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Pulse propagation and shaping are investigated in photorefractive self-pumped phase conjugators in both
transmission- and reflection-grating regimes. The dispersion properties of self-pumped phase conjugators are
analyzed by taking into account both the grating dispersion and the angular dispersion. The complex transfer
functions are obtained by treating the crystal as a linear dispersive medium. We show that the pulse width
as a result of the self-pumped phase conjugation is much wider in the reflection regime than in the transmis-
sion regime. The experimental results are consistent with the results calculated for the transmission-grating
regime, indicating that this type grating is the dominant mechanism in the case of a femtosecond self-pumped
phase conjugator. © 2000 Optical Society of America [S0740-3224(00)00908-5]
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1. INTRODUCTION

Pulse propagation in dispersive media, especially in opti-
cal fibers, has been extensively studied and is governed by
the combined effects of group-velocity dispersion (GVD)
and nonlinear effects.!™® In the anomalous-dispersion
regime the combined effects of GVD and nonlinear effects
can give rise to the generation of optical solitons in a
fiber.* Recently, pulse propagation in periodic media
with strong dispersion in and around the stop band, such
as fiber gratings, has attracted considerable attention.’!
Winful'? proposed the application of a fiber grating for
correction of a nonlinear chirp to compress a pulse in a
long-transmission fiber grating. Russell'® pointed out
that gratings exhibit strong dispersion for the frequencies
close to the Bragg resonance. This dispersion is due to
the strong frequency dependence of the group velocity of
light propagating through a grating. Eggleton et al.*1°
reported the generation of Bragg solitons in optical fiber
gratings, which rely on the strong GVD provided by the
Bragg grating at the bandgap edge.

Propagation of light through gratings in photosensitive
materials (such as photorefractive crystals) has also at-
tracted a lot of research.'®1” However, the effect of dis-
persion on the incident pulse propagation has not been
sufficiently well modeled, for example, in configurations
such as the self-pumped phase conjugator. Since disper-
sion determines the temporal profile of the self-pumped
phase-conjugate pulse, all components contributing to the
magnitude of dispersion, such as grating dispersion, an-
gular dispersion, and the intrinsic dispersion of the mate-
rial, have to be taken into account.

Femtosecond self-pumped phase conjugation (SPPC) at
various wavelengths has been observed in BaTiOs. 1823
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But its temporal characteristics have not been investi-
gated yet. Although Yariv et al.?* proposed that the pro-
cess of nonlinear optical phase conjugation could be uti-
lized to compensate for channel dispersion, they discussed
only the phase conjugation achieved by four-wave mixing
in nondispersive media. In this paper we explore the ef-
fect of the dispersion in a self-pumped phase-conjugate
mirror (SPPCM) on the temporal characteristics of femto-
second SPPC, taking account of the grating dispersion
and the angular dispersion.

Photorefractive SPPC is generated by certain gratings
formed by the pump and the fanning beams. Owing to
the slow response time of a photorefractive crystal, for in-
stance, BaTiOj, the grating is formed by the accumulat-
ing effect of a number of pulses. In this paper we will
therefore consider only the steady-state case and take
into account the linear pulse compression and chirp com-
pensation.

Generally, transmission gratings, reflection gratings,
and 2% gratings may all coexist in SPPCM.2° There are
two typical configurations of SPPCM’s. In the first one, a
transmission grating dominates both a reflection grating
and a 2k grating.?® We will call it transmission-grating-
based SPPCM (TG-SPPCM) [see Fig. 1(a)l. In the other
configuration a reflection grating dominates a transmis-
sion grating. We will call it a reflection-grating-based
SPPCM (RG-SPPCM).2728  2k-grating based SPPCM
[see Fig. 1(b)] can be considered as a special case of the
RG-SPPCM.%

In Section 2 we analyze the dispersion properties of the
TG-SPPCM and the RG-SPPCM. In Section 3 we intro-
duce the complex transfer functions for the two SPPCM
configurations. In Section 4 the femtosecond SPPC’s

