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Abstract

Stochastic programming is a well-known instrument to model many risk management
problems in finance. In this paper we consider a stochastic programming model where the
objective function is the variance of a random function and the constraint function is the
expected value of the random function. Instead of using popular scenario tree methods,
we apply the well-known sample average approximation (SAA) method to solve it. An
advantage of SAA is that it can be implemented without knowing the distribution of the
random data. We investigate the asymptotic properties of statistical estimators obtained
from the SAA problem including examining the rate of convergence of optimal solutions of
the SAA problem as sample size increases. By using the classical penalty function technique
and recent results on uniform exponential convergence of sample average random functions,
we show that under some mild conditions the statistical estimator of the optimal solution
converges to its true counterpart at an exponential rate. We apply the proposed model
and the numerical method to a portfolio management problem and present some numerical
results.

Key words. Variance minimization, sample average approximation, risk management, ex-
ponential convergence.

1 Introduction

The practice of mean-risk models has been widely used in portfolio selection problems, and had
a profound impact on the economic modeling of financial markets and the investment of assets
since the first introduction of mean-variance models by Markowitz [16] in the financial literature.
In most of real markets, returns are characterized and compared by two statistics: the expected
value and the value of the risk measure. A tradeoff is often required for each portfolio selection
problem between the high expected return and the low risk, where the risk measure plays an
important role in making the decisions. In spite of criticism and many proposals of new risk
measures such as Value-at-Risk and Conditional Value-at-Risk [4, 23], variance which calculates
the spread around the expected value of a random variable is still one of the most widely used
measures of risk in the portfolio selection problems.

In this paper, we study the following mean-variance minimization problem with a general
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return function:
min
x

Var [f(x, ξ(ω))]

s.t. x ∈ X,
E[g(x, ξ(ω))] ≤ 0,

(1.1)

where f : IRn × IRk → IR and g : IRn × IRk → IRm are locally Lipschitz continuous, x ∈ X is a
decision vector with X being a nonempty convex subset of IRn, and ξ : Ω→ Ξ ⊂ IRk is a random
vector defined on probability space (Ω,F , P ) with support Ξ, E[·] denotes the expected value
with respect to the distribution of ξ, Var[·] denotes the variance of a random variable, that is,

Var [f(x, ξ(ω))] = E
[
[f(x, ξ(ω))− E(f(x, ξ(ω)))]2

]
= E

[
f2(x, ξ(ω))

]
− (E[f(x, ξ(ω))])2 . (1.2)

To ease the notation, we will use ξ to denote either random vector ξ(ω) or an element of IRk

depending on the context. Throughout this paper, we assume that E[f(x, ξ)], E[f2(x, ξ)] and
E[g(x, ξ)] are well-defined for every x ∈ X. The stochastic programming model (1.1) is well-
known for measuring risks in finance pioneered by Markowitz in 1950s [16]: it aims to minimize
the variance which is often used to measure the risks subject to the constraints of the expected
revenues or costs. This type of fundamental mean-variance modeling and analysis is instrumen-
tal to both practitioners and researchers in finance. For practitioners, the theory suggests that
mean-variance efficient portfolios can play an important role in portfolio management applica-
tions. For researchers in finance, mean-variance analysis is central to many asset pricing theories
as well as to empirical tests of those theories, see [1, 6].

The main objective of this paper is concerned with numerical methods for solving (1.1). One
of the main difficulties is to deal with the expected values. In practice, it is often impossible to
obtain a closed form of E[f(x, ξ)] and E[f2(x, ξ)] either because they are computationally too
expensive or the distribution function of ξ is unknown. However, it might be possible to obtain
samples of ξ from past data or computer simulation. Specifically, let ξ1, · · · , ξN be a sample of
ξ, we consider the following sample average approximation problem for (1.1):

min
x

φN (x) := 1
N−1

∑N
i=1

(
f(x, ξi)− 1

N

∑N
i=1 f(x, ξi)

)2

s.t. x ∈ X,

gN (x) :=
1
N

N∑
i=1

g(x, ξi) ≤ 0.

(1.3)

We refer to (1.1) as the true problem and (1.3) as the sample average approximation (SAA)
problem. SAA is a very popular method in stochastic optimization and it is known under
various names such as sample path optimization (SPO) method [21], stochastic counterpart
and more broadly Monte Carlo method, see [28] for a comprehensive review of the subject by
Shapiro. The main benefit of SAA is that one does not have to calculate the expected values.

Note that the sample average approximation problem (1.3) is slightly different from those
available in the literature: our objective function is the sample average approximation of the
variance of a random function rather than the expected value. The difference makes it impos-
sible to readily use the available analysis results of SAA in stochastic programming which deal
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with expected values rather than variances. Wang and Ahmed [30] considered a stochastic pro-
gramming model with a deterministic objective function and constraints of the expected value
of a random function. They proposed SAA method to solve the model and demonstrated the
exponential rate of convergence of the feasible set of SAA problem to its true counterpart. The
stochastic programming model and SAA scheme were consequently applied to portfolio opti-
mization problems in finance. Shapiro [27] considered a general class of stochastic programming
problems which subsume (1.1) and proposed to solve them by solving a sequence of approximat-
ing problems including sample average approximation. He analyzed the asymptotic behavior
of statistical estimators of the optimal values and optimal solutions obtained from solving the
approximating problems. His analysis is carried out by a parametric programming approach
where the approximating functionals are treated as a parameter defined on a Banach space, and
the asymptotics of the optimal value and optimal solution estimators is consequently derived
through an extended delta method by driving the parameter to its limit value.

Our focus here is on the asymptotic convergence of the optimal solution of SAA problem (1.3):
assuming that we obtain an optimal solution to problem (1.3), denoted by xN , we investigate
the convergence of xN to its true counterpart, denoted by x∗, as sample size increases. There
are three differences between our analysis and Shapiro’s asymptotic analysis in [27]: (a) we
intend to estimate the rate of convergence of xN to x∗ rather than the asymptotic distribution of
xN−x∗; (b) instead of using sensitivity analysis of parametric programming, we use the recently
established theory of uniform exponential convergence of sample average random functions in [32]
to carry out our analysis; (c) the sampling is not necessarily iid, that is, our analysis covers the
case if the sampling is generated by Quasi-Monte Carlo methods. Apart from the convergence
analysis of sample average approximation for mean-variance models, we also apply the numerical
scheme to a classical portfolio selection problem. In most portfolio selection problems in practice,
a fund manager makes his decision at the beginning of an investment period before knowing the
return of each available asset. The decision is required on the amount (proportion) of capital
to be invested in each of the available assets with the objective of a desired tradeoff between
the variance and the average return at the end of investment. In our portfolio selection model,
the investor’s profit consists of two parts: the net profit from the investment in financial market
and the taxation on the profit, where the taxation can be regarded as a transaction cost. In the
literature of portfolio optimization, the most well-studied transaction costs are constant or linear
function of the portfolio return [17]. Due to unavailability of the distribution of uncertainty or
computational complexity of the mathematical models, a closed form of the optimal decision can
rarely be obtained for these portfolio selection problems, see [7, 17]. In this paper we apply the
SAA method to the mean-variance model and demonstrate the exponential rate of convergence
of approximate optimal decision (obtained from solving sample average approximation problem)
to its true counterpart as sample size increases.

