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ABSTRACT 

The Bayesian approach has a number of attractive properties for forecasting uncertainty which have yet to be fully 
explored in the study of future population change. In this paper, we apply some simple Bayesian time series models to 
obtain future population estimates with uncertainty for England and Wales. Uncertainty in model choice is incorporated 
through Bayesian model averaging techniques. The resulting predictive distributions from Bayesian forecasting models 
have two main advantages over those obtained using more traditional stochastic models. First, uncertainties in the data, 
the model parameters and model choice are explicitly represented using probability distributions. As a result, more 
realistic probabilistic population forecasts are obtained. Second, Bayesian models formally allow the incorporation of 
expert opinion, including uncertainty, into the forecast. We conclude by discussing our results in relation to classical 
time series methods and existing cohort component estimates. 

1. INTRODUCTION 

This paper explores the use of Bayesian methods for population forecasting. The main rationale for this paper is rooted 
in two philosophical debates of vital importance for demographers. The first one concerns the need for incorporating 
uncertainty in population forecasts, advocated by many authors since the 1980s (e.g. Alho and Spencer, 1985; Keyfitz, 
1991; Lee 1998), as opposed to deterministic scenario projections with a (near) zero probability of realisation. The 
second debate relates to the issue of simplicity versus complexity in demographic forecasting (e.g. McNown et al., 
1995). 

We believe there are three important considerations that could improve our understanding about population forecasts 
and the various sources of uncertainty about them. First, the Bayesian approach offers an explicit, coherent and 
transparent mechanism to include uncertainty in the data, parameters of the model and the model itself, by using 
probability distributions. Second, it allows the inclusion of expert judgements, including uncertainty, into the model 
framework. Third, the predictive distributions simply follow from the probabilistic model applied. As a result, 
probabilistic population forecasts, with more reliable and coherent estimates of predictive distributions, can be obtained. 
Together, these have the potential to improve the measurement of uncertainty in forecasts, and thus improve our 
potential for planning and understanding population change. 

To investigate the potential of a Bayesian approach, we apply time series models to prepare forecasts up to 2033 based 
on a simple data set of population totals. Uncertainty in model choice is incorporated through Bayesian model 
averaging techniques. The results and their levels of uncertainty are compared with the traditional frequentist methods 
of time series analysis and model selection. Further contrasts are also made against the Office of National Statistics 
(ONS) national population projections which rely on deterministic scenarios and cohort component methodologies.   

                                                
1 This research is funded by ESRC Grant number RES-625-28-0001. The Centre for Population Change is a joint initiative between the University of 
Southampton and a consortium of Scottish Universities in partnership with the Office for National Statistics (ONS) and the General Register Office 
for Scotland (GROS). The findings, interpretations, and conclusions expressed in this paper are entirely those of the author(s) and should not be 
attributed in any manner to ONS or GROS. 
2 Contact author: ESRC Centre for Population Change, University of Southampton, Southampton SO17 1BJ, United Kingdom; email 
G.J.Abel@soton.ac.uk. 
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The paper is structured as follows. In the next section, we introduce our data, a time series of data for England and 
Wales from 1841 to 2007. In Section 3 we introduce the notation, and describe the models used in this study. These 
include autoregression models for time series, the Bayesian inference used for parameter calculation and model 
averaging, which is applied to account for model uncertainty and to provide a more robust set of estimates. In Section 4, 
we apply the models of the previous section to forecast the populations in England and Wales from 2008 to 2033. 
Section 5 compares these empirical forecasts with the outcome from two other methods, namely traditional frequentist 
methods of time series analysis and the official, deterministic population projections for England and Wales prepared by 
the ONS. Finally, we end the paper with a summary and discussion, which include suggestions for extending the 
proposed approach to more complex population models. These include, for example, models to account for 
heterogeneity found in the historical data and multivariate models for time series of birth, death and migration rates. 

2. DATA 

To illustrate a Bayesian approach to modelling population data, we focus on the simplest case, i.e., a time series of 
population estimates obtained from the Human Mortality Database (2009) for England and Wales from 1841 to 2007. 
The mid-year population totals (including military personnel) are presented in the top panel of Figure 1. 