© 2000 Optical Society of America



Yang et al.

z z
A A
Ko, o2
Kz, O
02 _ & N
—— 61 X X
A 91
(c) Ky, o (d)
K1, Ot

Fig. 1. (a) Transmission-grating-based self-pumped phase con-
jugator; (b) reflection-grating-based self-pumped phase conjuga-
tor; (¢) transmission grating; (d) reflection grating. (K, ;) in-
dicate the incident beam; (K, ()5) indicate the diffracted beam;
6,9 are the incident and the diffracted angles. [; and / are the
thickness of grating and the distance between the crystal surface
and the grating, respectively. 6 is the incident angle in air.

from the TG-SPPCM and the RG-SPPCM are presented,
including the case of unchirped and chirped Gaussian
pulses. The final two sections (5 and 6) are devoted to
the detailed discussion of the results and conclusions.

2. DISPERSION OF SELF-PUMPED
PHASE-CONJUGATE MIRRORS

For simplicity we consider that a SPPCM consists of only
one grating, which is formed by the central-frequency
component of the pump and its fanning beam. The linear
refractive index n for a uniform grating is written as n
= ng + nycos Kz, where n is the average index of re-
fraction of the crystal; n; is the amplitude of the
refractive-index modulation; and K is the grating wave
number along the z axis.

The electric field of the incident (A;) and diffracted
(A,) waves can be written as

E = A expli(wt — ki x — k1,2)]

+ Agexpli(wt — kgx — kg,z)] + c.c., (1)
where kj, , (j = 1,2) are the x and the z components of
the wave vectors &;, respectively, and they are related by
[see Figs. 1(c) and 1(d)]

ij:kjcosej, kJZ=kJ51n91 (J: 1,2), (2)

where 6, 4 are the incident and the diffracted angles, re-
spectively.
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A. Dispersion of the Transmission-Grating-Based Self-
Pumped Phase-Conjugate Mirror

For the case of a transmission grating as shown in Fig.
1(c), the amplitudes A; and A, are assumed to be func-
tions of x only. In order to solve the two-beam coupling
equations, we apply the boundary condition that
requires

kz(Q)Sin 92(9) = kl sin 91 * K, (3)

where K = 27/A is the grating wave vector and A is the
grating period. k&, 61, and K are constants.

From Eq. (3) the first-order derivative of the diffracted
angle 60, with respect to the frequency () is

d 62 tan 62 d% 2

— = —. 4)
dQ ky dQ
The phase mismatch is given by
Aa(Q) = ky(Q)cos 05(Q) — k; cos 6. (5)

We expand A« at the center frequency of the pulse w; as
Aa(Q) = Z(a,(2 — o))" with the expansion coefficients
a, = (Unhd"Aa(Q)/dQ"|,, 4., where 0p is the Bragg
angle.

The phase-matching condition requires ¢y = 0. Using
Egs. (4) and (5) the first- and second-order coefficients of
Aa can be obtained:

1 dk,
al:cosﬂzd_ﬂwg’ ©)
1°YB
tan2 02 dk2 2 1 d2k2
“2 [_ng cos 0 (d_Q) " 2 cos 0y W} D

w;,0p

where k' = dk/dQ and k" = d?k/dQ? are the group veloc-
ity and the GVD of the crystal, respectively. The first-
and second-order dispersion of the grating, a; and a4, are
functions of the material dispersion. Just as material
dispersion does, grating dispersion makes the diffracted
beams (of different frequencies) have different group ve-
locities.

B. Dispersion of the Reflection-Grating-Based Self-
Pumped Phase-Conjugate Mirror

In the case of a reflection grating as shown in Fig. 1(d),
the amplitudes A; and A, are assumed to be functions of
z only. The boundary condition and phase mismatch?®°
are, respectively,

ko(Q)cos 05(Q) — kqcos 6; = 0, (8
AB(Q) = ky(Q)sin 6,(Q) — kysin by = K. (9)

Similarly to the case of the transmission grating, we ob-
tain

6, 1 dky
T T (10)
dQ k2 tan 02 dQ
1 dk,
= — 11
' sin b dQ| (1
@r,0p
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1 dk,y)\ 2 1 d%k,
Bs =|— (

—_— + —_—
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2k, sin 0, tan? 0, ,
@;.9B

12)

B1 and B, are the first- and second-order dispersion of the
reflection grating.