The rest of this paper is organized as follows. In Section 2, we reformulate (1.3) as a
minimization problem by moving the constraint to the objective through exact penalization
and show the boundedness of the penalization parameters. In Section 3, we investigate the
exponential rate of convergence of optimal solutions obtained from solving an exactly penalized
SAA problem under general sampling. In Section 4, we apply SAA to a portfolio selection
problem with taxation costs. Numerical results are presented in Section 5.
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Throughout this paper, we use the following notation. xT y denotes the scalar products
of two vectors x and y, ‖ · ‖ denotes the Euclidean norm of a vector and a compact set of
vectors. d(x,D) := infx′∈D ‖x − x′‖ denotes the distance from point x to set D. For two
sets D1 and D2, D(D1, D2) := supx∈D1

d(x,D2) denotes the deviation from set D1 to set D2

and H(D1, D2) denotes the Hausdorff distance between the two sets, that is, H(D1, D2) :=
max (D(D1, D2),D(D1, D2)) . Finally, for a real valued function h(x), we use ∇h(x) to denote
the gradient of h at x which is a column vector, and when h(x) is vector valued, the same
notation refers to the classical Jacobian of h at x (where the gradient of each component forms
a column of the Jacobian matrix).

2 Exact penalization

One of the main aims of this paper is to analyze the convergence of optimal solution xN as
sample size increases. A natural way to do this is to consider the uniform convergence of the
objective function φN (x) and constraint function gN (x) in SAA problem (1.3). Unfortunately
this approach has a main technical difficulty: the feasible set of (1.3) defined by gN (x) ≤ 0
varies as N increases. To get around the complication in our analysis, we reformulate (1.3) as
a minimization problem by moving the constraint gN (x) ≤ 0 to the objective through exact
penalization and subsequently leaving x ∈ X as the only constraint which is independent of N .

2.1 Reformulation

We use the classical exact penalty function method to derive the reformulation. Let us start
with the true problem (1.1). By [10, Theorem 14.3.1], there exists a positive constant λ∗ > 0
such that the optimal solution to (1.1) coincides with the optimal solution of the following
optimization problem:

min
x

ψ(x) := Var [f(x, ξ)] + λ∗p(E[g(x, ξ)])

s.t. x ∈ X,
(2.4)

if the second order sufficient conditions of both problems are satisfied at optimal solutions. Here
p(z) =

∑m
i=1 max(0, zi) for z ∈ IRm and λ∗ > 0 is a constant. Likewise, the SAA problem (1.3)

can be reformulated as

min
x

ψN (x) := φN (x) + λNp
(

1
N

∑N
i=1 g(x, ξi)

)
,

s.t. x ∈ X,
(2.5)

if the second order sufficient conditions of (1.3) and (2.5) hold at optimal solutions, where λN is
some positive number. To avoid technical complexity, we make a blanket assumption that the
second order sufficient conditions of (1.1), (1.3), (2.4) and (2.5) hold at their optimal solutions.

The reformulation makes our asymptotic analysis easier: now we may look into the conver-
gence of xN to x∗ by studying the uniform convergence of the objective functions ψN (x) to ψ(x)
in (2.4) and (2.5) in that the feasible sets of the two problems are identical and independent of
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N . This is a departure from Wang and Ahmed’s analysis which depends on the sample average
approximation of feasible sets ([30, Proposition 2]). The only technical issue to be resolved for
the uniform convergence of ψN (x) to ψ(x) is the boundedness of the sequence of the penalization
parameters {λN}. For this purpose, we need to investigate the Lagrange multiplier of the SAA
problem (1.3), denoted by µN . Let us start by making some basic assumptions.

Assumption 2.1 Let f(x, ξ) and g(x, ξ) be defined as in (1.1).

(a) X is a nonempty convex and compact set;

(b) there exists a point x ∈ X such that E[f(x, ξ)] < ∞, E
[
f2(x, ξ)

]
< ∞, E[gi(x, ξ)] < ∞,

for i = 1, · · · ,m;

(c) f and g are Lipschitz continuous w.r.t. x and their Lipschitz modulus are bounded by
κ1(ξ) > 0, where E[κ1(ξ)] <∞;

(d) ∇xf(x, ξ) and ∇xg(x, ξ) are Lipschitz continuous w.r.t. x and their Lipschitz modulus are
bounded by κ2(ξ) > 0, where E[κ2(ξ)] <∞;

(e) supx∈X |f(x, ξ)| ≤ κ3(ξ), where E[κ1(ξ)κ3(ξ)] <∞.

The assumption is standard except part (a) where we require the feasible setX to be compact.
This is purely for the convenience of convergence analysis. In fact, we may relax the condition
from compactness to closedness and carry out our convergence analysis on a compact subset of
X which contains sequence {xN} w.p.1. From practical point of view, this kind of assumption is
reasonable as the quantities of decision variables are usually bounded, see a similar assumption
by Wang and Ahmed [30] in portfolio optimization. Under Assumption 2.1, the mean-risk model
(1.1) is well defined in the sense that the underlying functions are finite valued for every x ∈ X.
To see this, let us explain that under conditions (b) and (c), we have

|f(x′, ξ)| ≤ |f(x, ξ)|+ κ1(ξ)‖x′ − x‖

for any x′ ∈ X, which implies that E[f(x′, ξ)] is well defined for every x′ ∈ X. This comment
also applies the components of g(x, ξ). Moreover, from the inequality above, we have

sup
x∈X
|f(x′, ξ)| ≤ |f(x, ξ)|+ κ1(ξ)D,

where D denotes the diameter of set X. This means that we can choose κ3(ξ) = |f(x, ξ)|+κ1(ξ)D
in part (e) of the assumption. Let us now comment on the well-definedness of Var [f(x′, ξ(ω))]
for any x′ ∈ X. It is easy to verify that under conditions (c) and (e) for any x′ ∈ X,

E[f2(x′, ξ)] ≤ E[f2(x, ξ)] + E[2κ3(ξ)κ1(ξ)]‖x′ − x‖

which means that E[f2(x′, ξ)] is well defined for any x′ ∈ X, and through (1.2), that Var [f(x′, ξ(ω))]
is well defined for any x′ ∈ X.
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For the convenience of discussion, we assume throughout this section that the sampling is iid.
This does not contradict with the discussion in the next section where the sampling is assumed
to be general (including both iid and non-iid). Indeed, all we need in Propositions 2.1 and 2.2
are uniform convergence of the sample average of f, g and their gradients, which can be proved
through [32, Theorem 3.1] under Assumptions 3.1 and 3.2 when the sampling is non-iid.

Proposition 2.1 Let f, g and φN be defined respectively as in (1.1) and (1.3). If the sampling
is iid, then

(i) under Assumption 2.1 (a), (b) and (d), 1
N

∑N
i=1 f(x, ξi), 1

N

∑N
i=1 g(x, ξi) and 1

N

∑N
i=1 f

2(x, ξi)
converge to E[f(x, ξ)], E[g(x, ξ)] and E[f2(x, ξ)] respectively uniformly over X as N →∞;

(ii) under Assumption 2.1 (a) and (c), 1
N

∑N
i=1∇xf(x, ξi) and 1

N

∑N
i=1∇xg(x, ξi) converge to

E[∇xf(x, ξ)], E[∇xg(x, ξ)] respectively uniformly over X as N →∞;

(iii) if Assumption 2.1 (a) and (d) hold and λN → λ∗, then ∇φN (x) converges to ∇Var[f(x, ξ)]
uniformly over X as N →∞.

Proof. The claims can be easily proved by virtue of the classical uniform law of large numbers,
see for example [26, Lemma A]. We omit the details.

Let us introduce some notation. For a vector a ∈ IRn, we use a ≥ 0 to represent the
componentwise nonnegativity of the vector and ‘⊥’ to denote the perpendicularity of two vectors.
Let NX(x) denote the normal cone to X at point x, that is,

NX(x) :=

{
{η ∈ IRn : ηT (x′ − x) ≤ 0, ∀x′ ∈ X}, if x ∈ X,
∅, otherwise.

