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ABSTRACT

The Bayesian approach has a number of attractiopepties for forecasting uncertainty which have tgebe fully

explored in the study of future population charlgethis paper, we apply some simple Bayesian tietees models to
obtain future population estimates with uncertafiotyEngland and Wales. Uncertainty in model chagcecorporated
through Bayesian model averaging techniques. Tédtieg predictive distributions from Bayesian foasting models
have two main advantages over those obtained usarg traditional stochastic models. First, uncattas in the data,
the model parameters and model choice are expliggbresented using probability distributions. Aseault, more
realistic probabilistic population forecasts ardaiied. Second, Bayesian models formally allowitte®rporation of
expert opinion, including uncertainty, into the doast. We conclude by discussing our results etiogl to classical
time series methods and existing cohort comporgithates.

1. INTRODUCTION

This paper explores the use of Bayesian methodgdpulation forecasting. The main rationale fosthaper is rooted
in two philosophical debates of vital importance d@mographers. The first one concerns the needhéorporating

uncertainty in population forecasts, advocated lyyrauthors since the 1980s (e.g. Alho and Spet68§; Keyfitz,

1991; Lee 1998), as opposed to deterministic stenaojections with a (near) zero probability oflieation. The
second debate relates to the issue of simplicitguge complexity in demographic forecasting (e.gNdwen et al.,

1995).

We believe there are three important consideratibas could improve our understanding about pomraforecasts
and the various sources of uncertainty about thEimst, the Bayesian approach offers an explicithezent and

transparent mechanism to include uncertainty indh&, parameters of the model and the model ,itbglfusing

probability distributions. Second, it allows theclusion of expert judgements, including uncertairityo the model

framework. Third, the predictive distributions sippgfollow from the probabilistic model applied. As result,

probabilistic population forecasts, with more releaand coherent estimates of predictive distringj can be obtained.
Together, these have the potential to improve te@asurement of uncertainty in forecasts, and thysawe our

potential for planning and understanding populatibange.

To investigate the potential of a Bayesian apprpaghapply time series models to prepare foreagst® 2033 based
on a simple data set of population totals. Uncetyain model choice is incorporated through Bayesmodel

averaging techniques. The results and their levelmcertainty are compared with the traditionalginentist methods
of time series analysis and model selection. Furtlvatrasts are also made against the Office ofoNalt Statistics
(ONS) national population projections which relydeterministic scenarios and cohort component noetlogies.

! This research is funded by ESRC Grant number RESS28-0001. The Centre for Population Change dsra jnitiative between the University of
Southampton and a consortium of Scottish Univesith partnership with the Office for National &ttts (ONS) and the General Register Office
for Scotland (GROS). The findings, interpretaticas] conclusions expressed in this paper are bntfirese of the author(s) and should not be
attributed in any manner to ONS or GROS.

2 Contact author: ESRC Centre for Population Chatdgéersity of Southampton, Southampton SO17 1Buted Kingdom; email
G.J.Abel@soton.ac.uk.



The paper is structured as follows. In the nextisecwe introduce our data, a time series of dataEngland and
Wales from 1841 to 2007. In Section 3 we introdthee notation, and describe the models used insthidy. These
include autoregression models for time series, Blagesian inference used for parameter calculatioth @odel
averaging, which is applied to account for modedartainty and to provide a more robust set of ezt In Section 4,
we apply the models of the previous section to dase the populations in England and Wales from 2@08033.
Section 5 compares these empirical forecasts Wwalotitcome from two other methods, namely tradiidrequentist
methods of time series analysis and the officiedetministic population projections for England aNdles prepared by
the ONS. Finally, we end the paper with a summarg discussion, which include suggestions for extendhe
proposed approach to more complex population modehese include, for example, models to account for
heterogeneity found in the historical data and ivatiate models for time series of birth, death amidration rates.