C. Angular Dispersion of Self-Pumped Phase-Conjugate
Mirrors

The angular dispersion is induced by the refraction at the
air—crystal interface, the diffraction from the gratings,
and the phase changes at the total internal surface reflec-
tions in SPPCM. The angular dispersion for a SPPCM is
given by>!

4\3 1;sin? ¢ (dno)
b, = _
2 2mc? | ng?(ng? — sin? 0) | dx
L A dno)z
+ —-1- ——
(2n0A cos 05)2 ng da

Iysin? 0 [dng)\?
e (13)

(ng cos 6)2

where [ is the distance between the grating and the crys-
tal surface (see Fig. 1), L is the pulse propagation dis-
tance inside the crystal, 0 is the incident angle in air, 03
is the Bragg angle of the grating inside the crystal, and /4
is the SPPC propagation distance in air. For Bragg
angles where 0 < 6z < 45°, by represents the angular
dispersion of the TG-SPPCM. For Bragg angles where
45° < 0 < 90°, b, represents the angular dispersion of
the RG-SPPCM.

3. COMPLEX TRANSFER FUNCTIONS OF
SELF-PUMPED PHASE-CONJUGATE
MIRRORS

We neglect the self-phase modulation and the cross-phase
modulation by treating the crystal as a linear dispersive
medium. The SPPCM can be represented by a complex
transfer function in the frequency domain® H(Q)
= R(Q)exp[—iV¥(Q))], where R(Q) is the amplitude re-
sponse and W(() is the phase response. W({)) can be ex-
panded as W(Q) = 23b,(Q — w)", where b,
= (1/nhHd*¥(Q)/dQ"|, and w; is the center frequency of
the pulse.

Using the coupled-mode theory and the nondepleted-
pump approximation, we can obtain the diffraction from
the transmission grating3’:

|,

R(Q) = R, T exp[ilAa(Q)/2]sinc[lAa(Q)/2], (14)

where R, is a complex constant and [ is the thickness of
the transmission grating. Near the phase-matching con-
dition, i.e., JAa(Q) < 1, we have

sinc[lAa(Q)/2] =~ exp{—(1/6)[[Aa(Q)/2]%}. (15)

We neglect the cubic and higher-order terms in the ex-
pansions, and the complex transfer function of the TG-
SPPCM is found to be
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lal

— — b0
2 1)

la2 b) 1
5 . (18

Similarly, the complex transfer function of the RG-
SPPCM is given by
By )

lﬁ—b” an
0

H'(Q) = R,T exp[ —iby + 1

l26¥12
24

+ 1

+1

HE(Q) = Ry® exp[ —iby + i

2

+i
24

4. FEMTOSECOND SELF-PUMPED PHASE
CONJUGATION WITH TRANSMISSION
AND REFLECTION GRATINGS

Once the transfer function is obtained, the time-
dependent SPPC field can be expressed as’?

1 £
E,(z,T) = Eff H(Q)E(0,Q)

4

X exp(—iQT)exp( —1 792)(19, (18)

where z is the pulse propagation distance inside the crys-
tal and E(0,()) is the Fourier transform of pump pulse
E0,T).

A. Self-Pumped Phase Conjugation of Unchirped
Gaussian Pulses from the Transmission-Grating-Based
Self-Pumped Phase-Conjugate Mirror
We consider pump pulses of unchirped Gaussian shape,!
e.g., E(0,T) = exp(—T?%2T,?) and in the frequency do-
main the incident field can be written as E(0,Q)
= 27T, exp(—T,20%2). Inserting Eq. (16) and E(0, Q)
into Eq. (18), the SPPC field is obtained:

Epc(29 T) = |Epc|exp[_(T + C[‘c)2/27112 + (f)(Z, T)]9

(19)

where |E, | is the amplitude of the SPPC field, T is a
constant that leads to a shift of the pulse on the time axis,
T is the half-width (at the 1/e intensity point), and ¢ is
the time-dependent phase.