The England and Wales population totals exhibited a steady increase over time, rising from 15.8 million in 1841 to 53.9 
million in 2007. A slight decrease is noticeable from the effects of the First World War and the 1918 influenza 
pandemic. Also noticeable is the slower increase in the population during the late 1970s and early 1980s, a result of net 
emigration and a slow rate of natural population increase.  

The features of population change are more evident when the rates of growth, plotted in the second panel of Figure 1, 
are considered. In addition, a number of other characteristics become apparent. During the first third of the series the 
population grew at higher rates than any of the remaining time period. This was predominantly due to the declining 
mortality occurring substantially before a decline in fertility, which remained at pre-industrial levels for much of this 
period.  Between the two wars the rate of growth remained low in comparison with the later half of the 19th century and 
early 20th century. This was partly driven by low fertility levels being reached through the economic depression and a 
change in sociological factors. After the Second World War population growth rates increased as a result of erratic 
fluctuations in fertility. This occurred initially through a short lived baby boom associated with demobilisation followed 
by a more substantial increase in fertility during the 1950s and early 1960s. In the late 1970s and early 1980s, the 
previously mentioned low (and occasionally negative) levels of growth took place followed by a rise in recent decades 
driven by net immigration and increased fertility levels. For a detailed discussion of England’s population history, see 
Coleman and Salt (1992) and Hinde (2003). 
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Figure 1: England and Wales Population Data, 1841-2007 
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3. MODELS 

Let pt be the population size at t and Tt ,...,1= represent an uninterrupted series of time points at which pt is observed. 
The problem of population forecasting is to obtain estimates of pt for one of more values of t > T. Furthermore, the 
utility of the forecasts is enhanced when associated measures of uncertainty are provided. 

In order to model pt, we first derive the time series of population increments rt where 

ttt prp )1(1 +=+ .         (1) 

However, experience suggests (Chatfield p26, 2004) that if we are to use models which assume stationarity, it is more 
appropriate to model changes in rt: 

1−−= ttt rry .         (2) 

For our data, time series plots of rt and yt are presented in the second and third panels, respectively, of Figure 1. In the 
following subsections we introduce autoregression (AR) models for yt.  
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3.1 Autoregression  Models 

AR models have been used in the demographic context to forecast population (e.g. Saboia (1974), Ahlburg (1987), 
Pflaumer (1992), Alho and Spencer (2005)). An AR model of order p, denoted AR(p), is defined as 

∑
=

− +=
p

k
tktkt zyy

1

φ ,        (3) 

where zt are independent observations from a probability distribution with zero mean and constant variance, σ2. A 
slightly more flexible model, which we shall use, also allows for a non-zero mean for yt and is defined as 

∑
=

− +−+=
p

k
tktkt zyy

1

)( µφµ .       (4) 

This model for yt implies a mean increase in rt of µ  each year. For a fully-specified probability model, we need to 

assume a distribution for zt. Typically, a normal distribution is assumed. 

3.2 Bayesian Inference 

In Bayesian inference, uncertainty about the (multivariate) parameter θ of a statistical model is described by its 
posterior probability distribution given observed data ),...,( 1}{ TT yyy = . The probability density function of yt is 

obtained by using Bayes Theorem: 

)(

)()|(
)|(

}{

}{
}{

T

T
T yf

fyf
yf

θθ
θ = ,       (5) 

where )|( }{ θTyf  is the likelihood function and is defined by the model, )(θf  is the prior distribution for θ and 

)( }{Tyf  is a normalising constant. The prior distribution )(θf  specifies the uncertainty about θ prior to observing 

any data.  

 

Forecasting or prediction is particularly natural in a Bayesian framework. Uncertainty about the next K future values of 
yt (for KTTt ++= ,...,1 ) is described by the joint predictive probability distribution 

∫ ∏
=

−++++ = θθθ d ),|()|()|,...,(
1

1}{}{1

K

k
KTKTTTKTT yyfyfyyyf .   (6) 

Note that the product term represents the joint predictive distribution in the case that parameter θ is known. The 
Bayesian predictive distribution simply averages (integrates) this with respect to the posterior probability distribution 
for θ. Hence, uncertainty about θ in light of the observed data is fully integrated. 

