reported for bridge
structures in previous work. Hanel and Seeger (1978) report large noise reductions
on fitting constrained layer damping treatments to an all-steel bridge that initially had
very low damping, with an estimated damping loss factor of 0.0015. Other work
indicates that the damping loss factor for an all-steel bridge may be as high as 0.05,
without the use of special damping treatments (Kurzweil, 1977). This may explain
the lesser effects of constrained layer damping treatments on other all-steel bridges,
such those reported by Oderbrant (1996). Remington and Wittig (1985) report a
similar finding for a concrete-steel composite bridge on which damping treatments

were tested.

Poisson and Margiocchi (2006) used rail dampers, in the form of a tuned absorber
system attached to the rails, to reduce the noise associated with the passage of a train
over a bridge by about 3dB. This was achieved by reducing the rolling noise level,
which was the dominant source for this steel bridge with direct fasteners. Adding
damping to the rail is not expected to reduce the noise radiated by the bridge
significantly, because it is only the rail vibration close to the forcing point that is
related to the transmission of power to the bridge (Thompson, 1992). Tuned
absorbers have also been tested on a steel bridge deck. The vibration levels were
reduced at low frequencies, but there was no effect on the overall A-weighted level

(Poisson and Margiocchi, 2006).

Practically, the addition of mass to an existing bridge is normally achieved by laying
ballast on the bridge as a replacement for directly-fastened track. The noise surveys

described in Section 1.4.1 indicate that the effects of this change may include
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vibration damping, sound absorption and added mass. It is therefore difficult to

identify the effect of any one of these on bridge noise.

Acoustic measures for reducing bridge noise normally involve blocking noise paths
and providing a means to absorb the acoustic energy. Rolling noise is more readily
treated by this means than the noise radiated by the bridge, because of its more local
nature. Sound barriers beside the track are used for this purpose, such as in the case
reported by Fitzgerald (1996). However, it is also possible to shield the noise
radiated by the bridge structure. Kurzweil (1977) reports that a noise reduction of
27dB was achieved by fitting a complete enclosure around a bridge. However, this is

clearly an extremely high cost approach.

A lesser effect can be achieved at a lower cost by using a closed bridge design, such
as the concrete box-section structure shown in Figure 1.1i). The noise radiated by the
underside of the bridge deck is shielded by the main box beneath the deck. A closed-
section steel bridge design has also been shown to bring a noise benefit over open-

girder bridges (Thompson, 2009).

As a final note, large reductions in noise from existing bridges can often be achieved
by using several of the noise control measures described above for a single case.
Fitzgerald (1996) presents an example of using two complementary noise control
measures, resilient baseplates for the noise radiated by the bridge and noise barriers
for the rolling noise. This approach was shown to reduce the overall noise level for a

composite bridge by about 15dB(A).
1.4.3. Predictive models for bridge noise

A predictive model for bridge noise is sought for use in making environmental
impact assessments of new railway infrastructure projects, to guide noise control
programmes for existing bridges and also low-noise design of new bridges and track
structures. The work of Hardy (1999) indicates that an empirical scheme is not a
reliable means to predict the noise from a new bridge. Further, such an approach is
clearly not an ideal basis for the development of novel noise control measures and
low-noise bridge and track designs. A theoretical model for bridge noise is therefore
required, based on the physical processes by which bridge noise is produced. The

literature shows a range of different approaches for the development of such a model.
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Ouelaa et al. (2005) present a model for bridge noise and vibration that is based on
the modal superposition method. The bridge is modelled as an equivalent simply-
supported beam coupled to a moving train, represented by a series of two degree-of-
freedom systems for the bogies. Excitation of the bridge due to both the moving load
and wheel-rail roughness is considered. However, neither the rail nor the track
support structure are defined explicitly in this model. Given the important influence
of the track structure on both the noise radiated by the bridge and the rolling noise, it
is clear that this model does not satisfy the requirements of a predictive model for

bridge noise described above.

Finite Element (FE) models have been used to study bridge noise, such as those
described by (Walker et al, 1996) and (Crocket and Pyke, 2000). The main difficulty
in using an FE model to predict bridge vibration and noise is the enormous number of
modes expected in the frequency range of interest for bridge noise, up to
approximately 1500Hz (Janssens and Thompson, 1996). Consequently, the
computational demand involved in solving such a model over this frequency range is
too great for it to be used for repeated design calculations. FE models for bridge
noise and vibration are therefore normally used for only some lower part of the
frequency range of interest. Crocket and Pyke (2000) present an FE model of a
concrete box-section viaduct, track and rolling stock (for the primary and secondary
suspension systems, bogie and coach masses) that has approximately 60,000 degrees
of freedom. Despite this level of complexity, the model is valid only up to a

frequency of about 630Hz.

The Statistical Energy Analysis (SEA) method seems to address the difficulty of
using the FE method for railway bridges. The input power to each major component
of the structure, or in SEA terms, each ‘subsystem’ of the ‘SEA network’, is equated
to the power dissipated within it and the power flow to other subsystems (the
coupling power). Individual modes are not accounted for, rather the average
response of all the modes in a given frequency band is found. The fluctuations in the
response of the physical system due to the effects of individual modes become
smaller as the number of modes in the structure increases. Unlike the FE method,
SEA therefore becomes more attractive for complex systems at high frequencies,

where the number of effective modes is large. For this reason and due to its very low
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computational cost, SEA has been widely used to predict bridge noise and vibration.
A comprehensive account of the SEA method is given by Lyon and DeJong (1995).
The development of SEA-based models for bridge noise and vibration is described
here, with a more detailed account of one particular model given in Section 1.5 to

follow.

Kurzweil (1977) presents an early example of an SEA-based model for bridge noise
and vibration, which provides a relatively simple introduction to this type of model.
The rail vibration energy is found from measurements of the rail vibration velocity
and a beam on elastic foundation model for the rail and the track structure. The
transmission of vibrational energy to the bridge, via the track structure, is found using
an SEA model. The power flow between subsystems was found using the coupling
loss factor approach, see (Lyon and DeJong, 1995) for details. The coupling loss
factors were obtained from analytical expressions for idealised structural

components, beams and plates.

The output of the SEA calculation is the energy of each major component of the
structure (or subsystem of the SEA network). These energies can be used to find
spatially-averaged velocities for each major component of the bridge, as frequency
band averages. The sound power radiated by each of the bridge components is then
calculated using a radiation efficiency approach. The sound pressure at a given
location is found from the sound power by treating each component of the bridge as a

line of incoherent point sources.

Remington and Wittig (1985) used a similar approach to model an open (no deck
plate) steel bridge, with wooden sleepers. A wheel-rail interaction calculation was
used for the excitation of the wheel and rail due to the roughness on the rolling
surfaces. The combined roughness spectrum was calculated from rail velocity
measurements, rather than being found by direct measurement. This approach was
chosen in preference to using rail velocity measurements directly as an input to the
bridge noise and vibration calculation, so that the effects of changes to the track
structure can be evaluated using the model. Then an SEA calculation was used to

predict both the vibration transmission from the rail to the bridge and also the
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vibration response of the bridge, with coupling loss factors found from analytical

expressions for idealised structural components.

Both Kurzweil (1977) and Remington and Wittig (1985) compared the results of the
models to bridge noise measurements and showed that reasonable agreement could

be obtained from this relatively simple and computationally-light approach.

Janssens and Thompson (1996) present a model for the noise and vibration from all-
steel bridges with directly-fastened track, in which an SEA-based method is used to
predict the response of the bridge structure, although not the vibrational power
transmitted from the rail to the bridge. This, hereafter referred to as the power input
to the bridge, is found from the product of the real part of the bridge input point
mobility and the excitation force applied by the rail fasteners to the bridge. Note that
this is valid only for the frequency range in which the motion of the rail is decoupled
from that of the bridge. Simple mobility models for I-section beams are proposed

and shown to compare well with FE predictions and measurements made on a bridge.

The power input to the bridge is used in an SEA-based calculation for the bridge
vibration response. The rail and track structure are not included in this calculation.
The bridge is divided into a number of subystems, which take the form of plates;
typically one plate is used for each beam web, two for the beam flanges and one plate
for the bridge deck. It is assumed that the bridge structure is strongly-coupled in
SEA terms and that the structure is reasonably homogeneous, which is reasonable for
a steel bridge unless local damping treatments are used (Janssens and Thompson,
1996). Under these conditions, it is possible to calculate the response of each plate in
the system without the use of coupling loss factors. This approach to calculation of
the bridge response is referred to here as a simplified SEA scheme. It is an attractive
one, because finding suitable coupling loss factors may be the most difficult part of

an SEA model (Harrison et al., 2000).

The model originally proposed by Janssens and Thompson (1996) has been
developed further, (Harrison et al., 2000), (Bewes et al., 2006) and (Bewes, 2006). In
its present form it is called NORBERT and a more detailed description is given in

Section 1.5.
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The development of the models for bridge noise and vibration described above has
yielded a greater understanding of low-noise bridge design. An important example of
this is the identification of the direct relationship between the input point mobility of
the bridge and the vibrational power input to the bridge, by both Janssens and
Thompson (1996) and Walker et al. (1996).

1.5. THE NORBERT BRIDGE NOISE MODEL
1.5.1. Overview

The NORBERT model calculates the vibration response of the bridge, the noise
radiated by the bridge and the rolling noise during the passage of a train. The inputs
to the model are sets of data that describe the rolling stock, the track structure, the
bridge structure and the roughness of the wheel and rail rolling surfaces. A brief
account of the calculation methodology is given here, based mainly on the
description given in the manual for the NORBERT program (Thompson et al, 2005).

A structure for the calculation of bridge noise is shown in Figure 1.8 below.
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Figure 1.8. Flowchart of a model for railway bridge noise, based on (Janssens and

Thompson, 1996).

The methods used to calculate bridge noise and vibration in NORBERT are described
in Sections 1.5.2 to 1.5.6.
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1.5.2. Excitation at the wheel-rail interface

The component velocities at the contact point and the excitation force applied to the
rail can be found from the following wheel-rail interaction calculation at each

frequency (Thompson, 2009),

| iorY,
R P # (1.4)
| lorY,
Yo Ty 4y, 4y, (1.5)
_ ior
rail )/r +YW +YL (1'6)

where v,,, is the r.m.s. vibration velocity of the rail at the contact point, v,,, is the
r.m.s vibration velocity of the wheel at the contact point and F,,; is the r.m.s. input
force to the rail. Y, denotes the mobility of the rail, Y, that of the wheel and Y, that of
a linearised Hertzian contact spring between them (Grassie et al., 1982). r is the
r.m.s. combined wheel-rail roughness. Note that only vertical motion is considered
in the model, which is expected to be adequate for the case for straight track.

However, lateral excitation forces may be significant for curved track (Bewes, 2006).

The wheel mobility is found from a two degree-of-freedom model for each wheel,

shown in Figure 1.9.

Mpogie

ki

Figure 1.9. Two degree-of-freedom model for each wheel of the train.
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Mpogie T€presents the bogie mass per wheel and m,.; the unsprung mass per wheel.
The use of a mass to represent the wheel is normally adequate in the frequency range
of interest for bridge noise. Two springs, k; and k;, and a viscous damper, C,
represent the primary suspension. Physically, spring &, represents bushes and/or the
‘blow/off” characteristics of the damper. k. represents the stiffness of the linearised
Hertzian contact spring between the wheel and rail, which has been set to 1.3GN/m in
this work. A notional damping loss factor of 0.1 is applied to the contact spring,

required to prevent excessive vibration at the contact resonance (around 80Hz).

The rail mobility is found from a model of the rail as a Timoshenko beam
continuously connected to another Timoshenko beam, for the bridge, by up to three
continuous resilient layers and up to two continuous mass layers. This will be
referred to as the coupled beam model hereafter and it is described further in Section

1.5.3.

The r.m.s. roughness amplitude is found from roughness measurements made on
wheel and rail running surfaces. The wheel and rail roughness spectra are added in
the frequency domain, assuming that they are uncorrelated (Thompson et al. 1996a).
No account is taken of the low-frequency excitation associated with the moving axle
load, which is expected to be significant only for frequencies lower than about 25Hz

(Bewes, 2006).

The measurement of wheel and rail roughness is a specialised activity, such that
measurements for wheel and rail roughness levels are not normally made on a case-
by-case basis. Average roughness spectra have been produced from measurement
programmes such as those reported by (Dings and Dittrich, 1996), (Thompson et al.,
1996a), (Thompson et al., 1996b) and (Hardy, 1997). These roughness
measurements have been extended to longer wavelengths using track geometry data

from (Esveld, 1989) and are available for use in the NORBERT program.
1.5.3. Power input to the bridge

In the frequency range over which the bridge is expected to behave as a Timoshenko
beam, the coupled beam model introduced in Section 1.5.2 is used to calculate the
power input to the bridge. Either a coupled infinite Timoshenko beam model or a

coupled finite Timoshenko beam model may be used. For the finite length model,
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the beams are simply supported at their ends and are assigned a length equal to that of
the bridge spans. The layers of resilience and mass between the two beams are
specified to represent the track structure. While the track supports are normally
periodic, no account is taken of this in the coupled beam model; the support is treated
as continuous. It is expected that some error will be introduced by this simplified
treatment of the track support structure in the frequency range around 1kHz, due to

the so-called ‘pinned-pinned’ mode of the rail between the discrete supports.

A ballast layer can be modelled using a resilient layer in which distributed mass and
stiffness effects are accounted for, such that the expected internal modes of the ballast
layer can be included in the analysis. However, there is currently a lack of evidence
in the literature to support the approach taken in this part of the calculation. Further,
when NORBERT has been used for bridges with ballasted track, the predicted noise
and vibration levels have generally shown less agreement with measurement data

than is normally the case for bridges with directly-fastened track.

For some resilient baseplates of relatively complex design, internal modes are
expected within the frequency range of interest for bridge noise. In previous work,
these have been modelled using two resilient layers and one mass layer. However,
the suitability of this modelling approach is unclear because measurement data for the

high-frequency dynamic stiffness of these baseplates is not available.

The power input to the bridge per wheel, per unit force applied to the rail is found

from the coupled beam model as follows,

] L/2 o
Pjn = _Re j‘F (X)Wbridge (X)d.x
2 (1.7)

where F* is the complex conjugate of the force applied by the track structure to the
bridge, found from the product of the displacement across the resilient layer adjacent
to the bridge and its transfer stiffness. Wbﬂdge(x ) represents the velocity of the bridge
at the base of the track and L the length of the bridge.

The power input to the bridge for the idealised excitation (equation (1.7)) is then
corrected for the number of wheels on the bridge and the roughness excitation force

as follows,
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where N, is the number of wheels on the bridge.

In the frequency range in which the bridge is not expected to behave as a
Timoshenko beam and it is decoupled from the rail, an alternative method is used to

calculate the power input to the bridge,

B = Re {Ybl }F biid

bridge

(1.9)

where Y3, 1s the input point mobility of the bridge. F},.q is the r.m.s. force applied by
the track support to the bridge, found from the velocity of the rail at the contact point
between a single wheel and the rail, the number of wheels on the bridge and a

modified track transfer stiffness, k,, as follows,

2
keq vr,o
Foa = N,
@ (1.10)
0452,
where, T Lopacing (1.11)

The use of a modified track transfer stiffness follows from the work of Thompson
(1992), which shows that for two continuously-coupled beams with excitation at the
upper beam, only vibration within about half a wavelength of the excitation force
transmits net power to the lower beam. A, is the smaller of either the wavelength in

rail or in the bridge beam and Lgcig 1s the distance between track supports.

The input point mobility of the bridge is calculated using expressions for the mobility
of an I-section beam, from Bewes (2006) and a thick plate, from (Cremer et al.,
1988). For bridges that have support beams and a deck, the lateral distance between
the input point and the support beam is expected to control the relative influence of
the support beam and the deck on the mobility of the bridge. In NORBERT, the
mobility of the beam is used up to the frequency at which the lateral distance between
the input point (the base of the track support) and the centre-line of the support beam
is equal to one-quarter of a bending wavelength in the bridge deck. At higher

frequencies, i.e. when the distance between the input point and the centre-line of the

26



support beam is greater than one quarter of a bending wavelength in the deck plate,

the mobility of the bridge is set to that of the deck.

For bridges in which the mobility of the beams and the deck are substantially
different, such as all-steel bridges, this switch between the beam mobility model and
plate mobility model may introduce a large step-change to the input mobility of the
bridge and therefore also to the input power to the bridge. Physically, however, a
transition would be expected between beam and plate-dominated behaviour, over

some range of frequencies. This is a part of the model that requires further study.
1.5.4. Vibration response of the bridge

The vibration response of the bridge is found by application of the simplified SEA
scheme introduced in Section 1.4.3. In the steady state, the input power to the bridge

must equal to the power dissipated within it plus that radiated as sound,

P,

bridge

= Pdisx + Prad %Pdixs (1 12)

where it can normally be assumed that the radiated power, P,,4, is small relative to
the dissipated power P,. The power dissipated within each plate subsystem is
related to its mean-square velocity as follows (Cremer and Heckl, 1988),

Pissi = 2nf’7ipihiAi<vi2> (1.13)

where 7; is the damping loss factor of plate i, p; its density, #4; its thickness and 4; its

surface area. <vi2 > is the spatially averaged mean square velocity.

If the bridge can be assumed to be strongly-coupled in SEA terms and reasonably
homogeneous, the vibrational energy per mode in each subsystem will tend to
equalise across the system (Lyon and DeJong, 1995). This is commonly referred to
as the equipartition of modal energy. The ratio of the mean-square velocities in two

subsystems is then equal to the ratio of their mobilities (Cremer and Heckl, 1988),

(v*) :&%
(v?) Rel, (1.14)

and for the plate subsystems used here with identical material properties, this can be

related to their thickness,
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ReEYi%_ B
RelY;) h; (1.15)

If all the subsystems of the bridge have the same material properties and damping
loss factor, the spatially-averaged mean-square velocity of subsystem j can be

obtained from (Janssens and Thompson, 1996),

<v ?> _ Iy bridge

Ai

1

Equipartition of modal energy is not expected to apply for concrete-steel composite
bridges, in which a thick concrete deck is connected to relatively thin-walled steel
beams (Thompson et al., 2005). As an alternative to the use of a relatively complex
SEA scheme, in which coupling loss factors are required as inputs to the calculation,
Bewes (2006) proposed that concrete-steel composite bridges could be modelled
using two SEA networks; one for the steel beams and one for the concrete deck.
Equipartition of modal energy is expected to apply within each of these networks,
such that the simplified SEA scheme described above can be applied to each network
separately. One of the SEA networks must be chosen as the primary SEA network,
which receives vibrational energy from the track supports. Intuitively, this would be
the network for the relatively thick concrete deck, which would impose its velocity as
an edge excitation to the steel beam. The power flow, P4, between the two

networks is then given by (Beranek and Ver, 1992),

P

edge

=L, v; Re(Z')
(1.17)

where L., is the excitation length, v; is the r.m.s. velocity of the primary component
and Z’ is the impedance of the secondary component per unit width. The vibration
response of the plates in the secondary SEA network is found by application of

equation (1.16) for the power input given by equation (1.17).

Bewes (2006) trialled this two SEA network approach for modelling concrete-steel
composite bridges, with the deck as the primary network and also with the steel beam
as the primary network, together with several options for the input point mobility
calculation. Reasonable agreement with measurements was obtained for frequencies

between 60Hz and 630Hz using the deck as the primary SEA system together with
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the mobility calculation based on the switch between the beam and plate models.
Large differences between the measured and predicted vibration levels were found

outside this frequency range.
1.5.5. Sound power radiated by the bridge

The spatially averaged velocity of the plates can be used to calculate the sound power

radiated by the bridge from,

P

rad

= poco ZO-i"éli<vi2>
i (1.18)
where p, and ¢, are the density of air and the speed of sound in air respectively and o;

is the radiation efficiency of plate 7, obtained from standard formulae for beams at

low frequencies and simply supported baffled plates at higher frequencies.
1.5.6. Rolling noise

NORBERT contains a database of transfer functions for rolling noise spectra from
wheel-rail roughness spectra. These transfer functions have been calculated using the
separate predictive model for rolling noise, TWINS, for three different wheel designs
and three different track structures. Corrections are applied to account for the
differences between these reference cases and that under consideration, with regard to
the effect of the track stiffness on the wheel and rail vibration, and also the effect of
the decay rate in the rail on the noise radiated by the rail. The overall noise
associated with the passage of a train on a bridge can be estimated by this means
together with the calculation of the noise radiated by the bridge, with minimal
additional user input or computational cost. More reliable rolling noise estimates can
be obtained from a TWINS model for the specific rolling stock and track

combination, if required.
1.6. PROJECT SPONSOR

This research has been carried out as an EngD project, the principles of which are to
conduct industrially relevant work with a sponsor in such a way that the knowledge
and know-how is transferred to industry. Pandrol is a UK-based company
specialising in the design and manufacture of rail fasteners and associated installation

equipment. Pandrol supplies over 200 railway systems in 91 countries worldwide
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and has the largest share of the rail fastener market. This has been achieved through
the development of a wide range of rail fastener products, from relatively simple low-
cost fasteners, such as those described in Section 1.3.3, to sophisticated resilient

baseplates.

Railway bridges are an important application for resilient baseplates, due to the noise
impact of bridges and the influence of the track structure on this noise impact.
Pandrol therefore has a commercial interest in the development of a predictive model
for bridge noise, inclusive of the role of the track structure. Such a model can be
used to guide the design of new products and to select the most appropriate fastener
for a given application. Perhaps the most important reason for Pandrol to develop a
bridge noise model is to demonstrate to its customers that it understands the nature

and solution of the engineering problems that their products are required to address.

The NORBERT model has been used for these purposes prior to this project (Wang
et al. 2007) and also during the present work (Herron, 2008). The work outlined in
Section 1.7 below is intended to improve Pandrol’s ability to predict the vibration
response and noise for types of bridge that represent important applications for

resilient baseplates.
1.7. PROJECT OBJECTIVES AND THESIS STRUCTURE

The NORBERT model was evaluated against noise and vibration measurement data
for three different types of bridge in a previous EngD project, (Bewes, 2006).

Several areas of the model that require further development were identified from this
evaluation. In addition, the limited use of NORBERT for bridges with ballasted track
in previous work indicates that its predictive ability is poorer than that for bridges

with directly-fastened track.

The overall objective of this work is to test the NORBERT model further,
particularly with regard to the issues identified by Bewes (2006) and the treatment of
bridges with ballasted track, and to develop alternative calculation methods where
required. This has been pursued using an advanced method of structural analysis,

together with laboratory tests and measurements on a railway bridge.
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There are five specific objectives within this overall project objective, each relating
to an aspect of the NORBERT model in which there is a need for further work. A

single chapter of the thesis has been dedicated to each of these five objectives.

In Chapter 2, the approach taken to calculation of the input point mobility of an all-
steel railway bridge in NORBERT is studied using a range of analysis methods. The
objective of this work is to assess the NORBERT mobility model, particularly with
regard to the switch made between the mobility of the support beam and that of the
deck at some discrete frequency (see section 1.5.3), and to develop an alternative
mobility calculation where necessary. One of the analysis methods used here, an
advanced FE approach called the Waveguide Finite Element (WFE) method, is found
to be particularly appropriate for studying the response of some important types of

bridge.

Chapters 3 and 6 describe the use of the WFE method to model the vibration
response of a concrete-steel composite bridge and a concrete box-section viaduct.
The objective of this work is to evaluate further the approaches proposed by Bewes
(2006) for application of NORBERT to these types of bridge and, again, to propose

alternative methods where required.

The objective of the work described in Chapter 4 is to find a means to model the
dynamic behaviour of the ballast layer in NORBERT that is supported by suitable
measurement data. A programme of laboratory measurements is described, together
with the assessment of three simple models against this data. Chapter 5 describes
similar work for resilient baseplates, again with the aim of developing a proven

means to model this type of track structure in NORBERT.

Chapter 7 presents a set of conclusions for the work described in Chapters 2 to 6 and

recommendations for future work.
1.8. ORIGINAL CONTRIBUTION

The application of the WFE method to railway bridges is a major part of the work
presented in this thesis. To the author’s knowledge, this is the first time WFE has
been used for this purpose and it has provided new knowledge with regard to the
vibration response characteristics of three different types of bridge. For all-steel

bridges with a plate-like deck and I-section beams beneath the deck, an improved
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simple model for calculating the input point mobility was developed from the results
of the WFE analysis. For concrete-steel composite bridges and concrete box-section
bridges, the WFE analysis shows that their vibration response is complex and

requires a more detailed modelling approach than that available in NORBERT.

The WFE method has also been used to calculate the transmission of power from the
rail to the bridge via the track structure and the vibration response of the bridge
during the passage of a train. This is of particular value for concrete-steel composite
and concrete box-section bridges, which are not amenable to the use of simple
structural models such as those contained in NORBERT. Further, the WFE-based
modelling approach developed in this work is more attractive than one based on

conventional FE methods, mainly due to its calculation efficiency.

The second major topic of the work presented in this thesis is the development of
improved means to model the track support structure on railway bridges for use in
predicting bridge noise and vibration. Measurements have been made for the high-
frequency dynamic transfer stiffness of a layer of railway ballast between two
concrete blocks. These measurements provide evidence to support the approach
taken to modelling ballast in NORBERT, which was previously unavailable for the

case of ballast on a stiff foundation such as a concrete bridge deck.

A combined FE and experimental study of the high-frequency dynamic behaviour of
a typical commercial two-stage resilient baseplate rail fastener has also been
conducted. It is found that bending modes of the cast-iron top plate need to be
considered in modelling bridges with this type of track structure. This has an
important effect on the dynamic stiffness of the baseplate and it may be particularly
significant in rolling noise. Means of accounting for this behaviour in modelling the

track have been developed in this work.
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2. MODELS FOR THE INPUT POINT MOBILITY OF A
RAILWAY BRIDGE

2.1. THE MOBILITY MODEL IN NORBERT
2.1.1. Introduction

The need to calculate the input point mobility of the bridge, in order to find the input
power to the bridge in NORBERT, was described in Section 1.5.3. The mobility
model in NORBERT is based on expressions for the mobility of idealised bridge
components; a beam and a plate. The beam represents the primary support beams that
are normally orientated parallel to the axis of the bridge and the plate represents the
bridge deck. The approach taken to the calculation of the beam and plate mobilities in
NORBERT is described in Sections 2.1.2 and 2.1.3. The means by which these are
used to find the input point mobility of the bridge is described in Section 2.1.4.

2.1.2. Mobility of the support beam

I-section girders are commonly used as the primary support beams in a railway
bridge, (Janssens and Thompson, 1996). NORBERT contains a set of expressions for
the mobility of an I-section beam, divided into three different frequency ranges. At
low frequency, it is modelled as a finite simply-supported Timoshenko beam, with a
length equal to the bridge span (Thompson et al., 2005). The modes of the support

beam are therefore accounted for in this frequency range.

At high frequencies, there is longitudinal or ‘in-plane motion’ in the beam’s web and
bending motion in the beam’s flanges. In this frequency range, the mobility of the
support beam is found from the combination of the mobility of the beam flange,
treated as a normally-excited flat plate, and that of the beam web treated as an edge-
excited flat plate (Thompson et al., 2005). In an intermediate frequency range, an
empirical transition is made between the results of the low and high frequency

models.

This set of equations will be referred to here as the Bewes equations for the mobility
of an I-section beam, described in (Bewes, 2006). Note that an infinite structure
model of the beam is used in the high frequency range, such that the result represents

a spatial and frequency average input mobility of an equivalent finite structure with a
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high modal density (Skudrzyk, 1980). It is expected that this condition will be met for
the frequency range in which there is in-plane motion in the beam web, so that it is
also reasonable to neglect the modes of the beam in the intermediate frequency range,

where the empirical calculation for the mobility of the beam is used.

In some bridges there are beams orientated perpendicular to the axis of the bridge,
called cross-beams here, in addition to the primary beams. These cross beams have
smaller cross-section dimensions than the primary beams, such that they usually have
a lesser effect on the input point mobility of the bridge, but there are exceptions to
this. In some cases, particularly those with wooden directly-fastened track, the track
supports are connected to the cross-beams. The cross-beams may then have an
important influence on the input point mobility of the bridge in some higher frequency
range. The work of Behr (2005) also suggests that the effect of local reinforcements
to the deck (such as cross-beams) on the input point mobility of the bridge may be
greater for bridges with ballasted track. Modelling a bridge with cross-beams is
therefore particularly challenging and relies greatly on the judgement of the user.

Bridges with cross-beams are not considered further in this thesis.

2.1.3. Mobility of the bridge deck

The mobility of the bridge deck is normally used in NORBERT only for relatively
high frequencies. It is assumed that the modal density of the deck is large in this

range, such that an infinite plate model can be used to represent the deck.

The point mobility of an infinite plate, in the frequency range in which the effects of

transverse shear motion and rotational inertia are small, is given by,
V()= @)
W)= .
" 8+ phD

EW’

where, D= m (2.2)
-0

is the flexural rigidity, £ is the Young’s modulus, /% is the plate thickness, v is the

Poisson’s ratio and p is the density. This will be referred to as the thin plate model

here.

In NORBERT, the mobility of the deck plate is calculated from the so-called thick

plate equation. This is equivalent to equation (2.1) for low frequencies, but accounts
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for the effects of transverse shear deformation and rotational inertia at high

frequencies. The point mobility of the thick plate is given by (Cremer et al, 1988),

n’ (12D
1+ P { —]} w’

1 24G* | G* I’
Y, () = : 2.3)
8/ phD Lo (12D Y
576D | G*h’ @

where G is the shear modulus and G* = 0.85G 1is a reduced shear modulus.
2.1.4. Application of beam and plate models to a railway bridge

Sometimes a bridge is designed so that the rails and therefore the track supports are
located directly above the longitudinal support beams in the bridge. With regard to
bridge noise, this is an attractive approach because the input point mobility and
therefore the input power to the bridge at these positions are smaller than for other rail
positions on a given bridge structure. For bridges where the track supports are
positioned at some lateral distance d from the centre-line of the support beam, this
distance is expected to control the relative influence of the support beam and the deck
on the point mobility. The NORBERT mobility model calculates the point mobility
of the bridge based on the following ‘switch’ between the mobility of the support
beam and that of the deck plate (Bewes, 2006).

=Y,

beam

(2.4)

ridge

A
For d <Z’ then Y,

=Y

plate

A
For d > E then Y, (2.5)

ridge

where A is the bending wavelength in the deck. Physically, this means that the
influence of the beam dominates the point mobility at positions that are within a
lateral distance of one-quarter of a bending wavelength in the deck from the support
beam. For positions on the deck that are further from the support beam, the influence

of the deck controls the point mobility.

The switch in mobility models described by equations (2.4) and (2.5) means that for a
bridge in which the track supports are at some lateral distance from the longitudinal
beams, the input power to the bridge is found from the mobility of the primary
support beam in some lower frequency range and from the mobility of the deck in
some higher frequency range. In a steel bridge, the mobility of the I-section beam is
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normally small relative to that of the bridge deck in the frequency range up to that in
which in-plane motion in the web of the I-section beam becomes important. For these
bridges, the switch in mobility model therefore introduces a large step-change to the
input mobility of the bridge and therefore also to the input power to the bridge.
Physically, it is expected that the input mobility of the bridge would show a transition
between the mobility of the beam and that of the plate over some range of
frequencies, rather than a step-change at some particular frequency. The switch in
mobility models described by equations (2.4) and (2.5) may therefore cause
significant error in some part of the frequency range of interest, for bridges in which

the track supports are offset from the centre-line of the support beams.

The aims of this chapter are to assess the suitability of the NORBERT mobility model
and to develop an alternative model if this is found to be necessary. Three
progressively more detailed analyses have been made for the mobility of a coupled
beam and plate structure. Model 1 is based on the mobility of a beam at a point some
distance from a supporting spring, presented in Section 2.2. Model 2 is based on the
mobility of a plate at some distance from a supporting beam obtained using an
analytical approach, described in Section 2.3. Model 3 is for the same structure but

obtained using a finite element approach, see Section 2.4.
2.2. MODEL 1: ONE DIMENSIONAL MODEL OF A BRIDGE
2.2.1. Description of model 1

As a simple example of the behaviour to be investigated, i.e. that of a bridge which
consists of a deck plate and a support beam, a model was constructed of an infinite

beam and a spring. This is shown in Figure 2.1 below.