Owing to the dispersion of the SPPCM, although the
SPPC pulse broadens, it still maintains the Gaussian
shape. The broadening factor of the SPPC pulse width is

given by
T, RPRARE: 21 1/2
— =1+ —=] {1+ .
T, 1272

(20)

The time-dependent phase of the SPPC field is given by

2b, + k"z — lay
To2(1 + 12a,%/12T %)
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(2by + k"z — lag)(T + by — lay/2)?
T =
¢z 1) Paf by + k'z — lay)?
2To* [ 1 + 5|+ 5
12T, T,
1 (2by + k"2 — Lay)/Ty?
— —tan"! o — by.
2 l aq
1+ ——
127T,2
(21)
The dispersion-induced chirp is given by
&d) (2b2 + R’z — la2)(T + bl - la1/2)
ST a,? 2b, + k"2 — lay\ 2]’
To*l| 1 + 5| + 5
(22)

B. Self-Pumped Phase Conjugation of Chirped
Gaussian Pulses from the Transmission-Grating-Based
Self-Pumped Phase-Conjugate Mirror
For the case of linearly chirped Gaussian pulses, the inci-
dent field can be written as' E(0,T) = exp[—(1
+ iC)T%2Ty?], where C is a chirp parameter. The
pump pulse is upchirped if C > 0 and downchirped if C
< 0. The unchirped pulses correspond to C = 0.1

The broadening factor of the SPPC pulse is given by

T1 1 l2a12(1 + CZ) 2
N 1 T
Ty 1+ ¢? 12T°
[2by + k"2 — Lay — CTy%(1 + C?%))? 2
+
[To%/(1 + CHIP[1 + 1%2a;%(1 + C?)/12T2)?

(23)

The time-dependent phase of the SPPC field is
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+ C?) > 0, the SPPC pulse is upchirped (8o > 0), while
the opposite occurs when 2b, + k"2 — lay — CT2/(1
+ C?%) < 0. The SPPC pulse becomes transform limited
if 26y + k"2 — lag — CT2/(1 + C?) = 0.

Following the procedures similar to the case of the TG-
SPPCM, we can obtain the broadening factors, the time-
dependent phases, and the dispersion-induced chirps of
the SPPC pulses from the RG-SPPCM. From Egs. (16)
and (17) we note that the transfer function of the RG-
SPPCM has the same form as that of the TG-SPPCM.
We can apply the results of the TG-SPPCM to the RG-
SPPCM with «; replaced by B;(i = 1,2).

5. RESULTS

The chromatic dispersion properties of BaTiO5 are well
known, and its refractive index is approximated by the
Sellmeier equation.?? Since only the extraordinarily po-
larized light generates SPPC’s in most photorefractive
crystals, in the following calculations we consider the ex-
traordinary refractive index and its derivatives with re-
spect to the frequency. The pump pulse width is as-
sumed as Ty = 100fs. The thickness of the gratings is
[ = 15 um, and the propagation distance in the crystal is
z = 10mm. The incident angle is § = 45° in air.
Figure 2(a) shows the first-order dispersion &', «;, and
B as functions of wavelength. The Bragg angle for the
TG-SPPCM is chosen as 260 = 45°, and the Bragg angle
for the RG-SPPCM is 265 = 120°. Figure 2(b) shows a;
and B; versus the Bragg angle at two wavelengths: 450
and 800 nm. Since we assume that the pump wave-
length is fixed, the grating period changes accordingly as
the Bragg angle changes. We note that as the angle in-
creases, the first-order dispersion of the transmission
grating increases, whereas the opposite occurs for the re-

[2by + k"z — lag — CT%/(1 + CHUT + by — Lay/2)?