Assumption 2.2 Consider the true problem (1.1). There is no non-zero multiplier µ ∈ IRm
+

such that {
0 ∈ ∇E[g(x, ξ)]µ+NX(x),
0 ≤ −E[g(x, ξ)] ⊥ µ ≥ 0.

Assumption 2.2 is known as no nonzero abnormal multipliers constraint qualification (NNAMCQ)
which was proposed by Ye [34] for studying the first order optimality conditions of determinis-
tic mathematical programs with equilibrium constraints (MPEC). The constraint qualification
is a dual form of the well-known Mangasarian-Fromovitz constraint qualification (MFCQ). To
see this, let us consider a simple case when NX(x) = {0}, that is, x is in the interior of
X. The constraint qualification reduces to positive linear independence of the gradients of all
active inequality constraints. By the Fakas lemma, there exists a vector d ∈ IRn such that
∇E[gi(x, ξ)]Td < 0 for active constraints i such that E[gi(x, ξ)] = 0. The latter is indeed the
MFCQ, see [33, page 1696] for details.
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Consider the first order necessary conditions of the SAA problem (1.3):{
0 ∈ ∇φN (x) +∇gN (x)µ+NX(x),
0 ≤ −gN (x) ⊥ µ ≥ 0.

(2.6)

Let {µN} be a sequence of Lagrange multipliers satisfying (2.6). The following proposition states
that {µN} is bounded under some moderate conditions.

Proposition 2.2 Consider the SAA problem (1.3) with iid samples. Under Assumptions 2.1
and 2.2, the sequence of the Langrange multipliers {µN} is bounded w.p.1.

Proof. Let xN be a KKT point and µN be a corresponding vector of Lagrange multipliers.
Then

0 ∈ ∇φN (xN ) +∇gN (xN )µN +NX(x), (2.7)

and 0 ≤ µN ⊥ −gN (xN ) ≥ 0. Assume for the sake of a contradiction that {µN} is un-
bounded. Then {µN} has a subsequence going to infinity. Since X is a compact, {xN} has
a subsequence converging to some point x∗ ∈ X. Assume without loss of generality that
{xN} → x∗ and ‖µN‖ → ∞. Under Assumption 2.1, it follows from Proposition 2.1 that
∇φN (xN ) → ∇Var[f(x∗, ξ)] and ∇gN (xN ) → ∇E[g(x∗, ξ)]. Dividing both sides of (2.7) by
‖µN‖ and driving N to infinity, we arrive at

0 ∈ 0 +∇E[g(x∗, ξ)]µ̂+NX(x∗), (2.8)

where µ̂ is the accumulation point of {µN/‖µN‖} and hence µ̂ ≥ 0 and ‖µ̂‖ = 1. This leads to
a contradiction to Assumption 2.2. The proof is complete.

Proposition 2.2 gives a qualitative description of the boundedness of µN . In what follows,
we present a quantitative estimation of the multiplier.

Proposition 2.3 Let W∗ := (X∗,M∗) denote the set of KKT pairs of the true problem (1.1)
and WN := (XN ,MN ) the set of KKT pairs of SAA problem (1.3). Under Assumptions 2.1
and 2.2, for every ε > 0, there exists N(ε) > 0 such that

H(WN ,W∗) ≤ ε, (2.9)

for N ≥ N(ε).

Proof. We can easily reformulate the KKT conditions (2.6) as a system of generalized equations
with both x and µ being treated as variables:{

0 ∈ ∇φN (x) +∇gN (x)µ+NX(x),
0 = min{−gN (x), µ}.

(2.10)

Here the operation “min” is taken componentwise. The domain of the underlying function w.r.t.
variable µ is [0,+∞) but we may assume without loss of generality that µN ∈ [0, µ̄] for all N
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with some sufficiently large µ̄ given the boundedness of {µN} proved in Proposition 2.2. Likewise
the KKT conditions of (1.1) can be written as{

0 ∈ ∇Var[f(x, ξ)] +∇E[g(x, ξ)]µ+NX(x),
0 = min{−E[g(x, ξ)], µ}.

(2.11)

The set of KKT pairsWN is the set of solutions of problem (2.10) andW∗ is the set of solutions of
problem (2.11). Since the vector valued function (∇φN (x)+∇gN (x)µ,min(gN (x), µ))T converges
uniformly to (∇Var[f(x, ξ)] +∇E[g(x, ξ)]µ,min(E[g(x, ξ)], µ))T over compact set X × [0, µ̄], by
[31, Lemma 4.1], we immediately obtain (2.9).

Remark 2.1 From Proposition 2.2, we know that {µN} is bounded. By [10, Theorem 14.3.1],
(2.5) is equivalent to (1.3) so long as we set λN ≥ ‖µN‖. From here on, we assume that

{
λN
}

is an increasing bounded sequence satisfying this.

3 Convergence analysis

We are now ready to investigate the convergence of the statistical estimator of the optimal
solution, denoted by xN , obtained from solving (2.5) as sample size increases. We do so by
looking into the uniform convergence of ψN (x) to ψ(x) which implies the convergence xN to
X∗, where X∗ denotes the set of optimal solutions of the true problem (1.1), or equivalently
(2.4). From computational perspective, one often need estimate the sample size N given a
prescribed error bound d(xN , X∗). A popular way to address this issue is to consider the so-
called exponential convergence, that is, with probability approaching one exponentially fast,
{xN} converges to X∗ based on the classical Cramér’s large deviation theorem [9], see [28, 29]
and the references therein.

Note that Cramér’s large deviation theorem is based on independent and identically dis-
tributed (iid) sampling. In some practical instances, however, it is difficult or computationally
expensive to obtain an iid sample particularly when sample size is large. Indeed, the well-known
Quasi-Monte Carlo method does not require iid sampling and yet it works remarkably well.
This motivates one to study SAA under non-iid sampling. Dai, Chen and Birge [8] investigated
the convergence of SAA estimators under general sampling (including iid and non-iid). They
used the well-known Gärther-Ellis theorem [9] to establish the exponential convergence. More
recently Homem-de-Mello [11] presented a comprehensive study of this issue and derived the
exponential convergence of statistical estimators of optimal solutions in stochastic programming
under non-iid sampling. To broaden the scope of the convergence theorems to be established in
this section, we consider general sampling.

Let us define the following moment generating functions:

MN
f (t) := E

{
et[

1
N

∑N
i=1 f(x,ξi)]

}
,

MN
f2(t) := E

{
et[

1
N

∑N
i=1 f

2(x,ξi)]
}
,
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and
MN
g (t) := E

{
et[

1
N

∑N
i=1 g(x,ξ

i)]
}
.

Assumption 3.1 For every x ∈ X and t ∈ IR, the limits

Mf (t) := lim
N→∞

MN
f (t),

Mf2(t) := lim
N→∞

MN
f2(t)

and
Mg(t) := lim

N→∞
MN
g (t)

exist as an extended real number and Mf (t) <∞, Mg(t) <∞ and Mf2(t) <∞ for t close to 0,
where Mh(t) = eht denotes the moment generating function for random variables h = f, g, f2.
Moreover ∇gN (x) converges uniformly to E[∇g(x, ξ)] over X.

Note that in the case when ξ1, · · · , ξN is an iid sampling, Assumption 3.1 holds as long as

max(Mf (t),Mf2(t),Mg(t)) <∞

for t close to zero, see [9, Section 2.3]. The implication of Assumption 3.1 is that when the
sampling is not necessarily iid, one may use Gärtner-Ellis’ large deviation theorem, [9, Theorem
2.3.6], instead of Cramér’s large deviation theorem to establish the exponential convergence of
the sample averages. The following pointwise exponential convergence is well-known, see for
instances [8, 9].