2. DATA

To illustrate a Bayesian approach to modelling pajon data, we focus on the simplest case, i.¢ima series of
population estimates obtained from the Human Mibyt&atabase (2009) for England and Wales from 1®42007.
The mid-year population totals (including militgsgrsonnel) are presented in the top panel of Figure

The England and Wales population totals exhibitsteady increase over time, rising from 15.8 millio 1841 to 53.9
million in 2007. A slight decrease is noticeablenfr the effects of the First World War and the 1948uenza
pandemic. Also noticeable is the slower increas@énpopulation during the late 1970s and early0$98 result of net
emigration and a slow rate of natural populaticoréase.

The features of population change are more evidéen the rates of growth, plotted in the seconcepahFigure 1,
are considered. In addition, a number of other attaristics become apparent. During the first tlifdhe series the
population grew at higher rates than any of theaiaing time period. This was predominantly duete declining
mortality occurring substantially before a declinefertility, which remained at pre-industrial ldgefor much of this
period. Between the two wars the rate of growthaimed low in comparison with the later half of &#®th century and
early 20th century. This was partly driven by loawtility levels being reached through the econod@pression and a
change in sociological factors. After the Secondrid/@Var population growth rates increased as altresuerratic
fluctuations in fertility. This occurred initiallshrough a short lived baby boom associated withalslisation followed
by a more substantial increase in fertility durithg 1950s and early 1960s. In the late 1970s arlg £880s, the
previously mentioned low (and occasionally negatlegels of growth took place followed by a riserétent decades
driven by net immigration and increased fertiligvéls. For a detailed discussion of England’s patput history, see
Coleman and Salt (1992) and Hinde (2003).



Figure 1: England and Wales Population Data, 183172
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3. MODELS

Let p; be the population size aandt =1,...,T represent an uninterrupted series of time pointghath p; is observed.
The problem of population forecasting is to obtegtimates ofy, for one of more values df> T. Furthermore, the
utility of the forecasts is enhanced when assodiateasures of uncertainty are provided.

In order to modep, we first derive the time series of populationréroents; where
pt+1 = (1+ rt) pt . (l)

However, experience suggests (Chatfield p26, 2€a)if we are to use models which assume staiignéris more
appropriate to model changesin

Yo =h —ha. 2

For our data, time series plotsrpfindy; are presented in the second and third panelsectgeply, of Figure 1. In the
following subsections we introduce autoregressiiR)(models fory;.



3.1 Autoregression Models

AR models have been used in the demographic cotdetdrecast population (e.g. Saboia (1974), Ardgb(k987),
Pflaumer (1992), Alho and Spencer (2005)). An ARdel®f ordemp, denoted ARY), is defined as

p
Y =D A 7. 3)
k=1

where z are independent observations from a probabilistritiution with zero mean and constant varianée A
slightly more flexible model, which we shall usésaallows for a non-zero mean fgrand is defined as

p
Ve =+ AV — )+ 2, . 4)
k=1

This model fory; implies a mean increase ipnof 4 each year. For a fully-specified probability mqgdek need to
assume a distribution far. Typically, a normal distribution is assumed.

3.2 Bayesian Inference

In Bayesian inference, uncertainty about the (maltate) parametef of a statistical model is described by its
posterior probability distribution given observedtaly;, =(Yy,--¥Yr) . The probability density function of; is

obtained by using Bayes Theorem:
f (Y 10)f(6)
F(Ym)

where f (Y, |6) is the likelihood function and is defined by thevdel, f (6) is the prior distribution for and

F@1Ym) = : )

f(y{T}) is a normalising constant. The prior distributiéf&) specifies the uncertainty abofitprior to observing
any data.

Forecasting or prediction is particularly naturaki Bayesian framework. Uncertainty about the kefdture values of
v (for t =T +1,...,T + K) is described by the joint predictive probabiliigtribution

K
FYrer Ve | Vi) =] 16 Y[ f O [ Vrac2,0)d. (6)

Note that the product term represents the jointiptive distribution in the case that paramefers known. The
Bayesian predictive distribution simply averagegg@grates) this with respect to the posterior podita distribution
for 8. Hence, uncertainty abo@tn light of the observed data is fully integrated.