¢z, T) =

1 26y + k"2 — lay - CTo%(1 + C?)

— _t -
an To(1 + C?) + 12a,%/12

and the dispersion-induced chirp is

1
2 [ToH(1 + C2) + 12a,2/12]% + [2by + k"2 — lag — CT2/(1 + C?)T?

+ const, (24)

[2by + k"2 — lag — CTy% (1 + COHUT + by — lay/2)

Sw

From Egs. (21) and (24) we note that the phase of the
SPPC field depends on time, which implies that the in-
stantaneous frequency of the SPPC pulse differs across
the pulse from the central frequency w;. The SPPC
pulse becomes linearly chirped even when the pump is
unchirped. The sign of the linear chirp depends on the
sign of the net dispersion of the self-pumped phase conju-
gator. For an unchirped pump pulse, when 25, + k"z
— lay > 0, the SPPC pulse is upchirped (o > 0), while
the opposite occurs when 2by + k"z — lay < 0.} For the
chirped pump pulse, when 2b, + k"2 — lay — CT2/(1

T[T + C%) + 1?12 + [2by + k"2 — lag — CTo(1 + C?) 2

(25)

flection grating.

Figure 3(a) shows the second-order dispersion k", as,
and B, versus wavelength for four grating periods. Fig-
ure 3(b) shows a9 and By as functions of the Bragg angle
for two wavelengths. We note that @y, and B, are larger
at 450 nm than at 800 nm, indicating a larger dispersion
at a shorter wavelength. This is due to the material dis-
persion that is higher at shorter wavelengths. a5 and B4
equal zero at appropriate Bragg angles for both wave-
lengths.

Figures 4 and 5 show the broadening factor of the
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Fig. 2. (a) First-order dispersion k', «;, and B; versus the
wavelength. Solid, dashed, and dotted curves represent &', a4,
and B;, respectively. The Bragg angles are 22.5° and 60° for
the transmission and the reflection gratings, respectively. (b) a;
and B; versus the Bragg angle at 450 and 800 nm.

SPPC pulse from the TG-SPPCM versus the grating pe-
riod for chirped pulses at 450 and 800 nm, respectively.
We note that the SPPC pulse of the unchirped Gaussian
pulse (C = 0) has a smaller broadening factor than the
SPPC’s of chirped pulses (C = 1 and C = —1) have at
450 nm. The SPPC pulses broaden for all three values of
C at 450 nm. However, the SPPC pulses at 800 nm could
be compressed for some grating periods in the case of
chirped pump pulses. For example, the SPPC pulses are
compressed in the regime of 485nm < A < 800 nm for
C=—-1and A > 825nm for C = 1.

As mentioned above, all three components of dispersion
(grating, angular, and material) contribute to its value.
We showed that for the SPPC configuration the angular
dispersion is negative, while the grating dispersion can be
either positive or negative, depending on the experimen-
tal conditions. The GVD of a photorefractive crystal is
positive. When the GVD of the crystal is canceled by the
angular dispersion, then the grating dispersion yields a
SPPC pulse with a minimum width. In the
transmission-grating geometry and with the pump being
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an unchirped Gaussian pulse, the SPPC pulse width be-

comes minimum at 2b, + k"z — lag = 0. This mini-
mum width is given by
T,.™ = (1 + 12a,%/12T*) YT, (26)

For a chirped Gaussian pulse the SPPC pulse width be-
comes minimum at 2b, + k"z — lay — CTy2/(1 + C?)
= 0 and is given by

T,.™™ = [1 + 12a,%(1 + C?)/12T*1Y*Ty /N1 + C2.
27)

The SPPC pulse becomes, therefore, transform limited
and compressed compared with the pump pulse. The
minimum pulse widths of SPPC’s from the RG-SPPCM
have the same forms as Eqgs. (26) and (27) with «; re-
placed by B;.

