
 1 

 3-D Seismic velocity tomography of Montserrat from the SEA-CALIPSO offshore/onshore 

experiment. 

Shalev, E.
1,2

, Kenedi, C.L.
 1,2

, Malin, P.
 1,2

, Voight, B.
 3
, Miller, V.

 3
, Hidayat, D.

 3
, Sparks, R.S.J.

 

4
, Minshull, T.

 5
, Paulatto, M.

 5
, Brown, L.

 6
, Mattioli, G.

 7
,  

1. Institute of Earth Science and Engineering, University of Auckland, Auckland, NZ. 

2. Earth & Ocean Sciences, Duke University, Durham, NC 27708 

3. Department of Geosciences, Penn State University, University Park, PA 16802, USA. 

4. Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK 

5. National Oceanography Centre, University of Southampton, Southampton, SO14 3ZH, UK 

6. Department of Geosciences, Cornell University, Ithaca, New York, USA. 

7. Department of Geosciences, University of Arkansas, Fayetteville, AR 72701 

 

Abstract 

The SEA-CALIPSO experiment in December 2007 incorporated a sea-based airgun source, 

and seismic recorders both on Montserrat and on the adjacent sea floor.  A high quality 

subset of the data was used for a first arrival P-wave velocity tomographic study. A total of 

more than 115,000 traveltime data from 4413 airgun shots, and 58 recording stations, were 

used in this high-resolution tomographic inversion. The experiment geometry limited the 

depth of well resolved structures to about 5 km. The most striking features of the 

tomography are three relatively high velocity zones below each of the main volcanic centers 

on Montserrat, and three low velocity zones flanking Centre Hills. We suggest that the high 

velocity zones represent the solid andesitic cores of the volcano complexes, characterized by 

wave speeds faster than adjacent volcaniclastic material.  The low velocity zones may 

reflect porous volcaniclastic material and/or alteration by formerly active hydrothermal 

systems.  

Introduction 

We present a P-wave velocity tomography study on Montserrat, W.I., based on the SEA-

CALIPSO offshore/onshore active source experiment. (Seismic Experiment with Airgun-source – 
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Caribbean Andesitic Lava Island Precision Seismo-geodetic Observatory) .Montserrat is a 10 x 

16 km volcanic island in the northern half of the Lesser Antilles arc. The Soufrière Hills volcano 

(SHV) dominates the southern two thirds of the island and has been active and dynamic since 

July 1995 [Young, 1998]. Various lines of evidence have been used to estimate the depth of over 

5 km to a magmatic reservoir, including petrology [Barclay et al., 1998], deformation [Mattioli 

et al., 1998, Voight et al., 2006], and the approximate base of seismic activity [Aspinall et al., 

1998]. We attempted to identify the regions of variable velocity under the island, especially 

under the volcanic centers, and to inquire whether magmatic storage areas could be recognized 

under the SHV.  

The seismic tomography experiment 

The plan was to install a dense array of seismometers on or near the island, and to encircle the 

island with a ship towing an eight-component GI airgun with a total capacity of 2600 in
3
 

shooting at 1 minute intervals. [Voight et al., in prep]. A major focus concerned obtaining high 

resolution data under the active and hazardous volcano. Since SHV occupies the southeastern 

part of the island, most stations were located in safe areas in the north and northwest, and the 

ship’s radial tracks were mostly to the south and east (Fig. 1). The short distance between the 

target zone and the furthest recorder limited the maximum depth of seismic ray penetration 

below SHV.  

Two deployment designs and types of seismic recorders were used on land in SEA-CALIPSO 

[Voight et al., in prep]: 29 Reftek 130 recorders, with 3-component Mark Products L22 2 Hz 

sensors, and 204 Texans (Reftek 125), with single vertical component Mark Products L28 4.5 Hz 

sensors. In order not to bias the inversion with the closely spaced Texan reflection geometry, 

only one in ten Texans was included in the tomographic grid. 
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The seismic network used in the tomographic inversion consisted of 58 stations, including 25 

Reftek 130s, 19 Texans, 7 Ocean-Bottom Seismometers (OBSs) with 4.5 Hz sensors, and 7 

permanent Montserrat Volcano Observatory (MVO) broadband stations in the exclusion zone. 

For the duration of the experiment, all instruments recorded continuously, at 250 or 100 samples 

per second depending on recorder type. The only exception was a subset of six Texans, part of a 

refraction line in the Belham Valley, that was shut down for several hours mid-experiment for a 

data quality test. 

The data recorded in the experiment was mostly of high quality with easily identifiable first 

arrivals (Figure 2). Weak signals were recorded from some of the longer ray paths. The first 

arrivals formed a smooth progression throughout the section; thus, even when a few shots did not 

show the first arrival, the arrival time could still be identified. In this study we analyzed and 

picked only the first arrivals and did not use secondary phases. These phases are addressed in 

other works [Paulatto et al., 2010].  