In a Bayesian analysis we obtain forecasts andceged measures of uncertainty by calculating nmaigprobability

distributions for quantities of interest by inteting the posterior distribution in (5) or the pretilre distribution in (6).

Performing these integrations analytically is tyhiig not possible for realistically complex modedsch as those
described above. Historically, this has preventghagraphers and others from taking advantages ygdtan methods
for statistical inference. Recent developments aydsian computation have focussed on Markov chaint& Carlo

(MCMC) generation of samples from distributions Isws (5) or (6); see Gelman et al. (2004) for tet®nce a
sample has been obtained from a joint distributiben a sample from a distribution of any comporrfunction of

components is readily available. To generate sasripten the posterior and predictive distributiontiis paper, we
used an MCMC sampling approach implemented usieg¥mBUGS software (Lunn et.al. 2000).

3.3 Model Uncertainty

In practical population forecasting, it is unre@digor the analyst to be sure that any particslatistical model is the
right one upon which to base their forecasts. Hetheestatistical methodology adapted should bevdrieh allows for

model uncertainty. Furthermore, we consider it eSakthat the measures of uncertainty associatédl any forecast
should incorporate both the uncertainty concernirggmodel and the uncertainty concerning the patens@f each
model. In this paper, model uncertainty is diredtiyegrated with parameter uncertainty into a sngtedictive

probability distribution.



Formally, letm=1,...,M index the models under consideration anddjetrepresent the parameter associated with
modelm. Note that different models may have parameterdiftérent dimensionality. For example, the AR(1pdel
with non-zero mean has a three-dimensional paramgte¢,, o). The likelihood function for modeim

is f (Yery 16,, M), the prior distribution fofy, is f (6,, | M) and the posterior distribution is
_ F Yy 16 m) £ (6, M)

£ | Yiry M) = Oy, 1) , )

wheref (Y1, [m) is a normalising constant, known as the margikelihood for modem and is given by

{1 = [ 180 M (Yrox 16, )6 @

Prior uncertainty about models is encapsulated lojsarete probability distributiorf,(m), m=1,...,M . The prior
model probabilities are all usually given the saraies,1/M .

The posterior probability distribution fon given observed datgr, is obtained by using Bayes Theorem as follows:
F(Ymy M) F(m)
f(ym)

Hence, the posterior model probability for any madeés proportional to the product of the prior mogedbability and
the marginal likelihood. Therefore, efficient contgtion of marginal likelihoods is essential for Baian inference
under model uncertainty. See, for example, thoserdeed in O'Hagan and Forster (2004). In our imm@etation, we
use a bridge sampler (Meng and Wong, 1996).

f(m]yq) = )

Finally, to obtain a predictive distribution for paation forecasts in the presence of model uniceyta(6) is extended
to

M
f(yT+1l"'lyT+K | y{T}) = Z f(ml y{T})f (yT+11"'!yT+K | y{T}lm)
=t which is the

M K
=2 (Ml Y[ F(6n ym,mﬂ F(Yrok | Yrokess O M) A6y,
m=1 =

average of predictive distributions for individuabdels weighted by their posterior probabilitifsim | Y+, ) .

4. FORECASTS

In this section, we present parameter estimate® forange of individual AR models. In addition, theedictive
probability distributions from these models are vided in order to gain a better understanding & #ffect of
expanding the dimensions @bn future population growth rates. These individoeecasts are compared in the second
subsection with a single forecast that accountsofor uncertainty in model choice. Finally, we comgpaur model
averaged forecast against those produced by oteansnnamely classical time series methods andricobimponent
methods used by ONS.

4.1 Individual Models

A set of nine models were considered for the déffieed population growth ratg, introduced in (2) and presented in
the bottom panel of Figure 1. These consist ohdependent normal (IN) model and eight autoregvessiodels (with
non-zero means), increasing in order from AR(IAR(8). This range of models was selected in ordeepresent all
possible representations of autoregressive progéisaemight adequately describe the differencekeroverall growth
rate series. As we have no previous knowledge attmunhature of the parameters in each model werassinon-

informative prior distributionsy ~ N(O, 100),¢, ~ N(O, 1) ands ~ Uniform(0, 100). An MCMC sample of 10,000
observations was obtained from the posterior thistion for each model.