We note that the minimum pulse width of the SPPC of
the unchirped Gaussian pulse is larger than the pump
pulse width. However, the minimum pulse width of the
SPPC of chirped Gaussian pulses may be smaller than
the pump pulse width. From Egs. (26) and (27) we also
note that the minimum SPPC width is determined by the
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Fig. 3. (a) Second-order dispersion k", ay, and By versus the
wavelength for four grating periods. (b) The second-order dis-
persion a4y and B, versus Bragg angle for two wavelengths. The
second-order dispersion of the grating changes sign at the zero-
dispersion angle 6, .
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Fig. 4. Broadening factor of the SPPC from the TG-SPPCM at
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The SPPC’s broaden for the three cases.
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Fig. 5. Broadening factor of the SPPC from the TG-SPPCM at
800 nm versus the grating period. Solid, dashed, and dotted
curves represent the chirp parameter C = 0, —1, 1, respectively.
The SPPC is compressed in the regimes of 485nm < A
< 800nm for C = —1 and A > 825nm for C = 1.
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Fig. 6. Broadening factor of the SPPC from the 2%-grating ver-

sus the wavelength for three chirp parameters. The period of
the 2% grating relates to the wavelength as A = \2n,.
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Fig. 7. Pulse shapes of SPPC’s from the TG-SPPCM at 450 and
800 nm for two chirp parameters. The solid curve represents a
pump pulse of unchirped Gaussian shape. Dashed (R) and
dashed-dotted (R) curves are the SPPC pulse shapes at 800 nm
for C = 0 and C = —1, respectively. Dotted (B) and dashed-
dotted-dotted (B) curves are the SPPC pulse shapes at 450 nm
for C = 0 and C = —1, respectively. The SPPC pulse at 800 nm
with C = —1 is compressed.
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Fig. 8. Pulse shapes of SPPC from 2k-grating-based SPPCM.

Solid, dashed, and dotted curves represent the pump pulse,
SPPC at 800 nm, and SPPC at 450 nm, respectively.

first-order dispersion of the grating. The diffraction from
the grating rapidly varies with the frequency detuning,
which reduces the effective bandwidth of the diffracted
pulses. This reduction of bandwidth of diffracted pulses
results in the temporal broadening of the SPPC pulse.

Figure 6 shows the broadening factors of the SPPC
pulses from the 2k-grating based SPPCM versus wave-
length. The grating period relates to wavelength as A
= N2ny. Comparing the results from Figs. 4, 5, and 6,
we can see that the broadening factor in the 2% grating
based SPPCM is much larger than that of the TG-
SPPCM.

Compared with the transmission grating, the 2% grat-
ing exhibits large angular dispersion because of its small
grating period. The net dispersion of 2k-grating based
SPPCM is larger than that of the transmission grating,
which leads to the larger broadening factors of the SPPC
pulse shown in Fig. 6.
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As examples, we show the pulse shapes of the SPPC’s
from the TG-SPPCM and the 2%-grating based SPPCM in
Figs. 7 and 8, respectively. Figure 7 shows the SPPC
pulse shapes of the unchirped and chirped Gaussian
pump pulses from the TG-SPPCM at 450 and 800 nm.
The grating period is assumed as A = 580 nm for the two
pump wavelengths. For unchirped Gaussian pump
pulses (C = 0) their SPPC pulses are broadened. The
broadening factors are 1.16 and 3.88 for 800 and 450 nm,
respectively. When the 800-nm pump is downchirped
(C = —1), the SPPC pulse is compressed with a compres-
sion factor of 0.8. However, for the chirped 450-nm
pulse, broadening with a factor of 4.34 occurs.

Figure 8 shows the pulse shapes of the SPPC’s from the
2k-grating based SPPCM at 450 and 800 nm. The
broadening factors are 9.42 and 10.15 for 800 and 450 nm,
respectively.