Data 

The 77 hours of shooting resulted in 4413 shots recorded by 58 stations for a total of 115,158 ray 

paths. Of all the shots, stations in the north had up to 91% of identifiable first arrivals, while 

stations around SHV had fewer than 35% identifiable first arrivals due to high attenuation in the 

younger volcanic deposits. Stations near the coast recorded few first arrivals due to high ambient 

noise from ocean waves. The data were filtered between 3-15 Hz to correspond with the 

frequency content of the airgun signal. First arrivals were picked manually and only clear signals 

were used; thus, uncertainty was assumed to be the same for all first arrivals. 

Seismic tomography method 
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The first-arrival time data were inverted for a 3D P-wave velocity model of Montserrat and the 

surrounding ocean using the tomography code from Shalev and Lees [1998]. This method uses a 

Cubic B-spline description of the 3D volume, and the LSQR algorithm to invert the data. This 

inversion method simultaneously minimized both data misfit and model roughness, which 

allowed the researcher to choose the desired level of smoothness. The inversion also allowed for 

station and shot corrections. A separate damping parameter was used for each type of inversion 

unknown: velocity model, station correction, and shot correction.  

Although the 3-D velocity structure extended to 1 km above sea level, ray tracing was computed 

from sources at sea level to the actual elevation of each station. The length of the water section 

of each path was assumed to be the depth to the sea floor below each shot. A constant velocity of 

1.5 km/s was used to calculate travel time in the water.   

We began with a 1D velocity model, using Cubic B-spline interpolation to be consistent with the 

3-D inversion. The 1D model for this study was derived from the data using the Levenberg–

Marquardt non-linear minimization procedure [Press et al. 1992]. There were two options for the 

starting velocity model: a) A single starting model for the whole target area, or b) Two starting 

models, one for land and one for ocean. We tested both types of starting model using the same 

damping and smoothing parameters, and while the end results were similar, the final RMS of 

residuals was smaller with two starting models. Therefore, we derived two 1D velocity models, 

one each for land and for ocean (Fig. 2).  The boundary between land and ocean was defined as 

the bathymetric line at 200 m water depth. The derived 1D models differed from the ones used 

for synthetic ray-path modeling. In particular, the final land model was faster than the ocean 

model at all depths penetrated by first arrival rays; this resulted in a shallower maximum depth 

for the turning rays, and reduced the imaging depth.  
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The total target cube for the 3D inversion (see Fig. 1) was 50 x 45 x 8 km. Horizontal velocity 

grid spacing was 0.5 km in the land area, 1 km for the ocean near the land, and 5 km near the 

boundaries. Vertical grid spacing was 0.5 km to a depth of 5 km, and 1 km below 5 km. A 

smaller grid spacing of 0.25 km was tested for the center of the land area but showed no 

improvement. ` 

To check for resolution of the 3D inversion, we ran a checkerboard test based on the starting 1D 

velocity models. The cell size of the checkerboard was 1.5 x 1.5 x 1.5 km, with the specified 

variation ±12.5%. A consistent recovery of the pattern was observed to a depth of 4 km in the 

area of good ray coverage under the island. However, the amplitude of the recovered anomalies 

was only about two-thirds of the starting amplitude. At 5 km depth, some of the checkerboard 

anomalies retained their shape but most were blended and smeared. There was no reliable 

resolution below 5 km depth. 

Another resolution problem was the tradeoff between station correction and velocity in the top 1 

km of the model. The process of allowing for station corrections in the inversion removed most 

of the variability from the top of the model, and running the inversion without station corrections 

resulted in a substantially larger residual RMS. The final inversion allows for damped station 

correction. Nevertheless, it is possible that some velocity anomalies in the top 1 km are not 

imaged because of this compromise. 

Results 

The tomographic inversion converged after 5 iterations. Several sets of damping and smoothing 

parameters were tested, and the major velocity anomalies were stable regardless of these 

parameters. The 3D inversion reduced the RMS of the residuals from 167 ms to 80 ms for a 
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variance reduction of 77%. Results of the tomographic inversion are shown in Figure 3 and 

Figure 4. The maximum lateral variation is about 2 km s
-1

, which is similar to the results 

obtained from Deception Island [Zandomeneghi et al., 2009]. 

The most notable features in the Vp structure are high velocity anomalies below all three 

volcanic centres of Montserrat at about 2 to 3 km depth. The most prominent of these is the 

anomaly below Centre Hills, with a similar but less intense anomaly under SHV (Fig. 3A).  This 

inversion result was not unexpected, because the average station residual contours in Figure 1 

also show positive (fast) residuals for stations near the volcanic centers. The top boundaries of 

these high velocity anomalies are not clear, due to the tradeoff between station correction and 

velocity at shallow depth. When the inversion ran without station corrections, the largest fast 

anomaly under Centre Hills reached the surface, but with higher RMS misfit. 

Other large and consistent anomalies are the low velocity regions on the flanks of the volcanic 

centres. There are three such anomalies to the northeast, northwest, and southwest of Centre 

Hills. These anomalies are stable regardless of inversion parameters.  The east-west cross section 

(Fig. 3D) shows both a high velocity body under SHV and a low velocity anomaly west of SHV. 

The appearance that the two anomalies are elongated down and away from the center of the 

island may be an artefact of the rays coming from the perimeter to the center. However, the 

geometry of the main, high amplitude anomalies of Figure 4 is stable.  