Lemma 3.1 Let f : IRn × Ξ → IR be a real valued function and ξ : Ω → Ξ ⊂ IRk be a random
vector defined on probability space (Ω,F , P ). Let Assumption 3.1 hold. Then for every x ∈ X
and small positive number ε > 0,

Prob

{∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi)− E[f(x, ξ)]

∣∣∣∣∣ ≥ ε
}
≤ e−NIf (−ε) + e−NIf (ε),

Prob

{∣∣∣∣∣ 1
N

N∑
i=1

f2(x, ξi)− E[f2(x, ξ)]

∣∣∣∣∣ ≥ ε
}
≤ e−NIf2 (−ε) + e−NIf2 (ε)

Prob

{∣∣∣∣∣ 1
N

N∑
i=1

g(x, ξi)− E[g(x, ξ)]

∣∣∣∣∣ ≥ ε
}
≤ e−NIg(−ε) + e−NIg(ε)

for N sufficiently large, where

Ih(ε) := sup
t∈R

{
εt− logMh(t)}

for h = f, f2, g, and Ih(ε) and Ih(−ε) and Ih(−ε) are positive.
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To establish the uniform exponential convergence, we also need an assumption on asymptotic
behavior of the sample average of the modulus of function f . Similar assumption is made in [29]
for the uniform exponential convergence of sample average random functions under iid sampling.

Assumption 3.2 Let κ1(ξ) and κ3(ξ) be defined as in Assumption 2.1. For any L′ ≥ E[max{κ1(ξ), κ3(ξ)}],
there is a positive constant τ such that

Prob

{
min

(
1
N

N∑
i=1

κ1(ξi),
1
N

N∑
i=1

κ3(ξi)

)
≥ L′

}
≤ e−τN , (3.12)

for N sufficiently large.

Under Assumption 3.2, we may strengthen Lemma 3.1 to the uniform exponential conver-
gence.

Theorem 3.1 Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold. Assume1 that {λN} → λ∗ as N →
∞. Then for every ε > 0, there exist positive constants c(ε) and β(ε), independent of N , such
that

Prob
{

sup
x∈X
|ψN (x)− ψ(x)| ≥ ε

}
≤ c(ε)e−Nβ(ε) (3.13)

for N sufficiently large.

Proof. By a simple calculation,

φN (x) =
N

N − 1

 1
N

N∑
i=1

f2(x, ξi)−

(
1
N

N∑
i=1

f(x, ξi)

)2


and through (1.2)

φN (x)− φ(x) =
N

N − 1

 1
N

N∑
i=1

f2(x, ξi)− E[f2(x, ξ)]−

( 1
N

N∑
i=1

f(x, ξi)

)2

− (E[f(x, ξ)])2


+

1
N − 1

φ(x). (3.14)

On the other hand, it is easy to verify that function p(z) defined in (2.4) is globally Lipschitz
continuous with modulus 1 and p(z) ≤ ‖z‖ which means∣∣∣∣∣λNp

(
1
N

N∑
i=1

g(x, ξi)

)
− λ∗p(E[g(x, ξ)])

∣∣∣∣∣ ≤ ∣∣λN − λ∗∣∣ ∥∥∥∥∥ 1
N

N∑
i=1

g(x, ξi)

∥∥∥∥∥
+λ∗

∥∥∥∥∥ 1
N

N∑
i=1

g(x, ξi)− E[g(x, ξ)]

∥∥∥∥∥ . (3.15)

1Under Assumptions 2.1, 2.2, 3.1 and 3.2, we can prove the uniform convergence of φN (x), ∇gN (x) to E[φ(x, ξ)]

and E[∇g(x, ξ)] over set X. Through Proposition 2.2, this means {µN} is bounded. For simplicity of discussion,

we assume {λN} → λ∗ as N →∞ just for simplicity of discussion and it is justified.
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Combining (3.14) and (3.15), we have

|ψN (x)− ψ(x)| ≤ N

N − 1

∣∣∣∣∣ 1
N

N∑
i=1

f2(x, ξi)− E[f2(x, ξ)]

∣∣∣∣∣
+

N

N − 1

∣∣∣∣∣∣
(

1
N

N∑
i=1

f(x, ξi)

)2

− (E[f(x, ξ)])2

∣∣∣∣∣∣
+

1
N − 1

φ(x) + λ∗

∥∥∥∥∥ 1
N

N∑
i=1

g(x, ξi)− E[g(x, ξ)]

∥∥∥∥∥
+|λN − λ∗|

∥∥∥∥∥ 1
N

N∑
i=1

g(x, ξi)

∥∥∥∥∥ .
Let ε > 0 be a fixed small positive number. In what follows, we estimate

Prob {|ψN (x)− ψ(x)| ≥ ε} .

Observe first that for N ≥ 2, we have N
N−1 ≤ 2. Moreover, since φ(x) is a continuous function

and X is compact, there exists positive integer N such that when N ≥ 5
ε supx∈X φ(x) + 1, we

have 1
N−1φ(x) ≤ ε

5 . Subsequently

|ψN (x)− ψ(x)| ≤ 2

∣∣∣∣∣ 1
N

N∑
i=1

f2(x, ξi)− E[f2(x, ξ)]

∣∣∣∣∣
+2

∣∣∣∣∣∣
(

1
N

N∑
i=1

f(x, ξi)

)2

− (E[f(x, ξ)])2

∣∣∣∣∣∣
+λ∗

∥∥∥∥∥ 1
N

N∑
i=1

g(x, ξi)− E[g(x, ξ)]

∥∥∥∥∥
+|λN − λ∗|

∥∥∥∥∥ 1
N

N∑
i=1

g(x, ξi)

∥∥∥∥∥+
ε

5
.

Denote the first, second, third and fourth terms on the right hand side of the above inequality
in sequel by RN1 (x), RN2 (x), RN3 (x) and RN4 (x). Under Assumption 2.1, f2(x, ξ) and g(x, ξ) are
Lipschitz continuous with modulus κ1(ξ)κ3(ξ) and κ1(ξ). Together with the pointwise exponen-
tial convergence in Lemma 3.1, we can use [32, Theorem 3.1] to obtain the uniform exponential
convergence, that is, there exist positive constants cl(ε) and βl(ε) such that

Prob
{

sup
x∈X

RNl (x) ≥ ε

5

}
≤ cl(ε)e−βl(ε)N (3.16)

for l = 1, 3. In what follows, we look into RN2 (x) and RN4 (x). Note that

RN2 (x) = 2

∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi) + E[f(x, ξ)]

∣∣∣∣∣
∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi)− E[f(x, ξ)]

∣∣∣∣∣ .