In a Bayesian analysis, marginal posterior distiins completely describe the uncertainty abouheaodel parameter
given the observed data. These are typically suisetdiusing posterior means (as parameter estimantesjposterior
standard deviations (as measures of uncertaintyg. josterior means and standard deviations fop#nameters of
each of the nine models are presented in TablestimBtes of: tend to be centred on zero with much lower stashdar
deviations than their prior distributions. This ti@& was also true for the estimatessoin all models, the posterior

5



means of¢, at lower values ok were below zero, indicating negative autocorretatfor their respective lags.

Estimates ofg¢, , wherek > 5 tend to be close to zero, signifying thatalssociation betweey andy:., becomes weak
at larger values dk.

Table 1: Posterior Means and Standard DeviatiomMdaafel Parameters from MCMC Simulations and Model
Comparisons Statistics.

fmlygr
m u o o 2 2 4 s 6 o7 g AIC BIC
0.002
0.000 15 h j 0.035
IN 03 (0,00 1558 1556. ..
(0.00 01'2) 75 65
017)
0.002
AR 9000 13 0.153 p j 0.018
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(0.00 012) (0.07 05 84
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2 04 (0.00 3 75 1568 1558. 7
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3) 06 (0.00 21 89 21 1575 1560. (o
(0.00 01'1) (0.07 (0.07 (0.07 29 87
016) 692) 668) 801)
A 0-000 8'2002 0276 0315 0257 0.132 ] - 0174
4 07 (0.00 00 48 96 3 1576 1558. 5}
(0.00 01'1) (0.08 (0.07 (0.08 (0.07 61 08
016) 036) 917) 042) 963)
AR 0-000 86002 0.297 0.356 0.306 0.177 0.156 - - 0.097
5) 08 (0.00 26 71 94 62 58 1578 1566.
(0.00 01'1) (0.08 (0.08 (0.08 (0.08 (0.08 81 18
016) 085) 206) 257) 225) 042)
AR 0-000 86002 0.307 0.369 0.328 0.203 0.177 0.068 - - 0.011
©) 09 (0.00 82 11 42 12 20 92 1577 1550. 5
(0.00 01'1) (0.08 (0.08 (0.08 (0.08 (0.08 (0.08 63 89
016) 120) 393) 695) 828) 274) 115)
Ar  0:000 86002 0.303 0.357 0.316 0.182 0.154 0.049 2'9060 - - 0.001
@) 09 (0.00 33 41 24 07 03 24 (0.08 1576 1545. )
(0.00 01'1) (0.08 (0.08 (0.08 (0.09 (0.09 (0.08 00'2) 20 35
016) 168) 478) 925) 171) 028) 455)

AR 0-000 8'0002 0.299 0.362 0.325 0.192 0.173 0.072 89043 0.062 - - 0.000
®) 09 (0.00 60 79 25 99 34 20 (0.08 96 1574 1543 7
(0.00 01'1) (0.08 (0.08 (0.08 (0.09 (0.09 (0.09 57'9) (0.08 .87 992
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Figure 2: Posterior Predictive Plots of Populat@nowth Rates
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Posterior predictive plots of the forecasteétom all nine models are illustrated in FigureThese are obtained from
the forecast of; by rearranging (2) for each set of iterates amdimingr,os = 0.00609 as in the data. Each shade of
the forecasted fan represents a single perceritileecestimated posterior density, where darkeatlsd correspond to
most central values and the lighter shades taattedf the distribution. Contour lines are alsotf@d at each decile and
the £ and 98' percentile. Forecasts from the simple independemmal model provide a far greater level of
uncertainty of future values. As the order of the fodels is expanded the posterior predictive idigion become

comparatively tighter. As noted previousky, for k> 5 are close to zero in the higher order AR medhis results in

similar posterior predictive distribution for thegher order models, whereby the increase in thebeurof lagged terms
no longer substantially reduces the width of thedptive distribution.