Discussion 

The acquisition geometry of the SEA-CALIPSO tomographic experiment was laid out to target 

the possible active concentration of magma at >5 km depth under the SHV. The actual seismic 

velocities beneath and surrounding Montserrat turned out to be faster than expected, thus turning 
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back most of the refracting seismic energy at depths  <5 km.  The result was that first-arrival P-

wave tomography produced a reliable image of the velocity structure between ~1 and 5 km in 

depth and extending approximately to the shelf break. 

Within this region are six prominent velocity anomalies enclosing perturbations either 6% above 

or below the average velocities at each depth (Fig. 4).  Following Paulatto et al. [2010], we 

suggest that the fast anomalies beneath the three constructional volcanic centers may correspond 

to solid andesitic structural elements in the volcanic cores. The cores would consist of dense, 

crystallized rock comprising dome cores, sills, dikes, or irregular-shaped intrusions, and adjacent 

altered zones with silica precipitation, that are seismically faster than the surrounding material, 

the latter including either lavas  from submarine volcano building, and volcaniclastic deposits 

(talus, block-and-ash flows, lahars etc.). Crystalline cores are consistent with the work of 

Harford and Sparks [2001], who suggest that recurring intrusions solidify at depths up to ~3 km 

under SHV. This is supported by other evidence that suggests that dikes may rise to 1.5-2 km 

under SHV, from shallow storage zones [Mattioli et al. 1998; Hautmann et al. 2009; Voight et 

al., this volume].   It is likely that intrusions have some lateral extent [e.g., Voight et al. 2006], 

and that considerable volumes of unerupted magma remain in storage zones during the current 

eruptive activity. The high velocities observed are consistent with nodules found Montserrat-

wide as inclusions in eruption products [Kiddle et al., this volume].  

The locations of the low-velocity anomalies northeast of Centre Hills and west of SHV suggest a 

relationship with the volcanic centers and the features may represent syn-volcanic apron 

deposits.   A potential weakness with this hypothesis lies in the fact that these low-velocity 

features extend to 3-4 km depth.  While the weight of the volcano could have been responsible 

for some degree of crustal flexure and burial of surface material, it cannot easily account for such 
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a depth. There is evidence for buried volcaniclastic fan deposits at 1.5-2 km depth off the east 

coast of Montserrat [Kenedi et al., this volume]. 

Another possibility is that the low-velocity features result from hydrothermal alteration, shown 

to lower seismic velocities in oceanic rocks [Carlson, 2001].  Evidence for hydrothermal 

circulation beneath the Garibaldi-Richmond-St. Georges Hills includes anomalous seismic 

activity [Rowe et al., 2004],  as well as surface hot springs, hot water in boreholes, and a warm 

pond near Richmond Hill [Chiodini et al, 1996]. Tectonic faulting in the Belham Valley [Kenedi 

et al., this volume] may be related to this hydrothermal activity. Hydrothermally altered rocks 

occur at the surface in parts of the Silver Hills [B. Voight, unpublished observations]. A recent 

MT study on Montserrat shows good correlation between these low velocity zones and low 

resistivity at 1-4 km depth [G. Ryan, personal communication]. Hydrothermal alteration due to 

geothermal fluid circulation is a frequent phenomenon in volcanic areas, and geothermal systems 

are commonly several km in diameter, approximately the size of the low-velocity anomalies in 

Montserrat.  The position of the three low-velocity anomalies around Centre Hills may suggest 

that geothermal activity was more prevalent about 1 – 0.4 Ma, when Centre Hills was active.    
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Figure captions 

Figure 1. Map of SEA CALIPSO 3D tomography area showing bathymetry, topography 

contours, ship track, station locations, and average time residuals for shots and land based 

recorders. Black triangles mark the seismic stations included in the tomographic inversion. The 

stations offshore are ocean bottom seismometers. Colors stand for the average residuals (time 

computed minus time observed) in seconds where red represents slow and blue represents fast. 

On land, the colors contour the average residuals; on water, colors represent the average residual 

for each shot.  The width of the ship track line is proportional to the number of seismic stations 

that recorded the airgun blast from a particular point on the track.  

Figure 2. Example of a record section of the vertical component, as recorded by Station M08 on 

the north slope of Centre Hills, from shots to the southwest of the island. Reduction velocity = 

4.5 km/sec. First arrivals are very clear at approximately 1 sec reduced time. Ship path is shown 

on the left insert in red. 1-D velocity models for land and ocean are shown in right insert.  

Figure 3. Vp tomography results displayed as perturbation from the average velocity at each 

depth. Blue represents faster velocities and red represents slower velocities. The top three panels 

are map view slices through the target volume at depths 2.0 (A), 3.5 (B), and 5.0 (C) km. The 

black line through the panels marks the location of the cross section (D) across the SHV. The 

outline of Montserrat is a white line on all map view slices.   

Figure 4. 3-D isosurfaces of velocity anomalies. The blue surfaces define anomalies that are >6% 

faster than average. The red surfaces represent anomalies that are >6% slower than average. A is 

a map view. B is a view from the east southeast. C is a view from the south southwest.  
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