F
Infinite 2

beam 1 3

Spring

d »
< »

Figure 2.1. One dimensional model of a railway bridge cross-section.
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The one dimensional model shown in Figure 2.1 consists of an infinite beam that
represents the bridge deck and a spring that represents the support beam. A rigid link

connects positions 2 and 3.

The point and transfer mobility terms at frequency w relate the velocity amplitude at

positions 1 and 2 on the beam to the applied force amplitude at position 1,

v, =Y, F, +Y,F, (2.6)
v, =Y,F, +Y,F, (2.7)

where v, is the velocity at position n and F, is the applied force. For the mobility
terms, Y, , the left-hand index indicates the force position and the right-hand index
refers to the velocity position. For a linear system, the two transfer mobility terms are

identical.

At position 2, the spring force is related to the velocity by,
v, = Y3, F, (2.8)

where Y3; is the mobility of the spring. Substituting equation (2.8) into (2.7),

Y F,=Y,F, tY,F, (2.9)
Y. F
SF, =— (2.10)
’ Yy -1,

Now substituting for F, in equation (2.6) gives the mobility of the combined system,

2

% Y,

=—1=Y11+ I
Y33'Y22

Y
system
F 1

2.11)

For this simple analysis, it is appropriate to use Euler beam theory to calculate the
point and transfer mobility of the infinite beam, neglecting transverse shear and
rotational inertia effects. The point mobility of an infinite beam without the spring is
the same at all positions along the beam. The point mobility is given by,

w(1-i)

Y“(a)) =Y, (w) = 4E]Kb3

(2.12)

and for x > 0, the transfer mobility to a point x is given by,
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w - ix,x . —KpX
Y,(0)=Y,(0)= JEIx, (e —ie ) (2.13)
where the bending wavenumber «;, is given by,
pA
K, =1 sz (2.14)

Equation (2.14) gives four solutions: a near-field wave for each direction along the

beam, with wavenumbers of x = +ix, , and a propagating wave for each direction,
with wavenumbers of x« = +x, .

The results of equations (2.12) and (2.13) can be used in equation (2.11) to calculate

the mobility of the combined beam and spring system.
2.2.2. Results of model 1

Mobilities calculated from the model described in Section 2.2.1 are given here to
demonstrate the behaviour of the system. These are presented in terms of a
normalised mobility and a normalised distance between the input point and spring,

defined as follows,

system

(2.15)

Norm —

spring
and,

X

= —(—) 2.16
xNorm real j’bgam ( )

Two different cases are considered here: one in which the beam has a magnitude of
point mobility that is ten times larger than that of spring, and one in which the beam
has a magnitude of point mobility that is twice as large as that of spring A damping

loss factor of 0.1 has been assigned to the beam in each case.
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Figures 2.2 1) and 2.2 ii) show the point mobility as a function of distance between the

input point and the spring for these two systems.
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Figure 2.2. Normalised point mobility shown against normalised distance between
the input point and spring, i) beam mobility (magnitude) ten times larger than that of

spring, ii) beam mobility (magnitude) twice as large as that of spring: , beam

and spring model; _ _ . _ . _ , uncoupled beam, _______. , uncoupled spring; _______ ,

indicates one-quarter of a bending wavelength in beam.

Figure 2.2 1) shows the expected behaviour: the point mobility of the system is similar
to that of the spring for input points that are located close to the spring and makes a
transition to that of the beam (in a spatially-averaged sense) as the input point is

moved toward one-quarter of a bending wavelength away from the spring.

Figure 2.2 i1) shows that when the mobility of the spring is not small relative to that of
the beam, the input point mobility of the system is significantly lower than that of
either the beam or spring for positions close to the spring. This would be expected,
since the beam and spring are combined in parallel and this combination would be
characterised by the sum of their impedances. As the input point is moved away from
the beam, the system mobility again tends toward that of the beam in a spatially-
averaged sense. This simple model thus indicates the type of transition that the point

mobility makes as the forcing point moves away from the support.

Further results from this model will be presented in Section 2.5, together with those
from the more complex models described in Sections 2.3 and 2.4 below. The next
model is of a plate supported by a beam and therefore is a much fuller representation
of the transition made by the point mobility of a plate-beam bridge as the forcing

point moves away from the location of the support beam.
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2.3. MODEL 2: TWO-DIMENSIONAL MODEL OF A BRIDGE

Yoo et al. (2004) developed an analytical model for the response of an infinite beam
coupled to a thin plate of infinite length, but finite width. A very similar approach has
been used here to model a plate that is of infinite width and length, coupled to an
infinite beam. A detailed description of this model is given in Appendix A. Some
results from this model are presented here for a structure intended to represent a steel
railway bridge. A rectangular-section beam has been considered, because the Euler
beam model used in the analysis is applicable to this type of beam over a larger
frequency range than it is for an I-section beam. This system is shown in Figure 2.3

below.

F l l 0.03m

T A
X

Im

z

—»{[«— 0.04m

Figure 2.3. Infinite plate and infinite beam structure.

It has been assumed in this analysis that the beam does not rotate. This is a
reasonable simplifying assumption, given the large torsional stiffness of the beam
relative to the bending stiffness of the thin plate. A damping loss factor of 0.01 and
the material properties for steel given in Table 2.1 have been used for both the beam

and the deck.

Property Value
Dynamic Young's Modulus (GPa) 207
Density ( kg/m’) 7800
Poisson's ratio 0.3

Table 2.1. Material properties for the steel beam and deck.

The input point mobility of this structure in the wavenumber domain is shown in
Figure 2.4 below, as a function of the wavenumber in the x directon, for three
different distances between the input point and the support beam, d, at a frequency of
100Hz. The real part the input point mobility is shown here because this relates

directly to the power input to the structure.
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Figure 2.4. Real part of input point mobility of the coupled plate and beam system
shown versus wavenumber in the x direction, at a frequency of 100Hz. i) ford =0,
i) d=A/8 ,iii) d=1/4,iv) d=24,________, analytical solution;

, free plate wavenumber; _ _ _ _ _ , free beam wavenumber.

For a position directly over the beam, Figure 2.4 1) shows that the point mobility of
the structure in the wavenumber domain has large peaks centred on the free beam
wavenumbers. The point response of the structure at this position is therefore

dominated by the behaviour of the beam.

At a lateral distance of A/8 and 4/4 from the support beam, Figures 2.4 ii) and ii1) show
significant response around both the free plate wavenumber and the free beam

wavenumber. Figure 2.4 iv) shows that for a position two wavelengths away from the
support beam, the point mobility is dominated by large peaks centred on the free plate

wavenumber.

In summary, the results of the two dimensional beam and plate model presented here

in the wavenumber domain serve to confirm the conclusions drawn from the one-
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dimensional system analysis given in Section 2.2. Spatial-domain results from this

two dimensional model are presented in Section 2.5.
2.4. MODEL 3: WAVEGUIDE FINITE ELEMENT MODEL OF A BRIDGE
2.4.1. The Waveguide Finite Element method

If a structure can be idealised for vibration modelling purposes to be infinitely long
and have a constant cross-section, special modelling methods can be used to analyse
its vibration with much better efficiency than conventional three-dimensional
numerical techniques such as the finite element method. The individual spans of
many railway bridges are suitable for this kind of idealisation. A novel finite element
(FE) approach to modelling this class of structure has been developed, (Gavric, 1992),
(Karassalo, 1994), (Nilsson, 2004). This will be referred to here as the Waveguide
Finite Element (WFE) method. Since the cross-section properties are constant in one
direction, it is sufficient to use finite elements to represent only the cross-section of
the structure. The deformation of the structure in the direction of wave propagation,
along its length, is described using an analytical form; complex exponential terms

representing waves propagating along the axis of the waveguide.

The advantage of using WFE rather than conventional FE for ‘waveguide structures’
is the much lower computational cost, due to the relatively limited use of finite
elements in WFE. It can therefore be expected that WFE, unlike conventional FE,
can be used to predict the response of a railway bridge over the frequency range of

interest to bridge noise in a reasonable time scale.
2.4.2. Basis of the WFE method

The basis of the WFE approach is briefly described here, in order to provide a
background for the description of how WFE has been used in this work to study the
vibration response of railway bridge structures. Software developed by Nilsson
(2004) has been used to produce mass and stiffness matrices from an element
description of the structure. The focus of the work presented here is therefore the use
of these matrices to calculate the free and forced vibration response, rather than the
element or matrix formulations. This is described below, based on the more
comprehensive accounts of the WFE method given by (Gavric, 1992), (Karassalo,
1994) and (Nilsson, 2004).
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The structure under analysis is defined in three-dimensional space, using x, y and z
coordinates. The cross-section lies in the y-z plane and the wave propagation is in the
x direction, in which the structure is of infinite extent. The structure undergoes steady
state harmonic motion at circular frequency @, such that the deformation is elastic.
The displacement at any node in the cross-section, for a single wave of wavenumber

k, can be described by,

W.(x,y,2,t)=W(y,z)e™ e (2.17)
where W s the displacement, a function of the coordinates in three perpendicular

directions and time z. W is the displacement of the cross-section, a function of
coordinates in two perpendicular directions (y and z) that define the plane of the cross-
section. The virtual work principle is the basis for the development of the equations
used to describe the behaviour of the structure. For details of this development
procedure, see (Petyt, 1990). This leads to a set of linear algebraic equations of the

following form (Nilsson, 2004).

d J _ _
[%K.f {% -wQMJW(x) =F(x) (2.18)

where K ; are a set of stiffness matrices, j takes the values 0, 1, 2 and 4 for the plate

elements used in this work, M is the mass matrix and F is the force vector for the
cross-section. Equation (2.18) can be written in the following form, by referring to

equation (2.17) for the partial derivative terms.

[%}K/‘(_ ix) -’M J W(x)=F(x) (2.19)

The dispersion relations are obtained by solving the eigenvalue problem given by

equation (2.19) for the case of free vibration,

[ 4ZKJ,(- ix) -w’M J W(x)=0 (2.20)

Jj=0

The simple eigenvalue problem in @’ can be solved for known values of x , or

alternatively, a solution for the polynomial eigenvalue problem in (—ix) can be found
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for known values of @ . For each eigenvalue there exists a corresponding
eigenvector, which describes the mode shape of the cross-section for this wave.
Solutions to equation (2.20) in its polynomial form in x can be found using standard
computing routines. Alternatively, the eigenvalue problem given by equation (2.20)
can be transformed to a simple linear eigenvalue problem in x (Gavric, 1994). The
more widely-available standard solution routines for linear eigenvalue problems can
then be used to obtain the dispersion characteristics of the structure. This has been
found to be a more stable method of solution for some problems than the polynomial
eigensolution routine and has therefore been used in all the WFE modelling work

reported here.

The response of the structure to a concentrated load can be described in the spatial

domain using a delta function, as follows.

[jZKj(- i) - w’M J W(x)=Fd(x) (2.21)

Use can be made of the following Fourier transforms in order to transform equation

(2.21) from the spatial domain into the wavenumber domain.

Wik)= [W(xe™dx (2.22)

Fix)= [E(x)e™dx= [Eo(x)e" dx =F (2.23)

where W indicates displacement of the cross-section in the wavenumber domain and

F is the force vector for the cross-section in the wavenumber domain. Equation

(2.21) can therefore be written in the wavenumber domain as,

4 . ~ ~
(z K, (-ix) —a)ZMJW(K) =F(x) (2.24)

J=0

The cross-section displacements in the wavenumber domain can be found using

matrix inversion,

W(k)= [ > K (~ix) —a)ZMj F(x) (2.25)
j=0
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The following inverse Fourier transform returns the cross-section displacement vector

to the spatial domain,

W(x)= 2—17[ EW(K e dic (2.26)

A method of evaluating this integral based on the method of residues was presented

by Karassalo (1994).
~ T -
- Wn L F -
lim W(x) =i X — W por . 227
- (a(sz(_ l'K)j )J - DOF n,R ( )
n,R

KK n

p W L oK

where 7 is the number of waves in the structure at a given frequency, over which a

sum is taken to find the overall response of the structure. x, is the wave number at the

pole under consideration, at which all the wavenumber-dependent terms in equation
(2.27) are evaluated. The ‘L’ and ‘R’ indices indicate the left and right-eigenvectors
respectively. The ‘DOF’ subscript is an index that refers to the degree-of-freedom at
which the displacement is required. The derivative term in equation (2.27) can be

expanded as follows,

B(ZK]. (- i;c)j)

— LK (i )+ 2K, Cin) +K ) (2.28)

MATLAB computer programs have been used to calculate the free and forced
response of a waveguide structure from the WFE matrices, following the approach

described above.
2.4.3. WFE model of a coupled beam and plate

Having introduced the WFE approach, the focus is now returned to the point mobility
of a plate near to a supporting beam. The WFE models described in this work are for
structures of infinite extent in the length direction, but finite cross-section dimensions.
A WFE model was created of a coupled beam and plate structure, in which the plate
has a width of 4m. With this exception, the geometric and material properties of the
coupled beam and plate in the WFE model are the same as those defined in Section

2.3 above. The ‘beam’ is represented as a vertically-orientated plate.
Figure 2.5 shows the nodes of the WFE model for this structure.
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Figure 2.5. Node positions in the WFE model of the 4m wide plate coupled to a Im

deep rectangular-section beam.

The elements used in the WFE model are two-noded plate elements, in which each
node has four degrees of freedom: translation in the three coordinate directions shown
in Figure 2.5 and rotation about the x axis. These elements can be thought of as thin
strips of material, of finite width and infinite length. The plate elements are defined in

terms of two node positions, the thickness of the element and the material properties.

Testing has shown that 3 elements per wavelength are sufficient to obtain satisfactory
results when using these plate elements, which have cubic interpolation functions.
Simple analytical models were used to predict the wavelength in the plate and in the
beam at the maximum frequency considered in this work, 2kHz. For a thin plate, the

bending wavenumber is given by,

) ) 1/4

[

Kplate = P (229)
Dplate

where the flexural rigidity of the plate is given by,

ER’
D piare = ‘(—)12 - (2.30)

and the wavelength is related to the wavenumber by,

27

A (2.31)

plate =
K plate

A bending wavelength of approximately 0.38m is expected in the 30mm thickness
steel plate at a frequency of 2kHz. An element width of 0.125m is therefore
appropriate and has been used to model most of the plate. Smaller elements have

been used in part of the plate, in order to provide the required spatial resolution for the
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point mobility calculations as a function of position on the deck presented in Section

2.5.

The vertical and lateral beam bending waves were not considered in the selection of
the element size for the beam in the WFE model. These waves cause displacements
that vary as a function of position along the length of the structure and these are dealt
with using the analytical wave functions. Rather, plate bending and in-plane wave
motions were considered in selecting an appropriate element size for modelling the
beam using WFE. Equations (2.29) to (2.31) show that the plate bending wavelength
in the ‘beam’ is approximately 0.44m at a frequency of 2kHz. For the in-plane wave,
a wavelength of 2.5m was found at this frequency from the longitudinal wave speed in
steel. It is therefore sufficient and convenient to use an element width of 0.125m in

modelling the beam using WFE.

Note that the WFE method has also been used to study the response of rectangular and

I-section beams, see Appendix B.
2.4.4. Results of model 3

To develop the understanding from the mobilties presented in Sections 2.2.2 (results
from the beam and spring model) and 2.3 (results from the analytical plate and beam
model) calculations are presented in this section from the WFE model described

above in Section 2.4.3. Firstly, results of a free vibration response WFE analysis are

presented here, in the form of dispersion relations and mode shapes. The eigenvalue

problem of equation (2.20) has been solved for @”, given a set of known and purely-
real values of . It is therefore only the propagating waves that are considered here.
This limits the number of waves to be included in the dispersion diagram in a given
frequency range, such that these may shown reasonably clearly. The dispersion
diagram obtained from the WFE analysis for the coupled beam and plate is shown in
Figure 2.6 below, for the case of zero damping, together with the results of simple

analytical models for the waves in the structure.
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Figure 2.6. Purely-real wavenumber shown versus frequency for the coupled beam

and plate structure, with no damping: ¢ WFE; _ __ _ _ , vertical bending wave in
deck (thin plate model for 30mm thickness plate);_______. , vertical bending wave in
beam (Euler beam model); , longitudinal wave in steel.

The WFE solution consists of a set of discrete points, or wavenumber-frequency pairs.
Each of these points is a solution to the eigenvalue problem of equation (2.20). Loci
can be identified from these discrete solutions and many of these loci will not pass
through the origin (at zero wavenumber and zero frequency). These are propagating

waves only above some minimum frequency, known as the wave cut-on frequency.

Comparing the WFE solutions with the curves obtained from the analytical models, a
longitudinal wave can be identified in the WFE solution, a vertical beam-bending
wave up to a frequency of approximately SHz and a plate-bending wave in the upper

part of the frequency range shown.

The mode shapes can also be found from the solution of equation (2.20). These
provide further information for identification of the wave types in the coupled beam

and plate and are shown in Figure 2.7 for frequencies of 1Hz and 50Hz.
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Frequency of 1Hz
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Figure 2.7. Mode shape plots and corresponding wavenumbers for the couple beam
and plate structure. Caption above each plot shows wavenumber (rad/m):

O, original node position; _______, deformed shape.

At 1Hz, Figure 2.7 shows the expected waves with a zero cut-on frequency: a
longitudinal mode, a lateral bending mode, a vertical bending mode and a torsional

mode. There is very little deformation of the cross-section at this frequency.

49



The modes that show deformation of the cross-section at a frequency of 50Hz are for
various combinations of either vertical bending or torsional motion of the beam and/or
the plate. For all but very low frequencies, modes of these types are expected to
control the response of the structure to vertical excitation. With increasing frequency,
there is a progression toward higher-order versions of these modes, that is to modes of
the same basic form but with shorter wavelengths. To illustrate this, two modes that
are important in the response of the structure to vertical excitation at a frequency of

250Hz are shown in Figure 2.8 below.

) 0.85+0i ii)

0.67+0i

Figure 2.8. Mode shape plots and corresponding wavenumbers for two important
modes of the couple beam and plate structure at 250Hz. Caption above each plot

shows wavenumber (rad/m): O , original node position;, —_______ deformed shape.

Comparing the modes shown in Figure 2.8 at a frequency of 250Hz with those of
similar basic form in Figure 2.7 at 5S0Hz shows the expected change in the
wavelengths. This comparison also illustrates how the influence of the beam on the
point mobility at some lateral distance from the beam would become smaller as the

frequency is increased.
2.5. EVALUATION OF THE THREE MOBILITY MODELS
2.5.1. Introduction

The three models presented in Sections 2.2 to 2.4 have been used to predict the input
point mobility of the coupled beam and plate structure described above, first as a
function of input point position and then as a function of frequency. In this section,
the results given by these three different models are compared with each other and

with those of the NORBERT mobility model.
2.5.2. Point mobility as a function of position

The normalised point mobility of the coupled beam and plate structure is shown as a

function of the normalised distance between the input point and the beam centre-line
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in Figure 2.9 below. Note that these quantities are as defined in Section 2.2 above
(equations (2.15) and (2.16)), except that the system mobility is normalised by the
mobility of the beam for the models described in Sections 2.3 and 2.4, rather than that
of the spring as for the model in Section 2.2. Note also that these results have been
obtained at a single frequency, 100Hz.

10°

Normalised Mobility

0 0.05 0.1 015 02 025 03 035 04

10

Normalised Distance
Figure 2.9. Normalised point mobility of the coupled beam and plate structure shown
against normalised distance between the input point and the beam centre-line:

, WFE;, _ ____ , two dimensional analytical model; , one

dimensional analytical model; _______. , uncoupled plate mobility.

The three models give results that are similar; each shows a transition from close to
the mobility of the support beam to that of the plate as the input point is moved from
the beam to a distance equal to approximately one-quarter of a wavelength from the
beam. For a normalised distance of between about 0.05 and 0.2, the two dimensional
analytical model gives a lower mobility than either the WFE model or the one
dimensional model. It is likely that this is due to the assumption that the beam does

not rotate in the two dimensional analytical model.

It is expected that of these three different models, the WFE model is based on the best
representation of the coupled beam and plate structure. The one dimensional model
gives the expected behaviour in terms of the magnitude of the point mobility, but not
the real part of point mobility: the mobility of the one dimensional system at a
normalised distance of zero is purely imaginary. It is therefore not a suitable means to
predict the vibration input power to railway bridge structures. The WFE model also

has advantages over the two dimensional model, principally that the motion of the
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beam is not limited to that given by an Euler beam model. The one dimensional
model and the two dimensional analytical model will therefore not be used further in
this section. This makes it possible to present results in the form of the real part of

point mobility, which is again preferred because of its relation to power input.

A simple empirical model has been fitted to the WFE result for the real part of point
mobility that can be used to predict the transition between the mobility of the beam

and that of the plate in a coupled beam and plate structure. This is given by,

Re {Ybridge } = Re{Ybeam }+ st X (Re{YdeCkO} ;S%C{Yheam }j (232)

where ‘dy " 1is the normalised distance between the input point and the beam. Here,

the beam mobility is calculated using the Euler beam model and the deck mobility is
calculated using the thin plate model. Since it is now the real part of the point

mobility that is of concern, the normalised system mobility is re-defined as,

system

B real(Y ) (2.33)

Norm

reallY

Beam

A comparison between this normalised mobility given by the simple empirical model,
the WFE model and the NORBERT mobility model is shown in Figure 2.10 below,
for the coupled beam and plate structure defined above, at a frequency of 100Hz.

—
o

Normalised Mobility
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o
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Figure 2.10. Normalised point mobility (as given by equation 2.33) of the coupled
beam and plate structure shown against normalised distance between the input point
and the beam centre-line: , WFE;, _. _._._, empirical transition; - ______,

NORBERT mobility model.
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In order to test further the proposed empirical transition, an alternative coupled beam
and plate structure has been studied here using the WFE method, the empirical
transition and the NORBERT mobility model. The plate remains as before, but for

this case it is coupled to the I-section beam shown in Figure 2.11 below.

[ ] A

1m

0.04

») »
g}

Figure 2.11. Cross-section geometry of the I-section support beam in the alternative

coupled beam and plate structure.

The nodes of the top flange of the [-section beam shown in Figure 2.11 are common
to those in the deck. The top flange elements therefore over-lay those in the deck,
over the width of the top flange. The nodes of the WFE model for this structure are

shown in Figure 2.12 below.
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Figure 2.12. Node positions in the WFE model of the coupled I-section beam and

plate structure.

The input point mobility of the coupled I-section beam and plate structure at a
frequency of 100Hz is shown as a function of the distance between the input point and

the centre-line of the support beam web in Figure 2.13.
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Figure 2.13. Normalised point mobility (as given by equation 2.33) of the coupled I-
section beam and plate structure shown against normalised distance between the
input point and the beam centre-line:

transition;._______, NORBERT mobility model.

,WFE, _. _ . _._, empirical

Figure 2.13 shows that the empirical transition model is in satisfactory agreement with
the WFE result for this case and again seems to offer an advantage over the

NORBERT mobility model.
2.5.3. Point mobility as a function of frequency

In NORBERT, the point mobility is required at a single position on the bridge deck
over the frequency range of interest in bridge noise. It is therefore of interest to
compare the point mobility given by the WFE, empirical transition and NORBERT
mobility models as a function of frequency. This allows an assessment to be made of
any benefit there may be in using the empirical transition to predict the mobility of the

bridge in preference to the NORBERT mobility model.

Figure 2.14 shows the input point mobility of the coupled I-section beam and plate
structure as a function of frequency, for an input point located at a lateral distance of

0.2m from the centre-line of the support beam.
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Figure 2.14. Real part of the input point mobility of the coupled I-section beam and
plate structure, at a lateral distance of 0.2m from the centre-line of the beam:

CWFE:_ _ __ _ , empirical transition;_ _ . _. _ , NORBERT mobility model.

The input point mobility obtained from the WFE analysis shows the expected
transition from the mobility of the beam to that of the plate over the frequency range
up to approximately 200Hz. It is seen that the empirical transition is an approximate
frequency-average to the WFE result in this range. There are peaks in the WFE result
due to the cut-on of waves over the frequency range shown. The NORBERT mobility
model underestimates the mobility of the structure for frequencies between about

40Hz and 200Hz, by up to an order of magnitude.
2.6. CONCLUSIONS

The work presented in this chapter is concerned with the calculation of the input point
mobility of a railway bridge, required in order to predict the power input to the bridge.
The NORBERT mobility model is based on a switch between the mobility of the
support beam and that of the deck plate. It was expected that this switch may
introduce some error to the calculation, for bridges in which the track supports are not
positioned directly over the support beams. This was confirmed by using three
different approaches to modelling a coupled beam and plate, intended to represent a
typical all-steel railway bridge. All three models show that a transition is required
between the mobility of the beam and that of the plate as the input force is moved
away from the support beam, rather than the switch between them used in the

NORBERT mobility model.
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An empirical means to predict the transition between the mobility of the beam and
that of the plate was found by fitting to the results of the WFE analysis described here.
This empirical transition represents an alternative to the NORBERT mobility model
and requires no additional computation or user input. It is shown that the empirical
transition is in much closer agreement with the results of the WFE analysis than the
NORBERT mobility model. On this basis, it is recommended here that the transition
model is added to NORBERT and used to calculate the input point mobility for all-
steel bridges in which the track supports are not positioned directly over the support
beams. Further, it is preferable to use the result of an infinite beam model as input to
the transition model. This is because this type of structure has been shown to behave
as a beam only for very low frequencies, up to about 20Hz here, such that a finite
beam model would predict the modes of the structure incorrectly at higher

frequencies.

The second major outcome of the work presented in this chapter is the demonstration
of the WFE method as a suitable tool for the analysis of those railway bridge
structures that have a constant cross-section along their span length. WFE addresses
the difficulty found in using conventional FE for bridges, related to the number of
modes at high frequencies and the consequent computational cost. The WFE analysis
of the coupled I-section beam and plate presented in Section 2.5 required
approximately one hour using a laptop computer. There are also advantages in using
WEFE for the analysis of bridge structures rather than the analytical models described
in Sections 2.2 and 2.3, related to its flexibility and the frequency range over which
valid results can be expected. The WFE method has therefore been used to study the
vibration response of concrete-steel composite bridges and concrete box-section

bridges in Chapters 3 and 6 to follow.
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3. APPLICATION OF THE MODELS TO CONCRETE-
STEEL COMPOSITE RAILWAY BRIDGES

3.1. INTRODUCTION
3.1.1. Concrete-steel composite bridges

In this chapter, concrete-steel composite bridges are studied using both the WFE
method and the NORBERT model. Bewes (2006) found that the behaviour of
concrete-steel composite bridges, referred to here as ‘composite bridges’, is quite
different from that of all-steel bridges. In a composite bridge, the point mobility of
the concrete deck may be in the same order of magnitude as that of the steel support
beam over much of the frequency range of interest. For this reason, the procedure that
has been developed for calculating the mobility of all-steel bridges in NORBERT, as
either the mobility of the deck or that of the beam, or as a transition between them,

may not be applicable to composite bridges.

Moreover, the simplified SEA scheme used in NORBERT, which is based on the
assumption of equipartition of energy between the subsystems, is valid only for
reasonably homogeneous structures (Janssens and Thompson, 1996). An all-steel or
an all-concrete bridge satisfies this criterion; the plate subsystems in a NORBERT
SEA model of these bridges normally have similar thickness and impedance.
However, this is not the case for a composite bridge, in which a thick concrete deck is

connected to relatively thin-walled steel beams (Thompson et al., 2005).
3.1.2. Use of NORBERT for concrete-steel composite bridges

Bewes (2006) proposed three different models for the input point mobility of a
composite bridge in NORBERT: a beam model, a plate model and the switch between
them described in the previous chapter. Two different approaches to the use of a
simplified SEA calculation for composite bridges were also tested. In both of these,
the support beams and the deck were treated as separate SEA networks, such that
equipartition of modal energy can be applied to each network separately. One of
these networks was set as the primary SEA network, which receives the power input
from the base of the track. The secondary SEA system is then driven by the primary
system. While this approach avoids the need to determine coupling loss factors, a

particularly difficult part of an SEA analysis, there is a lack of physical basis for the
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selection of either the deck or the support beam as the primary system into which the

vibrational power from the track is injected.

A further concern in using two SEA networks to model a composite bridge in
NORBERT is the smaller number of modes in each of these networks over a given
frequency band than would be the case if only a single network had been used. The
minimum frequency for which the use of a statistical method can be justified for a
composite bridge is therefore likely to be greater than that for a single material bridge.
This minimum frequency can be estimated from the modal densities, n (modes per
rad/s), of each plate in the SEA network, given by (Cremer et al., 1988),

KA

=2 3.1
4drw G-1)

where A is the surface area of the plate and x, is the bending wavenumber in the

plate. Application of equation (3.1) to the SEA networks used by Bewes (2006) to
model a composite bridge on the Docklands Light Railway (DLR) in London gives

the following frequency-independent modal densities,

Deck Side-deck | Beam flanges | Beam webs
(concrete) | (concrete) (steel) (steel)
n (modes per rad/s) 0.008 0.004 0.004 0.03

Table 3.1. Modal density of each plate in the SEA model of a composite bridge on the
DLR used by Bewes (2006 ).

Based on the modal densities shown in Table 3.1, the total number of modes expected
in the one-third octave frequency band centred on 315Hz is just five for the concrete
component SEA network (deck and side-deck) and 15 for the steel component
network (beam flanges and beam webs). It may therefore be inappropriate to use a
statistical method such as SEA for this composite bridge below the 315Hz one-third

octave frequency band.

Bewes evaluated the proposed NORBERT mobility and SEA calculations for
composite bridges by comparison with measurements made for vibration under-traffic
on the DLR composite bridge. The best agreement was achieved by using the switch
between beam and plate models for the mobility calculation and setting the deck as

the primary SEA network. However, that work could not be regarded as an ideal
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basis for assessment of the proposed mobility and SEA models, as there is significant
uncertainty in other parts of the NORBERT calculation for vibration under traffic,
such as the roughness excitation at the wheel-rail interface and the behaviour of the
track structure. Further, the comparison with measurement data does not easily lead

to a physical explanation for the observed behaviour.
3.1.3. Modelling concrete-steel composite bridges using WFE

In the work described in this chapter, the WFE method has been used to investigate
the issues relating to the application of NORBERT to composite bridges. It is
expected that the WFE method is a suitable approach to the prediction of both the
input point mobility of the bridge and the response of the main components of the
bridge during a train pass-by. The results of this analysis have been compared with
those obtained from NORBERT, using the mobility and SEA models proposed by
Bewes, for the same composite bridge on the DLR. Bewes’s measurement data has

also been referred to, where available.

3.2. CHARACTERISING THE VIBRATION REPSONSE OF THE
COMPOSITE BRIDGE ON THE DOCKLANDS LIGHT RAILWAY

3.2.1. The composite bridge on the DLR

Measurements were made in previous work for noise and vibration on a composite
bridge on the DLR in London, located between Tower Gateway and Shadwell stations
(Bewes, 2006). The cross-section geometry of this twin-track bridge is shown in

Figure 3.1 below.
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Figure 3.1. A sketch of the composite bridge on the DLR, taken from Bewes (2000).

Figure 3.1 shows a concrete deck supported by two steel I-section beams. The deck
has a typical thickness of 0.39m where it is reinforced by the track slab, 0.23m
elsewhere and an overall width of 8m. The I-section beams are 1m deep, with a web
thickness of 0.03m, flange thickness of 0.04m and flange width of 0.4m. This bridge

consists of 16m length spans, with support from concrete columns at the span ends.
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The material properties for steel defined in Chapter 2 (Table 2.1) were used here to
model the I-section support beams. For the concrete deck, the Young’s modulus is
subject to significant uncertainty because it is dependent on the precise composition
of the concrete. Following consultation with a company responsible for building
concrete bridges on the DLR and reference to Kong and Evans (1982), the following

set of material properties have been assumed for the concrete deck.

Property Value
Dynamic Young's Modulus 40GPa
Density 2400kg/m’
Poisson's ratio 0.2

Table 3.1. Material properties for the concrete deck.
3.2.2. WFE model for the composite bridge on the DLR

The concrete deck in this bridge is expected to show thick-plate behaviour in the
frequency range of interest for bridge noise. This behaviour cannot be accounted for
using the WFE plate elements, which are based on thin plate theory. Rather, a solid
element model would be required. However, a plate element model is preferred here

because it is simple and computationally light relative to a solid element model.