In a Bayesian analysis we obtain forecasts and associated measures of uncertainty by calculating marginal probability 
distributions for quantities of interest by integrating the posterior distribution in (5) or the predictive distribution in (6). 
Performing these integrations analytically is typically not possible for realistically complex models such as those 
described above. Historically, this has prevented demographers and others from taking advantages of Bayesian methods 
for statistical inference. Recent developments in Bayesian computation have focussed on Markov chain Monte Carlo 
(MCMC) generation of samples from distributions such as (5) or (6); see Gelman et al. (2004) for details. Once a 
sample has been obtained from a joint distribution, then a sample from a distribution of any component or function of 
components is readily available. To generate samples from the posterior and predictive distribution in this paper, we 
used an MCMC sampling approach implemented using the WinBUGS software (Lunn et.al. 2000).  

3.3 Model Uncertainty 

In practical population forecasting, it is unrealistic for the analyst to be sure that any particular statistical model is the 
right one upon which to base their forecasts. Hence, the statistical methodology adapted should be one which allows for 
model uncertainty. Furthermore, we consider it essential that the measures of uncertainty associated with any forecast 
should incorporate both the uncertainty concerning the model and the uncertainty concerning the parameters of each 
model. In this paper, model uncertainty is directly integrated with parameter uncertainty into a single predictive 
probability distribution. 
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Formally, let Mm ,...,1=  index the models under consideration and let θm represent the parameter associated with 
model m. Note that different models may have parameters of different dimensionality. For example, the AR(1) model 
with non-zero mean has a three-dimensional parameter (µ, ,1φ σ2). The likelihood function for model m 

is ),|( }{ myf mT θ , the prior distribution for θm is )|( mf mθ  and the posterior distribution is 

)|(

),(),|(
),|(

}{

}{
}{ myf

mfmyf
myf

T

mmT
Tm

θθ
θ = ,     (7) 

where )|( }{ myf T  is a normalising constant, known as the marginal likelihood for model m and is given by 

θθθ d),|()|()|( }{ myfmfmyf mKTmT +∫= .     (8) 

Prior uncertainty about models is encapsulated by a discrete probability distribution, )(mf , Mm ,...,1= . The prior 

model probabilities are all usually given the same values, M1 . 

The posterior probability distribution for m given observed data y{ T}  is obtained by using Bayes Theorem as follows: 

)(

)()|(
)|(
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T

T
T yf

mfmyf
ymf = .       (9) 

Hence, the posterior model probability for any model m is proportional to the product of the prior model probability and 
the marginal likelihood. Therefore, efficient computation of marginal likelihoods is essential for Bayesian inference 
under model uncertainty. See, for example, those described in O'Hagan and Forster (2004). In our implementation, we 
use a bridge sampler (Meng and Wong, 1996). 

Finally, to obtain a predictive distribution for population forecasts in the presence of model uncertainty, (6) is extended 
to 

,d ),,|(),|()|(                                   

),|,...,()|()|,...,(
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average of predictive distributions for individual models weighted by their posterior probabilities, )|( }{Tymf . 

4. FORECASTS 

In this section, we present parameter estimates from a range of individual AR models. In addition, the predictive 
probability distributions from these models are provided in order to gain a better understanding of the effect of 
expanding the dimensions of θ on future population growth rates. These individual forecasts are compared in the second 
subsection with a single forecast that accounts for our uncertainty in model choice. Finally, we compare our model 
averaged forecast against those produced by other means, namely classical time series methods and cohort component 
methods used by ONS. 

4.1 Individual Models 

A set of nine models were considered for the differenced population growth rate, yt, introduced in (2) and presented in 
the bottom panel of Figure 1. These consist of an independent normal (IN) model and eight autoregression models (with 
non-zero means), increasing in order from AR(1) to AR(8). This range of models was selected in order to represent all 
possible representations of autoregressive processes that might adequately describe the differences in the overall growth 
rate series. As we have no previous knowledge about the nature of the parameters in each model we assigned non-
informative prior distributions: µ ~ N(0, 100), kφ ~ N(0, 1) and σ ~ Uniform(0, 100). An MCMC sample of 10,000 

observations was obtained from the posterior distribution for each model.  

In a Bayesian analysis, marginal posterior distributions completely describe the uncertainty about each model parameter 
given the observed data. These are typically summarised using posterior means (as parameter estimates) and posterior 
standard deviations (as measures of uncertainty). The posterior means and standard deviations for the parameters of 
each of the nine models are presented in Table 1. Estimates of µ tend to be centred on zero with much lower standard 
deviations than their prior distributions. This feature was also true for the estimates of σ. In all models, the posterior 
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means of kφ at lower values of k were below zero, indicating negative autocorrelation for their respective lags. 

