The University of Southampton
University of Southampton Institutional Repository

Superfluid signatures in magnetar seismology

Superfluid signatures in magnetar seismology
Superfluid signatures in magnetar seismology
We investigate the role of neutron star superfluidity for magnetar oscillations. Using a plane-wave analysis, we estimate the effects of a neutron superfluid in the elastic crust region. We demonstrate that the superfluid imprint is likely to be more significant than the effects of the crustal magnetic field. We also consider the region immediately beneath the crust, where superfluid neutrons are thought to coexist with a type II proton superconductor. Since the magnetic field in the latter is carried by an array of fluxtubes, the dynamics of this region differ from standard magnetohydrodynamics. We show that the presence of the neutron superfluid (again) leaves a clear imprint on the oscillations of the system. Taken together, our estimates show that the superfluid components cannot be ignored in efforts to carry out 'magnetar seismology'. This increases the level of complexity of the modelling problem, but also points to the possibility of using observations to probe the superfluid nature of supranuclear matter.
dense matter, gravitation, MHD, stars: neutron, stars: oscillations
0035-8711
894-899
Andersson, N.
2dd6d1ee-cefd-478a-b1ac-e6feedafe304
Glampedakis, K.
bece2036-f721-468e-9cd2-cf4324ff2deb
Samuelsson, L.
972a981e-08d5-4c5e-a462-fa36c0af9faa
Andersson, N.
2dd6d1ee-cefd-478a-b1ac-e6feedafe304
Glampedakis, K.
bece2036-f721-468e-9cd2-cf4324ff2deb
Samuelsson, L.
972a981e-08d5-4c5e-a462-fa36c0af9faa

Andersson, N., Glampedakis, K. and Samuelsson, L. (2009) Superfluid signatures in magnetar seismology. Monthly Notices of the Royal Astronomical Society, 396 (2), 894-899. (doi:10.1111/j.1365-2966.2009.14734.x).

Record type: Article

Abstract

We investigate the role of neutron star superfluidity for magnetar oscillations. Using a plane-wave analysis, we estimate the effects of a neutron superfluid in the elastic crust region. We demonstrate that the superfluid imprint is likely to be more significant than the effects of the crustal magnetic field. We also consider the region immediately beneath the crust, where superfluid neutrons are thought to coexist with a type II proton superconductor. Since the magnetic field in the latter is carried by an array of fluxtubes, the dynamics of this region differ from standard magnetohydrodynamics. We show that the presence of the neutron superfluid (again) leaves a clear imprint on the oscillations of the system. Taken together, our estimates show that the superfluid components cannot be ignored in efforts to carry out 'magnetar seismology'. This increases the level of complexity of the modelling problem, but also points to the possibility of using observations to probe the superfluid nature of supranuclear matter.

Full text not available from this repository.

More information

Published date: June 2009
Keywords: dense matter, gravitation, MHD, stars: neutron, stars: oscillations

Identifiers

Local EPrints ID: 151301
URI: https://eprints.soton.ac.uk/id/eprint/151301
ISSN: 0035-8711
PURE UUID: c4a0839d-420a-441d-9260-ed9aa949f766
ORCID for N. Andersson: ORCID iD orcid.org/0000-0001-8550-3843

Catalogue record

Date deposited: 10 May 2010 10:48
Last modified: 18 May 2019 00:37

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×