In order to assess the need to account for thick-plate effects in this modelling work, a
comparison was made between the mobility of the concrete deck given by both thick
and thin infinite plate theory. It was found that these differ by less than 15% in the
frequency range up to 1.5kHz for the concrete deck in this bridge. On this basis,
thick-plate effects have been neglected in the modelling work presented here and plate

elements are used to model both the bridge deck and the support beams.

A WEFE model for half of the bridge cross-section was run separately for boundary
conditions at the bridge centre-line appropriate to symmetric and anti-symmetric
motion about the centre-line. A significant reduction in the overall solution time is
achieved by this approach, relative to that for a model of the full bridge cross-section,

due to the reduction in the number of degrees-of-freedom in the model.

Figure 3.2 shows the nodes of the WFE model for half of the DLR composite bridge.
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Figure 3.2. Node positions in the WFE model for half of the composite bridge on the
DLR.

The lengths of the elements shown in Figure 3.2 were chosen with reference to the
requirement for at least three elements per wavelength described in Chapter 2. Thin
infinite plate theory was applied to the bridge deck, the flanges and the web of the I-
section beam, in order to estimate the minimum wavelength in each of these

components in the frequency range up to 1.5kHz.

Bewes (2006) used a frequency-dependent loss factor to model this bridge in
NORBERT. However, this cannot be included in the WFE analysis easily. In the
absence of suitable measurement data for the damping in this structure, a frequency-
independent structural damping loss factor has been used in both the WFE and
NORBERT modelling work presented here. A structural damping loss factor of 0.02
has been chosen for this composite bridge, following Harrison et al. (2000). The term
structural damping loss factor is used here for a loss factor that describes the overall
level of damping in a structure, inclusive of the damping in the material and at the

joints in the bridge and track structure.

Note that the modelling of the rail and track supports will be described in Section
3.2.5 to follow.
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3.2.3. Free vibration response analysis

The dispersion relations obtained from solution of the eigenvalue problem for a
prescribed set of purely real wavenumbers are identified for the case of zero damping
in Figure 3.3 below. A number of dispersion curves calculated from simple analytical

models are also shown to aid interpretation of the waveforms in the bridge.
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Figure 3.3. Purely-real wavenumber shown versus frequency for the composite
bridge on the DLR, with no damping: O ,WFE for symmetric case, *, WFE for anti-
symmetric case; _______ , longitudinal wave in steel; , longitudinal wave in
concrete;_ _._ . _ , lateral beam-bending wave in deck (Euler beam model;

_______ , vertical bending wave in I-section beam (Euler beam model);

_____ , vertical bending wave in deck (thin plate model).

The waves in the structure with a zero cut-on frequency can be identified from a
comparison of the discrete WFE solution points to the curves obtained from the
analytical models. The symmetric case WFE solution in Figure 3.3 shows waves with
dispersion properties that approximately follow those for a vertical bending wave in
the I-section beam at very low frequencies, a longitudinal wave in the concrete deck
and a longitudinal wave in the I-section beam. For the anti-symmetric case, the WFE
solution shows waves with dispersion properties that approximately follow those for a
lateral beam-bending wave in the concrete deck at low frequencies and a longitudinal
wave in the I-section beam. There is an additional set of WFE solution points for the

anti-symmetric case with a zero cut-on frequency. These are for the torsional wave.
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For frequencies greater than approximately 10Hz, it can be seen that the WFE
solution points depart from the analytical models for the vertical bending wave in the
I[-section beam and the lateral beam-bending wave in the deck. Further, three waves
cut on in the frequency range up to 20Hz. It is necessary to study the mode shapes
associated with these waves in order to identify the wave type in each case. These are

shown for the symmetric waves in Figure 3.4 below, at frequencies of 1Hz and 25Hz.
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Figure 3.4. Mode shape plots and corresponding wavenumbers for the symmetric
modes of the composite bridge on the DLR. Caption above each plot shows

wavenumber (rad/m): O, original node position; _______, deformed shape.

For a frequency of 1Hz, Figure 3.4 shows a mode in which the bridge performs beam-
bending motion in the vertical direction, with no cross-sectional deformation, in
addition to the longitudinal waves in the I-section beam and the deck. At the higher
frequency shown in Figure 3.4, the two longitudinal modes remain unchanged and the
beam-bending mode of the bridge is also present. Two additional modes are shown,

one which has a cut-on frequency of 15Hz and another with a cut-on at 20Hz. The
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former shows primarily torsional motion of the I-section beam and the latter is the

first plate-bending mode in the bridge deck.

Figure 3.5 shows the mode shapes for the anti-symmetric waves in the bridge for

frequencies of 1Hz and 25Hz.
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Figure 3.5. Mode shape plots and corresponding wavenumbers for the anti-
symmetric modes of the composite bridge on the DLR. Caption above each plot

shows wavenumber (rad/m): O, original node position, ____, deformed shape.

At 1Hz there is a longitudinal mode of the steel beams, a torsional mode of the bridge
and a lateral beam-bending mode of the bridge. At 25Hz the longitudinal, torsional

and lateral beam-bending modes persist and they are joined by a mode in which the I-
section beam performs torsional motion. This is the anti-symmetric counterpart to the

mode with similar appearance shown in Figure 3.4 for a frequency of 25Hz.
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The dispersion and mode shape diagrams presented in Figures 3.3 to 3.5 describe the
low-frequency behaviour of the viaduct. Presentation of the free vibration response
analysis results for higher frequencies is made difficult by the large number of waves
in the viaduct. In order to present dispersion results clearly over a larger frequency
range, it is necessary to select only some of the waves from the full WFE solution for
plotting. This has been done by plotting the dispersion results only for the waves with
relatively large wave amplitudes at the excitation position (where the force from the
track support is input to the bridge). The majority of the total power input to the
structure is transmitted to these waves. It is then only a small fraction of the total
number of waves in the WFE solution that need to be considered in characterising the

response of the bridge.

To implement this, a wave with a displacement amplitude (magnitude of the complex
amplitude) greater than 75% of the largest wave amplitude at a given frequency is
labelled as a ‘very high power wave’, a wave with an amplitude of between 50% and
75% of the maximum wave amplitude as a ‘high power wave’ and a wave with
between 25% and 50% of the maximum wave amplitude as a ‘medium power wave’.
Note that the term ‘power’ is used loosely here as the relative wave amplitudes are

only an approximate indicator of the relative powers transmitted to the waves.

Figure 3.6 shows the dispersion relations for these waves when the viaduct is excited
at the outer rail position on the deck, for the symmetric case only, together with the
results of appropriate analytical models. A relatively large frequency range of 1Hz to
3kHz has been chosen for this analysis, so that the high-frequency asymptotic

behaviour may be shown.
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Figure 3.6. Purely-real wavenumber shown versus frequency for the composite
bridge on the DLR, with no damping, for symmetric motion about the centre-line and
excitation at the outer rail position: *, WFE result for very high power waves;
X, WFE result for high power waves; O , WFE result for medium power waves;

, vertical bending wave in deck (thin plate model); _ _ _ _ _ , vertical bending

wave in I-section beam (Euler beam model).

Figure 3.6 shows that for frequencies up to about 20Hz and the symmetric waves
only, the vibration power input to the bridge is transmitted to waves with dispersion
properties similar to those given by the Euler beam model for the I-section support
beam. At a frequency of 20Hz the first plate-bending mode within the width of the
deck cuts-on and as expected, a significant part of the power input to the bridge is
transmitted to these waves. However, very high power waves in the frequency range
from 20Hz to about 300Hz have dispersion properties that lie between those of the

Euler beam model and the thin plate equation.

For frequencies greater than 300Hz, the power is transmitted to waves which are
predominantly bending waves in the deck. This is a significantly lower frequency
than that at which the distance between the excitation position and the web of the
support beam becomes equal to one-quarter of a bending wavelength in the deck,
which is about 730Hz. There are no WFE solutions shown in Figure 3.6 that closely
approximate to the results of analytical models for the I-section beam or the

component parts of the beam for frequencies greater than 300Hz. This is supporting
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evidence for nomination of the deck as the primary SEA system in NORBERT, which

receives the power input from the base of the track.

Figure 3.7 shows the dispersion relations for the important anti-symmetric waves in
the bridge, again for excitation at the outer rail position.
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Figure 3.7. Purely-real wavenumber shown versus frequency for the composite
bridge on the DLR, with no damping, for anti-symmetric motion about the centre-line
and excitation at the outer rail position: *, WFE result for very high power waves;
X, WFE result for high power waves; O , WFE result for medium power waves;
, vertical bending wave in deck (thin plate model); _ _ _ _ _ , vertical bending

wave in I-section beam (Euler beam model).

It can be seen that the power input to the bridge is transmitted predominantly to plate
bending waves in the deck, for frequencies greater than about 300Hz in the anti-
symmetric case solution, as for the symmetric case solution. For lower frequencies
and excitation at the outer rail position, torsional waves of the bridge section dominate

the power transmission to the anti-symmetric waves.
3.2.4. Input point mobility

The point mobility on the bridge deck at the outer rail position has been calculated
from the WFE model of the bridge and also from the NORBERT model, shown in
Figure 3.8 below. The real part of mobility, rather than the magnitude, has been

shown here because this is directly related to the vibrational power input to the bridge.
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Figure 3.8. Real part and phase of point mobility on the deck of the composite bridge
on the DLR, at the outer rail position, shown versus frequency: ————, from WFE
model; ________ , from thick infinite plate model applied to bridge deck;

_______ , from Bewes equations for mobility of an I-section beam.

Figure 3.8 shows that the point mobility at the outer rail position given by the WFE
model has plate-like characteristics for frequencies greater than about 100Hz: the real
part of mobility is close to frequency-independent and the phase is approximately
zero, when a frequency-average of the mobility is considered. For lower frequencies,
the WFE mobility spectrum shows some influence of the bending waves in the
support beam: the real part of the mobility becomes smaller with increasing frequency
over this range and the phase angle is closer to that expected for a beam (-45°). The
peaks and troughs in the WFE mobility spectrum are due to the modes of the cross-

section, and correspond to the wave cut-on frequencies.

In NORBERT, the thick-plate approximation for the bridge mobility would be used
for the outer rail position in the frequency range above 730Hz, based on the switch
between beam and plate mobility models described in Section 2.1.4. This leads to an
overestimate for the real part of point mobility relative to the frequency-average WFE

result in this range, but only by about 30%.
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For frequencies lower than 730Hz, the bridge would be modelled as a beam in
NORBERT. This approach would lead to an overestimate for the real part of point
mobility relative to the WFE result by a factor of between three and four in the
frequency range up to 100Hz and by a factor of about two for frequencies between
100Hz and 730Hz. This comparison with the WFE mobility shows that it is necessary
to account for the influence of both the steel I-section beam and the concrete deck of
this bridge. This is because the I-section beam and the concrete deck have similar
mobilities. The WFE method is expected to capture the behaviour of the composite
bridge more reliably, because the combined behaviour of the deck and the support

beam can be accounted for.

If an appropriate representation of the rail and track support is included in the WFE
model, the power input to the bridge may be found from the WFE matrices. This is

the subject of Section 3.2.5 below.
3.2.5. Calculation of the power input to the bridge using a WFE model of the
bridge and track

In this section, the track is added to the WFE model of the bridge in order to allow
computation of the power transfer from the track into the bridge structure. The rail
behaves as a beam in the frequency range of interest, with transverse shear and
rotational inertia effects in the upper part of this range. In the absence of Timoshenko
beam elements in WFE, four vertically-orientated plate elements were used to model
the rail: one for the rail head, one for the rail foot and two for the web. The rail on the

DLR is of BS80A rail section, the geometry for which was taken from (Esveld, 1989).

The WFE representation of the rail was checked by finding the point mobility from a
WEFE model of only the rail and comparing it with that given by Timoshenko beam

theory for the properties of the BS80A rail. This is shown in Figure 3.9 below.
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Figure 3.9. Magnitude of point mobility on the BSS0A rail: O, from a WFE model of

only the rail; _______._ , from Timoshenko beam theory.

Figure 3.9 shows that the WFE representation of the rail is suitable for prediction of
the rail response over the frequency of interest. A damping loss factor of 0.02 was

used for the rail in all the modelling work described here.

The rails are directly-fastened to the concrete bridge deck with Pandrol type 4479
baseplates, set at 0.6m intervals along the rail. There is a single rubber pad in these
baseplates. Bewes (2006) used a point accelerance measurement on the unloaded rail
together with the coupled beam model to determine a dynamic stiffness of 84MN/m

and a damping loss factor of 0.17 for these rail fasteners.

A single vertically-orientated plate element was used to represent the track support as
an equivalent continuous resilient layer in the WFE model. The Young’s modulus of
the resilient layer in the vertical direction was specified by considering the stiffness of

a strip of material subject to a distributed load,

_ Lt a2
= .

where L is the length of the strip, ¢ is its thickness and # is its height. In the WFE
model, the thickness and height dimensions were set to 0.1m, such that the stiffness
per unit length of the resilient layer is equal to the Young’s modulus for the plate
element in the vertical direction. For these fasteners with a dynamic stiffness of

84MN/m, set at 0.6m intervals, a vertical Young’s modulus of 140MPa is appropriate.
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Orthotropic material properties were assigned to the plate element used to represent
the resilient layer in the WFE model, in order to minimise the effects of shear waves
along its length. Physically, such shear waves do not exist because the track support
consists of spatially discrete rail fasteners rather than a continuous resilient connection
between the rail and bridge. The Young’s modulus in the axial direction and the shear

modulus were therefore set to very small values.

The power input to the bridge is found from an appropriate model of the rail, track
support structure and the bridge as follows,

;7 .
P,.. . =—<Re Lf(s.z(x)) W bridge ( X )dx (3.3)

bridge 2
2

where sis the stiffness of the track support per unit length, z(x) is the displacement

across the track support and * indicates the complex conjugate. W,,,,-dge (x)is the

velocity of the bridge directly below the track and L is the length of the bridge.

Other power quantities can be found from the WFE model and these provide further
understanding of the behaviour of the combined rail, track support and bridge system.

For excitation at the rail, the power input to the rail is given by,

P =Relr  IF2, (3.4)

in_rail

where Y

rai

, 1s the point mobility at the rail head and F',; is the r.m.s. force input to the

rail. The power dissipated in the resilient layer is found from (by the definition of loss

factor),
1 o
Presiliem = 5 w’]resiliem js ‘Z(.X')‘ dx (35)
R

where 7, ... 15 the damping loss factor of the resilient layer.

Equations (3.3) and (3.5) require that the response of the structure is calculated as a
function of the axial distance along the bridge span, followed by integration along the
axis. Simple trapezoidal integration has been used to evaluate these integrals over the

span length of the bridge.
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The power quantities defined by equations (3.3) to (3.5) are shown below in
Figure 3.10 for excitation at the outer rail of the DLR composite bridge, for a single

input force at the rail of unit amplitude (peak).
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Figure 3.10. Power shown versus frequency, for a single excitation force of unit
amplitude (peak) at the outer rail of the composite bridge on the DLR: — | input
power to the rail;_ _ _ _ _ , input power to the bridge; ________ , power dissipated in

the resilient layer.

At low frequencies, almost all of the power input to the rail is transmitted across the
track support structure to the bridge. The motion of the rail and bridge are well-
coupled in this frequency range and, due to the relative impedances of the bridge and

rail, the power is transmitted to the bridge in preference to the rail.

The power input to the rail is proportional to the point mobility at the rail head for this
idealised excitation case (constant input force for all frequencies) and is therefore
greatest at the resonance frequency, approximately 315Hz in this case. Here, the
bridge and the rail move in anti-phase on the track stiffness. This frequency can
therefore be called the decoupling frequency. At this frequency, the majority of the
power input to the system is dissipated in the resilient layer, due to the large
displacements across it. However, the maximum power input to the bridge is also
found at this frequency, because the force applied to the bridge is dependent on the

displacement across the resilient layer (equation (3.3)).

The rail becomes decoupled from the bridge at high frequencies and the power input

to the bridge is therefore relatively small in this range. This is the effect of the
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vibration isolation provided by the resilient layer, introduced in Section 1.3.5. In this

frequency range, the majority of the power input to the system is dissipated in the rail.

It is of interest to compare the power input to the bridge obtained from the WFE and
NORBERT models. The infinite length coupled beam model in NORBERT has been
used here, rather than the finite length coupled beam model, mainly because this can
be compared directly with the WFE model (also an infinite length model). However,
it is also expected that the finite length coupled beam model in NORBERT would
predict the modes of the structure incorrectly, because it was shown in Sections 3.2.3

and 3.2.4 that this bridge behaves as a beam only for frequencies up to about 20Hz.

Figure 3.11 compares the power input to the bridge obtained from the WFE and
NORBERT models.
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Figure 3.11. Power input to the bridge shown versus frequency, for a single
excitation force of unit amplitude (peak) at the outer rail of the composite bridge on
the DLR:— | from WFE; _______._ , fJrom NORBERT.

The power input to the bridge obtained from the WFE model is lower than that given
by NORBERT in the frequency range up to about 250Hz; by between 4 and 6dB up to
100Hz and by about 3dB in the range between 100Hz and 250Hz. This is consistent
with the comparison shown between the NORBERT and WFE results for the input
point mobility of the bridge in Section 3.2.4.

The peaks in the power input spectra given by the two models occur at slightly
different frequencies: about 295Hz for the NORBERT model and 315Hz for the WFE

model. That is, the coupling between the rail and the bridge occurs differently in the
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two models. Since, it is expected that the representation of the rail and the track
support structure in the two models is the same, this difference can be attributed to the

representation of the bridge structure in the two models.

In the frequency range above 300Hz, the two models give similar results for power
input to the bridge. From the comparison made between the input point mobilities of
the bridge in these two models in Section 3.2.4, it was expected that the power input
to the bridge given by NORBERT would be significantly greater than that from the
WEE model up to about 730Hz. The difference in the coupling between the rail and
the bridge in these models largely offsets the effect of the different bridge mobilities

on the power input calculation.
3.3. VIBRATION OF THE COMPOSITE BRIDGE UNDER-TRAFFIC
3.3.1. Prediction of the bridge velocity during a train pass-by

In this section, the vibration response of the composite bridge during the passage of a
train is calculated using the WFE model. This is compared with the vibration under

traffic found using NORBERT and from the measurements made by Bewes (2006).

The bridge velocity has been calculated from the WFE model in response to a single
unit force acting at the outer rail head, which was then adjusted for the excitation

expected during the passage of a train as follows,

<V?’>=N _F’ <v’> (3.6)

w? rail

where <V’ > is the spatially-averaged mean-square velocity in response to the
passage of the train, F,; is the r.m.s. amplitude of the input force to the rail, N, is the

number of wheels within the span length of the viaduct and < v’ > is the spatially-

averaged mean-square velocity in response to a unit force. The number of wheels on
the bridge can be found by comparing the length of the train and the axle positions to
the span length of the bridge. The force input to the bridge at each wheel-rail
interface was calculated using the appropriate NORBERT modules, described in
Section 1.5.2. The rail mobility obtained from a preliminary run of the WFE model

was used in this calculation.

A different approach has been taken to modelling the B90/B92 rolling stock used on
the DLR in this work than in the previous work by Bewes (2006). These vehicles are
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fitted with Bochum 54 or Bochum 84 resilient wheels. The motion of the bogie and
that of the wheel are expected to decouple at a frequency of about 10Hz. Since bridge
vibration data is not available for such low frequencies, it is sufficient to calculate the
force input to the bridge at each wheel-rail interface using a vehicle model that is

limited to a description of the resilient wheel, shown in Figure 3.12 below.

mouter

ky(1+in,)

Minner

§ s

Figure 3.12. Two degree-of-freedom model for the resilient wheel on B90/B92 rolling

stock.

Mouser 1S the mass of the outer part of the wheel and m;,,,,., is that of the inner part of the
wheel. k,, represents the stiffness of the rubber elements fitted between the inner and
outer parts of the wheel. The damping in these rubber elements has been modelled
using a damping loss factor #,,.. k.represents the stiffness of the linearised Hertzian
contact spring between the wheel and rail, which has been set to 1.3GN/m in this

work.

The parameter values used to model the resilient wheels have been taken from the
specifications for Bochum 54 and Bochum 84 wheels. These are shown in Table 3.2,
together with the other input data to the NORBERT vehicle model appropriate for the
B90/B92 rolling stock on the DLR. Note that the train speed given here is the average
train speed found by Bewes (2006) using the measured acceleration time histories and

knowledge of the axle spacing.
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Stiffness of rubber elements in wheel, k,, (N/m) 300%10°
Damping loss factor for rubber elements in wheel, 7, (N/m) 0.2
Contact stiffness, k. (N/m) 1.3x10°
Mass of inner part of wheel (kg) 350
Mass of outer part of wheel (kg) 120
Length of one vehicle (m) 14
Length of train (m) 56
Number of wheels per vehicle 6
Train speed (km/h) 54

Table 3.2. Input data to the NORBERT vehicle model for the B90/B92 rolling stock
on the DLR.

The wheel roughness spectrum was taken from (Dings and Dittrich, 1996) and
represents an average of measurements made on 37 disc-braked wheels. For the rail,

an ‘average UK roughness’ was used, from (Hardy, 1997).

Bewes (2006) measured the vibration on the bridge deck at four positions where the
deck thickness is 0.39m and four positions where the deck thickness is 0.23m. The

former will be described as the deck and the latter as the side-deck hereafter. These
measurements have been spatially-averaged for both the deck and the side-deck (i.e.
averaged over four transducer positions for the deck and four for the side-deck), and

averaged over the 48 train pass-bys for which measurements were made.

The spatially-averaged velocities found from the measurements are directly
comparable to the output of the simplified SEA calculation in NORBERT. The
assembly of plates proposed by Bewes (2006) as the basis of this calculation has been
adopted in the NORBERT modelling work reported here. This consists of plates for

the deck, side-deck, beam flanges and beam webs.

In order to obtain corresponding results from the WFE model, the velocity at each
node in the cross-section was calculated at regular sampling points away from the

excitation position, in a direction parallel to the axis of the bridge.

<yl >="—— (3.7)

76



2 . . .
where <v; > is the spatially-averaged mean-square velocity along the length of the
structure at node ‘p’ in the cross-section, vf, (xn) is the mean-square velocity at each

sampling position along the length of the bridge for this node and the series x, defines

the sampling positions.

Physically, wave reflection at the ends of the bridge span would be expected to make
a significant contribution to the energy in the bridge span, at least for low frequencies.
Since the WFE model used here is for an infinite structure, it cannot account for wave
reflection at the span ends directly. Two different approaches were considered for the
calculation of the spatially-averaged velocity along the length of the bridge: one based
on the assumption of strong wave reflection at the span ends of the bridge and one
based on weak wave reflection at the span ends. In the former, the sum of the squared
velocities in equation (3.7) was made over a length that includes all points at which
there is a significant response. This sum was then divided by the number of sampling

points in the span length of the bridge, N For the weak reflection case, the sum of

span *
the squared velocities in equation (3.7) was made only over the span length of the

bridge.

The difference between the results of these two calculations is large at low
frequencies, approximately 13dB at a frequency of 50Hz, but small at higher
frequencies. It is expected that the calculation based on the assumption of strong
reflection at the span ends represents a closer approximation to the physical behaviour
of the bridge, due to the large impedance change at the span ends. This approach has
therefore been taken to the calculation of the spatially-averaged velocity along the
length of the bridge at each node in the WFE model, using equation (3.7). These
results were then averaged over all the nodes in each of the major components of the
bridge, such that they represent spatially-averaged velocities for these components
that can be compared with the results of the simplified SEA calculations proposed for

this bridge by Bewes (2006) and with the measurement data.

The spatially-averaged velocity on the deck of the composite bridge is shown below

in Figure 3.13.
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Figure 3.13. Spatially-averaged velocity on the deck of the composite bridge on the
DLR shown versus frequency: —_ , measured average; , measured range;
_____ , WEE result; _ _._._, NORBERT result; ._______, NORBERT result using

power input spectrum from WFE.

Figure 3.13 shows that the bridge deck velocity predicted using the WFE model is in
reasonably close agreement with the measurements for the frequency bands from
50Hz to 630Hz. The peak in the model results at about the 80Hz band is due to the
mode in which the mass of the wheel and the mass of the rail vibrate on the track
stiffness. This peak is not clearly defined in the measurements. It is likely that the
vehicle model is responsible for a significant part of the difference between the results
of the models and the measurement in this range. For the frequency bands above
630Hz, the deck velocity given by the WFE model is 10 to 20dB lower than the

measurement.

One of the NORBERT results shown in Figure 3.13 was obtained using the approach
recommended by Bewes (2006) for modelling composite bridges in NORBERT. The
power input to the bridge was found from the beam representation of the bridge for
frequencies less than 730Hz and from the plate model for higher frequencies. The
bridge velocity was calculated using the simplified SEA scheme in which the deck is
set as the primary network and the beam as the secondary network. This calculation
gives a similar result to the WFE model for much of the frequency range, but it is up
to 4dB lower for the frequency range between 250Hz and 630Hz, and further from the

measurement in this range.
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It was shown in Sections 3.2.4 and 3.2.5 that there is reason to expect significant error
in the NORBERT result for the power input to this composite bridge and it is
expected that the WFE model represents an improved basis for this calculation. In
evaluating the simplified SEA schemes proposed by Bewes for modelling composite
bridges in NORBERT, it is therefore appropriate to use the power input to the bridge
obtained from the WFE analysis as an input to the calculation of the component
velocities in NORBERT. For the same power input to the bridge, Figure 3.13 shows
that the recommended simplified SEA scheme gives lower deck velocities than the
WEE analysis, by 2 to 3dB in the frequency range up to 400Hz and by typically 1.5dB
in the range above 630Hz. The WFE result for deck velocity is in generally closer

agreement with the measurements.

Figure 3.14 shows the spatially-averaged velocity in the side-deck of the composite

bridge.
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Figure 3.14. Spatially-averaged velocity on the side-deck of the composite bridge on

the DLR shown versus frequency: — . , measured average; , measured
range; _ _ _ _ _ , WFE result; _ _ _ _ , NORBERT result; ________ , NORBERT

result using power input spectrum from WFE.

This shows that the side-deck velocity calculated from the WFE model is comparable
to the measurement in the frequency bands from 80Hz to 630Hz. For higher
frequencies, the WFE result is 8 to 13dB lower than the measurement. This

comparison for the side-deck velocity is similar to that for the deck velocity (Figure
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3.13), but the under-prediction of the high frequency response is less severe for the

side-deck than for the main deck.

The NORBERT results for the side-deck velocity, using both the power input to the
bridge calculated in NORBERT and using the power input taken from the WFE
model, are generally higher than the WFE result. Given the comparison shown
between the results of these models for the deck velocity in Figure 3.13 above, where
the WFE result was higher than the NORBERT result, this indicates that the division
of energy between the deck and the side-deck in the simplified SEA calculation in
NORBERT is different to that in the WFE analysis. This is studied further in Section
3.3.2 below.

Bewes (2006) identified uncertainty in the assumed wheel-rail roughness spectrum
and the fastener stiffness as the most likely causes of the difference between the deck
and side-deck velocity spectra predicted using NORBERT and the measurements for
frequencies greater than 630Hz. The use of the WFE method for this structure does

not address either of these issues.
3.3.2. Assessment of the SEA schemes proposed for the composite bridge

In this section, the WFE method has been used to calculate the spatially-averaged
velocities of all the main components of the bridge, including those for which
measurement data is not available. Comparison has been made to the results of the
two different simplified SEA schemes studied by Bewes (2006) for modelling
composite bridges using NORBERT: one in which the deck is primary network (used
in Section 3.3.1 above) and one in which the beam is the primary network. These
have been assessed against measurements for the deck and side-deck only in the
previous work by Bewes (2006). Here they have been compared with the WFE model
for prediction of the spatially-averaged velocity for all the main components of the
bridge. The power input to the bridge obtained from the WFE analysis has been used
as input data to the NORBERT calculations here such that the energy sharing between
the bridge components in the simplified SEA schemes may be compared directly with

that given by the WFE analysis.

Figure 3.15 shows the spatially-averaged velocity spectra for each of the major bridge
components, obtained using the two simplified SEA schemes in NORBERT and the
WEFE model.
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Figure 3.15 shows that the component velocities given by the simplified SEA scheme
in which the beam is the primary network are much higher than those obtained from
the WFE analysis or the alternative SEA-based calculation. The difference between
the two simplified SEA schemes is large, up to 25dB. That with the beam as the

primary network will not be discussed further in this work.

The component velocities given by the simplified SEA scheme in which the deck is
the primary network compare much less closely with those obtained from the WFE
model for the beam flanges and the beam webs than for the deck and side-deck in the
frequency range up to 800Hz. The simplified SEA scheme gives velocities for the
beam flanges and beam webs that are up to 15dB greater than those from the WFE
model in this range. These two models therefore differ in the division of the input
power between the concrete components (deck and side-deck) and the steel
components (beam flanges and beam web). It is expected that this can be modelled
more accurately using the WFE approach than a simplified SEA scheme in which the

concrete and steel components are treated separately.
3.4. CONCLUSIONS

The WFE method has been used to predict the vibration response of this composite
bridge on the DLR and to study the issues regarding the application of NORBERT to
this type of bridge identified by Bewes (2006). The point mobility on the deck of this
bridge was predicted using the WFE model and this shows that the bridge behaves as
a coupled beam and plate over a significant part of the frequency range of interest.
The simple structural models based on the use of either the mobility of the support
beam, that of the deck or a smooth transition between these are therefore not readily

applicable to this bridge.

A representation of the rail and track support was added to the WFE model of the
bridge and used to calculate the power input to the bridge. The NORBERT model
overestimates the power input to this composite bridge in the frequency range up to
about 300Hz, relative to the WFE model. This is due to the higher mobility of the
bridge in NORBERT, which is found from a beam model for the bridge in this range.

It has been shown that the WFE method can be used to predict the vibration response
of the bridge under-traffic, given the excitation force at the rail as an input to the

calculation. This has been found using the wheel-rail interaction model in
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NORBERT. The bridge structure response is in satisfactory agreement with the
measurements for the deck and side-deck made by Bewes (2006) for the frequency
bands between 63Hz and 630Hz. At higher frequencies, the WFE result, like the
NORBERT result, is significantly lower than the measurement. The WFE and
NORBERT results for the deck and side-deck are in quite close agreement for the
frequency bands above 630Hz. Bewes (2006) identified the assumed wheel-rail
roughness and the rail fastener stiffness as the most likely causes of the discrepancy
between NORBERT and the measurements at high frequency, and these apply equally
to the results the WFE modelling.

Comparison of the spatially-averaged velocity for each major component of the bridge
given by the WFE and NORBERT models indicates that the distribution of energy
amongst these components is significantly different in the two models, for frequencies

up to about 800Hz.

The WFE method is expected to be a more reliable means to predict the power input
to this composite bridge and the sharing of this power amongst the major components
of the bridge than NORBERT. This is due to the more detailed representation of the
structure on which the WFE calculations are based, such that fewer simplifying
assumptions are required than in using NORBERT for this type of bridge. It is
therefore recommended that a WFE model should be used for predicting the vibration

of a composite bridge.
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4. THE DYNAMIC BEHAVIOUR OF RAILWAY
BALLAST

4.1. INTRODUCTION
4.1.1. Railway ballast in bridge noise modelling

Most tracks, even on bridges, are ballasted and it is the layer of ballast that forms the
connection between the track and the bridge deck. For these cases, it is therefore
necessary to include a representation of the ballast layer in a model for bridge noise
and vibration. This introduces additional uncertainty to the modelling task, relative to
the case of directly-fastened track, because the properties of the ballast layer are the

least well-defined parameters in the track model, (Jones et al., 2000).

Ballasted track is normally regarded as the low-noise option for the track form on
railway bridges. This is supported by the case described by Stuber (1975). Directly-
fastened track on a steel bridge was replaced by ballasted track, with a reported
12dB(A) reduction in the noise level at distance of 25m from the bridge. However,
the noise survey reported by Hardy (1999) shows that bridges with ballasted track

produce relatively high noise levels in some cases.