4.2 Weighted Model

The bridge sampler was used to calculate normglisionstants for each model, from which the postemodel
probabilitiesf (M| y;,) in Table 1 can be easily derived. These resutiicéte that over half of the probability rests

on the AR(3) model. The next most likely modelhie AR(4) model, followed by the AR(2) and AR(5) netsl Higher
ordered models appear very unlikely, as do the imasit models, with model probabilities below 0.05.

The predicted probability distribution ofaveraged over all models, given the model proliegsi] are presented in the
left hand panel of Figure 3. Because a sample fraposterior of predicted probability distributioheach individual
model is generated in the analysis, calculation tleé averaged predicted probability distribution tivial.
Unsurprisingly this plot bares a large resemblata@ehe forecasts in Figure 2 which had large pastemodel
probabilities. On the right hand panel of Figurev® also present the resulting population forecastfthe predicted
probability distribution ofr,. Our results provide a median predicted populatb51.9 million in 2033. Numerous
measures of uncertainty are also available, fomgia in 2033 the Z0percentile is 56.6 million and the ‘8percentile

is 67.7 million.



4.3 Comparison with Alternate Methods

For comparative purposes, traditional frequeniisétseries models corresponding to the nine mditdd above were
estimated using the arima function in R 2.10.1 @&opment Core Team, 2010). Estimategzpfin all models were

within 0.1 of the mean values presented in Tabl&4timates from the arima functionobinds were also very similar
(to a higher degree of accuracy) to those estimatgdg the Bayesian methodology. The close corredguces
between parameter estimates are due to the rel@ndata, rather than the (uninformative) prionsthie calculation of
posterior distributions.

Model summary statistics from the models fittedRirare also provided in Table 1. The Akaike InforiomtCriteria
(AIC) of Akaike (1973) is commonly used for modelection for time series methods (Chatfield p25804). This
criteria favoured the AR(5) model, as opposed thaeh probabilities calculated using the bridge sampvhich
provided this model with a probability of 0.097.nde, if we were to use the AIC as an alternativéhoe for model
selection in a frequentist setting, only a singledel, with an estimated low probability, would belested. The
Bayesian Information Criteria (BIC) of Schwarz (87 which penalises the inclusion of extra paransetaore
severely, is also presented in Table 1. This caitelosely resembles the posterior model prob#sliand suggests
AR(3) as a suitable model.

Figure 3: Joint Predicted Probability Distributiohthe Model Averaged Growth Rates (left) and RésglPopulation
Forecast in Millions (right).
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In Figure 4 we compare the results of the choica single model, based on the AIC, against our inaderaged
forecast. In left hand panel the mean forecast tbm the AR(5) model is displayed using the dogtdzd line. This
was calculated using the predict.arima functioRinin addition, the 60% prediction intervals arsogblotted alongside
the 2¢", 50" and 8¢ percentiles of model averaged density (solid in€omparisons of the two measures of central
tendency are very similar. However, the AR(5) mogebvides a smaller amount of uncertainty, fromhbtte
parameter estimation and model selection procebgnwsing traditional frequentist time series meghoThese
similarities and differences are also partly refielcin the forecasts of the total population plbte the right hand
panel of Figure 4. The mean forecasted populatorttfe AR(5) model is 61.4 million in 2033, whilste upper and
lower limits for the 60% prediction intervals aré.8 and 66.3 million. The closeness in the lowerdjmtion interval
with the 28" percentile is due to the lower forecasted valules,dncluding a larger fall in the earlier years bt
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forecast. This early drop results in subsequentieslof lower prediction interval qf to remain below the 30
percentile until 2028.