Estimates of kφ , where k > 5 tend to be close to zero, signifying that the association between yt and yt-k becomes weak 

at larger values of k.  

Table 1: Posterior Means and Standard Deviations of Model Parameters from MCMC Simulations and Model 
Comparisons Statistics. 

 

m µ σ 1φ  2φ  3φ  4φ  5φ  6φ  7φ  8φ  AIC BIC 
|( {Tymf

 

IN 

-
0.000
03 
(0.00
017) 

0.002
15 
(0.00
012) 

 
-
1558
.75 

-
1556.
65 

0.035
15 

AR
(1) 

-
0.000
03 
(0.00
017) 

0.002
13 
(0.00
012) 

-
0.153
6 
(0.07
858) 

 
-
1561
.05 

-
1554.
84 

0.018
03 

AR
(2) 

-
0.000
04 
(0.00
016) 

0.002
08 
(0.00
011) 

-
0.191
3 
(0.07
848) 

-
0.232
75 
(0.07
776) 

 
-
1568
.75 

-
1558.
43 

0.121
61 

AR
(3) 

-
0.000
06 
(0.00
016) 

0.002
03 
(0.00
011) 

-
0.244
21 
(0.07
692) 

-
0.278
89 
(0.07
668) 

-
0.222
21 
(0.07
801) 

 
-
1575
.29 

-
1560.
87 

0.541
00 

AR
(4) 

-
0.000
07 
(0.00
016) 

0.002
02 
(0.00
011) 

-
0.276
00 
(0.08
036) 

-
0.315
48 
(0.07
917) 

-
0.257
96 
(0.08
042) 

-
0.132
3 
(0.07
963) 

 
-
1576
.61 

-
1558.
08 

0.174
31 

AR
(5) 

-
0.000
08 
(0.00
016) 

0.002
00 
(0.00
011) 

-
0.297
26 
(0.08
085) 

-
0.356
71 
(0.08
206) 

-
0.306
94 
(0.08
257) 

-
0.177
62 
(0.08
225) 

-
0.156
58 
(0.08
042) 

 
-
1578
.81 

-
1566.
18 

0.097
24 

AR
(6) 

-
0.000
09 
(0.00
016) 

0.002
00 
(0.00
011) 

-
0.307
82 
(0.08
120) 

-
0.369
11 
(0.08
393) 

-
0.328
42 
(0.08
695) 

-
0.203
12 
(0.08
828) 

-
0.177
20 
(0.08
274) 

-
0.068
92 
(0.08
115) 

 
-
1577
.63 

-
1550.
89 

0.011
31 

AR
(7) 

-
0.000
09 
(0.00
016) 

0.002
00 
(0.00
011) 

-
0.303
33 
(0.08
168) 

-
0.357
41 
(0.08
478) 

-
0.316
24 
(0.08
925) 

-
0.182
07 
(0.09
171) 

-
0.154
03 
(0.09
028) 

-
0.049
24 
(0.08
455) 

0.060
89 
(0.08
002) 

 
-
1576
.20 

-
1545.
35 

0.001
21 

AR
(8) 

-
0.000
09 
(0.00
016) 

0.002
00 
(0.00
011) 

-
0.299
60 
(0.08
046) 

-
0.362
79 
(0.08
516) 

-
0.325
25 
(0.08
934) 

-
0.192
99 
(0.09
333) 

-
0.173
34 
(0.09
382) 

-
0.072
20 
(0.09
117) 

0.043
09 
(0.08
579) 

-
0.062
96 
(0.08
195) 

-
1574
.87 

-
1543
992 

0.000
13 
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Figure 2: Posterior Predictive Plots of Population Growth Rates 

Posterior predictive plots of the forecasted rt from all nine models are illustrated in Figure 2. These are obtained from 
the forecast of yt by rearranging (2) for each set of iterates and assuming r2006 = 0.00609 as in the data. Each shade of 
the forecasted fan represents a single percentile of the estimated posterior density, where darkest shades correspond to 
most central values and the lighter shades to the tails of the distribution. Contour lines are also plotted at each decile and 
the 1st and 99th percentile. Forecasts from the simple independent normal model provide a far greater level of 
uncertainty of future values. As the order of the AR models is expanded the posterior predictive distribution become 
comparatively tighter. As noted previously, kφ for k > 5 are close to zero in the higher order AR models. This results in 

similar posterior predictive distribution for the higher order models, whereby the increase in the number of lagged terms 
no longer substantially reduces the width of the predictive distribution. 