There is also disagreement with regard to a physical explanation for any noise
reduction that the use of ballasted track in preference to directly-fastened track may
provide. Stuber (1975) attributed this to the sound absorption properties of the ballast,
Hardy (1999) identified the damping in the ballast as the primary mechanism by
which ballast could reduce bridge noise and Kurzweil (1977) refers to the additional
mass on the deck of a ballasted bridge. There may also be a significant difference in
the dynamic stiffness of these two trackforms, and therefore also in the vibration
isolation effect between the rail and the bridge. However, this discussion remains at a
speculative stage, because there is a lack of reliable measurement data for the stiffness

and damping properties of railway ballast.

Bridges with ballasted track have been studied using NORBERT, (Cobbing and
Jones, 2008). The dynamic stiffness of the ballast was found by treating the ballast
loaded in compression beneath each sleeper as an axially-loaded rod of finite length.

The analytical solution for the response of such a rod was presented by Snowdon
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(1963). The first longitudinal mode is expected in the ballast ‘rod’ within the
frequency range of interest in bridge noise, such that the ballast stiffness would be

frequency-dependent.

While the axially-loaded rod model provides a simple means to predict the dynamic
stiffness of the ballast based on the expected physical behaviour, there is currently a
lack of evidence in the literature to support this approach. Further, when this model
has been used in NORBERT for bridges with ballasted track, the predicted noise and
vibration levels have generally been in a lesser degree of agreement with

measurement data than is normally the case for bridges with directly-fastened track.

The aim of the work presented in this chapter is to validate a simple model that can be
used to describe the behaviour of a ballast layer in NORBERT against appropriate

measurement data.
4.1.2. Previous work on the dynamic properties of ballast

Jones et al. (2000) measured the dynamic transfer stiffness of a ballast layer in a test
section of at-grade railway track using accelerometers mounted on the sleeper and
force transducers on a concrete slab beneath the ballast. Note that it is the transfer
stiffness, the force transmitted to a blocked termination per unit displacement at the
input side (Thompson and Verheij, 1997), which is required to calculate the vibration
transmission from the rail to the bridge. A predictive model for the ballast transfer
stiffness was proposed in which the ballast loaded by each sleeper was treated as a
frustum of material, with sides inclined at an angle of 30 degrees to the vertical (i.e. a
cone angle of 60 degrees). The level of agreement shown between the results of the
model and the measurement work was not conclusive. This was attributed, at least in

part, to the inability to calibrate force transducers buried under the track.

Zhai et al. (2004) studied the direct stiffness of the ballast layer on an in-service
railway by embedding a protected accelerometer in the ballast to measure its
acceleration during a train pass-by. A model for the ballast’s direct stiffness was
proposed, also based on a frustum of loaded ballast beneath each sleeper with sides
inclined at an angle of 30 degrees to the vertical. The model differs from that
proposed by Jones et al. (2000) in that shear stiffness and damping parameters were
used to account for the effects of interaction between frustums of loaded ballast

beneath adjacent sleepers, in cases where this is expected to occur. This interaction
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between adjacent columns of loaded ballast was reported to have an important
vibration-attenuation effect on the dynamic behaviour of the track. The transfer

stiffness of the ballast was not considered in this work.

Al Shaer et al. (2008), Burrow et al. (2007), Chebli et al. (2008) have each used finite
element (FE) models to study ballasted at-grade railway track, inclusive of the
subgrade. However, since the sub-grade is normally less stiff than the ballast, these

studies do not address the need for a model of ballasted track on a railway bridge.

Some models of railway ballast have been developed in which the ballast is modelled
as a group of discrete particles, Discrete Element modelling, rather than assuming it
may be treated as a homogeneous continuum of material, as in the rod, frustum and
FE models. Suiker et al. (1999), Kruse and Popp (2003), Sahin and Indraratna (2006)
and Saussine et al. (2006) present examples of this approach. These models have
been developed to study the deterioration of ballast layers over large numbers of
cycles in service. This is an important concern, due to the enormous cost of

maintaining ballasted track (Saussine et al., 2006).

Suiker et al. (1999) suggest that heterogeneous effects in the ballast become more
important at high frequencies, as the wavelength in the ballast becomes comparable to
the grain size. Saussine et al. (2006) remark on the small depth of the ballast layer
relative to the grain diameter, typically in the ratio of around ten to one, in justifying
the need for this type of model. While only the case of ballast on a relatively soft sub-
grade was considered, these models do provide information on the contact force
network in the ballast and the settlement process. This is relevant to the study of the

dynamic behaviour of ballast and would be very difficult to obtain experimentally.

The numerical model developed by Kruse and Popp (2003) was based on a two-
dimensional representation of the ballast layer, with each grain modelled as a polygon
with between five and eight sides. A random number generator was used to set the
dimensions of these polygons within limits expected of railway ballast. This model
was used to simulate pouring the ballast, laying the sleeper and a series of load cycles
intended to represent the passage of a train. The settlement of the ballast during these
load cycles was found to vary greatly as the simulation was re-run for the same type
of ballast layer. This was attributed to the chaotic process of pouring the ballast, such

that the initial conditions to differ in successive simulations, and the randomly
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selected grain sizes. It was also reported that the network of contact forces between
the ballast grains consists of only a small number of paths through the depth of the
ballast layer. The majority of the grains are therefore not involved in the transmission
of load across the ballast. The increase in stiffness of the ballast due to an applied
static load was attributed, at least in part, to the formation of new contacts between the

grains.

Saussine et al. (2006) also used a two dimensional discrete element model of a layer
of ballast to predict its settlement. The simulation showed how the grains move
relative to each other during the settlement process. A ‘breathing’ phenomenon was
reported over a load cycle, where the grains move to areas of relatively low force
intensity as the external load is reduced. The contact force network was strongest

directly beneath the sleeper in all cases.

In summary, the literature review shows that the case of ballasted track on a relatively
stiff foundation such as on railway bridges has received little attention. There does
not appear to be a proven means for prediction of the dynamic stiffness of railway

ballast, or measurement data that could be used to validate such a model.

The finite element and discrete element approaches to modelling the ballast described
in the literature are not considered suitable for use in NORBERT, due to their
complexity and computational demand. Relatively simple models for the ballast have
therefore been considered here and tested against dynamic transfer stiffness

measurements.
4.2. EXPERIMENT DESIGN
4.2.1. Approach taken to measurement of ballast stiffness

Measurements were made for the dynamic transfer stiffness of the ballast in the
laboratory using a measurement rig, rather than in-situ on a railway bridge. Practical
difficulties were expected in making these measurements on a railway bridge,
particularly with regard to the required level of access. It was assumed in the design
of the measurement rig that the effects of the moving load on ballast in railway track

could be neglected, following Grassie et al. (1982).

Dynamic transfer stiffness measurements have been made for rail fasteners in

previous work, normally by the ‘direct’ method or the ‘indirect’ method. The
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difference between these is the means by which the force transmitted across the
resilient element is determined. In the former, it is measured directly using a force
transducer mounted on the output side of the resilient element under test. This
requires a body on the output side that has a large stiffness and a small mass relative
to that of the resilient element (Morrison et al., 2005). This does not seem practically
achievable for measuring the stiffness of a quantity of ballast that is representative of
that loaded by the sleeper in railway track. The indirect method of transfer stiffness
measurement has therefore been adopted here, in which the transmitted force is found
by measuring the acceleration of the solid body on the output side of the ballast and

deriving the force by applying Newton’s second law.
4.2.2. Simple model of the ballast stiffness test rig

A simple model of a rig that is suitable for making dynamic transfer stiffness

measurements by the indirect method is shown below in Figure 4.1.

LSS

ky Xs
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Ballast § Xp
myp

t

71;%77

Figure 4.1. Simple model of the ballast stiffness test rig.

Figure 4.1 shows a two degree-of-freedom system, with three stiffness elements. k, is
required to isolate the upper mass from the structure used to apply a static preload to
the system, simulating the effect of the wheel-load on the ballast in railway track. k;
provides isolation between the lower mass and the ground. The upper mass, m;, will

be referred to as the ‘sleeper’ hereafter and the lower mass, m,, as the ‘base slab’.

In the experiment, the transfer stiffness of the ballast layer is found from acceleration

measurements made on the sleeper and base slab as follows,

m, x,

FTrans
kBT (a) ) = =
xx - xh xx - xh

4.1
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where F,

Trans

is the force transmitted across the ballast, x, is the displacement of the

sleeper and x, is that of the base slab. The quantity required from the measurement

work is therefore a transfer function between the acceleration of the sleeper and that

of the base slab.

The factors that control the frequency range over which valid stiffness measurements
can be made using this approach can be identified from the system model shown in

iwt

Figure 4.1. For excitation at the sleeper by the harmonic force f e'”, the equations of

motion are given by,

—a)zmsxs +hk,xg +kppx -k x, = f 4.3)

s
2 P
- mbxb + kl'xb + kBbe - kBsz =0 (44)

where k,, is the point stiffness of the ballast and &k, is the transfer stiffness of the

ballast. Writing equations (4.3) and (4.4) in matrix form,

ku +kBP _wzms 'kBT X fs
= 4.5)

2
-k yr k,+kg, -0°m, || X, 0

The response of the system can be found by matrix inversion of equation (4.5). A
practically realisable set of parameter values are shown in Table 4.1, together with a

pre-estimate for the ballast layer stiffness.

m, (kg) | my(kg) | k, MN/m) | k, (MN/m) | kg kyp (MN/m)

100 1000 5 5 100

Table 4.1. Example parameter values for the simple model of the measurement rig.

No damping was included in this model. For these parameter values, the accelerance

of the sleeper and the base slab are shown in Figure 4.2 below.
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Figure 4.2. Amplitude and phase of accelerance, for excitation at the sleeper:

, sleeper; _ _ _ _ _ ,base slab.

Figure 4.2 shows the response expected of a two degree-of-freedom system with
excitation at the upper mass (sleeper): a resonance of both masses at a frequency f;, an
anti-resonance of the sleeper at a frequency f, and a second resonance of both masses
at frequency f,. From the system equations, these frequencies can be estimated as

follows (Thompson et al., 1998).

1 |k +k, 46
S 2z \\m, +m, )

Ik + kg

fa=752 Tm (4.7)

1 |k, ,\m +m
fz %2_ BP s b (48)
T V m.m,

Figure 4.2 shows that the motion of the two masses is well-coupled up to a frequency
of close to f,. Since there is no displacement across the ballast in this part of the

frequency range, its stiffness has no effect on the response of the masses. It was
therefore expected that the lower limit to the frequency range for valid measurements

would be close to f,. In order to make measurements down to low frequencies,
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therefore, the mass of the base slab should be large and the stiffness of the lower

resilient mount small, while retaining stability of the rig.

For frequencies greater than f,, Figure 4.2 shows that the motion of the two masses is

de-coupled. The simple model indicates that valid measurements could be made up to
a frequency at which the response of the base slab becomes very small, due to
vibration isolation between the sleeper and base slab, such that the signal from the
base slab accelerometer would be dominated by noise. Physically, however, it is the
modal response of the base slab and sleeper that needs to be considered in
determining the upper limit to the frequency range for valid measurements. Equation
(4.2) is valid only for the frequency range in which the sleeper and base slab behave

as simple masses.
4.2.3. The main components of the test rig

The measurements would ideally be made on a quantity of ballast that is
representative of that loaded beneath a single monobloc railway sleeper during the
passage of a train. Initial calculations showed that for a rig based on a monobloc
sleeper, the internal modes of the sleeper and any practically-achievable base slab
would occur from frequencies as low as 100Hz. A rig with smaller physical
dimensions is therefore required in order to use equation (4.2) to determine the ballast
stiffness over a range of frequencies, such that its frequency-dependence can be

assessed.

It has been assumed here that the transmission of load between the sleeper and the
ballast takes place in areas local to the two rail seats. This is supported by inspection
of some ballasted track, the work of Kaewunruen and Remennikov (2007) and also
Esveld (1988); it is common for the sleeper to be out of physical contact with the
ballast in the centre-span region. It is therefore sufficient for the measurement rig to
simulate the ballast loaded in compression beneath a single rail seat. On this basis,
the ‘sleeper’ used in this work was a concrete block with a length of 600mm and a
width of 285mm. These dimensions correspond to those for a one-quarter length

section of an F40 monobloc sleeper.

The ballast was poured into an open-topped box, referred to as the ballast box
hereafter. It was intended that the side walls of this box would not be subject to

significant normal load by the ballast, for safety reasons and so that these walls do not
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influence the stiffness measurements. The literature shows two different load
distribution patterns in the ballast: Saussine et al (2006) report that the compressive
load in the ballast is concentrated in the ballast directly beneath the sleeper, while
Jones et al. (2000) and Zhai et al. (2004) assumed that the ballast load spreads
downwards at an angle of 60 degrees (cone angle). The latter is a more conservative
approach and has therefore been taken here in designing the rig. On the basis of this
assumed load distribution and a ballast layer depth of 300mm, the length of the ballast
box was set to 900mm and its width to 600mm. Measurements have been made for a
deeper layer of ballast, but only for relatively low preloads, such that no significant

safety risk was expected.

The length and width of the base slab follow those of the ballast box. The depth of
the base slab was chosen by using a simple ANSYS FE model to predict its first few
natural frequencies. Eight-noded brick elements (ANSYS element SOLID45) were
used to model the base slab. No constraints were applied to this model, such that any

partial constraint applied to the base slab by the ballast has been neglected.

Concrete is the only material that can provide the mass and stiffness required here at
an acceptable cost. Relatively basic equipment was used to produce this concrete in
the laboratory, such that the mixing and composition could not be controlled with the
accuracy expected of commercially-produced concrete. The dynamic Young’s
modulus of this concrete was therefore subject to significant uncertainty, but it was set
to a mid-range value of 30GPa (Kong and Evans, 1987) in the FE model. The density

and Poisson’s ratio were set to 2400kg/m3 and 0.2 respectively.

It is expected that torsional modes of the base slab or the sleeper would not be
strongly-excited in the test rig and these have therefore been ignored in this analysis.
The first internal mode of the base slab of interest here is a vertical bending mode.

The deformed shape of the base slab in this mode is shown in Figure 4.3.
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Figure 4.3. Deformed shape of the base slab in the first vertical bending mode.

The natural frequency of the mode shown in Figure 4.3 is approximately 1.5kHz when
the depth of the base slab is set to 500mm. Together with the length and width
dimensions given above, this represents a reasonably large concrete casting, but one
that could be cast satisfactorily in the laboratory and subsequently moved into
position on the lower resilient mounts. Note that the maximum overall depth of the

base slab and sleeper is 800mm, limited by the ceiling height in the laboratory.

The measurement made using the accelerometer on the sleeper in the fully-assembled
test rig is a point response measurement. An anti-resonance in the sleeper response
must therefore follow the bounce resonance at frequency f; (equation (4.8)). With
regard to the sleeper, it is this feature of its response that may impose the upper limit

for valid stiffness measurements, rather than the first internal resonance.

The acceleration measurement on the base slab represents a transfer response. In this
case, there only will be an anti-resonance between consecutive modes if the modal
constants for these modes have the same sign (Ewins, 2000). The sign of the modal
constant for a given mode is dependent on the relative phase of the motion at the
excitation and response positions. Given that the high-frequency behaviour of the
ballast was not well-understood in advance of the test work, this was difficult to
predict. However, it seemed possible that if this problem occurred at a sufficiently
low frequency to prevent measurements being made over an acceptable frequency
range, it could be treated by moving the accelerometer on the base slab to another

position.

Prediction of the sleeper anti-resonance frequencies requires a more detailed
knowledge of the test rig properties, including the ballast, than was available prior to

building the rig. The expected first bending resonance frequency of the sleeper was

93



therefore used to set the depth of the sleeper block, estimated using the same FE
approach as that for the base slab. For a 300mm deep sleeper, with same material
properties as those used for the base slab analysis, the first bending resonance

frequency of the sleeper was estimated as 2kHz.
4.3. APPARATUS AND PROCEDURE
4.3.1. Description of the test rig

A photograph of the rig used to make the ballast stiffness measurements is shown

below in Figure 4.4.
Hydraulic
press Arch
Sleeper Upper resilient
1solator
Ballast box
Base slab

Lower resilient

isolator

Figure 4.4. Photograph of the ballast stiffness test rig.

The upper resilient isolator shown in Figure 4.4 provides vibration isolation between
the sleeper and the hydraulic press for all but very low frequencies. It consists of
three layers of ballast mat material, specification DFSAH12, supplied by CDM-UK.
A fabricated steel ‘arch’ structure was fitted between this resilient material and the
hydraulic press. This allows access to the upper face of the sleeper, so that the system

can be excited using the impact hammer.

The ballast box consists of a steel frame, which supports four vertical sides formed of
12mm thick plywood panels. A Imm thick steel sheet was welded to the bottom of
the steel frame. This is required to prevent the escape of ballast from beneath the steel

frame of the box under preload.
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Figure 4.4 shows three layers of resilient material beneath the base slab, labelled
lower resilient isolator. This resilient material is also to specification CDM-

DFSAHI12 and provides vibration isolation between the base slab and the foundation.

The Enerpac hydraulic press shown in Figure 4.4 was supported by a steel load frame,
used to apply a static preload to the system. A force gauge was fitted to the pump and
this was used to determine the applied preload in each test. This gauge was checked
by comparison with a calibrated load-cell. The preloads referred to in this work are

subject to a maximum error of +/-2kN.

The reinforced concrete sleeper and base slab have masses of approximately 150kg

and 850kg respectively.
4.3.2. Measurement method

Accelerometers were used to measure the acceleration of the sleeper and base slab at
the centre of their upper faces, such that the transfer function between these can be
found and used to calculate the ballast stiffness from equation (4.2). In order to avoid
damage from the ballast under load, the accelerometer on the base slab was placed
inside an inverted steel cup and the cable was run along the floor of the ballast box
inside a stiff-walled nylon pipe. A third accelerometer was used to measure the
acceleration of the impact hammer, which was converted to a force estimate.
Accelerance spectra for the sleeper and base slab were found from the excitation force

spectrum and used to study the behaviour of the measurement rig.

The equipment used to make these acceleration measurements is shown below in

Table 4.2.

1 Kistler Accelerometer 8712A5M1 accelerometer (on base slab)

Kistler Accelerometer 8702B25M 1 accelerometer (on sleeper)

Kistler Accelerometer 8702B500M1 accelerometer (on impact hammer)

National Instruments SCXI-1531 Accelerometer Input Module
National Instruments SCXI-1600 USB Data Acquisition Module
National Instruments SCXI-1000 Chassis for SCXI-1531 and SCXI-1600

N N U B W

Laptop computer running Pandrol LOGGER software

Table 4.2. Equipment list for acceleration measurements.
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The accelerometers were calibrated by making point accelerance measurements on a

known mass supported on resilient material and inspection of the spectra in the mass-
controlled frequency range. Since it is the transfer function between the acceleration
of the sleeper and the base slab that is required here, the accelerometers to be used on
the base slab and the sleeper were calibrated simultaneously. This was repeated

periodically through the test work.

The impact hammer has a mass of 0.6kg and relatively stiff plastic tip, such that
strong excitation could be delivered to the sleeper for frequencies up to approximately
1.2kHz. A series of ten hammer taps were recorded in each test so that the effects of
noise on the measurement signals could be reduced by averaging. The equipment
described in Table 4.3 was used to record acceleration time-histories and to produce

the required frequency response functions.

The ballast stiffness beneath each sleeper in railway track is a function of the contact
state between the sleeper and the base slab (Wu and Thompson, 2000). Since
significant variability may be expected in this contact state from one sleeper to
another, the ballast stiffness would also be expected to differ between sleepers. Three
sets of measurements were therefore made for each ballast layer configuration tested.

The ballast was dug-out and then re-poured between each of the three measurements.
4.3.3. Test set-up procedure

The ballast was poured into the ballast box to the required depth and the top surface
levelled by hand. The sleeper was then lifted into place on top of the ballast. A
plumb line was used position the sleeper centrally about the axis of the press. The
ballast beneath the sleeper was adjusted until the sleeper was horizontal, by ramming
the ballast with a steel rod. A series of load cycles were used to simulate the initial
ballast settlement process. A load of up to 100kN was applied over nine cycles, with
checks made for the inclination of the sleeper every three cycles. The steel rod was

again used to adjust the ballast until the sleeper was horizontal where necessary.

Point accelerance measurements were made on the upper surface of the sleeper close
to each corner and mid-way along each of the longer sides. These measurements
showed the behaviour of the ballast had become steady from one load application to
another after the nine load cycles. A comparison between the point accelerance at

symmetrically opposed locations about the centre of the sleeper upper face was used
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to assess the uniformity of the support provided by the ballast to the sleeper. Rigid
body ‘rocking’ motion of the sleeper must be avoided, as this would not fully engage
the stiffness of the ballast. In some cases it was necessary to adjust the ballast further

using the steel rod.
4.3.4. Types of ballast layer tested

Various ballast materials are used in different parts of the world, laid to a range of
depths and the state of the grains with respect to wear is expected to change
significantly over the service life of the ballast. Further, some form of liner is laid
between the ballast and the bridge deck in many cases, to protect the deck from
impact damage and to exclude rainwater from the bridge structure. It was therefore
necessary to make measurements on a range of different ballast layers in this work, to
account for the variability in behaviour expected between them. These are

summarised in Table 4.3 below.

Configuration Number | Depth (mm) | Wear State Liner
1 150 New None
2 300 New None
3 450 New None
4 450 New 10mm plywood
5 300 New Geotextile mat
6 300 Old None

Table 4.3. Summary of the different types of ballast layer tested in this work.

The use of a liner between the ballast and the bridge deck is expected to affect the
overall stiffness between the sleeper and bridge deck by two different mechanisms:
the connection of the liner stiffness in series with the ballast stiffness and modification
of the contact state between the ballast and the bridge deck. At present, only two
types of liner are approved for use between a bridge deck and the ballast on UK
mainline track. A sample of one of these liners was supplied by the manufacturer,
Stirling Lloyd plc. This liner normally consists of two parts: a 2mm thick hard resin
layer applied to the bridge deck in the form of a spray and a 6mm thick geotextile mat
laid between the resin layer and the ballast. The hard resin layer is not expected to
have a significant influence on the stiffness between the sleeper and bridge deck.

Measurements were therefore made with only the geotextile mat laid beneath the

97



ballast. For bridges built in the past, it is common to find a layer of wood laid
between the ballast and the bridge deck. Measurements were therefore made for the

case of a 12mm thick plywood panel laid between the sleeper and the ballast.

Table 4.3 shows that two different types of ballast material were used in this test
work, labelled ‘new’ and ‘old’. The new ballast was supplied by Lafarge Aggregates
and is typical of the granite ballast used on railways in central and eastern England.
The old ballast was obtained from a ballast recycling plant in Doncaster. This ballast

had been removed from mainline UK track at the end of its service life. Photographs

of new and old ballast samples are shown in Figure 4.5 below.

Figure 4.5. Photographs of samples of the new ballast, left-hand pane, and old
ballast, right-hand pane.

Figure 4.5 shows that the old ballast grains have edges and corners that are visibly

less angular than those for the new ballast grains, due to wear action.
4.4. RESULTS AND DISCUSSION
4.4.1. Introduction

Some example measurements are considered in sub-sections 4.4.2 to 4.4.4, to
illustrate the frequency range over which the valid results have been obtained, some
important features of the stiffness spectra and the effects of a liner in the system. The

effect of preload on the stiffness of the ballast layer is discussed in sub-section 4.4.5.
4.4.2. Example stiffness spectrum for a 150mm deep ballast layer

The dynamic transfer stiffness of the 150mm deep ballast layer is close to frequency-

independent over a larger frequency range than that of the deeper ballast layers tested
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in this work. It is therefore the most suitable one to study the effects that limit the

valid frequency range for the measurements made on this rig.

Figure 4.6 shows the accelerance spectra of the sleeper and base slab obtained during

a test for a 150mm deep layer of new ballast, under a preload of 60kN.
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Figure 4.6. Magnitude and phase angle of accelerance, for a 150mm deep layer of
new ballast, subject to a preload of 60kN, with no liner present: ____ | sleeper;

_______ , base slab.

For frequencies up to S00Hz, the measured accelerance spectra are similar to those
given by the simple model of the test rig presented in Section 4.2.2. The main
differences between them in this range are due to the effects of damping in the
physical system, which was not included in the simple model. Figure 4.6 shows that
the first resonance of the system occurs at approximately 20Hz, the anti-resonance of

the sleeper at 58Hz and the second resonance of the system at 145Hz.

At frequencies greater than SO0Hz, the modal response of the sleeper and base slab
introduce features to the accelerance spectra that are not present in the results of the
simple model. Figure 4.6 shows anti-resonances of the base slab and the sleeper at
650Hz and 1.1kHz respectively. These features have a significant influence on the
accelerance spectra for frequencies down to approximately SO0Hz for the base slab

and 800Hz for the sleeper. Note that these frequencies are dependent on the stiffness
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of the ballast layer under test. It will be shown in the sections to follow that this

ballast layer has a relatively low stiffness.

An internal resonance of the base slab is shown in the measurements at a frequency of
1.2kHz and of the sleeper at 2.2kHz. The base slab was designed for a first bending
resonance of 1.5kHz, and the sleeper for 2kHz, as discussed in Section 4.2.3 above.
The material properties achieved in casting the base slab were therefore disappointing

relative to those for the sleeper.

The ballast transfer stiffness calculated from the accelerance measurements for this
case using equation (4.2) is shown below in Figure 4.7. A solid line has been used to
show the stiffness measurement in the valid frequency range and a dashed line has

been used outside this frequency range.
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Figure 4.7. Magnitude and phase of ballast transfer stiffness, for a 150mm deep layer
of new ballast, subject to a preload of 60kN, no liner present: __ ,measurement
in valid frequency range; _______ , measurement outside valid frequency range;

* point stiffness given by equation (4.7); O, point stiffness given by equation (4.8)

Figure 4.7 shows a stiffness magnitude of close to 100MN/m for frequencies between
40Hz and 500Hz. The phase angle is steady over much of this frequency range, at
approximately 10 degrees. The estimates made for the direct stiffness of the ballast
using equations (4.7) and (4.8) compare well with the measured transfer stiffness at

the first anti-resonance frequency of the sleeper (f4) and the second resonance
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frequency of the system (f2). The ballast behaves as a damped spring in this

frequency range, such that the direct stiffness and the transfer stiffness should be

equivalent.

The transfer stiffness found using equation (4.2) is not valid for frequencies less than
about 40Hz or greater than S00Hz in this case. This is consistent with the accelerance
spectra shown in Figure 4.6, which shows that the motion of the sleeper and base slab
are well-coupled up to 40Hz and that the base slab only behaves as a simple mass up
to approximately SO0Hz. It is the anti-resonance of the base slab that imposes the
upper limit for valid measurements made using this rig. While this limit is lower than
had been hoped for, it is slightly higher for ballast layers with greater stiffness and it
is sufficient for the frequency-dependence of the ballast stiffness to be studied for the

deeper ballast layers tested here.
4.4.3. Example stiffness spectrum for a 300mm deep ballast layer

Figure 4.8 shows the transfer stiffness results obtained for a 300mm deep layer of new

ballast under a preload of 20kN, with no liner present.
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Figure 4.8. Magnitude and phase of ballast transfer stiffness, for a 300mm deep layer
of new ballast, subject to a preload of 20kN, no liner present: __ ,measurement

in valid frequency range; _______ , measurement outside valid frequency range.
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Figure 4.8 shows a stiffness magnitude of approximately 200MN/m and a phase angle
of typically 10 to 15 degrees in the frequency range between 30Hz and 300Hz. For
higher frequencies, the stiffness magnitude increases significantly with frequency, up
to approximately 460MN/m at SO0Hz. This is accompanied by a change in the phase
angle. It has been shown in Section 4.4.2 above that the sleeper and base slab behave
as simple masses in this frequency range. These features can therefore be attributed to

an internal mode of the ballast layer.
4.4.4. Example stiffness spectra for a 450mm deep ballast layer

Figure 4.9 shows the transfer stiffness results obtained for a 450mm deep layer of new

ballast under a preload of 10kN, with no liner present.
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Figure 4.9. Magnitude and phase of ballast transfer stiffness, for a 450mm deep layer

,measurement

of new ballast, subject to a preload of 10kN, no liner present:

in valid frequency range; _______ , measurement outside valid frequency range.

The measured stiffness has a magnitude of approximately 100MN/m and a phase
angle of 5 to 10 degrees for frequencies between 45Hz and 100Hz. For higher
frequencies, the stiffness is frequency-dependent. There is a broad peak in the
magnitude spectrum at around 450Hz, together with a phase change of close to 180
degrees over the frequency range from 250Hz to 530Hz. These features are more

fully-formed for this deeper ballast layer within the valid frequency range than was
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the case for the 300mm deep layer and show the effects of an internal mode of the
ballast more clearly.

There is also a peak in the stiffness magnitude shown in Figure 4.9 at a frequency of
150Hz, together with a small change in the phase angle. The cause of these features is
not clear.

Figure 4.10 shows the transfer stiffness spectrum, for a 450mm deep ballast layer
under a 10kN preload, with a 12mm thick plywood panel fitted between the sleeper

and the ballast.
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Figure 4.10. Magnitude and phase of ballast transfer stiffness, for a 450mm deep
layer of new ballast, subject to a preload of 10kN, with a 12mm thick plywood panel

fitted between the sleeper and ballast: ,measurement in valid frequency

range; ______._ , measurement outside valid frequency range.

For frequencies up to 70Hz, the measured stiffness magnitude is approximately
35MN/m and its phase is about 10 degrees. Comparison with the stiffness magnitude
shown in this frequency range for the 450mm deep layer of ballast without liner in
Figure 4.9 shows that the effect of the 12mm plywood panel is to reduce the stiffness
by a factor of around 3 in this frequency range. For frequencies between 70Hz and

250Hz, the stiffness spectra obtained with and without the plywood liner are similar in

appearance.
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The stiffness of the 450mm deep ballast layer with the plywood panel is
approximately 100MN/m in the frequency range between 250Hz and the upper
frequency limit for valid measurements (S00Hz). The effect of the liner in this range
is therefore to remove the peak expected due to the internal mode of the 450mm deep

ballast layer, with a consequent reduction in stiffness by up to a factor of 4.

4.4.5. Effect of preload

The results presented in sub-sections 4.4.2 to 4.4.4 show that the magnitude and phase
of the ballast stiffness are quite steady over the frequency range from the lower limit
for valid measurements (around 40Hz) to about 100Hz. The stiffness of the various
ballast layers under a range of preloads has therefore been compared at a frequency of
100Hz. Figures 4.11 1) to iii) show the transfer stiffness of the three different types of
300mm deep ballast layers tested in this work, at a frequency of 100Hz, versus

preload.
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Figure 4.11. Transfer stiffness magnitude for the 300mm deep layers of ballast,
shown versus preload, at a frequency of 100Hz. i) new ballast, ii) new ballast plus
geotextile mat, iii) old ballast: ® , seating 1; O, seating 2; *, seating 3;

_______ , Y2 power law; , 1/3 power law.

Figures 4.11 1) to iii) show that there is reasonable consistency between the results

obtained for the three sleeper seatings in each case.

For the new ballast layer and also for the new ballast plus geotextile mat, the stiffness
magnitude is approximately proportional to the square root of the applied preload, for
preloads up to 60kN. The preload applied to the ballast per sleeper end, during a train

pass-by, normally lies within this range. Jones et al. (2000) reported a similar finding
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for a 300mm deep layer of new ballast. A comparison of Figures 4.11 i) and 4.11 1ii)
shows that the geotextile mat causes a reduction in the stiffness magnitude by
approximately 25%. Thus, of the two stiffnesses in series, the stiffness of the ballast

is greater than that of the geotextile.

Figure 4.11 iii) shows that the preload dependence of the 300mm deep layer of old
ballast appears to follow a one-third power law more closely than a one-half power
law. The former is that expected from Hertzian contact theory, for a pair of elliptical
surfaces. The photographs of the new and old ballast grains presented in Figure 4.5
above show that the old ballast grains are less angular than the new ballast grains.
Contact between the old ballast grains may therefore represent a significantly closer

approximation to the Hertzian contact model than that between new ballast grains.

Comparing Figures 4.11 i) and 4.11 iii) shows that for high preloads, the old ballast is
less stiff than the new ballast. This is contrary to the expectation that the stiffness of
railway ballast would increase significantly through its service life. A primary
mechanism by which this is thought to occur is the production of fine material as the
ballast grains wear, such that voids between the grains become filled. This effect may
not have been properly included in this test work, because fine material would have

been lost as the ballast was removed from the track and during subsequent handling.