Figure 4. Comparison of Alternative Future Growidit€s (left) and Population in Millions (right).
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In the United Kingdom, the ONS prepare a set ofgmted total populations estimated using a cohorhponent
methodology under a range of deterministic scesatiothis paper we focus on three variants (ppialcihigh and low)
published in the latest set of projections for BEngland Wales (ONS, 2009). All three variants ased on the sets of
demographic trend-based assumptions for futurdifigrimortality and net migration. The principabsant relies on
assumptions considered to best reflect demographiterns at the time they were adopted. The highldw)
population variant assumes a combination of highlda) fertility, life expectancy and net migratiomhey are
intended to provide users with a better understanadf future uncertainty in population change. thitee variants of
population totals are displayed on the right haadep in Figure 4. On the left hand panel are théved values of:.
The central, dashed line represents the principgeptions, whilst the upper and lower dashed tiggresent the high
and low population variants respectively. The parnelFigure 4 illustrate a number of differencesneen the ONS
principal projection and that of our model averaf@écasts. First, the uncertainty in the ONS rapresented by their
high and low variants, is far smaller than thatoof model averaged forecasts at all points of ti®econd, the
uncertainty in the rate of population growth of thBIS projection does not increase substantially twee. Third, the
ONS principal population projection in 2033 of 63ufllion is slightly higher than our model averageedian (61.9
million), despite a reduction in the rate towar@ timedian of the model averaged forecast towardsetiteof the
horizon. This feature is caused by an assumptidmigifer growth rates throughout the future perigidally, the high
and low variants in the projected population totajsthe ONS lie within the 81land 3é' percentiles of the posterior
predictive distribution.



5.  CONCLUSION

In this paper we have demonstrated the use of Bayéisne series methods for the forecasting offtinere population
of England and Wales using a historical seriesagduation growth rates. The forecasts have explieitiowed for
uncertainties in the data, parameters of the madetlthe model itself by using probability distrilouts, which are fully
represented in the final probabilistic populatioretast.

All of the simple Bayesian time series models assiistationarity in thg,. However, the bottom panel of Figure 3
indicates that there is some degree of volatilityhe differenced population growth rates. More plax time series
models exist, such as stochastic volatility modbkt allow the variance of to be time-dependent. Such models
replaces” in (4) with 52, where a time series model, typically a AR(1) jesx; is then specified for lagf. Accounting
for this heterogeneity will allow for forecastsadjust to the level of volatility estimated in tjuenp off period. Further
extensions to the modelling of the growth rate akso be explored by decomposingo demographic components of
population change. Separate series of births, deatld migration can be modelled as a multivariategss using
Bayesian Vector Autoregressive (VAR) models. Weanently investigating both of these extensions.

Simple time series models were used in this papéorecast future population growth. The mediamwof predictive
distribution for future populations are slightlywer, but not drastically different to, the prindigmojection estimated
by ONS using a more complex cohort component metiogg. Such methodologies require a large amouiatd on
current age and sex structure and numerous assumepin rates of demographic components. Howevdikeuthe

more complex cohort component method the foreagstiathods used in this paper are able to quantifyuacertainty
through a posterior predictive distribution.

Our model averaged posterior predictive distributiended to be wider than those provided by predicintervals
from traditional frequentist time series methodkisTis not unexpected as intervals for a single ehsdlected on the
basis of a model fit statistics (such as the AIBHE) will tend to be too narrow (Chatfield p86,@). Causes of these
differences are include; uncertainty about the rhagsie a changing environment. Thus, the use of inaderaging
allows a more realistic picture of the uncertaiofyfuture population to be obtained. In this paperused the bridge
sampler to calculate the normalising constant émhemodel, and then derive model probabilitiessThéthod can also
be applied to deal with a wider range of model$uidiog the extensions previously mentioned in fastion.

As Booth (2006) notes; the incorporation of infodjedgements have formed the basis of many of $keraptions in
traditional population projections, either as irpor in combination with extrapolation or as a soleut. However
methods tend to be unsystematic or inadequatelyrdented, even in developed countries. The Bayesgmoach
allows uncertainty in the data, model parameterd awdel selection to be fully quantified using pabbity
distributions.

In summary, the use of time series methods for ladpn growth rates offer a simple alternative noetho forecast
population. In conjunction with Bayesian inferenpepulation forecasts are able to account for mleltsources of
uncertainty including data, parameter estimates randel selection. Consequently population forecasty contain
more realistic measurements of uncertainty and ithpsove users’ potential for planning and undergiag population
change.
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