11



Using the conditional probability (conditional on whether supx∈X
∣∣∣ 1
N

∑N
i=1 f(x, ξi) + E[f(x, ξ)]

∣∣∣
exceeds 2E[κ3(ξ)] + 1 or not), we derive

Prob
{

sup
x∈X

RN2 (x) ≥ ε

5

}
≤ Prob

{
sup
x∈X

∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi) + E[f(x, ξ)]

∣∣∣∣∣ sup
x∈X

∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi)− E[f(x, ξ)]

∣∣∣∣∣ ≥ ε

10

}

× Prob

{
sup
x∈X

∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi) + E[f(x, ξ)]

∣∣∣∣∣ < 2E[κ3(ξ)] + 1

}

+ Prob

{
sup
x∈X

∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi) + E[f(x, ξ)]

∣∣∣∣∣ sup
x∈X

∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi)− E[f(x, ξ)]

∣∣∣∣∣ ≥ ε

10

}

× Prob

{
sup
x∈X

∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi) + E[f(x, ξ)]

∣∣∣∣∣ ≥ 2E[κ3(ξ)] + 1

}

≤ Prob

{
sup
x∈X

∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi)− E[f(x, ξ)]

∣∣∣∣∣ ≥ ε

10(2E[κ3(ξ)] + 1)

}

+ Prob

{
sup
x∈X

∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi) + E[f(x, ξ)]

∣∣∣∣∣ ≥ 2E[κ3(ξ)] + 1

}

Under Assumption 2.1 (b), f is Lipschitz continuous in x and Lemma 3.1 implies that 1
N

∑N
i=1 f(x, ξi)

converges to E[f(x, ξ)] pointwise onX at exponential rate. By [32, Theorem 3.1], 1
N

∑N
i=1 f(x, ξi)

converges to E[f(x, ξ)] uniformly on X at exponential rate, that is, there exist positive constants
c2(ε) and β2(ε) such that

Prob

{
sup
x∈X

∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi)− E[f(x, ξ)]

∣∣∣∣∣ ≥ ε

10(2E[κ3(ξ)] + 1)

}
≤ c2(ε)e−β2(ε)N . (3.17)

On the other hand, under Assumption 2.1 (d),∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi) + E[f(x, ξ)]

∣∣∣∣∣ ≤ 1
N

N∑
i=1

κ3(ξi) + E[κ3(ξ)].

By Assumption 3.2,

Prob

{
sup
x∈X

∣∣∣∣∣ 1
N

N∑
i=1

f(x, ξi) + E[f(x, ξ)]

∣∣∣∣∣ ≥ 2E[κ3(ξ)] + 1

}
≤ Prob

{
1
N

N∑
i=1

κ3(ξi) ≥ E[κ3(ξ)] + 1

}
≤ e−Nτ (3.18)

for N sufficiently large. Substituting (3.17) and (3.18) into the term RN2 (x) yields the following
inequality

Prob
{

sup
x∈X

RN2 (x) ≥ ε

5

}
≤ c2(ε)e−β2(ε)N + e−Nτ .
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Finally, we estimate the probability of supx∈X RN4 (x) ≥ ε/5, where

RN4 (x) =
∣∣λN − λ∗∣∣ ∣∣∣∣∣ 1

N

N∑
i=1

g(x, ξi)

∣∣∣∣∣ .
By Assumption 2.1 (b) and the pointwise exponential convergence of 1

N

∑N
i=1 g(x, ξi) to E[g(x, ξ)]

on set X as established in Lemma 3.1, we can easily use [32, Theorem 3.1] to show the uniform
exponential convergence of 1

N

∑N
i=1 g(x, ξi) to E[g(x, ξ)] on set X. Since supx∈XE[g(x, ξ)] is

bounded by E[g(x̄, ξ)] + ‖x − x̄‖γE[κ1(ξ)] for any x̄ ∈ X, and λN → λ∗, then for given ε > 0,
there exist N(ε) > 0, c4(ε) > 0 and β4(ε) > 0 such that for any N > N(ε), that is,

Prob
{

sup
x∈X

RN4 (x) ≥ ε

5

}
≤ c4(ε)e−β4(ε)N .

Combining the estimation of probabilities of supx∈X RNl (x) ≥ ε/5, l = 1, 2, 3 and 4, we have

Prob {|ψN (x)− ψ(x)| ≥ ε} ≤ c(ε)e−β(ε)N ,

where c(ε) = 2c1(ε) + c2(ε) + 1 + c4(ε) and β(ε) = min{β1(ε), β2(ε), τ, c4(ε)}. This shows (3.13)
and hence completes the proof.

We now apply the uniform exponential convergence results to establish the exponential
convergence of {xN}.

Lemma 3.2 Consider a general constrained minimization problem

min p(x)
s.t. x ∈ X

(3.19)

where p : IRn → IR and X is a subset of IRn, and a perturbed program

min p̃(x)
s.t. x ∈ X

(3.20)

where p̃ : IRn → IR is a perturbation of p. Let U∗ denote the set of optimal solutions of (3.19)
and V ∗ be the set of optimal solutions of (3.20). Assume that neither U∗ nor V ∗ is empty. Then
for any ε > 0, there exists a δ > 0 (depending on ε) such that if supx∈X |p̃(x)−p(x)| ≤ δ, ∀x ∈ X,
then D(V ∗, U∗) ≤ ε.

The result is proved by Dai, Chen and Birge in [8, Lemma 3.2] when U∗ is a singleton.
It is not difficult to see from their proof that the conclusion holds when U∗ contains multiple
solutions.

Theorem 3.2 Assume the setting and conditions of Theorem 3.1. Let {xN} be a sequence of
optimal solutions to the SAA problem (1.3) and X∗ be the set of optimal solutions to the true
problem (1.1). For any ε > 0, there exist constants β(ε) > 0 and c(ε) > 0 such that

Prob
{
d
(
xN , X∗

)
≥ ε
}
≤ c(ε)e−β(ε)N . (3.21)
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Proof. Let ε > 0 be fixed. By Lemma 3.2, there exists δ(ε) > 0 such that d(xN , X∗) ≤ ε

when supx∈X |ψN (x)− ψ(x)| ≤ δ(ε). For the given δ(ε), it follows from Theorem 3.1 that there
exists β(δ(ε)) > 0, c(δ(ε)) > 0 (for simplicity of notation, we write them as c(ε) and β(ε)) and
a sufficiently large integer N0, such that

Prob
{

sup
x∈X
|ψN (x)− ψ(x)| ≥ δ(ε)

}
≤ c(ε)e−β(ε)N ,

for any N ≥ N0. This implies

Prob
{
d(xN , X∗) ≥ ε

}
≤ Prob

{
sup
x∈X
|ψN (x)− ψ(x)| ≥ δ(ε)

}
≤ c(ε)e−β(ε)N ,

for any N ≥ N0. The proof is complete.

4 The portfolio selection problem with taxation costs

In this section, we apply the mean-risk model (1.1) and the sample average approximation
scheme discussed in the preceding sections to a portfolio selection problem with taxation cost.
The general background of this decision making problem is to address the requirement of a
traditional fund manager and the tax regime imposed by a regulator over a particular investment
period, see [24] for more details.

Consider a set of M assets indexed by m ∈ {1, 2, . . . ,M}. We denote the outcome price
for per unit of asset m at the beginning and the end of the investment period by p0

m and pm
respectively. The unit return rate of the asset is defined as rm := pm/p

0
m. The end price pm is

often unknown at the beginning of the investment period due to uncertainties in the investment.
We describe the uncertainty by a vector of random variables ξ(ω) and write pm and rm as a
function of ξ, pm(ξ(ω)) and rm(ξ(ω)), for m = 1, · · · ,M . To ease the notation, we use ξ to
denote either random vector ξ(ω) or an element of IRk depending on the context.

Let w denote the total capital available for the investment and wm, m = 1, · · · ,M , to be
invested in asset m. Let xm := wm/w denote the proportion of the capital invested in asset
m. Without loss of generality, we assume that the fund manager invests the rest of his capital
w0 := w −

∑M
m=1wm in a risk-free asset (such as bond and bank account) with a deterministic

return r0. Let x0 := w0/w and x := (x0, x1, x2, · · · , xM )T denote the manager’s decision vector.
The return rate of this portfolio can be formulated as:

R(x, ξ) = x0r0 + x1r1(ξ) + x2r2(ξ) + · · ·+ xMrM (ξ).