It has been shown that the ballast behaves as a damped spring over a significant range
of frequencies. Assuming that the damping in the ballast layer may be modelled using

a loss factor approach, the damping may be quantified as follows,

k" =k (1+in) (4.9)
aan(0) =2 = (4.10)

r

where k" is the complex ballast transfer stiffness, @ is the phase angle and k, is the

real part of the ballast transfer stiffness.

Figure 4.12 shows the damping loss factor estimates made using equation (4.10) for a
300mm deep layer of new ballast, with no liner, with the geotextile liner, and also for

a 300mm deep layer of old ballast, versus preload.
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Figure 4.12. Damping loss factor for a 300mm deep layer of ballast at frequency of
100Hz, shown versus preload. i) 300mm new ballast, ii) 300mm new ballast plus

geotextile mat, iii) 300mm old ballast:® , seating 1;0, seating 2; *, seating 3;

There is significant spread in the damping loss factor values obtained for different
sleeper seatings and also in repeat measurements made for a single sleeper seating.
For the old ballast, this variability is greater for low preloads, but this trend is less
clear for new ballast. The mean damping loss factor for new ballast without a liner is
typically in the range from 0.1 to 0.15, while for new ballast plus geotextile mat and

for old ballast it is typically 0.2. Higher damping in the old ballast may be expected



from the less angular shape of the old grains, such that there would be greater relative
motion between them and therefore more energy dissipation due to friction. The
greater damping loss factor found for new ballast when the geotextile mat is present is
likely to be due to energy dissipation within the mat, rather than due to any effect it

may have on the settlement of and relative motion between the ballast grains.

Now consider the 450mm deep ballast layer, with and without the 12mm thick
plywood liner laid between the sleeper and the ballast. Figure 4.13 shows the

magnitude of the transfer stiffness versus preload.
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Figure 4.13. Transfer stiffness magnitude of the 450mm deep layers of ballast, shown
versus preload, i) no liner, ii) 12mm thick plywood liner: ® , seating 1; O, seating 2,

* seating 3, ______._ , Y2 power law; , 1/3 power law.

Note that it was necessary to take the results at a lower frequency than 100Hz for the
plywood liner case, typically 60Hz, in order to avoid the effects of the first mode of

this relatively soft ballast layer. The variability between the stiffness results obtained
for the 450mm deep layers of ballast is relatively high, such that it is unclear whether

their stiffness varies with preload according to a one-half or a one-third power law.
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Comparing the stiffness results obtained for the 300mm and 450mm deep layers of
new ballast, without liners, they differ by a factor of about two for a given preload
level. The use of the plywood liner brings a further reduction in stiffness, down to
approximately 60MN/m per sleeper end for a preload of 20kN. This is of the same

order as that for a resilient baseplate rail fastener (Thompson, 2009).

Figure 4.14 shows the damping loss factor estimates made for the 450mm deep ballast

layer with no liner present and also with the plywood liner, versus preload.
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Figure 4.14. Damping loss factor for 450mm deep layer of new ballast, shown versus
preload: i) no liner, ii) with 12mm thick plywood liner: ® , seating 1; O, seating 2,

—————o , mean of all measurements.

A damping loss factor of 0.1 is appropriate for the 450mm deep ballast layer over the
range of preloads tested, with and also without the plywood liner. This is

significantly lower than that found for the 300mm deep ballast layers.
4.4.6 Behaviour of the 150mm deep ballast layer

Figure 4.15 shows the magnitude of the transfer stiffness of the 150mm deep layer of

new ballast versus preload.
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Figure 4.15. Transfer stiffness magnitude of the 150mm deep layers of ballast, shown
versus preload, at a frequency of 100Hz: ® , seating 1;O, seating 2, *, seating 3;

—————o , mean of all measurements.

The transfer stiffness of the 150mm deep layer of new ballast was found to show no
significant dependence on the applied preload or frequency in the range over which
valid measurements have been made. The stiffness magnitude was found to lie
between 100MN/m and 160MN/m in all tests, with the variability between the three
sleeper seatings being responsible for almost all of this range. This stiffness is lower
than that of the 300mm deep ballast layer, contrary to expectations based on models
for the ballast as a continuum. It will be shown in Section 4.5 that a continuum model
can be used to predict the stiffness of a 300mm and 450mm deep ballast layer

reasonably well.

In many of the measurements made for the 150mm deep layer of ballast, the phase
angle of the stiffness is not stable with respect to frequency over any significant part
of the frequency range, such that it is not possible to estimate the damping loss factor
using equation (4.10) in these cases. From those measurements that do show a stable
phase angle in the low frequency range, the damping loss factors estimated from the

phase angle are shown as a function of preload in Figure 4.16 below.
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Figure 4.16. Damping loss factor for 150mm deep layer of new ballast, shown versus

preload.

A damping loss factor in the range from 0.15 to 0.2 is appropriate for the 150mm deep

layer of ballast.

It is proposed here that the rather different behaviour found in the test work for the
150mm deep ballast layer may be caused by a relatively restricted ballast settlement
process in this layer. For most of the grains, the major dimension lies between 30mm
and 50mm, but the grains are normally orientated such that the major dimension is
roughly horizontal. It is therefore expected that the 150mm deep layer of ballast
consists of about five adjacent grains in the vertical direction, and a 300mm deep
layer of about 10 grains in the vertical direction. There may therefore be significantly
more freedom for the migration of ballast grains to areas of lower force intensity
during settlement of the ballast, described by Saussine et al. (2006), for the 300mm

deep layer than the 150mm deep layer.

Restricted motion of the grains in the 150mm deep ballast layer would limit the
formation of contacts between grains during the load cycles used to prepare each
ballast layer for test and also as the preload is increased during each test. There would
therefore be fewer chains of loaded grains between the sleeper and the base slab in
this relatively shallow ballast layer, such that its stiffness would be low. Further,
since the formation of new contacts between grains was identified as a major factor in
the dependence of the ballast stiffness on preload (Kruse and Popp, 2003), restricted
grain motion in the 150mm deep layer may also explain the approximately constant

stiffness found over a large range of preloads in these tests.
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4.5. MODELLING THE BALLAST LAYER
4.5.1. Models for the dynamic stiffness of ballast

In using NORBERT for bridges with ballasted track, the dynamic stiffness of the
ballast has been calculated from an axially-loaded rod model for the ballast beneath
the sleeper (Cobbing and Jones, 2008). The cross-section dimensions of this rod were
set to the base dimensions of the sleeper, and its length to the depth of the ballast
layer. An analytical solution for the dynamic transfer stiffness of this rod, with

harmonic excitation at one end, is presented by Snowdon (1963),

3 EAx
B sinich) 4.11)

where /£ is the depth of the ballast layer and x is the wavenumber in the rod, given by,

O
(/)" 4.12)

Jones et al. (2000) and Zhai et al. (2004) took a slightly different approach to

modelling the dynamic stiffness of the ballast, in which it is assumed that the load
from the sleeper spreads downwards at an angle of 60 degrees (cone-angle) in the
ballast. The transfer stiffness was calculated from the following expression for an

axially-loaded circular frustum (Jones et al., 2000),

_ EAnx \/A_,
P sin(ich) /A, @.13)

where A, is the area of the frustum at its upper face and A, that at its lower face. The

k

circular frustum is specified so that the areas of its upper and lower faces are equal to
those of the non-circular frustum expected in the ballast, given the base dimensions of

the sleeper and a load spread angle of 60 degrees.

An alternative to the continuum models has also been considered. It may be supposed
that following initial settlement of the ballast, much of the compliance of the ballast
layer is local to the contact between the ballast and the containing surfaces, rather than
evenly distributed through the ballast. The bulk of the ballast, which lies between the
grains adjacent to the containing surfaces, may therefore be represented as a rigid

mass. The ballast grains in contact with the containing surfaces above and below the
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ballast may be approximated as simple stiffness elements. This will be referred to as

the ‘interface stiffness’ model here and it is shown diagrammatically in Figure 4.17.

‘|

my T
ki1 ? X
1
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k ; ]’”
12
myp
I X3

Figure 4.17. System diagram for the interface stiffness model.

kr; represents the stiffness at the ballast-sleeper interface, kp, represents the stiffness
at the ballast-deck interface. my, represents the mass of the ballast layer, found from
the volume of the prismatic rod of ballast directly beneath the sleeper and the density

of the ballast. mj is the mass of the sleeper and m;, that of the base slab.

For excitation at the sleeper by the harmonic force f,e", the equations of motion for

the system shown in Figure 4.17 are as follows,

-o’mx, +k,,(x,x,)=f, (4.14)
-0 my, x4k, (XX, )+k,,(x,-x, )=0 (4.15)
- myx +k,,(x,-x, )=0 (4.16)
or in matrix form,
[ &, -0%m, %, o ] (o
-k,, k, +k,,-0’m,, -k,

qrp=q0h @D

0 -k, k,-o°m,

L A\ ) \ J

Equation (4.17) can be solved for the unknown displacements, from which the

transfer stiffness is found using the indirect stiffness calculation of equation (4.2).
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Each of the three models contain parameters for which values are not known. Values
for the Young’s modulus to be used in the rod and frustum models, and k;; and &, in
the interface stiffness model, were found by fitting the results of the models to the
measurements for a 450mm deep layer of new ballast, under preloads of 10kN and
20kN. This fitting exercise was limited to low frequencies, where the magnitude and
phase of the ballast stiffness do not vary significantly with frequency. The ability of
the models to predict the frequency-dependence of the ballast stiffness at higher
frequencies was assessed by comparing them to the measurements for the remainder
of the frequency range in which the measurements are valid. That is, the prediction of

the first resonance in the ballast was tested against the measurement data.

The ability of the three models to account for the influence of the depth of the ballast
layer on its dynamic transfer stiffness was then tested by applying them to a 300mm

deep layer of new ballast, for preloads of 10kN and 20kN, using the parameter values
obtained for the 450mm deep layer of ballast. No attempt was made to fit the models

directly to the measurements for the 300mm deep layer of ballast.
4.5.2. Modelling a 450mm deep layer of new ballast

The measured transfer stiffness for a 450mm deep layer of new ballast under a
preload of 10kN is shown below in Figure 4.18, along with calculations from the three

models.

114



-
o
w

—
o
™

Magnitude of kB (MN/m)

180

Phase (deg)
o

-180

Frequency (Hz)
Figure 4.18. Magnitude and phase angle of the ballast transfer stiffness, for a 450mm

deep layer of new ballast subject to a preload of 10kN: — | from
measurements; _ _ _ _ _ , rod model; _______ , frustum model; _._ _ . _ , interface
stiffness model.

Figure 4.18 shows best agreement between the results of the rod model and the
measurements with regard to the main peak in the magnitude spectra, at about 450Hz.
The frustum model predicts this main peak at a significantly lower frequency, but the
maximum value and bandwidth of the peak are similar to those in the measurements.
The interface stiffness model does not predict this peak in the magnitude spectrum
satisfactorily. None of the models predict the feature shown in the measured result
between 100Hz and 250Hz. However, this is a less significant feature than the main

peak at about 450Hz.

The input data used in the rod and frustum models to produce the results shown above

in Figure 4.18 above are given in Table 4.4.

Rod Frustum
Young’s modulus (MN/mz) 220 130
Material damping loss factor 0.45 0.45

Table 4.4. Input data used for the rod and frustum models of a 450mm deep ballast
layer, under a preload of 10kN.
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The frustum model was applied to the 450mm deep ballast layer for a load-spread
angle of 40 degrees (cone angle), rather than the intended 60 degrees, limited by the
dimensions of the base slab. It is clear from Figure 4.18 that the use of a larger load-
spread angle would not improve the level of agreement between the frustum model

and the measurements.

It was found necessary to use a material damping loss factor value in the rod and
frustum models of 0.45 in order to predict the broad peak shown in the measurements
at higher frequencies. This is significantly larger than that found from the phase angle
of the complex stiffness at low frequencies, typically 0.1 for a 450mm deep layer
(Figure 4.14). An explanation for this difference can be found in the literature.
Richards and Lenzi (1984) and Kuhl and Kaiser (1952) describe the damping of
granular materials in terms of a loss factor that is dependent on the amplitude of
vibration. At low frequencies the energy dissipation occurs primarily within the
grains, such that the damping loss factor is relatively small. For the higher amplitudes
in the frequency range where the ballast layer is resonant, the loss factor becomes
significantly larger due to energy dissipation by frictional forces between the grains.
Much of this previous work on damping in granular materials has been done for sand,
but Kuhl and Kaiser (1952) report similar behaviour for a layer of brick rubble. It is
therefore expected that a frequency-dependent damping loss factor is required to
model the dynamic behaviour of ballast over the frequency range of interest in bridge
noise. While the measurement and modelling work described here show significant
changes in the damping level with frequency, they do not provide sufficient data on

which to base a precise development of the damping loss factor with frequency.

The measurements made for a 450mm deep layer of new ballast under a preload of
20kN are compared the results of the models for this case in Figure 4.19 below. Note
that the parameter fitting exercise, in the low frequency range, has been repeated here

for this higher preload case.
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Figure 4.19. Magnitude and phase angle of the ballast transfer stiffness, for a 450mm
deep layer of new ballast subject to a preload of 20kN: — | from

measurements; _ _ _ _ _ , rod model; _______ , frustum model; _ _ _ _ , interface
stiffness model.

The comparison shown between the three models and the measurement work shown
in Figure 4.19 for the 20kN preload case is consistent with that shown previously for
the 10kN preload case. The rod model underestimates the stiffness for the main peak

at about 515Hz, but does predict the frequency of this peak correctly.

The input data used in the rod and frustum models for the 20kN preload case is shown

in Table 4.5 below.
Rod Frustum
Young’s modulus (MN/mz) 285 170
Material damping loss factor 0.45 0.45

Table 4.5. Input data used for the rod and frustum models of a 450mm deep ballast
layer, for preload of 20kN.

4.5.3. Modelling a 300mm deep layer of new ballast

The three models were applied to the 300mm deep layer of new ballast under preloads

of 10kN and 20kN, for the same parameter values found for these preloads by fitting

the models to the measurements made for the 450mm deep ballast layer in Section
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4.5.2 above. Only the depth of the ballast layer was changed in the rod and frustum

models, and the mass of the ballast in the interface stiffness model.

Figures 4.20 1) and ii) compare the results of the three models run for these parameter

values with the measurements made for the 300mm deep ballast layer.

)

3

10
€
> /7\\(“ I
z <
m
X
ks
[0}
E \ ]
2 AN
5 N
= ‘ b )
10° 10°
Frequency (Hz)
180 ‘ =
(@) ’ )
> 1
E 1
$ or —~N————— ! 7
@ DN TN
i ST~ -— r‘,\\,,\
_180 . L L L L \3
0 10
Frequency (Hz)
_10%;
g L
P
=
m
X
©
[0}
B 10 .
= [
(o))
©
= ‘
10° 10°
Frequency (Hz)
. 180
(@)
()
k=2 N S
s O % ——
© SO
& ST - —
& 180 . T

Frequency (Hz)

Figure 4.20. Magnitude and phase angle of the ballast transfer stiffness, for a 300mm

deep layer of new ballast, i) subject to a preload of 10kN, ii) subject to a preload of
-, frustum model;

20kN: —

. , interface stiffness model.

, from measurements; _ _ _ _ _ , rod model;
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Over the frequency range in which the ballast stiffness is close to frequency-
independent, up to about 100Hz, the stiffness magnitude predicted using the rod and
frustum models is in close agreement with the measurements. Since the Young’s
modulus was found by fitting to the measurements for a 450mm deep ballast layer,
this indicates that the dependence of the ballast stiffness on the layer depth is
accounted for satisfactorily in the rod and frustum models. The interface stiffness
model indicates that the ballast stiffness is independent of the layer depth. A
comparison of the stiffness magnitude at low frequencies in Figures 4.18, 4.19 and

4.20 clearly shows that this is not the case.

For frequencies greater than approximately 100Hz the stiffness of the ballast is
frequency-dependent and in this range, Figure 4.20 i) shows that both the rod and
frustum models are in reasonable agreement with the measurements made for the
10kN preload level. However, for the 20kN preload case, Figure 4.20 ii) shows that

the rod model that is in best agreement with the measurements.

On the basis of the comparison shown between the three models and the
measurements made for both the 450mm and 300mm deep ballast layers, it is
concluded here that the rod model is the most suitable of these for predicting the
dynamic transfer stiffness of ballast. Only the rod model has therefore been used in

Section 4.5.4 below.

4.5.4. Modelling a 450mm deep layer of new ballast with a 12mm thick plywood

liner

The case of a ballast layer with a resilient liner is one of practical importance and it
has been studied here using the rod model for the ballast, together with a simple
representation of the liner. The mass of the liner is normally small relative to that of
the ballast, such that a model for this combination can be proposed in which the rod
for the ballast is connected in series with a simple stiffness element that represents the

liner, shown in Figure 4.21 below.
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Figure 4.21. System diagram for the ballast connected in series with a liner.

The overall point and transfer stiffness of the system shown in Figure 4.21 can be

obtained from the matrix equation,

kj; -k, 1 /i 4.18)
-ky kg Ky, || X2 /> '

The displacements at nodes 1 and 2 are found by matrix inversion of equation (4.18)
for a unit force applied to node 1. The two transfer stiffness terms for the ballast are
assumed equal and are obtained from the rod model for the ballast (equation (4.11)).
The point stiffness terms for the ballast are also found from the rod model (Snowdon,
1963),

b o—k = EAx
=722 ran(ich) (4.19)

The overall point stiffness for the system at node 1 is then given by,

point = i (4.20)
X
and the overall transfer stiffness between nodes 1 and 3 is given by,
ky .Xx
Kyans = L Kty “.21)
x] x]

The measurements made for a 12mm thick plywood liner and a 450mm deep ballast
layer, under a preload of 10kN, have been used to test this modelling approach.
Appropriate input parameters to the rod model for new ballast and a preload of 10kN

are presented in Table 4.4, but the stiffness of the plywood liner is unknown. The
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model has therefore been run for three different values of liner stiffness, shown in

Figure 4.22 together with the measurements for this case.
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Figure 4.22. Magnitude and phase angle of the ballast transfer stiffness, for a 450mm
deep layer of new ballast with 12mm thick plywood liner, subject to a preload of
10kN: | from measurements; _ _ _ _ _ , proposed model with 5S0MN/m
stiffness for liner; _______ , proposed model with 100MN/m stiffness for liner;
————— , proposed model with 500MN/m stiffness for liner.

At low frequencies, the measurements show that the stiffness magnitude for the
450mm deep ballast layer with the plywood liner is typically of a factor of two
smaller than that for the ballast layer alone (see Figure 4.18). The feature shown in
the frequency range from 100Hz to 200Hz is very similar to that found for the ballast
layer tested without a liner. For frequencies greater than about 250Hz up to the
maximum measurement frequency (about 500Hz in this case), the liner has the effect
of flattening the stiffness magnitude spectrum, which remains between 8SMN/m and
130MN/m over this range of frequencies. The main peak in the measured stiffness
magnitude in this frequency range is not found when the ballast is combined with the
plywood liner. However, the phase angle measured for the combined ballast and liner

case is quite similar to that for the ballast layer tested without a liner.

The stiffness magnitude spectrum obtained from the proposed model with a stiffness
of SOMN/m representing the liner is in agreement with the measurements for

frequencies up to about 100Hz. The model does predict a peak in the transfer
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stiffness of the combined ballast and liner in the frequency range above 200Hz, due to
the internal mode of the ballast layer, which is not supported by the measurement
data. However, the model run with a stiffness of SOMN/m for the liner remains in
reasonable agreement with the measurements up to a frequency of about 350Hz for
the stiffness magnitude and over almost all of the measured frequency range for the

phase angle.

In summary, the comparison made between the predicted and measured stiffness for
the plywood liner and 450mm deep ballast layer shows that the proposed model is
satisfactory for frequencies up to about 350Hz, but not for higher frequencies. Since
the rod model has been shown to predict the behaviour of this type of ballast layer
adequately when it is tested alone and that of the liner is expected be quite simple, this
implies that ballast behaves differently when the liner is present. It seems likely that
the interaction between the ballast and the sleeper could be substantially modified by

the presence of a relatively soft liner.
4.5.5. Contact area between the ballast and the 12mm thick plywood liner

The stiffness of the plywood liner found from Figure 4.22 and the material properties
of the liner can be used to estimate the total contact area between the ballast and the

liner. The stiffness of the liner under a distributed load is given by,

E liner Acontact
Kliner = (422)
h
where A is the total contact area between the ballast and the liner, E,  is the

contact iner

Young’s modulus of the liner and 4 is its thickness (12mm). If 12GPa is taken as an
appropriate Young’s modulus for the liner (Benham and Crawford, 1987) and the

liner stiffness as SOMN/m, then equation equation (4.20) indicates that the total

contact area is approximately 50mm?.

A second estimate for the total contact area between the ballast and an adjacent body
was made by applying inspecting the witness marks made on the liner during a single
test under preloads of up to 30kN. Thirty individual marks were made on the liner
and their total area was approximately 500mm®. While this is considerably higher
than the estimate obtained from equation (4.22), it is expected that a significant part of

the marked area would have been produced during the initial cycles where the
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majority of the ballast settlement occurs. The effective contact area during the
measurements may be considerably smaller. It is therefore concluded here that the
contact area between the ballast and the plywood liner is of the order of 100mm? and
that only a small fraction of the number of ballast grains that lie within the base area
of the sleeper may be in physical contact with it. Further, it is expected that the
contact area between the ballast and concrete bodies such as a sleeper or bridge deck

would be smaller than that between the ballast and the relatively soft plywood liner.
4.6. CONCLUSIONS

The work presented in this chapter describes a study of the dynamic behaviour of
railway ballast through a programme of measurements and the use of simple models.
It was found that one of these simple models is a suitable means of predicting the
dynamic transfer stiffness of a 300mm or 450mm deep layer of ballast for frequencies
up to approximately 600Hz. This model is based on longitudinal wave motion in a
prismatic rod of ballast loaded in compression by the sleeper. There appears to be a
reasonable basis for confidence in using this model for frequencies outside the range
over which valid measurements have been made in this work. It is expected that this
continuum approach can be used to predict the behaviour of the granular ballast
material up to the frequency at which the wavelength in the ballast becomes of the
same order as the grain size. Based on the properties used for modelling the ballast in
this work, this implies that the rod model can be used up to a frequency of at least

2kHz.

NORBERT contains an option for modelling ballasted track using the rod model. The
work reported here addresses the need for measurements to support the use of this
model for ballasted track. However, the parameter values found by fitting the rod
model to the measurements are different from those that have been used in previous

use of NORBERT for bridges with ballasted track.

It is recommended here that a damping loss factor is used in the rod model to account
for damping in the ballast. It was found that an appropriate damping loss factor for

the ballast varies significantly over the frequency range for which measurements have
been made. It is thought that the damping in the ballast is dependent on the amplitude

of vibration in the ballast, due to energy dissipation by friction between the grains.
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The measurement and modelling work described here does not provide sufficient data
on which to base a precise development of the damping loss factor with frequency. It
is therefore recommended that a simple two-stage approach is taken to modelling
damping in railway ballast. For the frequency range in which the ballast can be
described as a simple stiffness beneath the sleeper, with no internal mode effects, a
relatively small damping loss factor should be used of about 0.1 to 0.2. For higher
frequencies, where internal mode effects of the ballast layer are significant, a damping
loss factor of about 0.45 should be used. The output of the rod model for a ballast
layer of a given specification can be used to select an appropriate frequency at which
to change from the low frequency damping model to the high frequency damping

model.

Table 4.7 presents a summary of the data obtained in this work for 300mm and

450mm deep layers of new ballast, without liners, under preloads of 10 to 30kN.

Preload kg for 300mm kg for 450mm Eroa
(kN) Ballast (MN/m) Ballast (MN/m) (MN/mZ)
10 170 80 220
20 220 130 285
30 260 140 380

Table 4.7. Summary of the data obtained for the 300mm and 450mm deep layers of
new ballast without liners, under preloads of 10kN, 20kN and 30kN.

The Young’s modulus values presented in Table 4.7 can be used in the rod model
(equation 4.11) to estimate the transfer stiffness of these types of ballast layer as a
function of frequency. Appropriate values for the cross-sectional area and the density

of the ballast rod beneath each rail seat are 0.17m” and 1500kg/m3 respectively.

The measurements made for ballast at the end of its service life are thought to be
unrepresentative of that in railway track, due to the loss of fine material when the
ballast was removed from the track and during subsequent handling. This case has

therefore been omitted from Table 4.7.

The 150mm ballast layer was found to behave quite differently from the deeper
layers, such that the rod model does not apply to this case. However, such a shallow

layer of ballast is not normally used in railway track.
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The effect of two different liner materials on the transfer stiffness of the ballast layer
was considered in this work. The effect of the goetextile mat was found to be quite
small, but the 12mm thick plywood liner had a significant influence. It was shown
that the dynamic transfer stiffness of a ballast layer with a liner could be modelled
reasonably well as a series combination of the rod for the ballast and an appropriate

stiffness element for the liner up to a frequency of about 350Hz.

Table 4.8 presents a summary of the data obtained for the two different types of liner

tested in this work, under preloads of 10 to 30kN.

Preload Kiiner for Geotextile Kjiner for 12mm Plywood
(kN) Mat (MN/m) Panel (MN/m)
10 800 50
20 800 60
30 800 70

Table 4.8. Summary of the data obtained for the two different types of liner tested in
this work, under preloads of 10kN, 20kN and 30kN.

While the work presented in this chapter addresses the need for a validated means to
model ballasted track on railway bridges, it does not explain the lower noise levels
reported in some previous work for bridges with ballasted track than for bridges with
direct fasteners. The stiffness measured for the ballast layers tested in this work can
be achieved using direct fasteners. There may be some benefit with regard to bridge
noise from the higher damping in the ballast, in some parts of the frequency range, but
the effect of this is expected to be relatively small. It is likely therefore that the
dynamic loading of the deck plates by a layer of ballast provides at least some of the

measured effect.
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5. THE DYNAMIC STIFFNESS OF ATWO-STAGE
RESILIENT BASEPLATE

5.1. INTRODUCTION

For rail fasteners of the two-stage resilient baseplate type, those in which there is a
resilient pad between the plate and the rail and also between the plate and the bridge,
internal modes of the fastener may be expected in the frequency range of interest in
bridge noise. This type of rail fastener will be referred to as a ‘resilient baseplate’
hereafter. As for the case of ballasted track considered in Chapter 4, an understanding
of the modes in resilient baseplate track is required in order to predict the vibration
transmission from the rail to the bridge. This need is addressed in this chapter
through an experimental and modelling study of the vibration response of a resilient
baseplate.

An example of a commercial resilient baseplate, Pandrol VIPA-SP, is shown in Figure
5.1 below.

Toe Insulator
Clip

Top Plate

Bottom Plate

Studded Rubber

Baseplate Pad
Studded Rubber

Rail Pad

Figure 5.1. Pictorial view of a Pandrol VIPA-SP resilient baseplate (drawing

courtesy of Pandrol , used with permission).

The bottom plate shown in Figure 5.1 is fixed to the bridge deck with grout, such that
it is not free to vibrate. The top plate, however, is resiliently mounted between the
railpad and the baseplate pad. Therefore, a mode may be expected in which the mass
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of the top plate vibrates on the combined stiffness of these pads. An option is
available in NORBERT to model the track as a pair of resilient layers with a
distributed layer of mass between them, such that the effects of this internal mode of
the baseplate assembly are accounted for. Here, this model of a resilient baseplate is

referred to as the ‘spring-mass-spring’ model.

In some higher frequency range, modes are expected in which the top plate performs
bending motion. It is not known whether or not these modes have a significant effect
on the behaviour of the baseplate within the frequency range of interest for bridge

noise, but this will be investigated here.

It is the vertical transfer stiffness of the resilient baseplate that is of primary interest
here, because this is required in order to calculate the vibration transmission from the
rail to the bridge. Reliable measurements for the transfer stiffness of a resilient
baseplate assembly may be difficult to achieve. A purpose-built measurement rig
would be required, and due to the time and cost involved in producing such a rig, it
was decided that this should not be attempted in this project. An alternative approach

has therefore been taken to determine the transfer stiffness of resilient baseplates.

Measurements have been made of the vibration response of the component parts that
are expected to control that of the complete assembly: the railpad, the baseplate pad
and the top plate. These measurements have been used to develop simple predictive
models for the response of the assembly. Finally, these models have been evaluated
against measurements of the direct stiffness, rather than the transfer stiffness, of a
resilient baseplate assembly. Measurements of the direct stiffness are more straight-
forward than for the transfer stiffness, because the need to measure the force or

displacement at the output side of the system is avoided.

A Pandrol VIPA-SP baseplate, the “offset shoulder’ variant, is the subject of the
experimental and modelling work described here. However, there are other baseplates
of broadly similar design and it is intended that the outcomes of this work should be

applicable to this class of rail fastener in general.
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5.2. MEASUREMENT OF THE DYNAMIC TRANSFER STIFFNESS OF A
RAILPAD AND A BASEPLATE PAD

5.2.1. Measurement rig and procedure

A knowledge of the stiffness of the railpad and baseplate pad under the load
conditions found in railway track is required in order to create a representative model
of the resilient baseplate assembly. Transfer stiffness measurements were therefore
made for a railpad and a baseplate pad taken from a VIPA-SP baseplate assembly,
using a similar method to that described in Chapter 4 for the ballast stiffness
measurements. Both of these pads are studded natural rubber pads with an installed
overall thickness of approximately 12mm.

It was necessary to use a pair of steel blocks for the pad stiffness measurements,
rather than the concrete blocks used for the ballast measurements. The concrete
blocks were either not sufficiently flat or too rough for the pads to be compressed
uniformly over their working area. The two steel blocks used for the upper and lower
masses in this work are each rectangular with dimensions of 490 x 240 x 100mm and
a mass of 90kg. The first internal resonance frequency of these blocks is
approximately 2.2kHz. Their dimensions are not ideal; the frequency range of
measurement could be increased by using deeper blocks. However, the steel blocks
used in this work were available at no cost and are adequate for measurement of the
pad stiffness over a significant part of the frequency range of interest in bridge noise.
A photograph of the test rig used to measure the dynamic transfer stiffness of the

railpad and baseplate pad is shown in Figure 5.2.
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Figure 5.2. Photograph of the rig used to measure the dynamic transfer stiffness of
the railpad and baseplate pad.

Figure 5.2 shows the two steel blocks mounted on soft isolation mounts, positioned
beneath a hydraulic press that was used apply a preload to the system. Two Kistler
8702B25M1 accelerometers were used to measure the acceleration of the steel blocks:
one mounted at the centre of the top face of the upper block and one mounted at the
centre of the underside of the lower block. Two railpads were tested together, placed
side-by-side between the two blocks. This was helpful with regard to the stability of
the rig. A single baseplate pad was tested, because it was not possible to fit two of
these larger pads between the blocks. The system was excited by striking the upper
block close to the centre of its top face with a 0.6kg impact hammer. The dynamic
transfer stiffness spectrum was found from the acceleration measurements using the
same calculation as described in Chapter 4 for the ballast stiffness measurements
(equation (4.2)).

5.2.2. Results

Results are presented here are for the expected preloads on each pad during a train
pass-by on the Docklands Light Railway (DLR), for B90/B92 rolling stock. The case
is relevant to the modelling work presented in the following chapter for the concrete
box-section viaduct. The wheel load for the B90/B92 rolling stock with passengers
on-board is approximately 33kN. The railpad is subject to an additional load from the
rail clips, nominally 20kN. Assuming that about half of the train wheel load is
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transmitted to the baseplate (Carlone and Thompson, 2001), due to the bending
stiffness of the rail, the preload on the baseplate pad is approximately 15kN and that
on the railpad is approximately 35kN.

The transfer stiffness spectrum obtained from the acceleration measurements made on
a single baseplate pad under a preload of 15kN is shown below in Figure 5.3. The
frequency range over which the results are valid is indicated by the use of a solid

rather than a broken line.
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Figure 5.3. Magnitude and phase of the transfer stiffness of a single Pandrol 11247
baseplate pad shown versus frequency, for a preload of 15kN.