4.2 Weighted Model 

The bridge sampler was used to calculate normalising constants for each model, from which the posterior model 
probabilities )|( }{Tymf  in Table 1 can be easily derived. These results indicate that over half of the probability rests 

on the AR(3) model. The next most likely model is the AR(4) model, followed by the AR(2) and AR(5) models. Higher 
ordered models appear very unlikely, as do the most basic models, with model probabilities below 0.05.  

The predicted probability distribution of rt averaged over all models, given the model probabilities, are presented in the 
left hand panel of Figure 3. Because a sample from the posterior of predicted probability distribution of each individual 
model is generated in the analysis, calculation of the averaged predicted probability distribution is trivial. 
Unsurprisingly this plot bares a large resemblance to the forecasts in Figure 2 which had large posterior model 
probabilities. On the right hand panel of Figure 3 we also present the resulting population forecast from the predicted 
probability distribution of rt. Our results provide a median predicted population of 61.9 million in 2033. Numerous 
measures of uncertainty are also available, for example in 2033 the 20th percentile is 56.6 million and the 80th percentile 
is 67.7 million. 
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4.3 Comparison with Alternate Methods 

For comparative purposes, traditional frequentist time series models corresponding to the nine models fitted above were 
estimated using the arima function in R 2.10.1 (R Development Core Team, 2010). Estimates of kφ in all models were 

within 0.1 of the mean values presented in Table 1.  Estimates from the arima function of µ and σ were also very similar 
(to a higher degree of accuracy) to those estimated using the Bayesian methodology. The close correspondences 
between parameter estimates are due to the reliance on data, rather than the (uninformative) priors, in the calculation of 
posterior distributions.  

Model summary statistics from the models fitted in R are also provided in Table 1. The Akaike Information Criteria 
(AIC) of Akaike (1973) is commonly used for model selection for time series methods (Chatfield p256, 2004). This 
criteria favoured the AR(5) model, as opposed the model probabilities calculated using the bridge sampler which 
provided this model with a probability of 0.097. Hence, if we were to use the AIC as an alternative method for model 
selection in a frequentist setting, only a single model, with an estimated low probability, would be selected. The 
Bayesian Information Criteria (BIC) of Schwarz (1978), which penalises the inclusion of extra parameters more 
severely, is also presented in Table 1. This criteria closely resembles the posterior model probabilities and suggests 
AR(3) as a suitable model. 

Figure 3: Joint Predicted Probability Distribution of the Model Averaged Growth Rates (left) and Resulting Population 
Forecast in Millions (right). 
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In Figure 4 we compare the results of the choice of a single model, based on the AIC, against our model averaged 
forecast. In left hand panel the mean forecast of rt from the AR(5) model is displayed using the dot-dashed line. This 
was calculated using the predict.arima function in R. In addition, the 60% prediction intervals are also plotted alongside 
the 20th, 50th and 80th percentiles of model averaged density (solid lines). Comparisons of the two measures of central 
tendency are very similar. However, the AR(5) model provides a smaller amount of uncertainty, from both the 
parameter estimation and model selection process, when using traditional frequentist time series methods. These 
similarities and differences are also partly reflected in the forecasts of the total population plotted on the right hand 
panel of Figure 4. The mean forecasted population for the AR(5) model is 61.4 million in 2033, whilst the upper and 
lower limits for the 60% prediction intervals are 56.8 and 66.3 million. The closeness in the lower prediction interval 
with the 20th percentile is due to the lower forecasted values of rt, including a larger fall in the earlier years of the 
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forecast. This early drop results in subsequent values of lower prediction interval of pt to remain below the 20th 
percentile until 2028.  

Figure 4: Comparison of Alternative Future Growth Rates (left) and Population in Millions (right). 