By defining the vector of return rate as r(ξ) := (r0, r1(ξ), . . . , rM (ξ))T , we can rewrite R(x, ξ)
in a concise form:

R(x, ξ) = xT r(ξ). (4.22)

From the definition, (x0, x1, x2, . . . , xM ) must satisfy a set of basic constraints which specify the
feasible set X of the decision vector:

X =

{
(x0, x1, x2, . . . , xM )

∣∣∣∣ M∑
m=1

xm = 1, xm ≥ 0, for all m = 0, 1, 2, . . . ,M

}
. (4.23)
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The decision on making a choice between two portfolios x, x′ ∈ X is based on the random
returns R(x, ξ) and R(x′, ξ). Here we use a mean-variance optimization model to give a reference
criterion under which portfolio vector x ∈ X is considered ‘better’ or ‘preferred’ than others.
Let us first formulate the profit that the manager might obtain from the investment. Given the
total amount of capital w and the rate of return of the investment R(x, ξ), the total amount of
capital at the end of the investment period can be formulated as wR(x, ξ). Hence the profit of
the fund manager obtained from this investment period can be written as h(x, ξ) = wR(x, ξ)−w.

In the mean-variance optimization model to be discussed, we consider the case that tax is
paid by the manager. The tax function, denoted by T (h), gives the amount of capital to be
taxed when the manager’s profit from the investment is h. A popular tax function is defined as
follows:

T (h) =

{
t1h, for h ≤ β;
t1β + t2(h− β), for h > β,

(4.24)

where t1 and t2 are the tax rates, β is the tax threshold from rate t1 to rate t2 and T (h) denotes
the total tax on the profit h. In the literature, T (h) is known as a piecewise linear progressive
tax function. Here the word ‘progressive’ is in the sense that T (h)/h is an increasing function,
see [18, Definition 2.4]. Observe that this tax function is nonsmooth and this might complicate
the numerical solution of the problem. In what follows, we consider another strictly progressive
tax function defined as follows:

T (h) =

 K2

(
1− e−

h
v2

)
h, for h ∈ [−w, 0),

K1

(
1− e−

h
v1

)
h, for h ∈ [0,+∞),

(4.25)

where K1, K2, v1 and v2 are positive constants with 0 < K2 ≤ K1 < 1, which guarantees that
the tax cost is less than the overall profit h. It is easy to verify that T (h) defined above is
smooth (continuously differentiable). In practice, parameter K1, taken as the ceiling rate of tax
T (h)/h, varies for different types of taxation. The tax function has the following properties:

(a) for a sufficiently large income h, the rate of tax T (h)/h = K1

(
1− e−

h
v1

)
≈ K1;

(b) if h = 0, i.e., there is no income from the investment, then T (h)/h = K1

(
1− e−

h
v1

)
= 0;

(c) if h ∈ [−w, 0), i.e. the manager loses the capital in the investment, then the rate of tax

T (h)/h = K2

(
1− e−

h
v2

)
< 0.

Property (c) indicates that when the profit h from the investment is negative, the taxation rate
T (h)/h is negative which implies certain amount of capital loss is refunded to the investor by
the tax authority. This reflects practical policies taken by some governments and/or tax regimes
that intend to promote investment. Note that by setting parameter v2 sufficiently large we have
from property (c) that the rate of the taxation T (h)/h is close to zero. Therefore the tax policy
that no compensation will be refunded for the investment can be viewed as part of the tax
function (4.25).
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For the simplicity of notation, we define K(x, ξ) := max(K1sign(h(x, ξ)),−K2sign(h(x, ξ)))
and v(x, ξ) := max(v1sign(h(x, ξ)),−v2sign(h(x, ξ))), where

sign(h) =


1, h > 0,
0, h = 0,
−1, h < 0.

Taking the taxation costs into account, if the manager chooses the portfolio vector x = (x0, x1, . . . , xM )
at the beginning of the investment, the post-tax profit obtained from this investment can be
formulated as

H(x, ξ) = h(x, ξ)− T (h(x, ξ)) = h(x, ξ)
(

(1−K(x, ξ)) +K(x, ξ)e−h(x,ξ)/v(x,ξ)
)
. (4.26)

The following lemma states the Lipschitz continuity of H and ∇xH in x, a property that we
need for the convergence analysis in Proposition 4.1.

Lemma 4.1 Let H(x, ξ) be defined as in (4.26). Then the following hold:

(i) H is Lipschtiz continuous w.r.t x and its Lipschtiz modulus is bounded by a positive con-
stant κ1 > 0;

(ii) ∇xH(x, ξ) is Lipschitz continuous w.r.t x with a bounded Lipschtiz modulus.

The proof is long but standard. We attach it in the appendix. Note that it is possible to show
the continuous differentiability of function H(x, ξ) although we do not need it in the following
discussion.

Based on the discussions above, we are ready to develop a mean-variance optimization model
for the portfolio problem: a portfolio x is chosen at the beginning of the investment period to
satisfy the requirements on both expected profit and risk-aversion. Preference is then defined
by considering a trade-off between a larger average return rate of the portfolio E[H(x, ξ)] and
a smaller variance Var[H(x, ξ)]. Let d denote the threshold of the expected return from the
portfolio. The optimal decision is to minimize the variance of the investment subject to the
constraint that the expected profit is not lower than d:

min
x

Var[H(x, ξ)]

s.t. x ∈ X,
E[H(x, ξ)] ≥ d.

(4.27)

Our focus here is concerned with the numerical solution of problem (4.27). Obviously if the
probability distribution function of rm(ξ), m = 1, 2, . . . ,M , is available before the investment
period and we can obtain a closed form of E[H(x, ξ)] and Var[H(x, ξ)], then (4.27) becomes a
deterministic optimization problem and we can use any available nonlinear programming code
to solve it. In practice, however, this is often difficult, if not impossible. Instead, it is relatively
easier to acquire a sample of r(ξ) from historical data. Based on this argument, we propose the
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sample average approximation scheme for solving the portfolio optimization problem:

min
x

1
N − 1

N∑
i=1

H2(x, ξi)− N

N − 1

(
1
N

N∑
i=1

H(x, ξi)

)2

s.t. x ∈ X,
1
N

N∑
i=1

H(x, ξi) ≥ d,

(4.28)

where ξ1, · · · , ξN is a sample of ξ.

We apply Theorem 3.2 to derive the rate of convergence of optimal solution xN (obtained
from solving from problem (4.28)) to its true counterpart as sample size N increases. Observe
that the tax function T (h) is not strictly convex, hence problem (4.27) may have multiple optimal
solutions. In a real investment problem, the random return rate rm does not go to infinity or
negative. Therefore, we may assume that for asset m, there exists a positive constant r̄m such
that rm ∈ [0, r̄m]. We are now ready to state the main result of this section.

Proposition 4.1 Let {xN} be a sequence of optimal solutions obtained from solving the SAA
problem (4.28) and X∗ the set of optimal solutions of the true problem (4.27). Assume that the
sampling is iid2. Then

(i) for every ε > 0, there exists a positive integer N0 > 0 such that for N > N0, d(xN , X∗) ≤ ε
w.p.1;

(ii) for any ε > 0, there exist constants β(ε) > 0 and c(ε) > 0 such that

Prob
{
d(xN , X∗) ≥ ε

}
≤ c(ε)e−β(ε)N (4.29)

for N sufficiently large.

Proof. We prove the claims by virtue of Theorem 3.2. To this end, we by verify the conditions
of the theorem in the context of (4.27). Let us start by verifying Assumption 2.1. From (4.23),
we see that X is a convex and compact set. This verifies Assumption 2.1 (a). Assumption 2.1
(b)-(d) follow from Lemma 4.1. Assumption 2.2 is trivially satisfied because ∇xE[H(x, ξ)] is a
nonzero vector for any x ∈ X.

Next we look at Assumption 3.1. Consider the moment generating function:

MN
H (t) = E

[
et[

1
N

∑N
i=1H(x,ξi)]

]
.