6. DISCUSSION AND CONCLUSIONS

From Fig. 5 we note that the second-order dispersion of
the grating changes sign as the Bragg angle changes.
The grating exhibits zero second-order dispersion when
the Bragg angle satisfies

0p7 = tan '\(d2k/dO2)/[k(dR/dOQ)?] (28)

for the transmission grating and

OpF = cot 1\(d%k/dO2)/[k(dk/dQ)?] (29)

for the reflection grating.

The wavelength at which the GVD equals zero is re-
ferred to as the zero-dispersion wavelength in fiber
optics.! Similarly we may call the angle at which the
grating shows zero second-order dispersion as zero-
dispersion angle 6p. Figure 9 shows 6, versus wave-
length for the transmission and the reflection gratings.
For Bragg angles such that 6 < 6,7, @y > 0, the trans-
mission grating exhibits normal dispersion. For Bragg
angles such that 45° < 9 < 0%, By > 0, the reflection
grating exhibits normal dispersion. In the normal-
dispersion regime the higher-frequency components of an
optical pulse travels slower than its lower frequency com-
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- - - - Reflection

Zero-Dispersion Angle (deg)
S
1

20

T T T T T T T T T T ¥ T
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Fig. 9. Zero-dispersion angle versus wavelength. Solid and
dashed curves represent the transmission grating and the reflec-
tion grating, respectively.
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ponents. By contrast, the opposite occurs in the
anomalous-dispersion regime in which ay < 0(B5 < 0).

In all the calculations presented here we neglected the
third and higher orders. If we, however, consider them
here in the transmission-grating case, the ratio of the
third- and second-order term in the expansion of A« is
given by?

as(Q — wl)S‘ sin? ¢ [ dk
as(Q) — wy) ‘ k cos? 6\ dQ
(dk/AQ)2/E
X + —
sin® 6(dk/dQ)?/k cos® 6 — (d2k/dQ?)

X |Awl|, (30)

where |Q — ;| has been approximated by the spectral
width of the pulse Aw; and |Aw;| = (2me)|AN|/N2. We
note that both the pulse characteristics (relative spectral
width) and the crystal parameters determine the value of
Rp. For 100-fs pulses we find that Rp ~ 0.05 and 0.03
at 450 and 800 nm, respectively. It is therefore justifi-
able to neglect the third- and higher-order dispersion.
However, for 20-fs pulses, Rp ~ 0.3 and 0.14 at 450 and
800 nm, respectively. The analysis of short (<20-fs) fem-
tosecond SPPC’s requires therefore inclusion of both the
third- and the higher-order dispersion in expanding A«
and AB. This correction is also necessary when the
Bragg angle approaches the zero-dispersion angle. The
valid regime for the RG- and 2k-grating-based SPPCM
can be shown as the same as that for the TG-SPPCM.

In conclusion, we have studied the temporal character-
istics of phase-conjugate pulse generated in self-pumped
phase-conjugate geometries with either transmission- or
reflection-grating dominated regimes. We showed that
the second-order dispersion of the grating and the angu-
lar dispersion combine to compensate for the intrinsic dis-
persion of the crystal. When the compensation is com-
plete, the SPPC pulse has a minimum pulse width, which
is determined by the first-order dispersion of the grating.
The SPPC of chirped pulse becomes transform limited
and can be compressed compared with the pump pulse.
The SPPC pulses are upchirped (downchirped) when the
overall dispersion of the SPPCM is positive (negative).
Our results also show that regions of anomalous disper-
sion exist for transmission gratings when the Bragg angle
exceeds 0,7(0,T < 6 < 45°) and for reflection gratings
when 45° < 0 < 6p%. We also demonstrated that for
short (<20-fs) femtosecond pulses the present method
should include the cubic- and the higher-order dispersion
terms.

Phase conjugation has a range of applications in optical
information processing and midband dispersion compen-
sation in long-haul optical-fiber transmission. SPPC
with short pulses in photorefractive materials has been
successfully used for dynamic pulse holography and
storage.?®>3* The simple and analytical approach we pro-
vided here can be used in these applications to aid the
steady-state and linear analysis of temporal characteris-
tics of SPPC.
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