In the United Kingdom, the ONS prepare a set of projected total populations estimated using a cohort component 
methodology under a range of deterministic scenarios. In this paper we focus on three variants (principal, high and low) 
published in the latest set of projections for England and Wales (ONS, 2009). All three variants are based on the sets of 
demographic trend-based assumptions for future fertility, mortality and net migration. The principal variant relies on 
assumptions considered to best reflect demographic patterns at the time they were adopted. The high (or low) 
population variant assumes a combination of high (or low) fertility, life expectancy and net migration. They are 
intended to provide users with a better understanding of future uncertainty in population change. All three variants of 
population totals are displayed on the right hand panel in Figure 4. On the left hand panel are the derived values of rt. 
The central, dashed line represents the principal projections, whilst the upper and lower dashed line represent the high 
and low population variants respectively. The panels in Figure 4 illustrate a number of differences between the ONS 
principal projection and that of our model averaged forecasts. First, the uncertainty in the ONS rate, represented by their 
high and low variants, is far smaller than that of our model averaged forecasts at all points of time. Second, the 
uncertainty in the rate of population growth of the ONS projection does not increase substantially over time. Third, the 
ONS principal population projection in 2033 of 63.7 million is slightly higher than our model averaged median (61.9 
million), despite a reduction in the rate toward the median of the model averaged forecast towards the end of the 
horizon. This feature is caused by an assumption of higher growth rates throughout the future period. Finally, the high 
and low variants in the projected population totals by the ONS lie within the 81st and 36th percentiles of the posterior 
predictive distribution.  
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5. CONCLUSION 

In this paper we have demonstrated the use of Bayesian time series methods for the forecasting of the future population 
of England and Wales using a historical series of population growth rates. The forecasts have explicitly allowed for 
uncertainties in the data, parameters of the model and the model itself by using probability distributions, which are fully 
represented in the final probabilistic population forecast.  

All of the simple Bayesian time series models assumed stationarity in the yt. However, the bottom panel of Figure 3 
indicates that there is some degree of volatility in the differenced population growth rates. More complex time series 
models exist, such as stochastic volatility models that allow the variance of zt to be time-dependent. Such models 
replace σ2 in (4) with σt

2, where a time series model, typically a AR(1) process, is then specified for log σt
2. Accounting 

for this heterogeneity will allow for forecasts to adjust to the level of volatility estimated in the jump off period. Further 
extensions to the modelling of the growth rate can also be explored by decomposing rt to demographic components of 
population change. Separate series of births, deaths and migration can be modelled as a multivariate process using 
Bayesian Vector Autoregressive (VAR) models. We are currently investigating both of these extensions.  

Simple time series models were used in this paper to forecast future population growth. The median of our predictive 
distribution for future populations are slightly lower, but not drastically different to, the principal projection estimated 
by ONS using a more complex cohort component methodology. Such methodologies require a large amount of data on 
current age and sex structure and numerous assumptions on rates of demographic components. However, unlike the 
more complex cohort component method the forecasting methods used in this paper are able to quantify our uncertainty 
through a posterior predictive distribution.  

Our model averaged posterior predictive distribution tended to be wider than those provided by prediction intervals 
from traditional frequentist time series methods. This is not unexpected as intervals for a single model selected on the 
basis of a model fit statistics (such as the AIC or BIC) will tend to be too narrow (Chatfield p86, 2004). Causes of these 
differences are include; uncertainty about the model and a changing environment. Thus, the use of model averaging 
allows a more realistic picture of the uncertainty of future population to be obtained. In this paper we used the bridge 
sampler to calculate the normalising constant for each model, and then derive model probabilities. This method can also 
be applied to deal with a wider range of models including the extensions previously mentioned in this section.   

As Booth (2006) notes; the incorporation of informed judgements have formed the basis of many of the assumptions in 
traditional population projections, either as inputs or in combination with extrapolation or as a sole input. However 
methods tend to be unsystematic or inadequately documented, even in developed countries. The Bayesian approach 
allows uncertainty in the data, model parameters and model selection to be fully quantified using probability 
distributions.  

In summary, the use of time series methods for population growth rates offer a simple alternative method to forecast 
population. In conjunction with Bayesian inference, population forecasts are able to account for multiple sources of 
uncertainty including data, parameter estimates and model selection. Consequently population forecasts may contain 
more realistic measurements of uncertainty and thus improve users’ potential for planning and understanding population 
change.  
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