By definition |H(x, ξ)| ≤ |h(x, ξ)| ≤
∑M

m=1 |rm(ξ)| ≤
∑M

m=1 r̄m. Consequently

MN
H (t) ≤ E

[
ewt[

1
N

∑N
i=1

∑M
m=1 |rm(ξi)|]

]
≤ E

[
ew|t|[

1
N

∑N
i=1

∑M
m=1 |r̄m|]

]
≤ ew|t|

∑M
m=1 r̄m ,

2In the case that the sampling is non-iid, we need Assumptions 3.1 and 3.2.
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which implies MH(t) < +∞ for t close to 0. Since the sampling is iid, by the Cramer’s large
deviation theorem, limN→∞M

N
H (t) exits and it equals to MH(t). Likewise we can prove that

MH2(t) = limN→∞M
N
H2(t) < +∞ for t close to 0. This verifies Assumption 3.1. Finally,

Assumption 3.2 follows from Cramer’s large deviation theorem and Lemma 3.1. This completes
the proof.

To conclude this section, we comment that in some practical cases, a fund manager may be
interested in pre-tax profit maximization. In this case, the optimization model becomes

min
x

Var[h(x, ξ)]

s.t. x ∈ X,
E[h(x, ξ)] ≥ d.

(4.30)

Applying the SAA scheme to it, we can obtain the exponential convergence of optimal solution
estimators as in Proposition 4.1.

5 Numerical tests

We have carried out some numerical tests on two mean-variance optimization problems. In this
section, we report the test results.

The first test problem is under the portfolio selection framework discussed in Section 4.
We consider a set of stocks in iShare FTSE/Xinhua China 25 index of the New York Stock
Exchange (NYSE:FXI) which consists 25 of the largest and most liquid Chinese stocks. The
tests are performed over a set of 18 stocks from this index, excluding 7 stocks due to insufficient
historical data. Our portfolio optimization model is similar to the mean-CVaR model in Roman,
Darby-Dowman and Mitra [25, Section 5] except that we consider variance instead of CVaR in
the objective as the risk measure. In the tests, we apply the sample average approximation
to the problem on the basis of historical data collected from the stock market. The data set
consists of daily closing prices for these 18 stocks, over a two-year period spanning from March
23rd 2007 to March 23rd 2009, download from http://finance.google.com with adjustment for
stock splitting, including 300 historical samples of monthly return. The tests are implemented by
using mathematical programming codes of GAMS installed in a PC with Windows XP operating
system and the built-in solver PATHNLP.

To apply the proposed SAA framework to our numerical tests, we write the SAA of the
mean-variance model (4.28) in a standard nonlinear programming form:

min
x

1
N−1

N∑
i=1

H2(x, ξi)− N
N−1

(
1
N

N∑
i=1

H(x, ξi)
)2

s.t. xm ≥ 0, m = 0, 1, 2, . . . ,M,

x0 + x1 + x2 + · · ·+ xM = 1,

1
N

N∑
i=1

H(x, ξi) ≥ d.

(5.31)

Denote the set of candidate stocks byM = {1, · · · ,M}, and let xm,m ∈M be the proportion
of the total capital (normalized to w = 1) to be invested into stock m, where M = 18 in our
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problem. Moreover, we use rm, m = 1, 2, . . . ,M , to denote the corresponding monthly return
rates, where the sample of {rm}m∈M is calculated based on a set of historical data: Let pim
denote the closing price in the real market of stock m on day i, we construct the data set of
monthly return rates rim by rim = pi+∆

m /pim for each m ∈ M and each time point i, where ∆
is a moving-window that slides over the historical data on the time dimension i. Because what
we consider is monthly return rate, the width of the moving-window ∆ is set to be 30 days. In
our analysis, we can take the collection of data from the market, {rim, i = 1, 2, . . . , S}, as the
sample rm(ξi) in (5.31), where S = 300 is the number of samples.

First, we perform comparative static analysis on the constraint of expected return levels and
the composition of the considered portfolio. One straightforward result that we may expect is
that the ratio of capital invested to the risk-free asset (here, we only consider cash) decreases
along with the increase requirement on the expected return level. By fixing the taxation param-
eters K1 = K2 = 0.15 and v1 = v2 = 0.3 in (5.31), we obtain the results on the composition of
portfolios and the minimum variances for different expected return levels as follows:

Level d Variance Pre-tax Return CBA CEA CHA CHU NTE STP CASH
0.040 0.0123 0.0539 0.1997 0.1860 0.0986 0.0000 0.1358 0.1879 0.1920
0.035 0.0076 0.0445 0.1779 0.1613 0.0484 0.0432 0.1356 0.1284 0.3051
0.030 0.0048 0.0366 0.1558 0.1397 0.0030 0.0751 0.1239 0.0876 0.4149
0.025 0.0029 0.0294 0.1249 0.1207 0.0000 0.0713 0.1092 0.0574 0.5166
0.020 0.0017 0.0227 0.0956 0.0992 0.0000 0.0600 0.0897 0.0368 0.6186
0.015 0.0009 0.0165 0.0687 0.0758 0.0000 0.0459 0.0677 0.0226 0.7193
0.010 0.0004 0.0107 0.0439 0.0511 0.0000 0.0305 0.0450 0.0125 0.8170

Table 1: The compositions of portfolios and the minimum variances w.r.t the return levels.

In Table 1 , CBA, CEA, CHA, CHU are the codes for stocks in FTSE/Xinhua China 25
index. Full name of each stock can be found at http://finance.google.com. Note that in our test,
we consider 18 stocks in FTSE/Xinhua China 25 index. There are: ACH, CBA, CEA, CEO,
CHA, CHL, CHU, CYD, GSH, HNP, LFC, NTE, PTR, SHI, SMI, STP, YZC, ZNH, and in the
table we only list the stocks with non-zero capital investment. In our analysis, we normalize
the total capital invested to 1 and we can regard the normalized investment on one stock as its
weight in the selected portfolio. For instance, when the expected return is 0.040, the weight of
CBA in the selected portfolio is 0.1997. From Table 1, we can easily see that, as the expected
return level d increases the proportion of investment on CASH (risk-free assets) decreases (from
0.8170 to 0.1920). On the other hand, when the capital invested on risk-free asset (CASH)
flows to the risky assets with higher return rate, the minimum variances increases, see column
2 and 10 in the table. Moreover, because stock CHA is of high return and high volatility, it
is not selected in the portfolio when the investor’s requirement on the expected return is not
high, while its weight in the selected portfolio when the investor’s expectation on the return rate
increases from 0.030.

The resulting mean-variance efficient frontier is shown in Figure 1, and the changes of the
weights of stocks CHA, CEA, NTE and STP are shown in Figure 2.
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Figure 1: Efficient Frontier of the portfolio positions

Figure 2: The weights of stocks in the portfolio positions.

Let us now look at the sensitivity of the minimum variances and the compositions of the
selected portfolio with respect to the tax rate K in H(x, ξ) in (5.31), where we fix the expected
return rate at d = 0.035 and v = 0.3. We perform the SAA scheme to the model by varying the
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tax rate K1 and K2 from 0 to 0.5. The results are listed in Table 2. In the table, we can see that
the minimum variance increases along with the increase of the tax rate. The underlying reason
of this phenomena is that to satisfy the required post-tax return level d = 0.035, the stocks with
high return rate is preferred by the investor rather than the stocks with low variance, and hence
the weight of CASH (risk-free assets) reduces along with the increase of the tax rate.