Figure 5.3 shows that the stiffness magnitude ranges from approximately 70MN/m at
a frequency of 140Hz to 90MN/m at a frequency of 615Hz. The phase angle is stable
for frequencies between 120Hz and 370Hz, at approximately 10 degrees. This
corresponds to a damping loss factor of around 0.17. At high frequencies, both the
magnitude and phase spectra show the effects of noise on the accelerometer signal
from the lower steel block. This is due to the vibration isolation effect provided by

the resilient pads between the two blocks.

The stiffness spectrum obtained from the acceleration measurements made for two

railpads under a total preload of 70kN is shown below in Figure 5.4.
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Figure 5.4. Magnitude and phase of the transfer stiffness of two Pandrol 11246

railpads combined in parallel, shown versus frequency, for a preload of 70kN.

The total stiffness magnitude for the two railpads ranges from approximately
280MN/m at a frequency of 140Hz to 450MN/m at 700Hz. The phase angle is

approximately 10 degrees for much of this frequency range, corresponding to a loss
factor of 0.17.

For the purposes of the modelling work presented in the sections to follow, the
frequency-dependence of the railpad and baseplate pad stiffness has been ignored.

The assumed values, taken from these measurements, are shown below in Table 5.1.

Railpad | Baseplate Pad
Stiffness (MN/m) 160 80

Damping Loss Factor 0.17 0.17

Table 5.1. Stiffness and damping loss factor values used in the modelling work for the
railpad and baseplate pad, for the loaded track condition on DLR.

5.3. THE MODES OF VIBRATION FOR A RESILENT BASEPLATE

An ANSYS FE model was used to study the modes of vibration of the Pandrol VIPA-
SP resilient baseplate. The top plate has complex three-dimensional geometry,
particularly around the rail clip positions (see Figure 5.1). However, for the

prediction of the first few modes, it has been assumed here that this can be neglected.
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Shell elements with out-of-plane displacements, ANSYS element type SHELL93,
have been used to create a flat plate with the plan-view geometry of the top plate. The
plate was given a thickness of 20mm, which is appropriate for much of the physical

component, and the material properties for cast iron were used, as shown in Table 5.2

below.
Property Value
Young's Modulus 160GPa
Density 7300kg/m®
Poisson's ratio 0.3

Table 5.2. Material properties for the cast iron top plate.

A free vibration response analysis was run for the shell element representation of the
top plate only, with no constraints applied to it. This case is equivalent to that of the
top plate laid on a soft support, for all but very low frequencies. Measurements have
been made for the point and transfer accelerance of the top plate in this support
condition, which show two resonances in the frequency range of interest, one at
685Hz and one at 1500Hz. The resonance frequencies found in the measurements
were used to check that the FE model of the top plate captures its dynamic behaviour

adequately, despite the omission of some geometric detail.

The mode shape plots obtained from the FE model for the first two modes of the
unconstrained top plate are shown together in Figure 5.5 below.

i) i)

Figure 5.5. Mode shape plots obtained from the ANSYS model for the first two modes
of the unconstrained top plate: i) vertical bending mode with a natural frequency of

685Hz, ii) torsional mode with a natural frequency of 1400Hz.

Figure 5.5 i) shows a vertical bending mode of the top plate, with a natural frequency
of 685Hz that is in close agreement with the first resonance frequency found in the
measurements made for a top plate laid on a soft support. Figure 5.5 ii) shows a
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torsional mode, with a natural frequency of 1400Hz that is in satisfactory agreement

with the second resonance frequency found in the measurements.

The railpad and the baseplate pad were next added to the FE model of the top plate.
Both pads have a working area of approximately 210mm by 120mm, neglecting the
voids between the studs. The areas of the baspelate pad that lie beneath the rail clips
when the baseplate is assembled have also been ingnored here. The stiffness of these
parts of the baseplate pad is not engaged unless there is significant rail-roll. Nine
equally-spaced linear spring elements, ANSYS element type COMBIN14, were used

to represent each of the pads. There was no damping in these elements.

A point mass of 5kg was added to the upper node of the central element in the spring
array used to represent the railpad. This allows straight-forward comparison of the FE
results to the experimental work described in Section 5.5. The upper nodes in this
array of spring elements were constrained to move together in the vertical direction,
such that they are all effectively coupled to the point mass. The nodes at the lower
end of the spring elements used to represent the baseplate pad were constrained in all

degrees-of-freedom, so that the fastener has a blocked termination.

The ANSY'S FE model of the baseplate assembly is shown below in Figure 5.6.

Figure 5.6. ANSYS FE model of the baseplate assembly.

A free response analysis was run for the model shown in Figure 5.6. Over the
frequency range of interest here, there are three modes of the baseplate assembly that
are important in the response of the baseplate to vertical excitation at the rail. These

are shown in Figure 5.7.
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i)

Figure 5.7. Mode shape plots for three important modes of the resilient baseplate: i)
mode with a natural frequency of 350Hz, ii) mode with a natural frequency of 650Hz,
iii) mode with a natural frequency of 1.2kHz.

Figure 5.7 i) shows a mode in which the combined mass of the rail and baseplate
move vertically on the stiffness of the baseplate pad. There is only slight deformation
of the top plate in this mode and the natural frequency can be predicted well using a
lumped mass approach. In the mode shown in Figure 5.7 ii), the outer parts of the top
plate move in large-amplitude motion relative to those in the central part of the top
plate. This mode will be referred to as the vertical-flapping mode hereafter. The
mode shown in Figure 5.7 iii) is the bending mode of the top plate. This mode occurs
at a higher frequency when the top plate is combined with the railpad and baseplate
pad than when it is modelled alone (Figure 5.5 1)), due to the additional stiffness of

the pads.

The modes shown in Figure 5.7 indicate that it is necessary to include the bending
motion in the top plate in order to model the dynamic stiffness of the resilient
baseplate over the frequency range of interest in bridge noise. Further, it can be seen
that the bending motion takes place almost entirely along the length of the top plate.
That is the top plate performs beam-bending motion, rather than plate-bending motion
in its first internal mode. This finding has been used to develop relatively simple
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models of the baseplate that are appropriate for use in the prediction of bridge noise

and vibration.
5.4. SIMPLE MODELS FOR A RESILENT BASEPLATE
5.4.1. Simple FE Model

The modes of vibration presented in Section 5.3 indicate that it is sufficient to use
beam finite elements to represent the top plate in a model for the resilient baseplate,
within the frequency range of interest in bridge noise. A relatively simple FE model
has been programmed in MATLAB using six Euler beam elements (Petyt, 1990) to
represent the top plate and six linear spring elements to represent the pads. It is
possible to represent the Pandrol VIPA-SP baseplate adequately using an even smaller
number of elements, however, but this model is used as some flexibility is required so

that it can be adapted to other resilient baseplate designs.

Figure 5.8 shows the simple FE model of the resilient baseplate schematically.

8

s £

Figure 5.8. Simple FE model of the resilient baseplate and section of rail: O , nodes.

Each of the nodes shown in Figure 5.8, with the exception of node 8, has two degrees-
of-freedom, one for vertical displacement and one for rotation. A point mass element
may be been added to node 8, to represent the mass of a section of rail loaded into the
fastener (see Section 5.5). Only vertical motion is allowed at node 8. The following
dimensions were used to represent the top plate in the VIPA-SP baseplate as a beam,
together with the material properties of Table 5.2.

Parameter Value | Units
Length 360 mm
Width 200 mm
Height 20 mm

Table 5.3. Dimensions of the beam used to represent the top plate in the simple FE
model of the VIPA-SP baseplate.
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A free vibration response analysis for the beam defined in Table 5.3 (without springs)
shows a first natural frequency in bending that is in close agreement with that found
from the measurements made on the top plate laid on a resilient support and the

analysis presented in Section 5.3 above.

A damping loss factor of 0.1 was assigned to the beam, required in order to obtain
results that are in satisfactory agreement with those from the measurements made for
the baseplate assembly (Section 5.5). This accounts for the energy dissipated at joints
and areas where there is relative motion between the component parts in the assembly.

The springs also have damping loss factors of 0.17 as listed in Table 5.1.

A forced response analysis was obtained from the simple FE model for harmonic
excitation of unit amplitude at node 8. The overall transfer stiffness of the system is

given by,

kT == (51)

where kgp, is the transfer stiffness of each element used to represent the baseplate pad,
x7pn 1S the displacement at the upper node of these elements and xyg is the
displacement at node 8.

The direct stiffness at node 8 is given by,
kD_N8 = (5.2)

where F'is the force applied to node 8.

The transfer stiffness and the direct stiffness of the baseplate given by equations (5.1)

and (5.2), for excitation but no mass at node 8, are shown in Figure 5.9 below.
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Figure 5.9. Magnitude and phase of the baseplate stiffness obtained from the simple

FE model, for excitation but no mass at node 8, shown versus frequency:

, direct stiffness; - ______ , transfer stiffness.

In the frequency range up to about 200Hz the magnitude of the direct and transfer
stiffness are both approximately 53MN/m, that expected of the railpad stiffness
connected in series with the baseplate pad stiffness. There is a minimum in the
magnitude of the direct stiffness at about 360Hz, due to the first mode of the system
(see Figure 5.7 1)) and also at about 850Hz due to the second mode of the system (see
Figure 5.7 ii)). The magnitude spectra for the direct and transfer stiffness show peaks
at about 480Hz and 1150Hz, these are due to the anti-resonances in the response at
node 8.

The minimum in the transfer stiffness magnitude at a frequency of about 560Hz
occurs due to cancellation between the forces applied by the three springs (in the
lower set) to the foundation. The outer two springs are compressed when the centre
spring is stretched, and visa versa. The summation of the spring forces made in the
numerator of equation (5.1) therefore has a minimum value at this frequency. This
behaviour is expected physically, but will take place continuously over the area of the
baseplate pad rather than from the summation of the just three spring forces.
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5.4.2. Spring-mass-spring model

The approach used to model resilient baseplate track in NORBERT has also been
considered here. This is shown for the case of a single baseplate and section of rail in

Figure 5.10 below.

Figure 5.10. Spring-mass-spring model of the resilient baseplate and rail section.

In this figure, m, is the mass of the rail section, &, the stiffness of the railpad, m,, the
mass of the top plate and 4, the stiffness of the baseplate pad. The equations of
motion for this system can be derived for an analytical solution. Alternatively, the
simple FE model described above in Section 5.4.1 can be made to behave as a spring-
mass-spring system, by setting the Young’s modulus of the top plate to a very large
value, such that the top plate behaves as a lumped mass over the frequency range of

interest. Note that the mass of the top plate is approximately 11kg.

The transfer stiffness and the direct stiffness of this system, with m, set to zero, are

shown in Figure 5.11 below.
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Figure 5.11. Magnitude and phase of the baseplate stiffness obtained from the

spring-mass-spring model, shown versus frequency: , direct stiffness;

_________ transfer stiffness.

The stiffness spectra given by the spring-mass-spring model are of the expected form:
a single minimum in the magnitude of the direct stiffness due to the first mode of the
system and a peak in the magnitude of both the direct and transfer stiffness due to the
first anti-resonance of the system. Note that the minimum in the direct stiffness
magnitude associated with the first mode occurs at a different frequency for the
spring-mass-spring system than for the simple FE model. This is due to the effect of
bending motion in the top plate on the engagement of the stiffness of the baseplate

pad.
5.5. THE DIRECT STIFFNESS OF A RESILIENT BASEPLATE
5.5.1. Direct stiffness measurements on a baseplate assembly

As described in Section 5.1 above, direct stiffness measurements have been used as a
basis for an assessment of the proposed models for the baseplate assembly, due to the
difficulties expected in making transfer stiffness measurements for such a baseplate

assembly. It is assumed here that a model shown to predict the direct stiffness of the

baseplate is also a reliable means to determine its transfer stiffness.

The measurements were made on a complete Pandrol VIPA-SP assembly with a

250mm length section of aluminium rail loaded into the clips. An aluminium rail was
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used in order to minimise the effects of the inertia forces associated with the mass of
the rail on the point response at the rail head for high frequencies. The aluminium rail
section has a mass of 5kg and it is known to behave as a lumped mass up to a

frequency of at least 1.2kHz.

The resilient baseplate, rail section and the arrangement used to apply a preload to the

system is shown in Figure 5.12 below.

Figure 5.12. Photograph of the Pandrol VIPA-SP baseplate, rail section and the

arrangement used to apply a preload to the system.

Figure 5.12 shows a clamping arrangement that consists of four threaded rods, nuts to
allow adjustment of the preload and two cross-beams that transmit the load to a pair of
load cells. The load cells were mounted on a 20mm thickness layer of resilient
material, which provides vibration isolation between the clamping arrangement and
the system under test. The upper surface of the load cells has a domed shape, which
promotes vertical loading of the rail. The load cells were connected to appropriate
instrumentation, such that a known preload could be applied to each end of the rail.

5.5.2. Assessment of the models against direct stiffness measurements

Figure 5.13 shows the direct stiffness measured at the rail using the test rig described
above, for an applied preload of 15kN. The results of the simple FE model and the

spring-mass-spring model are also shown.
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Figure 5.13. Magnitude and phase of direct stiffness at the railhead shown versus

frequency, for a preload of 15kN: , measurement; ___.____. , Spring-mass-

spring model; —._ _._, simple FE model.

The measured stiffness spectrum shown in Figure 5.13 has the expected form up to a
frequency of approximately 550Hz: the minimum in the stiffness magnitude at about
330Hz due to the first mode of the system and the peak at about 450Hz due to the first
anti-resonance in the response of the rail. For frequencies greater than 550Hz the
measured stiffness does not show the structure of clearly-separated modes that was
expected. It is not clear whether this is due to the behaviour of the baseplate or that of

the measurement rig.

The direct stiffness at the railhead given by the simple FE model is in satisfactory
agreement with the measurement up to a frequency of approximately 550Hz, for both
the magnitude and phase. The spring-mass-spring model fails to predict the response
of the baseplate beyond the first natural frequency of the system (330Hz), which is the
mode in which the combined mass of the rail and top plate move on the stiffness of

the baseplate pad.

It was found that the direct stiffness measured at the railhead had the expected form
over a much greater frequency range when the system was subject to a smaller
preload. One such case of practical interest here is that for an unloaded BS80A rail

supported by Pandrol VIPA-SP baseplates set at 0.75m intervals. When no train
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wheel-load is present, the external preload on the baseplates of this track is due to the
mass of the rail in one span, approximately 0.3kN. The total preload on the railpad is
therefore 20.3kN and that on the baseplate pad is 0.4kN (external preload plus load
due to top plate mass). Appropriate stiffness values for the pads under these load

conditions, obtained from measurements, are shown below in Table 5.4.

Railpad | Baseplate Pad
Stiffness (MN/m) 80 15
Damping Loss Factor 0.17 0.17

Table 5.4. Stiffness and damping loss factor values used in the modelling work for the
railpad and baseplate pad, for the unloaded track condition on DLR.

Figure 5.14 shows the direct stiffness at the railhead for an external preload of 0.3kN,

obtained by measurement and from the two predictive models.
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Figure 5.14. Magnitude and phase of direct stiffness at the rail head shown versus

, measurement,

frequency, for an external preload of 0.3kN:

_________ spring-mass-spring model; —._._._, simple FE model.

The measured direct stiffness spectrum has the expected form over the frequency
range of interest here. There are three minima, at about 150Hz, 515Hz and 800Hz.
These correspond to the three types of mode described in Section 5.3, but with

different natural frequencies due to the lower preload level considered here. Anti-
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resonances in the response give rise to two peaks in the stiffness spectrum, at 350Hz
and 700Hz. For frequencies greater than 1kHz, the response is dominated by the

inertia of the rail.

The simple FE model predicts a stiffness spectrum that has a similar structure to the
measurements. While the predicted spectrum contains all the main features of the
measurement, there are some differences in the frequencies at which these occur.
Specifically, the frequencies at which the second peak in the direct stiffness spectrum
occurs and the minimum that follows (due to the first internal mode of the top plate)

are over-predicted by up to 20%.

The FE model predicts the first bending resonance frequency of the top plate in the
free-free support condition (no railpad or baseplate pad) correctly. It is therefore
likely to be the modelling of the partial constraints provided by the railpad and
baseplate pad to the top plate that is responsible for the difference between the results
of the simple FE model and the measurements. This may be a limitation of the highly

simplified representation of the baseplates geometry on which this model is based.

There are larger differences between the results of the spring-mass-spring model and
the measurement. There is an order of magnitude difference between the dynamic
stiffness predicted using this model and the measurement for frequencies close to
500Hz.

5.6. INTERNAL MODES OF THE STUDDED PADS

Internal modes of the studded railpad and baseplate pad are expected in some
frequency range. Two different types of mode can be envisaged: that due to the plane
part of the pad moving as a mass on the stiffness of the studs and that due to
longitudinal wave motion in the thickness dimension of the pad. An assessment is
made here of the need to include these modes in a predictive model for the transfer
stiffness of a resilient baseplate, by using models to estimate the frequencies at which
the internal modes of the pads occur. This is necessary because the pad stiffness
measurements described in Section 5.5 are valid for only part of the frequency range
of interest in bridge noise. A baseplate pad under a preload of approximately 0.4kN
will be considered here, which corresponds to the case of unloaded track, the practical
condition in which an internal mode of the baseplate pad will occur at the lowest
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frequency. The first internal mode of the railpad will occur at a higher frequency,
because it is under additional preload from the rail clips.

Figure 5.15 shows a simple model of a studded pad that can be used study the mode in

which the plane part of the pad vibrates as a mass on the stiffness of the studs.

.

M
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Figure 5.15. Spring-mass-spring model for the baseplate pad.

ky and k&, represent the combined stiffness of all the upper and lower studs in the pad
respectively. m represents the mass of the plane part of the pad. In this simple
analysis, it is assumed that the resilience in the pad is concentrated in the studs and
that all the mass lies in the plane part of the pad. &, and %; are therefore equal to twice
the overall stiffness of the pad, and m is equal to the mass of the pad. For the
baseplate pad subject to a preload of 0.4kN, the overall stiffness of the pad has been
measured as approximately 15MN/m and its mass as 0.65kg. The natural frequency
of the mode in which the mass of the plane part of the pad vibrates on the combined
stiffness of the studs is therefore given by,

1 |k, +k

fbnunce = Z TL = ]5kHZ (53)

The result given by equation (5.3) represents a lower bound estimate for the natural
frequency of the first internal mode of the baseplate pad, because it is for the lowest
preload of practical interest and because of the assumptions made regarding the
distribution of the stiffness and mass in the pad. This result indicates that it is not
necessary to consider this type of mode in modelling bridge noise, but that it may be
of interest in modelling rolling noise, due to the effect it is expected to have on decay

rates in the rail for frequencies between 1 and 2kHz.

The longitudinal modes of vibration in the thickness dimension of the pad have been
studied using an axially-loaded rod model. It has been assumed that only the zones of

the plane part of the pad that lie directly beneath a stud are involved in the
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transmission of load across the pad. The same material properties can then be used
for the plane part of the pad and for the studs, such that a single rod can be used to
model the pad. The density of the rubber material used to manufacture the baseplate

pad is approximately 1300kg/m? in the uncompressed condition.

The cross-sectional area of the baseplate pad that is involved in load transmission is a
function of the preload applied to the pad. For very low preloads, it is the total cross-
sectional area of all the studs, and for high preloads it tends to the total area of the
plane part of the pad as the studs deform to fill the voids between them. The axially-
loaded rod model was run for both cases. The value used for the Young’s modulus in
each case was chosen by fitting the result of the model at low frequency to the
measured stiffness of the baseplate pad in the unloaded condition. When run with
these values for Young’s modulus, the axially-loaded rod model predicts the first
longitudinal mode of the pad at approximately 5kHz. This type of mode of the pads
can therefore be disregarded in modelling bridge noise and rolling noise.

5.7. CONCLUSIONS

A combined experimental and modelling study of the dynamic stiffness of a resilient
baseplate has been described in this chapter. For the Pandrol VIPA-SP baseplate, it

has been shown that beam-bending motion in the top plate has an important effect on
its response to vertical excitation at the rail. A simple FE model has been developed

to predict the response of a resilient baseplate, inclusive of bending in the top plate.

Comparison with measurements made for the direct stiffness of a VIPA-SP baseplate
attached to a short section of rail for an external preload of approximately 0.3kN
shows that the simple FE model proposed here should be used in preference to the
spring-mass-spring model available in NORBERT. For higher preloads, the simple
FE model works well up to approximately 550Hz, above which the measurement does
not show the expected form. It is not clear whether this is due to a problem in the
measurement setup at these high preload levels, or if the behaviour of the system

changes significantly as the preload is increased.

As noted in Section 5.1, there is a range of resilient baseplate designs in-service on
railway track. The primary design parameters that vary amongst these baseplates are
the length of the top plate and the stiffness of the railpad. The Pandrol VIPA-SP is a

compact design, with a relatively soft railpad. Using the simple FE model it is found
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that an increase in the length of the top plate from 360mm to 500mm, that for a long
baseplate, has the effect of reducing the frequencies at which the main features of the
stiffness spectrum significantly. However, use of a relatively stiff railpad is expected
to move the natural frequency for the beam-bending mode of the top plate to
frequencies outside the range of interest in bridge noise, even for a 500mm long top
plate.

The stiffness spectra given by the spring-mass-spring model differ considerably from
the measurements (and the simple FE model). When the baseplate length and the
railpad stiffness are increased from their values for the VIPA-SP baseplate, the
differences between spring-mass-spring and simple FE models remain, indicating that

the spring-mass-spring model is not realistic enough.

The approach proposed here for modelling the Pandrol VIPA-SP resilient baseplates
is assessed further in the following chapter, where it is applied to the case of
continuous baseplate track on a viaduct.

146



6. APPLICATION OF THE MODELS TO A CONCRETE
BOX-SECTION VIADUCT

6.1. INTRODUCTION

Bridges and viaducts of the concrete box-section type are considered in this chapter
with regard to the prediction of noise and vibration. Previously, Bewes (2006) studied
a viaduct of this type close to Chep Lap Kok airport in Hong Kong. Measurements
were made for the vibration on the viaduct deck under traffic and these were
compared with predictions made using NORBERT. Bewes found the predicted deck
vibration to be significantly lower than the measurement in the higher frequency
bands. One area of uncertainty is the damping loss factor that is appropriate for a
concrete box-section. For a damping loss factor of 0.1, the work of Bewes shows that
the NORBERT prediction is at least 10dB lower than the measurement for

frequencies greater than 400Hz.

The main difficulty in using NORBERT for a concrete box-section viaduct is due to
the complex cross-section geometry of these structures. Figure 6.1 shows the cross-

section of the viaduct studied in the previous work by Bewes (2006).

'up' track

high rail low rail

'down' track
L J J

Figure 6.1. Cross-sectional view of the concrete box-section viaduct close to Chep

Lap Kok airport in Hong Kong (Bewes (2006).

The viaduct shown in Figure 6.1 is less amenable to the approximation for mobility
used in NORBERT than the structures studied in previous chapters, as it is difficult to
express in terms of beams and plates. Below the rail decoupling frequency, Bewes
(2006) used an I-section beam in the coupled beam model, with the dimensions of the
beam web set to those of a single box web. The width of the beam flanges were set to

the mean of those of the box flange and the viaduct deck. The thickness of the flanges
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was set to that of the box flange. For frequencies greater than the decoupling
frequency, either the I-section beam model or a plate model with a thickness equal to
the local deck thickness around the rail seats was used to calculate the power input to
the viaduct. The switch between the beam model and the plate model was made at the
frequency for which the distance between the rail and the box web is equal to one-

quarter of a bending wavelength in the deck.

In this work, a new set of measurements has been made for a concrete box-section
viaduct on the Docklands Light Railway (DLR), with particular attention paid to the
need to characterise its vibration response. In addition to the measurement of
vibration under-traffic, point and transfer response measurements have been made on
the viaduct deck. These measurements have been used as a basis for an evaluation of
the approach proposed by Bewes (2006) to the calculation of the input power for this
type of structure. The use of point and transfer mobilities in this evaluation means
that the effects of uncertainty in the wheel-rail roughness and the properties of the
track structure are avoided. Together with the availability of the WFE method, these
new measurements allow a more detailed study of the behaviour of concrete box-

section viaducts with respect to vibration than was possible in previous work.
6.2. MEASUREMENTS ON THE VIADUCT
6.2.1. The viaduct and test site

The measurements were made on a concrete box-section viaduct between Pontoon
Dock and West Silvertown stations on the Bank to King George V Dock line of the

DLR. A photograph is shown in Figure 6.2.
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Test site

Figure 6.2. A photograph of the concrete box-section viaduct under study, taken from

the platform on Pontoon Dock station, looking toward West Silvertown station.

The twin-track viaduct is made up of 37m length spans between the support pillars.
The measurements were made between way markers 05096 and 05097, marked ‘Test
site’ in Figure 6.2. This site was chosen because there is very little lateral curvature
or vertical gradient in this part of the viaduct and because it is at approximately mid-
span between the vertical support pillars. These are desirable conditions for use of

the NORBERT and WFE models.

The rail section and rolling stock are the same as for the concrete-steel composite
bridge described in Chapter 3. The rails are directly fastened to the deck of the
concrete box-section viaduct using Pandrol VIPA-SP resilient baseplates, set at 0.75m

intervals.

The location of the viaduct, in a busy area of London and close to roads and London
City airport means that it is not possible to obtain useful measurements for the noise

levels associated with a train pass-by on this viaduct.
6.2.2. Point and transfer response measurements

Point and transfer response measurements were made on the viaduct deck and rail
using an instrumented hammer on 15™ and 16™ April 2008, before trains began
running for the day. Trial measurements on large concrete castings showed that it
would be necessary to use two different hammers in order to excite the structure

sufficiently over the frequency range of interest, one with a mass of 3.3kg and one
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with a mass of 0.6kg. The larger of these hammers provided excitation with a cut-off
at a frequency of 200Hz, while the other had a cut-off of 1.25kHz. The results
obtained using these two different hammers were checked for satisfactory agreement
in the frequency range over which both are expected to deliver sufficient energy to the
viaduct structure, approximately 100Hz to 200Hz. They have been plotted in the
frequency range up to 200Hz for the large hammer tests and up to 1.25kHz for the

small hammer tests.

The point response measurements were made at four different positions across the
right-hand side of the viaduct. These positions are shown below in Figure 6.3.

P1 P2 P3 P4

Figure 6.3. Cross-sectional view of the concrete box-section viaduct (courtesy of
Halcrow Group Ltd), showing the four positions on the deck at which point response

measurements were made.

Position P1 is at a lateral distance of approximately 0.25m from the viaduct centre-
line. Positions P2 and P3 are close to the inner and outer rails, at approximately 1.2m
and 2.6m from the viaduct centre-line respectively. Position P4 is at lateral distance
of approximately 3.6m from the viaduct centre-line. Note that there is a walk-way
formed by loosely-mounted bricks on top of the viaduct deck, to the outside of
position P4, which is not shown in Figure 6.3. This walk-way is not expected to make
a significant contribution to the mass or stiffness of the structure. It has therefore

been omitted from the WFE model of the viaduct.

Transfer accelerance measurements were made along a line parallel to the viaduct
centre-line, passing through position P3. The excitation position was moved along
this line in increments equal to half the baseplate spacing for the first ten

measurements and in increments equal to the baseplate spacing (0.75m) subsequently.
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The accelerometer position remained fixed. Measurements were made for a
maximum distance of 7.5m between the excitation and response positions, above
which the response signal became heavily-contaminated by noise. Due to the limited
time available, transfer response measurements were made using only the 0.6kg
hammer. The minimum frequency for which these measurements are valid is

approximately 100Hz.

Point and transfer accelerance measurements were also made at the head of the outer
rail on the viaduct, for the vertical direction only. These measurements have been
used to asses the track model developed in Chapter 6 for resilient baseplate track. The
rate of decay of vibration in the rail is the quantity of primary interest here and the

method for its calculation proposed by Jones et al. (2006) has been followed.
6.2.3. Vibration measurements under-traffic

Measurements were also made of the vibration of the viaduct deck and rail under-
traffic on 16™ April 2008. Acceleration measurements were made at two locations on

the deck and one location on each rail, summarised below in Table 6.1.

Measurement Location Orientation
Inside rail Centre of rail foot, mid-span Vertical
Outside rail Centre of rail foot, mid-span Vertical
Viaduct deck Position P2 Vertical
Viaduct deck Position P3 Vertical

Table 6.1. Positions of the accelerometers used to measure vibration under traffic.

The accelerometers were attached to the viaduct at a single cross-section of the
viaduct at mid-span between adjacent baseplates. Recordings were made for a total of

29 trains.
6.3. MODELLING THE CONCRETE BOX-SECTION VIADUCT

The application of NORBERT and the WFE method to the concrete box-section
viaduct is described in this section. These two different modelling approaches have
been used to predict the vibration response of the viaduct and the rail. The results of
this modelling work are compared with the measurements made on the viaduct in

Section 6.4.
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6.3.1. Use of NORBERT for the concrete box-section viaduct

The approach proposed by Bewes (2006) for defining an I-section beam and a plate to
represent a concrete box-section viaduct in NORBERT was described in Section 6.1.
This approach has been followed here and an appropriate set of input parameters for

this viaduct is shown below in Table 6.2.

Thickness of beam web (m) 0.3
Depth of beam web (m) 2
Thickness of beam flanges (m) 0.18
Width of beam flanges (m) 3
Thickness of deck plate (m) 0.38
Distance between the rail and beam web (m) 0.6

Table 6.2. Input parameters for the I-section beam and plate used to represent the

concrete box-section viaduct in NORBERT.

The distance between the rail and the beam web shown in Table 6.2 is for the outer
rail position, because the modelling work for vibration under-traffic presented in
Section 6.4 is for excitation at the outer rail. Note also that the finite length coupled
beam model has been used here to calculate the power input to the viaduct, for
frequencies less than the decoupling frequency. The lengths of the beams used to
model the structure at low frequencies were set to the span lengths of the viaduct

(37m).

The material properties used to model the concrete viaduct in both NORBERT and

WEFE are summarised in Table 6.3 below.

Property Value
Young's Modulus 40GPa
Density 2400kg/m’
Poisson's ratio 0.2

Table 6.3. Material properties used to model the concrete box-section viaduct.

As described in Chapter 3, the Young’s modulus of concrete is strongly dependent on
the mixture composition. The company responsible for the construction of this
viaduct, Halcrow Group Limited, took samples of the concrete used to cast the viaduct

sections and measured the compressive strength of these as approximately 60kN/mm?
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after a suitable setting time. The dynamic Young’s modulus given in Table 6.3 was
chosen from the compressive strength measurement and reference to (Kong and
Evans, 1987). Standard design values have been used for the density and Poisson’s

ratio, which are less sensitive to the mixture composition.

A frequency-independent damping loss factor of 0.1 has been chosen for the viaduct,
based on the comparison made between the transfer accelerance measurements and

corresponding results of the WFE modelling work presented in Section 6.4.1.

Two different approaches have been taken to the application of the SEA method in
NORBERT for this viaduct: a relatively detailed SEA network and a relatively simple
one. In the former, the geometry of the viaduct has been reproduced quite fully, such
that the geometry of the plate assembly corresponds closely with the physical
dimensions of the viaduct. In the relatively simple SEA network, a smaller number of
plates are used, but these have larger physical dimensions. The minimum number of
modes over a given frequency band in a single subsystem is therefore greater for the
simple SEA network. Consequently, it may be expected that this network can be used
to predict the response of the structure reliably down to lower frequencies than the

more detailed SEA network. The two SEA networks are shown in Figure 6.4 below.
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Figure 6.4. SEA representation of the concrete box-section viaduct in NORBERT:

i) simple SEA network; ii) detailed SEA network.

The cross-section dimensions and the number of plates for both the simple and the

detailed SEA networks are given in Table 6.4 below.
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i) Name Thickness (m) | Width (m) | Number
B Side-deck 0.22 2.0 2
C Main deck 0.38 6.0 1
E Web 0.3 2.2 2
F | Bottom flange 0.18 3.0 1
i) Name Thickness (m) | Width (m) | Number
A Parapet 0.25 0.65 2
B Side-deck 0.22 1.7 2
C Main deck 0.38 2.5 2
D | Centre-deck 0.22 1.0 1
E Web 0.3 2.2 2
F | Bottom flange 0.18 3.0 1

Table 6.4. Specification of the plates in, i) simple SEA network, ii) detailed SEA

network.

The modal density in each of the plates described in Table 6.4 can be estimated from

(Cremer and Heckl, 1988),

n(w) = = (6.1)

where A is the surface area of the plate, x, is the free bending wavenumber of the
plate, & is its thickness and ¢, is the longitudinal wave speed in concrete. Application

of equation (6.1) to the plates defined above shows that the minimum modal density
in a single plate in the detailed SEA network is a factor of three smaller than that in
the simple SEA network: at 0.006 modes per rad/s and 0.018 modes per rad/s
respectively. However, these modal density values indicate that the number of modes
expected in a single plate over any one-third octave frequency band in the range of
interest is less than one for either of these SEA networks. This shows that the internal
modes of the individual subsystems occur only for relatively high frequencies. The
total number of modes in a given frequency band for all the plates in the SEA network

may therefore be a more appropriate basis for assessment of the frequency range for
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which SEA can be applied to the structure (Lyon, 1975). For both SEA networks
considered here, the total number of modes of the viaduct expected in the 40Hz one-
third octave band is around 5. On this basis, it expected that both of the networks
shown in Figure 6.4 are suitable for use in predicting the vibration response of the

viaduct over the frequency range for which measurements have been made.

The resilient baseplate track structure on this viaduct was modelled as a continuous
resilient layer between the rail and the viaduct with a stiffness per unit length of
70MN/m? and a damping loss factor of 0.2. These values are based on the low-
frequency results of the laboratory measurements made for the VIPA-SP baseplates
under a preload of 15kN presented in Chapter 5. This preload level is appropriate for
the baseplates subject to the wheel-load from DLR rolling stock, as discussed in

Chapter 5.

The average speed at which the trains passed the test site was found to be
approximately 50km/h from inspection of the measured time series and the axle
spacing for the rolling stock. The maximum train speed found from the

measurements was 53km/h and the minimum speed was 44km/h.
6.3.2. Use of the WFE method for the concrete box-section viaduct

The results of the WFE modelling work will be compared with the point and transfer
response measurements that are valid up to approximately 1.2kHz. It is therefore
appropriate to specify the WFE model for this same frequency range. The maximum
section thickness of the viaduct is 380mm, occurring in the viaduct deck. The point
mobility results given by thick and thin infinite plate theory for a 380mm thick
concrete plate at a frequency of 1.2kHz differ by less than 10%. Plate elements, with
cubic shape functions, have therefore been used for the WFE analysis of this viaduct.
Simple analytical models were used to determine appropriate element lengths for each
part of the structure, together with the requirement for at least three of these plate

elements per wavelength in the frequency range of interest.

Figure 6.5 shows the nodes of the WFE model for half of the concrete box-section
viaduct. Symmetric and anti-symmetric boundary conditions have been applied to the
nodes on the viaduct centre-line, and used to recover the solution for the full viaduct

structure.
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Figure 6.5. Node positions in the WFE model for half of the concrete box-section

viaduct, showing the outer rail and track support.

In the WFE model shown in Figure 6.5, a single plate element represents the track
structure as a continuous resilient layer between the rail and the viaduct deck. The
properties of this plate element were chosen to give the same frequency-independent
track stiffness per unit length and damping loss factor as described for the NORBERT
model in Section 6.3.1. Above this are four plate elements representing the rail,

following the method used to represent this same type of rail in Chapter 3.

In a second stage of the WFE modelling work for this viaduct, a more detailed
representation of the Pandrol VIPA-SP baseplate track was used to account for the
expected frequency-dependent stiffness of this track. The approach taken to
modelling a single baseplate in the preceding chapter using FE was extended to the
case of the track on this viaduct using WFE. The WFE model of the track is shown in

Figure 6.6 below.
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Figure 6.6. WFE model of a resilient baseplate: O, nodes.

Nodes 1 to 6 in Figure 6.6 define the rail, in which the rail foot is now represented by
two horizontally-orientated elements. There are two vertical plate elements for the
railpad, three horizontal plate elements for the top plate and two vertical plate
elements for the baseplate pad. The nodes at the lower end of the baseplate pad are
common to elements in the viaduct deck. Fewer nodes have been used in the WFE
model of this track than were used in the FE model of a single baseplate in Chapter 5,
because the WFE model was intended for use in this specific case, rather than as a

model for resilient baseplates in general.

All the plate elements used to represent the track support were assigned orthotropic
material properties. The elastic moduli were set to very low values in all but the
vertical direction, to minimise the effects of wave motion along the length of the track
support, which does not occur physically because this support is not continuous. The
properties of the elements used to represent the railpad and baseplate pad were chosen
to give a continuous stiffness equivalent to the stiffness of these pads as presented in

the preceding chapter, by dividing by the baseplate spacing, 0.75.

The top plate was defined in WFE as a plate strip with a width of 360mm and
thickness of 20mm, again following the work presented in Chapter 6. In order for this
plate strip to have a continuous mass per unit length equivalent to that of the discrete
baseplates set at 0.75m intervals, it was necessary to assign these elements a density
of 2100kg/m3. This property change affects the onset of bending in the top plate, such

that it was also necessary to change the Young’s modulus to 38GPa in order to predict
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the first bending mode of the unconstrained top plate in agreement with the

measurement made for the top plate laid on a soft support, described in Chapter 5.
6.3.3. Free vibration analysis

As for the bridges studied in previous chapters, the WFE model of the concrete box-
section viaduct was first used to study its free vibration response. The dispersion
relations obtained from solution of the eigenvalue problem for a prescribed set of
purely real wavenumbers are identified for the case of zero damping in Figure 6.7
below. A number of dispersion curves calculated from simple beam and plate theory

are also shown in Figure 6.7 in order to aid interpretation of the waveforms in the

viaduct.
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Figure 6.7. Purely-real wavenumber shown versus frequency for the case of zero

damping in the concrete box-section viaduct: O ,WFE for symmetric case; *, WFE for

anti-symmetric case; _______ , infinite thin plate model (380mm thickness);
, Euler beam model (vertical bending); _ _ _ _ _ , Euler beam model (lateral
bending); , longitudinal wave in concrete.

Those waves in the structure with a zero cut-on frequency can be identified from a
comparison of the WFE solution with the curves obtained from the analytical models
at low frequencies. The Euler beam results have been obtained using the section
properties of the equivalent I-section beam proposed by Bewes (2006). The WFE
solutions corresponding to the vertical beam bending wave, the lateral beam bending

wave and the longitudinal wave can be identified. The WFE solutions for the
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torsional wave are those for the anti-symmetric case that show a zero cut-on
frequency (not the lateral bending wave). The Euler beam result for the vertical beam
bending wave departs from the corresponding WFE solution for frequencies greater
than approximately 20Hz. At this frequency, the first non-zero frequency wave cut-
on occurs in the WFE solution. For higher frequencies, the highest wavenumbers
from the WFE model tend toward the results obtained by the thin infinite plate

bending model.

For further identification of the modes, Figure 6.8 shows the mode shapes for the

symmetric waves in the viaduct at frequencies of 1Hz, 25Hz, and 50Hz.
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Figure 6.8. Mode shape plots and corresponding wavenumbers for the symmetric
modes of the concrete box-section viaduct about the centre-line. Caption above each

plot shows wavenumber (rad/m): O, original node position;, ___ ,deformed shape.

At 1Hz, there is a longitudinal mode and a vertical beam bending mode with no
deformation of the cross-section. At the two higher frequencies shown, the viaduct
does not behave as a beam and there is significant deformation of the cross-section in
all modes except the longitudinal mode. Plate bending motion in the viaduct deck

appears to dominate the response in these modes.
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Figure 6.9 shows the mode shapes for the anti-symmetric waves in the viaduct at

frequencies of 1Hz, 25Hz, and 50Hz.

Frequency of 1Hz
0.025-01
b coad Bead
O
O
@)
Frequency of 25Hz:

Frequency of 50Hz

Figure 6.9. Mode shape plots and corresponding wavenumbers for the anti-
symmetric modes of the concrete box-section viaduct about the centre-line. Caption
above each plot shows wavenumber (rad/m): O, original node position;

___, deformed shape.

At 1Hz the two modes shown in Figure 6.9 are the torsional and lateral beam bending
modes. At both 25Hz and 50Hz, there is again significant deformation of the cross-

section, with bending motion in the viaduct deck for all modes.
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The dispersion and mode shape diagrams presented in Figures 6.7 to 6.9 show the
behaviour of the viaduct at low frequencies. As for the concrete-steel composite
bridge under study in Chapter 3, it is possible to plot the dispersion results clearly
over a much larger range of frequencies by selecting only the waves with relatively
large amplitudes for a given excitation position. Waves with an amplitude (magnitude
of the complex amplitude) greater than 75% of the largest amplitude at a given
frequency are referred to here as ‘very high power waves’, those with an amplitude
between 50% and 75% of the maximum amplitude as ‘high power waves’ and those
with between 25% and 50% of the maximum amplitude as ‘medium power waves’.
Note that the term ‘power’ is used loosely here as the relative wave amplitudes are

only an approximate indicator of the relative powers transmitted to the waves.

Figure 6.10 shows the dispersion relations for the high-energy content waves when
the viaduct is excited at position P3 on the deck, from the symmetric case WFE
solution, together with the results of appropriate analytical models.
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Figure 6.10. Purely-real wavenumber shown versus frequency for the case of zero
damping in the concrete box-section viaduct and excitation at position P3, symmetric
case WFE solution: * , WFE result for very high power waves; X , WFE result for
high power waves; O , WFE result for medium power waves, _ _ _ _. , Euler beam
model (vertical bending); _._ _._ , infinite thin plate model (380mm thickness);
________ , infinite thin plate model (220mm thickness).
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Figure 6.10 shows that for frequencies greater than approximately S00Hz, much of the
vibration power input to the viaduct at position P3 on the deck is transmitted to the
plate bending waves in the part of the deck which has a thickness of 380mm. For
frequencies less than 20Hz, the majority of the input power is transmitted to the
vertical beam bending wave of the viaduct. For frequencies between 20Hz and
500Hz, the dispersion results obtained from the WFE model indicate that much of the
input power is transmitted to waves with dispersion properties that lie between those

of the beam and plate bending waves.

Figure 6.11 shows the dispersion relations for the important waves in the viaduct for
excitation at position P4 on the deck, where the local deck thickness is 220mm, from

the symmetric case WFE solution.
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Figure 6.11. Purely-real wavenumber shown against frequency for the case of zero
damping in the concrete box-section viaduct and excitation at position P4, symmetric
case WFE solution: * , WFE result for very high power waves; X, WFE result for
high power waves; O, WFE result for medium power waves; _ _ _ _ , Euler beam
model (vertical bending); _._ . _ .. , infinite thin plate model (380mm thickness);

________ , infinite thin plate model (220mm thickness).

The dispersion relations shown for selected waves at position P4 show broadly similar
behaviour to that discussed previously for position P3. The differences between them
occur at higher frequencies and are due to the lower local deck thickness around

position P4. While the response shows a transition between beam bending and plate
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bending waves in the local deck thickness from about 20Hz to 500Hz, as for position
P3, there appears to be an additional stage in this transition for position P4. In the
range from about 100Hz to 300Hz, Figure 6.11 shows that a significant part of the
input power to the bridge is transmitted to waves which have dispersion
characteristics that approximate to those for plate bending waves in the thickest part

of the deck (380mm), rather than the local deck thickness (220mm).

In summary, the free vibration response analysis presented in this section provides a
physical understanding of how this structure behaves in response to vertical excitation
on the deck. The majority of the power input to concrete box section viaduct is
transmitted to beam bending waves for frequencies less than 20Hz and to plate
bending motion in the deck, local to the input point, above about S00Hz. Between
these ranges, the input power is transmitted to waves with dispersion properties that
lie between those of the beam and plate bending waves. For position P4, where the
deck thickness is relatively low, power transmission to waves with dispersion
characteristics similar to those for plate bending waves in the thicker parts of the deck

seems to be important in the frequency range between about 100Hz and 300Hz.
6.4. COMPARISON OF THE MODELS WITH THE MEASUREMENTS
6.4.1. Transfer response on the viaduct deck

In this section the measured transfer accelerance on the viaduct deck is compared with
that predicted using the WFE model. This is of interest here because it can be used to
determine an appropriate damping loss factor for use in modelling the viaduct. In
order to aid the comparison of the measured and predicted transfer accelerances, the

following normalisation has been used,

A (xa)>|

A, (a))‘ ©2)

ANarm (x’ Cl)) =

where, A, is the transfer accelerance and A, is the point accelerance.

Figures 6.12 to 6.14 (for different frequency bands) show the normalised transfer
accelerance as a function of distance between the excitation and response positions on
the viaduct deck, obtained from the measurements and from the WFE analysis. The

WEE results are plotted for different values of damping loss factor (#7piage)-
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Figures 6.12 to 6.14 show a relatively high rate of decay over a distance of
approximately 1m from the excitation position, in all frequency bands. This is due to
the near-field waves in the viaduct. The average decay rate over the 7.5m length of
viaduct for which measurements were made increases from approximately 0.4dB/m in
the 125Hz frequency band to 1.4dB/m in the 1kHz band. These values are consistent
with those reported for the rate of decay of vibration in railway bridges in previous

work (Hardy, 1999).

In many cases the measured response magnitude does not decrease uniformly with
distance and may even increase again. This behaviour is also present in the results of
the WFE analysis. For the higher frequency bands, the variation in response
magnitude with distance tends towards an oscillatory appearance. This is not due to
the modal response of the viaduct structure, because the WFE model is based on an
infinite structure. It is due instead to the modulation produced when two waves with

similar amplitude, but slightly different wavenumber are combined.

Considering all frequency bands, the agreement between the model and the
measurements shown in Figures 6.12 to 6.14 is best, when a damping loss factor of
0.1 1is used. This value is larger than the material damping loss factor for concrete,
typically in the range from 0.01 to 0.05 (Beranek, 1971). This indicates that there is
energy dissipation in the structure due to mechanisms other than material damping.
There may be significant energy dissipation due to friction in the structure at internal
joints and at connections with fixtures such as the handrail and brick walkway (see
Figure 6.2). These mechanisms of energy dissipation cannot be included in the WFE
model directly, but their effect is incorporated via the empirical ‘structural damping
loss factor’ of 0.1. This has been used in all the WFE modelling work presented in

the sub-sections to follow and also in the bridge noise model.
6.4.2. Point response on the viaduct deck

In this section, the measured point mobility at each position on the viaduct deck, P1 to
P4, is compared with the corresponding result from the WFE model and from the

NORBERT model for mobility.

The point response measurements were made using two different impact hammers,
described in Section 6.2.2. Example coherence spectra for the measurements made

with these hammers are shown in Figure 6.15 below.
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Figure 6.15. Example coherence spectra for measurements made with the two

different impact hammers:—______, 0.6kg hammer; ________ , 3.3kg hammer.

The coherence for the 3.3kg impact hammer is satisfactory for frequencies between
about 30Hz and 300Hz. That for the 0.6kg hammer is close to unity for frequencies
between about 100Hz and 1200Hz. Based on this is and a comparison of the
excitation spectrum produced using each of these hammers, the point mobility results
have been plotted between 30Hz and 200Hz for the 3.3kg hammer tests and between
200Hz and 1200Hz for the 0.6kg hammer tests.

The WFE model was run for input and excitation at each of the four positions on the
deck, P1 to P4. In NORBERT, appropriate values of plate thickness and the lateral
distance to the web of the box-section have been used for each of these positions on
the deck. The specification of the beam used to represent the viaduct remains as

shown in Table 6.2.

Figures 6.16 to 6.19 show the real part and phase of the point mobility at positions P1
to P4 on the viaduct deck. Note that the real part of the mobility, rather than the
magnitude, has been plotted here because this is directly related to the vibrational

power input to the viaduct.
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Figure 6.16. Real part and phase of point mobility on the concrete box-section

viaduct deck at position P1:
, from WFE model.
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Figure 6.17. Real part and phase of point mobility on the concrete box-section

viaduct deck at position P2:
, from WFE model.

, measurement; _______._ , from NORBERT;
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Figure 6.18. Real part and phase of point mobility on the concrete box-section

viaduct deck at position P3:
, from WFE model.
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Figure 6.19. Real part and phase of point mobility on the concrete box-section

viaduct deck at position P4.:
, from WFE model.

, measurement;

, from NORBERT;

The spectra for the real part of the measured mobility consist of reasonably well-

separated peaks at low frequencies, typically up to about 100Hz. These are due to the

modes of the structure, both along its length and within the cross-section. At higher
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frequencies, the modal overlap becomes larger and the response tends to that of an

infinite structure.

Comparing the measured mobility spectra first with those predicted using NORBERT,
it is clear that the finite length Timoshenko beam model does not predict the response
of the structure correctly. The predicted real part mobility spectra show peaks that do
not correspond to those in the measurements and the model results are generally lower
than the measurements. At position P3 for example, the beam model is used in the
frequency range up to about SO0Hz and in this range the predicted real part of point
mobility is typically a factor of 2 lower than the measurement. This may be expected
from the results of the WFE free vibration response analysis presented in Section
6.3.3, which shows that this viaduct behaves as a beam only for frequencies up to
about 20Hz. For frequencies between about 20Hz and S00Hz, the dispersion diagram
of Figure 6.10 shows that the much of the power input to the viaduct at position P3 is
transmitted to waves that have dispersion properties that lie between those of the
beam bending and plate bending waves in the frequency range from 20Hz to SO0Hz.
Since the mobility of the deck plate is significantly larger than that of the beam
representation of the viaduct used in NORBERT, use of the beam model leads to an

underestimate for the point mobility in this frequency range.

The switch from the beam mobility model to the plate mobility model in NORBERT
introduces a large step-change to the predicted mobility spectra, which is not shown in
the measurements. Further, the measurements do not show a transition between the
mobility of a beam and that of an appropriate plate, of the kind proposed for all-steel
bridges in Chapter 2. Rather, the response of the concrete box-section viaduct at
positions P2 and P3 is that of a reinforced plate over a significant part of the
frequency range of interest. This is shown less clearly for the other positions on the
deck, where the plate model is mainly used in NORBERT, due to the greater distance

between these positions and the box webs.

The NORBERT model for mobility is in agreement with the measurements in a
frequency-average sense at positions P2 and P3 over the frequency where the plate
model is used. For positions P1 and P4, where the deck thickness is lower, the use of
the plate model in NORBERT leads to an overestimate for the point mobility by a
factor of about 2 in the frequency range up to 250Hz at P1 and up to 1kHz for P4.
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The WFE results are generally in close agreement with the measurements, in a
frequency-average sense. The combined beam and plate bending behaviour that is
important for positions P2 and P3 is accounted for. The mobility at position P1 in the
range up to about 250Hz and P4 in the range up to 1kHz are also predicted correctly
using the WFE method. In these cases, the mobility on the deck is lower than that of
a plate with the local section thickness, due to the restraint provided by the relatively
thick parts of the deck. This is supported by the dispersion diagram of Figure 6.11,
which shows that a significant part of the power input to the viaduct at position P4 is
transmitted to waves that have dispersion properties similar to those for bending
waves in thickest part of the deck. This occurs in a frequency range determined by
the bending wavelength in the local deck thickness and the lateral distance between

the position on the deck of interest and the part of the deck with greater thickness.

In summary, the results presented in this section show that the WFE method is a
suitable approach to predicting the point mobility of a concrete box-section viaduct.
It offers a clear benefit over the NORBERT model for mobility, particularly for cases
such as at position P3, where the response of the viaduct is neither that of an

equivalent beam or a plate in the frequency range from about 20Hz to 500Hz.
6.4.3. Decay rates in the rail

The rate of decay of vibration in the rail is an important measure of the acoustic
performance of the track. The WFE representation of the resilient baseplate track on
this viaduct described in Section 6.3.2 has been used predict the decay rate in the rail.
This is compared here with decay rates obtained from the transfer accelerance
measurements made on the rail. This represents a more complete assessment of the
model proposed for resilient baseplate track than that described in Chapter 5, in which
only a single baseplate was considered. The procedure proposed by Jones et al.
(2006) for the calculation of the decay rate in the rail has been adopted here, for both

the measured data and the WFE prediction.

It is the case of unloaded track that is of interest here, in order to compare with the
decay rates found from the measurements made on the unloaded rail. The properties
of the elements used for the railpad and baseplate pad were therefore chosen to give a
continuous stiffness equivalent to the case of unloaded VIPA-SP baseplates set 0.75m

apart. It was found from initial modelling work that the decay rates predicted using
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this track model are sensitive to the value used for the railpad stiffness. It is therefore
necessary to study the transfer stiffness measurement made during the course of the
laboratory test work described in Chapter 5 for a preload level appropriate to the case

of unloaded track.

Figure 6.20 shows the transfer stiffness spectrum obtained for two of these railpads

combined in parallel under a total preload of 40kN.
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Figure 6.20. Magnitude and phase of the transfer stiffness of two Pandrol 11246

railpads combined in parallel, shown versus frequency, for a preload of 40kN.

The measurement data is valid for frequencies up to about 700Hz. Railpad stiffness
values for a single railpad under a preload of 20kN, approximately that for railpads on
unloaded DLR track, have been found from Figure 6.20 at frequencies of 150Hz and
500Hz. It will be shown that the 1.25kHz one-third octave frequency band is of
particular importance in the decay rate spectrum for the rail. A value for the railpad
stiffness at a frequency of 1.25kHz has therefore been extrapolated from the

development of the transfer stiffness shown in the measurements up to 700Hz.

The railpad stiffness values used in the WFE analysis to predict the decay rates in the
rail are shown in Table 6.5 together with the corresponding equivalent continuous

stiffness values.
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Frequency Railpad Stiffness Equivalent continuous
(Hz) (MN/m) stiffness (MN/m/m)
150 80 107
500 100 133
1250 200 267

Table 6.5. Stiffness data for the railpad used in the WFE prediction of decay rates in

the rail.

A baseplate pad stiffness of 15SMN/m was used throughout the decay rate prediction
work. The stiffness of the baseplate pad shows much less frequency-dependence than

the railpad and this has therefore been neglected.

The decay rates in the rail obtained from the transfer accelerance measurements and
those predicted using the WFE model, for the three different railpad stiffness values,

are shown in Figure 6.21 below.
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Figure 6.21. Decay rate in the unloaded rail: , measured; _______ , WFE
with railpad stiffness of SOMN/m;_ _ _ _ _ , WFE with railpad stiffness of 100MN/m;
_______ , WFE with railpad stiffness of 200MN/m.

Figure 6.21 shows a relatively high measured decay rate for the frequency bands up to
63Hz and also in the 500Hz and 1.25kHz bands, typically 4dB/m. In the lower
frequency bands, this is due to the strong coupling between the motion of the rail and
the viaduct. Around 63Hz, the resonance of the rail on the stiffness of the baseplate
occurs and above this frequency the rail is decoupled from the bridge. The measured

decay rate of vibration in the rail therefore drops to between 1dB/m and 1.5dB/m. It
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is expected that the high rates of decay in the SO0Hz and 1.25kHz bands are due to the
vertical flapping mode and the bending of the top plate mode respectively, described

in Chapter 5.

The decay rates predicted using the WFE model for the three different values of
railpad stiffness are similar up to the 315Hz band and in satisfactory agreement with
the measurements in these bands. For higher frequencies, the decay rates predicted
using the three stiffness values are quite different. The result obtained for a railpad
stiftness of 100MN/m, appropriate for a frequency of S00Hz, is in close agreement
with the measurement in this part of the frequency range, where the first peak is
shown. Similarly, it is the WFE result obtained with the railpad stiffness expected at
high frequencies that is in closest agreement with the measurement around the peak in

the 1.25kHz band.

The WEFE track model can be modified so that the bending motion in the top plate is

omitted from the analysis, by setting a very large Young’s modulus for the top plate.
The track model is then of the spring-mass-spring form used previously in the bridge
noise model for this type of track. Figure 6.22 shows the decay rates obtained using

this track model in the WFE analysis, together with the previous WFE result (where

bending in the top plate is accounted for) and the measured decay rate. Both WFE

models were run for the railpad stiffness expected at a frequency of SO0Hz.
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Figure 6.22. Decay rate in the unloaded rail: , measured; _ _ _ _ _ , WFE
with proposed track model; ________ , WFE with spring-mass-spring track model.
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Figure 6.22 shows that the spring-mass-spring track model can be used to predict the
peak centred on the 500Hz band reasonably well, but that the peak in the 1.25kHz
band is omitted. This was expected as the spring-mass-spring model does not contain
the resonance in this band. The track model proposed here offers a small benefit over
the spring-mass-spring model in the prediction of the first peak in the decay rate curve
and the ability to account for the second peak if a frequency-dependent railpad

stiffness is used in the model.
6.4.4. Vibration of the viaduct under-traffic

Figure 6.23 shows the measured average deck velocity at position P3 on the viaduct
deck, together with the spatially-averaged velocity at this position in the cross-section
obtained from the WFE analysis using both the constant stiffness track model and the
track model proposed in this work. Note that the spatial average of the WFE result
has been taken along the length of the structure only and that an equivalent result is
not available from NORBERT, because the SEA calculation only gives spatial

averages for whole sub-systems.
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Figure 6.23. Spatially-averaged velocity at position P3 on the deck of the concrete
box-section viaduct shown versus frequency: —_ , measured average;
, measured range; _. _._ . _ , WFE result for constant track stiffness;

_____ , WFE result with proposed track model.

The spectra obtained from the WFE analysis have a broadly similar shape to the

measurement for the frequency bands above 80Hz, but the deck velocity is under-
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predicted throughout this range by typically 6dB, or a factor of 2. The main peak in
the measured velocity spectrum occurs at a slightly lower frequency than that in the
results of the WFE analysis. The modelling of the resilient wheel is likely to be

responsible for a significant part of this difference.

The results obtained using the two different track models in WFE are similar for the
frequency bands up to 200Hz. For the higher frequency bands, where the effects of
the baseplate resonances are significant, the two WFE results are different. However,
that obtained using the proposed track model is only in significantly closer agreement

with the measurements in the 1kHz and 1.25kHz frequency bands.

The SEA calculation in NORBERT gives the spatially-averaged velocity in each sub-
system. Corresponding results can be found from the WFE analysis, by averaging
over all the nodes in each subsystem, but not from the measurements, because of the
limited number of measurement positions. The results of the WFE model (with the
constant stiffness track model) and NORBERT have therefore been compared here,

for selected parts of the structure, shown in Figure 6.24 below.
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Figure 6.24. Spatially-averaged velocity for three subsystems in the concrete box-
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_____ , WFE (constant track stiffness); ________, NORBERT simple SEA model;

............ , NORBERT detailed SEA model.
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Figure 6.24 1) shows that the velocity on the main deck given by the WFE analysis is
typically 10dB greater than that from the NORBERT models in the frequency bands
up to 400Hz, and about 4dB greater in the higher frequency bands. Since the WFE
result for deck velocity was shown to be lower than the measurement made on the
viaduct deck, NORBERT is therefore in greater error relative to the deck velocity
measurement than WFE. Note also that the effect of the two different approaches
taken to the SEA modelling in NORBERT is very small over the frequency range

shown for the deck, the side-deck and the bottom flange.

It was shown in Figure 6.18 that the structural model in NORBERT underestimates
the real part of the point mobility at position P3 by a factor of 2 for frequencies up to
about 5S00Hz, relative to both WFE and the measurements. This accounts for a 3dB
difference between the deck velocity under-traffic given by the NORBERT and WFE
models in this frequency range. Note that this beam representation of the bridge is
used in the calculation for the power input to the bridge based on the mobility of the
bridge and also that on the coupled beam model of the rail and bridge. For
frequencies greater than about 500Hz, the input point mobility at position P3 in the
WEFE and NORBERT models is similar. The difference in the deck velocity given by
the WFE and NORBERT models in this range is therefore due to the division of the
input power between the components of the viaduct in these two different types of

model.

There is a significant difference between the results of the WFE and NORBERT
models for the velocity of the side-deck and the bottom flange of the box-section.
When the lower power input to the bridge in NORBERT for the frequency range up to
about 500Hz is accounted for, it is clear that the simplified SEA scheme in
NORBERT predicts greater energy transfer from the deck to the components remote
from the power input point than the WFE model. This indicates that the assumption
of equipartition of energy, on which the simplified SEA scheme in NORBERT is
based, does not hold for this structure. The lower energy transmission from the deck
to the other viaduct components predicted by the WFE analysis than given by
equipartition of energy indicates that the energy dissipation within the subsystems is
significant relative to the energy transmitted between them. This is reasonable given

the relatively high damping loss factor used to model this structure, 0.1. A more
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complex SEA scheme, including coupling loss factors, would be required to account

for this behaviour.
6.5. CONCLUSIONS

This chapter presents the most detailed study of a railway bridge structure of all those
described in this work. A new set of measurements has been made and this allows
particular attention to be paid to characterisation of the vibration response of the
bridge structure, free from the influence of the track and the rolling stock. Two of the
main areas of uncertainty in modelling this type of structure that were identified in the
previous work by Bewes (2006) can therefore be addressed here: the structural model

used to predict the power input to the viaduct and the damping level in the structure.

Point mobility measurements were made at four positions on the viaduct deck over a
frequency range from 30Hz to 1.2kHz. For a significant part of this frequency range,
the viaduct behaves as a reinforced plate for excitation at the rail seat positions. It has
been demonstrated that the WFE method is a satisfactory means to predict this
complex behaviour. However, the simple structural models in NORBERT
underestimate the power input to the viaduct by a factor of about 2 over a significant
part of the frequency range of interest. The WFE method has also been shown to
predict the transfer response of this viaduct correctly over the frequency range from

100Hz to 1kHz, using a damping loss factor of 0.1.

The vibration under-traffic predicted using the WFE and NORBERT models differ
significantly. Further, it is the WFE result that is in closer agreement with the
measurements made on the viaduct deck. Part of this difference between the models
is due to the lower mobility representation of the bridge in NORBERT for frequencies
up to about S00Hz and part is due to the energy sharing between the major
components of the structure. There is less energy transfer from the main deck, where
the energy input to the viaduct from the track occurs, to other the other components in
the structure according to the WFE analysis than the simplified SEA calculation in

NORBERT (based on equipartition).

The approach developed in Chapter 5 for modelling the resilient baseplate track used
on this viaduct was included in the WFE analysis. The comparison made between the
decay rates in the unloaded rail shows that the proposed track model does offer an

advantage over the spring-mass-spring approach used previously in NORBERT. This
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is expected to have an important effect on the rolling noise prediction for baseplate
track (on bridges or otherwise). It is also shown that the frequency dependence of the

railpad stiffness is significant in predicting the correct decay rates in the rail.

However, the proposed track model seems to be of limited benefit in modelling
vibration of the viaduct under-traffic. The WFE model underestimates the deck
vibration in all frequency bands, typically by about 6dB, using both the proposed
track model and the constant stiffness track model. The reasons for this difference are
unclear. The structural model of the viaduct has been shown to be reliable from
comparison to the measurements for point and transfer accelerance. Further, the
decay rate analysis for the rail presented in Section 6.4.3 indicates that the track on
this viaduct is modelled reasonably well in WFE, albeit for the unloaded rather than
the loaded track case. It is therefore likely that the modelling of the excitation at the
wheel-rail interface is responsible for a significant part of the difference between the

results of the models and the measurements for vibration under-traffic.

The resilient wheels on the DLR rolling stock introduce additional difficulty to
modelling the excitation at the wheel-rail interface. While a reasonably complete set
of data is available for this wheel, it not known if the simple model of this wheel
presented in Section 3.3.1 (Chapter 3) is an adequate means to predict its dynamic
behaviour over the frequency range required here. Further, it is expected that the
methods available for estimating the wheel-rail roughness levels from rail vibration
measurements may not be valid when the rolling stock has resilient wheels. The
suitability of the assumed wheel-rail roughness level for modelling this case is

therefore unknown.
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7. SUMMARY OF CONCLUSIONS AND
RECOMMENDATIONS FOR FUTURE WORK

7.1. OVERVIEW

A theoretical model for the prediction of noise from railway bridges is required for
use in making environmental impact assessments for new infrastructure projects, to
guide noise control programmes for existing bridges and also the design of low-noise
bridge and track structures. Such a model, NORBERT, was developed and used for
these purposes prior to the start of this EngD project. Some aspects of this model
have been identified as worthy of further study, mainly in the work of Bewes (2006).
The aim of the work described in this thesis is to test these parts of the NORBERT
model further and to develop improved calculation methods where required.