K1, K2 Variance Pre-tax Return CBA CEA CHA NTE STP CASH
0.5 0.0076 0.0508 0.2148 0.1929 0.1214 0.1801 0.1157 0.0176
0.4 0.0062 0.0451 0.1909 0.1816 0.1154 0.1683 0.0894 0.2544
0.3 0.0054 0.0415 0.1745 0.1781 0.1120 0.1625 0.0693 0.3035
0.2 0.0049 0.0388 0.1615 0.1778 0.1088 0.1590 0.0534 0.3394
0.1 0.0045 0.0367 0.1503 0.1790 0.1051 0.1567 0.0405 0.3684
0.0 0.0042 0.0350 0.1403 0.1807 0.1009 0.1548 0.0302 0.3931

Table 2: The compositions of portfolios and the minimum variances w.r.t the tax rates.

Note that due to the limitation on the availability of the published data, we are not able to
examine the rate of convergence with increasing sample size for this problem. Consequently we
propose an academic example to test the convergence of the optimal values/solutions by drawing
samples of increasing cardinality as a remedy.

Example 5.1 Consider a mean-variance optimization problem

min
x

Var [f(x, ξ)]

s.t. x ∈ X,
E[g(x, ξ)] ≤ 0,

where f(x, ξ) = (x−ξ)2 +7ξ and g(x, ξ) = 0.5(x−ξ)2 +0.1ξ−20, X = [−10, 10] and ξ satisfies a
normal distribution with mean 1 and standard deviation σ. It is easy to verify that the problem
has a unique optimal solution x∗ = 4.5. We carry out some numerical experiments on this
problem with the SAA method (1.3) in Matlab 7.2 installed in a PC with Windows Vista where
the SAA problem is solved by the Matlab built-in optimization solver fmincon. The numerical
results are displayed in Figures 3 and 4.

The first set of tests are carried out with variance σ = 0.5. We perform comparative analysis
with respect to the sample size from 200 to 9200. Figure 3 depicts how the optimal solutions
obtained from solving SAA problem changes as the sample size increases. For a fixed sample
size, 100 independent tests are carried out each of which solves the SAA problem and yields an
approximation solution. In Figure 3, we use a vertical interval to indicate the range of the 100
approximate solutions. As sample size increases, we observe a trend of exponential convergence
of the range of the approximate optimal solutions. We repeat the tests with σ = 0.2 and obtain
the similar trend of convergence, see Figure 4.
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Figure 3: The convergence of the SAA problem when σ = 0.5.

Figure 4: The convergence of the SAA problem when σ = 0.2.
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Appendix

Proof of Lemma 4.1. Part (i). By definition

|H(x′, ξ)−H(x, ξ)| ≤ |h(x′, ξ)− h(x, ξ)|+ |h(x′, ξ)K(x′, ξ)− h(x, ξ)K(x, ξ)|
+
∣∣∣h(x′, ξ)K(x′, ξ)e−h(x′,ξ)/v(x′,ξ) − h(x, ξ)K(x, ξ)e−h(x,ξ)/v(x,ξ)

∣∣∣ . (5.32)

Since ‖r(ξ)‖ ≤ r̄, by the definition of h(x, ξ), we have

|h(x′, ξ)− h(x, ξ)| ≤ r̄‖x′ − x‖. (5.33)

In what follows, we estimate the second and third terms at the right hand side of (5.32). To
this end, we have to go through the cases according to the values of h(x, ξ) and h(x′, ξ).

Case (a): h(x, ξ) ≥ 0 and h(x′, ξ) ≥ 0. Then

|h(x′, ξ)K(x′, ξ)− h(x, ξ)K(x, ξ)| ≤ K1r̄‖x′ − x‖.

Case (b): both h(x, ξ) ≤ 0 and h(x′, ξ) ≤ 0. Then

|h(x′, ξ)K(x′, ξ)− h(x, ξ)K(x, ξ)| ≤ K2r̄‖x′ − x‖.

Case (c): h(x′, ξ) ≥ 0 and h(x, ξ) ≤ 0 ( h(x′, ξ) ≤ 0 and h(x, ξ) ≥ 0 can be discussed similarly).
Let x̂ be a point located on the line segment connecting x and x′ such that h(x̂, ξ) = 0. Note
that x̂ may depend on ξ. Then ‖x′ − x̂‖+ ‖x̂− x‖ = ‖x′ − x‖. Moreover,

|h(x′, ξ)K(x′, ξ)− h(x, ξ)K(x, ξ)| ≤ |h(x′, ξ)K(x′, ξ)− h(x0, ξ)K(x0, ξ)|
+|h(x, ξ)K(x, ξ)− h(x0, ξ)K(x0, ξ)|

≤ K1r̄‖x′ − x0‖+K2r̄‖x− x0‖
≤ max{K1,K2}r̄‖x′ − x‖.

The last inequality follows from Cases (a) and (b). Taking into account of all cases, we arrive at

|h(x′, ξ)K(x′, ξ)− h(x, ξ)K(x, ξ)| ≤ max{K1,K2}r̄‖x′ − x‖ < r̄‖x′ − x‖, (5.34)
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where the second inequality is due to the fact that 0 < K2 ≤ K1 < 1. Analogously, we can show
that∣∣∣∣h(x′, ξ)K(x′, ξ)e−

h(x′,ξ)
v(x′,ξ) − h(x, ξ)K(x, ξ)e−

h(x,ξ)
v(x,ξ)

∣∣∣∣ ≤ max{K1,K2}max{ρ1, ρ2}r̄‖x′ − x‖,(5.35)

where ρ1 and ρ2 are the Lipschtiz modulus of functions h(x, ξ)e−h(x,ξ)/v1 and h(x, ξ)e−h(x,ξ)/v2

respectively. By combining (5.32)-(5.35), we have

|H(x′, ξ)−H(x, ξ)| ≤ κ1‖x′ − x‖, (5.36)

where κ1 := max{r̄,max{K1,K2}max{ρ1, ρ2}r̄} is deterministic and bounded.

Part (ii). Let X(ξ) := {x ∈ X : h(x, ξ) = 0}. From the definition of K(x, ξ) and v(x, ξ),
H(x, ξ) is continuously differentiable on X\X(ξ). Let x̂ ∈ X(ξ) and B(x̂, δ) be a closed ball in
IRm with radius δ and center x̂. Let S1 = B(x̂, δ)

⋂
{x ∈ X : h(x, ξ) ≥ 0. Then for x ∈ S1,

H(x, ξ) = h(x, ξ)− T (h(x, ξ)) = h(x, ξ)
(

(1−K1) +K1e
−h(x,ξ)/v1

)
,

and

∇xH(x, ξ) = ∇xh(x, ξ)
(

1−K1 +K1e
−h(x,ξ)/v1 − K1h

v1
e−h(x,ξ)/v1

)
.

Letting δ → 0, we have ∇xH(x, ξ) → ∇xh(x̂, ξ)(1 −K1 + K1) = wrT (ξ). On the other hand,
letting S2 = B(x̂, δ)

⋂
{x ∈ X : h(x, ξ) ≤ 0}, we have

H(x, ξ) = h(x, ξ)− T (h(x, ξ)) = h(x, ξ)
(

(1−K2) +K2e
−h(x,ξ)/v1

)
.

for x ∈ S2 and

∇xH(x, ξ) = ∇xh(x, ξ)
(

1−K1 +K1e
−h(x,ξ)/v1 − Kh

v
e−h(x,ξ)/v1

)
.

Letting δ → 0, we have ∇xH(x, ξ) → ∇xh(x̂, ξ)(1 − K2 + K2) = wrT (ξ). This shows that
∇xH(x̂, ξ) = wrT (ξ) and hence∇xH(x, ξ) is Lipschitz continuous w.r.t x. The proof is complete.
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