An advanced finite element (FE) analysis technique was used in much of this work,
Wavenumber Finite Elements (WFE), in order to calculate the power flow from the
rail to the bridge structure and to calculate the vibration response of the bridge. The
method assumes an infinite ‘extruded’ geometry of the bridge. For bridges that have
geometry of this kind, WFE represents a more computationally efficient modelling
approach than conventional FE methods. WFE is particularly useful in that the

behaviour of the structure can be understood in terms of its propagating wave modes.

A total of five major issues were addressed and the findings of the work for each of
these are summarised in Sections 7.2 to 7.6 below. Recommendations for future work

are made in Section 7.7.
7.2. MOBILITY MODEL FOR STEEL BRIDGES

The NORBERT model for mobility is based on expressions for the mobility of
idealised bridge components; a beam and a plate. A switch between the beam and
plate models is made for bridges where the track supports are not positioned directly
over the longitudinal beams. However, this was found to be an over-simplification
which leads to step changes in the bridge response at certain frequencies for some

bridges.

Three different models were used to study the mobility of a coupled beam and plate,
intended to represent a steel bridge. All these models show that a transition is

required between the mobility of the beam and that of the plate as the input force is
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moved away from the support beam. An empirical means to predict this transition
was found by fitting to the results of one of the models for the coupled beam and
plate, that based on the WFE method. It has been demonstrated that this empirical

transition offers a clear improvement over the switch mobility model for mobility.

In the frequency range where the motion of the rail and the bridge is well-coupled, the
input power to the bridge is found in NORBERT using the coupled beam model,
rather than from the mobility of the bridge. The empirical transition proposed in this
work is not compatible with the coupled beam model, which requires that the bridge is
modelled as a beam. The modelling work presented in Chapter 2 indicates that the
transition between beam and plate behaviour may occur for typical steel bridges over
a significant part of the frequency range in which the motion of the rail and the bridge
is well-coupled. A more complex model for the rail, track support structure and the
bridge than that in NORBERT would be required in order to account for a transition

between beam and plate behaviour of the bridge in these cases.

7.3. MODELLING THE VIBRATION RESPONSE OF CONCRETE-STEEL
COMPOSITE BRIDGES

The behaviour of concrete-steel composite bridges is quite different from that of steel
bridges. The type of mobility model used for steel bridges is not applicable to
composite bridges because the mobility of the deck is normally comparable to the
mobility of the support beam in a composite bridge. Further, the simplified SEA
scheme in NORBERT is not valid for a composite bridge (Janssens and Thompson,
1996). The WFE method was used study these two issues in modelling the vibration

response of composite bridges.

A WFE analysis of the composite bridge on the DLR was used to show that the
response of this type of bridge is that of a reinforced plate over a significant part of
the frequency range of interest. The simple structural models in NORBERT are
therefore not readily applicable to this type of bridge and nor is the empirical
transition developed for steel bridges. The power input to the bridge and the vibration
response under-traffic were calculated from a WFE model of the rail, the track
support structure and the bridge. It was found that the approach recommended by
Bewes (2006) for modelling composite bridges using NORBERT leads to an

overestimate for the power input to the bridge in the frequency range up to about
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300Hz. This is due to the difficulty in using the simple structural models in
NORBERT for this type of bridge.

The two simplified SEA schemes proposed by Bewes (2006) for modelling composite
bridges in NORBERT predict different energy sharing between the major components
of the bridge than the WFE model for frequencies up to about 800Hz. The results of
the WFE model for vibration under-traffic are in slightly closer agreement with the
measurements made by Bewes (2006) for the DLR composite bridge than the
NORBERT results obtained using the preferred simplified SEA scheme for composite
bridges, that with the deck as the primary SEA network. However, the under-
prediction of the response in the 800Hz frequency band and above remains.

7.4. THE DYNAMIC BEHAVIOUR OF RAILWAY BALLAST

The dynamic behaviour of railway ballast has been studied through a programme of
measurements and modelling work, that addresses the need for a means to model
ballasted track on bridges that is supported by measurement data. A model based on
longitudinal wave motion in a prismatic rod of ballast loaded in compression by the
sleeper has been shown to predict the dynamic transfer stiffness of a 300mm or
450mm deep layer of ballast for frequencies up to approximately 600Hz, the
maximum measurement frequency. It is expected that the model can be used up to
higher frequencies. The case of a ballast layer on a bridge with a resilient liner was
found to be more difficult to model. The rod model for the ballast combined in series
with a simple stiffness element for the liner was shown to be in reasonable agreement

with the measurements up to about 350Hz.

The damping loss factor for the ballast was estimated from the phase of the measured
transfer stiffness at low frequencies where the ballast acts as a simple stiffness and at
higher frequencies by comparing the first peak in the measured transfer stiffness
spectrum with that predicted using the rod model. The ballast is more heavily damped
in the higher frequency range, consistent with previous work for the damping in
granular materials, (Richards and Lenzi, 1984) and (Kuhl and Kaiser, 1952). For
modelling the damping in ballasted track on bridges, it is recommended that a
damping loss factor of 0.1 to 0.2 is used for the frequency range in which the ballast
behaves as a simple stiffness beneath the sleeper. In the frequency range where the
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internal mode effects of the ballast layer are significant, a damping loss factor of
about 0.45 should be used.

The measurements made for a sample of ballast at the end of its service life are not
expected to be representative of that for ballast in railway track, due to the loss of the

fine material during removal of the ballast from the track and subsequent handling.

The dynamic properties of ballast found in this work do not explain the lower noise
levels reported in some previous work for bridges with ballasted track than for bridges
with direct fasteners. It is likely therefore that the dynamic loading of the deck plates

by a layer of ballast provides at least some of the measured effect.

7.5. THE DYNAMIC BEHAVIOUR OF A TWO-STAGE RESILIENT
BASEPLATE

The high-frequency dynamic behaviour of a two-stage resilient baseplate is not well-
known. A combined measurement and FE modelling study has therefore been
conducted for a Pandrol VIPA-SP baseplate rail fastener. It is shown that beam-
bending motion in the top plate has an important effect on the dynamic stiffness of
this baseplate. A simple FE model has been developed, which accounts for the effects
of bending in the top plate on the direct and transfer stiffness. Measurements for the
direct stiffness of a VIPA-SP baseplate loaded with a short section of rail show that
this simple FE model is a more accurate means to predict the behaviour of this
baseplate than the spring-mass-spring model used previously in NORBERT. Itis
expected that the simple FE model is applicable to other types of two-stage resilient

baseplate.

7.6. MODELLING THE VIBRATION RESPONSE OF A CONCRETE BOX-
SECTION VIADUCT

A new set of measurements were made in this work on a concrete box-section viaduct
on the DLR, with a particular emphasis on characterising the vibration response of the
bridge structure. It is shown that the WFE method is a suitable means to predict the
point response on the viaduct deck, by comparison with the measurements. The
response of this viaduct at the rail seat positions is that of a reinforced plate over
much of the frequency range of interest. As for the concrete-steel composite bridge,
this behaviour cannot be accounted for satisfactorily using the simple structural
models in NORBERT. The WFE method has also been shown to predict the transfer
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response of this viaduct correctly over the frequency range from about 100Hz to
1kHz, for a damping loss factor of 0.1.

The use of the simple structural models in NORBERT for the concrete box-section
viaduct introduces a significant error to the calculation for the power input to the
viaduct. This is responsible for part of the difference shown between the vibration
under-traffic predicted using the WFE and NORBERT models. The WFE method
also predicts different energy sharing between the major components of the structure
than the simplified SEA scheme in NORBERT. While the WFE result for the
velocity on the viaduct deck under-traffic is typically a factor of two smaller than the
measurement, the NORBERT result is in significantly greater error relative to the

measurement.

The measurements made on the concrete box-section viaduct have been used as a
further basis for evaluating the approach proposed for modelling two-stage resilient
baseplate rail fasteners. This was incorporated in the WFE model of the rail, track
support structure and the concrete box-section viaduct. It is shown that the decay
rates in the rail obtained using the proposed track model are in closer agreement with
the measurements than those given by the spring-mass-spring model used for this
track form in previous NORBERT modelling work. This is expected to have an
important effect on the rolling noise prediction for baseplate track. However, the
inclusion of bending motion in the top plate in the WFE model has only a small effect

on the predicted viaduct vibration.
7.7. RECOMMENDATIONS FOR FUTURE WORK
7.7.1. Recommendations for bridge modelling

A WFE model of the rail, the track and the bridge offers some important advantages
over NORBERT in modelling concrete-steel composite and concrete box-section
bridges in which the cross-section properties are constant along the span length. Itis
therefore recommended that the WFE approach is used to model these types of bridge
structure in future work. It is expected that a plate element WFE model is suitable for
bridges over the frequency range of interest in bridge noise, unless they have
unusually large thickness concrete construction. A WFE calculation for bridge
vibration under-traffic typically takes 2 to 3 hours to run, such that it is suitable for

use as a design tool.
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WFE should also be considered for use in modelling steel bridges in which the
longitudinal support beams are offset from the track supports. The empirical
transition model for mobility proposed in this work for use in NORBERT is
applicable only to the frequency range where the motion of the bridge is decoupled
from that of the rail. A WFE model should be used in cases where the transition
between beam and plate behaviour needs to be accounted for in the frequency range

below the decoupling frequency.

Steel bridges with track supports that are positioned directly over the longitudinal
support beams have not been studied in this work. However, it is expected that
NORBERT is the most suitable means to model these bridges. NORBERT should
also be used for bridges that do not have constant cross-section properties along the

span length.

The models developed in this work for ballasted track and two-stage resilient
baseplate track should be used in future bridge modelling work, in NORBERT or in a
WFE model as appropriate. The input data obtained in this work for the ballast model
can be used in future work to model ballast layers of similar specification. For the
resilient baseplates, it is expected that the input data presented in this work is
applicable only to Pandrol VIPA-SP baseplates. Specific input data for the
dimensions of the top plate and the stiffness of the pads would be required in order to

apply this model to a different type of baseplate.
7.7.2. Recommendations for research work

It is recommended here that a major part of future work for the development of bridge
noise and vibration models should be the acquisition of comprehensive sets of
measurement data to be used for further validation of the two models used in this
work, NORBERT and WFE. Ideally, measurements would be made for the vibration
of all the major components of the structure under-traffic, the point and transfer
response on the bridge deck and the wheel and rail roughness levels. Practically, such
a measurement campaign would be difficult to arrange (or fund) and therefore only
part of this measurement data was available during the present work. However, it
may be possible to obtain more complete sets of data in the future, for a range of
different types of bridge.
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Rail roughness measurements can be made for a range of wavelengths appropriate to
modelling bridge noise using a portable trolley fitted with an accelerometer, see
Thompson (2009) for details. One of the important sources of uncertainty in the
modelling work for vibration under-traffic can therefore be eliminated, but at the
significant cost of hiring this specialist equipment. It may also be possible to make
measurements for the vibration under-traffic of all the major components of a bridge
in the future. This could be used to test the division of the input power amongst the

major components of the bridge in the models.

The modelling of the resilient wheels on the DLR rolling stock is a further source of
uncertainty in the modelling work presented here. In the absence of suitable
measurement data, it is not clear how adequately the simple model of a resilient wheel
used in this work represents its dynamic behaviour. Rolling stock with resilient
wheels is widely-used on light urban railways, which represent an important
application for the bridge models, because they usually include elevated sections of
track and are often in noise-sensitive areas. It is therefore recommended here that the

dynamic behaviour of resilient wheels should be studied in future work.

A useful extension could be made to the ballast stiffness measurements made in this
work if the case of ballast at a late stage of its service life, including the fine material
produced by wear action, could be tested in some way. It is recommended here that
point response measurements are made on sleepers in ballasted track, for ballast at
various stages of its life, such that the effect of wear on the stiffness of the ballast can
be quantified. Measurements of this kind would only provide information on the
direct stiffness of the ballast at low frequencies, but this may be sufficient to
determine how the transfer stiffness results obtained in this work for new ballast

should be adjusted for the effects of wear.

It is recommended here that the next step in the development of modelling approaches
for bridges with ballasted track should be to quantify the effect of the dynamic
loading of the deck plates by a layer of ballast on their vibration response. It is
expected that this effect is significant, particularly for a steel bridge, and that it may
explain the lower noise levels reported in previous work for bridges with ballasted
track than those with directly-fastened track. It is recommended here that this is

studied experimentally, rather than through FE or other modelling work. This is
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because a modelling study would require detailed material property data for the
ballast and this is not available.

While it is expected that the WFE models for the concrete-steel composite bridge and
the concrete box-section viaduct represent reasonably complete models of these
structures, there may be scope to develop improved models using existing structural
modelling methods. For example, it is possible to perform a WFE analysis for a finite
length representation of the bridge structure with idealised boundary conditions, rather
than for an infinite length structure representation. The modes of the bridge span
could then be included in the analysis. The point and transfer response measurements
made on the concrete box-section viaduct in this work indicate that the effects of these
modes are relatively small. However, for bridges with shorter spans, or with lower
damping, the benefits of a finite length bridge model may be significant. In addition
to WFE analysis of finite length structures, it may also be useful to apply advanced
structural modelling methods based on periodic structure theory to bridges.
Specifically, this type of model may be appropriate for studying the effect of cross-

beams on the vibration response of a bridge.
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APPENDIX A - ANALYTICAL MODEL FOR THE
RESPONSE OF AN INFINITE PLATE AND BEAM

A.1. INTRODUCTION

Yoo (2004) developed a model for the response of an infinite beam coupled to a plate
of infinite length, but finite width. A very similar approach can be used to model a
plate that is of infinite width and length, coupled to an infinite beam. This is

described here and has been used in Section 2.3 of the thesis.

The cross-section of the infinite plate and beam system is shown in Figure A.1 below,

together with the waves expected in the structure.
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Figure A. 1. Infinite beam and infinite plate system shown in cross-section together

with the expected waves.

Figure A.1 shows an external point force of magnitude F,, applied to the plate, at a
lateral distance L from the beam. Harmonic forcing and motion of the structure are
assumed at a frequency w. Eight waves are shown by a symbol that indicates either a
propagating or a near-field wave is expected. The time dependency terms, e’ , have
been omitted from both the waves and the external forcing term in Figure A.1. The
structure will be considered in three sections, where a local coordinate system is used

for each section as follows.

Section P1, for 0 < y < L. Local coordinate is y;, where y, = y.
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Section P2, for —o < y < 0. Local coordinate is y,, where y, =y.
Section P3, for L < y <. Local coordinate is y3, where y; =y—L.

Figure A.2 shows the structure divided into these sections, so that the internal shear
forces per unit distance in the x direction (f) , acting between the sections, can be

1dntified.

X Fo
y
< fa(x) l T fi(x)
Section P2 Section Pl v Section P3
2 | 1 |

fz(x)T Beam lff(x) ng(x) lﬁz(x)

Figure A.2. Infinite beam and infinite plate system shown divided into three sections.
The external point force applied at location x = x,, y = L can be represented in the
spatial domain using the delta function as F,8(x — x, )é(y — L).

No external force is shown applied to the beam in Figure A.2, it is only the shear

forces in the plate that excite the beam. Assuming that the beam behaves as an Euler

beam, its equation of motion is given by,

D, ) i, ()= 1,0 £, A

where D, is the flexural rigidity of the beam, m', is the mass per unit length of the

beam and w, (x) is the vertical (z direction) displacement of the beam. A Fourier

transform can be applied to find the displacement of the beam in wavenumber domain

as follows,
W, (k)= [w,(x)e ™ dx (A.2)

The spatial derivatives of the displacement and the shear forces in the plate can be
transformed in a similar manner. For example, the first spatial derivative of the

displacement is transformed as follows,
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T aw, (x)

e =ik W, (x,) (A.3)
dx

—o0

Equation (A.1) can therefore be expressed in the wavenumber domain as,

D,x,'W,(k,)-m', @’W,(k,)= f,(x,)- fi(x,) (A4)

b™x

The equation of motion for the thin plate, if it was free from both the applied external

force and the forces applied by the beam would be given by,

Dp[a4wp<x,y>+2a4w,,(x,y> v, ()

ox ooy’ oy }_m””wzw” =04

where D, is the flexural rigidity of the plate, m'', is the mass per unit area of the
plate and w, (x) is the out-of-plane displacement of the plate. This can be expressed

in the wavenumber domain by using Fourier transforms,

2 aZWp (K!c’y) + a4Wp (Kx’ y)

Dp[Kij(K‘x’y)_zk‘x J_mp”a)zwp(’(x’y):o

dy* oy*
(A.6)
For harmonic motion, a solution for the displacement of the plate in equation
(A.6) would be expected of the form,
W, (k. y) = Be"” (A7)
Substituting equation (A.7) into (A.6),
D (K4Bekyy —2k2k 2B +k4Be"yyj—m "o’Be =0 (AS8)
)4 X Xy y p .
4 22, 4] My @
(K'x — 2K,k +ky)—D—:0 (A.9)
p
m Ha)Z .
where 4/—- = Kk, is the free plate wavenumber. k, and &, can be related to the

p

free plate wavenumber as follows,

(k! =22 + k! )= & =0 (A.10)

(2 —k2)= k2 (A.11)
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Solutions for k can be found from equation (A.11). Waves travelling in the positive

y direction, should have a negative real part wavenumber, the negative square root is
therefore taken for these waves. The ‘*’ signs in equations (A.11) provide two

negative-real part solutions,

(A.12)

ky=—\Kki+K5 =k, (A.13)

K. , the solution for &, from equation (A.12) will mean that equation

For

2
<‘K‘p

(A.S5) for the displacement of the plate takes the form of a complex exponential,
representative of a propagating wave. For ‘K‘f‘ < ‘K‘;‘ , the solution for k, from
equation (A.13) will mean that equation (A.5) for the displacement of the plate takes
the form of an exponential decay function, representative of a near-field wave. For

K’ , the solutions for both k; and k,, will represent near-field waves.

2
> ‘K‘p

For waves travelling in the negative y direction, positive wavenumbers are required

and the positive square root is therefore taken,

2 .2

ky =Ky =K, =k (A.14)
2,.2

ky =Ky +K, =ky, (A.15)

k3 gives rise to a propagating wave if ‘K‘f‘ < ‘Kf}‘ and k 4 1s associated with a near-

field wave under this condition. For |

> ‘K‘;‘ both k3 and k4 will be associated
with near-field waves.

The displacement of each section of the plate can now be considered, using the local

coordinate system defined above. For section P1,
_p kyn kyoyi ky3y1 kyayi
Wpl(Kx’yl)_Ble +B2€ +B3€ +B4€ (A16)
For section P2,
ky3y kyay
Wy (K, yy)= Bse 732 + Bge' Y42 (A.17)

For section P3,
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ky1y kyoy
Wp3(Kx,y3):B7e y3 +B86 y2¥3 (A.IS)

A set of equations for the response of the coupled plate and beam structure to the
external force on the plate can be found by application of the boundary conditions of

the problem.

Equal displacement of the beam and section P1 of the plate is required at their

intersection. In spatial terms, this is for all x and for y; = 0 of section S1.

W, (k) =w,(x,) (A.19)

y1=0
-~ B +B,+B,+B,-W,(x,)=0 (A.20)

The torsional stiffness of the deep beams used in steel railway bridges relative to the
bending stiffness of the thin deck plate implies that vertical bending motion, rather
than torsional motion, will be of greatest importance to the response of the structure to
a vertical load. A simplifying assumption will be made here that the beam does not
rotate, it moves in the vertical direction only. Under this condition, it follows that the

rotation of sections P1 and P2 of the plate along Y=Yy = 0 would also be zero.

oW, (K, 1)
Pa—x = Biky; + Byk o + B3k y3 + Byk 4 =0 (A.2D)
Y1 =0
And,
ow (K y )
20 x2 72
2 y2=0

A further expression can obtained by substituting into equation (A.1) for the shear

forces in the plate,

W 5 (K., y,) *W,,, (k. 1)
Dp[ )4 _Dp _ prxIl
y2=0

3 ) = Dyi, Wy, (k)= m', @*W, (i)
9y; i 11=0

(A.23)

-.D,|BJ, + B, |-D |BK, + Bk, + B, + B, |

y? y

- Dbe4Wb (Kx )+ mvb wZWb (Kx ) =0

(A.24)

203



For continuity of displacement between sections p1 and p2 of the plate,
Wpl(Kx7y1Xy1:0 :Wl’z(KX’nyz:o (A.25)
B,+B,+B,+B, =B, +B, (A.26)

For continuity of displacement between sections p1 and p3 of the plate,

Wk, ), =W,k ns) (A27)

Ky L

Be"" +B,e"" + B,e™" + B,e™" =B, +B, (A.28)

For continuity of rotational displacement between sections pl and p3 of the plate,

aWpl(Kx’yl) _ aWp3(Kx’y3)

(A.29)
My B ¥3=0
. BlkylekylL + szyzekyzL + B3ky3€ky3L + B4ky4eky4L = B7ky1 + ngyz
(A.30)
For force equilibrium at the junction between sections p1 and p3 of the plate,
_F3(K'x’ylly1=L+F4(Kx’y31y3=0=FO(Kx) (A31)
3w, (x,, ow (k.
- -D pl( xyl)_KZ(z_V) pl( xyl)
b dy,> ) 9y,
W . (x,, ow sk,
+Dp[ p3(3x y3)_"'x2(2—V)—p3a( - y3)] = Fy(x,)
ay3 y3 ¥3=0
(A.32)
kL 3 2 koL 3 2
. Ble ! (kyl - Kx (2_v)k)1)+ BZe v (kyZ - Kx (2_v)ky2)
B (k — k22— vk )+ B (1, — k2 (2 v,
(A.33)

For moment equilibrium at the junction between sections P1 and P3 of the plate,
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M, (kon), =M, k00s) (A.34)
Where the Fourier transform of the moment per unit length is given by (Yoo, 2004),

aZWp (Kx’yi)
P ay2

1

M, (x.y)}=D — KW, (k.. y,) (A.35)

In this case,
D, lBlek"‘lL(k;‘f1 - Kfv)+ Bzek”L (kf,2 - Kfv)+ BSek"‘"L (ka - Kfv)+ B4ek~"4L (kf4 - szv)J

- D, [B, (K —x2v)+ B (k2 —x2v)|=0 (A.36)

Equations (A.20), (A.21), (A.22), (A.24), (A.26), (A.28), (A.30), (A.33) and (A.36)
can be used to construct a dynamic stiffness matrix, which relates the amplitudes of

the waves to the amplitude of the applied force as follows,

Ku=F (A.37)

This can be done more concisely if the following terms are introduced,

a, =k, -k 2=k, for n=1,2,3,4 (A.38)

And, ¥, =k, —K.v forn=1,2,3,4 (A.39)

The dynamic stiffness matrix can then be written as follows,

1 1 1 0 0 0 0 -1
k, k, k. k,, 0 0 0 0 0
0 0 0 0 k,  k, 0 0 0
Dk, Dk, D,k D, k3, Dkl Dk, 0 0 -Dx!+m,w’
K= 1 1 1 1 -1 -1 0 0 0
Pl &t &t et 0 0 1 -1 0
ket ket ket ket 0 0 k, -k, 0
- Dpek“La] -D,e ‘ZLaz Dpek""Lo:z Dpek"‘Loz4 0 0 Do Dy, 0
Dpek LL)’l Dpek 2Lyz Dpek”L% D])ek 4L3’4 0 0 D)y, -D,y 0
(A.40)
The column vector of amplitudes can be written as,
[ (e )"
u=[B, B, B, B, B B, B, By W,/I«k, (A.41)
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And the vector of force amplitudes is given by,

F=lp 0 000 00 Flx) o} (A42)

Re-arrangement of equation (A.37) allows the vector of the unknown amplitudes to be

found from,

u=K'F (A.43)

The inversion of matrix K can be performed numerically using MATLAB. Although
it is known that the dynamic stiffness matrix can be ill-conditioned when obtained in
this way, the results obtained by this means appear to be satisfactory. The inverse of

the dynamic stiffness matrix was therefore not obtained analytically.
The wave amplitudes together with & allow calculation of the displacement of the

plate as a function of the y coordinate and x . To obtain the displacement of the

structure in the spatial domain, that is as a function of both the x and y coordinates, an

inverse Fourier transform is required, given by,

iK.x

1 (o]
Wp(xv y): % _[Wp (vay)e ! de (A44)

Point frequency response functions are sought here, rather than transfer quantities.
Equation (A.44) therefore need only be evaluated at the coordinates at which the force
is applied, thatis x = x,;, y = L. The choice of datum in the x direction is arbitrary for
this structure, which is infinite in this direction, so the integrand in equation (A.44)

can be simplified by setting x, =0.
o, (o,L):Zi W, (k. L)k, (A.45)
T —00

Since the displacement of sections P1 and P3 must be equal, we can find the
displacement of either of these to calculate the point receptance, and from this the

mobility of the structure. Considering section P1,

w,(0.L) = 2L T (BlekylL + By 2" 4 B3t 4 Bt )dlcx (A.46)
”—D()
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APPENDIX B - THE INPUT POINT MOBILITY OF
BRIDGE BEAMS

B.1. INTRODUCTION

Bewes (2006) developed sets of equations for the point mobility of both rectangular-
section beams and I-section beams over the frequency range of interest in bridge
noise. Here, the WFE method is applied to these beams in order to show that this
method gives results that are equivalent to those from the Bewes equations and to
study the in-plane modes of these beams further. Bewes (2006) reported difficulty in
identifying the in-plane modes of these beams using conventional FE methods. This

can be addressed using the WFE method.

B.2. A RECTANGULAR-SECTION BEAM

A rectangular-section beam with a depth equal to 1m and a thickness of 0.02m was
studied by Bewes (2006) and this geometry has been retained here. The WFE

representation of the beam is shown diagrammatically in Figure B.1 below.

Im

EIEICECCRCCE K % % % %

L» Z
Figure B.1. Node positions in the WFE model of the rectangular cross-section beam.

In order to allow all high frequency behaviour that might occur in the range of real
analyses, the WFE analyses for beams have been performed up to a frequency of
10kHz. The element length in the y direction was chosen based on a calculation for
the minimum expected wavelength of the longitudinal wave in the depth of the beam,
together with the requirement for at least three of these cubic-interpolation plate
elements per wavelength. The motion of the nodes was constrained in the z direction,

because this is not expected to be of importance in the response of the beam to forcing
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in the y direction. Note that the material properties of steel have been used for all the

beam modelling work reported here.

The matrix eigenvalue problem (equation (2.20), Section 2.4.2) was solved for a set of
prescribed frequencies, in order to obtain purely real, purely imaginary and complex
wavenumbers for the undamped case. For the simple geometry under consideration

here, these can be shown on a single dispersion diagram, Figure B.2 below.
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Figure B.2. Real part (positive y axis) and imaginary part (negative y axis) of

wavenumber plotted against frequency: @ , real part of wavenumber from WFE;

@, imaginary part of wavenumber from WFE; _______ , longitudinal wave theory;
, 1" solution to Timoshenko beam equation; _._ . _ . , 2nd solution to

Timoshenko beam equation.

Figure B.2 shows that there are just two propagating waves with a zero cut-on
frequency for this case where the beam is not free to move in the z direction. These
are a vertical bending wave and a longitudinal wave, which have wavenumbers that
can be calculated using Timoshenko beam and simple longitudinal wave theory
respectively, at low frequencies. The other waves which have a real part to their
wavenumber at low frequency also have a significant imaginary part. The rate of
decay with distance travelled for these waves is therefore large, such that their

influence on the response of the beam is expected to be small. The wave that cuts-on
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at a frequency of approximately 1500Hz corresponds to the second solution of the

Timoshenko beam equation.

The input point mobility of the beam was calculated using the WFE method, for an
applied force at the top of the beam in the y direction and a damping loss factor of
0.01. The results obtained are compared with those from the equations proposed by

Bewes for rectangular-section beams in Figure B.3 below.

Real Part of Driving Point Mobility (m/sN)

107 e e

10’ 102 10° 10°

Frequency (Hz)

Figure B.3. Real part of input point mobility for the rectangular-section beam shown
versus frequency: ________ , WFE solution; _ _ _ _ _ , Timoshenko beam result;

, Bewes transitional model; _______. , edge-excited plate model.

Figure B.3 shows that the WFE mobility spectrum is in agreement with the results of
the three equations proposed for modelling rectangular-section beams by Bewes
(2006). A large peak is shown in the WFE mobility spectrum centred on a frequency
of about 2.5kHz. This corresponds to the frequency at which the longitudinal wave in
the beam has a wavelength equal to twice the depth of the beam, i.e. this is the cut-on
frequency of the first in-plane wave of the beam. Figure B.3 shows smaller peaks in
the WFE mobility spectrum at frequencies of approximately 5.5kHz and 9kHz, the
cut-on frequencies of the second and third in-plane waves respectively. The first in-
plane wave is of particular interest, because it is associated with a large increase in the
mobility of the beam and may occur in the frequency range of interest in bridge noise
for some bridges. However, this wave is not easily-identifiable from the dispersion
diagram of Figure B.2, due to the number of propagating waves in the beam at high

frequencies.
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The wavenumber-frequency pairs for the first in-plane wave were identified from the
forced response WFE calculation. A dispersion diagram could then be produced to

show this wave clearly, in Figure B.4 below.
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Figure B.4. Wavenumber shown versus frequency for waves with purely real

wavenumbers, for a beam with zero damping: ® , WFE solution.

The wavenumber-frequency pairs for the first in-plane wave of the beam show a cut-
on frequency of about 2.7kHz and a negative gradient for wavenumbers less than 2
rad/m, i.e. the group velocity is negative. The mode shape associated with this wave

is shown in Figure B.5 below.

Figure B.5. Mode shape plot for the first in-plane wave of the rectangular-section

beam: O , original node position, — | deformed shape.

As expected, the first in-plane mode of the beam is dominated by

stretching/compression motion in the plane of the beam.
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B.3. ANI-SECTION BEAM

Figure B.6 shows the cross-section geometry of an I-section beam studied by Bewes

(2006) together with the WFE representation of this beam.
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Figure B.6. Cross-section geometry and WFE representation of the I-section beam.

The element sizes have been specified based on the minimum wavelength expected in
the web and flanges and the requirement for at least three elements per wavelength.

The motion of the nodes in the web was constrained in the z direction.

Figure B.7 shows the dispersion diagram obtained by solution of the eigenvalue
problem for unknown frequencies, given a prescribed set of real wavenumbers. The

results of Timoshenko beam and longitudinal wave theory are also shown.
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Figure B.7. Wavenumber shown versus frequency for waves with purely real

wavenumbers: ® | WFE solution;

Timoshenko beam equation;

, Longitudinal wave;

, I'" solution to

, 2nd solution to Timoshenko beam equation.

The first wave solution to the Timoshenko beam model is in agreement with the WFE

result up to a frequency of approximately 300Hz. The second Timoshenko solution is

in agreement with the WFE result up to a frequency of approximately 1800Hz.

Figure B.8 shows the input point mobility of the I-section beam found using the WFE

method for an applied force in the y direction at the top of the beam (on the centre-

line) and the Bewes equations for the mobility of an I-section beam. The damping

loss factor is 0.01 in both calculations.
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Figure B.9. Real part of input point mobility of the I-section beam plotted versus
frequency: —_______ , WFE solution; _ _ _ _ _ , Timoshenko beam result;

, Bewes transitional model; ________ , Bewes high frequency model.

Figure B.9 shows that the WFE mobility spectrum is in agreement with the results of
the Bewes equations for the mobility of an I-section beam. There are several distinct
peaks in the mobility spectrum obtained from the WFE matrices, which correspond to
wave cut-on frequencies. The large peak centred on a frequency of approximately
1.8kHz is due to the first in-plane mode of the beam. The locus corresponding to this
wave in the dispersion diagram of Figure B.7 can be identified and shows the negative
group velocity characteristic for small wavenumbers also found for the first in-plane
wave of the rectangular-section beam. The mode shape associated with this wave is

shown in Figure B.10 below.
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Figure B.10. Mode shape plot for the first in-plane wave of the I-section beam:

o , original node position; , deformed shape.

The first in-plane mode of the I-section beam consists of compression/extension in the
web accompanied by a flapping motion in the flanges. This finding supports the
approach taken to calculating the point mobility of this type of beam at high
frequencies by Bewes (2006).
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